Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/task_work.h>
  29#include <linux/sched/task.h>
  30#include <uapi/linux/mount.h>
  31#include <linux/fs_context.h>
  32#include <linux/shmem_fs.h>
  33
  34#include "pnode.h"
  35#include "internal.h"
  36
  37/* Maximum number of mounts in a mount namespace */
  38unsigned int sysctl_mount_max __read_mostly = 100000;
  39
  40static unsigned int m_hash_mask __read_mostly;
  41static unsigned int m_hash_shift __read_mostly;
  42static unsigned int mp_hash_mask __read_mostly;
  43static unsigned int mp_hash_shift __read_mostly;
  44
  45static __initdata unsigned long mhash_entries;
  46static int __init set_mhash_entries(char *str)
  47{
  48	if (!str)
  49		return 0;
  50	mhash_entries = simple_strtoul(str, &str, 0);
  51	return 1;
  52}
  53__setup("mhash_entries=", set_mhash_entries);
  54
  55static __initdata unsigned long mphash_entries;
  56static int __init set_mphash_entries(char *str)
  57{
  58	if (!str)
  59		return 0;
  60	mphash_entries = simple_strtoul(str, &str, 0);
  61	return 1;
  62}
  63__setup("mphash_entries=", set_mphash_entries);
  64
  65static u64 event;
  66static DEFINE_IDA(mnt_id_ida);
  67static DEFINE_IDA(mnt_group_ida);
  68
  69static struct hlist_head *mount_hashtable __read_mostly;
  70static struct hlist_head *mountpoint_hashtable __read_mostly;
  71static struct kmem_cache *mnt_cache __read_mostly;
  72static DECLARE_RWSEM(namespace_sem);
  73static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
  74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  75
  76/* /sys/fs */
  77struct kobject *fs_kobj;
  78EXPORT_SYMBOL_GPL(fs_kobj);
  79
  80/*
  81 * vfsmount lock may be taken for read to prevent changes to the
  82 * vfsmount hash, ie. during mountpoint lookups or walking back
  83 * up the tree.
  84 *
  85 * It should be taken for write in all cases where the vfsmount
  86 * tree or hash is modified or when a vfsmount structure is modified.
  87 */
  88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  89
  90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  91{
  92	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  93	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  94	tmp = tmp + (tmp >> m_hash_shift);
  95	return &mount_hashtable[tmp & m_hash_mask];
  96}
  97
  98static inline struct hlist_head *mp_hash(struct dentry *dentry)
  99{
 100	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 101	tmp = tmp + (tmp >> mp_hash_shift);
 102	return &mountpoint_hashtable[tmp & mp_hash_mask];
 103}
 104
 105static int mnt_alloc_id(struct mount *mnt)
 106{
 107	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 108
 109	if (res < 0)
 110		return res;
 111	mnt->mnt_id = res;
 112	return 0;
 113}
 114
 115static void mnt_free_id(struct mount *mnt)
 116{
 117	ida_free(&mnt_id_ida, mnt->mnt_id);
 118}
 119
 120/*
 121 * Allocate a new peer group ID
 122 */
 123static int mnt_alloc_group_id(struct mount *mnt)
 124{
 125	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 126
 127	if (res < 0)
 128		return res;
 129	mnt->mnt_group_id = res;
 130	return 0;
 131}
 132
 133/*
 134 * Release a peer group ID
 135 */
 136void mnt_release_group_id(struct mount *mnt)
 137{
 138	ida_free(&mnt_group_ida, mnt->mnt_group_id);
 139	mnt->mnt_group_id = 0;
 140}
 141
 142/*
 143 * vfsmount lock must be held for read
 144 */
 145static inline void mnt_add_count(struct mount *mnt, int n)
 146{
 147#ifdef CONFIG_SMP
 148	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 149#else
 150	preempt_disable();
 151	mnt->mnt_count += n;
 152	preempt_enable();
 153#endif
 154}
 155
 156/*
 157 * vfsmount lock must be held for write
 158 */
 159unsigned int mnt_get_count(struct mount *mnt)
 160{
 161#ifdef CONFIG_SMP
 162	unsigned int count = 0;
 163	int cpu;
 164
 165	for_each_possible_cpu(cpu) {
 166		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 167	}
 168
 169	return count;
 170#else
 171	return mnt->mnt_count;
 172#endif
 173}
 174
 175static struct mount *alloc_vfsmnt(const char *name)
 176{
 177	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 178	if (mnt) {
 179		int err;
 180
 181		err = mnt_alloc_id(mnt);
 182		if (err)
 183			goto out_free_cache;
 184
 185		if (name) {
 186			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 187			if (!mnt->mnt_devname)
 188				goto out_free_id;
 189		}
 190
 191#ifdef CONFIG_SMP
 192		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 193		if (!mnt->mnt_pcp)
 194			goto out_free_devname;
 195
 196		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 197#else
 198		mnt->mnt_count = 1;
 199		mnt->mnt_writers = 0;
 200#endif
 201
 202		INIT_HLIST_NODE(&mnt->mnt_hash);
 203		INIT_LIST_HEAD(&mnt->mnt_child);
 204		INIT_LIST_HEAD(&mnt->mnt_mounts);
 205		INIT_LIST_HEAD(&mnt->mnt_list);
 206		INIT_LIST_HEAD(&mnt->mnt_expire);
 207		INIT_LIST_HEAD(&mnt->mnt_share);
 208		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 209		INIT_LIST_HEAD(&mnt->mnt_slave);
 210		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 211		INIT_LIST_HEAD(&mnt->mnt_umounting);
 212		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 213	}
 214	return mnt;
 215
 216#ifdef CONFIG_SMP
 217out_free_devname:
 218	kfree_const(mnt->mnt_devname);
 219#endif
 220out_free_id:
 221	mnt_free_id(mnt);
 222out_free_cache:
 223	kmem_cache_free(mnt_cache, mnt);
 224	return NULL;
 225}
 226
 227/*
 228 * Most r/o checks on a fs are for operations that take
 229 * discrete amounts of time, like a write() or unlink().
 230 * We must keep track of when those operations start
 231 * (for permission checks) and when they end, so that
 232 * we can determine when writes are able to occur to
 233 * a filesystem.
 234 */
 235/*
 236 * __mnt_is_readonly: check whether a mount is read-only
 237 * @mnt: the mount to check for its write status
 238 *
 239 * This shouldn't be used directly ouside of the VFS.
 240 * It does not guarantee that the filesystem will stay
 241 * r/w, just that it is right *now*.  This can not and
 242 * should not be used in place of IS_RDONLY(inode).
 243 * mnt_want/drop_write() will _keep_ the filesystem
 244 * r/w.
 245 */
 246bool __mnt_is_readonly(struct vfsmount *mnt)
 247{
 248	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 249}
 250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 251
 252static inline void mnt_inc_writers(struct mount *mnt)
 253{
 254#ifdef CONFIG_SMP
 255	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 256#else
 257	mnt->mnt_writers++;
 258#endif
 259}
 260
 261static inline void mnt_dec_writers(struct mount *mnt)
 262{
 263#ifdef CONFIG_SMP
 264	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 265#else
 266	mnt->mnt_writers--;
 267#endif
 268}
 269
 270static unsigned int mnt_get_writers(struct mount *mnt)
 271{
 272#ifdef CONFIG_SMP
 273	unsigned int count = 0;
 274	int cpu;
 275
 276	for_each_possible_cpu(cpu) {
 277		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 278	}
 279
 280	return count;
 281#else
 282	return mnt->mnt_writers;
 283#endif
 284}
 285
 286static int mnt_is_readonly(struct vfsmount *mnt)
 287{
 288	if (mnt->mnt_sb->s_readonly_remount)
 289		return 1;
 290	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 291	smp_rmb();
 292	return __mnt_is_readonly(mnt);
 293}
 294
 295/*
 296 * Most r/o & frozen checks on a fs are for operations that take discrete
 297 * amounts of time, like a write() or unlink().  We must keep track of when
 298 * those operations start (for permission checks) and when they end, so that we
 299 * can determine when writes are able to occur to a filesystem.
 300 */
 301/**
 302 * __mnt_want_write - get write access to a mount without freeze protection
 303 * @m: the mount on which to take a write
 304 *
 305 * This tells the low-level filesystem that a write is about to be performed to
 306 * it, and makes sure that writes are allowed (mnt it read-write) before
 307 * returning success. This operation does not protect against filesystem being
 308 * frozen. When the write operation is finished, __mnt_drop_write() must be
 309 * called. This is effectively a refcount.
 310 */
 311int __mnt_want_write(struct vfsmount *m)
 312{
 313	struct mount *mnt = real_mount(m);
 314	int ret = 0;
 315
 316	preempt_disable();
 317	mnt_inc_writers(mnt);
 318	/*
 319	 * The store to mnt_inc_writers must be visible before we pass
 320	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 321	 * incremented count after it has set MNT_WRITE_HOLD.
 322	 */
 323	smp_mb();
 324	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 325		cpu_relax();
 326	/*
 327	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 328	 * be set to match its requirements. So we must not load that until
 329	 * MNT_WRITE_HOLD is cleared.
 330	 */
 331	smp_rmb();
 332	if (mnt_is_readonly(m)) {
 333		mnt_dec_writers(mnt);
 334		ret = -EROFS;
 335	}
 336	preempt_enable();
 337
 338	return ret;
 339}
 340
 341/**
 342 * mnt_want_write - get write access to a mount
 343 * @m: the mount on which to take a write
 344 *
 345 * This tells the low-level filesystem that a write is about to be performed to
 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 347 * is not frozen) before returning success.  When the write operation is
 348 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 349 */
 350int mnt_want_write(struct vfsmount *m)
 351{
 352	int ret;
 353
 354	sb_start_write(m->mnt_sb);
 355	ret = __mnt_want_write(m);
 356	if (ret)
 357		sb_end_write(m->mnt_sb);
 358	return ret;
 359}
 360EXPORT_SYMBOL_GPL(mnt_want_write);
 361
 362/**
 363 * mnt_clone_write - get write access to a mount
 364 * @mnt: the mount on which to take a write
 365 *
 366 * This is effectively like mnt_want_write, except
 367 * it must only be used to take an extra write reference
 368 * on a mountpoint that we already know has a write reference
 369 * on it. This allows some optimisation.
 370 *
 371 * After finished, mnt_drop_write must be called as usual to
 372 * drop the reference.
 373 */
 374int mnt_clone_write(struct vfsmount *mnt)
 375{
 376	/* superblock may be r/o */
 377	if (__mnt_is_readonly(mnt))
 378		return -EROFS;
 379	preempt_disable();
 380	mnt_inc_writers(real_mount(mnt));
 381	preempt_enable();
 382	return 0;
 383}
 384EXPORT_SYMBOL_GPL(mnt_clone_write);
 385
 386/**
 387 * __mnt_want_write_file - get write access to a file's mount
 388 * @file: the file who's mount on which to take a write
 389 *
 390 * This is like __mnt_want_write, but it takes a file and can
 391 * do some optimisations if the file is open for write already
 392 */
 393int __mnt_want_write_file(struct file *file)
 394{
 395	if (!(file->f_mode & FMODE_WRITER))
 396		return __mnt_want_write(file->f_path.mnt);
 397	else
 398		return mnt_clone_write(file->f_path.mnt);
 399}
 400
 401/**
 402 * mnt_want_write_file - get write access to a file's mount
 403 * @file: the file who's mount on which to take a write
 404 *
 405 * This is like mnt_want_write, but it takes a file and can
 406 * do some optimisations if the file is open for write already
 407 */
 408int mnt_want_write_file(struct file *file)
 409{
 410	int ret;
 411
 412	sb_start_write(file_inode(file)->i_sb);
 413	ret = __mnt_want_write_file(file);
 414	if (ret)
 415		sb_end_write(file_inode(file)->i_sb);
 416	return ret;
 417}
 418EXPORT_SYMBOL_GPL(mnt_want_write_file);
 419
 420/**
 421 * __mnt_drop_write - give up write access to a mount
 422 * @mnt: the mount on which to give up write access
 423 *
 424 * Tells the low-level filesystem that we are done
 425 * performing writes to it.  Must be matched with
 426 * __mnt_want_write() call above.
 427 */
 428void __mnt_drop_write(struct vfsmount *mnt)
 429{
 430	preempt_disable();
 431	mnt_dec_writers(real_mount(mnt));
 432	preempt_enable();
 433}
 434
 435/**
 436 * mnt_drop_write - give up write access to a mount
 437 * @mnt: the mount on which to give up write access
 438 *
 439 * Tells the low-level filesystem that we are done performing writes to it and
 440 * also allows filesystem to be frozen again.  Must be matched with
 441 * mnt_want_write() call above.
 442 */
 443void mnt_drop_write(struct vfsmount *mnt)
 444{
 445	__mnt_drop_write(mnt);
 446	sb_end_write(mnt->mnt_sb);
 447}
 448EXPORT_SYMBOL_GPL(mnt_drop_write);
 449
 450void __mnt_drop_write_file(struct file *file)
 451{
 452	__mnt_drop_write(file->f_path.mnt);
 453}
 454
 455void mnt_drop_write_file(struct file *file)
 456{
 457	__mnt_drop_write_file(file);
 458	sb_end_write(file_inode(file)->i_sb);
 459}
 460EXPORT_SYMBOL(mnt_drop_write_file);
 461
 462static int mnt_make_readonly(struct mount *mnt)
 463{
 464	int ret = 0;
 465
 466	lock_mount_hash();
 467	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 468	/*
 469	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 470	 * should be visible before we do.
 471	 */
 472	smp_mb();
 473
 474	/*
 475	 * With writers on hold, if this value is zero, then there are
 476	 * definitely no active writers (although held writers may subsequently
 477	 * increment the count, they'll have to wait, and decrement it after
 478	 * seeing MNT_READONLY).
 479	 *
 480	 * It is OK to have counter incremented on one CPU and decremented on
 481	 * another: the sum will add up correctly. The danger would be when we
 482	 * sum up each counter, if we read a counter before it is incremented,
 483	 * but then read another CPU's count which it has been subsequently
 484	 * decremented from -- we would see more decrements than we should.
 485	 * MNT_WRITE_HOLD protects against this scenario, because
 486	 * mnt_want_write first increments count, then smp_mb, then spins on
 487	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 488	 * we're counting up here.
 489	 */
 490	if (mnt_get_writers(mnt) > 0)
 491		ret = -EBUSY;
 492	else
 493		mnt->mnt.mnt_flags |= MNT_READONLY;
 494	/*
 495	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 496	 * that become unheld will see MNT_READONLY.
 497	 */
 498	smp_wmb();
 499	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 500	unlock_mount_hash();
 501	return ret;
 502}
 503
 504static int __mnt_unmake_readonly(struct mount *mnt)
 505{
 506	lock_mount_hash();
 507	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 508	unlock_mount_hash();
 509	return 0;
 510}
 511
 512int sb_prepare_remount_readonly(struct super_block *sb)
 513{
 514	struct mount *mnt;
 515	int err = 0;
 516
 517	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 518	if (atomic_long_read(&sb->s_remove_count))
 519		return -EBUSY;
 520
 521	lock_mount_hash();
 522	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 523		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 524			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 525			smp_mb();
 526			if (mnt_get_writers(mnt) > 0) {
 527				err = -EBUSY;
 528				break;
 529			}
 530		}
 531	}
 532	if (!err && atomic_long_read(&sb->s_remove_count))
 533		err = -EBUSY;
 534
 535	if (!err) {
 536		sb->s_readonly_remount = 1;
 537		smp_wmb();
 538	}
 539	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 540		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 541			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 542	}
 543	unlock_mount_hash();
 544
 545	return err;
 546}
 547
 548static void free_vfsmnt(struct mount *mnt)
 549{
 550	kfree_const(mnt->mnt_devname);
 551#ifdef CONFIG_SMP
 552	free_percpu(mnt->mnt_pcp);
 553#endif
 554	kmem_cache_free(mnt_cache, mnt);
 555}
 556
 557static void delayed_free_vfsmnt(struct rcu_head *head)
 558{
 559	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 560}
 561
 562/* call under rcu_read_lock */
 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 564{
 565	struct mount *mnt;
 566	if (read_seqretry(&mount_lock, seq))
 567		return 1;
 568	if (bastard == NULL)
 569		return 0;
 570	mnt = real_mount(bastard);
 571	mnt_add_count(mnt, 1);
 572	smp_mb();			// see mntput_no_expire()
 573	if (likely(!read_seqretry(&mount_lock, seq)))
 574		return 0;
 575	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 576		mnt_add_count(mnt, -1);
 577		return 1;
 578	}
 579	lock_mount_hash();
 580	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 581		mnt_add_count(mnt, -1);
 582		unlock_mount_hash();
 583		return 1;
 584	}
 585	unlock_mount_hash();
 586	/* caller will mntput() */
 587	return -1;
 588}
 589
 590/* call under rcu_read_lock */
 591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 592{
 593	int res = __legitimize_mnt(bastard, seq);
 594	if (likely(!res))
 595		return true;
 596	if (unlikely(res < 0)) {
 597		rcu_read_unlock();
 598		mntput(bastard);
 599		rcu_read_lock();
 600	}
 601	return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610	struct hlist_head *head = m_hash(mnt, dentry);
 611	struct mount *p;
 612
 613	hlist_for_each_entry_rcu(p, head, mnt_hash)
 614		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615			return p;
 616	return NULL;
 617}
 618
 619/*
 620 * lookup_mnt - Return the first child mount mounted at path
 621 *
 622 * "First" means first mounted chronologically.  If you create the
 623 * following mounts:
 624 *
 625 * mount /dev/sda1 /mnt
 626 * mount /dev/sda2 /mnt
 627 * mount /dev/sda3 /mnt
 628 *
 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 630 * return successively the root dentry and vfsmount of /dev/sda1, then
 631 * /dev/sda2, then /dev/sda3, then NULL.
 632 *
 633 * lookup_mnt takes a reference to the found vfsmount.
 634 */
 635struct vfsmount *lookup_mnt(const struct path *path)
 636{
 637	struct mount *child_mnt;
 638	struct vfsmount *m;
 639	unsigned seq;
 640
 641	rcu_read_lock();
 642	do {
 643		seq = read_seqbegin(&mount_lock);
 644		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 645		m = child_mnt ? &child_mnt->mnt : NULL;
 646	} while (!legitimize_mnt(m, seq));
 647	rcu_read_unlock();
 648	return m;
 649}
 650
 651/*
 652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 653 *                         current mount namespace.
 654 *
 655 * The common case is dentries are not mountpoints at all and that
 656 * test is handled inline.  For the slow case when we are actually
 657 * dealing with a mountpoint of some kind, walk through all of the
 658 * mounts in the current mount namespace and test to see if the dentry
 659 * is a mountpoint.
 660 *
 661 * The mount_hashtable is not usable in the context because we
 662 * need to identify all mounts that may be in the current mount
 663 * namespace not just a mount that happens to have some specified
 664 * parent mount.
 665 */
 666bool __is_local_mountpoint(struct dentry *dentry)
 667{
 668	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 669	struct mount *mnt;
 670	bool is_covered = false;
 671
 672	if (!d_mountpoint(dentry))
 673		goto out;
 674
 675	down_read(&namespace_sem);
 676	list_for_each_entry(mnt, &ns->list, mnt_list) {
 677		is_covered = (mnt->mnt_mountpoint == dentry);
 678		if (is_covered)
 679			break;
 680	}
 681	up_read(&namespace_sem);
 682out:
 683	return is_covered;
 684}
 685
 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 687{
 688	struct hlist_head *chain = mp_hash(dentry);
 689	struct mountpoint *mp;
 690
 691	hlist_for_each_entry(mp, chain, m_hash) {
 692		if (mp->m_dentry == dentry) {
 693			mp->m_count++;
 694			return mp;
 695		}
 696	}
 697	return NULL;
 698}
 699
 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
 701{
 702	struct mountpoint *mp, *new = NULL;
 703	int ret;
 704
 705	if (d_mountpoint(dentry)) {
 706		/* might be worth a WARN_ON() */
 707		if (d_unlinked(dentry))
 708			return ERR_PTR(-ENOENT);
 709mountpoint:
 710		read_seqlock_excl(&mount_lock);
 711		mp = lookup_mountpoint(dentry);
 712		read_sequnlock_excl(&mount_lock);
 713		if (mp)
 714			goto done;
 715	}
 716
 717	if (!new)
 718		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 719	if (!new)
 720		return ERR_PTR(-ENOMEM);
 721
 722
 723	/* Exactly one processes may set d_mounted */
 724	ret = d_set_mounted(dentry);
 725
 726	/* Someone else set d_mounted? */
 727	if (ret == -EBUSY)
 728		goto mountpoint;
 729
 730	/* The dentry is not available as a mountpoint? */
 731	mp = ERR_PTR(ret);
 732	if (ret)
 733		goto done;
 734
 735	/* Add the new mountpoint to the hash table */
 736	read_seqlock_excl(&mount_lock);
 737	new->m_dentry = dget(dentry);
 738	new->m_count = 1;
 739	hlist_add_head(&new->m_hash, mp_hash(dentry));
 740	INIT_HLIST_HEAD(&new->m_list);
 741	read_sequnlock_excl(&mount_lock);
 742
 743	mp = new;
 744	new = NULL;
 745done:
 746	kfree(new);
 747	return mp;
 748}
 749
 750/*
 751 * vfsmount lock must be held.  Additionally, the caller is responsible
 752 * for serializing calls for given disposal list.
 753 */
 754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 755{
 756	if (!--mp->m_count) {
 757		struct dentry *dentry = mp->m_dentry;
 758		BUG_ON(!hlist_empty(&mp->m_list));
 759		spin_lock(&dentry->d_lock);
 760		dentry->d_flags &= ~DCACHE_MOUNTED;
 761		spin_unlock(&dentry->d_lock);
 762		dput_to_list(dentry, list);
 763		hlist_del(&mp->m_hash);
 764		kfree(mp);
 765	}
 766}
 767
 768/* called with namespace_lock and vfsmount lock */
 769static void put_mountpoint(struct mountpoint *mp)
 770{
 771	__put_mountpoint(mp, &ex_mountpoints);
 772}
 773
 774static inline int check_mnt(struct mount *mnt)
 775{
 776	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 777}
 778
 779/*
 780 * vfsmount lock must be held for write
 781 */
 782static void touch_mnt_namespace(struct mnt_namespace *ns)
 783{
 784	if (ns) {
 785		ns->event = ++event;
 786		wake_up_interruptible(&ns->poll);
 787	}
 788}
 789
 790/*
 791 * vfsmount lock must be held for write
 792 */
 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
 794{
 795	if (ns && ns->event != event) {
 796		ns->event = event;
 797		wake_up_interruptible(&ns->poll);
 798	}
 799}
 800
 801/*
 802 * vfsmount lock must be held for write
 803 */
 804static struct mountpoint *unhash_mnt(struct mount *mnt)
 805{
 806	struct mountpoint *mp;
 807	mnt->mnt_parent = mnt;
 808	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 809	list_del_init(&mnt->mnt_child);
 810	hlist_del_init_rcu(&mnt->mnt_hash);
 811	hlist_del_init(&mnt->mnt_mp_list);
 812	mp = mnt->mnt_mp;
 813	mnt->mnt_mp = NULL;
 814	return mp;
 815}
 816
 817/*
 818 * vfsmount lock must be held for write
 819 */
 820static void umount_mnt(struct mount *mnt)
 821{
 822	put_mountpoint(unhash_mnt(mnt));
 823}
 824
 825/*
 826 * vfsmount lock must be held for write
 827 */
 828void mnt_set_mountpoint(struct mount *mnt,
 829			struct mountpoint *mp,
 830			struct mount *child_mnt)
 831{
 832	mp->m_count++;
 833	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 834	child_mnt->mnt_mountpoint = mp->m_dentry;
 835	child_mnt->mnt_parent = mnt;
 836	child_mnt->mnt_mp = mp;
 837	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 838}
 839
 840static void __attach_mnt(struct mount *mnt, struct mount *parent)
 841{
 842	hlist_add_head_rcu(&mnt->mnt_hash,
 843			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
 844	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 845}
 846
 847/*
 848 * vfsmount lock must be held for write
 849 */
 850static void attach_mnt(struct mount *mnt,
 851			struct mount *parent,
 852			struct mountpoint *mp)
 853{
 854	mnt_set_mountpoint(parent, mp, mnt);
 855	__attach_mnt(mnt, parent);
 856}
 857
 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 859{
 860	struct mountpoint *old_mp = mnt->mnt_mp;
 861	struct mount *old_parent = mnt->mnt_parent;
 862
 863	list_del_init(&mnt->mnt_child);
 864	hlist_del_init(&mnt->mnt_mp_list);
 865	hlist_del_init_rcu(&mnt->mnt_hash);
 866
 867	attach_mnt(mnt, parent, mp);
 868
 869	put_mountpoint(old_mp);
 870	mnt_add_count(old_parent, -1);
 871}
 872
 873/*
 874 * vfsmount lock must be held for write
 875 */
 876static void commit_tree(struct mount *mnt)
 877{
 878	struct mount *parent = mnt->mnt_parent;
 879	struct mount *m;
 880	LIST_HEAD(head);
 881	struct mnt_namespace *n = parent->mnt_ns;
 882
 883	BUG_ON(parent == mnt);
 884
 885	list_add_tail(&head, &mnt->mnt_list);
 886	list_for_each_entry(m, &head, mnt_list)
 887		m->mnt_ns = n;
 888
 889	list_splice(&head, n->list.prev);
 890
 891	n->mounts += n->pending_mounts;
 892	n->pending_mounts = 0;
 893
 894	__attach_mnt(mnt, parent);
 895	touch_mnt_namespace(n);
 896}
 897
 898static struct mount *next_mnt(struct mount *p, struct mount *root)
 899{
 900	struct list_head *next = p->mnt_mounts.next;
 901	if (next == &p->mnt_mounts) {
 902		while (1) {
 903			if (p == root)
 904				return NULL;
 905			next = p->mnt_child.next;
 906			if (next != &p->mnt_parent->mnt_mounts)
 907				break;
 908			p = p->mnt_parent;
 909		}
 910	}
 911	return list_entry(next, struct mount, mnt_child);
 912}
 913
 914static struct mount *skip_mnt_tree(struct mount *p)
 915{
 916	struct list_head *prev = p->mnt_mounts.prev;
 917	while (prev != &p->mnt_mounts) {
 918		p = list_entry(prev, struct mount, mnt_child);
 919		prev = p->mnt_mounts.prev;
 920	}
 921	return p;
 922}
 923
 924/**
 925 * vfs_create_mount - Create a mount for a configured superblock
 926 * @fc: The configuration context with the superblock attached
 927 *
 928 * Create a mount to an already configured superblock.  If necessary, the
 929 * caller should invoke vfs_get_tree() before calling this.
 930 *
 931 * Note that this does not attach the mount to anything.
 932 */
 933struct vfsmount *vfs_create_mount(struct fs_context *fc)
 934{
 935	struct mount *mnt;
 936
 937	if (!fc->root)
 938		return ERR_PTR(-EINVAL);
 939
 940	mnt = alloc_vfsmnt(fc->source ?: "none");
 941	if (!mnt)
 942		return ERR_PTR(-ENOMEM);
 943
 944	if (fc->sb_flags & SB_KERNMOUNT)
 945		mnt->mnt.mnt_flags = MNT_INTERNAL;
 946
 947	atomic_inc(&fc->root->d_sb->s_active);
 948	mnt->mnt.mnt_sb		= fc->root->d_sb;
 949	mnt->mnt.mnt_root	= dget(fc->root);
 950	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
 951	mnt->mnt_parent		= mnt;
 952
 953	lock_mount_hash();
 954	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 955	unlock_mount_hash();
 956	return &mnt->mnt;
 957}
 958EXPORT_SYMBOL(vfs_create_mount);
 959
 960struct vfsmount *fc_mount(struct fs_context *fc)
 961{
 962	int err = vfs_get_tree(fc);
 963	if (!err) {
 964		up_write(&fc->root->d_sb->s_umount);
 965		return vfs_create_mount(fc);
 966	}
 967	return ERR_PTR(err);
 968}
 969EXPORT_SYMBOL(fc_mount);
 970
 971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 972				int flags, const char *name,
 973				void *data)
 974{
 975	struct fs_context *fc;
 976	struct vfsmount *mnt;
 977	int ret = 0;
 978
 979	if (!type)
 980		return ERR_PTR(-EINVAL);
 981
 982	fc = fs_context_for_mount(type, flags);
 983	if (IS_ERR(fc))
 984		return ERR_CAST(fc);
 985
 986	if (name)
 987		ret = vfs_parse_fs_string(fc, "source",
 988					  name, strlen(name));
 989	if (!ret)
 990		ret = parse_monolithic_mount_data(fc, data);
 991	if (!ret)
 992		mnt = fc_mount(fc);
 993	else
 994		mnt = ERR_PTR(ret);
 995
 996	put_fs_context(fc);
 997	return mnt;
 998}
 999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003	     const char *name, void *data)
1004{
1005	/* Until it is worked out how to pass the user namespace
1006	 * through from the parent mount to the submount don't support
1007	 * unprivileged mounts with submounts.
1008	 */
1009	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010		return ERR_PTR(-EPERM);
1011
1012	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017					int flag)
1018{
1019	struct super_block *sb = old->mnt.mnt_sb;
1020	struct mount *mnt;
1021	int err;
1022
1023	mnt = alloc_vfsmnt(old->mnt_devname);
1024	if (!mnt)
1025		return ERR_PTR(-ENOMEM);
1026
1027	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028		mnt->mnt_group_id = 0; /* not a peer of original */
1029	else
1030		mnt->mnt_group_id = old->mnt_group_id;
1031
1032	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033		err = mnt_alloc_group_id(mnt);
1034		if (err)
1035			goto out_free;
1036	}
1037
1038	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040
1041	atomic_inc(&sb->s_active);
1042	mnt->mnt.mnt_sb = sb;
1043	mnt->mnt.mnt_root = dget(root);
1044	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045	mnt->mnt_parent = mnt;
1046	lock_mount_hash();
1047	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048	unlock_mount_hash();
1049
1050	if ((flag & CL_SLAVE) ||
1051	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053		mnt->mnt_master = old;
1054		CLEAR_MNT_SHARED(mnt);
1055	} else if (!(flag & CL_PRIVATE)) {
1056		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057			list_add(&mnt->mnt_share, &old->mnt_share);
1058		if (IS_MNT_SLAVE(old))
1059			list_add(&mnt->mnt_slave, &old->mnt_slave);
1060		mnt->mnt_master = old->mnt_master;
1061	} else {
1062		CLEAR_MNT_SHARED(mnt);
1063	}
1064	if (flag & CL_MAKE_SHARED)
1065		set_mnt_shared(mnt);
1066
1067	/* stick the duplicate mount on the same expiry list
1068	 * as the original if that was on one */
1069	if (flag & CL_EXPIRE) {
1070		if (!list_empty(&old->mnt_expire))
1071			list_add(&mnt->mnt_expire, &old->mnt_expire);
1072	}
1073
1074	return mnt;
1075
1076 out_free:
1077	mnt_free_id(mnt);
1078	free_vfsmnt(mnt);
1079	return ERR_PTR(err);
1080}
1081
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084	struct hlist_node *p;
1085	struct mount *m;
1086	/*
1087	 * The warning here probably indicates that somebody messed
1088	 * up a mnt_want/drop_write() pair.  If this happens, the
1089	 * filesystem was probably unable to make r/w->r/o transitions.
1090	 * The locking used to deal with mnt_count decrement provides barriers,
1091	 * so mnt_get_writers() below is safe.
1092	 */
1093	WARN_ON(mnt_get_writers(mnt));
1094	if (unlikely(mnt->mnt_pins.first))
1095		mnt_pin_kill(mnt);
1096	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097		hlist_del(&m->mnt_umount);
1098		mntput(&m->mnt);
1099	}
1100	fsnotify_vfsmount_delete(&mnt->mnt);
1101	dput(mnt->mnt.mnt_root);
1102	deactivate_super(mnt->mnt.mnt_sb);
1103	mnt_free_id(mnt);
1104	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116	struct mount *m, *t;
1117
1118	llist_for_each_entry_safe(m, t, node, mnt_llist)
1119		cleanup_mnt(m);
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
1123static void mntput_no_expire(struct mount *mnt)
1124{
1125	LIST_HEAD(list);
1126
1127	rcu_read_lock();
1128	if (likely(READ_ONCE(mnt->mnt_ns))) {
1129		/*
1130		 * Since we don't do lock_mount_hash() here,
1131		 * ->mnt_ns can change under us.  However, if it's
1132		 * non-NULL, then there's a reference that won't
1133		 * be dropped until after an RCU delay done after
1134		 * turning ->mnt_ns NULL.  So if we observe it
1135		 * non-NULL under rcu_read_lock(), the reference
1136		 * we are dropping is not the final one.
1137		 */
1138		mnt_add_count(mnt, -1);
1139		rcu_read_unlock();
1140		return;
1141	}
1142	lock_mount_hash();
1143	/*
1144	 * make sure that if __legitimize_mnt() has not seen us grab
1145	 * mount_lock, we'll see their refcount increment here.
1146	 */
1147	smp_mb();
1148	mnt_add_count(mnt, -1);
1149	if (mnt_get_count(mnt)) {
1150		rcu_read_unlock();
1151		unlock_mount_hash();
1152		return;
1153	}
1154	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155		rcu_read_unlock();
1156		unlock_mount_hash();
1157		return;
1158	}
1159	mnt->mnt.mnt_flags |= MNT_DOOMED;
1160	rcu_read_unlock();
1161
1162	list_del(&mnt->mnt_instance);
1163
1164	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165		struct mount *p, *tmp;
1166		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1167			__put_mountpoint(unhash_mnt(p), &list);
1168			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169		}
1170	}
1171	unlock_mount_hash();
1172	shrink_dentry_list(&list);
1173
1174	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175		struct task_struct *task = current;
1176		if (likely(!(task->flags & PF_KTHREAD))) {
1177			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178			if (!task_work_add(task, &mnt->mnt_rcu, true))
1179				return;
1180		}
1181		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182			schedule_delayed_work(&delayed_mntput_work, 1);
1183		return;
1184	}
1185	cleanup_mnt(mnt);
1186}
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190	if (mnt) {
1191		struct mount *m = real_mount(mnt);
1192		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193		if (unlikely(m->mnt_expiry_mark))
1194			m->mnt_expiry_mark = 0;
1195		mntput_no_expire(m);
1196	}
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202	if (mnt)
1203		mnt_add_count(real_mount(mnt), 1);
1204	return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 *                          namespace.
1210 *
1211 *  d_mountpoint() can only be used reliably to establish if a dentry is
1212 *  not mounted in any namespace and that common case is handled inline.
1213 *  d_mountpoint() isn't aware of the possibility there may be multiple
1214 *  mounts using a given dentry in a different namespace. This function
1215 *  checks if the passed in path is a mountpoint rather than the dentry
1216 *  alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220	unsigned seq;
1221	bool res;
1222
1223	if (!d_mountpoint(path->dentry))
1224		return false;
1225
1226	rcu_read_lock();
1227	do {
1228		seq = read_seqbegin(&mount_lock);
1229		res = __path_is_mountpoint(path);
1230	} while (read_seqretry(&mount_lock, seq));
1231	rcu_read_unlock();
1232
1233	return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
1237struct vfsmount *mnt_clone_internal(const struct path *path)
1238{
1239	struct mount *p;
1240	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241	if (IS_ERR(p))
1242		return ERR_CAST(p);
1243	p->mnt.mnt_flags |= MNT_INTERNAL;
1244	return &p->mnt;
1245}
1246
1247#ifdef CONFIG_PROC_FS
1248/* iterator; we want it to have access to namespace_sem, thus here... */
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
1251	struct proc_mounts *p = m->private;
1252
1253	down_read(&namespace_sem);
1254	if (p->cached_event == p->ns->event) {
1255		void *v = p->cached_mount;
1256		if (*pos == p->cached_index)
1257			return v;
1258		if (*pos == p->cached_index + 1) {
1259			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260			return p->cached_mount = v;
1261		}
1262	}
1263
1264	p->cached_event = p->ns->event;
1265	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266	p->cached_index = *pos;
1267	return p->cached_mount;
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
1272	struct proc_mounts *p = m->private;
1273
1274	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275	p->cached_index = *pos;
1276	return p->cached_mount;
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
1281	up_read(&namespace_sem);
1282}
1283
1284static int m_show(struct seq_file *m, void *v)
1285{
1286	struct proc_mounts *p = m->private;
1287	struct mount *r = list_entry(v, struct mount, mnt_list);
1288	return p->show(m, &r->mnt);
1289}
1290
1291const struct seq_operations mounts_op = {
1292	.start	= m_start,
1293	.next	= m_next,
1294	.stop	= m_stop,
1295	.show	= m_show,
1296};
1297#endif  /* CONFIG_PROC_FS */
1298
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
1307int may_umount_tree(struct vfsmount *m)
1308{
1309	struct mount *mnt = real_mount(m);
1310	int actual_refs = 0;
1311	int minimum_refs = 0;
1312	struct mount *p;
1313	BUG_ON(!m);
1314
1315	/* write lock needed for mnt_get_count */
1316	lock_mount_hash();
1317	for (p = mnt; p; p = next_mnt(p, mnt)) {
1318		actual_refs += mnt_get_count(p);
1319		minimum_refs += 2;
1320	}
1321	unlock_mount_hash();
1322
1323	if (actual_refs > minimum_refs)
1324		return 0;
1325
1326	return 1;
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
1346	int ret = 1;
1347	down_read(&namespace_sem);
1348	lock_mount_hash();
1349	if (propagate_mount_busy(real_mount(mnt), 2))
1350		ret = 0;
1351	unlock_mount_hash();
1352	up_read(&namespace_sem);
1353	return ret;
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
1358static void namespace_unlock(void)
1359{
1360	struct hlist_head head;
1361	struct hlist_node *p;
1362	struct mount *m;
1363	LIST_HEAD(list);
1364
1365	hlist_move_list(&unmounted, &head);
1366	list_splice_init(&ex_mountpoints, &list);
1367
1368	up_write(&namespace_sem);
1369
1370	shrink_dentry_list(&list);
1371
1372	if (likely(hlist_empty(&head)))
1373		return;
1374
1375	synchronize_rcu_expedited();
1376
1377	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378		hlist_del(&m->mnt_umount);
1379		mntput(&m->mnt);
1380	}
1381}
1382
1383static inline void namespace_lock(void)
1384{
1385	down_write(&namespace_sem);
1386}
1387
1388enum umount_tree_flags {
1389	UMOUNT_SYNC = 1,
1390	UMOUNT_PROPAGATE = 2,
1391	UMOUNT_CONNECTED = 4,
1392};
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396	/* Leaving mounts connected is only valid for lazy umounts */
1397	if (how & UMOUNT_SYNC)
1398		return true;
1399
1400	/* A mount without a parent has nothing to be connected to */
1401	if (!mnt_has_parent(mnt))
1402		return true;
1403
1404	/* Because the reference counting rules change when mounts are
1405	 * unmounted and connected, umounted mounts may not be
1406	 * connected to mounted mounts.
1407	 */
1408	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409		return true;
1410
1411	/* Has it been requested that the mount remain connected? */
1412	if (how & UMOUNT_CONNECTED)
1413		return false;
1414
1415	/* Is the mount locked such that it needs to remain connected? */
1416	if (IS_MNT_LOCKED(mnt))
1417		return false;
1418
1419	/* By default disconnect the mount */
1420	return true;
1421}
1422
1423/*
1424 * mount_lock must be held
1425 * namespace_sem must be held for write
1426 */
1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428{
1429	LIST_HEAD(tmp_list);
1430	struct mount *p;
1431
1432	if (how & UMOUNT_PROPAGATE)
1433		propagate_mount_unlock(mnt);
1434
1435	/* Gather the mounts to umount */
1436	for (p = mnt; p; p = next_mnt(p, mnt)) {
1437		p->mnt.mnt_flags |= MNT_UMOUNT;
1438		list_move(&p->mnt_list, &tmp_list);
1439	}
1440
1441	/* Hide the mounts from mnt_mounts */
1442	list_for_each_entry(p, &tmp_list, mnt_list) {
1443		list_del_init(&p->mnt_child);
1444	}
1445
1446	/* Add propogated mounts to the tmp_list */
1447	if (how & UMOUNT_PROPAGATE)
1448		propagate_umount(&tmp_list);
1449
1450	while (!list_empty(&tmp_list)) {
1451		struct mnt_namespace *ns;
1452		bool disconnect;
1453		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454		list_del_init(&p->mnt_expire);
1455		list_del_init(&p->mnt_list);
1456		ns = p->mnt_ns;
1457		if (ns) {
1458			ns->mounts--;
1459			__touch_mnt_namespace(ns);
1460		}
1461		p->mnt_ns = NULL;
1462		if (how & UMOUNT_SYNC)
1463			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464
1465		disconnect = disconnect_mount(p, how);
1466		if (mnt_has_parent(p)) {
1467			mnt_add_count(p->mnt_parent, -1);
1468			if (!disconnect) {
1469				/* Don't forget about p */
1470				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471			} else {
1472				umount_mnt(p);
1473			}
1474		}
1475		change_mnt_propagation(p, MS_PRIVATE);
1476		if (disconnect)
1477			hlist_add_head(&p->mnt_umount, &unmounted);
1478	}
1479}
1480
1481static void shrink_submounts(struct mount *mnt);
1482
1483static int do_umount_root(struct super_block *sb)
1484{
1485	int ret = 0;
1486
1487	down_write(&sb->s_umount);
1488	if (!sb_rdonly(sb)) {
1489		struct fs_context *fc;
1490
1491		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492						SB_RDONLY);
1493		if (IS_ERR(fc)) {
1494			ret = PTR_ERR(fc);
1495		} else {
1496			ret = parse_monolithic_mount_data(fc, NULL);
1497			if (!ret)
1498				ret = reconfigure_super(fc);
1499			put_fs_context(fc);
1500		}
1501	}
1502	up_write(&sb->s_umount);
1503	return ret;
1504}
1505
1506static int do_umount(struct mount *mnt, int flags)
1507{
1508	struct super_block *sb = mnt->mnt.mnt_sb;
1509	int retval;
1510
1511	retval = security_sb_umount(&mnt->mnt, flags);
1512	if (retval)
1513		return retval;
1514
1515	/*
1516	 * Allow userspace to request a mountpoint be expired rather than
1517	 * unmounting unconditionally. Unmount only happens if:
1518	 *  (1) the mark is already set (the mark is cleared by mntput())
1519	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520	 */
1521	if (flags & MNT_EXPIRE) {
1522		if (&mnt->mnt == current->fs->root.mnt ||
1523		    flags & (MNT_FORCE | MNT_DETACH))
1524			return -EINVAL;
1525
1526		/*
1527		 * probably don't strictly need the lock here if we examined
1528		 * all race cases, but it's a slowpath.
1529		 */
1530		lock_mount_hash();
1531		if (mnt_get_count(mnt) != 2) {
1532			unlock_mount_hash();
1533			return -EBUSY;
1534		}
1535		unlock_mount_hash();
1536
1537		if (!xchg(&mnt->mnt_expiry_mark, 1))
1538			return -EAGAIN;
1539	}
1540
1541	/*
1542	 * If we may have to abort operations to get out of this
1543	 * mount, and they will themselves hold resources we must
1544	 * allow the fs to do things. In the Unix tradition of
1545	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546	 * might fail to complete on the first run through as other tasks
1547	 * must return, and the like. Thats for the mount program to worry
1548	 * about for the moment.
1549	 */
1550
1551	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552		sb->s_op->umount_begin(sb);
1553	}
1554
1555	/*
1556	 * No sense to grab the lock for this test, but test itself looks
1557	 * somewhat bogus. Suggestions for better replacement?
1558	 * Ho-hum... In principle, we might treat that as umount + switch
1559	 * to rootfs. GC would eventually take care of the old vfsmount.
1560	 * Actually it makes sense, especially if rootfs would contain a
1561	 * /reboot - static binary that would close all descriptors and
1562	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563	 */
1564	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565		/*
1566		 * Special case for "unmounting" root ...
1567		 * we just try to remount it readonly.
1568		 */
1569		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570			return -EPERM;
1571		return do_umount_root(sb);
1572	}
1573
1574	namespace_lock();
1575	lock_mount_hash();
1576
1577	/* Recheck MNT_LOCKED with the locks held */
1578	retval = -EINVAL;
1579	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580		goto out;
1581
1582	event++;
1583	if (flags & MNT_DETACH) {
1584		if (!list_empty(&mnt->mnt_list))
1585			umount_tree(mnt, UMOUNT_PROPAGATE);
1586		retval = 0;
1587	} else {
1588		shrink_submounts(mnt);
1589		retval = -EBUSY;
1590		if (!propagate_mount_busy(mnt, 2)) {
1591			if (!list_empty(&mnt->mnt_list))
1592				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593			retval = 0;
1594		}
1595	}
1596out:
1597	unlock_mount_hash();
1598	namespace_unlock();
1599	return retval;
1600}
1601
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614	struct mountpoint *mp;
1615	struct mount *mnt;
1616
1617	namespace_lock();
1618	lock_mount_hash();
1619	mp = lookup_mountpoint(dentry);
1620	if (!mp)
1621		goto out_unlock;
1622
1623	event++;
1624	while (!hlist_empty(&mp->m_list)) {
1625		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627			umount_mnt(mnt);
1628			hlist_add_head(&mnt->mnt_umount, &unmounted);
1629		}
1630		else umount_tree(mnt, UMOUNT_CONNECTED);
1631	}
1632	put_mountpoint(mp);
1633out_unlock:
1634	unlock_mount_hash();
1635	namespace_unlock();
1636}
1637
1638/*
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
1646#ifdef	CONFIG_MANDATORY_FILE_LOCKING
1647static inline bool may_mandlock(void)
1648{
1649	return capable(CAP_SYS_ADMIN);
1650}
1651#else
1652static inline bool may_mandlock(void)
1653{
1654	pr_warn("VFS: \"mand\" mount option not supported");
1655	return false;
1656}
1657#endif
1658
1659/*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
1667int ksys_umount(char __user *name, int flags)
1668{
1669	struct path path;
1670	struct mount *mnt;
1671	int retval;
1672	int lookup_flags = 0;
1673
1674	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675		return -EINVAL;
1676
1677	if (!may_mount())
1678		return -EPERM;
1679
1680	if (!(flags & UMOUNT_NOFOLLOW))
1681		lookup_flags |= LOOKUP_FOLLOW;
1682
1683	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1684	if (retval)
1685		goto out;
1686	mnt = real_mount(path.mnt);
1687	retval = -EINVAL;
1688	if (path.dentry != path.mnt->mnt_root)
1689		goto dput_and_out;
1690	if (!check_mnt(mnt))
1691		goto dput_and_out;
1692	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1693		goto dput_and_out;
1694	retval = -EPERM;
1695	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696		goto dput_and_out;
1697
1698	retval = do_umount(mnt, flags);
1699dput_and_out:
1700	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1701	dput(path.dentry);
1702	mntput_no_expire(mnt);
1703out:
1704	return retval;
1705}
1706
1707SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708{
1709	return ksys_umount(name, flags);
1710}
1711
1712#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713
1714/*
1715 *	The 2.0 compatible umount. No flags.
1716 */
1717SYSCALL_DEFINE1(oldumount, char __user *, name)
1718{
1719	return ksys_umount(name, 0);
1720}
1721
1722#endif
1723
1724static bool is_mnt_ns_file(struct dentry *dentry)
1725{
1726	/* Is this a proxy for a mount namespace? */
1727	return dentry->d_op == &ns_dentry_operations &&
1728	       dentry->d_fsdata == &mntns_operations;
1729}
1730
1731struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1732{
1733	return container_of(ns, struct mnt_namespace, ns);
1734}
1735
1736static bool mnt_ns_loop(struct dentry *dentry)
1737{
1738	/* Could bind mounting the mount namespace inode cause a
1739	 * mount namespace loop?
1740	 */
1741	struct mnt_namespace *mnt_ns;
1742	if (!is_mnt_ns_file(dentry))
1743		return false;
1744
1745	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1746	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1747}
1748
1749struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1750					int flag)
1751{
1752	struct mount *res, *p, *q, *r, *parent;
1753
1754	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1755		return ERR_PTR(-EINVAL);
1756
1757	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1758		return ERR_PTR(-EINVAL);
1759
1760	res = q = clone_mnt(mnt, dentry, flag);
1761	if (IS_ERR(q))
1762		return q;
1763
1764	q->mnt_mountpoint = mnt->mnt_mountpoint;
1765
1766	p = mnt;
1767	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1768		struct mount *s;
1769		if (!is_subdir(r->mnt_mountpoint, dentry))
1770			continue;
1771
1772		for (s = r; s; s = next_mnt(s, r)) {
1773			if (!(flag & CL_COPY_UNBINDABLE) &&
1774			    IS_MNT_UNBINDABLE(s)) {
1775				if (s->mnt.mnt_flags & MNT_LOCKED) {
1776					/* Both unbindable and locked. */
1777					q = ERR_PTR(-EPERM);
1778					goto out;
1779				} else {
1780					s = skip_mnt_tree(s);
1781					continue;
1782				}
1783			}
1784			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1785			    is_mnt_ns_file(s->mnt.mnt_root)) {
1786				s = skip_mnt_tree(s);
1787				continue;
1788			}
1789			while (p != s->mnt_parent) {
1790				p = p->mnt_parent;
1791				q = q->mnt_parent;
1792			}
1793			p = s;
1794			parent = q;
1795			q = clone_mnt(p, p->mnt.mnt_root, flag);
1796			if (IS_ERR(q))
1797				goto out;
1798			lock_mount_hash();
1799			list_add_tail(&q->mnt_list, &res->mnt_list);
1800			attach_mnt(q, parent, p->mnt_mp);
1801			unlock_mount_hash();
1802		}
1803	}
1804	return res;
1805out:
1806	if (res) {
1807		lock_mount_hash();
1808		umount_tree(res, UMOUNT_SYNC);
1809		unlock_mount_hash();
1810	}
1811	return q;
1812}
1813
1814/* Caller should check returned pointer for errors */
1815
1816struct vfsmount *collect_mounts(const struct path *path)
1817{
1818	struct mount *tree;
1819	namespace_lock();
1820	if (!check_mnt(real_mount(path->mnt)))
1821		tree = ERR_PTR(-EINVAL);
1822	else
1823		tree = copy_tree(real_mount(path->mnt), path->dentry,
1824				 CL_COPY_ALL | CL_PRIVATE);
1825	namespace_unlock();
1826	if (IS_ERR(tree))
1827		return ERR_CAST(tree);
1828	return &tree->mnt;
1829}
1830
1831static void free_mnt_ns(struct mnt_namespace *);
1832static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1833
1834void dissolve_on_fput(struct vfsmount *mnt)
1835{
1836	struct mnt_namespace *ns;
1837	namespace_lock();
1838	lock_mount_hash();
1839	ns = real_mount(mnt)->mnt_ns;
1840	if (ns) {
1841		if (is_anon_ns(ns))
1842			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1843		else
1844			ns = NULL;
1845	}
1846	unlock_mount_hash();
1847	namespace_unlock();
1848	if (ns)
1849		free_mnt_ns(ns);
1850}
1851
1852void drop_collected_mounts(struct vfsmount *mnt)
1853{
1854	namespace_lock();
1855	lock_mount_hash();
1856	umount_tree(real_mount(mnt), 0);
1857	unlock_mount_hash();
1858	namespace_unlock();
1859}
1860
1861/**
1862 * clone_private_mount - create a private clone of a path
1863 *
1864 * This creates a new vfsmount, which will be the clone of @path.  The new will
1865 * not be attached anywhere in the namespace and will be private (i.e. changes
1866 * to the originating mount won't be propagated into this).
1867 *
1868 * Release with mntput().
1869 */
1870struct vfsmount *clone_private_mount(const struct path *path)
1871{
1872	struct mount *old_mnt = real_mount(path->mnt);
1873	struct mount *new_mnt;
1874
1875	if (IS_MNT_UNBINDABLE(old_mnt))
1876		return ERR_PTR(-EINVAL);
1877
1878	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1879	if (IS_ERR(new_mnt))
1880		return ERR_CAST(new_mnt);
1881
1882	return &new_mnt->mnt;
1883}
1884EXPORT_SYMBOL_GPL(clone_private_mount);
1885
1886int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1887		   struct vfsmount *root)
1888{
1889	struct mount *mnt;
1890	int res = f(root, arg);
1891	if (res)
1892		return res;
1893	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1894		res = f(&mnt->mnt, arg);
1895		if (res)
1896			return res;
1897	}
1898	return 0;
1899}
1900
1901static void lock_mnt_tree(struct mount *mnt)
1902{
1903	struct mount *p;
1904
1905	for (p = mnt; p; p = next_mnt(p, mnt)) {
1906		int flags = p->mnt.mnt_flags;
1907		/* Don't allow unprivileged users to change mount flags */
1908		flags |= MNT_LOCK_ATIME;
1909
1910		if (flags & MNT_READONLY)
1911			flags |= MNT_LOCK_READONLY;
1912
1913		if (flags & MNT_NODEV)
1914			flags |= MNT_LOCK_NODEV;
1915
1916		if (flags & MNT_NOSUID)
1917			flags |= MNT_LOCK_NOSUID;
1918
1919		if (flags & MNT_NOEXEC)
1920			flags |= MNT_LOCK_NOEXEC;
1921		/* Don't allow unprivileged users to reveal what is under a mount */
1922		if (list_empty(&p->mnt_expire))
1923			flags |= MNT_LOCKED;
1924		p->mnt.mnt_flags = flags;
1925	}
1926}
1927
1928static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1929{
1930	struct mount *p;
1931
1932	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1933		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1934			mnt_release_group_id(p);
1935	}
1936}
1937
1938static int invent_group_ids(struct mount *mnt, bool recurse)
1939{
1940	struct mount *p;
1941
1942	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1943		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1944			int err = mnt_alloc_group_id(p);
1945			if (err) {
1946				cleanup_group_ids(mnt, p);
1947				return err;
1948			}
1949		}
1950	}
1951
1952	return 0;
1953}
1954
1955int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1956{
1957	unsigned int max = READ_ONCE(sysctl_mount_max);
1958	unsigned int mounts = 0, old, pending, sum;
1959	struct mount *p;
1960
1961	for (p = mnt; p; p = next_mnt(p, mnt))
1962		mounts++;
1963
1964	old = ns->mounts;
1965	pending = ns->pending_mounts;
1966	sum = old + pending;
1967	if ((old > sum) ||
1968	    (pending > sum) ||
1969	    (max < sum) ||
1970	    (mounts > (max - sum)))
1971		return -ENOSPC;
1972
1973	ns->pending_mounts = pending + mounts;
1974	return 0;
1975}
1976
1977/*
1978 *  @source_mnt : mount tree to be attached
1979 *  @nd         : place the mount tree @source_mnt is attached
1980 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1981 *  		   store the parent mount and mountpoint dentry.
1982 *  		   (done when source_mnt is moved)
1983 *
1984 *  NOTE: in the table below explains the semantics when a source mount
1985 *  of a given type is attached to a destination mount of a given type.
1986 * ---------------------------------------------------------------------------
1987 * |         BIND MOUNT OPERATION                                            |
1988 * |**************************************************************************
1989 * | source-->| shared        |       private  |       slave    | unbindable |
1990 * | dest     |               |                |                |            |
1991 * |   |      |               |                |                |            |
1992 * |   v      |               |                |                |            |
1993 * |**************************************************************************
1994 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1995 * |          |               |                |                |            |
1996 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1997 * ***************************************************************************
1998 * A bind operation clones the source mount and mounts the clone on the
1999 * destination mount.
2000 *
2001 * (++)  the cloned mount is propagated to all the mounts in the propagation
2002 * 	 tree of the destination mount and the cloned mount is added to
2003 * 	 the peer group of the source mount.
2004 * (+)   the cloned mount is created under the destination mount and is marked
2005 *       as shared. The cloned mount is added to the peer group of the source
2006 *       mount.
2007 * (+++) the mount is propagated to all the mounts in the propagation tree
2008 *       of the destination mount and the cloned mount is made slave
2009 *       of the same master as that of the source mount. The cloned mount
2010 *       is marked as 'shared and slave'.
2011 * (*)   the cloned mount is made a slave of the same master as that of the
2012 * 	 source mount.
2013 *
2014 * ---------------------------------------------------------------------------
2015 * |         		MOVE MOUNT OPERATION                                 |
2016 * |**************************************************************************
2017 * | source-->| shared        |       private  |       slave    | unbindable |
2018 * | dest     |               |                |                |            |
2019 * |   |      |               |                |                |            |
2020 * |   v      |               |                |                |            |
2021 * |**************************************************************************
2022 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2023 * |          |               |                |                |            |
2024 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2025 * ***************************************************************************
2026 *
2027 * (+)  the mount is moved to the destination. And is then propagated to
2028 * 	all the mounts in the propagation tree of the destination mount.
2029 * (+*)  the mount is moved to the destination.
2030 * (+++)  the mount is moved to the destination and is then propagated to
2031 * 	all the mounts belonging to the destination mount's propagation tree.
2032 * 	the mount is marked as 'shared and slave'.
2033 * (*)	the mount continues to be a slave at the new location.
2034 *
2035 * if the source mount is a tree, the operations explained above is
2036 * applied to each mount in the tree.
2037 * Must be called without spinlocks held, since this function can sleep
2038 * in allocations.
2039 */
2040static int attach_recursive_mnt(struct mount *source_mnt,
2041			struct mount *dest_mnt,
2042			struct mountpoint *dest_mp,
2043			bool moving)
2044{
2045	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2046	HLIST_HEAD(tree_list);
2047	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2048	struct mountpoint *smp;
2049	struct mount *child, *p;
2050	struct hlist_node *n;
2051	int err;
2052
2053	/* Preallocate a mountpoint in case the new mounts need
2054	 * to be tucked under other mounts.
2055	 */
2056	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2057	if (IS_ERR(smp))
2058		return PTR_ERR(smp);
2059
2060	/* Is there space to add these mounts to the mount namespace? */
2061	if (!moving) {
2062		err = count_mounts(ns, source_mnt);
2063		if (err)
2064			goto out;
2065	}
2066
2067	if (IS_MNT_SHARED(dest_mnt)) {
2068		err = invent_group_ids(source_mnt, true);
2069		if (err)
2070			goto out;
2071		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2072		lock_mount_hash();
2073		if (err)
2074			goto out_cleanup_ids;
2075		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2076			set_mnt_shared(p);
2077	} else {
2078		lock_mount_hash();
2079	}
2080	if (moving) {
2081		unhash_mnt(source_mnt);
2082		attach_mnt(source_mnt, dest_mnt, dest_mp);
2083		touch_mnt_namespace(source_mnt->mnt_ns);
2084	} else {
2085		if (source_mnt->mnt_ns) {
2086			/* move from anon - the caller will destroy */
2087			list_del_init(&source_mnt->mnt_ns->list);
2088		}
2089		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2090		commit_tree(source_mnt);
2091	}
2092
2093	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2094		struct mount *q;
2095		hlist_del_init(&child->mnt_hash);
2096		q = __lookup_mnt(&child->mnt_parent->mnt,
2097				 child->mnt_mountpoint);
2098		if (q)
2099			mnt_change_mountpoint(child, smp, q);
2100		/* Notice when we are propagating across user namespaces */
2101		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2102			lock_mnt_tree(child);
2103		child->mnt.mnt_flags &= ~MNT_LOCKED;
2104		commit_tree(child);
2105	}
2106	put_mountpoint(smp);
2107	unlock_mount_hash();
2108
2109	return 0;
2110
2111 out_cleanup_ids:
2112	while (!hlist_empty(&tree_list)) {
2113		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2114		child->mnt_parent->mnt_ns->pending_mounts = 0;
2115		umount_tree(child, UMOUNT_SYNC);
2116	}
2117	unlock_mount_hash();
2118	cleanup_group_ids(source_mnt, NULL);
2119 out:
2120	ns->pending_mounts = 0;
2121
2122	read_seqlock_excl(&mount_lock);
2123	put_mountpoint(smp);
2124	read_sequnlock_excl(&mount_lock);
2125
2126	return err;
2127}
2128
2129static struct mountpoint *lock_mount(struct path *path)
2130{
2131	struct vfsmount *mnt;
2132	struct dentry *dentry = path->dentry;
2133retry:
2134	inode_lock(dentry->d_inode);
2135	if (unlikely(cant_mount(dentry))) {
2136		inode_unlock(dentry->d_inode);
2137		return ERR_PTR(-ENOENT);
2138	}
2139	namespace_lock();
2140	mnt = lookup_mnt(path);
2141	if (likely(!mnt)) {
2142		struct mountpoint *mp = get_mountpoint(dentry);
2143		if (IS_ERR(mp)) {
2144			namespace_unlock();
2145			inode_unlock(dentry->d_inode);
2146			return mp;
2147		}
2148		return mp;
2149	}
2150	namespace_unlock();
2151	inode_unlock(path->dentry->d_inode);
2152	path_put(path);
2153	path->mnt = mnt;
2154	dentry = path->dentry = dget(mnt->mnt_root);
2155	goto retry;
2156}
2157
2158static void unlock_mount(struct mountpoint *where)
2159{
2160	struct dentry *dentry = where->m_dentry;
2161
2162	read_seqlock_excl(&mount_lock);
2163	put_mountpoint(where);
2164	read_sequnlock_excl(&mount_lock);
2165
2166	namespace_unlock();
2167	inode_unlock(dentry->d_inode);
2168}
2169
2170static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2171{
2172	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2173		return -EINVAL;
2174
2175	if (d_is_dir(mp->m_dentry) !=
2176	      d_is_dir(mnt->mnt.mnt_root))
2177		return -ENOTDIR;
2178
2179	return attach_recursive_mnt(mnt, p, mp, false);
2180}
2181
2182/*
2183 * Sanity check the flags to change_mnt_propagation.
2184 */
2185
2186static int flags_to_propagation_type(int ms_flags)
2187{
2188	int type = ms_flags & ~(MS_REC | MS_SILENT);
2189
2190	/* Fail if any non-propagation flags are set */
2191	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2192		return 0;
2193	/* Only one propagation flag should be set */
2194	if (!is_power_of_2(type))
2195		return 0;
2196	return type;
2197}
2198
2199/*
2200 * recursively change the type of the mountpoint.
2201 */
2202static int do_change_type(struct path *path, int ms_flags)
2203{
2204	struct mount *m;
2205	struct mount *mnt = real_mount(path->mnt);
2206	int recurse = ms_flags & MS_REC;
2207	int type;
2208	int err = 0;
2209
2210	if (path->dentry != path->mnt->mnt_root)
2211		return -EINVAL;
2212
2213	type = flags_to_propagation_type(ms_flags);
2214	if (!type)
2215		return -EINVAL;
2216
2217	namespace_lock();
2218	if (type == MS_SHARED) {
2219		err = invent_group_ids(mnt, recurse);
2220		if (err)
2221			goto out_unlock;
2222	}
2223
2224	lock_mount_hash();
2225	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2226		change_mnt_propagation(m, type);
2227	unlock_mount_hash();
2228
2229 out_unlock:
2230	namespace_unlock();
2231	return err;
2232}
2233
2234static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235{
2236	struct mount *child;
2237	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2238		if (!is_subdir(child->mnt_mountpoint, dentry))
2239			continue;
2240
2241		if (child->mnt.mnt_flags & MNT_LOCKED)
2242			return true;
2243	}
2244	return false;
2245}
2246
2247static struct mount *__do_loopback(struct path *old_path, int recurse)
2248{
2249	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2250
2251	if (IS_MNT_UNBINDABLE(old))
2252		return mnt;
2253
2254	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2255		return mnt;
2256
2257	if (!recurse && has_locked_children(old, old_path->dentry))
2258		return mnt;
2259
2260	if (recurse)
2261		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2262	else
2263		mnt = clone_mnt(old, old_path->dentry, 0);
2264
2265	if (!IS_ERR(mnt))
2266		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267
2268	return mnt;
2269}
2270
2271/*
2272 * do loopback mount.
2273 */
2274static int do_loopback(struct path *path, const char *old_name,
2275				int recurse)
2276{
2277	struct path old_path;
2278	struct mount *mnt = NULL, *parent;
2279	struct mountpoint *mp;
2280	int err;
2281	if (!old_name || !*old_name)
2282		return -EINVAL;
2283	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2284	if (err)
2285		return err;
2286
2287	err = -EINVAL;
2288	if (mnt_ns_loop(old_path.dentry))
2289		goto out;
2290
2291	mp = lock_mount(path);
2292	if (IS_ERR(mp)) {
2293		err = PTR_ERR(mp);
2294		goto out;
2295	}
2296
2297	parent = real_mount(path->mnt);
2298	if (!check_mnt(parent))
2299		goto out2;
2300
2301	mnt = __do_loopback(&old_path, recurse);
2302	if (IS_ERR(mnt)) {
2303		err = PTR_ERR(mnt);
2304		goto out2;
2305	}
2306
2307	err = graft_tree(mnt, parent, mp);
2308	if (err) {
2309		lock_mount_hash();
2310		umount_tree(mnt, UMOUNT_SYNC);
2311		unlock_mount_hash();
2312	}
2313out2:
2314	unlock_mount(mp);
2315out:
2316	path_put(&old_path);
2317	return err;
2318}
2319
2320static struct file *open_detached_copy(struct path *path, bool recursive)
2321{
2322	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2323	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2324	struct mount *mnt, *p;
2325	struct file *file;
2326
2327	if (IS_ERR(ns))
2328		return ERR_CAST(ns);
2329
2330	namespace_lock();
2331	mnt = __do_loopback(path, recursive);
2332	if (IS_ERR(mnt)) {
2333		namespace_unlock();
2334		free_mnt_ns(ns);
2335		return ERR_CAST(mnt);
2336	}
2337
2338	lock_mount_hash();
2339	for (p = mnt; p; p = next_mnt(p, mnt)) {
2340		p->mnt_ns = ns;
2341		ns->mounts++;
2342	}
2343	ns->root = mnt;
2344	list_add_tail(&ns->list, &mnt->mnt_list);
2345	mntget(&mnt->mnt);
2346	unlock_mount_hash();
2347	namespace_unlock();
2348
2349	mntput(path->mnt);
2350	path->mnt = &mnt->mnt;
2351	file = dentry_open(path, O_PATH, current_cred());
2352	if (IS_ERR(file))
2353		dissolve_on_fput(path->mnt);
2354	else
2355		file->f_mode |= FMODE_NEED_UNMOUNT;
2356	return file;
2357}
2358
2359SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2360{
2361	struct file *file;
2362	struct path path;
2363	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2364	bool detached = flags & OPEN_TREE_CLONE;
2365	int error;
2366	int fd;
2367
2368	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2369
2370	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2371		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2372		      OPEN_TREE_CLOEXEC))
2373		return -EINVAL;
2374
2375	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2376		return -EINVAL;
2377
2378	if (flags & AT_NO_AUTOMOUNT)
2379		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2380	if (flags & AT_SYMLINK_NOFOLLOW)
2381		lookup_flags &= ~LOOKUP_FOLLOW;
2382	if (flags & AT_EMPTY_PATH)
2383		lookup_flags |= LOOKUP_EMPTY;
2384
2385	if (detached && !may_mount())
2386		return -EPERM;
2387
2388	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2389	if (fd < 0)
2390		return fd;
2391
2392	error = user_path_at(dfd, filename, lookup_flags, &path);
2393	if (unlikely(error)) {
2394		file = ERR_PTR(error);
2395	} else {
2396		if (detached)
2397			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2398		else
2399			file = dentry_open(&path, O_PATH, current_cred());
2400		path_put(&path);
2401	}
2402	if (IS_ERR(file)) {
2403		put_unused_fd(fd);
2404		return PTR_ERR(file);
2405	}
2406	fd_install(fd, file);
2407	return fd;
2408}
2409
2410/*
2411 * Don't allow locked mount flags to be cleared.
2412 *
2413 * No locks need to be held here while testing the various MNT_LOCK
2414 * flags because those flags can never be cleared once they are set.
2415 */
2416static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2417{
2418	unsigned int fl = mnt->mnt.mnt_flags;
2419
2420	if ((fl & MNT_LOCK_READONLY) &&
2421	    !(mnt_flags & MNT_READONLY))
2422		return false;
2423
2424	if ((fl & MNT_LOCK_NODEV) &&
2425	    !(mnt_flags & MNT_NODEV))
2426		return false;
2427
2428	if ((fl & MNT_LOCK_NOSUID) &&
2429	    !(mnt_flags & MNT_NOSUID))
2430		return false;
2431
2432	if ((fl & MNT_LOCK_NOEXEC) &&
2433	    !(mnt_flags & MNT_NOEXEC))
2434		return false;
2435
2436	if ((fl & MNT_LOCK_ATIME) &&
2437	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2438		return false;
2439
2440	return true;
2441}
2442
2443static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2444{
2445	bool readonly_request = (mnt_flags & MNT_READONLY);
2446
2447	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2448		return 0;
2449
2450	if (readonly_request)
2451		return mnt_make_readonly(mnt);
2452
2453	return __mnt_unmake_readonly(mnt);
2454}
2455
2456/*
2457 * Update the user-settable attributes on a mount.  The caller must hold
2458 * sb->s_umount for writing.
2459 */
2460static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2461{
2462	lock_mount_hash();
2463	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2464	mnt->mnt.mnt_flags = mnt_flags;
2465	touch_mnt_namespace(mnt->mnt_ns);
2466	unlock_mount_hash();
2467}
2468
2469static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2470{
2471	struct super_block *sb = mnt->mnt_sb;
2472
2473	if (!__mnt_is_readonly(mnt) &&
2474	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2475		char *buf = (char *)__get_free_page(GFP_KERNEL);
2476		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2477		struct tm tm;
2478
2479		time64_to_tm(sb->s_time_max, 0, &tm);
2480
2481		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2482			sb->s_type->name,
2483			is_mounted(mnt) ? "remounted" : "mounted",
2484			mntpath,
2485			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2486
2487		free_page((unsigned long)buf);
2488	}
2489}
2490
2491/*
2492 * Handle reconfiguration of the mountpoint only without alteration of the
2493 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2494 * to mount(2).
2495 */
2496static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2497{
2498	struct super_block *sb = path->mnt->mnt_sb;
2499	struct mount *mnt = real_mount(path->mnt);
2500	int ret;
2501
2502	if (!check_mnt(mnt))
2503		return -EINVAL;
2504
2505	if (path->dentry != mnt->mnt.mnt_root)
2506		return -EINVAL;
2507
2508	if (!can_change_locked_flags(mnt, mnt_flags))
2509		return -EPERM;
2510
2511	down_write(&sb->s_umount);
2512	ret = change_mount_ro_state(mnt, mnt_flags);
2513	if (ret == 0)
2514		set_mount_attributes(mnt, mnt_flags);
2515	up_write(&sb->s_umount);
2516
2517	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2518
2519	return ret;
2520}
2521
2522/*
2523 * change filesystem flags. dir should be a physical root of filesystem.
2524 * If you've mounted a non-root directory somewhere and want to do remount
2525 * on it - tough luck.
2526 */
2527static int do_remount(struct path *path, int ms_flags, int sb_flags,
2528		      int mnt_flags, void *data)
2529{
2530	int err;
2531	struct super_block *sb = path->mnt->mnt_sb;
2532	struct mount *mnt = real_mount(path->mnt);
2533	struct fs_context *fc;
2534
2535	if (!check_mnt(mnt))
2536		return -EINVAL;
2537
2538	if (path->dentry != path->mnt->mnt_root)
2539		return -EINVAL;
2540
2541	if (!can_change_locked_flags(mnt, mnt_flags))
2542		return -EPERM;
2543
2544	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2545	if (IS_ERR(fc))
2546		return PTR_ERR(fc);
2547
2548	err = parse_monolithic_mount_data(fc, data);
2549	if (!err) {
2550		down_write(&sb->s_umount);
2551		err = -EPERM;
2552		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2553			err = reconfigure_super(fc);
2554			if (!err)
2555				set_mount_attributes(mnt, mnt_flags);
2556		}
2557		up_write(&sb->s_umount);
2558	}
2559
2560	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2561
2562	put_fs_context(fc);
2563	return err;
2564}
2565
2566static inline int tree_contains_unbindable(struct mount *mnt)
2567{
2568	struct mount *p;
2569	for (p = mnt; p; p = next_mnt(p, mnt)) {
2570		if (IS_MNT_UNBINDABLE(p))
2571			return 1;
2572	}
2573	return 0;
2574}
2575
2576/*
2577 * Check that there aren't references to earlier/same mount namespaces in the
2578 * specified subtree.  Such references can act as pins for mount namespaces
2579 * that aren't checked by the mount-cycle checking code, thereby allowing
2580 * cycles to be made.
2581 */
2582static bool check_for_nsfs_mounts(struct mount *subtree)
2583{
2584	struct mount *p;
2585	bool ret = false;
2586
2587	lock_mount_hash();
2588	for (p = subtree; p; p = next_mnt(p, subtree))
2589		if (mnt_ns_loop(p->mnt.mnt_root))
2590			goto out;
2591
2592	ret = true;
2593out:
2594	unlock_mount_hash();
2595	return ret;
2596}
2597
2598static int do_move_mount(struct path *old_path, struct path *new_path)
2599{
2600	struct mnt_namespace *ns;
2601	struct mount *p;
2602	struct mount *old;
2603	struct mount *parent;
2604	struct mountpoint *mp, *old_mp;
2605	int err;
2606	bool attached;
2607
2608	mp = lock_mount(new_path);
2609	if (IS_ERR(mp))
2610		return PTR_ERR(mp);
2611
2612	old = real_mount(old_path->mnt);
2613	p = real_mount(new_path->mnt);
2614	parent = old->mnt_parent;
2615	attached = mnt_has_parent(old);
2616	old_mp = old->mnt_mp;
2617	ns = old->mnt_ns;
2618
2619	err = -EINVAL;
2620	/* The mountpoint must be in our namespace. */
2621	if (!check_mnt(p))
2622		goto out;
2623
2624	/* The thing moved must be mounted... */
2625	if (!is_mounted(&old->mnt))
2626		goto out;
2627
2628	/* ... and either ours or the root of anon namespace */
2629	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2630		goto out;
2631
2632	if (old->mnt.mnt_flags & MNT_LOCKED)
2633		goto out;
2634
2635	if (old_path->dentry != old_path->mnt->mnt_root)
2636		goto out;
2637
2638	if (d_is_dir(new_path->dentry) !=
2639	    d_is_dir(old_path->dentry))
2640		goto out;
2641	/*
2642	 * Don't move a mount residing in a shared parent.
2643	 */
2644	if (attached && IS_MNT_SHARED(parent))
2645		goto out;
2646	/*
2647	 * Don't move a mount tree containing unbindable mounts to a destination
2648	 * mount which is shared.
2649	 */
2650	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2651		goto out;
2652	err = -ELOOP;
2653	if (!check_for_nsfs_mounts(old))
2654		goto out;
2655	for (; mnt_has_parent(p); p = p->mnt_parent)
2656		if (p == old)
2657			goto out;
2658
2659	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2660				   attached);
2661	if (err)
2662		goto out;
2663
2664	/* if the mount is moved, it should no longer be expire
2665	 * automatically */
2666	list_del_init(&old->mnt_expire);
2667	if (attached)
2668		put_mountpoint(old_mp);
2669out:
2670	unlock_mount(mp);
2671	if (!err) {
2672		if (attached)
2673			mntput_no_expire(parent);
2674		else
2675			free_mnt_ns(ns);
2676	}
2677	return err;
2678}
2679
2680static int do_move_mount_old(struct path *path, const char *old_name)
2681{
2682	struct path old_path;
2683	int err;
2684
2685	if (!old_name || !*old_name)
2686		return -EINVAL;
2687
2688	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2689	if (err)
2690		return err;
2691
2692	err = do_move_mount(&old_path, path);
2693	path_put(&old_path);
2694	return err;
2695}
2696
2697/*
2698 * add a mount into a namespace's mount tree
2699 */
2700static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2701{
2702	struct mountpoint *mp;
2703	struct mount *parent;
2704	int err;
2705
2706	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2707
2708	mp = lock_mount(path);
2709	if (IS_ERR(mp))
2710		return PTR_ERR(mp);
2711
2712	parent = real_mount(path->mnt);
2713	err = -EINVAL;
2714	if (unlikely(!check_mnt(parent))) {
2715		/* that's acceptable only for automounts done in private ns */
2716		if (!(mnt_flags & MNT_SHRINKABLE))
2717			goto unlock;
2718		/* ... and for those we'd better have mountpoint still alive */
2719		if (!parent->mnt_ns)
2720			goto unlock;
2721	}
2722
2723	/* Refuse the same filesystem on the same mount point */
2724	err = -EBUSY;
2725	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2726	    path->mnt->mnt_root == path->dentry)
2727		goto unlock;
2728
2729	err = -EINVAL;
2730	if (d_is_symlink(newmnt->mnt.mnt_root))
2731		goto unlock;
2732
2733	newmnt->mnt.mnt_flags = mnt_flags;
2734	err = graft_tree(newmnt, parent, mp);
2735
2736unlock:
2737	unlock_mount(mp);
2738	return err;
2739}
2740
2741static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2742
2743/*
2744 * Create a new mount using a superblock configuration and request it
2745 * be added to the namespace tree.
2746 */
2747static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2748			   unsigned int mnt_flags)
2749{
2750	struct vfsmount *mnt;
2751	struct super_block *sb = fc->root->d_sb;
2752	int error;
2753
2754	error = security_sb_kern_mount(sb);
2755	if (!error && mount_too_revealing(sb, &mnt_flags))
2756		error = -EPERM;
2757
2758	if (unlikely(error)) {
2759		fc_drop_locked(fc);
2760		return error;
2761	}
2762
2763	up_write(&sb->s_umount);
2764
2765	mnt = vfs_create_mount(fc);
2766	if (IS_ERR(mnt))
2767		return PTR_ERR(mnt);
2768
2769	mnt_warn_timestamp_expiry(mountpoint, mnt);
2770
2771	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2772	if (error < 0)
2773		mntput(mnt);
2774	return error;
2775}
2776
2777/*
2778 * create a new mount for userspace and request it to be added into the
2779 * namespace's tree
2780 */
2781static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2782			int mnt_flags, const char *name, void *data)
2783{
2784	struct file_system_type *type;
2785	struct fs_context *fc;
2786	const char *subtype = NULL;
2787	int err = 0;
2788
2789	if (!fstype)
2790		return -EINVAL;
2791
2792	type = get_fs_type(fstype);
2793	if (!type)
2794		return -ENODEV;
2795
2796	if (type->fs_flags & FS_HAS_SUBTYPE) {
2797		subtype = strchr(fstype, '.');
2798		if (subtype) {
2799			subtype++;
2800			if (!*subtype) {
2801				put_filesystem(type);
2802				return -EINVAL;
2803			}
2804		}
2805	}
2806
2807	fc = fs_context_for_mount(type, sb_flags);
2808	put_filesystem(type);
2809	if (IS_ERR(fc))
2810		return PTR_ERR(fc);
2811
2812	if (subtype)
2813		err = vfs_parse_fs_string(fc, "subtype",
2814					  subtype, strlen(subtype));
2815	if (!err && name)
2816		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2817	if (!err)
2818		err = parse_monolithic_mount_data(fc, data);
2819	if (!err && !mount_capable(fc))
2820		err = -EPERM;
2821	if (!err)
2822		err = vfs_get_tree(fc);
2823	if (!err)
2824		err = do_new_mount_fc(fc, path, mnt_flags);
2825
2826	put_fs_context(fc);
2827	return err;
2828}
2829
2830int finish_automount(struct vfsmount *m, struct path *path)
2831{
2832	struct mount *mnt = real_mount(m);
2833	int err;
2834	/* The new mount record should have at least 2 refs to prevent it being
2835	 * expired before we get a chance to add it
2836	 */
2837	BUG_ON(mnt_get_count(mnt) < 2);
2838
2839	if (m->mnt_sb == path->mnt->mnt_sb &&
2840	    m->mnt_root == path->dentry) {
2841		err = -ELOOP;
2842		goto fail;
2843	}
2844
2845	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2846	if (!err)
2847		return 0;
2848fail:
2849	/* remove m from any expiration list it may be on */
2850	if (!list_empty(&mnt->mnt_expire)) {
2851		namespace_lock();
2852		list_del_init(&mnt->mnt_expire);
2853		namespace_unlock();
2854	}
2855	mntput(m);
2856	mntput(m);
2857	return err;
2858}
2859
2860/**
2861 * mnt_set_expiry - Put a mount on an expiration list
2862 * @mnt: The mount to list.
2863 * @expiry_list: The list to add the mount to.
2864 */
2865void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2866{
2867	namespace_lock();
2868
2869	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2870
2871	namespace_unlock();
2872}
2873EXPORT_SYMBOL(mnt_set_expiry);
2874
2875/*
2876 * process a list of expirable mountpoints with the intent of discarding any
2877 * mountpoints that aren't in use and haven't been touched since last we came
2878 * here
2879 */
2880void mark_mounts_for_expiry(struct list_head *mounts)
2881{
2882	struct mount *mnt, *next;
2883	LIST_HEAD(graveyard);
2884
2885	if (list_empty(mounts))
2886		return;
2887
2888	namespace_lock();
2889	lock_mount_hash();
2890
2891	/* extract from the expiration list every vfsmount that matches the
2892	 * following criteria:
2893	 * - only referenced by its parent vfsmount
2894	 * - still marked for expiry (marked on the last call here; marks are
2895	 *   cleared by mntput())
2896	 */
2897	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2898		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2899			propagate_mount_busy(mnt, 1))
2900			continue;
2901		list_move(&mnt->mnt_expire, &graveyard);
2902	}
2903	while (!list_empty(&graveyard)) {
2904		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2905		touch_mnt_namespace(mnt->mnt_ns);
2906		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2907	}
2908	unlock_mount_hash();
2909	namespace_unlock();
2910}
2911
2912EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2913
2914/*
2915 * Ripoff of 'select_parent()'
2916 *
2917 * search the list of submounts for a given mountpoint, and move any
2918 * shrinkable submounts to the 'graveyard' list.
2919 */
2920static int select_submounts(struct mount *parent, struct list_head *graveyard)
2921{
2922	struct mount *this_parent = parent;
2923	struct list_head *next;
2924	int found = 0;
2925
2926repeat:
2927	next = this_parent->mnt_mounts.next;
2928resume:
2929	while (next != &this_parent->mnt_mounts) {
2930		struct list_head *tmp = next;
2931		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2932
2933		next = tmp->next;
2934		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2935			continue;
2936		/*
2937		 * Descend a level if the d_mounts list is non-empty.
2938		 */
2939		if (!list_empty(&mnt->mnt_mounts)) {
2940			this_parent = mnt;
2941			goto repeat;
2942		}
2943
2944		if (!propagate_mount_busy(mnt, 1)) {
2945			list_move_tail(&mnt->mnt_expire, graveyard);
2946			found++;
2947		}
2948	}
2949	/*
2950	 * All done at this level ... ascend and resume the search
2951	 */
2952	if (this_parent != parent) {
2953		next = this_parent->mnt_child.next;
2954		this_parent = this_parent->mnt_parent;
2955		goto resume;
2956	}
2957	return found;
2958}
2959
2960/*
2961 * process a list of expirable mountpoints with the intent of discarding any
2962 * submounts of a specific parent mountpoint
2963 *
2964 * mount_lock must be held for write
2965 */
2966static void shrink_submounts(struct mount *mnt)
2967{
2968	LIST_HEAD(graveyard);
2969	struct mount *m;
2970
2971	/* extract submounts of 'mountpoint' from the expiration list */
2972	while (select_submounts(mnt, &graveyard)) {
2973		while (!list_empty(&graveyard)) {
2974			m = list_first_entry(&graveyard, struct mount,
2975						mnt_expire);
2976			touch_mnt_namespace(m->mnt_ns);
2977			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2978		}
2979	}
2980}
2981
2982/*
2983 * Some copy_from_user() implementations do not return the exact number of
2984 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2985 * Note that this function differs from copy_from_user() in that it will oops
2986 * on bad values of `to', rather than returning a short copy.
2987 */
2988static long exact_copy_from_user(void *to, const void __user * from,
2989				 unsigned long n)
2990{
2991	char *t = to;
2992	const char __user *f = from;
2993	char c;
2994
2995	if (!access_ok(from, n))
2996		return n;
2997
2998	while (n) {
2999		if (__get_user(c, f)) {
3000			memset(t, 0, n);
3001			break;
3002		}
3003		*t++ = c;
3004		f++;
3005		n--;
3006	}
3007	return n;
3008}
3009
3010void *copy_mount_options(const void __user * data)
3011{
3012	int i;
3013	unsigned long size;
3014	char *copy;
3015
3016	if (!data)
3017		return NULL;
3018
3019	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3020	if (!copy)
3021		return ERR_PTR(-ENOMEM);
3022
3023	/* We only care that *some* data at the address the user
3024	 * gave us is valid.  Just in case, we'll zero
3025	 * the remainder of the page.
3026	 */
3027	/* copy_from_user cannot cross TASK_SIZE ! */
3028	size = TASK_SIZE - (unsigned long)untagged_addr(data);
3029	if (size > PAGE_SIZE)
3030		size = PAGE_SIZE;
3031
3032	i = size - exact_copy_from_user(copy, data, size);
3033	if (!i) {
3034		kfree(copy);
3035		return ERR_PTR(-EFAULT);
3036	}
3037	if (i != PAGE_SIZE)
3038		memset(copy + i, 0, PAGE_SIZE - i);
3039	return copy;
3040}
3041
3042char *copy_mount_string(const void __user *data)
3043{
3044	return data ? strndup_user(data, PATH_MAX) : NULL;
3045}
3046
3047/*
3048 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3049 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3050 *
3051 * data is a (void *) that can point to any structure up to
3052 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3053 * information (or be NULL).
3054 *
3055 * Pre-0.97 versions of mount() didn't have a flags word.
3056 * When the flags word was introduced its top half was required
3057 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3058 * Therefore, if this magic number is present, it carries no information
3059 * and must be discarded.
3060 */
3061long do_mount(const char *dev_name, const char __user *dir_name,
3062		const char *type_page, unsigned long flags, void *data_page)
3063{
3064	struct path path;
3065	unsigned int mnt_flags = 0, sb_flags;
3066	int retval = 0;
3067
3068	/* Discard magic */
3069	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3070		flags &= ~MS_MGC_MSK;
3071
3072	/* Basic sanity checks */
3073	if (data_page)
3074		((char *)data_page)[PAGE_SIZE - 1] = 0;
3075
3076	if (flags & MS_NOUSER)
3077		return -EINVAL;
3078
3079	/* ... and get the mountpoint */
3080	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3081	if (retval)
3082		return retval;
3083
3084	retval = security_sb_mount(dev_name, &path,
3085				   type_page, flags, data_page);
3086	if (!retval && !may_mount())
3087		retval = -EPERM;
3088	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3089		retval = -EPERM;
3090	if (retval)
3091		goto dput_out;
3092
3093	/* Default to relatime unless overriden */
3094	if (!(flags & MS_NOATIME))
3095		mnt_flags |= MNT_RELATIME;
3096
3097	/* Separate the per-mountpoint flags */
3098	if (flags & MS_NOSUID)
3099		mnt_flags |= MNT_NOSUID;
3100	if (flags & MS_NODEV)
3101		mnt_flags |= MNT_NODEV;
3102	if (flags & MS_NOEXEC)
3103		mnt_flags |= MNT_NOEXEC;
3104	if (flags & MS_NOATIME)
3105		mnt_flags |= MNT_NOATIME;
3106	if (flags & MS_NODIRATIME)
3107		mnt_flags |= MNT_NODIRATIME;
3108	if (flags & MS_STRICTATIME)
3109		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3110	if (flags & MS_RDONLY)
3111		mnt_flags |= MNT_READONLY;
3112
3113	/* The default atime for remount is preservation */
3114	if ((flags & MS_REMOUNT) &&
3115	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3116		       MS_STRICTATIME)) == 0)) {
3117		mnt_flags &= ~MNT_ATIME_MASK;
3118		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3119	}
3120
3121	sb_flags = flags & (SB_RDONLY |
3122			    SB_SYNCHRONOUS |
3123			    SB_MANDLOCK |
3124			    SB_DIRSYNC |
3125			    SB_SILENT |
3126			    SB_POSIXACL |
3127			    SB_LAZYTIME |
3128			    SB_I_VERSION);
3129
3130	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3131		retval = do_reconfigure_mnt(&path, mnt_flags);
3132	else if (flags & MS_REMOUNT)
3133		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3134				    data_page);
3135	else if (flags & MS_BIND)
3136		retval = do_loopback(&path, dev_name, flags & MS_REC);
3137	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3138		retval = do_change_type(&path, flags);
3139	else if (flags & MS_MOVE)
3140		retval = do_move_mount_old(&path, dev_name);
3141	else
3142		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3143				      dev_name, data_page);
3144dput_out:
3145	path_put(&path);
3146	return retval;
3147}
3148
3149static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3150{
3151	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3152}
3153
3154static void dec_mnt_namespaces(struct ucounts *ucounts)
3155{
3156	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3157}
3158
3159static void free_mnt_ns(struct mnt_namespace *ns)
3160{
3161	if (!is_anon_ns(ns))
3162		ns_free_inum(&ns->ns);
3163	dec_mnt_namespaces(ns->ucounts);
3164	put_user_ns(ns->user_ns);
3165	kfree(ns);
3166}
3167
3168/*
3169 * Assign a sequence number so we can detect when we attempt to bind
3170 * mount a reference to an older mount namespace into the current
3171 * mount namespace, preventing reference counting loops.  A 64bit
3172 * number incrementing at 10Ghz will take 12,427 years to wrap which
3173 * is effectively never, so we can ignore the possibility.
3174 */
3175static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3176
3177static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3178{
3179	struct mnt_namespace *new_ns;
3180	struct ucounts *ucounts;
3181	int ret;
3182
3183	ucounts = inc_mnt_namespaces(user_ns);
3184	if (!ucounts)
3185		return ERR_PTR(-ENOSPC);
3186
3187	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3188	if (!new_ns) {
3189		dec_mnt_namespaces(ucounts);
3190		return ERR_PTR(-ENOMEM);
3191	}
3192	if (!anon) {
3193		ret = ns_alloc_inum(&new_ns->ns);
3194		if (ret) {
3195			kfree(new_ns);
3196			dec_mnt_namespaces(ucounts);
3197			return ERR_PTR(ret);
3198		}
3199	}
3200	new_ns->ns.ops = &mntns_operations;
3201	if (!anon)
3202		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3203	atomic_set(&new_ns->count, 1);
3204	INIT_LIST_HEAD(&new_ns->list);
3205	init_waitqueue_head(&new_ns->poll);
3206	new_ns->user_ns = get_user_ns(user_ns);
3207	new_ns->ucounts = ucounts;
3208	return new_ns;
3209}
3210
3211__latent_entropy
3212struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3213		struct user_namespace *user_ns, struct fs_struct *new_fs)
3214{
3215	struct mnt_namespace *new_ns;
3216	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3217	struct mount *p, *q;
3218	struct mount *old;
3219	struct mount *new;
3220	int copy_flags;
3221
3222	BUG_ON(!ns);
3223
3224	if (likely(!(flags & CLONE_NEWNS))) {
3225		get_mnt_ns(ns);
3226		return ns;
3227	}
3228
3229	old = ns->root;
3230
3231	new_ns = alloc_mnt_ns(user_ns, false);
3232	if (IS_ERR(new_ns))
3233		return new_ns;
3234
3235	namespace_lock();
3236	/* First pass: copy the tree topology */
3237	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3238	if (user_ns != ns->user_ns)
3239		copy_flags |= CL_SHARED_TO_SLAVE;
3240	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3241	if (IS_ERR(new)) {
3242		namespace_unlock();
3243		free_mnt_ns(new_ns);
3244		return ERR_CAST(new);
3245	}
3246	if (user_ns != ns->user_ns) {
3247		lock_mount_hash();
3248		lock_mnt_tree(new);
3249		unlock_mount_hash();
3250	}
3251	new_ns->root = new;
3252	list_add_tail(&new_ns->list, &new->mnt_list);
3253
3254	/*
3255	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3256	 * as belonging to new namespace.  We have already acquired a private
3257	 * fs_struct, so tsk->fs->lock is not needed.
3258	 */
3259	p = old;
3260	q = new;
3261	while (p) {
3262		q->mnt_ns = new_ns;
3263		new_ns->mounts++;
3264		if (new_fs) {
3265			if (&p->mnt == new_fs->root.mnt) {
3266				new_fs->root.mnt = mntget(&q->mnt);
3267				rootmnt = &p->mnt;
3268			}
3269			if (&p->mnt == new_fs->pwd.mnt) {
3270				new_fs->pwd.mnt = mntget(&q->mnt);
3271				pwdmnt = &p->mnt;
3272			}
3273		}
3274		p = next_mnt(p, old);
3275		q = next_mnt(q, new);
3276		if (!q)
3277			break;
3278		while (p->mnt.mnt_root != q->mnt.mnt_root)
3279			p = next_mnt(p, old);
3280	}
3281	namespace_unlock();
3282
3283	if (rootmnt)
3284		mntput(rootmnt);
3285	if (pwdmnt)
3286		mntput(pwdmnt);
3287
3288	return new_ns;
3289}
3290
3291struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3292{
3293	struct mount *mnt = real_mount(m);
3294	struct mnt_namespace *ns;
3295	struct super_block *s;
3296	struct path path;
3297	int err;
3298
3299	ns = alloc_mnt_ns(&init_user_ns, true);
3300	if (IS_ERR(ns)) {
3301		mntput(m);
3302		return ERR_CAST(ns);
3303	}
3304	mnt->mnt_ns = ns;
3305	ns->root = mnt;
3306	ns->mounts++;
3307	list_add(&mnt->mnt_list, &ns->list);
3308
3309	err = vfs_path_lookup(m->mnt_root, m,
3310			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3311
3312	put_mnt_ns(ns);
3313
3314	if (err)
3315		return ERR_PTR(err);
3316
3317	/* trade a vfsmount reference for active sb one */
3318	s = path.mnt->mnt_sb;
3319	atomic_inc(&s->s_active);
3320	mntput(path.mnt);
3321	/* lock the sucker */
3322	down_write(&s->s_umount);
3323	/* ... and return the root of (sub)tree on it */
3324	return path.dentry;
3325}
3326EXPORT_SYMBOL(mount_subtree);
3327
3328int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3329	       const char __user *type, unsigned long flags, void __user *data)
3330{
3331	int ret;
3332	char *kernel_type;
3333	char *kernel_dev;
3334	void *options;
3335
3336	kernel_type = copy_mount_string(type);
3337	ret = PTR_ERR(kernel_type);
3338	if (IS_ERR(kernel_type))
3339		goto out_type;
3340
3341	kernel_dev = copy_mount_string(dev_name);
3342	ret = PTR_ERR(kernel_dev);
3343	if (IS_ERR(kernel_dev))
3344		goto out_dev;
3345
3346	options = copy_mount_options(data);
3347	ret = PTR_ERR(options);
3348	if (IS_ERR(options))
3349		goto out_data;
3350
3351	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3352
3353	kfree(options);
3354out_data:
3355	kfree(kernel_dev);
3356out_dev:
3357	kfree(kernel_type);
3358out_type:
3359	return ret;
3360}
3361
3362SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3363		char __user *, type, unsigned long, flags, void __user *, data)
3364{
3365	return ksys_mount(dev_name, dir_name, type, flags, data);
3366}
3367
3368/*
3369 * Create a kernel mount representation for a new, prepared superblock
3370 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3371 */
3372SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3373		unsigned int, attr_flags)
3374{
3375	struct mnt_namespace *ns;
3376	struct fs_context *fc;
3377	struct file *file;
3378	struct path newmount;
3379	struct mount *mnt;
3380	struct fd f;
3381	unsigned int mnt_flags = 0;
3382	long ret;
3383
3384	if (!may_mount())
3385		return -EPERM;
3386
3387	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3388		return -EINVAL;
3389
3390	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3391			   MOUNT_ATTR_NOSUID |
3392			   MOUNT_ATTR_NODEV |
3393			   MOUNT_ATTR_NOEXEC |
3394			   MOUNT_ATTR__ATIME |
3395			   MOUNT_ATTR_NODIRATIME))
3396		return -EINVAL;
3397
3398	if (attr_flags & MOUNT_ATTR_RDONLY)
3399		mnt_flags |= MNT_READONLY;
3400	if (attr_flags & MOUNT_ATTR_NOSUID)
3401		mnt_flags |= MNT_NOSUID;
3402	if (attr_flags & MOUNT_ATTR_NODEV)
3403		mnt_flags |= MNT_NODEV;
3404	if (attr_flags & MOUNT_ATTR_NOEXEC)
3405		mnt_flags |= MNT_NOEXEC;
3406	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3407		mnt_flags |= MNT_NODIRATIME;
3408
3409	switch (attr_flags & MOUNT_ATTR__ATIME) {
3410	case MOUNT_ATTR_STRICTATIME:
3411		break;
3412	case MOUNT_ATTR_NOATIME:
3413		mnt_flags |= MNT_NOATIME;
3414		break;
3415	case MOUNT_ATTR_RELATIME:
3416		mnt_flags |= MNT_RELATIME;
3417		break;
3418	default:
3419		return -EINVAL;
3420	}
3421
3422	f = fdget(fs_fd);
3423	if (!f.file)
3424		return -EBADF;
3425
3426	ret = -EINVAL;
3427	if (f.file->f_op != &fscontext_fops)
3428		goto err_fsfd;
3429
3430	fc = f.file->private_data;
3431
3432	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3433	if (ret < 0)
3434		goto err_fsfd;
3435
3436	/* There must be a valid superblock or we can't mount it */
3437	ret = -EINVAL;
3438	if (!fc->root)
3439		goto err_unlock;
3440
3441	ret = -EPERM;
3442	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3443		pr_warn("VFS: Mount too revealing\n");
3444		goto err_unlock;
3445	}
3446
3447	ret = -EBUSY;
3448	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3449		goto err_unlock;
3450
3451	ret = -EPERM;
3452	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3453		goto err_unlock;
3454
3455	newmount.mnt = vfs_create_mount(fc);
3456	if (IS_ERR(newmount.mnt)) {
3457		ret = PTR_ERR(newmount.mnt);
3458		goto err_unlock;
3459	}
3460	newmount.dentry = dget(fc->root);
3461	newmount.mnt->mnt_flags = mnt_flags;
3462
3463	/* We've done the mount bit - now move the file context into more or
3464	 * less the same state as if we'd done an fspick().  We don't want to
3465	 * do any memory allocation or anything like that at this point as we
3466	 * don't want to have to handle any errors incurred.
3467	 */
3468	vfs_clean_context(fc);
3469
3470	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3471	if (IS_ERR(ns)) {
3472		ret = PTR_ERR(ns);
3473		goto err_path;
3474	}
3475	mnt = real_mount(newmount.mnt);
3476	mnt->mnt_ns = ns;
3477	ns->root = mnt;
3478	ns->mounts = 1;
3479	list_add(&mnt->mnt_list, &ns->list);
3480	mntget(newmount.mnt);
3481
3482	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3483	 * it, not just simply put it.
3484	 */
3485	file = dentry_open(&newmount, O_PATH, fc->cred);
3486	if (IS_ERR(file)) {
3487		dissolve_on_fput(newmount.mnt);
3488		ret = PTR_ERR(file);
3489		goto err_path;
3490	}
3491	file->f_mode |= FMODE_NEED_UNMOUNT;
3492
3493	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3494	if (ret >= 0)
3495		fd_install(ret, file);
3496	else
3497		fput(file);
3498
3499err_path:
3500	path_put(&newmount);
3501err_unlock:
3502	mutex_unlock(&fc->uapi_mutex);
3503err_fsfd:
3504	fdput(f);
3505	return ret;
3506}
3507
3508/*
3509 * Move a mount from one place to another.  In combination with
3510 * fsopen()/fsmount() this is used to install a new mount and in combination
3511 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3512 * a mount subtree.
3513 *
3514 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3515 */
3516SYSCALL_DEFINE5(move_mount,
3517		int, from_dfd, const char *, from_pathname,
3518		int, to_dfd, const char *, to_pathname,
3519		unsigned int, flags)
3520{
3521	struct path from_path, to_path;
3522	unsigned int lflags;
3523	int ret = 0;
3524
3525	if (!may_mount())
3526		return -EPERM;
3527
3528	if (flags & ~MOVE_MOUNT__MASK)
3529		return -EINVAL;
3530
3531	/* If someone gives a pathname, they aren't permitted to move
3532	 * from an fd that requires unmount as we can't get at the flag
3533	 * to clear it afterwards.
3534	 */
3535	lflags = 0;
3536	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3537	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3538	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3539
3540	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3541	if (ret < 0)
3542		return ret;
3543
3544	lflags = 0;
3545	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3546	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3547	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3548
3549	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3550	if (ret < 0)
3551		goto out_from;
3552
3553	ret = security_move_mount(&from_path, &to_path);
3554	if (ret < 0)
3555		goto out_to;
3556
3557	ret = do_move_mount(&from_path, &to_path);
3558
3559out_to:
3560	path_put(&to_path);
3561out_from:
3562	path_put(&from_path);
3563	return ret;
3564}
3565
3566/*
3567 * Return true if path is reachable from root
3568 *
3569 * namespace_sem or mount_lock is held
3570 */
3571bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3572			 const struct path *root)
3573{
3574	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3575		dentry = mnt->mnt_mountpoint;
3576		mnt = mnt->mnt_parent;
3577	}
3578	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3579}
3580
3581bool path_is_under(const struct path *path1, const struct path *path2)
3582{
3583	bool res;
3584	read_seqlock_excl(&mount_lock);
3585	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3586	read_sequnlock_excl(&mount_lock);
3587	return res;
3588}
3589EXPORT_SYMBOL(path_is_under);
3590
3591/*
3592 * pivot_root Semantics:
3593 * Moves the root file system of the current process to the directory put_old,
3594 * makes new_root as the new root file system of the current process, and sets
3595 * root/cwd of all processes which had them on the current root to new_root.
3596 *
3597 * Restrictions:
3598 * The new_root and put_old must be directories, and  must not be on the
3599 * same file  system as the current process root. The put_old  must  be
3600 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3601 * pointed to by put_old must yield the same directory as new_root. No other
3602 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3603 *
3604 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3605 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3606 * in this situation.
3607 *
3608 * Notes:
3609 *  - we don't move root/cwd if they are not at the root (reason: if something
3610 *    cared enough to change them, it's probably wrong to force them elsewhere)
3611 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3612 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3613 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3614 *    first.
3615 */
3616SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3617		const char __user *, put_old)
3618{
3619	struct path new, old, root;
3620	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3621	struct mountpoint *old_mp, *root_mp;
3622	int error;
3623
3624	if (!may_mount())
3625		return -EPERM;
3626
3627	error = user_path_at(AT_FDCWD, new_root,
3628			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3629	if (error)
3630		goto out0;
3631
3632	error = user_path_at(AT_FDCWD, put_old,
3633			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3634	if (error)
3635		goto out1;
3636
3637	error = security_sb_pivotroot(&old, &new);
3638	if (error)
3639		goto out2;
3640
3641	get_fs_root(current->fs, &root);
3642	old_mp = lock_mount(&old);
3643	error = PTR_ERR(old_mp);
3644	if (IS_ERR(old_mp))
3645		goto out3;
3646
3647	error = -EINVAL;
3648	new_mnt = real_mount(new.mnt);
3649	root_mnt = real_mount(root.mnt);
3650	old_mnt = real_mount(old.mnt);
3651	ex_parent = new_mnt->mnt_parent;
3652	root_parent = root_mnt->mnt_parent;
3653	if (IS_MNT_SHARED(old_mnt) ||
3654		IS_MNT_SHARED(ex_parent) ||
3655		IS_MNT_SHARED(root_parent))
3656		goto out4;
3657	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3658		goto out4;
3659	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3660		goto out4;
3661	error = -ENOENT;
3662	if (d_unlinked(new.dentry))
3663		goto out4;
3664	error = -EBUSY;
3665	if (new_mnt == root_mnt || old_mnt == root_mnt)
3666		goto out4; /* loop, on the same file system  */
3667	error = -EINVAL;
3668	if (root.mnt->mnt_root != root.dentry)
3669		goto out4; /* not a mountpoint */
3670	if (!mnt_has_parent(root_mnt))
3671		goto out4; /* not attached */
3672	if (new.mnt->mnt_root != new.dentry)
3673		goto out4; /* not a mountpoint */
3674	if (!mnt_has_parent(new_mnt))
3675		goto out4; /* not attached */
3676	/* make sure we can reach put_old from new_root */
3677	if (!is_path_reachable(old_mnt, old.dentry, &new))
3678		goto out4;
3679	/* make certain new is below the root */
3680	if (!is_path_reachable(new_mnt, new.dentry, &root))
3681		goto out4;
3682	lock_mount_hash();
3683	umount_mnt(new_mnt);
3684	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3685	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3686		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3687		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3688	}
3689	/* mount old root on put_old */
3690	attach_mnt(root_mnt, old_mnt, old_mp);
3691	/* mount new_root on / */
3692	attach_mnt(new_mnt, root_parent, root_mp);
3693	mnt_add_count(root_parent, -1);
3694	touch_mnt_namespace(current->nsproxy->mnt_ns);
3695	/* A moved mount should not expire automatically */
3696	list_del_init(&new_mnt->mnt_expire);
3697	put_mountpoint(root_mp);
3698	unlock_mount_hash();
3699	chroot_fs_refs(&root, &new);
3700	error = 0;
3701out4:
3702	unlock_mount(old_mp);
3703	if (!error)
3704		mntput_no_expire(ex_parent);
3705out3:
3706	path_put(&root);
3707out2:
3708	path_put(&old);
3709out1:
3710	path_put(&new);
3711out0:
3712	return error;
3713}
3714
3715static void __init init_mount_tree(void)
3716{
3717	struct vfsmount *mnt;
3718	struct mount *m;
3719	struct mnt_namespace *ns;
3720	struct path root;
3721
3722	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3723	if (IS_ERR(mnt))
3724		panic("Can't create rootfs");
3725
3726	ns = alloc_mnt_ns(&init_user_ns, false);
3727	if (IS_ERR(ns))
3728		panic("Can't allocate initial namespace");
3729	m = real_mount(mnt);
3730	m->mnt_ns = ns;
3731	ns->root = m;
3732	ns->mounts = 1;
3733	list_add(&m->mnt_list, &ns->list);
3734	init_task.nsproxy->mnt_ns = ns;
3735	get_mnt_ns(ns);
3736
3737	root.mnt = mnt;
3738	root.dentry = mnt->mnt_root;
3739	mnt->mnt_flags |= MNT_LOCKED;
3740
3741	set_fs_pwd(current->fs, &root);
3742	set_fs_root(current->fs, &root);
3743}
3744
3745void __init mnt_init(void)
3746{
3747	int err;
3748
3749	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3750			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3751
3752	mount_hashtable = alloc_large_system_hash("Mount-cache",
3753				sizeof(struct hlist_head),
3754				mhash_entries, 19,
3755				HASH_ZERO,
3756				&m_hash_shift, &m_hash_mask, 0, 0);
3757	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3758				sizeof(struct hlist_head),
3759				mphash_entries, 19,
3760				HASH_ZERO,
3761				&mp_hash_shift, &mp_hash_mask, 0, 0);
3762
3763	if (!mount_hashtable || !mountpoint_hashtable)
3764		panic("Failed to allocate mount hash table\n");
3765
3766	kernfs_init();
3767
3768	err = sysfs_init();
3769	if (err)
3770		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3771			__func__, err);
3772	fs_kobj = kobject_create_and_add("fs", NULL);
3773	if (!fs_kobj)
3774		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3775	shmem_init();
3776	init_rootfs();
3777	init_mount_tree();
3778}
3779
3780void put_mnt_ns(struct mnt_namespace *ns)
3781{
3782	if (!atomic_dec_and_test(&ns->count))
3783		return;
3784	drop_collected_mounts(&ns->root->mnt);
3785	free_mnt_ns(ns);
3786}
3787
3788struct vfsmount *kern_mount(struct file_system_type *type)
3789{
3790	struct vfsmount *mnt;
3791	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3792	if (!IS_ERR(mnt)) {
3793		/*
3794		 * it is a longterm mount, don't release mnt until
3795		 * we unmount before file sys is unregistered
3796		*/
3797		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3798	}
3799	return mnt;
3800}
3801EXPORT_SYMBOL_GPL(kern_mount);
3802
3803void kern_unmount(struct vfsmount *mnt)
3804{
3805	/* release long term mount so mount point can be released */
3806	if (!IS_ERR_OR_NULL(mnt)) {
3807		real_mount(mnt)->mnt_ns = NULL;
3808		synchronize_rcu();	/* yecchhh... */
3809		mntput(mnt);
3810	}
3811}
3812EXPORT_SYMBOL(kern_unmount);
3813
3814bool our_mnt(struct vfsmount *mnt)
3815{
3816	return check_mnt(real_mount(mnt));
3817}
3818
3819bool current_chrooted(void)
3820{
3821	/* Does the current process have a non-standard root */
3822	struct path ns_root;
3823	struct path fs_root;
3824	bool chrooted;
3825
3826	/* Find the namespace root */
3827	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3828	ns_root.dentry = ns_root.mnt->mnt_root;
3829	path_get(&ns_root);
3830	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3831		;
3832
3833	get_fs_root(current->fs, &fs_root);
3834
3835	chrooted = !path_equal(&fs_root, &ns_root);
3836
3837	path_put(&fs_root);
3838	path_put(&ns_root);
3839
3840	return chrooted;
3841}
3842
3843static bool mnt_already_visible(struct mnt_namespace *ns,
3844				const struct super_block *sb,
3845				int *new_mnt_flags)
3846{
3847	int new_flags = *new_mnt_flags;
3848	struct mount *mnt;
3849	bool visible = false;
3850
3851	down_read(&namespace_sem);
3852	list_for_each_entry(mnt, &ns->list, mnt_list) {
3853		struct mount *child;
3854		int mnt_flags;
3855
3856		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3857			continue;
3858
3859		/* This mount is not fully visible if it's root directory
3860		 * is not the root directory of the filesystem.
3861		 */
3862		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3863			continue;
3864
3865		/* A local view of the mount flags */
3866		mnt_flags = mnt->mnt.mnt_flags;
3867
3868		/* Don't miss readonly hidden in the superblock flags */
3869		if (sb_rdonly(mnt->mnt.mnt_sb))
3870			mnt_flags |= MNT_LOCK_READONLY;
3871
3872		/* Verify the mount flags are equal to or more permissive
3873		 * than the proposed new mount.
3874		 */
3875		if ((mnt_flags & MNT_LOCK_READONLY) &&
3876		    !(new_flags & MNT_READONLY))
3877			continue;
3878		if ((mnt_flags & MNT_LOCK_ATIME) &&
3879		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3880			continue;
3881
3882		/* This mount is not fully visible if there are any
3883		 * locked child mounts that cover anything except for
3884		 * empty directories.
3885		 */
3886		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3887			struct inode *inode = child->mnt_mountpoint->d_inode;
3888			/* Only worry about locked mounts */
3889			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3890				continue;
3891			/* Is the directory permanetly empty? */
3892			if (!is_empty_dir_inode(inode))
3893				goto next;
3894		}
3895		/* Preserve the locked attributes */
3896		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3897					       MNT_LOCK_ATIME);
3898		visible = true;
3899		goto found;
3900	next:	;
3901	}
3902found:
3903	up_read(&namespace_sem);
3904	return visible;
3905}
3906
3907static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3908{
3909	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3910	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3911	unsigned long s_iflags;
3912
3913	if (ns->user_ns == &init_user_ns)
3914		return false;
3915
3916	/* Can this filesystem be too revealing? */
3917	s_iflags = sb->s_iflags;
3918	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3919		return false;
3920
3921	if ((s_iflags & required_iflags) != required_iflags) {
3922		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3923			  required_iflags);
3924		return true;
3925	}
3926
3927	return !mnt_already_visible(ns, sb, new_mnt_flags);
3928}
3929
3930bool mnt_may_suid(struct vfsmount *mnt)
3931{
3932	/*
3933	 * Foreign mounts (accessed via fchdir or through /proc
3934	 * symlinks) are always treated as if they are nosuid.  This
3935	 * prevents namespaces from trusting potentially unsafe
3936	 * suid/sgid bits, file caps, or security labels that originate
3937	 * in other namespaces.
3938	 */
3939	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3940	       current_in_userns(mnt->mnt_sb->s_user_ns);
3941}
3942
3943static struct ns_common *mntns_get(struct task_struct *task)
3944{
3945	struct ns_common *ns = NULL;
3946	struct nsproxy *nsproxy;
3947
3948	task_lock(task);
3949	nsproxy = task->nsproxy;
3950	if (nsproxy) {
3951		ns = &nsproxy->mnt_ns->ns;
3952		get_mnt_ns(to_mnt_ns(ns));
3953	}
3954	task_unlock(task);
3955
3956	return ns;
3957}
3958
3959static void mntns_put(struct ns_common *ns)
3960{
3961	put_mnt_ns(to_mnt_ns(ns));
3962}
3963
3964static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3965{
3966	struct fs_struct *fs = current->fs;
3967	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3968	struct path root;
3969	int err;
3970
3971	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3972	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3973	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3974		return -EPERM;
3975
3976	if (is_anon_ns(mnt_ns))
3977		return -EINVAL;
3978
3979	if (fs->users != 1)
3980		return -EINVAL;
3981
3982	get_mnt_ns(mnt_ns);
3983	old_mnt_ns = nsproxy->mnt_ns;
3984	nsproxy->mnt_ns = mnt_ns;
3985
3986	/* Find the root */
3987	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3988				"/", LOOKUP_DOWN, &root);
3989	if (err) {
3990		/* revert to old namespace */
3991		nsproxy->mnt_ns = old_mnt_ns;
3992		put_mnt_ns(mnt_ns);
3993		return err;
3994	}
3995
3996	put_mnt_ns(old_mnt_ns);
3997
3998	/* Update the pwd and root */
3999	set_fs_pwd(fs, &root);
4000	set_fs_root(fs, &root);
4001
4002	path_put(&root);
4003	return 0;
4004}
4005
4006static struct user_namespace *mntns_owner(struct ns_common *ns)
4007{
4008	return to_mnt_ns(ns)->user_ns;
4009}
4010
4011const struct proc_ns_operations mntns_operations = {
4012	.name		= "mnt",
4013	.type		= CLONE_NEWNS,
4014	.get		= mntns_get,
4015	.put		= mntns_put,
4016	.install	= mntns_install,
4017	.owner		= mntns_owner,
4018};
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *	Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
  27#include <linux/task_work.h>
  28#include <linux/sched/task.h>
  29
  30#include "pnode.h"
  31#include "internal.h"
  32
  33/* Maximum number of mounts in a mount namespace */
  34unsigned int sysctl_mount_max __read_mostly = 100000;
  35
  36static unsigned int m_hash_mask __read_mostly;
  37static unsigned int m_hash_shift __read_mostly;
  38static unsigned int mp_hash_mask __read_mostly;
  39static unsigned int mp_hash_shift __read_mostly;
  40
  41static __initdata unsigned long mhash_entries;
  42static int __init set_mhash_entries(char *str)
  43{
  44	if (!str)
  45		return 0;
  46	mhash_entries = simple_strtoul(str, &str, 0);
  47	return 1;
  48}
  49__setup("mhash_entries=", set_mhash_entries);
  50
  51static __initdata unsigned long mphash_entries;
  52static int __init set_mphash_entries(char *str)
  53{
  54	if (!str)
  55		return 0;
  56	mphash_entries = simple_strtoul(str, &str, 0);
  57	return 1;
  58}
  59__setup("mphash_entries=", set_mphash_entries);
  60
  61static u64 event;
  62static DEFINE_IDA(mnt_id_ida);
  63static DEFINE_IDA(mnt_group_ida);
  64static DEFINE_SPINLOCK(mnt_id_lock);
  65static int mnt_id_start = 0;
  66static int mnt_group_start = 1;
  67
  68static struct hlist_head *mount_hashtable __read_mostly;
  69static struct hlist_head *mountpoint_hashtable __read_mostly;
  70static struct kmem_cache *mnt_cache __read_mostly;
  71static DECLARE_RWSEM(namespace_sem);
  72
  73/* /sys/fs */
  74struct kobject *fs_kobj;
  75EXPORT_SYMBOL_GPL(fs_kobj);
  76
  77/*
  78 * vfsmount lock may be taken for read to prevent changes to the
  79 * vfsmount hash, ie. during mountpoint lookups or walking back
  80 * up the tree.
  81 *
  82 * It should be taken for write in all cases where the vfsmount
  83 * tree or hash is modified or when a vfsmount structure is modified.
  84 */
  85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  86
  87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  88{
  89	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  90	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  91	tmp = tmp + (tmp >> m_hash_shift);
  92	return &mount_hashtable[tmp & m_hash_mask];
  93}
  94
  95static inline struct hlist_head *mp_hash(struct dentry *dentry)
  96{
  97	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  98	tmp = tmp + (tmp >> mp_hash_shift);
  99	return &mountpoint_hashtable[tmp & mp_hash_mask];
 100}
 101
 102static int mnt_alloc_id(struct mount *mnt)
 103{
 104	int res;
 105
 106retry:
 107	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 108	spin_lock(&mnt_id_lock);
 109	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 110	if (!res)
 111		mnt_id_start = mnt->mnt_id + 1;
 112	spin_unlock(&mnt_id_lock);
 113	if (res == -EAGAIN)
 114		goto retry;
 115
 116	return res;
 117}
 118
 119static void mnt_free_id(struct mount *mnt)
 120{
 121	int id = mnt->mnt_id;
 122	spin_lock(&mnt_id_lock);
 123	ida_remove(&mnt_id_ida, id);
 124	if (mnt_id_start > id)
 125		mnt_id_start = id;
 126	spin_unlock(&mnt_id_lock);
 127}
 128
 129/*
 130 * Allocate a new peer group ID
 131 *
 132 * mnt_group_ida is protected by namespace_sem
 133 */
 134static int mnt_alloc_group_id(struct mount *mnt)
 135{
 136	int res;
 137
 138	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 139		return -ENOMEM;
 140
 141	res = ida_get_new_above(&mnt_group_ida,
 142				mnt_group_start,
 143				&mnt->mnt_group_id);
 144	if (!res)
 145		mnt_group_start = mnt->mnt_group_id + 1;
 146
 147	return res;
 148}
 149
 150/*
 151 * Release a peer group ID
 152 */
 153void mnt_release_group_id(struct mount *mnt)
 154{
 155	int id = mnt->mnt_group_id;
 156	ida_remove(&mnt_group_ida, id);
 157	if (mnt_group_start > id)
 158		mnt_group_start = id;
 159	mnt->mnt_group_id = 0;
 160}
 161
 162/*
 163 * vfsmount lock must be held for read
 164 */
 165static inline void mnt_add_count(struct mount *mnt, int n)
 166{
 167#ifdef CONFIG_SMP
 168	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 169#else
 170	preempt_disable();
 171	mnt->mnt_count += n;
 172	preempt_enable();
 173#endif
 174}
 175
 176/*
 177 * vfsmount lock must be held for write
 178 */
 179unsigned int mnt_get_count(struct mount *mnt)
 180{
 181#ifdef CONFIG_SMP
 182	unsigned int count = 0;
 183	int cpu;
 184
 185	for_each_possible_cpu(cpu) {
 186		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 187	}
 188
 189	return count;
 190#else
 191	return mnt->mnt_count;
 192#endif
 193}
 194
 195static void drop_mountpoint(struct fs_pin *p)
 196{
 197	struct mount *m = container_of(p, struct mount, mnt_umount);
 198	dput(m->mnt_ex_mountpoint);
 199	pin_remove(p);
 200	mntput(&m->mnt);
 201}
 202
 203static struct mount *alloc_vfsmnt(const char *name)
 204{
 205	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 206	if (mnt) {
 207		int err;
 208
 209		err = mnt_alloc_id(mnt);
 210		if (err)
 211			goto out_free_cache;
 212
 213		if (name) {
 214			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 215			if (!mnt->mnt_devname)
 216				goto out_free_id;
 217		}
 218
 219#ifdef CONFIG_SMP
 220		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 221		if (!mnt->mnt_pcp)
 222			goto out_free_devname;
 223
 224		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 225#else
 226		mnt->mnt_count = 1;
 227		mnt->mnt_writers = 0;
 228#endif
 229
 230		INIT_HLIST_NODE(&mnt->mnt_hash);
 231		INIT_LIST_HEAD(&mnt->mnt_child);
 232		INIT_LIST_HEAD(&mnt->mnt_mounts);
 233		INIT_LIST_HEAD(&mnt->mnt_list);
 234		INIT_LIST_HEAD(&mnt->mnt_expire);
 235		INIT_LIST_HEAD(&mnt->mnt_share);
 236		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 237		INIT_LIST_HEAD(&mnt->mnt_slave);
 238		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 239		INIT_LIST_HEAD(&mnt->mnt_umounting);
 240		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 241	}
 242	return mnt;
 243
 244#ifdef CONFIG_SMP
 245out_free_devname:
 246	kfree_const(mnt->mnt_devname);
 247#endif
 248out_free_id:
 249	mnt_free_id(mnt);
 250out_free_cache:
 251	kmem_cache_free(mnt_cache, mnt);
 252	return NULL;
 253}
 254
 255/*
 256 * Most r/o checks on a fs are for operations that take
 257 * discrete amounts of time, like a write() or unlink().
 258 * We must keep track of when those operations start
 259 * (for permission checks) and when they end, so that
 260 * we can determine when writes are able to occur to
 261 * a filesystem.
 262 */
 263/*
 264 * __mnt_is_readonly: check whether a mount is read-only
 265 * @mnt: the mount to check for its write status
 266 *
 267 * This shouldn't be used directly ouside of the VFS.
 268 * It does not guarantee that the filesystem will stay
 269 * r/w, just that it is right *now*.  This can not and
 270 * should not be used in place of IS_RDONLY(inode).
 271 * mnt_want/drop_write() will _keep_ the filesystem
 272 * r/w.
 273 */
 274int __mnt_is_readonly(struct vfsmount *mnt)
 275{
 276	if (mnt->mnt_flags & MNT_READONLY)
 277		return 1;
 278	if (sb_rdonly(mnt->mnt_sb))
 279		return 1;
 280	return 0;
 281}
 282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 283
 284static inline void mnt_inc_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 288#else
 289	mnt->mnt_writers++;
 290#endif
 291}
 292
 293static inline void mnt_dec_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 297#else
 298	mnt->mnt_writers--;
 299#endif
 300}
 301
 302static unsigned int mnt_get_writers(struct mount *mnt)
 303{
 304#ifdef CONFIG_SMP
 305	unsigned int count = 0;
 306	int cpu;
 307
 308	for_each_possible_cpu(cpu) {
 309		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 310	}
 311
 312	return count;
 313#else
 314	return mnt->mnt_writers;
 315#endif
 316}
 317
 318static int mnt_is_readonly(struct vfsmount *mnt)
 319{
 320	if (mnt->mnt_sb->s_readonly_remount)
 321		return 1;
 322	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 323	smp_rmb();
 324	return __mnt_is_readonly(mnt);
 325}
 326
 327/*
 328 * Most r/o & frozen checks on a fs are for operations that take discrete
 329 * amounts of time, like a write() or unlink().  We must keep track of when
 330 * those operations start (for permission checks) and when they end, so that we
 331 * can determine when writes are able to occur to a filesystem.
 332 */
 333/**
 334 * __mnt_want_write - get write access to a mount without freeze protection
 335 * @m: the mount on which to take a write
 336 *
 337 * This tells the low-level filesystem that a write is about to be performed to
 338 * it, and makes sure that writes are allowed (mnt it read-write) before
 339 * returning success. This operation does not protect against filesystem being
 340 * frozen. When the write operation is finished, __mnt_drop_write() must be
 341 * called. This is effectively a refcount.
 342 */
 343int __mnt_want_write(struct vfsmount *m)
 344{
 345	struct mount *mnt = real_mount(m);
 346	int ret = 0;
 347
 348	preempt_disable();
 349	mnt_inc_writers(mnt);
 350	/*
 351	 * The store to mnt_inc_writers must be visible before we pass
 352	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 353	 * incremented count after it has set MNT_WRITE_HOLD.
 354	 */
 355	smp_mb();
 356	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 357		cpu_relax();
 358	/*
 359	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 360	 * be set to match its requirements. So we must not load that until
 361	 * MNT_WRITE_HOLD is cleared.
 362	 */
 363	smp_rmb();
 364	if (mnt_is_readonly(m)) {
 365		mnt_dec_writers(mnt);
 366		ret = -EROFS;
 367	}
 368	preempt_enable();
 369
 370	return ret;
 371}
 372
 373/**
 374 * mnt_want_write - get write access to a mount
 375 * @m: the mount on which to take a write
 376 *
 377 * This tells the low-level filesystem that a write is about to be performed to
 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 379 * is not frozen) before returning success.  When the write operation is
 380 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 381 */
 382int mnt_want_write(struct vfsmount *m)
 383{
 384	int ret;
 385
 386	sb_start_write(m->mnt_sb);
 387	ret = __mnt_want_write(m);
 388	if (ret)
 389		sb_end_write(m->mnt_sb);
 390	return ret;
 391}
 392EXPORT_SYMBOL_GPL(mnt_want_write);
 393
 394/**
 395 * mnt_clone_write - get write access to a mount
 396 * @mnt: the mount on which to take a write
 397 *
 398 * This is effectively like mnt_want_write, except
 399 * it must only be used to take an extra write reference
 400 * on a mountpoint that we already know has a write reference
 401 * on it. This allows some optimisation.
 402 *
 403 * After finished, mnt_drop_write must be called as usual to
 404 * drop the reference.
 405 */
 406int mnt_clone_write(struct vfsmount *mnt)
 407{
 408	/* superblock may be r/o */
 409	if (__mnt_is_readonly(mnt))
 410		return -EROFS;
 411	preempt_disable();
 412	mnt_inc_writers(real_mount(mnt));
 413	preempt_enable();
 414	return 0;
 415}
 416EXPORT_SYMBOL_GPL(mnt_clone_write);
 417
 418/**
 419 * __mnt_want_write_file - get write access to a file's mount
 420 * @file: the file who's mount on which to take a write
 421 *
 422 * This is like __mnt_want_write, but it takes a file and can
 423 * do some optimisations if the file is open for write already
 424 */
 425int __mnt_want_write_file(struct file *file)
 426{
 427	if (!(file->f_mode & FMODE_WRITER))
 428		return __mnt_want_write(file->f_path.mnt);
 429	else
 430		return mnt_clone_write(file->f_path.mnt);
 431}
 432
 433/**
 434 * mnt_want_write_file_path - get write access to a file's mount
 435 * @file: the file who's mount on which to take a write
 436 *
 437 * This is like mnt_want_write, but it takes a file and can
 438 * do some optimisations if the file is open for write already
 439 *
 440 * Called by the vfs for cases when we have an open file at hand, but will do an
 441 * inode operation on it (important distinction for files opened on overlayfs,
 442 * since the file operations will come from the real underlying file, while
 443 * inode operations come from the overlay).
 444 */
 445int mnt_want_write_file_path(struct file *file)
 446{
 447	int ret;
 448
 449	sb_start_write(file->f_path.mnt->mnt_sb);
 450	ret = __mnt_want_write_file(file);
 451	if (ret)
 452		sb_end_write(file->f_path.mnt->mnt_sb);
 453	return ret;
 454}
 455
 456static inline int may_write_real(struct file *file)
 457{
 458	struct dentry *dentry = file->f_path.dentry;
 459	struct dentry *upperdentry;
 460
 461	/* Writable file? */
 462	if (file->f_mode & FMODE_WRITER)
 463		return 0;
 464
 465	/* Not overlayfs? */
 466	if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
 467		return 0;
 468
 469	/* File refers to upper, writable layer? */
 470	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
 471	if (upperdentry &&
 472	    (file_inode(file) == d_inode(upperdentry) ||
 473	     file_inode(file) == d_inode(dentry)))
 474		return 0;
 475
 476	/* Lower layer: can't write to real file, sorry... */
 477	return -EPERM;
 478}
 479
 480/**
 481 * mnt_want_write_file - get write access to a file's mount
 482 * @file: the file who's mount on which to take a write
 483 *
 484 * This is like mnt_want_write, but it takes a file and can
 485 * do some optimisations if the file is open for write already
 486 *
 487 * Mostly called by filesystems from their ioctl operation before performing
 488 * modification.  On overlayfs this needs to check if the file is on a read-only
 489 * lower layer and deny access in that case.
 490 */
 491int mnt_want_write_file(struct file *file)
 492{
 493	int ret;
 494
 495	ret = may_write_real(file);
 496	if (!ret) {
 497		sb_start_write(file_inode(file)->i_sb);
 498		ret = __mnt_want_write_file(file);
 499		if (ret)
 500			sb_end_write(file_inode(file)->i_sb);
 501	}
 502	return ret;
 503}
 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
 505
 506/**
 507 * __mnt_drop_write - give up write access to a mount
 508 * @mnt: the mount on which to give up write access
 509 *
 510 * Tells the low-level filesystem that we are done
 511 * performing writes to it.  Must be matched with
 512 * __mnt_want_write() call above.
 513 */
 514void __mnt_drop_write(struct vfsmount *mnt)
 515{
 516	preempt_disable();
 517	mnt_dec_writers(real_mount(mnt));
 518	preempt_enable();
 519}
 520
 521/**
 522 * mnt_drop_write - give up write access to a mount
 523 * @mnt: the mount on which to give up write access
 524 *
 525 * Tells the low-level filesystem that we are done performing writes to it and
 526 * also allows filesystem to be frozen again.  Must be matched with
 527 * mnt_want_write() call above.
 528 */
 529void mnt_drop_write(struct vfsmount *mnt)
 530{
 531	__mnt_drop_write(mnt);
 532	sb_end_write(mnt->mnt_sb);
 533}
 534EXPORT_SYMBOL_GPL(mnt_drop_write);
 535
 536void __mnt_drop_write_file(struct file *file)
 537{
 538	__mnt_drop_write(file->f_path.mnt);
 539}
 540
 541void mnt_drop_write_file_path(struct file *file)
 542{
 543	mnt_drop_write(file->f_path.mnt);
 544}
 545
 546void mnt_drop_write_file(struct file *file)
 547{
 548	__mnt_drop_write(file->f_path.mnt);
 549	sb_end_write(file_inode(file)->i_sb);
 550}
 551EXPORT_SYMBOL(mnt_drop_write_file);
 552
 553static int mnt_make_readonly(struct mount *mnt)
 554{
 555	int ret = 0;
 556
 557	lock_mount_hash();
 558	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 559	/*
 560	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 561	 * should be visible before we do.
 562	 */
 563	smp_mb();
 564
 565	/*
 566	 * With writers on hold, if this value is zero, then there are
 567	 * definitely no active writers (although held writers may subsequently
 568	 * increment the count, they'll have to wait, and decrement it after
 569	 * seeing MNT_READONLY).
 570	 *
 571	 * It is OK to have counter incremented on one CPU and decremented on
 572	 * another: the sum will add up correctly. The danger would be when we
 573	 * sum up each counter, if we read a counter before it is incremented,
 574	 * but then read another CPU's count which it has been subsequently
 575	 * decremented from -- we would see more decrements than we should.
 576	 * MNT_WRITE_HOLD protects against this scenario, because
 577	 * mnt_want_write first increments count, then smp_mb, then spins on
 578	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 579	 * we're counting up here.
 580	 */
 581	if (mnt_get_writers(mnt) > 0)
 582		ret = -EBUSY;
 583	else
 584		mnt->mnt.mnt_flags |= MNT_READONLY;
 585	/*
 586	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 587	 * that become unheld will see MNT_READONLY.
 588	 */
 589	smp_wmb();
 590	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 591	unlock_mount_hash();
 592	return ret;
 593}
 594
 595static void __mnt_unmake_readonly(struct mount *mnt)
 596{
 597	lock_mount_hash();
 598	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 599	unlock_mount_hash();
 600}
 601
 602int sb_prepare_remount_readonly(struct super_block *sb)
 603{
 604	struct mount *mnt;
 605	int err = 0;
 606
 607	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 608	if (atomic_long_read(&sb->s_remove_count))
 609		return -EBUSY;
 610
 611	lock_mount_hash();
 612	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 613		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 614			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 615			smp_mb();
 616			if (mnt_get_writers(mnt) > 0) {
 617				err = -EBUSY;
 618				break;
 619			}
 620		}
 621	}
 622	if (!err && atomic_long_read(&sb->s_remove_count))
 623		err = -EBUSY;
 624
 625	if (!err) {
 626		sb->s_readonly_remount = 1;
 627		smp_wmb();
 628	}
 629	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 630		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 631			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 632	}
 633	unlock_mount_hash();
 634
 635	return err;
 636}
 637
 638static void free_vfsmnt(struct mount *mnt)
 639{
 640	kfree_const(mnt->mnt_devname);
 641#ifdef CONFIG_SMP
 642	free_percpu(mnt->mnt_pcp);
 643#endif
 644	kmem_cache_free(mnt_cache, mnt);
 645}
 646
 647static void delayed_free_vfsmnt(struct rcu_head *head)
 648{
 649	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 650}
 651
 652/* call under rcu_read_lock */
 653int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 654{
 655	struct mount *mnt;
 656	if (read_seqretry(&mount_lock, seq))
 657		return 1;
 658	if (bastard == NULL)
 659		return 0;
 660	mnt = real_mount(bastard);
 661	mnt_add_count(mnt, 1);
 662	if (likely(!read_seqretry(&mount_lock, seq)))
 663		return 0;
 664	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 665		mnt_add_count(mnt, -1);
 666		return 1;
 667	}
 668	return -1;
 669}
 670
 671/* call under rcu_read_lock */
 672bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 673{
 674	int res = __legitimize_mnt(bastard, seq);
 675	if (likely(!res))
 676		return true;
 677	if (unlikely(res < 0)) {
 678		rcu_read_unlock();
 679		mntput(bastard);
 680		rcu_read_lock();
 681	}
 682	return false;
 683}
 684
 685/*
 686 * find the first mount at @dentry on vfsmount @mnt.
 687 * call under rcu_read_lock()
 688 */
 689struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 690{
 691	struct hlist_head *head = m_hash(mnt, dentry);
 692	struct mount *p;
 693
 694	hlist_for_each_entry_rcu(p, head, mnt_hash)
 695		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 696			return p;
 697	return NULL;
 698}
 699
 700/*
 701 * lookup_mnt - Return the first child mount mounted at path
 702 *
 703 * "First" means first mounted chronologically.  If you create the
 704 * following mounts:
 705 *
 706 * mount /dev/sda1 /mnt
 707 * mount /dev/sda2 /mnt
 708 * mount /dev/sda3 /mnt
 709 *
 710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 711 * return successively the root dentry and vfsmount of /dev/sda1, then
 712 * /dev/sda2, then /dev/sda3, then NULL.
 713 *
 714 * lookup_mnt takes a reference to the found vfsmount.
 715 */
 716struct vfsmount *lookup_mnt(const struct path *path)
 717{
 718	struct mount *child_mnt;
 719	struct vfsmount *m;
 720	unsigned seq;
 721
 722	rcu_read_lock();
 723	do {
 724		seq = read_seqbegin(&mount_lock);
 725		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 726		m = child_mnt ? &child_mnt->mnt : NULL;
 727	} while (!legitimize_mnt(m, seq));
 728	rcu_read_unlock();
 729	return m;
 730}
 731
 732/*
 733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 734 *                         current mount namespace.
 735 *
 736 * The common case is dentries are not mountpoints at all and that
 737 * test is handled inline.  For the slow case when we are actually
 738 * dealing with a mountpoint of some kind, walk through all of the
 739 * mounts in the current mount namespace and test to see if the dentry
 740 * is a mountpoint.
 741 *
 742 * The mount_hashtable is not usable in the context because we
 743 * need to identify all mounts that may be in the current mount
 744 * namespace not just a mount that happens to have some specified
 745 * parent mount.
 746 */
 747bool __is_local_mountpoint(struct dentry *dentry)
 748{
 749	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 750	struct mount *mnt;
 751	bool is_covered = false;
 752
 753	if (!d_mountpoint(dentry))
 754		goto out;
 755
 756	down_read(&namespace_sem);
 757	list_for_each_entry(mnt, &ns->list, mnt_list) {
 758		is_covered = (mnt->mnt_mountpoint == dentry);
 759		if (is_covered)
 760			break;
 761	}
 762	up_read(&namespace_sem);
 763out:
 764	return is_covered;
 765}
 766
 767static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 768{
 769	struct hlist_head *chain = mp_hash(dentry);
 770	struct mountpoint *mp;
 771
 772	hlist_for_each_entry(mp, chain, m_hash) {
 773		if (mp->m_dentry == dentry) {
 774			/* might be worth a WARN_ON() */
 775			if (d_unlinked(dentry))
 776				return ERR_PTR(-ENOENT);
 777			mp->m_count++;
 778			return mp;
 779		}
 780	}
 781	return NULL;
 782}
 783
 784static struct mountpoint *get_mountpoint(struct dentry *dentry)
 785{
 786	struct mountpoint *mp, *new = NULL;
 787	int ret;
 788
 789	if (d_mountpoint(dentry)) {
 790mountpoint:
 791		read_seqlock_excl(&mount_lock);
 792		mp = lookup_mountpoint(dentry);
 793		read_sequnlock_excl(&mount_lock);
 794		if (mp)
 795			goto done;
 796	}
 797
 798	if (!new)
 799		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 800	if (!new)
 801		return ERR_PTR(-ENOMEM);
 802
 803
 804	/* Exactly one processes may set d_mounted */
 805	ret = d_set_mounted(dentry);
 806
 807	/* Someone else set d_mounted? */
 808	if (ret == -EBUSY)
 809		goto mountpoint;
 810
 811	/* The dentry is not available as a mountpoint? */
 812	mp = ERR_PTR(ret);
 813	if (ret)
 814		goto done;
 815
 816	/* Add the new mountpoint to the hash table */
 817	read_seqlock_excl(&mount_lock);
 818	new->m_dentry = dentry;
 819	new->m_count = 1;
 820	hlist_add_head(&new->m_hash, mp_hash(dentry));
 821	INIT_HLIST_HEAD(&new->m_list);
 822	read_sequnlock_excl(&mount_lock);
 823
 824	mp = new;
 825	new = NULL;
 826done:
 827	kfree(new);
 828	return mp;
 829}
 830
 831static void put_mountpoint(struct mountpoint *mp)
 832{
 833	if (!--mp->m_count) {
 834		struct dentry *dentry = mp->m_dentry;
 835		BUG_ON(!hlist_empty(&mp->m_list));
 836		spin_lock(&dentry->d_lock);
 837		dentry->d_flags &= ~DCACHE_MOUNTED;
 838		spin_unlock(&dentry->d_lock);
 839		hlist_del(&mp->m_hash);
 840		kfree(mp);
 841	}
 842}
 843
 844static inline int check_mnt(struct mount *mnt)
 845{
 846	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 847}
 848
 849/*
 850 * vfsmount lock must be held for write
 851 */
 852static void touch_mnt_namespace(struct mnt_namespace *ns)
 853{
 854	if (ns) {
 855		ns->event = ++event;
 856		wake_up_interruptible(&ns->poll);
 857	}
 858}
 859
 860/*
 861 * vfsmount lock must be held for write
 862 */
 863static void __touch_mnt_namespace(struct mnt_namespace *ns)
 864{
 865	if (ns && ns->event != event) {
 866		ns->event = event;
 867		wake_up_interruptible(&ns->poll);
 868	}
 869}
 870
 871/*
 872 * vfsmount lock must be held for write
 873 */
 874static void unhash_mnt(struct mount *mnt)
 875{
 876	mnt->mnt_parent = mnt;
 877	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 878	list_del_init(&mnt->mnt_child);
 879	hlist_del_init_rcu(&mnt->mnt_hash);
 880	hlist_del_init(&mnt->mnt_mp_list);
 881	put_mountpoint(mnt->mnt_mp);
 882	mnt->mnt_mp = NULL;
 883}
 884
 885/*
 886 * vfsmount lock must be held for write
 887 */
 888static void detach_mnt(struct mount *mnt, struct path *old_path)
 889{
 890	old_path->dentry = mnt->mnt_mountpoint;
 891	old_path->mnt = &mnt->mnt_parent->mnt;
 892	unhash_mnt(mnt);
 893}
 894
 895/*
 896 * vfsmount lock must be held for write
 897 */
 898static void umount_mnt(struct mount *mnt)
 899{
 900	/* old mountpoint will be dropped when we can do that */
 901	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 902	unhash_mnt(mnt);
 903}
 904
 905/*
 906 * vfsmount lock must be held for write
 907 */
 908void mnt_set_mountpoint(struct mount *mnt,
 909			struct mountpoint *mp,
 910			struct mount *child_mnt)
 911{
 912	mp->m_count++;
 913	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 914	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 915	child_mnt->mnt_parent = mnt;
 916	child_mnt->mnt_mp = mp;
 917	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 918}
 919
 920static void __attach_mnt(struct mount *mnt, struct mount *parent)
 921{
 922	hlist_add_head_rcu(&mnt->mnt_hash,
 923			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
 924	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 925}
 926
 927/*
 928 * vfsmount lock must be held for write
 929 */
 930static void attach_mnt(struct mount *mnt,
 931			struct mount *parent,
 932			struct mountpoint *mp)
 933{
 934	mnt_set_mountpoint(parent, mp, mnt);
 935	__attach_mnt(mnt, parent);
 936}
 937
 938void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 939{
 940	struct mountpoint *old_mp = mnt->mnt_mp;
 941	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
 942	struct mount *old_parent = mnt->mnt_parent;
 943
 944	list_del_init(&mnt->mnt_child);
 945	hlist_del_init(&mnt->mnt_mp_list);
 946	hlist_del_init_rcu(&mnt->mnt_hash);
 947
 948	attach_mnt(mnt, parent, mp);
 949
 950	put_mountpoint(old_mp);
 951
 952	/*
 953	 * Safely avoid even the suggestion this code might sleep or
 954	 * lock the mount hash by taking advantage of the knowledge that
 955	 * mnt_change_mountpoint will not release the final reference
 956	 * to a mountpoint.
 957	 *
 958	 * During mounting, the mount passed in as the parent mount will
 959	 * continue to use the old mountpoint and during unmounting, the
 960	 * old mountpoint will continue to exist until namespace_unlock,
 961	 * which happens well after mnt_change_mountpoint.
 962	 */
 963	spin_lock(&old_mountpoint->d_lock);
 964	old_mountpoint->d_lockref.count--;
 965	spin_unlock(&old_mountpoint->d_lock);
 966
 967	mnt_add_count(old_parent, -1);
 968}
 969
 970/*
 971 * vfsmount lock must be held for write
 972 */
 973static void commit_tree(struct mount *mnt)
 974{
 975	struct mount *parent = mnt->mnt_parent;
 976	struct mount *m;
 977	LIST_HEAD(head);
 978	struct mnt_namespace *n = parent->mnt_ns;
 979
 980	BUG_ON(parent == mnt);
 981
 982	list_add_tail(&head, &mnt->mnt_list);
 983	list_for_each_entry(m, &head, mnt_list)
 984		m->mnt_ns = n;
 985
 986	list_splice(&head, n->list.prev);
 987
 988	n->mounts += n->pending_mounts;
 989	n->pending_mounts = 0;
 990
 991	__attach_mnt(mnt, parent);
 992	touch_mnt_namespace(n);
 993}
 994
 995static struct mount *next_mnt(struct mount *p, struct mount *root)
 996{
 997	struct list_head *next = p->mnt_mounts.next;
 998	if (next == &p->mnt_mounts) {
 999		while (1) {
1000			if (p == root)
1001				return NULL;
1002			next = p->mnt_child.next;
1003			if (next != &p->mnt_parent->mnt_mounts)
1004				break;
1005			p = p->mnt_parent;
1006		}
1007	}
1008	return list_entry(next, struct mount, mnt_child);
1009}
1010
1011static struct mount *skip_mnt_tree(struct mount *p)
1012{
1013	struct list_head *prev = p->mnt_mounts.prev;
1014	while (prev != &p->mnt_mounts) {
1015		p = list_entry(prev, struct mount, mnt_child);
1016		prev = p->mnt_mounts.prev;
1017	}
1018	return p;
1019}
1020
1021struct vfsmount *
1022vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023{
1024	struct mount *mnt;
1025	struct dentry *root;
1026
1027	if (!type)
1028		return ERR_PTR(-ENODEV);
1029
1030	mnt = alloc_vfsmnt(name);
1031	if (!mnt)
1032		return ERR_PTR(-ENOMEM);
1033
1034	if (flags & SB_KERNMOUNT)
1035		mnt->mnt.mnt_flags = MNT_INTERNAL;
1036
1037	root = mount_fs(type, flags, name, data);
1038	if (IS_ERR(root)) {
1039		mnt_free_id(mnt);
1040		free_vfsmnt(mnt);
1041		return ERR_CAST(root);
1042	}
1043
1044	mnt->mnt.mnt_root = root;
1045	mnt->mnt.mnt_sb = root->d_sb;
1046	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047	mnt->mnt_parent = mnt;
1048	lock_mount_hash();
1049	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1050	unlock_mount_hash();
1051	return &mnt->mnt;
1052}
1053EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054
1055struct vfsmount *
1056vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057	     const char *name, void *data)
1058{
1059	/* Until it is worked out how to pass the user namespace
1060	 * through from the parent mount to the submount don't support
1061	 * unprivileged mounts with submounts.
1062	 */
1063	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064		return ERR_PTR(-EPERM);
1065
1066	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1067}
1068EXPORT_SYMBOL_GPL(vfs_submount);
1069
1070static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1071					int flag)
1072{
1073	struct super_block *sb = old->mnt.mnt_sb;
1074	struct mount *mnt;
1075	int err;
1076
1077	mnt = alloc_vfsmnt(old->mnt_devname);
1078	if (!mnt)
1079		return ERR_PTR(-ENOMEM);
1080
1081	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1082		mnt->mnt_group_id = 0; /* not a peer of original */
1083	else
1084		mnt->mnt_group_id = old->mnt_group_id;
1085
1086	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087		err = mnt_alloc_group_id(mnt);
1088		if (err)
1089			goto out_free;
1090	}
1091
1092	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1093	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1094	/* Don't allow unprivileged users to change mount flags */
1095	if (flag & CL_UNPRIVILEGED) {
1096		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1097
1098		if (mnt->mnt.mnt_flags & MNT_READONLY)
1099			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1100
1101		if (mnt->mnt.mnt_flags & MNT_NODEV)
1102			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1103
1104		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1105			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1106
1107		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1108			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1109	}
1110
1111	/* Don't allow unprivileged users to reveal what is under a mount */
1112	if ((flag & CL_UNPRIVILEGED) &&
1113	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1114		mnt->mnt.mnt_flags |= MNT_LOCKED;
1115
1116	atomic_inc(&sb->s_active);
1117	mnt->mnt.mnt_sb = sb;
1118	mnt->mnt.mnt_root = dget(root);
1119	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120	mnt->mnt_parent = mnt;
1121	lock_mount_hash();
1122	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123	unlock_mount_hash();
1124
1125	if ((flag & CL_SLAVE) ||
1126	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128		mnt->mnt_master = old;
1129		CLEAR_MNT_SHARED(mnt);
1130	} else if (!(flag & CL_PRIVATE)) {
1131		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132			list_add(&mnt->mnt_share, &old->mnt_share);
1133		if (IS_MNT_SLAVE(old))
1134			list_add(&mnt->mnt_slave, &old->mnt_slave);
1135		mnt->mnt_master = old->mnt_master;
1136	} else {
1137		CLEAR_MNT_SHARED(mnt);
1138	}
1139	if (flag & CL_MAKE_SHARED)
1140		set_mnt_shared(mnt);
1141
1142	/* stick the duplicate mount on the same expiry list
1143	 * as the original if that was on one */
1144	if (flag & CL_EXPIRE) {
1145		if (!list_empty(&old->mnt_expire))
1146			list_add(&mnt->mnt_expire, &old->mnt_expire);
1147	}
1148
1149	return mnt;
1150
1151 out_free:
1152	mnt_free_id(mnt);
1153	free_vfsmnt(mnt);
1154	return ERR_PTR(err);
1155}
1156
1157static void cleanup_mnt(struct mount *mnt)
1158{
1159	/*
1160	 * This probably indicates that somebody messed
1161	 * up a mnt_want/drop_write() pair.  If this
1162	 * happens, the filesystem was probably unable
1163	 * to make r/w->r/o transitions.
1164	 */
1165	/*
1166	 * The locking used to deal with mnt_count decrement provides barriers,
1167	 * so mnt_get_writers() below is safe.
1168	 */
1169	WARN_ON(mnt_get_writers(mnt));
1170	if (unlikely(mnt->mnt_pins.first))
1171		mnt_pin_kill(mnt);
1172	fsnotify_vfsmount_delete(&mnt->mnt);
1173	dput(mnt->mnt.mnt_root);
1174	deactivate_super(mnt->mnt.mnt_sb);
1175	mnt_free_id(mnt);
1176	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1177}
1178
1179static void __cleanup_mnt(struct rcu_head *head)
1180{
1181	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1182}
1183
1184static LLIST_HEAD(delayed_mntput_list);
1185static void delayed_mntput(struct work_struct *unused)
1186{
1187	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1188	struct mount *m, *t;
1189
1190	llist_for_each_entry_safe(m, t, node, mnt_llist)
1191		cleanup_mnt(m);
1192}
1193static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1194
1195static void mntput_no_expire(struct mount *mnt)
1196{
1197	rcu_read_lock();
1198	mnt_add_count(mnt, -1);
1199	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1200		rcu_read_unlock();
1201		return;
1202	}
1203	lock_mount_hash();
1204	if (mnt_get_count(mnt)) {
1205		rcu_read_unlock();
1206		unlock_mount_hash();
1207		return;
1208	}
1209	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1210		rcu_read_unlock();
1211		unlock_mount_hash();
1212		return;
1213	}
1214	mnt->mnt.mnt_flags |= MNT_DOOMED;
1215	rcu_read_unlock();
1216
1217	list_del(&mnt->mnt_instance);
1218
1219	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1220		struct mount *p, *tmp;
1221		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1222			umount_mnt(p);
1223		}
1224	}
1225	unlock_mount_hash();
1226
1227	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1228		struct task_struct *task = current;
1229		if (likely(!(task->flags & PF_KTHREAD))) {
1230			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1231			if (!task_work_add(task, &mnt->mnt_rcu, true))
1232				return;
1233		}
1234		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1235			schedule_delayed_work(&delayed_mntput_work, 1);
1236		return;
1237	}
1238	cleanup_mnt(mnt);
1239}
1240
1241void mntput(struct vfsmount *mnt)
1242{
1243	if (mnt) {
1244		struct mount *m = real_mount(mnt);
1245		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1246		if (unlikely(m->mnt_expiry_mark))
1247			m->mnt_expiry_mark = 0;
1248		mntput_no_expire(m);
1249	}
1250}
1251EXPORT_SYMBOL(mntput);
1252
1253struct vfsmount *mntget(struct vfsmount *mnt)
1254{
1255	if (mnt)
1256		mnt_add_count(real_mount(mnt), 1);
1257	return mnt;
1258}
1259EXPORT_SYMBOL(mntget);
1260
1261/* path_is_mountpoint() - Check if path is a mount in the current
1262 *                          namespace.
1263 *
1264 *  d_mountpoint() can only be used reliably to establish if a dentry is
1265 *  not mounted in any namespace and that common case is handled inline.
1266 *  d_mountpoint() isn't aware of the possibility there may be multiple
1267 *  mounts using a given dentry in a different namespace. This function
1268 *  checks if the passed in path is a mountpoint rather than the dentry
1269 *  alone.
1270 */
1271bool path_is_mountpoint(const struct path *path)
1272{
1273	unsigned seq;
1274	bool res;
1275
1276	if (!d_mountpoint(path->dentry))
1277		return false;
1278
1279	rcu_read_lock();
1280	do {
1281		seq = read_seqbegin(&mount_lock);
1282		res = __path_is_mountpoint(path);
1283	} while (read_seqretry(&mount_lock, seq));
1284	rcu_read_unlock();
1285
1286	return res;
1287}
1288EXPORT_SYMBOL(path_is_mountpoint);
1289
1290struct vfsmount *mnt_clone_internal(const struct path *path)
1291{
1292	struct mount *p;
1293	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1294	if (IS_ERR(p))
1295		return ERR_CAST(p);
1296	p->mnt.mnt_flags |= MNT_INTERNAL;
1297	return &p->mnt;
1298}
1299
1300#ifdef CONFIG_PROC_FS
1301/* iterator; we want it to have access to namespace_sem, thus here... */
1302static void *m_start(struct seq_file *m, loff_t *pos)
1303{
1304	struct proc_mounts *p = m->private;
1305
1306	down_read(&namespace_sem);
1307	if (p->cached_event == p->ns->event) {
1308		void *v = p->cached_mount;
1309		if (*pos == p->cached_index)
1310			return v;
1311		if (*pos == p->cached_index + 1) {
1312			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313			return p->cached_mount = v;
1314		}
1315	}
1316
1317	p->cached_event = p->ns->event;
1318	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319	p->cached_index = *pos;
1320	return p->cached_mount;
1321}
1322
1323static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324{
1325	struct proc_mounts *p = m->private;
1326
1327	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328	p->cached_index = *pos;
1329	return p->cached_mount;
1330}
1331
1332static void m_stop(struct seq_file *m, void *v)
1333{
1334	up_read(&namespace_sem);
1335}
1336
1337static int m_show(struct seq_file *m, void *v)
1338{
1339	struct proc_mounts *p = m->private;
1340	struct mount *r = list_entry(v, struct mount, mnt_list);
1341	return p->show(m, &r->mnt);
1342}
1343
1344const struct seq_operations mounts_op = {
1345	.start	= m_start,
1346	.next	= m_next,
1347	.stop	= m_stop,
1348	.show	= m_show,
1349};
1350#endif  /* CONFIG_PROC_FS */
1351
1352/**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
1360int may_umount_tree(struct vfsmount *m)
1361{
1362	struct mount *mnt = real_mount(m);
1363	int actual_refs = 0;
1364	int minimum_refs = 0;
1365	struct mount *p;
1366	BUG_ON(!m);
1367
1368	/* write lock needed for mnt_get_count */
1369	lock_mount_hash();
1370	for (p = mnt; p; p = next_mnt(p, mnt)) {
1371		actual_refs += mnt_get_count(p);
1372		minimum_refs += 2;
1373	}
1374	unlock_mount_hash();
1375
1376	if (actual_refs > minimum_refs)
1377		return 0;
1378
1379	return 1;
1380}
1381
1382EXPORT_SYMBOL(may_umount_tree);
1383
1384/**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397int may_umount(struct vfsmount *mnt)
1398{
1399	int ret = 1;
1400	down_read(&namespace_sem);
1401	lock_mount_hash();
1402	if (propagate_mount_busy(real_mount(mnt), 2))
1403		ret = 0;
1404	unlock_mount_hash();
1405	up_read(&namespace_sem);
1406	return ret;
1407}
1408
1409EXPORT_SYMBOL(may_umount);
1410
1411static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1412
1413static void namespace_unlock(void)
1414{
1415	struct hlist_head head;
1416
1417	hlist_move_list(&unmounted, &head);
1418
1419	up_write(&namespace_sem);
1420
1421	if (likely(hlist_empty(&head)))
1422		return;
1423
1424	synchronize_rcu();
1425
1426	group_pin_kill(&head);
1427}
1428
1429static inline void namespace_lock(void)
1430{
1431	down_write(&namespace_sem);
1432}
1433
1434enum umount_tree_flags {
1435	UMOUNT_SYNC = 1,
1436	UMOUNT_PROPAGATE = 2,
1437	UMOUNT_CONNECTED = 4,
1438};
1439
1440static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441{
1442	/* Leaving mounts connected is only valid for lazy umounts */
1443	if (how & UMOUNT_SYNC)
1444		return true;
1445
1446	/* A mount without a parent has nothing to be connected to */
1447	if (!mnt_has_parent(mnt))
1448		return true;
1449
1450	/* Because the reference counting rules change when mounts are
1451	 * unmounted and connected, umounted mounts may not be
1452	 * connected to mounted mounts.
1453	 */
1454	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455		return true;
1456
1457	/* Has it been requested that the mount remain connected? */
1458	if (how & UMOUNT_CONNECTED)
1459		return false;
1460
1461	/* Is the mount locked such that it needs to remain connected? */
1462	if (IS_MNT_LOCKED(mnt))
1463		return false;
1464
1465	/* By default disconnect the mount */
1466	return true;
1467}
1468
1469/*
1470 * mount_lock must be held
1471 * namespace_sem must be held for write
1472 */
1473static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1474{
1475	LIST_HEAD(tmp_list);
1476	struct mount *p;
1477
1478	if (how & UMOUNT_PROPAGATE)
1479		propagate_mount_unlock(mnt);
1480
1481	/* Gather the mounts to umount */
1482	for (p = mnt; p; p = next_mnt(p, mnt)) {
1483		p->mnt.mnt_flags |= MNT_UMOUNT;
1484		list_move(&p->mnt_list, &tmp_list);
1485	}
1486
1487	/* Hide the mounts from mnt_mounts */
1488	list_for_each_entry(p, &tmp_list, mnt_list) {
1489		list_del_init(&p->mnt_child);
1490	}
1491
1492	/* Add propogated mounts to the tmp_list */
1493	if (how & UMOUNT_PROPAGATE)
1494		propagate_umount(&tmp_list);
1495
1496	while (!list_empty(&tmp_list)) {
1497		struct mnt_namespace *ns;
1498		bool disconnect;
1499		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1500		list_del_init(&p->mnt_expire);
1501		list_del_init(&p->mnt_list);
1502		ns = p->mnt_ns;
1503		if (ns) {
1504			ns->mounts--;
1505			__touch_mnt_namespace(ns);
1506		}
1507		p->mnt_ns = NULL;
1508		if (how & UMOUNT_SYNC)
1509			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1510
1511		disconnect = disconnect_mount(p, how);
1512
1513		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514				 disconnect ? &unmounted : NULL);
1515		if (mnt_has_parent(p)) {
1516			mnt_add_count(p->mnt_parent, -1);
1517			if (!disconnect) {
1518				/* Don't forget about p */
1519				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520			} else {
1521				umount_mnt(p);
1522			}
1523		}
1524		change_mnt_propagation(p, MS_PRIVATE);
1525	}
1526}
1527
1528static void shrink_submounts(struct mount *mnt);
1529
1530static int do_umount(struct mount *mnt, int flags)
1531{
1532	struct super_block *sb = mnt->mnt.mnt_sb;
1533	int retval;
1534
1535	retval = security_sb_umount(&mnt->mnt, flags);
1536	if (retval)
1537		return retval;
1538
1539	/*
1540	 * Allow userspace to request a mountpoint be expired rather than
1541	 * unmounting unconditionally. Unmount only happens if:
1542	 *  (1) the mark is already set (the mark is cleared by mntput())
1543	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544	 */
1545	if (flags & MNT_EXPIRE) {
1546		if (&mnt->mnt == current->fs->root.mnt ||
1547		    flags & (MNT_FORCE | MNT_DETACH))
1548			return -EINVAL;
1549
1550		/*
1551		 * probably don't strictly need the lock here if we examined
1552		 * all race cases, but it's a slowpath.
1553		 */
1554		lock_mount_hash();
1555		if (mnt_get_count(mnt) != 2) {
1556			unlock_mount_hash();
1557			return -EBUSY;
1558		}
1559		unlock_mount_hash();
1560
1561		if (!xchg(&mnt->mnt_expiry_mark, 1))
1562			return -EAGAIN;
1563	}
1564
1565	/*
1566	 * If we may have to abort operations to get out of this
1567	 * mount, and they will themselves hold resources we must
1568	 * allow the fs to do things. In the Unix tradition of
1569	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570	 * might fail to complete on the first run through as other tasks
1571	 * must return, and the like. Thats for the mount program to worry
1572	 * about for the moment.
1573	 */
1574
1575	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1576		sb->s_op->umount_begin(sb);
1577	}
1578
1579	/*
1580	 * No sense to grab the lock for this test, but test itself looks
1581	 * somewhat bogus. Suggestions for better replacement?
1582	 * Ho-hum... In principle, we might treat that as umount + switch
1583	 * to rootfs. GC would eventually take care of the old vfsmount.
1584	 * Actually it makes sense, especially if rootfs would contain a
1585	 * /reboot - static binary that would close all descriptors and
1586	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587	 */
1588	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1589		/*
1590		 * Special case for "unmounting" root ...
1591		 * we just try to remount it readonly.
1592		 */
1593		if (!capable(CAP_SYS_ADMIN))
1594			return -EPERM;
1595		down_write(&sb->s_umount);
1596		if (!sb_rdonly(sb))
1597			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1598		up_write(&sb->s_umount);
1599		return retval;
1600	}
1601
1602	namespace_lock();
1603	lock_mount_hash();
1604	event++;
1605
1606	if (flags & MNT_DETACH) {
1607		if (!list_empty(&mnt->mnt_list))
1608			umount_tree(mnt, UMOUNT_PROPAGATE);
1609		retval = 0;
1610	} else {
1611		shrink_submounts(mnt);
1612		retval = -EBUSY;
1613		if (!propagate_mount_busy(mnt, 2)) {
1614			if (!list_empty(&mnt->mnt_list))
1615				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1616			retval = 0;
1617		}
1618	}
1619	unlock_mount_hash();
1620	namespace_unlock();
1621	return retval;
1622}
1623
1624/*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
1634void __detach_mounts(struct dentry *dentry)
1635{
1636	struct mountpoint *mp;
1637	struct mount *mnt;
1638
1639	namespace_lock();
1640	lock_mount_hash();
1641	mp = lookup_mountpoint(dentry);
1642	if (IS_ERR_OR_NULL(mp))
1643		goto out_unlock;
1644
1645	event++;
1646	while (!hlist_empty(&mp->m_list)) {
1647		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650			umount_mnt(mnt);
1651		}
1652		else umount_tree(mnt, UMOUNT_CONNECTED);
1653	}
1654	put_mountpoint(mp);
1655out_unlock:
1656	unlock_mount_hash();
1657	namespace_unlock();
1658}
1659
1660/*
1661 * Is the caller allowed to modify his namespace?
1662 */
1663static inline bool may_mount(void)
1664{
1665	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666}
1667
1668static inline bool may_mandlock(void)
1669{
1670#ifndef	CONFIG_MANDATORY_FILE_LOCKING
1671	return false;
1672#endif
1673	return capable(CAP_SYS_ADMIN);
1674}
1675
1676/*
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1679 *
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682 */
1683
1684int ksys_umount(char __user *name, int flags)
1685{
1686	struct path path;
1687	struct mount *mnt;
1688	int retval;
1689	int lookup_flags = 0;
1690
1691	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692		return -EINVAL;
1693
1694	if (!may_mount())
1695		return -EPERM;
1696
1697	if (!(flags & UMOUNT_NOFOLLOW))
1698		lookup_flags |= LOOKUP_FOLLOW;
1699
1700	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1701	if (retval)
1702		goto out;
1703	mnt = real_mount(path.mnt);
1704	retval = -EINVAL;
1705	if (path.dentry != path.mnt->mnt_root)
1706		goto dput_and_out;
1707	if (!check_mnt(mnt))
1708		goto dput_and_out;
1709	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710		goto dput_and_out;
1711	retval = -EPERM;
1712	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713		goto dput_and_out;
1714
1715	retval = do_umount(mnt, flags);
1716dput_and_out:
1717	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1718	dput(path.dentry);
1719	mntput_no_expire(mnt);
1720out:
1721	return retval;
1722}
1723
1724SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1725{
1726	return ksys_umount(name, flags);
1727}
1728
1729#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1730
1731/*
1732 *	The 2.0 compatible umount. No flags.
1733 */
1734SYSCALL_DEFINE1(oldumount, char __user *, name)
1735{
1736	return ksys_umount(name, 0);
1737}
1738
1739#endif
1740
1741static bool is_mnt_ns_file(struct dentry *dentry)
1742{
1743	/* Is this a proxy for a mount namespace? */
1744	return dentry->d_op == &ns_dentry_operations &&
1745	       dentry->d_fsdata == &mntns_operations;
1746}
1747
1748struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1749{
1750	return container_of(ns, struct mnt_namespace, ns);
1751}
1752
1753static bool mnt_ns_loop(struct dentry *dentry)
1754{
1755	/* Could bind mounting the mount namespace inode cause a
1756	 * mount namespace loop?
1757	 */
1758	struct mnt_namespace *mnt_ns;
1759	if (!is_mnt_ns_file(dentry))
1760		return false;
1761
1762	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1763	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1764}
1765
1766struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1767					int flag)
1768{
1769	struct mount *res, *p, *q, *r, *parent;
1770
1771	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1772		return ERR_PTR(-EINVAL);
1773
1774	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1775		return ERR_PTR(-EINVAL);
1776
1777	res = q = clone_mnt(mnt, dentry, flag);
1778	if (IS_ERR(q))
1779		return q;
1780
1781	q->mnt_mountpoint = mnt->mnt_mountpoint;
1782
1783	p = mnt;
1784	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1785		struct mount *s;
1786		if (!is_subdir(r->mnt_mountpoint, dentry))
1787			continue;
1788
1789		for (s = r; s; s = next_mnt(s, r)) {
1790			if (!(flag & CL_COPY_UNBINDABLE) &&
1791			    IS_MNT_UNBINDABLE(s)) {
1792				s = skip_mnt_tree(s);
1793				continue;
1794			}
1795			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1796			    is_mnt_ns_file(s->mnt.mnt_root)) {
1797				s = skip_mnt_tree(s);
1798				continue;
1799			}
1800			while (p != s->mnt_parent) {
1801				p = p->mnt_parent;
1802				q = q->mnt_parent;
1803			}
1804			p = s;
1805			parent = q;
1806			q = clone_mnt(p, p->mnt.mnt_root, flag);
1807			if (IS_ERR(q))
1808				goto out;
1809			lock_mount_hash();
1810			list_add_tail(&q->mnt_list, &res->mnt_list);
1811			attach_mnt(q, parent, p->mnt_mp);
1812			unlock_mount_hash();
1813		}
1814	}
1815	return res;
1816out:
1817	if (res) {
1818		lock_mount_hash();
1819		umount_tree(res, UMOUNT_SYNC);
1820		unlock_mount_hash();
1821	}
1822	return q;
1823}
1824
1825/* Caller should check returned pointer for errors */
1826
1827struct vfsmount *collect_mounts(const struct path *path)
1828{
1829	struct mount *tree;
1830	namespace_lock();
1831	if (!check_mnt(real_mount(path->mnt)))
1832		tree = ERR_PTR(-EINVAL);
1833	else
1834		tree = copy_tree(real_mount(path->mnt), path->dentry,
1835				 CL_COPY_ALL | CL_PRIVATE);
1836	namespace_unlock();
1837	if (IS_ERR(tree))
1838		return ERR_CAST(tree);
1839	return &tree->mnt;
1840}
1841
1842void drop_collected_mounts(struct vfsmount *mnt)
1843{
1844	namespace_lock();
1845	lock_mount_hash();
1846	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1847	unlock_mount_hash();
1848	namespace_unlock();
1849}
1850
1851/**
1852 * clone_private_mount - create a private clone of a path
1853 *
1854 * This creates a new vfsmount, which will be the clone of @path.  The new will
1855 * not be attached anywhere in the namespace and will be private (i.e. changes
1856 * to the originating mount won't be propagated into this).
1857 *
1858 * Release with mntput().
1859 */
1860struct vfsmount *clone_private_mount(const struct path *path)
1861{
1862	struct mount *old_mnt = real_mount(path->mnt);
1863	struct mount *new_mnt;
1864
1865	if (IS_MNT_UNBINDABLE(old_mnt))
1866		return ERR_PTR(-EINVAL);
1867
1868	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1869	if (IS_ERR(new_mnt))
1870		return ERR_CAST(new_mnt);
1871
1872	return &new_mnt->mnt;
1873}
1874EXPORT_SYMBOL_GPL(clone_private_mount);
1875
1876int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1877		   struct vfsmount *root)
1878{
1879	struct mount *mnt;
1880	int res = f(root, arg);
1881	if (res)
1882		return res;
1883	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1884		res = f(&mnt->mnt, arg);
1885		if (res)
1886			return res;
1887	}
1888	return 0;
1889}
1890
1891static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1892{
1893	struct mount *p;
1894
1895	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1896		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1897			mnt_release_group_id(p);
1898	}
1899}
1900
1901static int invent_group_ids(struct mount *mnt, bool recurse)
1902{
1903	struct mount *p;
1904
1905	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1906		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1907			int err = mnt_alloc_group_id(p);
1908			if (err) {
1909				cleanup_group_ids(mnt, p);
1910				return err;
1911			}
1912		}
1913	}
1914
1915	return 0;
1916}
1917
1918int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1919{
1920	unsigned int max = READ_ONCE(sysctl_mount_max);
1921	unsigned int mounts = 0, old, pending, sum;
1922	struct mount *p;
1923
1924	for (p = mnt; p; p = next_mnt(p, mnt))
1925		mounts++;
1926
1927	old = ns->mounts;
1928	pending = ns->pending_mounts;
1929	sum = old + pending;
1930	if ((old > sum) ||
1931	    (pending > sum) ||
1932	    (max < sum) ||
1933	    (mounts > (max - sum)))
1934		return -ENOSPC;
1935
1936	ns->pending_mounts = pending + mounts;
1937	return 0;
1938}
1939
1940/*
1941 *  @source_mnt : mount tree to be attached
1942 *  @nd         : place the mount tree @source_mnt is attached
1943 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1944 *  		   store the parent mount and mountpoint dentry.
1945 *  		   (done when source_mnt is moved)
1946 *
1947 *  NOTE: in the table below explains the semantics when a source mount
1948 *  of a given type is attached to a destination mount of a given type.
1949 * ---------------------------------------------------------------------------
1950 * |         BIND MOUNT OPERATION                                            |
1951 * |**************************************************************************
1952 * | source-->| shared        |       private  |       slave    | unbindable |
1953 * | dest     |               |                |                |            |
1954 * |   |      |               |                |                |            |
1955 * |   v      |               |                |                |            |
1956 * |**************************************************************************
1957 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1958 * |          |               |                |                |            |
1959 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1960 * ***************************************************************************
1961 * A bind operation clones the source mount and mounts the clone on the
1962 * destination mount.
1963 *
1964 * (++)  the cloned mount is propagated to all the mounts in the propagation
1965 * 	 tree of the destination mount and the cloned mount is added to
1966 * 	 the peer group of the source mount.
1967 * (+)   the cloned mount is created under the destination mount and is marked
1968 *       as shared. The cloned mount is added to the peer group of the source
1969 *       mount.
1970 * (+++) the mount is propagated to all the mounts in the propagation tree
1971 *       of the destination mount and the cloned mount is made slave
1972 *       of the same master as that of the source mount. The cloned mount
1973 *       is marked as 'shared and slave'.
1974 * (*)   the cloned mount is made a slave of the same master as that of the
1975 * 	 source mount.
1976 *
1977 * ---------------------------------------------------------------------------
1978 * |         		MOVE MOUNT OPERATION                                 |
1979 * |**************************************************************************
1980 * | source-->| shared        |       private  |       slave    | unbindable |
1981 * | dest     |               |                |                |            |
1982 * |   |      |               |                |                |            |
1983 * |   v      |               |                |                |            |
1984 * |**************************************************************************
1985 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1986 * |          |               |                |                |            |
1987 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1988 * ***************************************************************************
1989 *
1990 * (+)  the mount is moved to the destination. And is then propagated to
1991 * 	all the mounts in the propagation tree of the destination mount.
1992 * (+*)  the mount is moved to the destination.
1993 * (+++)  the mount is moved to the destination and is then propagated to
1994 * 	all the mounts belonging to the destination mount's propagation tree.
1995 * 	the mount is marked as 'shared and slave'.
1996 * (*)	the mount continues to be a slave at the new location.
1997 *
1998 * if the source mount is a tree, the operations explained above is
1999 * applied to each mount in the tree.
2000 * Must be called without spinlocks held, since this function can sleep
2001 * in allocations.
2002 */
2003static int attach_recursive_mnt(struct mount *source_mnt,
2004			struct mount *dest_mnt,
2005			struct mountpoint *dest_mp,
2006			struct path *parent_path)
2007{
2008	HLIST_HEAD(tree_list);
2009	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2010	struct mountpoint *smp;
2011	struct mount *child, *p;
2012	struct hlist_node *n;
2013	int err;
2014
2015	/* Preallocate a mountpoint in case the new mounts need
2016	 * to be tucked under other mounts.
2017	 */
2018	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2019	if (IS_ERR(smp))
2020		return PTR_ERR(smp);
2021
2022	/* Is there space to add these mounts to the mount namespace? */
2023	if (!parent_path) {
2024		err = count_mounts(ns, source_mnt);
2025		if (err)
2026			goto out;
2027	}
2028
2029	if (IS_MNT_SHARED(dest_mnt)) {
2030		err = invent_group_ids(source_mnt, true);
2031		if (err)
2032			goto out;
2033		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2034		lock_mount_hash();
2035		if (err)
2036			goto out_cleanup_ids;
2037		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2038			set_mnt_shared(p);
2039	} else {
2040		lock_mount_hash();
2041	}
2042	if (parent_path) {
2043		detach_mnt(source_mnt, parent_path);
2044		attach_mnt(source_mnt, dest_mnt, dest_mp);
2045		touch_mnt_namespace(source_mnt->mnt_ns);
2046	} else {
2047		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2048		commit_tree(source_mnt);
2049	}
2050
2051	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2052		struct mount *q;
2053		hlist_del_init(&child->mnt_hash);
2054		q = __lookup_mnt(&child->mnt_parent->mnt,
2055				 child->mnt_mountpoint);
2056		if (q)
2057			mnt_change_mountpoint(child, smp, q);
2058		commit_tree(child);
2059	}
2060	put_mountpoint(smp);
2061	unlock_mount_hash();
2062
2063	return 0;
2064
2065 out_cleanup_ids:
2066	while (!hlist_empty(&tree_list)) {
2067		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2068		child->mnt_parent->mnt_ns->pending_mounts = 0;
2069		umount_tree(child, UMOUNT_SYNC);
2070	}
2071	unlock_mount_hash();
2072	cleanup_group_ids(source_mnt, NULL);
2073 out:
2074	ns->pending_mounts = 0;
2075
2076	read_seqlock_excl(&mount_lock);
2077	put_mountpoint(smp);
2078	read_sequnlock_excl(&mount_lock);
2079
2080	return err;
2081}
2082
2083static struct mountpoint *lock_mount(struct path *path)
2084{
2085	struct vfsmount *mnt;
2086	struct dentry *dentry = path->dentry;
2087retry:
2088	inode_lock(dentry->d_inode);
2089	if (unlikely(cant_mount(dentry))) {
2090		inode_unlock(dentry->d_inode);
2091		return ERR_PTR(-ENOENT);
2092	}
2093	namespace_lock();
2094	mnt = lookup_mnt(path);
2095	if (likely(!mnt)) {
2096		struct mountpoint *mp = get_mountpoint(dentry);
2097		if (IS_ERR(mp)) {
2098			namespace_unlock();
2099			inode_unlock(dentry->d_inode);
2100			return mp;
2101		}
2102		return mp;
2103	}
2104	namespace_unlock();
2105	inode_unlock(path->dentry->d_inode);
2106	path_put(path);
2107	path->mnt = mnt;
2108	dentry = path->dentry = dget(mnt->mnt_root);
2109	goto retry;
2110}
2111
2112static void unlock_mount(struct mountpoint *where)
2113{
2114	struct dentry *dentry = where->m_dentry;
2115
2116	read_seqlock_excl(&mount_lock);
2117	put_mountpoint(where);
2118	read_sequnlock_excl(&mount_lock);
2119
2120	namespace_unlock();
2121	inode_unlock(dentry->d_inode);
2122}
2123
2124static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2125{
2126	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2127		return -EINVAL;
2128
2129	if (d_is_dir(mp->m_dentry) !=
2130	      d_is_dir(mnt->mnt.mnt_root))
2131		return -ENOTDIR;
2132
2133	return attach_recursive_mnt(mnt, p, mp, NULL);
2134}
2135
2136/*
2137 * Sanity check the flags to change_mnt_propagation.
2138 */
2139
2140static int flags_to_propagation_type(int ms_flags)
2141{
2142	int type = ms_flags & ~(MS_REC | MS_SILENT);
2143
2144	/* Fail if any non-propagation flags are set */
2145	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2146		return 0;
2147	/* Only one propagation flag should be set */
2148	if (!is_power_of_2(type))
2149		return 0;
2150	return type;
2151}
2152
2153/*
2154 * recursively change the type of the mountpoint.
2155 */
2156static int do_change_type(struct path *path, int ms_flags)
2157{
2158	struct mount *m;
2159	struct mount *mnt = real_mount(path->mnt);
2160	int recurse = ms_flags & MS_REC;
2161	int type;
2162	int err = 0;
2163
2164	if (path->dentry != path->mnt->mnt_root)
2165		return -EINVAL;
2166
2167	type = flags_to_propagation_type(ms_flags);
2168	if (!type)
2169		return -EINVAL;
2170
2171	namespace_lock();
2172	if (type == MS_SHARED) {
2173		err = invent_group_ids(mnt, recurse);
2174		if (err)
2175			goto out_unlock;
2176	}
2177
2178	lock_mount_hash();
2179	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2180		change_mnt_propagation(m, type);
2181	unlock_mount_hash();
2182
2183 out_unlock:
2184	namespace_unlock();
2185	return err;
2186}
2187
2188static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2189{
2190	struct mount *child;
2191	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2192		if (!is_subdir(child->mnt_mountpoint, dentry))
2193			continue;
2194
2195		if (child->mnt.mnt_flags & MNT_LOCKED)
2196			return true;
2197	}
2198	return false;
2199}
2200
2201/*
2202 * do loopback mount.
2203 */
2204static int do_loopback(struct path *path, const char *old_name,
2205				int recurse)
2206{
2207	struct path old_path;
2208	struct mount *mnt = NULL, *old, *parent;
2209	struct mountpoint *mp;
2210	int err;
2211	if (!old_name || !*old_name)
2212		return -EINVAL;
2213	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2214	if (err)
2215		return err;
2216
2217	err = -EINVAL;
2218	if (mnt_ns_loop(old_path.dentry))
2219		goto out;
2220
2221	mp = lock_mount(path);
2222	err = PTR_ERR(mp);
2223	if (IS_ERR(mp))
2224		goto out;
2225
2226	old = real_mount(old_path.mnt);
2227	parent = real_mount(path->mnt);
2228
2229	err = -EINVAL;
2230	if (IS_MNT_UNBINDABLE(old))
2231		goto out2;
2232
2233	if (!check_mnt(parent))
2234		goto out2;
2235
2236	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2237		goto out2;
2238
2239	if (!recurse && has_locked_children(old, old_path.dentry))
2240		goto out2;
2241
2242	if (recurse)
2243		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2244	else
2245		mnt = clone_mnt(old, old_path.dentry, 0);
2246
2247	if (IS_ERR(mnt)) {
2248		err = PTR_ERR(mnt);
2249		goto out2;
2250	}
2251
2252	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2253
2254	err = graft_tree(mnt, parent, mp);
2255	if (err) {
2256		lock_mount_hash();
2257		umount_tree(mnt, UMOUNT_SYNC);
2258		unlock_mount_hash();
2259	}
2260out2:
2261	unlock_mount(mp);
2262out:
2263	path_put(&old_path);
2264	return err;
2265}
2266
2267static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2268{
2269	int error = 0;
2270	int readonly_request = 0;
2271
2272	if (ms_flags & MS_RDONLY)
2273		readonly_request = 1;
2274	if (readonly_request == __mnt_is_readonly(mnt))
2275		return 0;
2276
2277	if (readonly_request)
2278		error = mnt_make_readonly(real_mount(mnt));
2279	else
2280		__mnt_unmake_readonly(real_mount(mnt));
2281	return error;
2282}
2283
2284/*
2285 * change filesystem flags. dir should be a physical root of filesystem.
2286 * If you've mounted a non-root directory somewhere and want to do remount
2287 * on it - tough luck.
2288 */
2289static int do_remount(struct path *path, int ms_flags, int sb_flags,
2290		      int mnt_flags, void *data)
2291{
2292	int err;
2293	struct super_block *sb = path->mnt->mnt_sb;
2294	struct mount *mnt = real_mount(path->mnt);
2295
2296	if (!check_mnt(mnt))
2297		return -EINVAL;
2298
2299	if (path->dentry != path->mnt->mnt_root)
2300		return -EINVAL;
2301
2302	/* Don't allow changing of locked mnt flags.
2303	 *
2304	 * No locks need to be held here while testing the various
2305	 * MNT_LOCK flags because those flags can never be cleared
2306	 * once they are set.
2307	 */
2308	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2309	    !(mnt_flags & MNT_READONLY)) {
2310		return -EPERM;
2311	}
2312	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2313	    !(mnt_flags & MNT_NODEV)) {
2314		return -EPERM;
2315	}
2316	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2317	    !(mnt_flags & MNT_NOSUID)) {
2318		return -EPERM;
2319	}
2320	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2321	    !(mnt_flags & MNT_NOEXEC)) {
2322		return -EPERM;
2323	}
2324	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2325	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2326		return -EPERM;
2327	}
2328
2329	err = security_sb_remount(sb, data);
2330	if (err)
2331		return err;
2332
2333	down_write(&sb->s_umount);
2334	if (ms_flags & MS_BIND)
2335		err = change_mount_flags(path->mnt, ms_flags);
2336	else if (!capable(CAP_SYS_ADMIN))
2337		err = -EPERM;
2338	else
2339		err = do_remount_sb(sb, sb_flags, data, 0);
2340	if (!err) {
2341		lock_mount_hash();
2342		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2343		mnt->mnt.mnt_flags = mnt_flags;
2344		touch_mnt_namespace(mnt->mnt_ns);
2345		unlock_mount_hash();
2346	}
2347	up_write(&sb->s_umount);
2348	return err;
2349}
2350
2351static inline int tree_contains_unbindable(struct mount *mnt)
2352{
2353	struct mount *p;
2354	for (p = mnt; p; p = next_mnt(p, mnt)) {
2355		if (IS_MNT_UNBINDABLE(p))
2356			return 1;
2357	}
2358	return 0;
2359}
2360
2361static int do_move_mount(struct path *path, const char *old_name)
2362{
2363	struct path old_path, parent_path;
2364	struct mount *p;
2365	struct mount *old;
2366	struct mountpoint *mp;
2367	int err;
2368	if (!old_name || !*old_name)
2369		return -EINVAL;
2370	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2371	if (err)
2372		return err;
2373
2374	mp = lock_mount(path);
2375	err = PTR_ERR(mp);
2376	if (IS_ERR(mp))
2377		goto out;
2378
2379	old = real_mount(old_path.mnt);
2380	p = real_mount(path->mnt);
2381
2382	err = -EINVAL;
2383	if (!check_mnt(p) || !check_mnt(old))
2384		goto out1;
2385
2386	if (old->mnt.mnt_flags & MNT_LOCKED)
2387		goto out1;
2388
2389	err = -EINVAL;
2390	if (old_path.dentry != old_path.mnt->mnt_root)
2391		goto out1;
2392
2393	if (!mnt_has_parent(old))
2394		goto out1;
2395
2396	if (d_is_dir(path->dentry) !=
2397	      d_is_dir(old_path.dentry))
2398		goto out1;
2399	/*
2400	 * Don't move a mount residing in a shared parent.
2401	 */
2402	if (IS_MNT_SHARED(old->mnt_parent))
2403		goto out1;
2404	/*
2405	 * Don't move a mount tree containing unbindable mounts to a destination
2406	 * mount which is shared.
2407	 */
2408	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2409		goto out1;
2410	err = -ELOOP;
2411	for (; mnt_has_parent(p); p = p->mnt_parent)
2412		if (p == old)
2413			goto out1;
2414
2415	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2416	if (err)
2417		goto out1;
2418
2419	/* if the mount is moved, it should no longer be expire
2420	 * automatically */
2421	list_del_init(&old->mnt_expire);
2422out1:
2423	unlock_mount(mp);
2424out:
2425	if (!err)
2426		path_put(&parent_path);
2427	path_put(&old_path);
2428	return err;
2429}
2430
2431static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2432{
2433	int err;
2434	const char *subtype = strchr(fstype, '.');
2435	if (subtype) {
2436		subtype++;
2437		err = -EINVAL;
2438		if (!subtype[0])
2439			goto err;
2440	} else
2441		subtype = "";
2442
2443	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2444	err = -ENOMEM;
2445	if (!mnt->mnt_sb->s_subtype)
2446		goto err;
2447	return mnt;
2448
2449 err:
2450	mntput(mnt);
2451	return ERR_PTR(err);
2452}
2453
2454/*
2455 * add a mount into a namespace's mount tree
2456 */
2457static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2458{
2459	struct mountpoint *mp;
2460	struct mount *parent;
2461	int err;
2462
2463	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2464
2465	mp = lock_mount(path);
2466	if (IS_ERR(mp))
2467		return PTR_ERR(mp);
2468
2469	parent = real_mount(path->mnt);
2470	err = -EINVAL;
2471	if (unlikely(!check_mnt(parent))) {
2472		/* that's acceptable only for automounts done in private ns */
2473		if (!(mnt_flags & MNT_SHRINKABLE))
2474			goto unlock;
2475		/* ... and for those we'd better have mountpoint still alive */
2476		if (!parent->mnt_ns)
2477			goto unlock;
2478	}
2479
2480	/* Refuse the same filesystem on the same mount point */
2481	err = -EBUSY;
2482	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2483	    path->mnt->mnt_root == path->dentry)
2484		goto unlock;
2485
2486	err = -EINVAL;
2487	if (d_is_symlink(newmnt->mnt.mnt_root))
2488		goto unlock;
2489
2490	newmnt->mnt.mnt_flags = mnt_flags;
2491	err = graft_tree(newmnt, parent, mp);
2492
2493unlock:
2494	unlock_mount(mp);
2495	return err;
2496}
2497
2498static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2499
2500/*
2501 * create a new mount for userspace and request it to be added into the
2502 * namespace's tree
2503 */
2504static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2505			int mnt_flags, const char *name, void *data)
2506{
2507	struct file_system_type *type;
2508	struct vfsmount *mnt;
2509	int err;
2510
2511	if (!fstype)
2512		return -EINVAL;
2513
2514	type = get_fs_type(fstype);
2515	if (!type)
2516		return -ENODEV;
2517
2518	mnt = vfs_kern_mount(type, sb_flags, name, data);
2519	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2520	    !mnt->mnt_sb->s_subtype)
2521		mnt = fs_set_subtype(mnt, fstype);
2522
2523	put_filesystem(type);
2524	if (IS_ERR(mnt))
2525		return PTR_ERR(mnt);
2526
2527	if (mount_too_revealing(mnt, &mnt_flags)) {
2528		mntput(mnt);
2529		return -EPERM;
2530	}
2531
2532	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2533	if (err)
2534		mntput(mnt);
2535	return err;
2536}
2537
2538int finish_automount(struct vfsmount *m, struct path *path)
2539{
2540	struct mount *mnt = real_mount(m);
2541	int err;
2542	/* The new mount record should have at least 2 refs to prevent it being
2543	 * expired before we get a chance to add it
2544	 */
2545	BUG_ON(mnt_get_count(mnt) < 2);
2546
2547	if (m->mnt_sb == path->mnt->mnt_sb &&
2548	    m->mnt_root == path->dentry) {
2549		err = -ELOOP;
2550		goto fail;
2551	}
2552
2553	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2554	if (!err)
2555		return 0;
2556fail:
2557	/* remove m from any expiration list it may be on */
2558	if (!list_empty(&mnt->mnt_expire)) {
2559		namespace_lock();
2560		list_del_init(&mnt->mnt_expire);
2561		namespace_unlock();
2562	}
2563	mntput(m);
2564	mntput(m);
2565	return err;
2566}
2567
2568/**
2569 * mnt_set_expiry - Put a mount on an expiration list
2570 * @mnt: The mount to list.
2571 * @expiry_list: The list to add the mount to.
2572 */
2573void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2574{
2575	namespace_lock();
2576
2577	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2578
2579	namespace_unlock();
2580}
2581EXPORT_SYMBOL(mnt_set_expiry);
2582
2583/*
2584 * process a list of expirable mountpoints with the intent of discarding any
2585 * mountpoints that aren't in use and haven't been touched since last we came
2586 * here
2587 */
2588void mark_mounts_for_expiry(struct list_head *mounts)
2589{
2590	struct mount *mnt, *next;
2591	LIST_HEAD(graveyard);
2592
2593	if (list_empty(mounts))
2594		return;
2595
2596	namespace_lock();
2597	lock_mount_hash();
2598
2599	/* extract from the expiration list every vfsmount that matches the
2600	 * following criteria:
2601	 * - only referenced by its parent vfsmount
2602	 * - still marked for expiry (marked on the last call here; marks are
2603	 *   cleared by mntput())
2604	 */
2605	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2606		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2607			propagate_mount_busy(mnt, 1))
2608			continue;
2609		list_move(&mnt->mnt_expire, &graveyard);
2610	}
2611	while (!list_empty(&graveyard)) {
2612		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2613		touch_mnt_namespace(mnt->mnt_ns);
2614		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2615	}
2616	unlock_mount_hash();
2617	namespace_unlock();
2618}
2619
2620EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2621
2622/*
2623 * Ripoff of 'select_parent()'
2624 *
2625 * search the list of submounts for a given mountpoint, and move any
2626 * shrinkable submounts to the 'graveyard' list.
2627 */
2628static int select_submounts(struct mount *parent, struct list_head *graveyard)
2629{
2630	struct mount *this_parent = parent;
2631	struct list_head *next;
2632	int found = 0;
2633
2634repeat:
2635	next = this_parent->mnt_mounts.next;
2636resume:
2637	while (next != &this_parent->mnt_mounts) {
2638		struct list_head *tmp = next;
2639		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2640
2641		next = tmp->next;
2642		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2643			continue;
2644		/*
2645		 * Descend a level if the d_mounts list is non-empty.
2646		 */
2647		if (!list_empty(&mnt->mnt_mounts)) {
2648			this_parent = mnt;
2649			goto repeat;
2650		}
2651
2652		if (!propagate_mount_busy(mnt, 1)) {
2653			list_move_tail(&mnt->mnt_expire, graveyard);
2654			found++;
2655		}
2656	}
2657	/*
2658	 * All done at this level ... ascend and resume the search
2659	 */
2660	if (this_parent != parent) {
2661		next = this_parent->mnt_child.next;
2662		this_parent = this_parent->mnt_parent;
2663		goto resume;
2664	}
2665	return found;
2666}
2667
2668/*
2669 * process a list of expirable mountpoints with the intent of discarding any
2670 * submounts of a specific parent mountpoint
2671 *
2672 * mount_lock must be held for write
2673 */
2674static void shrink_submounts(struct mount *mnt)
2675{
2676	LIST_HEAD(graveyard);
2677	struct mount *m;
2678
2679	/* extract submounts of 'mountpoint' from the expiration list */
2680	while (select_submounts(mnt, &graveyard)) {
2681		while (!list_empty(&graveyard)) {
2682			m = list_first_entry(&graveyard, struct mount,
2683						mnt_expire);
2684			touch_mnt_namespace(m->mnt_ns);
2685			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2686		}
2687	}
2688}
2689
2690/*
2691 * Some copy_from_user() implementations do not return the exact number of
2692 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2693 * Note that this function differs from copy_from_user() in that it will oops
2694 * on bad values of `to', rather than returning a short copy.
2695 */
2696static long exact_copy_from_user(void *to, const void __user * from,
2697				 unsigned long n)
2698{
2699	char *t = to;
2700	const char __user *f = from;
2701	char c;
2702
2703	if (!access_ok(VERIFY_READ, from, n))
2704		return n;
2705
2706	while (n) {
2707		if (__get_user(c, f)) {
2708			memset(t, 0, n);
2709			break;
2710		}
2711		*t++ = c;
2712		f++;
2713		n--;
2714	}
2715	return n;
2716}
2717
2718void *copy_mount_options(const void __user * data)
2719{
2720	int i;
2721	unsigned long size;
2722	char *copy;
2723
2724	if (!data)
2725		return NULL;
2726
2727	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2728	if (!copy)
2729		return ERR_PTR(-ENOMEM);
2730
2731	/* We only care that *some* data at the address the user
2732	 * gave us is valid.  Just in case, we'll zero
2733	 * the remainder of the page.
2734	 */
2735	/* copy_from_user cannot cross TASK_SIZE ! */
2736	size = TASK_SIZE - (unsigned long)data;
2737	if (size > PAGE_SIZE)
2738		size = PAGE_SIZE;
2739
2740	i = size - exact_copy_from_user(copy, data, size);
2741	if (!i) {
2742		kfree(copy);
2743		return ERR_PTR(-EFAULT);
2744	}
2745	if (i != PAGE_SIZE)
2746		memset(copy + i, 0, PAGE_SIZE - i);
2747	return copy;
2748}
2749
2750char *copy_mount_string(const void __user *data)
2751{
2752	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2753}
2754
2755/*
2756 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2757 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2758 *
2759 * data is a (void *) that can point to any structure up to
2760 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2761 * information (or be NULL).
2762 *
2763 * Pre-0.97 versions of mount() didn't have a flags word.
2764 * When the flags word was introduced its top half was required
2765 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2766 * Therefore, if this magic number is present, it carries no information
2767 * and must be discarded.
2768 */
2769long do_mount(const char *dev_name, const char __user *dir_name,
2770		const char *type_page, unsigned long flags, void *data_page)
2771{
2772	struct path path;
2773	unsigned int mnt_flags = 0, sb_flags;
2774	int retval = 0;
2775
2776	/* Discard magic */
2777	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2778		flags &= ~MS_MGC_MSK;
2779
2780	/* Basic sanity checks */
2781	if (data_page)
2782		((char *)data_page)[PAGE_SIZE - 1] = 0;
2783
2784	if (flags & MS_NOUSER)
2785		return -EINVAL;
2786
2787	/* ... and get the mountpoint */
2788	retval = user_path(dir_name, &path);
2789	if (retval)
2790		return retval;
2791
2792	retval = security_sb_mount(dev_name, &path,
2793				   type_page, flags, data_page);
2794	if (!retval && !may_mount())
2795		retval = -EPERM;
2796	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2797		retval = -EPERM;
2798	if (retval)
2799		goto dput_out;
2800
2801	/* Default to relatime unless overriden */
2802	if (!(flags & MS_NOATIME))
2803		mnt_flags |= MNT_RELATIME;
2804
2805	/* Separate the per-mountpoint flags */
2806	if (flags & MS_NOSUID)
2807		mnt_flags |= MNT_NOSUID;
2808	if (flags & MS_NODEV)
2809		mnt_flags |= MNT_NODEV;
2810	if (flags & MS_NOEXEC)
2811		mnt_flags |= MNT_NOEXEC;
2812	if (flags & MS_NOATIME)
2813		mnt_flags |= MNT_NOATIME;
2814	if (flags & MS_NODIRATIME)
2815		mnt_flags |= MNT_NODIRATIME;
2816	if (flags & MS_STRICTATIME)
2817		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2818	if (flags & MS_RDONLY)
2819		mnt_flags |= MNT_READONLY;
2820
2821	/* The default atime for remount is preservation */
2822	if ((flags & MS_REMOUNT) &&
2823	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2824		       MS_STRICTATIME)) == 0)) {
2825		mnt_flags &= ~MNT_ATIME_MASK;
2826		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2827	}
2828
2829	sb_flags = flags & (SB_RDONLY |
2830			    SB_SYNCHRONOUS |
2831			    SB_MANDLOCK |
2832			    SB_DIRSYNC |
2833			    SB_SILENT |
2834			    SB_POSIXACL |
2835			    SB_LAZYTIME |
2836			    SB_I_VERSION);
2837
2838	if (flags & MS_REMOUNT)
2839		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2840				    data_page);
2841	else if (flags & MS_BIND)
2842		retval = do_loopback(&path, dev_name, flags & MS_REC);
2843	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2844		retval = do_change_type(&path, flags);
2845	else if (flags & MS_MOVE)
2846		retval = do_move_mount(&path, dev_name);
2847	else
2848		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2849				      dev_name, data_page);
2850dput_out:
2851	path_put(&path);
2852	return retval;
2853}
2854
2855static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2856{
2857	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2858}
2859
2860static void dec_mnt_namespaces(struct ucounts *ucounts)
2861{
2862	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2863}
2864
2865static void free_mnt_ns(struct mnt_namespace *ns)
2866{
2867	ns_free_inum(&ns->ns);
2868	dec_mnt_namespaces(ns->ucounts);
2869	put_user_ns(ns->user_ns);
2870	kfree(ns);
2871}
2872
2873/*
2874 * Assign a sequence number so we can detect when we attempt to bind
2875 * mount a reference to an older mount namespace into the current
2876 * mount namespace, preventing reference counting loops.  A 64bit
2877 * number incrementing at 10Ghz will take 12,427 years to wrap which
2878 * is effectively never, so we can ignore the possibility.
2879 */
2880static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2881
2882static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2883{
2884	struct mnt_namespace *new_ns;
2885	struct ucounts *ucounts;
2886	int ret;
2887
2888	ucounts = inc_mnt_namespaces(user_ns);
2889	if (!ucounts)
2890		return ERR_PTR(-ENOSPC);
2891
2892	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2893	if (!new_ns) {
2894		dec_mnt_namespaces(ucounts);
2895		return ERR_PTR(-ENOMEM);
2896	}
2897	ret = ns_alloc_inum(&new_ns->ns);
2898	if (ret) {
2899		kfree(new_ns);
2900		dec_mnt_namespaces(ucounts);
2901		return ERR_PTR(ret);
2902	}
2903	new_ns->ns.ops = &mntns_operations;
2904	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2905	atomic_set(&new_ns->count, 1);
2906	new_ns->root = NULL;
2907	INIT_LIST_HEAD(&new_ns->list);
2908	init_waitqueue_head(&new_ns->poll);
2909	new_ns->event = 0;
2910	new_ns->user_ns = get_user_ns(user_ns);
2911	new_ns->ucounts = ucounts;
2912	new_ns->mounts = 0;
2913	new_ns->pending_mounts = 0;
2914	return new_ns;
2915}
2916
2917__latent_entropy
2918struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2919		struct user_namespace *user_ns, struct fs_struct *new_fs)
2920{
2921	struct mnt_namespace *new_ns;
2922	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2923	struct mount *p, *q;
2924	struct mount *old;
2925	struct mount *new;
2926	int copy_flags;
2927
2928	BUG_ON(!ns);
2929
2930	if (likely(!(flags & CLONE_NEWNS))) {
2931		get_mnt_ns(ns);
2932		return ns;
2933	}
2934
2935	old = ns->root;
2936
2937	new_ns = alloc_mnt_ns(user_ns);
2938	if (IS_ERR(new_ns))
2939		return new_ns;
2940
2941	namespace_lock();
2942	/* First pass: copy the tree topology */
2943	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2944	if (user_ns != ns->user_ns)
2945		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2946	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2947	if (IS_ERR(new)) {
2948		namespace_unlock();
2949		free_mnt_ns(new_ns);
2950		return ERR_CAST(new);
2951	}
2952	new_ns->root = new;
2953	list_add_tail(&new_ns->list, &new->mnt_list);
2954
2955	/*
2956	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2957	 * as belonging to new namespace.  We have already acquired a private
2958	 * fs_struct, so tsk->fs->lock is not needed.
2959	 */
2960	p = old;
2961	q = new;
2962	while (p) {
2963		q->mnt_ns = new_ns;
2964		new_ns->mounts++;
2965		if (new_fs) {
2966			if (&p->mnt == new_fs->root.mnt) {
2967				new_fs->root.mnt = mntget(&q->mnt);
2968				rootmnt = &p->mnt;
2969			}
2970			if (&p->mnt == new_fs->pwd.mnt) {
2971				new_fs->pwd.mnt = mntget(&q->mnt);
2972				pwdmnt = &p->mnt;
2973			}
2974		}
2975		p = next_mnt(p, old);
2976		q = next_mnt(q, new);
2977		if (!q)
2978			break;
2979		while (p->mnt.mnt_root != q->mnt.mnt_root)
2980			p = next_mnt(p, old);
2981	}
2982	namespace_unlock();
2983
2984	if (rootmnt)
2985		mntput(rootmnt);
2986	if (pwdmnt)
2987		mntput(pwdmnt);
2988
2989	return new_ns;
2990}
2991
2992/**
2993 * create_mnt_ns - creates a private namespace and adds a root filesystem
2994 * @mnt: pointer to the new root filesystem mountpoint
2995 */
2996static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2997{
2998	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2999	if (!IS_ERR(new_ns)) {
3000		struct mount *mnt = real_mount(m);
3001		mnt->mnt_ns = new_ns;
3002		new_ns->root = mnt;
3003		new_ns->mounts++;
3004		list_add(&mnt->mnt_list, &new_ns->list);
3005	} else {
3006		mntput(m);
3007	}
3008	return new_ns;
3009}
3010
3011struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3012{
3013	struct mnt_namespace *ns;
3014	struct super_block *s;
3015	struct path path;
3016	int err;
3017
3018	ns = create_mnt_ns(mnt);
3019	if (IS_ERR(ns))
3020		return ERR_CAST(ns);
3021
3022	err = vfs_path_lookup(mnt->mnt_root, mnt,
3023			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3024
3025	put_mnt_ns(ns);
3026
3027	if (err)
3028		return ERR_PTR(err);
3029
3030	/* trade a vfsmount reference for active sb one */
3031	s = path.mnt->mnt_sb;
3032	atomic_inc(&s->s_active);
3033	mntput(path.mnt);
3034	/* lock the sucker */
3035	down_write(&s->s_umount);
3036	/* ... and return the root of (sub)tree on it */
3037	return path.dentry;
3038}
3039EXPORT_SYMBOL(mount_subtree);
3040
3041int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3042	       unsigned long flags, void __user *data)
3043{
3044	int ret;
3045	char *kernel_type;
3046	char *kernel_dev;
3047	void *options;
3048
3049	kernel_type = copy_mount_string(type);
3050	ret = PTR_ERR(kernel_type);
3051	if (IS_ERR(kernel_type))
3052		goto out_type;
3053
3054	kernel_dev = copy_mount_string(dev_name);
3055	ret = PTR_ERR(kernel_dev);
3056	if (IS_ERR(kernel_dev))
3057		goto out_dev;
3058
3059	options = copy_mount_options(data);
3060	ret = PTR_ERR(options);
3061	if (IS_ERR(options))
3062		goto out_data;
3063
3064	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3065
3066	kfree(options);
3067out_data:
3068	kfree(kernel_dev);
3069out_dev:
3070	kfree(kernel_type);
3071out_type:
3072	return ret;
3073}
3074
3075SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3076		char __user *, type, unsigned long, flags, void __user *, data)
3077{
3078	return ksys_mount(dev_name, dir_name, type, flags, data);
3079}
3080
3081/*
3082 * Return true if path is reachable from root
3083 *
3084 * namespace_sem or mount_lock is held
3085 */
3086bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3087			 const struct path *root)
3088{
3089	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3090		dentry = mnt->mnt_mountpoint;
3091		mnt = mnt->mnt_parent;
3092	}
3093	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3094}
3095
3096bool path_is_under(const struct path *path1, const struct path *path2)
3097{
3098	bool res;
3099	read_seqlock_excl(&mount_lock);
3100	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3101	read_sequnlock_excl(&mount_lock);
3102	return res;
3103}
3104EXPORT_SYMBOL(path_is_under);
3105
3106/*
3107 * pivot_root Semantics:
3108 * Moves the root file system of the current process to the directory put_old,
3109 * makes new_root as the new root file system of the current process, and sets
3110 * root/cwd of all processes which had them on the current root to new_root.
3111 *
3112 * Restrictions:
3113 * The new_root and put_old must be directories, and  must not be on the
3114 * same file  system as the current process root. The put_old  must  be
3115 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3116 * pointed to by put_old must yield the same directory as new_root. No other
3117 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3118 *
3119 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3120 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3121 * in this situation.
3122 *
3123 * Notes:
3124 *  - we don't move root/cwd if they are not at the root (reason: if something
3125 *    cared enough to change them, it's probably wrong to force them elsewhere)
3126 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3127 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3128 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3129 *    first.
3130 */
3131SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3132		const char __user *, put_old)
3133{
3134	struct path new, old, parent_path, root_parent, root;
3135	struct mount *new_mnt, *root_mnt, *old_mnt;
3136	struct mountpoint *old_mp, *root_mp;
3137	int error;
3138
3139	if (!may_mount())
3140		return -EPERM;
3141
3142	error = user_path_dir(new_root, &new);
3143	if (error)
3144		goto out0;
3145
3146	error = user_path_dir(put_old, &old);
3147	if (error)
3148		goto out1;
3149
3150	error = security_sb_pivotroot(&old, &new);
3151	if (error)
3152		goto out2;
3153
3154	get_fs_root(current->fs, &root);
3155	old_mp = lock_mount(&old);
3156	error = PTR_ERR(old_mp);
3157	if (IS_ERR(old_mp))
3158		goto out3;
3159
3160	error = -EINVAL;
3161	new_mnt = real_mount(new.mnt);
3162	root_mnt = real_mount(root.mnt);
3163	old_mnt = real_mount(old.mnt);
3164	if (IS_MNT_SHARED(old_mnt) ||
3165		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3166		IS_MNT_SHARED(root_mnt->mnt_parent))
3167		goto out4;
3168	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3169		goto out4;
3170	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3171		goto out4;
3172	error = -ENOENT;
3173	if (d_unlinked(new.dentry))
3174		goto out4;
3175	error = -EBUSY;
3176	if (new_mnt == root_mnt || old_mnt == root_mnt)
3177		goto out4; /* loop, on the same file system  */
3178	error = -EINVAL;
3179	if (root.mnt->mnt_root != root.dentry)
3180		goto out4; /* not a mountpoint */
3181	if (!mnt_has_parent(root_mnt))
3182		goto out4; /* not attached */
3183	root_mp = root_mnt->mnt_mp;
3184	if (new.mnt->mnt_root != new.dentry)
3185		goto out4; /* not a mountpoint */
3186	if (!mnt_has_parent(new_mnt))
3187		goto out4; /* not attached */
3188	/* make sure we can reach put_old from new_root */
3189	if (!is_path_reachable(old_mnt, old.dentry, &new))
3190		goto out4;
3191	/* make certain new is below the root */
3192	if (!is_path_reachable(new_mnt, new.dentry, &root))
3193		goto out4;
3194	root_mp->m_count++; /* pin it so it won't go away */
3195	lock_mount_hash();
3196	detach_mnt(new_mnt, &parent_path);
3197	detach_mnt(root_mnt, &root_parent);
3198	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3199		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3200		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3201	}
3202	/* mount old root on put_old */
3203	attach_mnt(root_mnt, old_mnt, old_mp);
3204	/* mount new_root on / */
3205	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3206	touch_mnt_namespace(current->nsproxy->mnt_ns);
3207	/* A moved mount should not expire automatically */
3208	list_del_init(&new_mnt->mnt_expire);
3209	put_mountpoint(root_mp);
3210	unlock_mount_hash();
3211	chroot_fs_refs(&root, &new);
3212	error = 0;
3213out4:
3214	unlock_mount(old_mp);
3215	if (!error) {
3216		path_put(&root_parent);
3217		path_put(&parent_path);
3218	}
3219out3:
3220	path_put(&root);
3221out2:
3222	path_put(&old);
3223out1:
3224	path_put(&new);
3225out0:
3226	return error;
3227}
3228
3229static void __init init_mount_tree(void)
3230{
3231	struct vfsmount *mnt;
3232	struct mnt_namespace *ns;
3233	struct path root;
3234	struct file_system_type *type;
3235
3236	type = get_fs_type("rootfs");
3237	if (!type)
3238		panic("Can't find rootfs type");
3239	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3240	put_filesystem(type);
3241	if (IS_ERR(mnt))
3242		panic("Can't create rootfs");
3243
3244	ns = create_mnt_ns(mnt);
3245	if (IS_ERR(ns))
3246		panic("Can't allocate initial namespace");
3247
3248	init_task.nsproxy->mnt_ns = ns;
3249	get_mnt_ns(ns);
3250
3251	root.mnt = mnt;
3252	root.dentry = mnt->mnt_root;
3253	mnt->mnt_flags |= MNT_LOCKED;
3254
3255	set_fs_pwd(current->fs, &root);
3256	set_fs_root(current->fs, &root);
3257}
3258
3259void __init mnt_init(void)
3260{
3261	int err;
3262
3263	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3264			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3265
3266	mount_hashtable = alloc_large_system_hash("Mount-cache",
3267				sizeof(struct hlist_head),
3268				mhash_entries, 19,
3269				HASH_ZERO,
3270				&m_hash_shift, &m_hash_mask, 0, 0);
3271	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3272				sizeof(struct hlist_head),
3273				mphash_entries, 19,
3274				HASH_ZERO,
3275				&mp_hash_shift, &mp_hash_mask, 0, 0);
3276
3277	if (!mount_hashtable || !mountpoint_hashtable)
3278		panic("Failed to allocate mount hash table\n");
3279
3280	kernfs_init();
3281
3282	err = sysfs_init();
3283	if (err)
3284		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3285			__func__, err);
3286	fs_kobj = kobject_create_and_add("fs", NULL);
3287	if (!fs_kobj)
3288		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3289	init_rootfs();
3290	init_mount_tree();
3291}
3292
3293void put_mnt_ns(struct mnt_namespace *ns)
3294{
3295	if (!atomic_dec_and_test(&ns->count))
3296		return;
3297	drop_collected_mounts(&ns->root->mnt);
3298	free_mnt_ns(ns);
3299}
3300
3301struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3302{
3303	struct vfsmount *mnt;
3304	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3305	if (!IS_ERR(mnt)) {
3306		/*
3307		 * it is a longterm mount, don't release mnt until
3308		 * we unmount before file sys is unregistered
3309		*/
3310		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3311	}
3312	return mnt;
3313}
3314EXPORT_SYMBOL_GPL(kern_mount_data);
3315
3316void kern_unmount(struct vfsmount *mnt)
3317{
3318	/* release long term mount so mount point can be released */
3319	if (!IS_ERR_OR_NULL(mnt)) {
3320		real_mount(mnt)->mnt_ns = NULL;
3321		synchronize_rcu();	/* yecchhh... */
3322		mntput(mnt);
3323	}
3324}
3325EXPORT_SYMBOL(kern_unmount);
3326
3327bool our_mnt(struct vfsmount *mnt)
3328{
3329	return check_mnt(real_mount(mnt));
3330}
3331
3332bool current_chrooted(void)
3333{
3334	/* Does the current process have a non-standard root */
3335	struct path ns_root;
3336	struct path fs_root;
3337	bool chrooted;
3338
3339	/* Find the namespace root */
3340	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3341	ns_root.dentry = ns_root.mnt->mnt_root;
3342	path_get(&ns_root);
3343	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3344		;
3345
3346	get_fs_root(current->fs, &fs_root);
3347
3348	chrooted = !path_equal(&fs_root, &ns_root);
3349
3350	path_put(&fs_root);
3351	path_put(&ns_root);
3352
3353	return chrooted;
3354}
3355
3356static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3357				int *new_mnt_flags)
3358{
3359	int new_flags = *new_mnt_flags;
3360	struct mount *mnt;
3361	bool visible = false;
3362
3363	down_read(&namespace_sem);
3364	list_for_each_entry(mnt, &ns->list, mnt_list) {
3365		struct mount *child;
3366		int mnt_flags;
3367
3368		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3369			continue;
3370
3371		/* This mount is not fully visible if it's root directory
3372		 * is not the root directory of the filesystem.
3373		 */
3374		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3375			continue;
3376
3377		/* A local view of the mount flags */
3378		mnt_flags = mnt->mnt.mnt_flags;
3379
3380		/* Don't miss readonly hidden in the superblock flags */
3381		if (sb_rdonly(mnt->mnt.mnt_sb))
3382			mnt_flags |= MNT_LOCK_READONLY;
3383
3384		/* Verify the mount flags are equal to or more permissive
3385		 * than the proposed new mount.
3386		 */
3387		if ((mnt_flags & MNT_LOCK_READONLY) &&
3388		    !(new_flags & MNT_READONLY))
3389			continue;
3390		if ((mnt_flags & MNT_LOCK_ATIME) &&
3391		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3392			continue;
3393
3394		/* This mount is not fully visible if there are any
3395		 * locked child mounts that cover anything except for
3396		 * empty directories.
3397		 */
3398		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3399			struct inode *inode = child->mnt_mountpoint->d_inode;
3400			/* Only worry about locked mounts */
3401			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3402				continue;
3403			/* Is the directory permanetly empty? */
3404			if (!is_empty_dir_inode(inode))
3405				goto next;
3406		}
3407		/* Preserve the locked attributes */
3408		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3409					       MNT_LOCK_ATIME);
3410		visible = true;
3411		goto found;
3412	next:	;
3413	}
3414found:
3415	up_read(&namespace_sem);
3416	return visible;
3417}
3418
3419static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3420{
3421	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3422	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3423	unsigned long s_iflags;
3424
3425	if (ns->user_ns == &init_user_ns)
3426		return false;
3427
3428	/* Can this filesystem be too revealing? */
3429	s_iflags = mnt->mnt_sb->s_iflags;
3430	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3431		return false;
3432
3433	if ((s_iflags & required_iflags) != required_iflags) {
3434		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3435			  required_iflags);
3436		return true;
3437	}
3438
3439	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3440}
3441
3442bool mnt_may_suid(struct vfsmount *mnt)
3443{
3444	/*
3445	 * Foreign mounts (accessed via fchdir or through /proc
3446	 * symlinks) are always treated as if they are nosuid.  This
3447	 * prevents namespaces from trusting potentially unsafe
3448	 * suid/sgid bits, file caps, or security labels that originate
3449	 * in other namespaces.
3450	 */
3451	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3452	       current_in_userns(mnt->mnt_sb->s_user_ns);
3453}
3454
3455static struct ns_common *mntns_get(struct task_struct *task)
3456{
3457	struct ns_common *ns = NULL;
3458	struct nsproxy *nsproxy;
3459
3460	task_lock(task);
3461	nsproxy = task->nsproxy;
3462	if (nsproxy) {
3463		ns = &nsproxy->mnt_ns->ns;
3464		get_mnt_ns(to_mnt_ns(ns));
3465	}
3466	task_unlock(task);
3467
3468	return ns;
3469}
3470
3471static void mntns_put(struct ns_common *ns)
3472{
3473	put_mnt_ns(to_mnt_ns(ns));
3474}
3475
3476static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3477{
3478	struct fs_struct *fs = current->fs;
3479	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3480	struct path root;
3481	int err;
3482
3483	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3484	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3485	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3486		return -EPERM;
3487
3488	if (fs->users != 1)
3489		return -EINVAL;
3490
3491	get_mnt_ns(mnt_ns);
3492	old_mnt_ns = nsproxy->mnt_ns;
3493	nsproxy->mnt_ns = mnt_ns;
3494
3495	/* Find the root */
3496	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3497				"/", LOOKUP_DOWN, &root);
3498	if (err) {
3499		/* revert to old namespace */
3500		nsproxy->mnt_ns = old_mnt_ns;
3501		put_mnt_ns(mnt_ns);
3502		return err;
3503	}
3504
3505	put_mnt_ns(old_mnt_ns);
3506
3507	/* Update the pwd and root */
3508	set_fs_pwd(fs, &root);
3509	set_fs_root(fs, &root);
3510
3511	path_put(&root);
3512	return 0;
3513}
3514
3515static struct user_namespace *mntns_owner(struct ns_common *ns)
3516{
3517	return to_mnt_ns(ns)->user_ns;
3518}
3519
3520const struct proc_ns_operations mntns_operations = {
3521	.name		= "mnt",
3522	.type		= CLONE_NEWNS,
3523	.get		= mntns_get,
3524	.put		= mntns_put,
3525	.install	= mntns_install,
3526	.owner		= mntns_owner,
3527};