Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/task_work.h>
  29#include <linux/sched/task.h>
  30#include <uapi/linux/mount.h>
  31#include <linux/fs_context.h>
  32#include <linux/shmem_fs.h>
  33
  34#include "pnode.h"
  35#include "internal.h"
  36
  37/* Maximum number of mounts in a mount namespace */
  38unsigned int sysctl_mount_max __read_mostly = 100000;
  39
  40static unsigned int m_hash_mask __read_mostly;
  41static unsigned int m_hash_shift __read_mostly;
  42static unsigned int mp_hash_mask __read_mostly;
  43static unsigned int mp_hash_shift __read_mostly;
  44
  45static __initdata unsigned long mhash_entries;
  46static int __init set_mhash_entries(char *str)
  47{
  48	if (!str)
  49		return 0;
  50	mhash_entries = simple_strtoul(str, &str, 0);
  51	return 1;
  52}
  53__setup("mhash_entries=", set_mhash_entries);
  54
  55static __initdata unsigned long mphash_entries;
  56static int __init set_mphash_entries(char *str)
  57{
  58	if (!str)
  59		return 0;
  60	mphash_entries = simple_strtoul(str, &str, 0);
  61	return 1;
  62}
  63__setup("mphash_entries=", set_mphash_entries);
  64
  65static u64 event;
  66static DEFINE_IDA(mnt_id_ida);
  67static DEFINE_IDA(mnt_group_ida);
  68
  69static struct hlist_head *mount_hashtable __read_mostly;
  70static struct hlist_head *mountpoint_hashtable __read_mostly;
  71static struct kmem_cache *mnt_cache __read_mostly;
  72static DECLARE_RWSEM(namespace_sem);
  73static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
  74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  75
  76/* /sys/fs */
  77struct kobject *fs_kobj;
  78EXPORT_SYMBOL_GPL(fs_kobj);
  79
  80/*
  81 * vfsmount lock may be taken for read to prevent changes to the
  82 * vfsmount hash, ie. during mountpoint lookups or walking back
  83 * up the tree.
  84 *
  85 * It should be taken for write in all cases where the vfsmount
  86 * tree or hash is modified or when a vfsmount structure is modified.
  87 */
  88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  89
  90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  91{
  92	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  93	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  94	tmp = tmp + (tmp >> m_hash_shift);
  95	return &mount_hashtable[tmp & m_hash_mask];
  96}
  97
  98static inline struct hlist_head *mp_hash(struct dentry *dentry)
  99{
 100	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 101	tmp = tmp + (tmp >> mp_hash_shift);
 102	return &mountpoint_hashtable[tmp & mp_hash_mask];
 103}
 104
 105static int mnt_alloc_id(struct mount *mnt)
 106{
 107	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 108
 109	if (res < 0)
 110		return res;
 111	mnt->mnt_id = res;
 112	return 0;
 113}
 114
 115static void mnt_free_id(struct mount *mnt)
 116{
 117	ida_free(&mnt_id_ida, mnt->mnt_id);
 118}
 119
 120/*
 121 * Allocate a new peer group ID
 122 */
 123static int mnt_alloc_group_id(struct mount *mnt)
 124{
 125	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 126
 127	if (res < 0)
 128		return res;
 129	mnt->mnt_group_id = res;
 130	return 0;
 131}
 132
 133/*
 134 * Release a peer group ID
 135 */
 136void mnt_release_group_id(struct mount *mnt)
 137{
 138	ida_free(&mnt_group_ida, mnt->mnt_group_id);
 139	mnt->mnt_group_id = 0;
 140}
 141
 142/*
 143 * vfsmount lock must be held for read
 144 */
 145static inline void mnt_add_count(struct mount *mnt, int n)
 146{
 147#ifdef CONFIG_SMP
 148	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 149#else
 150	preempt_disable();
 151	mnt->mnt_count += n;
 152	preempt_enable();
 153#endif
 154}
 155
 156/*
 157 * vfsmount lock must be held for write
 158 */
 159unsigned int mnt_get_count(struct mount *mnt)
 160{
 161#ifdef CONFIG_SMP
 162	unsigned int count = 0;
 163	int cpu;
 164
 165	for_each_possible_cpu(cpu) {
 166		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 167	}
 168
 169	return count;
 170#else
 171	return mnt->mnt_count;
 172#endif
 173}
 174
 175static struct mount *alloc_vfsmnt(const char *name)
 176{
 177	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 178	if (mnt) {
 179		int err;
 180
 181		err = mnt_alloc_id(mnt);
 182		if (err)
 183			goto out_free_cache;
 184
 185		if (name) {
 186			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 187			if (!mnt->mnt_devname)
 188				goto out_free_id;
 189		}
 190
 191#ifdef CONFIG_SMP
 192		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 193		if (!mnt->mnt_pcp)
 194			goto out_free_devname;
 195
 196		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 197#else
 198		mnt->mnt_count = 1;
 199		mnt->mnt_writers = 0;
 200#endif
 201
 202		INIT_HLIST_NODE(&mnt->mnt_hash);
 203		INIT_LIST_HEAD(&mnt->mnt_child);
 204		INIT_LIST_HEAD(&mnt->mnt_mounts);
 205		INIT_LIST_HEAD(&mnt->mnt_list);
 206		INIT_LIST_HEAD(&mnt->mnt_expire);
 207		INIT_LIST_HEAD(&mnt->mnt_share);
 208		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 209		INIT_LIST_HEAD(&mnt->mnt_slave);
 210		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 211		INIT_LIST_HEAD(&mnt->mnt_umounting);
 212		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 213	}
 214	return mnt;
 215
 216#ifdef CONFIG_SMP
 217out_free_devname:
 218	kfree_const(mnt->mnt_devname);
 219#endif
 220out_free_id:
 221	mnt_free_id(mnt);
 222out_free_cache:
 223	kmem_cache_free(mnt_cache, mnt);
 224	return NULL;
 225}
 226
 227/*
 228 * Most r/o checks on a fs are for operations that take
 229 * discrete amounts of time, like a write() or unlink().
 230 * We must keep track of when those operations start
 231 * (for permission checks) and when they end, so that
 232 * we can determine when writes are able to occur to
 233 * a filesystem.
 234 */
 235/*
 236 * __mnt_is_readonly: check whether a mount is read-only
 237 * @mnt: the mount to check for its write status
 238 *
 239 * This shouldn't be used directly ouside of the VFS.
 240 * It does not guarantee that the filesystem will stay
 241 * r/w, just that it is right *now*.  This can not and
 242 * should not be used in place of IS_RDONLY(inode).
 243 * mnt_want/drop_write() will _keep_ the filesystem
 244 * r/w.
 245 */
 246bool __mnt_is_readonly(struct vfsmount *mnt)
 247{
 248	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 249}
 250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 251
 252static inline void mnt_inc_writers(struct mount *mnt)
 253{
 254#ifdef CONFIG_SMP
 255	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 256#else
 257	mnt->mnt_writers++;
 258#endif
 259}
 260
 261static inline void mnt_dec_writers(struct mount *mnt)
 262{
 263#ifdef CONFIG_SMP
 264	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 265#else
 266	mnt->mnt_writers--;
 267#endif
 268}
 269
 270static unsigned int mnt_get_writers(struct mount *mnt)
 271{
 272#ifdef CONFIG_SMP
 273	unsigned int count = 0;
 274	int cpu;
 275
 276	for_each_possible_cpu(cpu) {
 277		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 278	}
 279
 280	return count;
 281#else
 282	return mnt->mnt_writers;
 283#endif
 284}
 285
 286static int mnt_is_readonly(struct vfsmount *mnt)
 287{
 288	if (mnt->mnt_sb->s_readonly_remount)
 289		return 1;
 290	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 291	smp_rmb();
 292	return __mnt_is_readonly(mnt);
 293}
 294
 295/*
 296 * Most r/o & frozen checks on a fs are for operations that take discrete
 297 * amounts of time, like a write() or unlink().  We must keep track of when
 298 * those operations start (for permission checks) and when they end, so that we
 299 * can determine when writes are able to occur to a filesystem.
 300 */
 301/**
 302 * __mnt_want_write - get write access to a mount without freeze protection
 303 * @m: the mount on which to take a write
 304 *
 305 * This tells the low-level filesystem that a write is about to be performed to
 306 * it, and makes sure that writes are allowed (mnt it read-write) before
 307 * returning success. This operation does not protect against filesystem being
 308 * frozen. When the write operation is finished, __mnt_drop_write() must be
 309 * called. This is effectively a refcount.
 310 */
 311int __mnt_want_write(struct vfsmount *m)
 312{
 313	struct mount *mnt = real_mount(m);
 314	int ret = 0;
 315
 316	preempt_disable();
 317	mnt_inc_writers(mnt);
 318	/*
 319	 * The store to mnt_inc_writers must be visible before we pass
 320	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 321	 * incremented count after it has set MNT_WRITE_HOLD.
 322	 */
 323	smp_mb();
 324	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 325		cpu_relax();
 326	/*
 327	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 328	 * be set to match its requirements. So we must not load that until
 329	 * MNT_WRITE_HOLD is cleared.
 330	 */
 331	smp_rmb();
 332	if (mnt_is_readonly(m)) {
 333		mnt_dec_writers(mnt);
 334		ret = -EROFS;
 335	}
 336	preempt_enable();
 337
 338	return ret;
 339}
 340
 341/**
 342 * mnt_want_write - get write access to a mount
 343 * @m: the mount on which to take a write
 344 *
 345 * This tells the low-level filesystem that a write is about to be performed to
 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 347 * is not frozen) before returning success.  When the write operation is
 348 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 349 */
 350int mnt_want_write(struct vfsmount *m)
 351{
 352	int ret;
 353
 354	sb_start_write(m->mnt_sb);
 355	ret = __mnt_want_write(m);
 356	if (ret)
 357		sb_end_write(m->mnt_sb);
 358	return ret;
 359}
 360EXPORT_SYMBOL_GPL(mnt_want_write);
 361
 362/**
 363 * mnt_clone_write - get write access to a mount
 364 * @mnt: the mount on which to take a write
 365 *
 366 * This is effectively like mnt_want_write, except
 367 * it must only be used to take an extra write reference
 368 * on a mountpoint that we already know has a write reference
 369 * on it. This allows some optimisation.
 370 *
 371 * After finished, mnt_drop_write must be called as usual to
 372 * drop the reference.
 373 */
 374int mnt_clone_write(struct vfsmount *mnt)
 375{
 376	/* superblock may be r/o */
 377	if (__mnt_is_readonly(mnt))
 378		return -EROFS;
 379	preempt_disable();
 380	mnt_inc_writers(real_mount(mnt));
 381	preempt_enable();
 382	return 0;
 383}
 384EXPORT_SYMBOL_GPL(mnt_clone_write);
 385
 386/**
 387 * __mnt_want_write_file - get write access to a file's mount
 388 * @file: the file who's mount on which to take a write
 389 *
 390 * This is like __mnt_want_write, but it takes a file and can
 391 * do some optimisations if the file is open for write already
 392 */
 393int __mnt_want_write_file(struct file *file)
 394{
 395	if (!(file->f_mode & FMODE_WRITER))
 396		return __mnt_want_write(file->f_path.mnt);
 397	else
 398		return mnt_clone_write(file->f_path.mnt);
 399}
 400
 401/**
 402 * mnt_want_write_file - get write access to a file's mount
 403 * @file: the file who's mount on which to take a write
 404 *
 405 * This is like mnt_want_write, but it takes a file and can
 406 * do some optimisations if the file is open for write already
 407 */
 408int mnt_want_write_file(struct file *file)
 409{
 410	int ret;
 411
 412	sb_start_write(file_inode(file)->i_sb);
 413	ret = __mnt_want_write_file(file);
 414	if (ret)
 415		sb_end_write(file_inode(file)->i_sb);
 416	return ret;
 417}
 418EXPORT_SYMBOL_GPL(mnt_want_write_file);
 419
 420/**
 421 * __mnt_drop_write - give up write access to a mount
 422 * @mnt: the mount on which to give up write access
 423 *
 424 * Tells the low-level filesystem that we are done
 425 * performing writes to it.  Must be matched with
 426 * __mnt_want_write() call above.
 427 */
 428void __mnt_drop_write(struct vfsmount *mnt)
 429{
 430	preempt_disable();
 431	mnt_dec_writers(real_mount(mnt));
 432	preempt_enable();
 433}
 434
 435/**
 436 * mnt_drop_write - give up write access to a mount
 437 * @mnt: the mount on which to give up write access
 438 *
 439 * Tells the low-level filesystem that we are done performing writes to it and
 440 * also allows filesystem to be frozen again.  Must be matched with
 441 * mnt_want_write() call above.
 442 */
 443void mnt_drop_write(struct vfsmount *mnt)
 444{
 445	__mnt_drop_write(mnt);
 446	sb_end_write(mnt->mnt_sb);
 447}
 448EXPORT_SYMBOL_GPL(mnt_drop_write);
 449
 450void __mnt_drop_write_file(struct file *file)
 451{
 452	__mnt_drop_write(file->f_path.mnt);
 453}
 454
 455void mnt_drop_write_file(struct file *file)
 456{
 457	__mnt_drop_write_file(file);
 458	sb_end_write(file_inode(file)->i_sb);
 459}
 460EXPORT_SYMBOL(mnt_drop_write_file);
 461
 462static int mnt_make_readonly(struct mount *mnt)
 463{
 464	int ret = 0;
 465
 466	lock_mount_hash();
 467	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 468	/*
 469	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 470	 * should be visible before we do.
 471	 */
 472	smp_mb();
 473
 474	/*
 475	 * With writers on hold, if this value is zero, then there are
 476	 * definitely no active writers (although held writers may subsequently
 477	 * increment the count, they'll have to wait, and decrement it after
 478	 * seeing MNT_READONLY).
 479	 *
 480	 * It is OK to have counter incremented on one CPU and decremented on
 481	 * another: the sum will add up correctly. The danger would be when we
 482	 * sum up each counter, if we read a counter before it is incremented,
 483	 * but then read another CPU's count which it has been subsequently
 484	 * decremented from -- we would see more decrements than we should.
 485	 * MNT_WRITE_HOLD protects against this scenario, because
 486	 * mnt_want_write first increments count, then smp_mb, then spins on
 487	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 488	 * we're counting up here.
 489	 */
 490	if (mnt_get_writers(mnt) > 0)
 491		ret = -EBUSY;
 492	else
 493		mnt->mnt.mnt_flags |= MNT_READONLY;
 494	/*
 495	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 496	 * that become unheld will see MNT_READONLY.
 497	 */
 498	smp_wmb();
 499	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 500	unlock_mount_hash();
 501	return ret;
 502}
 503
 504static int __mnt_unmake_readonly(struct mount *mnt)
 505{
 506	lock_mount_hash();
 507	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 508	unlock_mount_hash();
 509	return 0;
 510}
 511
 512int sb_prepare_remount_readonly(struct super_block *sb)
 513{
 514	struct mount *mnt;
 515	int err = 0;
 516
 517	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 518	if (atomic_long_read(&sb->s_remove_count))
 519		return -EBUSY;
 520
 521	lock_mount_hash();
 522	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 523		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 524			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 525			smp_mb();
 526			if (mnt_get_writers(mnt) > 0) {
 527				err = -EBUSY;
 528				break;
 529			}
 530		}
 531	}
 532	if (!err && atomic_long_read(&sb->s_remove_count))
 533		err = -EBUSY;
 534
 535	if (!err) {
 536		sb->s_readonly_remount = 1;
 537		smp_wmb();
 538	}
 539	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 540		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 541			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 542	}
 543	unlock_mount_hash();
 544
 545	return err;
 546}
 547
 548static void free_vfsmnt(struct mount *mnt)
 549{
 550	kfree_const(mnt->mnt_devname);
 551#ifdef CONFIG_SMP
 552	free_percpu(mnt->mnt_pcp);
 553#endif
 554	kmem_cache_free(mnt_cache, mnt);
 555}
 556
 557static void delayed_free_vfsmnt(struct rcu_head *head)
 558{
 559	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 560}
 561
 562/* call under rcu_read_lock */
 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 564{
 565	struct mount *mnt;
 566	if (read_seqretry(&mount_lock, seq))
 567		return 1;
 568	if (bastard == NULL)
 569		return 0;
 570	mnt = real_mount(bastard);
 571	mnt_add_count(mnt, 1);
 572	smp_mb();			// see mntput_no_expire()
 573	if (likely(!read_seqretry(&mount_lock, seq)))
 574		return 0;
 575	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 576		mnt_add_count(mnt, -1);
 577		return 1;
 578	}
 579	lock_mount_hash();
 580	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 581		mnt_add_count(mnt, -1);
 582		unlock_mount_hash();
 583		return 1;
 584	}
 585	unlock_mount_hash();
 586	/* caller will mntput() */
 587	return -1;
 588}
 589
 590/* call under rcu_read_lock */
 591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 592{
 593	int res = __legitimize_mnt(bastard, seq);
 594	if (likely(!res))
 595		return true;
 596	if (unlikely(res < 0)) {
 597		rcu_read_unlock();
 598		mntput(bastard);
 599		rcu_read_lock();
 600	}
 601	return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610	struct hlist_head *head = m_hash(mnt, dentry);
 611	struct mount *p;
 612
 613	hlist_for_each_entry_rcu(p, head, mnt_hash)
 614		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615			return p;
 616	return NULL;
 617}
 618
 619/*
 620 * lookup_mnt - Return the first child mount mounted at path
 621 *
 622 * "First" means first mounted chronologically.  If you create the
 623 * following mounts:
 624 *
 625 * mount /dev/sda1 /mnt
 626 * mount /dev/sda2 /mnt
 627 * mount /dev/sda3 /mnt
 628 *
 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 630 * return successively the root dentry and vfsmount of /dev/sda1, then
 631 * /dev/sda2, then /dev/sda3, then NULL.
 632 *
 633 * lookup_mnt takes a reference to the found vfsmount.
 634 */
 635struct vfsmount *lookup_mnt(const struct path *path)
 636{
 637	struct mount *child_mnt;
 638	struct vfsmount *m;
 639	unsigned seq;
 640
 641	rcu_read_lock();
 642	do {
 643		seq = read_seqbegin(&mount_lock);
 644		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 645		m = child_mnt ? &child_mnt->mnt : NULL;
 646	} while (!legitimize_mnt(m, seq));
 647	rcu_read_unlock();
 648	return m;
 649}
 650
 651/*
 652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 653 *                         current mount namespace.
 654 *
 655 * The common case is dentries are not mountpoints at all and that
 656 * test is handled inline.  For the slow case when we are actually
 657 * dealing with a mountpoint of some kind, walk through all of the
 658 * mounts in the current mount namespace and test to see if the dentry
 659 * is a mountpoint.
 660 *
 661 * The mount_hashtable is not usable in the context because we
 662 * need to identify all mounts that may be in the current mount
 663 * namespace not just a mount that happens to have some specified
 664 * parent mount.
 665 */
 666bool __is_local_mountpoint(struct dentry *dentry)
 667{
 668	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 669	struct mount *mnt;
 670	bool is_covered = false;
 671
 672	if (!d_mountpoint(dentry))
 673		goto out;
 674
 675	down_read(&namespace_sem);
 676	list_for_each_entry(mnt, &ns->list, mnt_list) {
 677		is_covered = (mnt->mnt_mountpoint == dentry);
 678		if (is_covered)
 679			break;
 680	}
 681	up_read(&namespace_sem);
 682out:
 683	return is_covered;
 684}
 685
 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 687{
 688	struct hlist_head *chain = mp_hash(dentry);
 689	struct mountpoint *mp;
 690
 691	hlist_for_each_entry(mp, chain, m_hash) {
 692		if (mp->m_dentry == dentry) {
 693			mp->m_count++;
 694			return mp;
 695		}
 696	}
 697	return NULL;
 698}
 699
 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
 701{
 702	struct mountpoint *mp, *new = NULL;
 703	int ret;
 704
 705	if (d_mountpoint(dentry)) {
 706		/* might be worth a WARN_ON() */
 707		if (d_unlinked(dentry))
 708			return ERR_PTR(-ENOENT);
 709mountpoint:
 710		read_seqlock_excl(&mount_lock);
 711		mp = lookup_mountpoint(dentry);
 712		read_sequnlock_excl(&mount_lock);
 713		if (mp)
 714			goto done;
 715	}
 716
 717	if (!new)
 718		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 719	if (!new)
 720		return ERR_PTR(-ENOMEM);
 721
 722
 723	/* Exactly one processes may set d_mounted */
 724	ret = d_set_mounted(dentry);
 725
 726	/* Someone else set d_mounted? */
 727	if (ret == -EBUSY)
 728		goto mountpoint;
 729
 730	/* The dentry is not available as a mountpoint? */
 731	mp = ERR_PTR(ret);
 732	if (ret)
 733		goto done;
 734
 735	/* Add the new mountpoint to the hash table */
 736	read_seqlock_excl(&mount_lock);
 737	new->m_dentry = dget(dentry);
 738	new->m_count = 1;
 739	hlist_add_head(&new->m_hash, mp_hash(dentry));
 740	INIT_HLIST_HEAD(&new->m_list);
 741	read_sequnlock_excl(&mount_lock);
 742
 743	mp = new;
 744	new = NULL;
 745done:
 746	kfree(new);
 747	return mp;
 748}
 749
 750/*
 751 * vfsmount lock must be held.  Additionally, the caller is responsible
 752 * for serializing calls for given disposal list.
 753 */
 754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 755{
 756	if (!--mp->m_count) {
 757		struct dentry *dentry = mp->m_dentry;
 758		BUG_ON(!hlist_empty(&mp->m_list));
 759		spin_lock(&dentry->d_lock);
 760		dentry->d_flags &= ~DCACHE_MOUNTED;
 761		spin_unlock(&dentry->d_lock);
 762		dput_to_list(dentry, list);
 763		hlist_del(&mp->m_hash);
 764		kfree(mp);
 765	}
 766}
 767
 768/* called with namespace_lock and vfsmount lock */
 769static void put_mountpoint(struct mountpoint *mp)
 770{
 771	__put_mountpoint(mp, &ex_mountpoints);
 772}
 773
 774static inline int check_mnt(struct mount *mnt)
 775{
 776	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 777}
 778
 779/*
 780 * vfsmount lock must be held for write
 781 */
 782static void touch_mnt_namespace(struct mnt_namespace *ns)
 783{
 784	if (ns) {
 785		ns->event = ++event;
 786		wake_up_interruptible(&ns->poll);
 787	}
 788}
 789
 790/*
 791 * vfsmount lock must be held for write
 792 */
 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
 794{
 795	if (ns && ns->event != event) {
 796		ns->event = event;
 797		wake_up_interruptible(&ns->poll);
 798	}
 799}
 800
 801/*
 802 * vfsmount lock must be held for write
 803 */
 804static struct mountpoint *unhash_mnt(struct mount *mnt)
 805{
 806	struct mountpoint *mp;
 807	mnt->mnt_parent = mnt;
 808	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 809	list_del_init(&mnt->mnt_child);
 810	hlist_del_init_rcu(&mnt->mnt_hash);
 811	hlist_del_init(&mnt->mnt_mp_list);
 812	mp = mnt->mnt_mp;
 813	mnt->mnt_mp = NULL;
 814	return mp;
 815}
 816
 817/*
 818 * vfsmount lock must be held for write
 819 */
 820static void umount_mnt(struct mount *mnt)
 821{
 822	put_mountpoint(unhash_mnt(mnt));
 823}
 824
 825/*
 826 * vfsmount lock must be held for write
 827 */
 828void mnt_set_mountpoint(struct mount *mnt,
 829			struct mountpoint *mp,
 830			struct mount *child_mnt)
 831{
 832	mp->m_count++;
 833	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 834	child_mnt->mnt_mountpoint = mp->m_dentry;
 835	child_mnt->mnt_parent = mnt;
 836	child_mnt->mnt_mp = mp;
 837	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 838}
 839
 840static void __attach_mnt(struct mount *mnt, struct mount *parent)
 841{
 842	hlist_add_head_rcu(&mnt->mnt_hash,
 843			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
 844	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 845}
 846
 847/*
 848 * vfsmount lock must be held for write
 849 */
 850static void attach_mnt(struct mount *mnt,
 851			struct mount *parent,
 852			struct mountpoint *mp)
 853{
 854	mnt_set_mountpoint(parent, mp, mnt);
 855	__attach_mnt(mnt, parent);
 856}
 857
 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 859{
 860	struct mountpoint *old_mp = mnt->mnt_mp;
 861	struct mount *old_parent = mnt->mnt_parent;
 862
 863	list_del_init(&mnt->mnt_child);
 864	hlist_del_init(&mnt->mnt_mp_list);
 865	hlist_del_init_rcu(&mnt->mnt_hash);
 866
 867	attach_mnt(mnt, parent, mp);
 868
 869	put_mountpoint(old_mp);
 870	mnt_add_count(old_parent, -1);
 871}
 872
 873/*
 874 * vfsmount lock must be held for write
 875 */
 876static void commit_tree(struct mount *mnt)
 877{
 878	struct mount *parent = mnt->mnt_parent;
 879	struct mount *m;
 880	LIST_HEAD(head);
 881	struct mnt_namespace *n = parent->mnt_ns;
 882
 883	BUG_ON(parent == mnt);
 884
 885	list_add_tail(&head, &mnt->mnt_list);
 886	list_for_each_entry(m, &head, mnt_list)
 887		m->mnt_ns = n;
 888
 889	list_splice(&head, n->list.prev);
 890
 891	n->mounts += n->pending_mounts;
 892	n->pending_mounts = 0;
 893
 894	__attach_mnt(mnt, parent);
 895	touch_mnt_namespace(n);
 896}
 897
 898static struct mount *next_mnt(struct mount *p, struct mount *root)
 899{
 900	struct list_head *next = p->mnt_mounts.next;
 901	if (next == &p->mnt_mounts) {
 902		while (1) {
 903			if (p == root)
 904				return NULL;
 905			next = p->mnt_child.next;
 906			if (next != &p->mnt_parent->mnt_mounts)
 907				break;
 908			p = p->mnt_parent;
 909		}
 910	}
 911	return list_entry(next, struct mount, mnt_child);
 912}
 913
 914static struct mount *skip_mnt_tree(struct mount *p)
 915{
 916	struct list_head *prev = p->mnt_mounts.prev;
 917	while (prev != &p->mnt_mounts) {
 918		p = list_entry(prev, struct mount, mnt_child);
 919		prev = p->mnt_mounts.prev;
 920	}
 921	return p;
 922}
 923
 924/**
 925 * vfs_create_mount - Create a mount for a configured superblock
 926 * @fc: The configuration context with the superblock attached
 927 *
 928 * Create a mount to an already configured superblock.  If necessary, the
 929 * caller should invoke vfs_get_tree() before calling this.
 930 *
 931 * Note that this does not attach the mount to anything.
 932 */
 933struct vfsmount *vfs_create_mount(struct fs_context *fc)
 934{
 935	struct mount *mnt;
 936
 937	if (!fc->root)
 938		return ERR_PTR(-EINVAL);
 939
 940	mnt = alloc_vfsmnt(fc->source ?: "none");
 941	if (!mnt)
 942		return ERR_PTR(-ENOMEM);
 943
 944	if (fc->sb_flags & SB_KERNMOUNT)
 945		mnt->mnt.mnt_flags = MNT_INTERNAL;
 946
 947	atomic_inc(&fc->root->d_sb->s_active);
 948	mnt->mnt.mnt_sb		= fc->root->d_sb;
 949	mnt->mnt.mnt_root	= dget(fc->root);
 950	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
 951	mnt->mnt_parent		= mnt;
 952
 953	lock_mount_hash();
 954	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 955	unlock_mount_hash();
 956	return &mnt->mnt;
 957}
 958EXPORT_SYMBOL(vfs_create_mount);
 959
 960struct vfsmount *fc_mount(struct fs_context *fc)
 961{
 962	int err = vfs_get_tree(fc);
 963	if (!err) {
 964		up_write(&fc->root->d_sb->s_umount);
 965		return vfs_create_mount(fc);
 966	}
 967	return ERR_PTR(err);
 968}
 969EXPORT_SYMBOL(fc_mount);
 970
 971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 972				int flags, const char *name,
 973				void *data)
 974{
 975	struct fs_context *fc;
 976	struct vfsmount *mnt;
 977	int ret = 0;
 978
 979	if (!type)
 980		return ERR_PTR(-EINVAL);
 981
 982	fc = fs_context_for_mount(type, flags);
 983	if (IS_ERR(fc))
 984		return ERR_CAST(fc);
 985
 986	if (name)
 987		ret = vfs_parse_fs_string(fc, "source",
 988					  name, strlen(name));
 989	if (!ret)
 990		ret = parse_monolithic_mount_data(fc, data);
 991	if (!ret)
 992		mnt = fc_mount(fc);
 993	else
 994		mnt = ERR_PTR(ret);
 995
 996	put_fs_context(fc);
 997	return mnt;
 998}
 999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003	     const char *name, void *data)
1004{
1005	/* Until it is worked out how to pass the user namespace
1006	 * through from the parent mount to the submount don't support
1007	 * unprivileged mounts with submounts.
1008	 */
1009	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010		return ERR_PTR(-EPERM);
1011
1012	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017					int flag)
1018{
1019	struct super_block *sb = old->mnt.mnt_sb;
1020	struct mount *mnt;
1021	int err;
1022
1023	mnt = alloc_vfsmnt(old->mnt_devname);
1024	if (!mnt)
1025		return ERR_PTR(-ENOMEM);
1026
1027	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028		mnt->mnt_group_id = 0; /* not a peer of original */
1029	else
1030		mnt->mnt_group_id = old->mnt_group_id;
1031
1032	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033		err = mnt_alloc_group_id(mnt);
1034		if (err)
1035			goto out_free;
1036	}
1037
1038	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040
1041	atomic_inc(&sb->s_active);
1042	mnt->mnt.mnt_sb = sb;
1043	mnt->mnt.mnt_root = dget(root);
1044	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045	mnt->mnt_parent = mnt;
1046	lock_mount_hash();
1047	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048	unlock_mount_hash();
1049
1050	if ((flag & CL_SLAVE) ||
1051	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053		mnt->mnt_master = old;
1054		CLEAR_MNT_SHARED(mnt);
1055	} else if (!(flag & CL_PRIVATE)) {
1056		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057			list_add(&mnt->mnt_share, &old->mnt_share);
1058		if (IS_MNT_SLAVE(old))
1059			list_add(&mnt->mnt_slave, &old->mnt_slave);
1060		mnt->mnt_master = old->mnt_master;
1061	} else {
1062		CLEAR_MNT_SHARED(mnt);
1063	}
1064	if (flag & CL_MAKE_SHARED)
1065		set_mnt_shared(mnt);
1066
1067	/* stick the duplicate mount on the same expiry list
1068	 * as the original if that was on one */
1069	if (flag & CL_EXPIRE) {
1070		if (!list_empty(&old->mnt_expire))
1071			list_add(&mnt->mnt_expire, &old->mnt_expire);
1072	}
1073
1074	return mnt;
1075
1076 out_free:
1077	mnt_free_id(mnt);
1078	free_vfsmnt(mnt);
1079	return ERR_PTR(err);
1080}
1081
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084	struct hlist_node *p;
1085	struct mount *m;
1086	/*
1087	 * The warning here probably indicates that somebody messed
1088	 * up a mnt_want/drop_write() pair.  If this happens, the
1089	 * filesystem was probably unable to make r/w->r/o transitions.
1090	 * The locking used to deal with mnt_count decrement provides barriers,
1091	 * so mnt_get_writers() below is safe.
1092	 */
1093	WARN_ON(mnt_get_writers(mnt));
1094	if (unlikely(mnt->mnt_pins.first))
1095		mnt_pin_kill(mnt);
1096	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097		hlist_del(&m->mnt_umount);
1098		mntput(&m->mnt);
1099	}
1100	fsnotify_vfsmount_delete(&mnt->mnt);
1101	dput(mnt->mnt.mnt_root);
1102	deactivate_super(mnt->mnt.mnt_sb);
1103	mnt_free_id(mnt);
1104	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116	struct mount *m, *t;
1117
1118	llist_for_each_entry_safe(m, t, node, mnt_llist)
1119		cleanup_mnt(m);
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
1123static void mntput_no_expire(struct mount *mnt)
1124{
1125	LIST_HEAD(list);
1126
1127	rcu_read_lock();
1128	if (likely(READ_ONCE(mnt->mnt_ns))) {
1129		/*
1130		 * Since we don't do lock_mount_hash() here,
1131		 * ->mnt_ns can change under us.  However, if it's
1132		 * non-NULL, then there's a reference that won't
1133		 * be dropped until after an RCU delay done after
1134		 * turning ->mnt_ns NULL.  So if we observe it
1135		 * non-NULL under rcu_read_lock(), the reference
1136		 * we are dropping is not the final one.
1137		 */
1138		mnt_add_count(mnt, -1);
1139		rcu_read_unlock();
1140		return;
1141	}
1142	lock_mount_hash();
1143	/*
1144	 * make sure that if __legitimize_mnt() has not seen us grab
1145	 * mount_lock, we'll see their refcount increment here.
1146	 */
1147	smp_mb();
1148	mnt_add_count(mnt, -1);
1149	if (mnt_get_count(mnt)) {
1150		rcu_read_unlock();
1151		unlock_mount_hash();
1152		return;
1153	}
1154	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155		rcu_read_unlock();
1156		unlock_mount_hash();
1157		return;
1158	}
1159	mnt->mnt.mnt_flags |= MNT_DOOMED;
1160	rcu_read_unlock();
1161
1162	list_del(&mnt->mnt_instance);
1163
1164	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165		struct mount *p, *tmp;
1166		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1167			__put_mountpoint(unhash_mnt(p), &list);
1168			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169		}
1170	}
1171	unlock_mount_hash();
1172	shrink_dentry_list(&list);
1173
1174	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175		struct task_struct *task = current;
1176		if (likely(!(task->flags & PF_KTHREAD))) {
1177			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178			if (!task_work_add(task, &mnt->mnt_rcu, true))
1179				return;
1180		}
1181		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182			schedule_delayed_work(&delayed_mntput_work, 1);
1183		return;
1184	}
1185	cleanup_mnt(mnt);
1186}
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190	if (mnt) {
1191		struct mount *m = real_mount(mnt);
1192		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193		if (unlikely(m->mnt_expiry_mark))
1194			m->mnt_expiry_mark = 0;
1195		mntput_no_expire(m);
1196	}
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202	if (mnt)
1203		mnt_add_count(real_mount(mnt), 1);
1204	return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 *                          namespace.
1210 *
1211 *  d_mountpoint() can only be used reliably to establish if a dentry is
1212 *  not mounted in any namespace and that common case is handled inline.
1213 *  d_mountpoint() isn't aware of the possibility there may be multiple
1214 *  mounts using a given dentry in a different namespace. This function
1215 *  checks if the passed in path is a mountpoint rather than the dentry
1216 *  alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220	unsigned seq;
1221	bool res;
1222
1223	if (!d_mountpoint(path->dentry))
1224		return false;
1225
1226	rcu_read_lock();
1227	do {
1228		seq = read_seqbegin(&mount_lock);
1229		res = __path_is_mountpoint(path);
1230	} while (read_seqretry(&mount_lock, seq));
1231	rcu_read_unlock();
1232
1233	return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
1237struct vfsmount *mnt_clone_internal(const struct path *path)
1238{
1239	struct mount *p;
1240	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241	if (IS_ERR(p))
1242		return ERR_CAST(p);
1243	p->mnt.mnt_flags |= MNT_INTERNAL;
1244	return &p->mnt;
1245}
1246
1247#ifdef CONFIG_PROC_FS
1248/* iterator; we want it to have access to namespace_sem, thus here... */
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
1251	struct proc_mounts *p = m->private;
1252
1253	down_read(&namespace_sem);
1254	if (p->cached_event == p->ns->event) {
1255		void *v = p->cached_mount;
1256		if (*pos == p->cached_index)
1257			return v;
1258		if (*pos == p->cached_index + 1) {
1259			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260			return p->cached_mount = v;
1261		}
1262	}
1263
1264	p->cached_event = p->ns->event;
1265	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266	p->cached_index = *pos;
1267	return p->cached_mount;
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
1272	struct proc_mounts *p = m->private;
1273
1274	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275	p->cached_index = *pos;
1276	return p->cached_mount;
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
1281	up_read(&namespace_sem);
1282}
1283
1284static int m_show(struct seq_file *m, void *v)
1285{
1286	struct proc_mounts *p = m->private;
1287	struct mount *r = list_entry(v, struct mount, mnt_list);
1288	return p->show(m, &r->mnt);
1289}
1290
1291const struct seq_operations mounts_op = {
1292	.start	= m_start,
1293	.next	= m_next,
1294	.stop	= m_stop,
1295	.show	= m_show,
1296};
1297#endif  /* CONFIG_PROC_FS */
1298
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
1307int may_umount_tree(struct vfsmount *m)
1308{
1309	struct mount *mnt = real_mount(m);
1310	int actual_refs = 0;
1311	int minimum_refs = 0;
1312	struct mount *p;
1313	BUG_ON(!m);
1314
1315	/* write lock needed for mnt_get_count */
1316	lock_mount_hash();
1317	for (p = mnt; p; p = next_mnt(p, mnt)) {
1318		actual_refs += mnt_get_count(p);
1319		minimum_refs += 2;
1320	}
1321	unlock_mount_hash();
1322
1323	if (actual_refs > minimum_refs)
1324		return 0;
1325
1326	return 1;
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
1346	int ret = 1;
1347	down_read(&namespace_sem);
1348	lock_mount_hash();
1349	if (propagate_mount_busy(real_mount(mnt), 2))
1350		ret = 0;
1351	unlock_mount_hash();
1352	up_read(&namespace_sem);
1353	return ret;
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
1358static void namespace_unlock(void)
1359{
1360	struct hlist_head head;
1361	struct hlist_node *p;
1362	struct mount *m;
1363	LIST_HEAD(list);
1364
1365	hlist_move_list(&unmounted, &head);
1366	list_splice_init(&ex_mountpoints, &list);
1367
1368	up_write(&namespace_sem);
1369
1370	shrink_dentry_list(&list);
1371
1372	if (likely(hlist_empty(&head)))
1373		return;
1374
1375	synchronize_rcu_expedited();
1376
1377	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378		hlist_del(&m->mnt_umount);
1379		mntput(&m->mnt);
1380	}
1381}
1382
1383static inline void namespace_lock(void)
1384{
1385	down_write(&namespace_sem);
1386}
1387
1388enum umount_tree_flags {
1389	UMOUNT_SYNC = 1,
1390	UMOUNT_PROPAGATE = 2,
1391	UMOUNT_CONNECTED = 4,
1392};
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396	/* Leaving mounts connected is only valid for lazy umounts */
1397	if (how & UMOUNT_SYNC)
1398		return true;
1399
1400	/* A mount without a parent has nothing to be connected to */
1401	if (!mnt_has_parent(mnt))
1402		return true;
1403
1404	/* Because the reference counting rules change when mounts are
1405	 * unmounted and connected, umounted mounts may not be
1406	 * connected to mounted mounts.
1407	 */
1408	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409		return true;
1410
1411	/* Has it been requested that the mount remain connected? */
1412	if (how & UMOUNT_CONNECTED)
1413		return false;
1414
1415	/* Is the mount locked such that it needs to remain connected? */
1416	if (IS_MNT_LOCKED(mnt))
1417		return false;
1418
1419	/* By default disconnect the mount */
1420	return true;
1421}
1422
1423/*
1424 * mount_lock must be held
1425 * namespace_sem must be held for write
1426 */
1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428{
1429	LIST_HEAD(tmp_list);
1430	struct mount *p;
1431
1432	if (how & UMOUNT_PROPAGATE)
1433		propagate_mount_unlock(mnt);
1434
1435	/* Gather the mounts to umount */
1436	for (p = mnt; p; p = next_mnt(p, mnt)) {
1437		p->mnt.mnt_flags |= MNT_UMOUNT;
1438		list_move(&p->mnt_list, &tmp_list);
1439	}
1440
1441	/* Hide the mounts from mnt_mounts */
1442	list_for_each_entry(p, &tmp_list, mnt_list) {
1443		list_del_init(&p->mnt_child);
1444	}
1445
1446	/* Add propogated mounts to the tmp_list */
1447	if (how & UMOUNT_PROPAGATE)
1448		propagate_umount(&tmp_list);
1449
1450	while (!list_empty(&tmp_list)) {
1451		struct mnt_namespace *ns;
1452		bool disconnect;
1453		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454		list_del_init(&p->mnt_expire);
1455		list_del_init(&p->mnt_list);
1456		ns = p->mnt_ns;
1457		if (ns) {
1458			ns->mounts--;
1459			__touch_mnt_namespace(ns);
1460		}
1461		p->mnt_ns = NULL;
1462		if (how & UMOUNT_SYNC)
1463			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464
1465		disconnect = disconnect_mount(p, how);
1466		if (mnt_has_parent(p)) {
1467			mnt_add_count(p->mnt_parent, -1);
1468			if (!disconnect) {
1469				/* Don't forget about p */
1470				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471			} else {
1472				umount_mnt(p);
1473			}
1474		}
1475		change_mnt_propagation(p, MS_PRIVATE);
1476		if (disconnect)
1477			hlist_add_head(&p->mnt_umount, &unmounted);
1478	}
1479}
1480
1481static void shrink_submounts(struct mount *mnt);
1482
1483static int do_umount_root(struct super_block *sb)
1484{
1485	int ret = 0;
1486
1487	down_write(&sb->s_umount);
1488	if (!sb_rdonly(sb)) {
1489		struct fs_context *fc;
1490
1491		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492						SB_RDONLY);
1493		if (IS_ERR(fc)) {
1494			ret = PTR_ERR(fc);
1495		} else {
1496			ret = parse_monolithic_mount_data(fc, NULL);
1497			if (!ret)
1498				ret = reconfigure_super(fc);
1499			put_fs_context(fc);
1500		}
1501	}
1502	up_write(&sb->s_umount);
1503	return ret;
1504}
1505
1506static int do_umount(struct mount *mnt, int flags)
1507{
1508	struct super_block *sb = mnt->mnt.mnt_sb;
1509	int retval;
1510
1511	retval = security_sb_umount(&mnt->mnt, flags);
1512	if (retval)
1513		return retval;
1514
1515	/*
1516	 * Allow userspace to request a mountpoint be expired rather than
1517	 * unmounting unconditionally. Unmount only happens if:
1518	 *  (1) the mark is already set (the mark is cleared by mntput())
1519	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520	 */
1521	if (flags & MNT_EXPIRE) {
1522		if (&mnt->mnt == current->fs->root.mnt ||
1523		    flags & (MNT_FORCE | MNT_DETACH))
1524			return -EINVAL;
1525
1526		/*
1527		 * probably don't strictly need the lock here if we examined
1528		 * all race cases, but it's a slowpath.
1529		 */
1530		lock_mount_hash();
1531		if (mnt_get_count(mnt) != 2) {
1532			unlock_mount_hash();
1533			return -EBUSY;
1534		}
1535		unlock_mount_hash();
1536
1537		if (!xchg(&mnt->mnt_expiry_mark, 1))
1538			return -EAGAIN;
1539	}
1540
1541	/*
1542	 * If we may have to abort operations to get out of this
1543	 * mount, and they will themselves hold resources we must
1544	 * allow the fs to do things. In the Unix tradition of
1545	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546	 * might fail to complete on the first run through as other tasks
1547	 * must return, and the like. Thats for the mount program to worry
1548	 * about for the moment.
1549	 */
1550
1551	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552		sb->s_op->umount_begin(sb);
1553	}
1554
1555	/*
1556	 * No sense to grab the lock for this test, but test itself looks
1557	 * somewhat bogus. Suggestions for better replacement?
1558	 * Ho-hum... In principle, we might treat that as umount + switch
1559	 * to rootfs. GC would eventually take care of the old vfsmount.
1560	 * Actually it makes sense, especially if rootfs would contain a
1561	 * /reboot - static binary that would close all descriptors and
1562	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563	 */
1564	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565		/*
1566		 * Special case for "unmounting" root ...
1567		 * we just try to remount it readonly.
1568		 */
1569		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570			return -EPERM;
1571		return do_umount_root(sb);
1572	}
1573
1574	namespace_lock();
1575	lock_mount_hash();
1576
1577	/* Recheck MNT_LOCKED with the locks held */
1578	retval = -EINVAL;
1579	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580		goto out;
1581
1582	event++;
1583	if (flags & MNT_DETACH) {
1584		if (!list_empty(&mnt->mnt_list))
1585			umount_tree(mnt, UMOUNT_PROPAGATE);
1586		retval = 0;
1587	} else {
1588		shrink_submounts(mnt);
1589		retval = -EBUSY;
1590		if (!propagate_mount_busy(mnt, 2)) {
1591			if (!list_empty(&mnt->mnt_list))
1592				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593			retval = 0;
1594		}
1595	}
1596out:
1597	unlock_mount_hash();
1598	namespace_unlock();
1599	return retval;
1600}
1601
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614	struct mountpoint *mp;
1615	struct mount *mnt;
1616
1617	namespace_lock();
1618	lock_mount_hash();
1619	mp = lookup_mountpoint(dentry);
1620	if (!mp)
1621		goto out_unlock;
1622
1623	event++;
1624	while (!hlist_empty(&mp->m_list)) {
1625		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627			umount_mnt(mnt);
1628			hlist_add_head(&mnt->mnt_umount, &unmounted);
1629		}
1630		else umount_tree(mnt, UMOUNT_CONNECTED);
1631	}
1632	put_mountpoint(mp);
1633out_unlock:
1634	unlock_mount_hash();
1635	namespace_unlock();
1636}
1637
1638/*
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
1646#ifdef	CONFIG_MANDATORY_FILE_LOCKING
1647static inline bool may_mandlock(void)
1648{
1649	return capable(CAP_SYS_ADMIN);
1650}
1651#else
1652static inline bool may_mandlock(void)
1653{
1654	pr_warn("VFS: \"mand\" mount option not supported");
1655	return false;
1656}
1657#endif
1658
1659/*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
1667int ksys_umount(char __user *name, int flags)
1668{
1669	struct path path;
1670	struct mount *mnt;
1671	int retval;
1672	int lookup_flags = 0;
1673
1674	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675		return -EINVAL;
1676
1677	if (!may_mount())
1678		return -EPERM;
1679
1680	if (!(flags & UMOUNT_NOFOLLOW))
1681		lookup_flags |= LOOKUP_FOLLOW;
1682
1683	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1684	if (retval)
1685		goto out;
1686	mnt = real_mount(path.mnt);
1687	retval = -EINVAL;
1688	if (path.dentry != path.mnt->mnt_root)
1689		goto dput_and_out;
1690	if (!check_mnt(mnt))
1691		goto dput_and_out;
1692	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1693		goto dput_and_out;
1694	retval = -EPERM;
1695	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696		goto dput_and_out;
1697
1698	retval = do_umount(mnt, flags);
1699dput_and_out:
1700	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1701	dput(path.dentry);
1702	mntput_no_expire(mnt);
1703out:
1704	return retval;
1705}
1706
1707SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708{
1709	return ksys_umount(name, flags);
1710}
1711
1712#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713
1714/*
1715 *	The 2.0 compatible umount. No flags.
1716 */
1717SYSCALL_DEFINE1(oldumount, char __user *, name)
1718{
1719	return ksys_umount(name, 0);
1720}
1721
1722#endif
1723
1724static bool is_mnt_ns_file(struct dentry *dentry)
1725{
1726	/* Is this a proxy for a mount namespace? */
1727	return dentry->d_op == &ns_dentry_operations &&
1728	       dentry->d_fsdata == &mntns_operations;
1729}
1730
1731struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1732{
1733	return container_of(ns, struct mnt_namespace, ns);
1734}
1735
1736static bool mnt_ns_loop(struct dentry *dentry)
1737{
1738	/* Could bind mounting the mount namespace inode cause a
1739	 * mount namespace loop?
1740	 */
1741	struct mnt_namespace *mnt_ns;
1742	if (!is_mnt_ns_file(dentry))
1743		return false;
1744
1745	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1746	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1747}
1748
1749struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1750					int flag)
1751{
1752	struct mount *res, *p, *q, *r, *parent;
1753
1754	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1755		return ERR_PTR(-EINVAL);
1756
1757	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1758		return ERR_PTR(-EINVAL);
1759
1760	res = q = clone_mnt(mnt, dentry, flag);
1761	if (IS_ERR(q))
1762		return q;
1763
1764	q->mnt_mountpoint = mnt->mnt_mountpoint;
1765
1766	p = mnt;
1767	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1768		struct mount *s;
1769		if (!is_subdir(r->mnt_mountpoint, dentry))
1770			continue;
1771
1772		for (s = r; s; s = next_mnt(s, r)) {
1773			if (!(flag & CL_COPY_UNBINDABLE) &&
1774			    IS_MNT_UNBINDABLE(s)) {
1775				if (s->mnt.mnt_flags & MNT_LOCKED) {
1776					/* Both unbindable and locked. */
1777					q = ERR_PTR(-EPERM);
1778					goto out;
1779				} else {
1780					s = skip_mnt_tree(s);
1781					continue;
1782				}
1783			}
1784			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1785			    is_mnt_ns_file(s->mnt.mnt_root)) {
1786				s = skip_mnt_tree(s);
1787				continue;
1788			}
1789			while (p != s->mnt_parent) {
1790				p = p->mnt_parent;
1791				q = q->mnt_parent;
1792			}
1793			p = s;
1794			parent = q;
1795			q = clone_mnt(p, p->mnt.mnt_root, flag);
1796			if (IS_ERR(q))
1797				goto out;
1798			lock_mount_hash();
1799			list_add_tail(&q->mnt_list, &res->mnt_list);
1800			attach_mnt(q, parent, p->mnt_mp);
1801			unlock_mount_hash();
1802		}
1803	}
1804	return res;
1805out:
1806	if (res) {
1807		lock_mount_hash();
1808		umount_tree(res, UMOUNT_SYNC);
1809		unlock_mount_hash();
1810	}
1811	return q;
1812}
1813
1814/* Caller should check returned pointer for errors */
1815
1816struct vfsmount *collect_mounts(const struct path *path)
1817{
1818	struct mount *tree;
1819	namespace_lock();
1820	if (!check_mnt(real_mount(path->mnt)))
1821		tree = ERR_PTR(-EINVAL);
1822	else
1823		tree = copy_tree(real_mount(path->mnt), path->dentry,
1824				 CL_COPY_ALL | CL_PRIVATE);
1825	namespace_unlock();
1826	if (IS_ERR(tree))
1827		return ERR_CAST(tree);
1828	return &tree->mnt;
1829}
1830
1831static void free_mnt_ns(struct mnt_namespace *);
1832static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1833
1834void dissolve_on_fput(struct vfsmount *mnt)
1835{
1836	struct mnt_namespace *ns;
1837	namespace_lock();
1838	lock_mount_hash();
1839	ns = real_mount(mnt)->mnt_ns;
1840	if (ns) {
1841		if (is_anon_ns(ns))
1842			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1843		else
1844			ns = NULL;
1845	}
1846	unlock_mount_hash();
1847	namespace_unlock();
1848	if (ns)
1849		free_mnt_ns(ns);
1850}
1851
1852void drop_collected_mounts(struct vfsmount *mnt)
1853{
1854	namespace_lock();
1855	lock_mount_hash();
1856	umount_tree(real_mount(mnt), 0);
1857	unlock_mount_hash();
1858	namespace_unlock();
1859}
1860
1861/**
1862 * clone_private_mount - create a private clone of a path
1863 *
1864 * This creates a new vfsmount, which will be the clone of @path.  The new will
1865 * not be attached anywhere in the namespace and will be private (i.e. changes
1866 * to the originating mount won't be propagated into this).
1867 *
1868 * Release with mntput().
1869 */
1870struct vfsmount *clone_private_mount(const struct path *path)
1871{
1872	struct mount *old_mnt = real_mount(path->mnt);
1873	struct mount *new_mnt;
1874
1875	if (IS_MNT_UNBINDABLE(old_mnt))
1876		return ERR_PTR(-EINVAL);
1877
1878	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1879	if (IS_ERR(new_mnt))
1880		return ERR_CAST(new_mnt);
1881
1882	return &new_mnt->mnt;
1883}
1884EXPORT_SYMBOL_GPL(clone_private_mount);
1885
1886int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1887		   struct vfsmount *root)
1888{
1889	struct mount *mnt;
1890	int res = f(root, arg);
1891	if (res)
1892		return res;
1893	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1894		res = f(&mnt->mnt, arg);
1895		if (res)
1896			return res;
1897	}
1898	return 0;
1899}
1900
1901static void lock_mnt_tree(struct mount *mnt)
1902{
1903	struct mount *p;
1904
1905	for (p = mnt; p; p = next_mnt(p, mnt)) {
1906		int flags = p->mnt.mnt_flags;
1907		/* Don't allow unprivileged users to change mount flags */
1908		flags |= MNT_LOCK_ATIME;
1909
1910		if (flags & MNT_READONLY)
1911			flags |= MNT_LOCK_READONLY;
1912
1913		if (flags & MNT_NODEV)
1914			flags |= MNT_LOCK_NODEV;
1915
1916		if (flags & MNT_NOSUID)
1917			flags |= MNT_LOCK_NOSUID;
1918
1919		if (flags & MNT_NOEXEC)
1920			flags |= MNT_LOCK_NOEXEC;
1921		/* Don't allow unprivileged users to reveal what is under a mount */
1922		if (list_empty(&p->mnt_expire))
1923			flags |= MNT_LOCKED;
1924		p->mnt.mnt_flags = flags;
1925	}
1926}
1927
1928static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1929{
1930	struct mount *p;
1931
1932	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1933		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1934			mnt_release_group_id(p);
1935	}
1936}
1937
1938static int invent_group_ids(struct mount *mnt, bool recurse)
1939{
1940	struct mount *p;
1941
1942	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1943		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1944			int err = mnt_alloc_group_id(p);
1945			if (err) {
1946				cleanup_group_ids(mnt, p);
1947				return err;
1948			}
1949		}
1950	}
1951
1952	return 0;
1953}
1954
1955int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1956{
1957	unsigned int max = READ_ONCE(sysctl_mount_max);
1958	unsigned int mounts = 0, old, pending, sum;
1959	struct mount *p;
1960
1961	for (p = mnt; p; p = next_mnt(p, mnt))
1962		mounts++;
1963
1964	old = ns->mounts;
1965	pending = ns->pending_mounts;
1966	sum = old + pending;
1967	if ((old > sum) ||
1968	    (pending > sum) ||
1969	    (max < sum) ||
1970	    (mounts > (max - sum)))
1971		return -ENOSPC;
1972
1973	ns->pending_mounts = pending + mounts;
1974	return 0;
1975}
1976
1977/*
1978 *  @source_mnt : mount tree to be attached
1979 *  @nd         : place the mount tree @source_mnt is attached
1980 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1981 *  		   store the parent mount and mountpoint dentry.
1982 *  		   (done when source_mnt is moved)
1983 *
1984 *  NOTE: in the table below explains the semantics when a source mount
1985 *  of a given type is attached to a destination mount of a given type.
1986 * ---------------------------------------------------------------------------
1987 * |         BIND MOUNT OPERATION                                            |
1988 * |**************************************************************************
1989 * | source-->| shared        |       private  |       slave    | unbindable |
1990 * | dest     |               |                |                |            |
1991 * |   |      |               |                |                |            |
1992 * |   v      |               |                |                |            |
1993 * |**************************************************************************
1994 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1995 * |          |               |                |                |            |
1996 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1997 * ***************************************************************************
1998 * A bind operation clones the source mount and mounts the clone on the
1999 * destination mount.
2000 *
2001 * (++)  the cloned mount is propagated to all the mounts in the propagation
2002 * 	 tree of the destination mount and the cloned mount is added to
2003 * 	 the peer group of the source mount.
2004 * (+)   the cloned mount is created under the destination mount and is marked
2005 *       as shared. The cloned mount is added to the peer group of the source
2006 *       mount.
2007 * (+++) the mount is propagated to all the mounts in the propagation tree
2008 *       of the destination mount and the cloned mount is made slave
2009 *       of the same master as that of the source mount. The cloned mount
2010 *       is marked as 'shared and slave'.
2011 * (*)   the cloned mount is made a slave of the same master as that of the
2012 * 	 source mount.
2013 *
2014 * ---------------------------------------------------------------------------
2015 * |         		MOVE MOUNT OPERATION                                 |
2016 * |**************************************************************************
2017 * | source-->| shared        |       private  |       slave    | unbindable |
2018 * | dest     |               |                |                |            |
2019 * |   |      |               |                |                |            |
2020 * |   v      |               |                |                |            |
2021 * |**************************************************************************
2022 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2023 * |          |               |                |                |            |
2024 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2025 * ***************************************************************************
2026 *
2027 * (+)  the mount is moved to the destination. And is then propagated to
2028 * 	all the mounts in the propagation tree of the destination mount.
2029 * (+*)  the mount is moved to the destination.
2030 * (+++)  the mount is moved to the destination and is then propagated to
2031 * 	all the mounts belonging to the destination mount's propagation tree.
2032 * 	the mount is marked as 'shared and slave'.
2033 * (*)	the mount continues to be a slave at the new location.
2034 *
2035 * if the source mount is a tree, the operations explained above is
2036 * applied to each mount in the tree.
2037 * Must be called without spinlocks held, since this function can sleep
2038 * in allocations.
2039 */
2040static int attach_recursive_mnt(struct mount *source_mnt,
2041			struct mount *dest_mnt,
2042			struct mountpoint *dest_mp,
2043			bool moving)
2044{
2045	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2046	HLIST_HEAD(tree_list);
2047	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2048	struct mountpoint *smp;
2049	struct mount *child, *p;
2050	struct hlist_node *n;
2051	int err;
2052
2053	/* Preallocate a mountpoint in case the new mounts need
2054	 * to be tucked under other mounts.
2055	 */
2056	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2057	if (IS_ERR(smp))
2058		return PTR_ERR(smp);
2059
2060	/* Is there space to add these mounts to the mount namespace? */
2061	if (!moving) {
2062		err = count_mounts(ns, source_mnt);
2063		if (err)
2064			goto out;
2065	}
2066
2067	if (IS_MNT_SHARED(dest_mnt)) {
2068		err = invent_group_ids(source_mnt, true);
2069		if (err)
2070			goto out;
2071		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2072		lock_mount_hash();
2073		if (err)
2074			goto out_cleanup_ids;
2075		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2076			set_mnt_shared(p);
2077	} else {
2078		lock_mount_hash();
2079	}
2080	if (moving) {
2081		unhash_mnt(source_mnt);
2082		attach_mnt(source_mnt, dest_mnt, dest_mp);
2083		touch_mnt_namespace(source_mnt->mnt_ns);
2084	} else {
2085		if (source_mnt->mnt_ns) {
2086			/* move from anon - the caller will destroy */
2087			list_del_init(&source_mnt->mnt_ns->list);
2088		}
2089		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2090		commit_tree(source_mnt);
2091	}
2092
2093	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2094		struct mount *q;
2095		hlist_del_init(&child->mnt_hash);
2096		q = __lookup_mnt(&child->mnt_parent->mnt,
2097				 child->mnt_mountpoint);
2098		if (q)
2099			mnt_change_mountpoint(child, smp, q);
2100		/* Notice when we are propagating across user namespaces */
2101		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2102			lock_mnt_tree(child);
2103		child->mnt.mnt_flags &= ~MNT_LOCKED;
2104		commit_tree(child);
2105	}
2106	put_mountpoint(smp);
2107	unlock_mount_hash();
2108
2109	return 0;
2110
2111 out_cleanup_ids:
2112	while (!hlist_empty(&tree_list)) {
2113		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2114		child->mnt_parent->mnt_ns->pending_mounts = 0;
2115		umount_tree(child, UMOUNT_SYNC);
2116	}
2117	unlock_mount_hash();
2118	cleanup_group_ids(source_mnt, NULL);
2119 out:
2120	ns->pending_mounts = 0;
2121
2122	read_seqlock_excl(&mount_lock);
2123	put_mountpoint(smp);
2124	read_sequnlock_excl(&mount_lock);
2125
2126	return err;
2127}
2128
2129static struct mountpoint *lock_mount(struct path *path)
2130{
2131	struct vfsmount *mnt;
2132	struct dentry *dentry = path->dentry;
2133retry:
2134	inode_lock(dentry->d_inode);
2135	if (unlikely(cant_mount(dentry))) {
2136		inode_unlock(dentry->d_inode);
2137		return ERR_PTR(-ENOENT);
2138	}
2139	namespace_lock();
2140	mnt = lookup_mnt(path);
2141	if (likely(!mnt)) {
2142		struct mountpoint *mp = get_mountpoint(dentry);
2143		if (IS_ERR(mp)) {
2144			namespace_unlock();
2145			inode_unlock(dentry->d_inode);
2146			return mp;
2147		}
2148		return mp;
2149	}
2150	namespace_unlock();
2151	inode_unlock(path->dentry->d_inode);
2152	path_put(path);
2153	path->mnt = mnt;
2154	dentry = path->dentry = dget(mnt->mnt_root);
2155	goto retry;
2156}
2157
2158static void unlock_mount(struct mountpoint *where)
2159{
2160	struct dentry *dentry = where->m_dentry;
2161
2162	read_seqlock_excl(&mount_lock);
2163	put_mountpoint(where);
2164	read_sequnlock_excl(&mount_lock);
2165
2166	namespace_unlock();
2167	inode_unlock(dentry->d_inode);
2168}
2169
2170static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2171{
2172	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2173		return -EINVAL;
2174
2175	if (d_is_dir(mp->m_dentry) !=
2176	      d_is_dir(mnt->mnt.mnt_root))
2177		return -ENOTDIR;
2178
2179	return attach_recursive_mnt(mnt, p, mp, false);
2180}
2181
2182/*
2183 * Sanity check the flags to change_mnt_propagation.
2184 */
2185
2186static int flags_to_propagation_type(int ms_flags)
2187{
2188	int type = ms_flags & ~(MS_REC | MS_SILENT);
2189
2190	/* Fail if any non-propagation flags are set */
2191	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2192		return 0;
2193	/* Only one propagation flag should be set */
2194	if (!is_power_of_2(type))
2195		return 0;
2196	return type;
2197}
2198
2199/*
2200 * recursively change the type of the mountpoint.
2201 */
2202static int do_change_type(struct path *path, int ms_flags)
2203{
2204	struct mount *m;
2205	struct mount *mnt = real_mount(path->mnt);
2206	int recurse = ms_flags & MS_REC;
2207	int type;
2208	int err = 0;
2209
2210	if (path->dentry != path->mnt->mnt_root)
2211		return -EINVAL;
2212
2213	type = flags_to_propagation_type(ms_flags);
2214	if (!type)
2215		return -EINVAL;
2216
2217	namespace_lock();
2218	if (type == MS_SHARED) {
2219		err = invent_group_ids(mnt, recurse);
2220		if (err)
2221			goto out_unlock;
2222	}
2223
2224	lock_mount_hash();
2225	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2226		change_mnt_propagation(m, type);
2227	unlock_mount_hash();
2228
2229 out_unlock:
2230	namespace_unlock();
2231	return err;
2232}
2233
2234static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235{
2236	struct mount *child;
2237	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2238		if (!is_subdir(child->mnt_mountpoint, dentry))
2239			continue;
2240
2241		if (child->mnt.mnt_flags & MNT_LOCKED)
2242			return true;
2243	}
2244	return false;
2245}
2246
2247static struct mount *__do_loopback(struct path *old_path, int recurse)
2248{
2249	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2250
2251	if (IS_MNT_UNBINDABLE(old))
2252		return mnt;
2253
2254	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2255		return mnt;
2256
2257	if (!recurse && has_locked_children(old, old_path->dentry))
2258		return mnt;
2259
2260	if (recurse)
2261		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2262	else
2263		mnt = clone_mnt(old, old_path->dentry, 0);
2264
2265	if (!IS_ERR(mnt))
2266		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267
2268	return mnt;
2269}
2270
2271/*
2272 * do loopback mount.
2273 */
2274static int do_loopback(struct path *path, const char *old_name,
2275				int recurse)
2276{
2277	struct path old_path;
2278	struct mount *mnt = NULL, *parent;
2279	struct mountpoint *mp;
2280	int err;
2281	if (!old_name || !*old_name)
2282		return -EINVAL;
2283	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2284	if (err)
2285		return err;
2286
2287	err = -EINVAL;
2288	if (mnt_ns_loop(old_path.dentry))
2289		goto out;
2290
2291	mp = lock_mount(path);
2292	if (IS_ERR(mp)) {
2293		err = PTR_ERR(mp);
2294		goto out;
2295	}
2296
2297	parent = real_mount(path->mnt);
2298	if (!check_mnt(parent))
2299		goto out2;
2300
2301	mnt = __do_loopback(&old_path, recurse);
2302	if (IS_ERR(mnt)) {
2303		err = PTR_ERR(mnt);
2304		goto out2;
2305	}
2306
2307	err = graft_tree(mnt, parent, mp);
2308	if (err) {
2309		lock_mount_hash();
2310		umount_tree(mnt, UMOUNT_SYNC);
2311		unlock_mount_hash();
2312	}
2313out2:
2314	unlock_mount(mp);
2315out:
2316	path_put(&old_path);
2317	return err;
2318}
2319
2320static struct file *open_detached_copy(struct path *path, bool recursive)
2321{
2322	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2323	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2324	struct mount *mnt, *p;
2325	struct file *file;
2326
2327	if (IS_ERR(ns))
2328		return ERR_CAST(ns);
2329
2330	namespace_lock();
2331	mnt = __do_loopback(path, recursive);
2332	if (IS_ERR(mnt)) {
2333		namespace_unlock();
2334		free_mnt_ns(ns);
2335		return ERR_CAST(mnt);
2336	}
2337
2338	lock_mount_hash();
2339	for (p = mnt; p; p = next_mnt(p, mnt)) {
2340		p->mnt_ns = ns;
2341		ns->mounts++;
2342	}
2343	ns->root = mnt;
2344	list_add_tail(&ns->list, &mnt->mnt_list);
2345	mntget(&mnt->mnt);
2346	unlock_mount_hash();
2347	namespace_unlock();
2348
2349	mntput(path->mnt);
2350	path->mnt = &mnt->mnt;
2351	file = dentry_open(path, O_PATH, current_cred());
2352	if (IS_ERR(file))
2353		dissolve_on_fput(path->mnt);
2354	else
2355		file->f_mode |= FMODE_NEED_UNMOUNT;
2356	return file;
2357}
2358
2359SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2360{
2361	struct file *file;
2362	struct path path;
2363	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2364	bool detached = flags & OPEN_TREE_CLONE;
2365	int error;
2366	int fd;
2367
2368	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2369
2370	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2371		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2372		      OPEN_TREE_CLOEXEC))
2373		return -EINVAL;
2374
2375	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2376		return -EINVAL;
2377
2378	if (flags & AT_NO_AUTOMOUNT)
2379		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2380	if (flags & AT_SYMLINK_NOFOLLOW)
2381		lookup_flags &= ~LOOKUP_FOLLOW;
2382	if (flags & AT_EMPTY_PATH)
2383		lookup_flags |= LOOKUP_EMPTY;
2384
2385	if (detached && !may_mount())
2386		return -EPERM;
2387
2388	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2389	if (fd < 0)
2390		return fd;
2391
2392	error = user_path_at(dfd, filename, lookup_flags, &path);
2393	if (unlikely(error)) {
2394		file = ERR_PTR(error);
2395	} else {
2396		if (detached)
2397			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2398		else
2399			file = dentry_open(&path, O_PATH, current_cred());
2400		path_put(&path);
2401	}
2402	if (IS_ERR(file)) {
2403		put_unused_fd(fd);
2404		return PTR_ERR(file);
2405	}
2406	fd_install(fd, file);
2407	return fd;
2408}
2409
2410/*
2411 * Don't allow locked mount flags to be cleared.
2412 *
2413 * No locks need to be held here while testing the various MNT_LOCK
2414 * flags because those flags can never be cleared once they are set.
2415 */
2416static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2417{
2418	unsigned int fl = mnt->mnt.mnt_flags;
2419
2420	if ((fl & MNT_LOCK_READONLY) &&
2421	    !(mnt_flags & MNT_READONLY))
2422		return false;
2423
2424	if ((fl & MNT_LOCK_NODEV) &&
2425	    !(mnt_flags & MNT_NODEV))
2426		return false;
2427
2428	if ((fl & MNT_LOCK_NOSUID) &&
2429	    !(mnt_flags & MNT_NOSUID))
2430		return false;
2431
2432	if ((fl & MNT_LOCK_NOEXEC) &&
2433	    !(mnt_flags & MNT_NOEXEC))
2434		return false;
2435
2436	if ((fl & MNT_LOCK_ATIME) &&
2437	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2438		return false;
2439
2440	return true;
2441}
2442
2443static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2444{
2445	bool readonly_request = (mnt_flags & MNT_READONLY);
2446
2447	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2448		return 0;
2449
2450	if (readonly_request)
2451		return mnt_make_readonly(mnt);
2452
2453	return __mnt_unmake_readonly(mnt);
2454}
2455
2456/*
2457 * Update the user-settable attributes on a mount.  The caller must hold
2458 * sb->s_umount for writing.
2459 */
2460static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2461{
2462	lock_mount_hash();
2463	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2464	mnt->mnt.mnt_flags = mnt_flags;
2465	touch_mnt_namespace(mnt->mnt_ns);
2466	unlock_mount_hash();
2467}
2468
2469static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2470{
2471	struct super_block *sb = mnt->mnt_sb;
2472
2473	if (!__mnt_is_readonly(mnt) &&
2474	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2475		char *buf = (char *)__get_free_page(GFP_KERNEL);
2476		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2477		struct tm tm;
2478
2479		time64_to_tm(sb->s_time_max, 0, &tm);
2480
2481		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2482			sb->s_type->name,
2483			is_mounted(mnt) ? "remounted" : "mounted",
2484			mntpath,
2485			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2486
2487		free_page((unsigned long)buf);
2488	}
2489}
2490
2491/*
2492 * Handle reconfiguration of the mountpoint only without alteration of the
2493 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2494 * to mount(2).
2495 */
2496static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2497{
2498	struct super_block *sb = path->mnt->mnt_sb;
2499	struct mount *mnt = real_mount(path->mnt);
2500	int ret;
2501
2502	if (!check_mnt(mnt))
2503		return -EINVAL;
2504
2505	if (path->dentry != mnt->mnt.mnt_root)
2506		return -EINVAL;
2507
2508	if (!can_change_locked_flags(mnt, mnt_flags))
2509		return -EPERM;
2510
2511	down_write(&sb->s_umount);
2512	ret = change_mount_ro_state(mnt, mnt_flags);
2513	if (ret == 0)
2514		set_mount_attributes(mnt, mnt_flags);
2515	up_write(&sb->s_umount);
2516
2517	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2518
2519	return ret;
2520}
2521
2522/*
2523 * change filesystem flags. dir should be a physical root of filesystem.
2524 * If you've mounted a non-root directory somewhere and want to do remount
2525 * on it - tough luck.
2526 */
2527static int do_remount(struct path *path, int ms_flags, int sb_flags,
2528		      int mnt_flags, void *data)
2529{
2530	int err;
2531	struct super_block *sb = path->mnt->mnt_sb;
2532	struct mount *mnt = real_mount(path->mnt);
2533	struct fs_context *fc;
2534
2535	if (!check_mnt(mnt))
2536		return -EINVAL;
2537
2538	if (path->dentry != path->mnt->mnt_root)
2539		return -EINVAL;
2540
2541	if (!can_change_locked_flags(mnt, mnt_flags))
2542		return -EPERM;
2543
2544	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2545	if (IS_ERR(fc))
2546		return PTR_ERR(fc);
2547
2548	err = parse_monolithic_mount_data(fc, data);
2549	if (!err) {
2550		down_write(&sb->s_umount);
2551		err = -EPERM;
2552		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2553			err = reconfigure_super(fc);
2554			if (!err)
2555				set_mount_attributes(mnt, mnt_flags);
2556		}
2557		up_write(&sb->s_umount);
2558	}
2559
2560	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2561
2562	put_fs_context(fc);
2563	return err;
2564}
2565
2566static inline int tree_contains_unbindable(struct mount *mnt)
2567{
2568	struct mount *p;
2569	for (p = mnt; p; p = next_mnt(p, mnt)) {
2570		if (IS_MNT_UNBINDABLE(p))
2571			return 1;
2572	}
2573	return 0;
2574}
2575
2576/*
2577 * Check that there aren't references to earlier/same mount namespaces in the
2578 * specified subtree.  Such references can act as pins for mount namespaces
2579 * that aren't checked by the mount-cycle checking code, thereby allowing
2580 * cycles to be made.
2581 */
2582static bool check_for_nsfs_mounts(struct mount *subtree)
2583{
2584	struct mount *p;
2585	bool ret = false;
2586
2587	lock_mount_hash();
2588	for (p = subtree; p; p = next_mnt(p, subtree))
2589		if (mnt_ns_loop(p->mnt.mnt_root))
2590			goto out;
2591
2592	ret = true;
2593out:
2594	unlock_mount_hash();
2595	return ret;
2596}
2597
2598static int do_move_mount(struct path *old_path, struct path *new_path)
2599{
2600	struct mnt_namespace *ns;
2601	struct mount *p;
2602	struct mount *old;
2603	struct mount *parent;
2604	struct mountpoint *mp, *old_mp;
2605	int err;
2606	bool attached;
2607
2608	mp = lock_mount(new_path);
2609	if (IS_ERR(mp))
2610		return PTR_ERR(mp);
2611
2612	old = real_mount(old_path->mnt);
2613	p = real_mount(new_path->mnt);
2614	parent = old->mnt_parent;
2615	attached = mnt_has_parent(old);
2616	old_mp = old->mnt_mp;
2617	ns = old->mnt_ns;
2618
2619	err = -EINVAL;
2620	/* The mountpoint must be in our namespace. */
2621	if (!check_mnt(p))
2622		goto out;
2623
2624	/* The thing moved must be mounted... */
2625	if (!is_mounted(&old->mnt))
2626		goto out;
2627
2628	/* ... and either ours or the root of anon namespace */
2629	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2630		goto out;
2631
2632	if (old->mnt.mnt_flags & MNT_LOCKED)
2633		goto out;
2634
2635	if (old_path->dentry != old_path->mnt->mnt_root)
2636		goto out;
2637
2638	if (d_is_dir(new_path->dentry) !=
2639	    d_is_dir(old_path->dentry))
2640		goto out;
2641	/*
2642	 * Don't move a mount residing in a shared parent.
2643	 */
2644	if (attached && IS_MNT_SHARED(parent))
2645		goto out;
2646	/*
2647	 * Don't move a mount tree containing unbindable mounts to a destination
2648	 * mount which is shared.
2649	 */
2650	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2651		goto out;
2652	err = -ELOOP;
2653	if (!check_for_nsfs_mounts(old))
2654		goto out;
2655	for (; mnt_has_parent(p); p = p->mnt_parent)
2656		if (p == old)
2657			goto out;
2658
2659	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2660				   attached);
2661	if (err)
2662		goto out;
2663
2664	/* if the mount is moved, it should no longer be expire
2665	 * automatically */
2666	list_del_init(&old->mnt_expire);
2667	if (attached)
2668		put_mountpoint(old_mp);
2669out:
2670	unlock_mount(mp);
2671	if (!err) {
2672		if (attached)
2673			mntput_no_expire(parent);
2674		else
2675			free_mnt_ns(ns);
2676	}
2677	return err;
2678}
2679
2680static int do_move_mount_old(struct path *path, const char *old_name)
2681{
2682	struct path old_path;
2683	int err;
2684
2685	if (!old_name || !*old_name)
2686		return -EINVAL;
2687
2688	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2689	if (err)
2690		return err;
2691
2692	err = do_move_mount(&old_path, path);
2693	path_put(&old_path);
2694	return err;
2695}
2696
2697/*
2698 * add a mount into a namespace's mount tree
2699 */
2700static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2701{
2702	struct mountpoint *mp;
2703	struct mount *parent;
2704	int err;
2705
2706	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2707
2708	mp = lock_mount(path);
2709	if (IS_ERR(mp))
2710		return PTR_ERR(mp);
2711
2712	parent = real_mount(path->mnt);
2713	err = -EINVAL;
2714	if (unlikely(!check_mnt(parent))) {
2715		/* that's acceptable only for automounts done in private ns */
2716		if (!(mnt_flags & MNT_SHRINKABLE))
2717			goto unlock;
2718		/* ... and for those we'd better have mountpoint still alive */
2719		if (!parent->mnt_ns)
2720			goto unlock;
2721	}
2722
2723	/* Refuse the same filesystem on the same mount point */
2724	err = -EBUSY;
2725	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2726	    path->mnt->mnt_root == path->dentry)
2727		goto unlock;
2728
2729	err = -EINVAL;
2730	if (d_is_symlink(newmnt->mnt.mnt_root))
2731		goto unlock;
2732
2733	newmnt->mnt.mnt_flags = mnt_flags;
2734	err = graft_tree(newmnt, parent, mp);
2735
2736unlock:
2737	unlock_mount(mp);
2738	return err;
2739}
2740
2741static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2742
2743/*
2744 * Create a new mount using a superblock configuration and request it
2745 * be added to the namespace tree.
2746 */
2747static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2748			   unsigned int mnt_flags)
2749{
2750	struct vfsmount *mnt;
2751	struct super_block *sb = fc->root->d_sb;
2752	int error;
2753
2754	error = security_sb_kern_mount(sb);
2755	if (!error && mount_too_revealing(sb, &mnt_flags))
2756		error = -EPERM;
2757
2758	if (unlikely(error)) {
2759		fc_drop_locked(fc);
2760		return error;
2761	}
2762
2763	up_write(&sb->s_umount);
2764
2765	mnt = vfs_create_mount(fc);
2766	if (IS_ERR(mnt))
2767		return PTR_ERR(mnt);
2768
2769	mnt_warn_timestamp_expiry(mountpoint, mnt);
2770
2771	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2772	if (error < 0)
2773		mntput(mnt);
2774	return error;
2775}
2776
2777/*
2778 * create a new mount for userspace and request it to be added into the
2779 * namespace's tree
2780 */
2781static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2782			int mnt_flags, const char *name, void *data)
2783{
2784	struct file_system_type *type;
2785	struct fs_context *fc;
2786	const char *subtype = NULL;
2787	int err = 0;
2788
2789	if (!fstype)
2790		return -EINVAL;
2791
2792	type = get_fs_type(fstype);
2793	if (!type)
2794		return -ENODEV;
2795
2796	if (type->fs_flags & FS_HAS_SUBTYPE) {
2797		subtype = strchr(fstype, '.');
2798		if (subtype) {
2799			subtype++;
2800			if (!*subtype) {
2801				put_filesystem(type);
2802				return -EINVAL;
2803			}
2804		}
2805	}
2806
2807	fc = fs_context_for_mount(type, sb_flags);
2808	put_filesystem(type);
2809	if (IS_ERR(fc))
2810		return PTR_ERR(fc);
2811
2812	if (subtype)
2813		err = vfs_parse_fs_string(fc, "subtype",
2814					  subtype, strlen(subtype));
2815	if (!err && name)
2816		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2817	if (!err)
2818		err = parse_monolithic_mount_data(fc, data);
2819	if (!err && !mount_capable(fc))
2820		err = -EPERM;
2821	if (!err)
2822		err = vfs_get_tree(fc);
2823	if (!err)
2824		err = do_new_mount_fc(fc, path, mnt_flags);
2825
2826	put_fs_context(fc);
2827	return err;
2828}
2829
2830int finish_automount(struct vfsmount *m, struct path *path)
2831{
2832	struct mount *mnt = real_mount(m);
2833	int err;
2834	/* The new mount record should have at least 2 refs to prevent it being
2835	 * expired before we get a chance to add it
2836	 */
2837	BUG_ON(mnt_get_count(mnt) < 2);
2838
2839	if (m->mnt_sb == path->mnt->mnt_sb &&
2840	    m->mnt_root == path->dentry) {
2841		err = -ELOOP;
2842		goto fail;
2843	}
2844
2845	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2846	if (!err)
2847		return 0;
2848fail:
2849	/* remove m from any expiration list it may be on */
2850	if (!list_empty(&mnt->mnt_expire)) {
2851		namespace_lock();
2852		list_del_init(&mnt->mnt_expire);
2853		namespace_unlock();
2854	}
2855	mntput(m);
2856	mntput(m);
2857	return err;
2858}
2859
2860/**
2861 * mnt_set_expiry - Put a mount on an expiration list
2862 * @mnt: The mount to list.
2863 * @expiry_list: The list to add the mount to.
2864 */
2865void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2866{
2867	namespace_lock();
2868
2869	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2870
2871	namespace_unlock();
2872}
2873EXPORT_SYMBOL(mnt_set_expiry);
2874
2875/*
2876 * process a list of expirable mountpoints with the intent of discarding any
2877 * mountpoints that aren't in use and haven't been touched since last we came
2878 * here
2879 */
2880void mark_mounts_for_expiry(struct list_head *mounts)
2881{
2882	struct mount *mnt, *next;
2883	LIST_HEAD(graveyard);
2884
2885	if (list_empty(mounts))
2886		return;
2887
2888	namespace_lock();
2889	lock_mount_hash();
2890
2891	/* extract from the expiration list every vfsmount that matches the
2892	 * following criteria:
2893	 * - only referenced by its parent vfsmount
2894	 * - still marked for expiry (marked on the last call here; marks are
2895	 *   cleared by mntput())
2896	 */
2897	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2898		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2899			propagate_mount_busy(mnt, 1))
2900			continue;
2901		list_move(&mnt->mnt_expire, &graveyard);
2902	}
2903	while (!list_empty(&graveyard)) {
2904		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2905		touch_mnt_namespace(mnt->mnt_ns);
2906		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2907	}
2908	unlock_mount_hash();
2909	namespace_unlock();
2910}
2911
2912EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2913
2914/*
2915 * Ripoff of 'select_parent()'
2916 *
2917 * search the list of submounts for a given mountpoint, and move any
2918 * shrinkable submounts to the 'graveyard' list.
2919 */
2920static int select_submounts(struct mount *parent, struct list_head *graveyard)
2921{
2922	struct mount *this_parent = parent;
2923	struct list_head *next;
2924	int found = 0;
2925
2926repeat:
2927	next = this_parent->mnt_mounts.next;
2928resume:
2929	while (next != &this_parent->mnt_mounts) {
2930		struct list_head *tmp = next;
2931		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2932
2933		next = tmp->next;
2934		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2935			continue;
2936		/*
2937		 * Descend a level if the d_mounts list is non-empty.
2938		 */
2939		if (!list_empty(&mnt->mnt_mounts)) {
2940			this_parent = mnt;
2941			goto repeat;
2942		}
2943
2944		if (!propagate_mount_busy(mnt, 1)) {
2945			list_move_tail(&mnt->mnt_expire, graveyard);
2946			found++;
2947		}
2948	}
2949	/*
2950	 * All done at this level ... ascend and resume the search
2951	 */
2952	if (this_parent != parent) {
2953		next = this_parent->mnt_child.next;
2954		this_parent = this_parent->mnt_parent;
2955		goto resume;
2956	}
2957	return found;
2958}
2959
2960/*
2961 * process a list of expirable mountpoints with the intent of discarding any
2962 * submounts of a specific parent mountpoint
2963 *
2964 * mount_lock must be held for write
2965 */
2966static void shrink_submounts(struct mount *mnt)
2967{
2968	LIST_HEAD(graveyard);
2969	struct mount *m;
2970
2971	/* extract submounts of 'mountpoint' from the expiration list */
2972	while (select_submounts(mnt, &graveyard)) {
2973		while (!list_empty(&graveyard)) {
2974			m = list_first_entry(&graveyard, struct mount,
2975						mnt_expire);
2976			touch_mnt_namespace(m->mnt_ns);
2977			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2978		}
2979	}
2980}
2981
2982/*
2983 * Some copy_from_user() implementations do not return the exact number of
2984 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2985 * Note that this function differs from copy_from_user() in that it will oops
2986 * on bad values of `to', rather than returning a short copy.
2987 */
2988static long exact_copy_from_user(void *to, const void __user * from,
2989				 unsigned long n)
2990{
2991	char *t = to;
2992	const char __user *f = from;
2993	char c;
2994
2995	if (!access_ok(from, n))
2996		return n;
2997
2998	while (n) {
2999		if (__get_user(c, f)) {
3000			memset(t, 0, n);
3001			break;
3002		}
3003		*t++ = c;
3004		f++;
3005		n--;
3006	}
3007	return n;
3008}
3009
3010void *copy_mount_options(const void __user * data)
3011{
3012	int i;
3013	unsigned long size;
3014	char *copy;
3015
3016	if (!data)
3017		return NULL;
3018
3019	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3020	if (!copy)
3021		return ERR_PTR(-ENOMEM);
3022
3023	/* We only care that *some* data at the address the user
3024	 * gave us is valid.  Just in case, we'll zero
3025	 * the remainder of the page.
3026	 */
3027	/* copy_from_user cannot cross TASK_SIZE ! */
3028	size = TASK_SIZE - (unsigned long)untagged_addr(data);
3029	if (size > PAGE_SIZE)
3030		size = PAGE_SIZE;
3031
3032	i = size - exact_copy_from_user(copy, data, size);
3033	if (!i) {
3034		kfree(copy);
3035		return ERR_PTR(-EFAULT);
3036	}
3037	if (i != PAGE_SIZE)
3038		memset(copy + i, 0, PAGE_SIZE - i);
3039	return copy;
3040}
3041
3042char *copy_mount_string(const void __user *data)
3043{
3044	return data ? strndup_user(data, PATH_MAX) : NULL;
3045}
3046
3047/*
3048 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3049 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3050 *
3051 * data is a (void *) that can point to any structure up to
3052 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3053 * information (or be NULL).
3054 *
3055 * Pre-0.97 versions of mount() didn't have a flags word.
3056 * When the flags word was introduced its top half was required
3057 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3058 * Therefore, if this magic number is present, it carries no information
3059 * and must be discarded.
3060 */
3061long do_mount(const char *dev_name, const char __user *dir_name,
3062		const char *type_page, unsigned long flags, void *data_page)
3063{
3064	struct path path;
3065	unsigned int mnt_flags = 0, sb_flags;
3066	int retval = 0;
3067
3068	/* Discard magic */
3069	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3070		flags &= ~MS_MGC_MSK;
3071
3072	/* Basic sanity checks */
3073	if (data_page)
3074		((char *)data_page)[PAGE_SIZE - 1] = 0;
3075
3076	if (flags & MS_NOUSER)
3077		return -EINVAL;
3078
3079	/* ... and get the mountpoint */
3080	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3081	if (retval)
3082		return retval;
3083
3084	retval = security_sb_mount(dev_name, &path,
3085				   type_page, flags, data_page);
3086	if (!retval && !may_mount())
3087		retval = -EPERM;
3088	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3089		retval = -EPERM;
3090	if (retval)
3091		goto dput_out;
3092
3093	/* Default to relatime unless overriden */
3094	if (!(flags & MS_NOATIME))
3095		mnt_flags |= MNT_RELATIME;
3096
3097	/* Separate the per-mountpoint flags */
3098	if (flags & MS_NOSUID)
3099		mnt_flags |= MNT_NOSUID;
3100	if (flags & MS_NODEV)
3101		mnt_flags |= MNT_NODEV;
3102	if (flags & MS_NOEXEC)
3103		mnt_flags |= MNT_NOEXEC;
3104	if (flags & MS_NOATIME)
3105		mnt_flags |= MNT_NOATIME;
3106	if (flags & MS_NODIRATIME)
3107		mnt_flags |= MNT_NODIRATIME;
3108	if (flags & MS_STRICTATIME)
3109		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3110	if (flags & MS_RDONLY)
3111		mnt_flags |= MNT_READONLY;
3112
3113	/* The default atime for remount is preservation */
3114	if ((flags & MS_REMOUNT) &&
3115	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3116		       MS_STRICTATIME)) == 0)) {
3117		mnt_flags &= ~MNT_ATIME_MASK;
3118		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3119	}
3120
3121	sb_flags = flags & (SB_RDONLY |
3122			    SB_SYNCHRONOUS |
3123			    SB_MANDLOCK |
3124			    SB_DIRSYNC |
3125			    SB_SILENT |
3126			    SB_POSIXACL |
3127			    SB_LAZYTIME |
3128			    SB_I_VERSION);
3129
3130	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3131		retval = do_reconfigure_mnt(&path, mnt_flags);
3132	else if (flags & MS_REMOUNT)
3133		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3134				    data_page);
3135	else if (flags & MS_BIND)
3136		retval = do_loopback(&path, dev_name, flags & MS_REC);
3137	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3138		retval = do_change_type(&path, flags);
3139	else if (flags & MS_MOVE)
3140		retval = do_move_mount_old(&path, dev_name);
3141	else
3142		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3143				      dev_name, data_page);
3144dput_out:
3145	path_put(&path);
3146	return retval;
3147}
3148
3149static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3150{
3151	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3152}
3153
3154static void dec_mnt_namespaces(struct ucounts *ucounts)
3155{
3156	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3157}
3158
3159static void free_mnt_ns(struct mnt_namespace *ns)
3160{
3161	if (!is_anon_ns(ns))
3162		ns_free_inum(&ns->ns);
3163	dec_mnt_namespaces(ns->ucounts);
3164	put_user_ns(ns->user_ns);
3165	kfree(ns);
3166}
3167
3168/*
3169 * Assign a sequence number so we can detect when we attempt to bind
3170 * mount a reference to an older mount namespace into the current
3171 * mount namespace, preventing reference counting loops.  A 64bit
3172 * number incrementing at 10Ghz will take 12,427 years to wrap which
3173 * is effectively never, so we can ignore the possibility.
3174 */
3175static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3176
3177static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3178{
3179	struct mnt_namespace *new_ns;
3180	struct ucounts *ucounts;
3181	int ret;
3182
3183	ucounts = inc_mnt_namespaces(user_ns);
3184	if (!ucounts)
3185		return ERR_PTR(-ENOSPC);
3186
3187	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3188	if (!new_ns) {
3189		dec_mnt_namespaces(ucounts);
3190		return ERR_PTR(-ENOMEM);
3191	}
3192	if (!anon) {
3193		ret = ns_alloc_inum(&new_ns->ns);
3194		if (ret) {
3195			kfree(new_ns);
3196			dec_mnt_namespaces(ucounts);
3197			return ERR_PTR(ret);
3198		}
3199	}
3200	new_ns->ns.ops = &mntns_operations;
3201	if (!anon)
3202		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3203	atomic_set(&new_ns->count, 1);
3204	INIT_LIST_HEAD(&new_ns->list);
3205	init_waitqueue_head(&new_ns->poll);
3206	new_ns->user_ns = get_user_ns(user_ns);
3207	new_ns->ucounts = ucounts;
3208	return new_ns;
3209}
3210
3211__latent_entropy
3212struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3213		struct user_namespace *user_ns, struct fs_struct *new_fs)
3214{
3215	struct mnt_namespace *new_ns;
3216	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3217	struct mount *p, *q;
3218	struct mount *old;
3219	struct mount *new;
3220	int copy_flags;
3221
3222	BUG_ON(!ns);
3223
3224	if (likely(!(flags & CLONE_NEWNS))) {
3225		get_mnt_ns(ns);
3226		return ns;
3227	}
3228
3229	old = ns->root;
3230
3231	new_ns = alloc_mnt_ns(user_ns, false);
3232	if (IS_ERR(new_ns))
3233		return new_ns;
3234
3235	namespace_lock();
3236	/* First pass: copy the tree topology */
3237	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3238	if (user_ns != ns->user_ns)
3239		copy_flags |= CL_SHARED_TO_SLAVE;
3240	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3241	if (IS_ERR(new)) {
3242		namespace_unlock();
3243		free_mnt_ns(new_ns);
3244		return ERR_CAST(new);
3245	}
3246	if (user_ns != ns->user_ns) {
3247		lock_mount_hash();
3248		lock_mnt_tree(new);
3249		unlock_mount_hash();
3250	}
3251	new_ns->root = new;
3252	list_add_tail(&new_ns->list, &new->mnt_list);
3253
3254	/*
3255	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3256	 * as belonging to new namespace.  We have already acquired a private
3257	 * fs_struct, so tsk->fs->lock is not needed.
3258	 */
3259	p = old;
3260	q = new;
3261	while (p) {
3262		q->mnt_ns = new_ns;
3263		new_ns->mounts++;
3264		if (new_fs) {
3265			if (&p->mnt == new_fs->root.mnt) {
3266				new_fs->root.mnt = mntget(&q->mnt);
3267				rootmnt = &p->mnt;
3268			}
3269			if (&p->mnt == new_fs->pwd.mnt) {
3270				new_fs->pwd.mnt = mntget(&q->mnt);
3271				pwdmnt = &p->mnt;
3272			}
3273		}
3274		p = next_mnt(p, old);
3275		q = next_mnt(q, new);
3276		if (!q)
3277			break;
3278		while (p->mnt.mnt_root != q->mnt.mnt_root)
3279			p = next_mnt(p, old);
3280	}
3281	namespace_unlock();
3282
3283	if (rootmnt)
3284		mntput(rootmnt);
3285	if (pwdmnt)
3286		mntput(pwdmnt);
3287
3288	return new_ns;
3289}
3290
3291struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3292{
3293	struct mount *mnt = real_mount(m);
3294	struct mnt_namespace *ns;
3295	struct super_block *s;
3296	struct path path;
3297	int err;
3298
3299	ns = alloc_mnt_ns(&init_user_ns, true);
3300	if (IS_ERR(ns)) {
3301		mntput(m);
3302		return ERR_CAST(ns);
3303	}
3304	mnt->mnt_ns = ns;
3305	ns->root = mnt;
3306	ns->mounts++;
3307	list_add(&mnt->mnt_list, &ns->list);
3308
3309	err = vfs_path_lookup(m->mnt_root, m,
3310			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3311
3312	put_mnt_ns(ns);
3313
3314	if (err)
3315		return ERR_PTR(err);
3316
3317	/* trade a vfsmount reference for active sb one */
3318	s = path.mnt->mnt_sb;
3319	atomic_inc(&s->s_active);
3320	mntput(path.mnt);
3321	/* lock the sucker */
3322	down_write(&s->s_umount);
3323	/* ... and return the root of (sub)tree on it */
3324	return path.dentry;
3325}
3326EXPORT_SYMBOL(mount_subtree);
3327
3328int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3329	       const char __user *type, unsigned long flags, void __user *data)
3330{
3331	int ret;
3332	char *kernel_type;
3333	char *kernel_dev;
3334	void *options;
3335
3336	kernel_type = copy_mount_string(type);
3337	ret = PTR_ERR(kernel_type);
3338	if (IS_ERR(kernel_type))
3339		goto out_type;
3340
3341	kernel_dev = copy_mount_string(dev_name);
3342	ret = PTR_ERR(kernel_dev);
3343	if (IS_ERR(kernel_dev))
3344		goto out_dev;
3345
3346	options = copy_mount_options(data);
3347	ret = PTR_ERR(options);
3348	if (IS_ERR(options))
3349		goto out_data;
3350
3351	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3352
3353	kfree(options);
3354out_data:
3355	kfree(kernel_dev);
3356out_dev:
3357	kfree(kernel_type);
3358out_type:
3359	return ret;
3360}
3361
3362SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3363		char __user *, type, unsigned long, flags, void __user *, data)
3364{
3365	return ksys_mount(dev_name, dir_name, type, flags, data);
3366}
3367
3368/*
3369 * Create a kernel mount representation for a new, prepared superblock
3370 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3371 */
3372SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3373		unsigned int, attr_flags)
3374{
3375	struct mnt_namespace *ns;
3376	struct fs_context *fc;
3377	struct file *file;
3378	struct path newmount;
3379	struct mount *mnt;
3380	struct fd f;
3381	unsigned int mnt_flags = 0;
3382	long ret;
3383
3384	if (!may_mount())
3385		return -EPERM;
3386
3387	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3388		return -EINVAL;
3389
3390	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3391			   MOUNT_ATTR_NOSUID |
3392			   MOUNT_ATTR_NODEV |
3393			   MOUNT_ATTR_NOEXEC |
3394			   MOUNT_ATTR__ATIME |
3395			   MOUNT_ATTR_NODIRATIME))
3396		return -EINVAL;
3397
3398	if (attr_flags & MOUNT_ATTR_RDONLY)
3399		mnt_flags |= MNT_READONLY;
3400	if (attr_flags & MOUNT_ATTR_NOSUID)
3401		mnt_flags |= MNT_NOSUID;
3402	if (attr_flags & MOUNT_ATTR_NODEV)
3403		mnt_flags |= MNT_NODEV;
3404	if (attr_flags & MOUNT_ATTR_NOEXEC)
3405		mnt_flags |= MNT_NOEXEC;
3406	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3407		mnt_flags |= MNT_NODIRATIME;
3408
3409	switch (attr_flags & MOUNT_ATTR__ATIME) {
3410	case MOUNT_ATTR_STRICTATIME:
3411		break;
3412	case MOUNT_ATTR_NOATIME:
3413		mnt_flags |= MNT_NOATIME;
3414		break;
3415	case MOUNT_ATTR_RELATIME:
3416		mnt_flags |= MNT_RELATIME;
3417		break;
3418	default:
3419		return -EINVAL;
3420	}
3421
3422	f = fdget(fs_fd);
3423	if (!f.file)
3424		return -EBADF;
3425
3426	ret = -EINVAL;
3427	if (f.file->f_op != &fscontext_fops)
3428		goto err_fsfd;
3429
3430	fc = f.file->private_data;
3431
3432	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3433	if (ret < 0)
3434		goto err_fsfd;
3435
3436	/* There must be a valid superblock or we can't mount it */
3437	ret = -EINVAL;
3438	if (!fc->root)
3439		goto err_unlock;
3440
3441	ret = -EPERM;
3442	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3443		pr_warn("VFS: Mount too revealing\n");
3444		goto err_unlock;
3445	}
3446
3447	ret = -EBUSY;
3448	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3449		goto err_unlock;
3450
3451	ret = -EPERM;
3452	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3453		goto err_unlock;
3454
3455	newmount.mnt = vfs_create_mount(fc);
3456	if (IS_ERR(newmount.mnt)) {
3457		ret = PTR_ERR(newmount.mnt);
3458		goto err_unlock;
3459	}
3460	newmount.dentry = dget(fc->root);
3461	newmount.mnt->mnt_flags = mnt_flags;
3462
3463	/* We've done the mount bit - now move the file context into more or
3464	 * less the same state as if we'd done an fspick().  We don't want to
3465	 * do any memory allocation or anything like that at this point as we
3466	 * don't want to have to handle any errors incurred.
3467	 */
3468	vfs_clean_context(fc);
3469
3470	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3471	if (IS_ERR(ns)) {
3472		ret = PTR_ERR(ns);
3473		goto err_path;
3474	}
3475	mnt = real_mount(newmount.mnt);
3476	mnt->mnt_ns = ns;
3477	ns->root = mnt;
3478	ns->mounts = 1;
3479	list_add(&mnt->mnt_list, &ns->list);
3480	mntget(newmount.mnt);
3481
3482	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3483	 * it, not just simply put it.
3484	 */
3485	file = dentry_open(&newmount, O_PATH, fc->cred);
3486	if (IS_ERR(file)) {
3487		dissolve_on_fput(newmount.mnt);
3488		ret = PTR_ERR(file);
3489		goto err_path;
3490	}
3491	file->f_mode |= FMODE_NEED_UNMOUNT;
3492
3493	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3494	if (ret >= 0)
3495		fd_install(ret, file);
3496	else
3497		fput(file);
3498
3499err_path:
3500	path_put(&newmount);
3501err_unlock:
3502	mutex_unlock(&fc->uapi_mutex);
3503err_fsfd:
3504	fdput(f);
3505	return ret;
3506}
3507
3508/*
3509 * Move a mount from one place to another.  In combination with
3510 * fsopen()/fsmount() this is used to install a new mount and in combination
3511 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3512 * a mount subtree.
3513 *
3514 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3515 */
3516SYSCALL_DEFINE5(move_mount,
3517		int, from_dfd, const char *, from_pathname,
3518		int, to_dfd, const char *, to_pathname,
3519		unsigned int, flags)
3520{
3521	struct path from_path, to_path;
3522	unsigned int lflags;
3523	int ret = 0;
3524
3525	if (!may_mount())
3526		return -EPERM;
3527
3528	if (flags & ~MOVE_MOUNT__MASK)
3529		return -EINVAL;
3530
3531	/* If someone gives a pathname, they aren't permitted to move
3532	 * from an fd that requires unmount as we can't get at the flag
3533	 * to clear it afterwards.
3534	 */
3535	lflags = 0;
3536	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3537	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3538	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3539
3540	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3541	if (ret < 0)
3542		return ret;
3543
3544	lflags = 0;
3545	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3546	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3547	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3548
3549	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3550	if (ret < 0)
3551		goto out_from;
3552
3553	ret = security_move_mount(&from_path, &to_path);
3554	if (ret < 0)
3555		goto out_to;
3556
3557	ret = do_move_mount(&from_path, &to_path);
3558
3559out_to:
3560	path_put(&to_path);
3561out_from:
3562	path_put(&from_path);
3563	return ret;
3564}
3565
3566/*
3567 * Return true if path is reachable from root
3568 *
3569 * namespace_sem or mount_lock is held
3570 */
3571bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3572			 const struct path *root)
3573{
3574	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3575		dentry = mnt->mnt_mountpoint;
3576		mnt = mnt->mnt_parent;
3577	}
3578	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3579}
3580
3581bool path_is_under(const struct path *path1, const struct path *path2)
3582{
3583	bool res;
3584	read_seqlock_excl(&mount_lock);
3585	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3586	read_sequnlock_excl(&mount_lock);
3587	return res;
3588}
3589EXPORT_SYMBOL(path_is_under);
3590
3591/*
3592 * pivot_root Semantics:
3593 * Moves the root file system of the current process to the directory put_old,
3594 * makes new_root as the new root file system of the current process, and sets
3595 * root/cwd of all processes which had them on the current root to new_root.
3596 *
3597 * Restrictions:
3598 * The new_root and put_old must be directories, and  must not be on the
3599 * same file  system as the current process root. The put_old  must  be
3600 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3601 * pointed to by put_old must yield the same directory as new_root. No other
3602 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3603 *
3604 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3605 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3606 * in this situation.
3607 *
3608 * Notes:
3609 *  - we don't move root/cwd if they are not at the root (reason: if something
3610 *    cared enough to change them, it's probably wrong to force them elsewhere)
3611 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3612 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3613 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3614 *    first.
3615 */
3616SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3617		const char __user *, put_old)
3618{
3619	struct path new, old, root;
3620	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3621	struct mountpoint *old_mp, *root_mp;
3622	int error;
3623
3624	if (!may_mount())
3625		return -EPERM;
3626
3627	error = user_path_at(AT_FDCWD, new_root,
3628			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3629	if (error)
3630		goto out0;
3631
3632	error = user_path_at(AT_FDCWD, put_old,
3633			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3634	if (error)
3635		goto out1;
3636
3637	error = security_sb_pivotroot(&old, &new);
3638	if (error)
3639		goto out2;
3640
3641	get_fs_root(current->fs, &root);
3642	old_mp = lock_mount(&old);
3643	error = PTR_ERR(old_mp);
3644	if (IS_ERR(old_mp))
3645		goto out3;
3646
3647	error = -EINVAL;
3648	new_mnt = real_mount(new.mnt);
3649	root_mnt = real_mount(root.mnt);
3650	old_mnt = real_mount(old.mnt);
3651	ex_parent = new_mnt->mnt_parent;
3652	root_parent = root_mnt->mnt_parent;
3653	if (IS_MNT_SHARED(old_mnt) ||
3654		IS_MNT_SHARED(ex_parent) ||
3655		IS_MNT_SHARED(root_parent))
3656		goto out4;
3657	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3658		goto out4;
3659	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3660		goto out4;
3661	error = -ENOENT;
3662	if (d_unlinked(new.dentry))
3663		goto out4;
3664	error = -EBUSY;
3665	if (new_mnt == root_mnt || old_mnt == root_mnt)
3666		goto out4; /* loop, on the same file system  */
3667	error = -EINVAL;
3668	if (root.mnt->mnt_root != root.dentry)
3669		goto out4; /* not a mountpoint */
3670	if (!mnt_has_parent(root_mnt))
3671		goto out4; /* not attached */
3672	if (new.mnt->mnt_root != new.dentry)
3673		goto out4; /* not a mountpoint */
3674	if (!mnt_has_parent(new_mnt))
3675		goto out4; /* not attached */
3676	/* make sure we can reach put_old from new_root */
3677	if (!is_path_reachable(old_mnt, old.dentry, &new))
3678		goto out4;
3679	/* make certain new is below the root */
3680	if (!is_path_reachable(new_mnt, new.dentry, &root))
3681		goto out4;
3682	lock_mount_hash();
3683	umount_mnt(new_mnt);
3684	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3685	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3686		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3687		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3688	}
3689	/* mount old root on put_old */
3690	attach_mnt(root_mnt, old_mnt, old_mp);
3691	/* mount new_root on / */
3692	attach_mnt(new_mnt, root_parent, root_mp);
3693	mnt_add_count(root_parent, -1);
3694	touch_mnt_namespace(current->nsproxy->mnt_ns);
3695	/* A moved mount should not expire automatically */
3696	list_del_init(&new_mnt->mnt_expire);
3697	put_mountpoint(root_mp);
3698	unlock_mount_hash();
3699	chroot_fs_refs(&root, &new);
3700	error = 0;
3701out4:
3702	unlock_mount(old_mp);
3703	if (!error)
3704		mntput_no_expire(ex_parent);
3705out3:
3706	path_put(&root);
3707out2:
3708	path_put(&old);
3709out1:
3710	path_put(&new);
3711out0:
3712	return error;
3713}
3714
3715static void __init init_mount_tree(void)
3716{
3717	struct vfsmount *mnt;
3718	struct mount *m;
3719	struct mnt_namespace *ns;
3720	struct path root;
3721
3722	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3723	if (IS_ERR(mnt))
3724		panic("Can't create rootfs");
3725
3726	ns = alloc_mnt_ns(&init_user_ns, false);
3727	if (IS_ERR(ns))
3728		panic("Can't allocate initial namespace");
3729	m = real_mount(mnt);
3730	m->mnt_ns = ns;
3731	ns->root = m;
3732	ns->mounts = 1;
3733	list_add(&m->mnt_list, &ns->list);
3734	init_task.nsproxy->mnt_ns = ns;
3735	get_mnt_ns(ns);
3736
3737	root.mnt = mnt;
3738	root.dentry = mnt->mnt_root;
3739	mnt->mnt_flags |= MNT_LOCKED;
3740
3741	set_fs_pwd(current->fs, &root);
3742	set_fs_root(current->fs, &root);
3743}
3744
3745void __init mnt_init(void)
3746{
3747	int err;
3748
3749	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3750			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3751
3752	mount_hashtable = alloc_large_system_hash("Mount-cache",
3753				sizeof(struct hlist_head),
3754				mhash_entries, 19,
3755				HASH_ZERO,
3756				&m_hash_shift, &m_hash_mask, 0, 0);
3757	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3758				sizeof(struct hlist_head),
3759				mphash_entries, 19,
3760				HASH_ZERO,
3761				&mp_hash_shift, &mp_hash_mask, 0, 0);
3762
3763	if (!mount_hashtable || !mountpoint_hashtable)
3764		panic("Failed to allocate mount hash table\n");
3765
3766	kernfs_init();
3767
3768	err = sysfs_init();
3769	if (err)
3770		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3771			__func__, err);
3772	fs_kobj = kobject_create_and_add("fs", NULL);
3773	if (!fs_kobj)
3774		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3775	shmem_init();
3776	init_rootfs();
3777	init_mount_tree();
3778}
3779
3780void put_mnt_ns(struct mnt_namespace *ns)
3781{
3782	if (!atomic_dec_and_test(&ns->count))
3783		return;
3784	drop_collected_mounts(&ns->root->mnt);
3785	free_mnt_ns(ns);
3786}
3787
3788struct vfsmount *kern_mount(struct file_system_type *type)
3789{
3790	struct vfsmount *mnt;
3791	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3792	if (!IS_ERR(mnt)) {
3793		/*
3794		 * it is a longterm mount, don't release mnt until
3795		 * we unmount before file sys is unregistered
3796		*/
3797		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3798	}
3799	return mnt;
3800}
3801EXPORT_SYMBOL_GPL(kern_mount);
3802
3803void kern_unmount(struct vfsmount *mnt)
3804{
3805	/* release long term mount so mount point can be released */
3806	if (!IS_ERR_OR_NULL(mnt)) {
3807		real_mount(mnt)->mnt_ns = NULL;
3808		synchronize_rcu();	/* yecchhh... */
3809		mntput(mnt);
3810	}
3811}
3812EXPORT_SYMBOL(kern_unmount);
3813
3814bool our_mnt(struct vfsmount *mnt)
3815{
3816	return check_mnt(real_mount(mnt));
3817}
3818
3819bool current_chrooted(void)
3820{
3821	/* Does the current process have a non-standard root */
3822	struct path ns_root;
3823	struct path fs_root;
3824	bool chrooted;
3825
3826	/* Find the namespace root */
3827	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3828	ns_root.dentry = ns_root.mnt->mnt_root;
3829	path_get(&ns_root);
3830	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3831		;
3832
3833	get_fs_root(current->fs, &fs_root);
3834
3835	chrooted = !path_equal(&fs_root, &ns_root);
3836
3837	path_put(&fs_root);
3838	path_put(&ns_root);
3839
3840	return chrooted;
3841}
3842
3843static bool mnt_already_visible(struct mnt_namespace *ns,
3844				const struct super_block *sb,
3845				int *new_mnt_flags)
3846{
3847	int new_flags = *new_mnt_flags;
3848	struct mount *mnt;
3849	bool visible = false;
3850
3851	down_read(&namespace_sem);
3852	list_for_each_entry(mnt, &ns->list, mnt_list) {
3853		struct mount *child;
3854		int mnt_flags;
3855
3856		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3857			continue;
3858
3859		/* This mount is not fully visible if it's root directory
3860		 * is not the root directory of the filesystem.
3861		 */
3862		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3863			continue;
3864
3865		/* A local view of the mount flags */
3866		mnt_flags = mnt->mnt.mnt_flags;
3867
3868		/* Don't miss readonly hidden in the superblock flags */
3869		if (sb_rdonly(mnt->mnt.mnt_sb))
3870			mnt_flags |= MNT_LOCK_READONLY;
3871
3872		/* Verify the mount flags are equal to or more permissive
3873		 * than the proposed new mount.
3874		 */
3875		if ((mnt_flags & MNT_LOCK_READONLY) &&
3876		    !(new_flags & MNT_READONLY))
3877			continue;
3878		if ((mnt_flags & MNT_LOCK_ATIME) &&
3879		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3880			continue;
3881
3882		/* This mount is not fully visible if there are any
3883		 * locked child mounts that cover anything except for
3884		 * empty directories.
3885		 */
3886		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3887			struct inode *inode = child->mnt_mountpoint->d_inode;
3888			/* Only worry about locked mounts */
3889			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3890				continue;
3891			/* Is the directory permanetly empty? */
3892			if (!is_empty_dir_inode(inode))
3893				goto next;
3894		}
3895		/* Preserve the locked attributes */
3896		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3897					       MNT_LOCK_ATIME);
3898		visible = true;
3899		goto found;
3900	next:	;
3901	}
3902found:
3903	up_read(&namespace_sem);
3904	return visible;
3905}
3906
3907static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3908{
3909	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3910	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3911	unsigned long s_iflags;
3912
3913	if (ns->user_ns == &init_user_ns)
3914		return false;
3915
3916	/* Can this filesystem be too revealing? */
3917	s_iflags = sb->s_iflags;
3918	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3919		return false;
3920
3921	if ((s_iflags & required_iflags) != required_iflags) {
3922		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3923			  required_iflags);
3924		return true;
3925	}
3926
3927	return !mnt_already_visible(ns, sb, new_mnt_flags);
3928}
3929
3930bool mnt_may_suid(struct vfsmount *mnt)
3931{
3932	/*
3933	 * Foreign mounts (accessed via fchdir or through /proc
3934	 * symlinks) are always treated as if they are nosuid.  This
3935	 * prevents namespaces from trusting potentially unsafe
3936	 * suid/sgid bits, file caps, or security labels that originate
3937	 * in other namespaces.
3938	 */
3939	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3940	       current_in_userns(mnt->mnt_sb->s_user_ns);
3941}
3942
3943static struct ns_common *mntns_get(struct task_struct *task)
3944{
3945	struct ns_common *ns = NULL;
3946	struct nsproxy *nsproxy;
3947
3948	task_lock(task);
3949	nsproxy = task->nsproxy;
3950	if (nsproxy) {
3951		ns = &nsproxy->mnt_ns->ns;
3952		get_mnt_ns(to_mnt_ns(ns));
3953	}
3954	task_unlock(task);
3955
3956	return ns;
3957}
3958
3959static void mntns_put(struct ns_common *ns)
3960{
3961	put_mnt_ns(to_mnt_ns(ns));
3962}
3963
3964static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3965{
3966	struct fs_struct *fs = current->fs;
3967	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3968	struct path root;
3969	int err;
3970
3971	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3972	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3973	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3974		return -EPERM;
3975
3976	if (is_anon_ns(mnt_ns))
3977		return -EINVAL;
3978
3979	if (fs->users != 1)
3980		return -EINVAL;
3981
3982	get_mnt_ns(mnt_ns);
3983	old_mnt_ns = nsproxy->mnt_ns;
3984	nsproxy->mnt_ns = mnt_ns;
3985
3986	/* Find the root */
3987	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3988				"/", LOOKUP_DOWN, &root);
3989	if (err) {
3990		/* revert to old namespace */
3991		nsproxy->mnt_ns = old_mnt_ns;
3992		put_mnt_ns(mnt_ns);
3993		return err;
3994	}
3995
3996	put_mnt_ns(old_mnt_ns);
3997
3998	/* Update the pwd and root */
3999	set_fs_pwd(fs, &root);
4000	set_fs_root(fs, &root);
4001
4002	path_put(&root);
4003	return 0;
4004}
4005
4006static struct user_namespace *mntns_owner(struct ns_common *ns)
4007{
4008	return to_mnt_ns(ns)->user_ns;
4009}
4010
4011const struct proc_ns_operations mntns_operations = {
4012	.name		= "mnt",
4013	.type		= CLONE_NEWNS,
4014	.get		= mntns_get,
4015	.put		= mntns_put,
4016	.install	= mntns_install,
4017	.owner		= mntns_owner,
4018};
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *	Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/idr.h>
  19#include <linux/acct.h>		/* acct_auto_close_mnt */
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
  27#include "pnode.h"
  28#include "internal.h"
  29
  30static unsigned int m_hash_mask __read_mostly;
  31static unsigned int m_hash_shift __read_mostly;
  32static unsigned int mp_hash_mask __read_mostly;
  33static unsigned int mp_hash_shift __read_mostly;
  34
  35static __initdata unsigned long mhash_entries;
  36static int __init set_mhash_entries(char *str)
  37{
  38	if (!str)
  39		return 0;
  40	mhash_entries = simple_strtoul(str, &str, 0);
  41	return 1;
  42}
  43__setup("mhash_entries=", set_mhash_entries);
  44
  45static __initdata unsigned long mphash_entries;
  46static int __init set_mphash_entries(char *str)
  47{
  48	if (!str)
  49		return 0;
  50	mphash_entries = simple_strtoul(str, &str, 0);
  51	return 1;
  52}
  53__setup("mphash_entries=", set_mphash_entries);
  54
  55static u64 event;
  56static DEFINE_IDA(mnt_id_ida);
  57static DEFINE_IDA(mnt_group_ida);
  58static DEFINE_SPINLOCK(mnt_id_lock);
  59static int mnt_id_start = 0;
  60static int mnt_group_start = 1;
  61
  62static struct hlist_head *mount_hashtable __read_mostly;
  63static struct hlist_head *mountpoint_hashtable __read_mostly;
  64static struct kmem_cache *mnt_cache __read_mostly;
  65static DECLARE_RWSEM(namespace_sem);
  66
  67/* /sys/fs */
  68struct kobject *fs_kobj;
  69EXPORT_SYMBOL_GPL(fs_kobj);
  70
  71/*
  72 * vfsmount lock may be taken for read to prevent changes to the
  73 * vfsmount hash, ie. during mountpoint lookups or walking back
  74 * up the tree.
  75 *
  76 * It should be taken for write in all cases where the vfsmount
  77 * tree or hash is modified or when a vfsmount structure is modified.
  78 */
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  80
  81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  82{
  83	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  84	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  85	tmp = tmp + (tmp >> m_hash_shift);
  86	return &mount_hashtable[tmp & m_hash_mask];
  87}
  88
  89static inline struct hlist_head *mp_hash(struct dentry *dentry)
  90{
  91	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  92	tmp = tmp + (tmp >> mp_hash_shift);
  93	return &mountpoint_hashtable[tmp & mp_hash_mask];
  94}
  95
  96/*
  97 * allocation is serialized by namespace_sem, but we need the spinlock to
  98 * serialize with freeing.
  99 */
 100static int mnt_alloc_id(struct mount *mnt)
 101{
 102	int res;
 103
 104retry:
 105	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 106	spin_lock(&mnt_id_lock);
 107	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 108	if (!res)
 109		mnt_id_start = mnt->mnt_id + 1;
 110	spin_unlock(&mnt_id_lock);
 111	if (res == -EAGAIN)
 112		goto retry;
 113
 114	return res;
 115}
 116
 117static void mnt_free_id(struct mount *mnt)
 118{
 119	int id = mnt->mnt_id;
 120	spin_lock(&mnt_id_lock);
 121	ida_remove(&mnt_id_ida, id);
 122	if (mnt_id_start > id)
 123		mnt_id_start = id;
 124	spin_unlock(&mnt_id_lock);
 125}
 126
 127/*
 128 * Allocate a new peer group ID
 129 *
 130 * mnt_group_ida is protected by namespace_sem
 131 */
 132static int mnt_alloc_group_id(struct mount *mnt)
 133{
 134	int res;
 135
 136	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 137		return -ENOMEM;
 138
 139	res = ida_get_new_above(&mnt_group_ida,
 140				mnt_group_start,
 141				&mnt->mnt_group_id);
 142	if (!res)
 143		mnt_group_start = mnt->mnt_group_id + 1;
 144
 145	return res;
 146}
 147
 148/*
 149 * Release a peer group ID
 150 */
 151void mnt_release_group_id(struct mount *mnt)
 152{
 153	int id = mnt->mnt_group_id;
 154	ida_remove(&mnt_group_ida, id);
 155	if (mnt_group_start > id)
 156		mnt_group_start = id;
 157	mnt->mnt_group_id = 0;
 158}
 159
 160/*
 161 * vfsmount lock must be held for read
 162 */
 163static inline void mnt_add_count(struct mount *mnt, int n)
 164{
 165#ifdef CONFIG_SMP
 166	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 167#else
 168	preempt_disable();
 169	mnt->mnt_count += n;
 170	preempt_enable();
 171#endif
 172}
 173
 174/*
 175 * vfsmount lock must be held for write
 176 */
 177unsigned int mnt_get_count(struct mount *mnt)
 178{
 179#ifdef CONFIG_SMP
 180	unsigned int count = 0;
 181	int cpu;
 182
 183	for_each_possible_cpu(cpu) {
 184		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 185	}
 186
 187	return count;
 188#else
 189	return mnt->mnt_count;
 190#endif
 191}
 192
 193static struct mount *alloc_vfsmnt(const char *name)
 194{
 195	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 196	if (mnt) {
 197		int err;
 198
 199		err = mnt_alloc_id(mnt);
 200		if (err)
 201			goto out_free_cache;
 202
 203		if (name) {
 204			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
 205			if (!mnt->mnt_devname)
 206				goto out_free_id;
 207		}
 208
 209#ifdef CONFIG_SMP
 210		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 211		if (!mnt->mnt_pcp)
 212			goto out_free_devname;
 213
 214		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 215#else
 216		mnt->mnt_count = 1;
 217		mnt->mnt_writers = 0;
 218#endif
 219
 220		INIT_HLIST_NODE(&mnt->mnt_hash);
 221		INIT_LIST_HEAD(&mnt->mnt_child);
 222		INIT_LIST_HEAD(&mnt->mnt_mounts);
 223		INIT_LIST_HEAD(&mnt->mnt_list);
 224		INIT_LIST_HEAD(&mnt->mnt_expire);
 225		INIT_LIST_HEAD(&mnt->mnt_share);
 226		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 227		INIT_LIST_HEAD(&mnt->mnt_slave);
 228#ifdef CONFIG_FSNOTIFY
 229		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
 230#endif
 231	}
 232	return mnt;
 233
 234#ifdef CONFIG_SMP
 235out_free_devname:
 236	kfree(mnt->mnt_devname);
 237#endif
 238out_free_id:
 239	mnt_free_id(mnt);
 240out_free_cache:
 241	kmem_cache_free(mnt_cache, mnt);
 242	return NULL;
 243}
 244
 245/*
 246 * Most r/o checks on a fs are for operations that take
 247 * discrete amounts of time, like a write() or unlink().
 248 * We must keep track of when those operations start
 249 * (for permission checks) and when they end, so that
 250 * we can determine when writes are able to occur to
 251 * a filesystem.
 252 */
 253/*
 254 * __mnt_is_readonly: check whether a mount is read-only
 255 * @mnt: the mount to check for its write status
 256 *
 257 * This shouldn't be used directly ouside of the VFS.
 258 * It does not guarantee that the filesystem will stay
 259 * r/w, just that it is right *now*.  This can not and
 260 * should not be used in place of IS_RDONLY(inode).
 261 * mnt_want/drop_write() will _keep_ the filesystem
 262 * r/w.
 263 */
 264int __mnt_is_readonly(struct vfsmount *mnt)
 265{
 266	if (mnt->mnt_flags & MNT_READONLY)
 267		return 1;
 268	if (mnt->mnt_sb->s_flags & MS_RDONLY)
 269		return 1;
 270	return 0;
 271}
 272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 273
 274static inline void mnt_inc_writers(struct mount *mnt)
 275{
 276#ifdef CONFIG_SMP
 277	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 278#else
 279	mnt->mnt_writers++;
 280#endif
 281}
 282
 283static inline void mnt_dec_writers(struct mount *mnt)
 284{
 285#ifdef CONFIG_SMP
 286	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 287#else
 288	mnt->mnt_writers--;
 289#endif
 290}
 291
 292static unsigned int mnt_get_writers(struct mount *mnt)
 293{
 294#ifdef CONFIG_SMP
 295	unsigned int count = 0;
 296	int cpu;
 297
 298	for_each_possible_cpu(cpu) {
 299		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 300	}
 301
 302	return count;
 303#else
 304	return mnt->mnt_writers;
 305#endif
 306}
 307
 308static int mnt_is_readonly(struct vfsmount *mnt)
 309{
 310	if (mnt->mnt_sb->s_readonly_remount)
 311		return 1;
 312	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 313	smp_rmb();
 314	return __mnt_is_readonly(mnt);
 315}
 316
 317/*
 318 * Most r/o & frozen checks on a fs are for operations that take discrete
 319 * amounts of time, like a write() or unlink().  We must keep track of when
 320 * those operations start (for permission checks) and when they end, so that we
 321 * can determine when writes are able to occur to a filesystem.
 322 */
 323/**
 324 * __mnt_want_write - get write access to a mount without freeze protection
 325 * @m: the mount on which to take a write
 326 *
 327 * This tells the low-level filesystem that a write is about to be performed to
 328 * it, and makes sure that writes are allowed (mnt it read-write) before
 329 * returning success. This operation does not protect against filesystem being
 330 * frozen. When the write operation is finished, __mnt_drop_write() must be
 331 * called. This is effectively a refcount.
 332 */
 333int __mnt_want_write(struct vfsmount *m)
 334{
 335	struct mount *mnt = real_mount(m);
 336	int ret = 0;
 337
 338	preempt_disable();
 339	mnt_inc_writers(mnt);
 340	/*
 341	 * The store to mnt_inc_writers must be visible before we pass
 342	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 343	 * incremented count after it has set MNT_WRITE_HOLD.
 344	 */
 345	smp_mb();
 346	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 347		cpu_relax();
 348	/*
 349	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 350	 * be set to match its requirements. So we must not load that until
 351	 * MNT_WRITE_HOLD is cleared.
 352	 */
 353	smp_rmb();
 354	if (mnt_is_readonly(m)) {
 355		mnt_dec_writers(mnt);
 356		ret = -EROFS;
 357	}
 358	preempt_enable();
 359
 360	return ret;
 361}
 362
 363/**
 364 * mnt_want_write - get write access to a mount
 365 * @m: the mount on which to take a write
 366 *
 367 * This tells the low-level filesystem that a write is about to be performed to
 368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 369 * is not frozen) before returning success.  When the write operation is
 370 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 371 */
 372int mnt_want_write(struct vfsmount *m)
 373{
 374	int ret;
 375
 376	sb_start_write(m->mnt_sb);
 377	ret = __mnt_want_write(m);
 378	if (ret)
 379		sb_end_write(m->mnt_sb);
 380	return ret;
 381}
 382EXPORT_SYMBOL_GPL(mnt_want_write);
 383
 384/**
 385 * mnt_clone_write - get write access to a mount
 386 * @mnt: the mount on which to take a write
 387 *
 388 * This is effectively like mnt_want_write, except
 389 * it must only be used to take an extra write reference
 390 * on a mountpoint that we already know has a write reference
 391 * on it. This allows some optimisation.
 392 *
 393 * After finished, mnt_drop_write must be called as usual to
 394 * drop the reference.
 395 */
 396int mnt_clone_write(struct vfsmount *mnt)
 397{
 398	/* superblock may be r/o */
 399	if (__mnt_is_readonly(mnt))
 400		return -EROFS;
 401	preempt_disable();
 402	mnt_inc_writers(real_mount(mnt));
 403	preempt_enable();
 404	return 0;
 405}
 406EXPORT_SYMBOL_GPL(mnt_clone_write);
 407
 408/**
 409 * __mnt_want_write_file - get write access to a file's mount
 410 * @file: the file who's mount on which to take a write
 411 *
 412 * This is like __mnt_want_write, but it takes a file and can
 413 * do some optimisations if the file is open for write already
 414 */
 415int __mnt_want_write_file(struct file *file)
 416{
 417	if (!(file->f_mode & FMODE_WRITER))
 418		return __mnt_want_write(file->f_path.mnt);
 419	else
 420		return mnt_clone_write(file->f_path.mnt);
 421}
 422
 423/**
 424 * mnt_want_write_file - get write access to a file's mount
 425 * @file: the file who's mount on which to take a write
 426 *
 427 * This is like mnt_want_write, but it takes a file and can
 428 * do some optimisations if the file is open for write already
 429 */
 430int mnt_want_write_file(struct file *file)
 431{
 432	int ret;
 433
 434	sb_start_write(file->f_path.mnt->mnt_sb);
 435	ret = __mnt_want_write_file(file);
 436	if (ret)
 437		sb_end_write(file->f_path.mnt->mnt_sb);
 438	return ret;
 439}
 440EXPORT_SYMBOL_GPL(mnt_want_write_file);
 441
 442/**
 443 * __mnt_drop_write - give up write access to a mount
 444 * @mnt: the mount on which to give up write access
 445 *
 446 * Tells the low-level filesystem that we are done
 447 * performing writes to it.  Must be matched with
 448 * __mnt_want_write() call above.
 449 */
 450void __mnt_drop_write(struct vfsmount *mnt)
 451{
 452	preempt_disable();
 453	mnt_dec_writers(real_mount(mnt));
 454	preempt_enable();
 455}
 456
 457/**
 458 * mnt_drop_write - give up write access to a mount
 459 * @mnt: the mount on which to give up write access
 460 *
 461 * Tells the low-level filesystem that we are done performing writes to it and
 462 * also allows filesystem to be frozen again.  Must be matched with
 463 * mnt_want_write() call above.
 464 */
 465void mnt_drop_write(struct vfsmount *mnt)
 466{
 467	__mnt_drop_write(mnt);
 468	sb_end_write(mnt->mnt_sb);
 469}
 470EXPORT_SYMBOL_GPL(mnt_drop_write);
 471
 472void __mnt_drop_write_file(struct file *file)
 473{
 474	__mnt_drop_write(file->f_path.mnt);
 475}
 476
 477void mnt_drop_write_file(struct file *file)
 478{
 479	mnt_drop_write(file->f_path.mnt);
 480}
 481EXPORT_SYMBOL(mnt_drop_write_file);
 482
 483static int mnt_make_readonly(struct mount *mnt)
 484{
 485	int ret = 0;
 486
 487	lock_mount_hash();
 488	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 489	/*
 490	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 491	 * should be visible before we do.
 492	 */
 493	smp_mb();
 494
 495	/*
 496	 * With writers on hold, if this value is zero, then there are
 497	 * definitely no active writers (although held writers may subsequently
 498	 * increment the count, they'll have to wait, and decrement it after
 499	 * seeing MNT_READONLY).
 500	 *
 501	 * It is OK to have counter incremented on one CPU and decremented on
 502	 * another: the sum will add up correctly. The danger would be when we
 503	 * sum up each counter, if we read a counter before it is incremented,
 504	 * but then read another CPU's count which it has been subsequently
 505	 * decremented from -- we would see more decrements than we should.
 506	 * MNT_WRITE_HOLD protects against this scenario, because
 507	 * mnt_want_write first increments count, then smp_mb, then spins on
 508	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 509	 * we're counting up here.
 510	 */
 511	if (mnt_get_writers(mnt) > 0)
 512		ret = -EBUSY;
 513	else
 514		mnt->mnt.mnt_flags |= MNT_READONLY;
 515	/*
 516	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 517	 * that become unheld will see MNT_READONLY.
 518	 */
 519	smp_wmb();
 520	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 521	unlock_mount_hash();
 522	return ret;
 523}
 524
 525static void __mnt_unmake_readonly(struct mount *mnt)
 526{
 527	lock_mount_hash();
 528	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 529	unlock_mount_hash();
 530}
 531
 532int sb_prepare_remount_readonly(struct super_block *sb)
 533{
 534	struct mount *mnt;
 535	int err = 0;
 536
 537	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 538	if (atomic_long_read(&sb->s_remove_count))
 539		return -EBUSY;
 540
 541	lock_mount_hash();
 542	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 543		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 544			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 545			smp_mb();
 546			if (mnt_get_writers(mnt) > 0) {
 547				err = -EBUSY;
 548				break;
 549			}
 550		}
 551	}
 552	if (!err && atomic_long_read(&sb->s_remove_count))
 553		err = -EBUSY;
 554
 555	if (!err) {
 556		sb->s_readonly_remount = 1;
 557		smp_wmb();
 558	}
 559	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 560		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 561			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 562	}
 563	unlock_mount_hash();
 564
 565	return err;
 566}
 567
 568static void free_vfsmnt(struct mount *mnt)
 569{
 570	kfree(mnt->mnt_devname);
 571#ifdef CONFIG_SMP
 572	free_percpu(mnt->mnt_pcp);
 573#endif
 574	kmem_cache_free(mnt_cache, mnt);
 575}
 576
 577static void delayed_free_vfsmnt(struct rcu_head *head)
 578{
 579	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 580}
 581
 582/* call under rcu_read_lock */
 583bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 584{
 585	struct mount *mnt;
 586	if (read_seqretry(&mount_lock, seq))
 587		return false;
 588	if (bastard == NULL)
 589		return true;
 590	mnt = real_mount(bastard);
 591	mnt_add_count(mnt, 1);
 592	if (likely(!read_seqretry(&mount_lock, seq)))
 593		return true;
 594	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 595		mnt_add_count(mnt, -1);
 596		return false;
 597	}
 598	rcu_read_unlock();
 599	mntput(bastard);
 600	rcu_read_lock();
 601	return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610	struct hlist_head *head = m_hash(mnt, dentry);
 611	struct mount *p;
 612
 613	hlist_for_each_entry_rcu(p, head, mnt_hash)
 614		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615			return p;
 616	return NULL;
 617}
 618
 619/*
 620 * find the last mount at @dentry on vfsmount @mnt.
 621 * mount_lock must be held.
 622 */
 623struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
 624{
 625	struct mount *p, *res;
 626	res = p = __lookup_mnt(mnt, dentry);
 627	if (!p)
 628		goto out;
 629	hlist_for_each_entry_continue(p, mnt_hash) {
 630		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
 631			break;
 632		res = p;
 633	}
 634out:
 635	return res;
 636}
 637
 638/*
 639 * lookup_mnt - Return the first child mount mounted at path
 640 *
 641 * "First" means first mounted chronologically.  If you create the
 642 * following mounts:
 643 *
 644 * mount /dev/sda1 /mnt
 645 * mount /dev/sda2 /mnt
 646 * mount /dev/sda3 /mnt
 647 *
 648 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 649 * return successively the root dentry and vfsmount of /dev/sda1, then
 650 * /dev/sda2, then /dev/sda3, then NULL.
 651 *
 652 * lookup_mnt takes a reference to the found vfsmount.
 653 */
 654struct vfsmount *lookup_mnt(struct path *path)
 655{
 656	struct mount *child_mnt;
 657	struct vfsmount *m;
 658	unsigned seq;
 659
 660	rcu_read_lock();
 661	do {
 662		seq = read_seqbegin(&mount_lock);
 663		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 664		m = child_mnt ? &child_mnt->mnt : NULL;
 665	} while (!legitimize_mnt(m, seq));
 666	rcu_read_unlock();
 667	return m;
 668}
 669
 670static struct mountpoint *new_mountpoint(struct dentry *dentry)
 671{
 672	struct hlist_head *chain = mp_hash(dentry);
 673	struct mountpoint *mp;
 674	int ret;
 675
 676	hlist_for_each_entry(mp, chain, m_hash) {
 677		if (mp->m_dentry == dentry) {
 678			/* might be worth a WARN_ON() */
 679			if (d_unlinked(dentry))
 680				return ERR_PTR(-ENOENT);
 681			mp->m_count++;
 682			return mp;
 683		}
 684	}
 685
 686	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 687	if (!mp)
 688		return ERR_PTR(-ENOMEM);
 689
 690	ret = d_set_mounted(dentry);
 691	if (ret) {
 692		kfree(mp);
 693		return ERR_PTR(ret);
 694	}
 695
 696	mp->m_dentry = dentry;
 697	mp->m_count = 1;
 698	hlist_add_head(&mp->m_hash, chain);
 699	return mp;
 700}
 701
 702static void put_mountpoint(struct mountpoint *mp)
 703{
 704	if (!--mp->m_count) {
 705		struct dentry *dentry = mp->m_dentry;
 706		spin_lock(&dentry->d_lock);
 707		dentry->d_flags &= ~DCACHE_MOUNTED;
 708		spin_unlock(&dentry->d_lock);
 709		hlist_del(&mp->m_hash);
 710		kfree(mp);
 711	}
 712}
 713
 714static inline int check_mnt(struct mount *mnt)
 715{
 716	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 717}
 718
 719/*
 720 * vfsmount lock must be held for write
 721 */
 722static void touch_mnt_namespace(struct mnt_namespace *ns)
 723{
 724	if (ns) {
 725		ns->event = ++event;
 726		wake_up_interruptible(&ns->poll);
 727	}
 728}
 729
 730/*
 731 * vfsmount lock must be held for write
 732 */
 733static void __touch_mnt_namespace(struct mnt_namespace *ns)
 734{
 735	if (ns && ns->event != event) {
 736		ns->event = event;
 737		wake_up_interruptible(&ns->poll);
 738	}
 739}
 740
 741/*
 742 * vfsmount lock must be held for write
 743 */
 744static void detach_mnt(struct mount *mnt, struct path *old_path)
 745{
 746	old_path->dentry = mnt->mnt_mountpoint;
 747	old_path->mnt = &mnt->mnt_parent->mnt;
 748	mnt->mnt_parent = mnt;
 749	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 750	list_del_init(&mnt->mnt_child);
 751	hlist_del_init_rcu(&mnt->mnt_hash);
 752	put_mountpoint(mnt->mnt_mp);
 753	mnt->mnt_mp = NULL;
 754}
 755
 756/*
 757 * vfsmount lock must be held for write
 758 */
 759void mnt_set_mountpoint(struct mount *mnt,
 760			struct mountpoint *mp,
 761			struct mount *child_mnt)
 762{
 763	mp->m_count++;
 764	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 765	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 766	child_mnt->mnt_parent = mnt;
 767	child_mnt->mnt_mp = mp;
 768}
 769
 770/*
 771 * vfsmount lock must be held for write
 772 */
 773static void attach_mnt(struct mount *mnt,
 774			struct mount *parent,
 775			struct mountpoint *mp)
 776{
 777	mnt_set_mountpoint(parent, mp, mnt);
 778	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
 779	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 780}
 781
 782/*
 783 * vfsmount lock must be held for write
 784 */
 785static void commit_tree(struct mount *mnt, struct mount *shadows)
 786{
 787	struct mount *parent = mnt->mnt_parent;
 788	struct mount *m;
 789	LIST_HEAD(head);
 790	struct mnt_namespace *n = parent->mnt_ns;
 791
 792	BUG_ON(parent == mnt);
 793
 794	list_add_tail(&head, &mnt->mnt_list);
 795	list_for_each_entry(m, &head, mnt_list)
 796		m->mnt_ns = n;
 797
 798	list_splice(&head, n->list.prev);
 799
 800	if (shadows)
 801		hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
 802	else
 803		hlist_add_head_rcu(&mnt->mnt_hash,
 804				m_hash(&parent->mnt, mnt->mnt_mountpoint));
 805	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 806	touch_mnt_namespace(n);
 807}
 808
 809static struct mount *next_mnt(struct mount *p, struct mount *root)
 810{
 811	struct list_head *next = p->mnt_mounts.next;
 812	if (next == &p->mnt_mounts) {
 813		while (1) {
 814			if (p == root)
 815				return NULL;
 816			next = p->mnt_child.next;
 817			if (next != &p->mnt_parent->mnt_mounts)
 818				break;
 819			p = p->mnt_parent;
 820		}
 821	}
 822	return list_entry(next, struct mount, mnt_child);
 823}
 824
 825static struct mount *skip_mnt_tree(struct mount *p)
 826{
 827	struct list_head *prev = p->mnt_mounts.prev;
 828	while (prev != &p->mnt_mounts) {
 829		p = list_entry(prev, struct mount, mnt_child);
 830		prev = p->mnt_mounts.prev;
 831	}
 832	return p;
 833}
 834
 835struct vfsmount *
 836vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
 837{
 838	struct mount *mnt;
 839	struct dentry *root;
 840
 841	if (!type)
 842		return ERR_PTR(-ENODEV);
 843
 844	mnt = alloc_vfsmnt(name);
 845	if (!mnt)
 846		return ERR_PTR(-ENOMEM);
 847
 848	if (flags & MS_KERNMOUNT)
 849		mnt->mnt.mnt_flags = MNT_INTERNAL;
 850
 851	root = mount_fs(type, flags, name, data);
 852	if (IS_ERR(root)) {
 853		mnt_free_id(mnt);
 854		free_vfsmnt(mnt);
 855		return ERR_CAST(root);
 856	}
 857
 858	mnt->mnt.mnt_root = root;
 859	mnt->mnt.mnt_sb = root->d_sb;
 860	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 861	mnt->mnt_parent = mnt;
 862	lock_mount_hash();
 863	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
 864	unlock_mount_hash();
 865	return &mnt->mnt;
 866}
 867EXPORT_SYMBOL_GPL(vfs_kern_mount);
 868
 869static struct mount *clone_mnt(struct mount *old, struct dentry *root,
 870					int flag)
 871{
 872	struct super_block *sb = old->mnt.mnt_sb;
 873	struct mount *mnt;
 874	int err;
 875
 876	mnt = alloc_vfsmnt(old->mnt_devname);
 877	if (!mnt)
 878		return ERR_PTR(-ENOMEM);
 879
 880	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
 881		mnt->mnt_group_id = 0; /* not a peer of original */
 882	else
 883		mnt->mnt_group_id = old->mnt_group_id;
 884
 885	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 886		err = mnt_alloc_group_id(mnt);
 887		if (err)
 888			goto out_free;
 889	}
 890
 891	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
 892	/* Don't allow unprivileged users to change mount flags */
 893	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
 894		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
 895
 896	/* Don't allow unprivileged users to reveal what is under a mount */
 897	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
 898		mnt->mnt.mnt_flags |= MNT_LOCKED;
 899
 900	atomic_inc(&sb->s_active);
 901	mnt->mnt.mnt_sb = sb;
 902	mnt->mnt.mnt_root = dget(root);
 903	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 904	mnt->mnt_parent = mnt;
 905	lock_mount_hash();
 906	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
 907	unlock_mount_hash();
 908
 909	if ((flag & CL_SLAVE) ||
 910	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
 911		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 912		mnt->mnt_master = old;
 913		CLEAR_MNT_SHARED(mnt);
 914	} else if (!(flag & CL_PRIVATE)) {
 915		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
 916			list_add(&mnt->mnt_share, &old->mnt_share);
 917		if (IS_MNT_SLAVE(old))
 918			list_add(&mnt->mnt_slave, &old->mnt_slave);
 919		mnt->mnt_master = old->mnt_master;
 920	}
 921	if (flag & CL_MAKE_SHARED)
 922		set_mnt_shared(mnt);
 923
 924	/* stick the duplicate mount on the same expiry list
 925	 * as the original if that was on one */
 926	if (flag & CL_EXPIRE) {
 927		if (!list_empty(&old->mnt_expire))
 928			list_add(&mnt->mnt_expire, &old->mnt_expire);
 929	}
 930
 931	return mnt;
 932
 933 out_free:
 934	mnt_free_id(mnt);
 935	free_vfsmnt(mnt);
 936	return ERR_PTR(err);
 937}
 938
 939static void mntput_no_expire(struct mount *mnt)
 940{
 941put_again:
 942	rcu_read_lock();
 943	mnt_add_count(mnt, -1);
 944	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
 945		rcu_read_unlock();
 946		return;
 947	}
 948	lock_mount_hash();
 949	if (mnt_get_count(mnt)) {
 950		rcu_read_unlock();
 951		unlock_mount_hash();
 952		return;
 953	}
 954	if (unlikely(mnt->mnt_pinned)) {
 955		mnt_add_count(mnt, mnt->mnt_pinned + 1);
 956		mnt->mnt_pinned = 0;
 957		rcu_read_unlock();
 958		unlock_mount_hash();
 959		acct_auto_close_mnt(&mnt->mnt);
 960		goto put_again;
 961	}
 962	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
 963		rcu_read_unlock();
 964		unlock_mount_hash();
 965		return;
 966	}
 967	mnt->mnt.mnt_flags |= MNT_DOOMED;
 968	rcu_read_unlock();
 969
 970	list_del(&mnt->mnt_instance);
 971	unlock_mount_hash();
 972
 973	/*
 974	 * This probably indicates that somebody messed
 975	 * up a mnt_want/drop_write() pair.  If this
 976	 * happens, the filesystem was probably unable
 977	 * to make r/w->r/o transitions.
 978	 */
 979	/*
 980	 * The locking used to deal with mnt_count decrement provides barriers,
 981	 * so mnt_get_writers() below is safe.
 982	 */
 983	WARN_ON(mnt_get_writers(mnt));
 984	fsnotify_vfsmount_delete(&mnt->mnt);
 985	dput(mnt->mnt.mnt_root);
 986	deactivate_super(mnt->mnt.mnt_sb);
 987	mnt_free_id(mnt);
 988	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
 989}
 990
 991void mntput(struct vfsmount *mnt)
 992{
 993	if (mnt) {
 994		struct mount *m = real_mount(mnt);
 995		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
 996		if (unlikely(m->mnt_expiry_mark))
 997			m->mnt_expiry_mark = 0;
 998		mntput_no_expire(m);
 999	}
1000}
1001EXPORT_SYMBOL(mntput);
1002
1003struct vfsmount *mntget(struct vfsmount *mnt)
1004{
1005	if (mnt)
1006		mnt_add_count(real_mount(mnt), 1);
1007	return mnt;
1008}
1009EXPORT_SYMBOL(mntget);
1010
1011void mnt_pin(struct vfsmount *mnt)
1012{
1013	lock_mount_hash();
1014	real_mount(mnt)->mnt_pinned++;
1015	unlock_mount_hash();
1016}
1017EXPORT_SYMBOL(mnt_pin);
1018
1019void mnt_unpin(struct vfsmount *m)
1020{
1021	struct mount *mnt = real_mount(m);
1022	lock_mount_hash();
1023	if (mnt->mnt_pinned) {
1024		mnt_add_count(mnt, 1);
1025		mnt->mnt_pinned--;
1026	}
1027	unlock_mount_hash();
1028}
1029EXPORT_SYMBOL(mnt_unpin);
1030
1031static inline void mangle(struct seq_file *m, const char *s)
1032{
1033	seq_escape(m, s, " \t\n\\");
1034}
1035
1036/*
1037 * Simple .show_options callback for filesystems which don't want to
1038 * implement more complex mount option showing.
1039 *
1040 * See also save_mount_options().
1041 */
1042int generic_show_options(struct seq_file *m, struct dentry *root)
1043{
1044	const char *options;
1045
1046	rcu_read_lock();
1047	options = rcu_dereference(root->d_sb->s_options);
1048
1049	if (options != NULL && options[0]) {
1050		seq_putc(m, ',');
1051		mangle(m, options);
1052	}
1053	rcu_read_unlock();
1054
1055	return 0;
1056}
1057EXPORT_SYMBOL(generic_show_options);
1058
1059/*
1060 * If filesystem uses generic_show_options(), this function should be
1061 * called from the fill_super() callback.
1062 *
1063 * The .remount_fs callback usually needs to be handled in a special
1064 * way, to make sure, that previous options are not overwritten if the
1065 * remount fails.
1066 *
1067 * Also note, that if the filesystem's .remount_fs function doesn't
1068 * reset all options to their default value, but changes only newly
1069 * given options, then the displayed options will not reflect reality
1070 * any more.
1071 */
1072void save_mount_options(struct super_block *sb, char *options)
1073{
1074	BUG_ON(sb->s_options);
1075	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1076}
1077EXPORT_SYMBOL(save_mount_options);
1078
1079void replace_mount_options(struct super_block *sb, char *options)
1080{
1081	char *old = sb->s_options;
1082	rcu_assign_pointer(sb->s_options, options);
1083	if (old) {
1084		synchronize_rcu();
1085		kfree(old);
1086	}
1087}
1088EXPORT_SYMBOL(replace_mount_options);
1089
1090#ifdef CONFIG_PROC_FS
1091/* iterator; we want it to have access to namespace_sem, thus here... */
1092static void *m_start(struct seq_file *m, loff_t *pos)
1093{
1094	struct proc_mounts *p = proc_mounts(m);
1095
1096	down_read(&namespace_sem);
1097	if (p->cached_event == p->ns->event) {
1098		void *v = p->cached_mount;
1099		if (*pos == p->cached_index)
1100			return v;
1101		if (*pos == p->cached_index + 1) {
1102			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1103			return p->cached_mount = v;
1104		}
1105	}
1106
1107	p->cached_event = p->ns->event;
1108	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1109	p->cached_index = *pos;
1110	return p->cached_mount;
1111}
1112
1113static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1114{
1115	struct proc_mounts *p = proc_mounts(m);
1116
1117	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1118	p->cached_index = *pos;
1119	return p->cached_mount;
1120}
1121
1122static void m_stop(struct seq_file *m, void *v)
1123{
1124	up_read(&namespace_sem);
1125}
1126
1127static int m_show(struct seq_file *m, void *v)
1128{
1129	struct proc_mounts *p = proc_mounts(m);
1130	struct mount *r = list_entry(v, struct mount, mnt_list);
1131	return p->show(m, &r->mnt);
1132}
1133
1134const struct seq_operations mounts_op = {
1135	.start	= m_start,
1136	.next	= m_next,
1137	.stop	= m_stop,
1138	.show	= m_show,
1139};
1140#endif  /* CONFIG_PROC_FS */
1141
1142/**
1143 * may_umount_tree - check if a mount tree is busy
1144 * @mnt: root of mount tree
1145 *
1146 * This is called to check if a tree of mounts has any
1147 * open files, pwds, chroots or sub mounts that are
1148 * busy.
1149 */
1150int may_umount_tree(struct vfsmount *m)
1151{
1152	struct mount *mnt = real_mount(m);
1153	int actual_refs = 0;
1154	int minimum_refs = 0;
1155	struct mount *p;
1156	BUG_ON(!m);
1157
1158	/* write lock needed for mnt_get_count */
1159	lock_mount_hash();
1160	for (p = mnt; p; p = next_mnt(p, mnt)) {
1161		actual_refs += mnt_get_count(p);
1162		minimum_refs += 2;
1163	}
1164	unlock_mount_hash();
1165
1166	if (actual_refs > minimum_refs)
1167		return 0;
1168
1169	return 1;
1170}
1171
1172EXPORT_SYMBOL(may_umount_tree);
1173
1174/**
1175 * may_umount - check if a mount point is busy
1176 * @mnt: root of mount
1177 *
1178 * This is called to check if a mount point has any
1179 * open files, pwds, chroots or sub mounts. If the
1180 * mount has sub mounts this will return busy
1181 * regardless of whether the sub mounts are busy.
1182 *
1183 * Doesn't take quota and stuff into account. IOW, in some cases it will
1184 * give false negatives. The main reason why it's here is that we need
1185 * a non-destructive way to look for easily umountable filesystems.
1186 */
1187int may_umount(struct vfsmount *mnt)
1188{
1189	int ret = 1;
1190	down_read(&namespace_sem);
1191	lock_mount_hash();
1192	if (propagate_mount_busy(real_mount(mnt), 2))
1193		ret = 0;
1194	unlock_mount_hash();
1195	up_read(&namespace_sem);
1196	return ret;
1197}
1198
1199EXPORT_SYMBOL(may_umount);
1200
1201static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1202
1203static void namespace_unlock(void)
1204{
1205	struct mount *mnt;
1206	struct hlist_head head = unmounted;
1207
1208	if (likely(hlist_empty(&head))) {
1209		up_write(&namespace_sem);
1210		return;
1211	}
1212
1213	head.first->pprev = &head.first;
1214	INIT_HLIST_HEAD(&unmounted);
1215
1216	up_write(&namespace_sem);
1217
1218	synchronize_rcu();
1219
1220	while (!hlist_empty(&head)) {
1221		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1222		hlist_del_init(&mnt->mnt_hash);
1223		if (mnt->mnt_ex_mountpoint.mnt)
1224			path_put(&mnt->mnt_ex_mountpoint);
1225		mntput(&mnt->mnt);
1226	}
1227}
1228
1229static inline void namespace_lock(void)
1230{
1231	down_write(&namespace_sem);
1232}
1233
1234/*
1235 * mount_lock must be held
1236 * namespace_sem must be held for write
1237 * how = 0 => just this tree, don't propagate
1238 * how = 1 => propagate; we know that nobody else has reference to any victims
1239 * how = 2 => lazy umount
1240 */
1241void umount_tree(struct mount *mnt, int how)
1242{
1243	HLIST_HEAD(tmp_list);
1244	struct mount *p;
1245	struct mount *last = NULL;
1246
1247	for (p = mnt; p; p = next_mnt(p, mnt)) {
1248		hlist_del_init_rcu(&p->mnt_hash);
1249		hlist_add_head(&p->mnt_hash, &tmp_list);
1250	}
1251
1252	if (how)
1253		propagate_umount(&tmp_list);
1254
1255	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1256		list_del_init(&p->mnt_expire);
1257		list_del_init(&p->mnt_list);
1258		__touch_mnt_namespace(p->mnt_ns);
1259		p->mnt_ns = NULL;
1260		if (how < 2)
1261			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1262		list_del_init(&p->mnt_child);
1263		if (mnt_has_parent(p)) {
1264			put_mountpoint(p->mnt_mp);
1265			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1266			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1267			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1268			p->mnt_mountpoint = p->mnt.mnt_root;
1269			p->mnt_parent = p;
1270			p->mnt_mp = NULL;
1271		}
1272		change_mnt_propagation(p, MS_PRIVATE);
1273		last = p;
1274	}
1275	if (last) {
1276		last->mnt_hash.next = unmounted.first;
1277		unmounted.first = tmp_list.first;
1278		unmounted.first->pprev = &unmounted.first;
1279	}
1280}
1281
1282static void shrink_submounts(struct mount *mnt);
1283
1284static int do_umount(struct mount *mnt, int flags)
1285{
1286	struct super_block *sb = mnt->mnt.mnt_sb;
1287	int retval;
1288
1289	retval = security_sb_umount(&mnt->mnt, flags);
1290	if (retval)
1291		return retval;
1292
1293	/*
1294	 * Allow userspace to request a mountpoint be expired rather than
1295	 * unmounting unconditionally. Unmount only happens if:
1296	 *  (1) the mark is already set (the mark is cleared by mntput())
1297	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1298	 */
1299	if (flags & MNT_EXPIRE) {
1300		if (&mnt->mnt == current->fs->root.mnt ||
1301		    flags & (MNT_FORCE | MNT_DETACH))
1302			return -EINVAL;
1303
1304		/*
1305		 * probably don't strictly need the lock here if we examined
1306		 * all race cases, but it's a slowpath.
1307		 */
1308		lock_mount_hash();
1309		if (mnt_get_count(mnt) != 2) {
1310			unlock_mount_hash();
1311			return -EBUSY;
1312		}
1313		unlock_mount_hash();
1314
1315		if (!xchg(&mnt->mnt_expiry_mark, 1))
1316			return -EAGAIN;
1317	}
1318
1319	/*
1320	 * If we may have to abort operations to get out of this
1321	 * mount, and they will themselves hold resources we must
1322	 * allow the fs to do things. In the Unix tradition of
1323	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1324	 * might fail to complete on the first run through as other tasks
1325	 * must return, and the like. Thats for the mount program to worry
1326	 * about for the moment.
1327	 */
1328
1329	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1330		sb->s_op->umount_begin(sb);
1331	}
1332
1333	/*
1334	 * No sense to grab the lock for this test, but test itself looks
1335	 * somewhat bogus. Suggestions for better replacement?
1336	 * Ho-hum... In principle, we might treat that as umount + switch
1337	 * to rootfs. GC would eventually take care of the old vfsmount.
1338	 * Actually it makes sense, especially if rootfs would contain a
1339	 * /reboot - static binary that would close all descriptors and
1340	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1341	 */
1342	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1343		/*
1344		 * Special case for "unmounting" root ...
1345		 * we just try to remount it readonly.
1346		 */
1347		down_write(&sb->s_umount);
1348		if (!(sb->s_flags & MS_RDONLY))
1349			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1350		up_write(&sb->s_umount);
1351		return retval;
1352	}
1353
1354	namespace_lock();
1355	lock_mount_hash();
1356	event++;
1357
1358	if (flags & MNT_DETACH) {
1359		if (!list_empty(&mnt->mnt_list))
1360			umount_tree(mnt, 2);
1361		retval = 0;
1362	} else {
1363		shrink_submounts(mnt);
1364		retval = -EBUSY;
1365		if (!propagate_mount_busy(mnt, 2)) {
1366			if (!list_empty(&mnt->mnt_list))
1367				umount_tree(mnt, 1);
1368			retval = 0;
1369		}
1370	}
1371	unlock_mount_hash();
1372	namespace_unlock();
1373	return retval;
1374}
1375
1376/* 
1377 * Is the caller allowed to modify his namespace?
1378 */
1379static inline bool may_mount(void)
1380{
1381	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1382}
1383
1384/*
1385 * Now umount can handle mount points as well as block devices.
1386 * This is important for filesystems which use unnamed block devices.
1387 *
1388 * We now support a flag for forced unmount like the other 'big iron'
1389 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1390 */
1391
1392SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1393{
1394	struct path path;
1395	struct mount *mnt;
1396	int retval;
1397	int lookup_flags = 0;
1398
1399	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1400		return -EINVAL;
1401
1402	if (!may_mount())
1403		return -EPERM;
1404
1405	if (!(flags & UMOUNT_NOFOLLOW))
1406		lookup_flags |= LOOKUP_FOLLOW;
1407
1408	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1409	if (retval)
1410		goto out;
1411	mnt = real_mount(path.mnt);
1412	retval = -EINVAL;
1413	if (path.dentry != path.mnt->mnt_root)
1414		goto dput_and_out;
1415	if (!check_mnt(mnt))
1416		goto dput_and_out;
1417	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1418		goto dput_and_out;
1419
1420	retval = do_umount(mnt, flags);
1421dput_and_out:
1422	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1423	dput(path.dentry);
1424	mntput_no_expire(mnt);
1425out:
1426	return retval;
1427}
1428
1429#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1430
1431/*
1432 *	The 2.0 compatible umount. No flags.
1433 */
1434SYSCALL_DEFINE1(oldumount, char __user *, name)
1435{
1436	return sys_umount(name, 0);
1437}
1438
1439#endif
1440
1441static bool is_mnt_ns_file(struct dentry *dentry)
1442{
1443	/* Is this a proxy for a mount namespace? */
1444	struct inode *inode = dentry->d_inode;
1445	struct proc_ns *ei;
1446
1447	if (!proc_ns_inode(inode))
1448		return false;
1449
1450	ei = get_proc_ns(inode);
1451	if (ei->ns_ops != &mntns_operations)
1452		return false;
1453
1454	return true;
1455}
1456
1457static bool mnt_ns_loop(struct dentry *dentry)
1458{
1459	/* Could bind mounting the mount namespace inode cause a
1460	 * mount namespace loop?
1461	 */
1462	struct mnt_namespace *mnt_ns;
1463	if (!is_mnt_ns_file(dentry))
1464		return false;
1465
1466	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1467	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1468}
1469
1470struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1471					int flag)
1472{
1473	struct mount *res, *p, *q, *r, *parent;
1474
1475	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1476		return ERR_PTR(-EINVAL);
1477
1478	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1479		return ERR_PTR(-EINVAL);
1480
1481	res = q = clone_mnt(mnt, dentry, flag);
1482	if (IS_ERR(q))
1483		return q;
1484
1485	q->mnt.mnt_flags &= ~MNT_LOCKED;
1486	q->mnt_mountpoint = mnt->mnt_mountpoint;
1487
1488	p = mnt;
1489	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1490		struct mount *s;
1491		if (!is_subdir(r->mnt_mountpoint, dentry))
1492			continue;
1493
1494		for (s = r; s; s = next_mnt(s, r)) {
1495			if (!(flag & CL_COPY_UNBINDABLE) &&
1496			    IS_MNT_UNBINDABLE(s)) {
1497				s = skip_mnt_tree(s);
1498				continue;
1499			}
1500			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1501			    is_mnt_ns_file(s->mnt.mnt_root)) {
1502				s = skip_mnt_tree(s);
1503				continue;
1504			}
1505			while (p != s->mnt_parent) {
1506				p = p->mnt_parent;
1507				q = q->mnt_parent;
1508			}
1509			p = s;
1510			parent = q;
1511			q = clone_mnt(p, p->mnt.mnt_root, flag);
1512			if (IS_ERR(q))
1513				goto out;
1514			lock_mount_hash();
1515			list_add_tail(&q->mnt_list, &res->mnt_list);
1516			attach_mnt(q, parent, p->mnt_mp);
1517			unlock_mount_hash();
1518		}
1519	}
1520	return res;
1521out:
1522	if (res) {
1523		lock_mount_hash();
1524		umount_tree(res, 0);
1525		unlock_mount_hash();
1526	}
1527	return q;
1528}
1529
1530/* Caller should check returned pointer for errors */
1531
1532struct vfsmount *collect_mounts(struct path *path)
1533{
1534	struct mount *tree;
1535	namespace_lock();
1536	tree = copy_tree(real_mount(path->mnt), path->dentry,
1537			 CL_COPY_ALL | CL_PRIVATE);
1538	namespace_unlock();
1539	if (IS_ERR(tree))
1540		return ERR_CAST(tree);
1541	return &tree->mnt;
1542}
1543
1544void drop_collected_mounts(struct vfsmount *mnt)
1545{
1546	namespace_lock();
1547	lock_mount_hash();
1548	umount_tree(real_mount(mnt), 0);
1549	unlock_mount_hash();
1550	namespace_unlock();
1551}
1552
1553int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1554		   struct vfsmount *root)
1555{
1556	struct mount *mnt;
1557	int res = f(root, arg);
1558	if (res)
1559		return res;
1560	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1561		res = f(&mnt->mnt, arg);
1562		if (res)
1563			return res;
1564	}
1565	return 0;
1566}
1567
1568static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1569{
1570	struct mount *p;
1571
1572	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1573		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1574			mnt_release_group_id(p);
1575	}
1576}
1577
1578static int invent_group_ids(struct mount *mnt, bool recurse)
1579{
1580	struct mount *p;
1581
1582	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1583		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1584			int err = mnt_alloc_group_id(p);
1585			if (err) {
1586				cleanup_group_ids(mnt, p);
1587				return err;
1588			}
1589		}
1590	}
1591
1592	return 0;
1593}
1594
1595/*
1596 *  @source_mnt : mount tree to be attached
1597 *  @nd         : place the mount tree @source_mnt is attached
1598 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1599 *  		   store the parent mount and mountpoint dentry.
1600 *  		   (done when source_mnt is moved)
1601 *
1602 *  NOTE: in the table below explains the semantics when a source mount
1603 *  of a given type is attached to a destination mount of a given type.
1604 * ---------------------------------------------------------------------------
1605 * |         BIND MOUNT OPERATION                                            |
1606 * |**************************************************************************
1607 * | source-->| shared        |       private  |       slave    | unbindable |
1608 * | dest     |               |                |                |            |
1609 * |   |      |               |                |                |            |
1610 * |   v      |               |                |                |            |
1611 * |**************************************************************************
1612 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1613 * |          |               |                |                |            |
1614 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1615 * ***************************************************************************
1616 * A bind operation clones the source mount and mounts the clone on the
1617 * destination mount.
1618 *
1619 * (++)  the cloned mount is propagated to all the mounts in the propagation
1620 * 	 tree of the destination mount and the cloned mount is added to
1621 * 	 the peer group of the source mount.
1622 * (+)   the cloned mount is created under the destination mount and is marked
1623 *       as shared. The cloned mount is added to the peer group of the source
1624 *       mount.
1625 * (+++) the mount is propagated to all the mounts in the propagation tree
1626 *       of the destination mount and the cloned mount is made slave
1627 *       of the same master as that of the source mount. The cloned mount
1628 *       is marked as 'shared and slave'.
1629 * (*)   the cloned mount is made a slave of the same master as that of the
1630 * 	 source mount.
1631 *
1632 * ---------------------------------------------------------------------------
1633 * |         		MOVE MOUNT OPERATION                                 |
1634 * |**************************************************************************
1635 * | source-->| shared        |       private  |       slave    | unbindable |
1636 * | dest     |               |                |                |            |
1637 * |   |      |               |                |                |            |
1638 * |   v      |               |                |                |            |
1639 * |**************************************************************************
1640 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1641 * |          |               |                |                |            |
1642 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1643 * ***************************************************************************
1644 *
1645 * (+)  the mount is moved to the destination. And is then propagated to
1646 * 	all the mounts in the propagation tree of the destination mount.
1647 * (+*)  the mount is moved to the destination.
1648 * (+++)  the mount is moved to the destination and is then propagated to
1649 * 	all the mounts belonging to the destination mount's propagation tree.
1650 * 	the mount is marked as 'shared and slave'.
1651 * (*)	the mount continues to be a slave at the new location.
1652 *
1653 * if the source mount is a tree, the operations explained above is
1654 * applied to each mount in the tree.
1655 * Must be called without spinlocks held, since this function can sleep
1656 * in allocations.
1657 */
1658static int attach_recursive_mnt(struct mount *source_mnt,
1659			struct mount *dest_mnt,
1660			struct mountpoint *dest_mp,
1661			struct path *parent_path)
1662{
1663	HLIST_HEAD(tree_list);
1664	struct mount *child, *p;
1665	struct hlist_node *n;
1666	int err;
1667
1668	if (IS_MNT_SHARED(dest_mnt)) {
1669		err = invent_group_ids(source_mnt, true);
1670		if (err)
1671			goto out;
1672		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1673		lock_mount_hash();
1674		if (err)
1675			goto out_cleanup_ids;
1676		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1677			set_mnt_shared(p);
1678	} else {
1679		lock_mount_hash();
1680	}
1681	if (parent_path) {
1682		detach_mnt(source_mnt, parent_path);
1683		attach_mnt(source_mnt, dest_mnt, dest_mp);
1684		touch_mnt_namespace(source_mnt->mnt_ns);
1685	} else {
1686		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1687		commit_tree(source_mnt, NULL);
1688	}
1689
1690	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1691		struct mount *q;
1692		hlist_del_init(&child->mnt_hash);
1693		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1694				      child->mnt_mountpoint);
1695		commit_tree(child, q);
1696	}
1697	unlock_mount_hash();
1698
1699	return 0;
1700
1701 out_cleanup_ids:
1702	while (!hlist_empty(&tree_list)) {
1703		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1704		umount_tree(child, 0);
1705	}
1706	unlock_mount_hash();
1707	cleanup_group_ids(source_mnt, NULL);
1708 out:
1709	return err;
1710}
1711
1712static struct mountpoint *lock_mount(struct path *path)
1713{
1714	struct vfsmount *mnt;
1715	struct dentry *dentry = path->dentry;
1716retry:
1717	mutex_lock(&dentry->d_inode->i_mutex);
1718	if (unlikely(cant_mount(dentry))) {
1719		mutex_unlock(&dentry->d_inode->i_mutex);
1720		return ERR_PTR(-ENOENT);
1721	}
1722	namespace_lock();
1723	mnt = lookup_mnt(path);
1724	if (likely(!mnt)) {
1725		struct mountpoint *mp = new_mountpoint(dentry);
1726		if (IS_ERR(mp)) {
1727			namespace_unlock();
1728			mutex_unlock(&dentry->d_inode->i_mutex);
1729			return mp;
1730		}
1731		return mp;
1732	}
1733	namespace_unlock();
1734	mutex_unlock(&path->dentry->d_inode->i_mutex);
1735	path_put(path);
1736	path->mnt = mnt;
1737	dentry = path->dentry = dget(mnt->mnt_root);
1738	goto retry;
1739}
1740
1741static void unlock_mount(struct mountpoint *where)
1742{
1743	struct dentry *dentry = where->m_dentry;
1744	put_mountpoint(where);
1745	namespace_unlock();
1746	mutex_unlock(&dentry->d_inode->i_mutex);
1747}
1748
1749static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1750{
1751	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1752		return -EINVAL;
1753
1754	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1755	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1756		return -ENOTDIR;
1757
1758	return attach_recursive_mnt(mnt, p, mp, NULL);
1759}
1760
1761/*
1762 * Sanity check the flags to change_mnt_propagation.
1763 */
1764
1765static int flags_to_propagation_type(int flags)
1766{
1767	int type = flags & ~(MS_REC | MS_SILENT);
1768
1769	/* Fail if any non-propagation flags are set */
1770	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1771		return 0;
1772	/* Only one propagation flag should be set */
1773	if (!is_power_of_2(type))
1774		return 0;
1775	return type;
1776}
1777
1778/*
1779 * recursively change the type of the mountpoint.
1780 */
1781static int do_change_type(struct path *path, int flag)
1782{
1783	struct mount *m;
1784	struct mount *mnt = real_mount(path->mnt);
1785	int recurse = flag & MS_REC;
1786	int type;
1787	int err = 0;
1788
1789	if (path->dentry != path->mnt->mnt_root)
1790		return -EINVAL;
1791
1792	type = flags_to_propagation_type(flag);
1793	if (!type)
1794		return -EINVAL;
1795
1796	namespace_lock();
1797	if (type == MS_SHARED) {
1798		err = invent_group_ids(mnt, recurse);
1799		if (err)
1800			goto out_unlock;
1801	}
1802
1803	lock_mount_hash();
1804	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1805		change_mnt_propagation(m, type);
1806	unlock_mount_hash();
1807
1808 out_unlock:
1809	namespace_unlock();
1810	return err;
1811}
1812
1813static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1814{
1815	struct mount *child;
1816	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1817		if (!is_subdir(child->mnt_mountpoint, dentry))
1818			continue;
1819
1820		if (child->mnt.mnt_flags & MNT_LOCKED)
1821			return true;
1822	}
1823	return false;
1824}
1825
1826/*
1827 * do loopback mount.
1828 */
1829static int do_loopback(struct path *path, const char *old_name,
1830				int recurse)
1831{
1832	struct path old_path;
1833	struct mount *mnt = NULL, *old, *parent;
1834	struct mountpoint *mp;
1835	int err;
1836	if (!old_name || !*old_name)
1837		return -EINVAL;
1838	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1839	if (err)
1840		return err;
1841
1842	err = -EINVAL;
1843	if (mnt_ns_loop(old_path.dentry))
1844		goto out; 
1845
1846	mp = lock_mount(path);
1847	err = PTR_ERR(mp);
1848	if (IS_ERR(mp))
1849		goto out;
1850
1851	old = real_mount(old_path.mnt);
1852	parent = real_mount(path->mnt);
1853
1854	err = -EINVAL;
1855	if (IS_MNT_UNBINDABLE(old))
1856		goto out2;
1857
1858	if (!check_mnt(parent) || !check_mnt(old))
1859		goto out2;
1860
1861	if (!recurse && has_locked_children(old, old_path.dentry))
1862		goto out2;
1863
1864	if (recurse)
1865		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1866	else
1867		mnt = clone_mnt(old, old_path.dentry, 0);
1868
1869	if (IS_ERR(mnt)) {
1870		err = PTR_ERR(mnt);
1871		goto out2;
1872	}
1873
1874	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1875
1876	err = graft_tree(mnt, parent, mp);
1877	if (err) {
1878		lock_mount_hash();
1879		umount_tree(mnt, 0);
1880		unlock_mount_hash();
1881	}
1882out2:
1883	unlock_mount(mp);
1884out:
1885	path_put(&old_path);
1886	return err;
1887}
1888
1889static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1890{
1891	int error = 0;
1892	int readonly_request = 0;
1893
1894	if (ms_flags & MS_RDONLY)
1895		readonly_request = 1;
1896	if (readonly_request == __mnt_is_readonly(mnt))
1897		return 0;
1898
1899	if (mnt->mnt_flags & MNT_LOCK_READONLY)
1900		return -EPERM;
1901
1902	if (readonly_request)
1903		error = mnt_make_readonly(real_mount(mnt));
1904	else
1905		__mnt_unmake_readonly(real_mount(mnt));
1906	return error;
1907}
1908
1909/*
1910 * change filesystem flags. dir should be a physical root of filesystem.
1911 * If you've mounted a non-root directory somewhere and want to do remount
1912 * on it - tough luck.
1913 */
1914static int do_remount(struct path *path, int flags, int mnt_flags,
1915		      void *data)
1916{
1917	int err;
1918	struct super_block *sb = path->mnt->mnt_sb;
1919	struct mount *mnt = real_mount(path->mnt);
1920
1921	if (!check_mnt(mnt))
1922		return -EINVAL;
1923
1924	if (path->dentry != path->mnt->mnt_root)
1925		return -EINVAL;
1926
1927	err = security_sb_remount(sb, data);
1928	if (err)
1929		return err;
1930
1931	down_write(&sb->s_umount);
1932	if (flags & MS_BIND)
1933		err = change_mount_flags(path->mnt, flags);
1934	else if (!capable(CAP_SYS_ADMIN))
1935		err = -EPERM;
1936	else
1937		err = do_remount_sb(sb, flags, data, 0);
1938	if (!err) {
1939		lock_mount_hash();
1940		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1941		mnt->mnt.mnt_flags = mnt_flags;
1942		touch_mnt_namespace(mnt->mnt_ns);
1943		unlock_mount_hash();
1944	}
1945	up_write(&sb->s_umount);
1946	return err;
1947}
1948
1949static inline int tree_contains_unbindable(struct mount *mnt)
1950{
1951	struct mount *p;
1952	for (p = mnt; p; p = next_mnt(p, mnt)) {
1953		if (IS_MNT_UNBINDABLE(p))
1954			return 1;
1955	}
1956	return 0;
1957}
1958
1959static int do_move_mount(struct path *path, const char *old_name)
1960{
1961	struct path old_path, parent_path;
1962	struct mount *p;
1963	struct mount *old;
1964	struct mountpoint *mp;
1965	int err;
1966	if (!old_name || !*old_name)
1967		return -EINVAL;
1968	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1969	if (err)
1970		return err;
1971
1972	mp = lock_mount(path);
1973	err = PTR_ERR(mp);
1974	if (IS_ERR(mp))
1975		goto out;
1976
1977	old = real_mount(old_path.mnt);
1978	p = real_mount(path->mnt);
1979
1980	err = -EINVAL;
1981	if (!check_mnt(p) || !check_mnt(old))
1982		goto out1;
1983
1984	if (old->mnt.mnt_flags & MNT_LOCKED)
1985		goto out1;
1986
1987	err = -EINVAL;
1988	if (old_path.dentry != old_path.mnt->mnt_root)
1989		goto out1;
1990
1991	if (!mnt_has_parent(old))
1992		goto out1;
1993
1994	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1995	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1996		goto out1;
1997	/*
1998	 * Don't move a mount residing in a shared parent.
1999	 */
2000	if (IS_MNT_SHARED(old->mnt_parent))
2001		goto out1;
2002	/*
2003	 * Don't move a mount tree containing unbindable mounts to a destination
2004	 * mount which is shared.
2005	 */
2006	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2007		goto out1;
2008	err = -ELOOP;
2009	for (; mnt_has_parent(p); p = p->mnt_parent)
2010		if (p == old)
2011			goto out1;
2012
2013	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2014	if (err)
2015		goto out1;
2016
2017	/* if the mount is moved, it should no longer be expire
2018	 * automatically */
2019	list_del_init(&old->mnt_expire);
2020out1:
2021	unlock_mount(mp);
2022out:
2023	if (!err)
2024		path_put(&parent_path);
2025	path_put(&old_path);
2026	return err;
2027}
2028
2029static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2030{
2031	int err;
2032	const char *subtype = strchr(fstype, '.');
2033	if (subtype) {
2034		subtype++;
2035		err = -EINVAL;
2036		if (!subtype[0])
2037			goto err;
2038	} else
2039		subtype = "";
2040
2041	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2042	err = -ENOMEM;
2043	if (!mnt->mnt_sb->s_subtype)
2044		goto err;
2045	return mnt;
2046
2047 err:
2048	mntput(mnt);
2049	return ERR_PTR(err);
2050}
2051
2052/*
2053 * add a mount into a namespace's mount tree
2054 */
2055static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2056{
2057	struct mountpoint *mp;
2058	struct mount *parent;
2059	int err;
2060
2061	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2062
2063	mp = lock_mount(path);
2064	if (IS_ERR(mp))
2065		return PTR_ERR(mp);
2066
2067	parent = real_mount(path->mnt);
2068	err = -EINVAL;
2069	if (unlikely(!check_mnt(parent))) {
2070		/* that's acceptable only for automounts done in private ns */
2071		if (!(mnt_flags & MNT_SHRINKABLE))
2072			goto unlock;
2073		/* ... and for those we'd better have mountpoint still alive */
2074		if (!parent->mnt_ns)
2075			goto unlock;
2076	}
2077
2078	/* Refuse the same filesystem on the same mount point */
2079	err = -EBUSY;
2080	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2081	    path->mnt->mnt_root == path->dentry)
2082		goto unlock;
2083
2084	err = -EINVAL;
2085	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2086		goto unlock;
2087
2088	newmnt->mnt.mnt_flags = mnt_flags;
2089	err = graft_tree(newmnt, parent, mp);
2090
2091unlock:
2092	unlock_mount(mp);
2093	return err;
2094}
2095
2096/*
2097 * create a new mount for userspace and request it to be added into the
2098 * namespace's tree
2099 */
2100static int do_new_mount(struct path *path, const char *fstype, int flags,
2101			int mnt_flags, const char *name, void *data)
2102{
2103	struct file_system_type *type;
2104	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2105	struct vfsmount *mnt;
2106	int err;
2107
2108	if (!fstype)
2109		return -EINVAL;
2110
2111	type = get_fs_type(fstype);
2112	if (!type)
2113		return -ENODEV;
2114
2115	if (user_ns != &init_user_ns) {
2116		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2117			put_filesystem(type);
2118			return -EPERM;
2119		}
2120		/* Only in special cases allow devices from mounts
2121		 * created outside the initial user namespace.
2122		 */
2123		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2124			flags |= MS_NODEV;
2125			mnt_flags |= MNT_NODEV;
2126		}
2127	}
2128
2129	mnt = vfs_kern_mount(type, flags, name, data);
2130	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2131	    !mnt->mnt_sb->s_subtype)
2132		mnt = fs_set_subtype(mnt, fstype);
2133
2134	put_filesystem(type);
2135	if (IS_ERR(mnt))
2136		return PTR_ERR(mnt);
2137
2138	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2139	if (err)
2140		mntput(mnt);
2141	return err;
2142}
2143
2144int finish_automount(struct vfsmount *m, struct path *path)
2145{
2146	struct mount *mnt = real_mount(m);
2147	int err;
2148	/* The new mount record should have at least 2 refs to prevent it being
2149	 * expired before we get a chance to add it
2150	 */
2151	BUG_ON(mnt_get_count(mnt) < 2);
2152
2153	if (m->mnt_sb == path->mnt->mnt_sb &&
2154	    m->mnt_root == path->dentry) {
2155		err = -ELOOP;
2156		goto fail;
2157	}
2158
2159	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2160	if (!err)
2161		return 0;
2162fail:
2163	/* remove m from any expiration list it may be on */
2164	if (!list_empty(&mnt->mnt_expire)) {
2165		namespace_lock();
2166		list_del_init(&mnt->mnt_expire);
2167		namespace_unlock();
2168	}
2169	mntput(m);
2170	mntput(m);
2171	return err;
2172}
2173
2174/**
2175 * mnt_set_expiry - Put a mount on an expiration list
2176 * @mnt: The mount to list.
2177 * @expiry_list: The list to add the mount to.
2178 */
2179void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2180{
2181	namespace_lock();
2182
2183	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2184
2185	namespace_unlock();
2186}
2187EXPORT_SYMBOL(mnt_set_expiry);
2188
2189/*
2190 * process a list of expirable mountpoints with the intent of discarding any
2191 * mountpoints that aren't in use and haven't been touched since last we came
2192 * here
2193 */
2194void mark_mounts_for_expiry(struct list_head *mounts)
2195{
2196	struct mount *mnt, *next;
2197	LIST_HEAD(graveyard);
2198
2199	if (list_empty(mounts))
2200		return;
2201
2202	namespace_lock();
2203	lock_mount_hash();
2204
2205	/* extract from the expiration list every vfsmount that matches the
2206	 * following criteria:
2207	 * - only referenced by its parent vfsmount
2208	 * - still marked for expiry (marked on the last call here; marks are
2209	 *   cleared by mntput())
2210	 */
2211	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2212		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2213			propagate_mount_busy(mnt, 1))
2214			continue;
2215		list_move(&mnt->mnt_expire, &graveyard);
2216	}
2217	while (!list_empty(&graveyard)) {
2218		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2219		touch_mnt_namespace(mnt->mnt_ns);
2220		umount_tree(mnt, 1);
2221	}
2222	unlock_mount_hash();
2223	namespace_unlock();
2224}
2225
2226EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2227
2228/*
2229 * Ripoff of 'select_parent()'
2230 *
2231 * search the list of submounts for a given mountpoint, and move any
2232 * shrinkable submounts to the 'graveyard' list.
2233 */
2234static int select_submounts(struct mount *parent, struct list_head *graveyard)
2235{
2236	struct mount *this_parent = parent;
2237	struct list_head *next;
2238	int found = 0;
2239
2240repeat:
2241	next = this_parent->mnt_mounts.next;
2242resume:
2243	while (next != &this_parent->mnt_mounts) {
2244		struct list_head *tmp = next;
2245		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2246
2247		next = tmp->next;
2248		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2249			continue;
2250		/*
2251		 * Descend a level if the d_mounts list is non-empty.
2252		 */
2253		if (!list_empty(&mnt->mnt_mounts)) {
2254			this_parent = mnt;
2255			goto repeat;
2256		}
2257
2258		if (!propagate_mount_busy(mnt, 1)) {
2259			list_move_tail(&mnt->mnt_expire, graveyard);
2260			found++;
2261		}
2262	}
2263	/*
2264	 * All done at this level ... ascend and resume the search
2265	 */
2266	if (this_parent != parent) {
2267		next = this_parent->mnt_child.next;
2268		this_parent = this_parent->mnt_parent;
2269		goto resume;
2270	}
2271	return found;
2272}
2273
2274/*
2275 * process a list of expirable mountpoints with the intent of discarding any
2276 * submounts of a specific parent mountpoint
2277 *
2278 * mount_lock must be held for write
2279 */
2280static void shrink_submounts(struct mount *mnt)
2281{
2282	LIST_HEAD(graveyard);
2283	struct mount *m;
2284
2285	/* extract submounts of 'mountpoint' from the expiration list */
2286	while (select_submounts(mnt, &graveyard)) {
2287		while (!list_empty(&graveyard)) {
2288			m = list_first_entry(&graveyard, struct mount,
2289						mnt_expire);
2290			touch_mnt_namespace(m->mnt_ns);
2291			umount_tree(m, 1);
2292		}
2293	}
2294}
2295
2296/*
2297 * Some copy_from_user() implementations do not return the exact number of
2298 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2299 * Note that this function differs from copy_from_user() in that it will oops
2300 * on bad values of `to', rather than returning a short copy.
2301 */
2302static long exact_copy_from_user(void *to, const void __user * from,
2303				 unsigned long n)
2304{
2305	char *t = to;
2306	const char __user *f = from;
2307	char c;
2308
2309	if (!access_ok(VERIFY_READ, from, n))
2310		return n;
2311
2312	while (n) {
2313		if (__get_user(c, f)) {
2314			memset(t, 0, n);
2315			break;
2316		}
2317		*t++ = c;
2318		f++;
2319		n--;
2320	}
2321	return n;
2322}
2323
2324int copy_mount_options(const void __user * data, unsigned long *where)
2325{
2326	int i;
2327	unsigned long page;
2328	unsigned long size;
2329
2330	*where = 0;
2331	if (!data)
2332		return 0;
2333
2334	if (!(page = __get_free_page(GFP_KERNEL)))
2335		return -ENOMEM;
2336
2337	/* We only care that *some* data at the address the user
2338	 * gave us is valid.  Just in case, we'll zero
2339	 * the remainder of the page.
2340	 */
2341	/* copy_from_user cannot cross TASK_SIZE ! */
2342	size = TASK_SIZE - (unsigned long)data;
2343	if (size > PAGE_SIZE)
2344		size = PAGE_SIZE;
2345
2346	i = size - exact_copy_from_user((void *)page, data, size);
2347	if (!i) {
2348		free_page(page);
2349		return -EFAULT;
2350	}
2351	if (i != PAGE_SIZE)
2352		memset((char *)page + i, 0, PAGE_SIZE - i);
2353	*where = page;
2354	return 0;
2355}
2356
2357int copy_mount_string(const void __user *data, char **where)
2358{
2359	char *tmp;
2360
2361	if (!data) {
2362		*where = NULL;
2363		return 0;
2364	}
2365
2366	tmp = strndup_user(data, PAGE_SIZE);
2367	if (IS_ERR(tmp))
2368		return PTR_ERR(tmp);
2369
2370	*where = tmp;
2371	return 0;
2372}
2373
2374/*
2375 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2376 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2377 *
2378 * data is a (void *) that can point to any structure up to
2379 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2380 * information (or be NULL).
2381 *
2382 * Pre-0.97 versions of mount() didn't have a flags word.
2383 * When the flags word was introduced its top half was required
2384 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2385 * Therefore, if this magic number is present, it carries no information
2386 * and must be discarded.
2387 */
2388long do_mount(const char *dev_name, const char *dir_name,
2389		const char *type_page, unsigned long flags, void *data_page)
2390{
2391	struct path path;
2392	int retval = 0;
2393	int mnt_flags = 0;
2394
2395	/* Discard magic */
2396	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2397		flags &= ~MS_MGC_MSK;
2398
2399	/* Basic sanity checks */
2400
2401	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2402		return -EINVAL;
2403
2404	if (data_page)
2405		((char *)data_page)[PAGE_SIZE - 1] = 0;
2406
2407	/* ... and get the mountpoint */
2408	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2409	if (retval)
2410		return retval;
2411
2412	retval = security_sb_mount(dev_name, &path,
2413				   type_page, flags, data_page);
2414	if (!retval && !may_mount())
2415		retval = -EPERM;
2416	if (retval)
2417		goto dput_out;
2418
2419	/* Default to relatime unless overriden */
2420	if (!(flags & MS_NOATIME))
2421		mnt_flags |= MNT_RELATIME;
2422
2423	/* Separate the per-mountpoint flags */
2424	if (flags & MS_NOSUID)
2425		mnt_flags |= MNT_NOSUID;
2426	if (flags & MS_NODEV)
2427		mnt_flags |= MNT_NODEV;
2428	if (flags & MS_NOEXEC)
2429		mnt_flags |= MNT_NOEXEC;
2430	if (flags & MS_NOATIME)
2431		mnt_flags |= MNT_NOATIME;
2432	if (flags & MS_NODIRATIME)
2433		mnt_flags |= MNT_NODIRATIME;
2434	if (flags & MS_STRICTATIME)
2435		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2436	if (flags & MS_RDONLY)
2437		mnt_flags |= MNT_READONLY;
2438
2439	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2440		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2441		   MS_STRICTATIME);
2442
2443	if (flags & MS_REMOUNT)
2444		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2445				    data_page);
2446	else if (flags & MS_BIND)
2447		retval = do_loopback(&path, dev_name, flags & MS_REC);
2448	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2449		retval = do_change_type(&path, flags);
2450	else if (flags & MS_MOVE)
2451		retval = do_move_mount(&path, dev_name);
2452	else
2453		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2454				      dev_name, data_page);
2455dput_out:
2456	path_put(&path);
2457	return retval;
2458}
2459
2460static void free_mnt_ns(struct mnt_namespace *ns)
2461{
2462	proc_free_inum(ns->proc_inum);
2463	put_user_ns(ns->user_ns);
2464	kfree(ns);
2465}
2466
2467/*
2468 * Assign a sequence number so we can detect when we attempt to bind
2469 * mount a reference to an older mount namespace into the current
2470 * mount namespace, preventing reference counting loops.  A 64bit
2471 * number incrementing at 10Ghz will take 12,427 years to wrap which
2472 * is effectively never, so we can ignore the possibility.
2473 */
2474static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2475
2476static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2477{
2478	struct mnt_namespace *new_ns;
2479	int ret;
2480
2481	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2482	if (!new_ns)
2483		return ERR_PTR(-ENOMEM);
2484	ret = proc_alloc_inum(&new_ns->proc_inum);
2485	if (ret) {
2486		kfree(new_ns);
2487		return ERR_PTR(ret);
2488	}
2489	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2490	atomic_set(&new_ns->count, 1);
2491	new_ns->root = NULL;
2492	INIT_LIST_HEAD(&new_ns->list);
2493	init_waitqueue_head(&new_ns->poll);
2494	new_ns->event = 0;
2495	new_ns->user_ns = get_user_ns(user_ns);
2496	return new_ns;
2497}
2498
2499struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2500		struct user_namespace *user_ns, struct fs_struct *new_fs)
2501{
2502	struct mnt_namespace *new_ns;
2503	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2504	struct mount *p, *q;
2505	struct mount *old;
2506	struct mount *new;
2507	int copy_flags;
2508
2509	BUG_ON(!ns);
2510
2511	if (likely(!(flags & CLONE_NEWNS))) {
2512		get_mnt_ns(ns);
2513		return ns;
2514	}
2515
2516	old = ns->root;
2517
2518	new_ns = alloc_mnt_ns(user_ns);
2519	if (IS_ERR(new_ns))
2520		return new_ns;
2521
2522	namespace_lock();
2523	/* First pass: copy the tree topology */
2524	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2525	if (user_ns != ns->user_ns)
2526		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2527	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2528	if (IS_ERR(new)) {
2529		namespace_unlock();
2530		free_mnt_ns(new_ns);
2531		return ERR_CAST(new);
2532	}
2533	new_ns->root = new;
2534	list_add_tail(&new_ns->list, &new->mnt_list);
2535
2536	/*
2537	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2538	 * as belonging to new namespace.  We have already acquired a private
2539	 * fs_struct, so tsk->fs->lock is not needed.
2540	 */
2541	p = old;
2542	q = new;
2543	while (p) {
2544		q->mnt_ns = new_ns;
2545		if (new_fs) {
2546			if (&p->mnt == new_fs->root.mnt) {
2547				new_fs->root.mnt = mntget(&q->mnt);
2548				rootmnt = &p->mnt;
2549			}
2550			if (&p->mnt == new_fs->pwd.mnt) {
2551				new_fs->pwd.mnt = mntget(&q->mnt);
2552				pwdmnt = &p->mnt;
2553			}
2554		}
2555		p = next_mnt(p, old);
2556		q = next_mnt(q, new);
2557		if (!q)
2558			break;
2559		while (p->mnt.mnt_root != q->mnt.mnt_root)
2560			p = next_mnt(p, old);
2561	}
2562	namespace_unlock();
2563
2564	if (rootmnt)
2565		mntput(rootmnt);
2566	if (pwdmnt)
2567		mntput(pwdmnt);
2568
2569	return new_ns;
2570}
2571
2572/**
2573 * create_mnt_ns - creates a private namespace and adds a root filesystem
2574 * @mnt: pointer to the new root filesystem mountpoint
2575 */
2576static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2577{
2578	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2579	if (!IS_ERR(new_ns)) {
2580		struct mount *mnt = real_mount(m);
2581		mnt->mnt_ns = new_ns;
2582		new_ns->root = mnt;
2583		list_add(&mnt->mnt_list, &new_ns->list);
2584	} else {
2585		mntput(m);
2586	}
2587	return new_ns;
2588}
2589
2590struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2591{
2592	struct mnt_namespace *ns;
2593	struct super_block *s;
2594	struct path path;
2595	int err;
2596
2597	ns = create_mnt_ns(mnt);
2598	if (IS_ERR(ns))
2599		return ERR_CAST(ns);
2600
2601	err = vfs_path_lookup(mnt->mnt_root, mnt,
2602			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2603
2604	put_mnt_ns(ns);
2605
2606	if (err)
2607		return ERR_PTR(err);
2608
2609	/* trade a vfsmount reference for active sb one */
2610	s = path.mnt->mnt_sb;
2611	atomic_inc(&s->s_active);
2612	mntput(path.mnt);
2613	/* lock the sucker */
2614	down_write(&s->s_umount);
2615	/* ... and return the root of (sub)tree on it */
2616	return path.dentry;
2617}
2618EXPORT_SYMBOL(mount_subtree);
2619
2620SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2621		char __user *, type, unsigned long, flags, void __user *, data)
2622{
2623	int ret;
2624	char *kernel_type;
2625	struct filename *kernel_dir;
2626	char *kernel_dev;
2627	unsigned long data_page;
2628
2629	ret = copy_mount_string(type, &kernel_type);
2630	if (ret < 0)
2631		goto out_type;
2632
2633	kernel_dir = getname(dir_name);
2634	if (IS_ERR(kernel_dir)) {
2635		ret = PTR_ERR(kernel_dir);
2636		goto out_dir;
2637	}
2638
2639	ret = copy_mount_string(dev_name, &kernel_dev);
2640	if (ret < 0)
2641		goto out_dev;
2642
2643	ret = copy_mount_options(data, &data_page);
2644	if (ret < 0)
2645		goto out_data;
2646
2647	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2648		(void *) data_page);
2649
2650	free_page(data_page);
2651out_data:
2652	kfree(kernel_dev);
2653out_dev:
2654	putname(kernel_dir);
2655out_dir:
2656	kfree(kernel_type);
2657out_type:
2658	return ret;
2659}
2660
2661/*
2662 * Return true if path is reachable from root
2663 *
2664 * namespace_sem or mount_lock is held
2665 */
2666bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2667			 const struct path *root)
2668{
2669	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2670		dentry = mnt->mnt_mountpoint;
2671		mnt = mnt->mnt_parent;
2672	}
2673	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2674}
2675
2676int path_is_under(struct path *path1, struct path *path2)
2677{
2678	int res;
2679	read_seqlock_excl(&mount_lock);
2680	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2681	read_sequnlock_excl(&mount_lock);
2682	return res;
2683}
2684EXPORT_SYMBOL(path_is_under);
2685
2686/*
2687 * pivot_root Semantics:
2688 * Moves the root file system of the current process to the directory put_old,
2689 * makes new_root as the new root file system of the current process, and sets
2690 * root/cwd of all processes which had them on the current root to new_root.
2691 *
2692 * Restrictions:
2693 * The new_root and put_old must be directories, and  must not be on the
2694 * same file  system as the current process root. The put_old  must  be
2695 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2696 * pointed to by put_old must yield the same directory as new_root. No other
2697 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2698 *
2699 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2700 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2701 * in this situation.
2702 *
2703 * Notes:
2704 *  - we don't move root/cwd if they are not at the root (reason: if something
2705 *    cared enough to change them, it's probably wrong to force them elsewhere)
2706 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2707 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2708 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2709 *    first.
2710 */
2711SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2712		const char __user *, put_old)
2713{
2714	struct path new, old, parent_path, root_parent, root;
2715	struct mount *new_mnt, *root_mnt, *old_mnt;
2716	struct mountpoint *old_mp, *root_mp;
2717	int error;
2718
2719	if (!may_mount())
2720		return -EPERM;
2721
2722	error = user_path_dir(new_root, &new);
2723	if (error)
2724		goto out0;
2725
2726	error = user_path_dir(put_old, &old);
2727	if (error)
2728		goto out1;
2729
2730	error = security_sb_pivotroot(&old, &new);
2731	if (error)
2732		goto out2;
2733
2734	get_fs_root(current->fs, &root);
2735	old_mp = lock_mount(&old);
2736	error = PTR_ERR(old_mp);
2737	if (IS_ERR(old_mp))
2738		goto out3;
2739
2740	error = -EINVAL;
2741	new_mnt = real_mount(new.mnt);
2742	root_mnt = real_mount(root.mnt);
2743	old_mnt = real_mount(old.mnt);
2744	if (IS_MNT_SHARED(old_mnt) ||
2745		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2746		IS_MNT_SHARED(root_mnt->mnt_parent))
2747		goto out4;
2748	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2749		goto out4;
2750	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2751		goto out4;
2752	error = -ENOENT;
2753	if (d_unlinked(new.dentry))
2754		goto out4;
2755	error = -EBUSY;
2756	if (new_mnt == root_mnt || old_mnt == root_mnt)
2757		goto out4; /* loop, on the same file system  */
2758	error = -EINVAL;
2759	if (root.mnt->mnt_root != root.dentry)
2760		goto out4; /* not a mountpoint */
2761	if (!mnt_has_parent(root_mnt))
2762		goto out4; /* not attached */
2763	root_mp = root_mnt->mnt_mp;
2764	if (new.mnt->mnt_root != new.dentry)
2765		goto out4; /* not a mountpoint */
2766	if (!mnt_has_parent(new_mnt))
2767		goto out4; /* not attached */
2768	/* make sure we can reach put_old from new_root */
2769	if (!is_path_reachable(old_mnt, old.dentry, &new))
2770		goto out4;
2771	root_mp->m_count++; /* pin it so it won't go away */
2772	lock_mount_hash();
2773	detach_mnt(new_mnt, &parent_path);
2774	detach_mnt(root_mnt, &root_parent);
2775	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2776		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2777		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2778	}
2779	/* mount old root on put_old */
2780	attach_mnt(root_mnt, old_mnt, old_mp);
2781	/* mount new_root on / */
2782	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2783	touch_mnt_namespace(current->nsproxy->mnt_ns);
2784	unlock_mount_hash();
2785	chroot_fs_refs(&root, &new);
2786	put_mountpoint(root_mp);
2787	error = 0;
2788out4:
2789	unlock_mount(old_mp);
2790	if (!error) {
2791		path_put(&root_parent);
2792		path_put(&parent_path);
2793	}
2794out3:
2795	path_put(&root);
2796out2:
2797	path_put(&old);
2798out1:
2799	path_put(&new);
2800out0:
2801	return error;
2802}
2803
2804static void __init init_mount_tree(void)
2805{
2806	struct vfsmount *mnt;
2807	struct mnt_namespace *ns;
2808	struct path root;
2809	struct file_system_type *type;
2810
2811	type = get_fs_type("rootfs");
2812	if (!type)
2813		panic("Can't find rootfs type");
2814	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2815	put_filesystem(type);
2816	if (IS_ERR(mnt))
2817		panic("Can't create rootfs");
2818
2819	ns = create_mnt_ns(mnt);
2820	if (IS_ERR(ns))
2821		panic("Can't allocate initial namespace");
2822
2823	init_task.nsproxy->mnt_ns = ns;
2824	get_mnt_ns(ns);
2825
2826	root.mnt = mnt;
2827	root.dentry = mnt->mnt_root;
2828
2829	set_fs_pwd(current->fs, &root);
2830	set_fs_root(current->fs, &root);
2831}
2832
2833void __init mnt_init(void)
2834{
2835	unsigned u;
2836	int err;
2837
2838	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2839			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2840
2841	mount_hashtable = alloc_large_system_hash("Mount-cache",
2842				sizeof(struct hlist_head),
2843				mhash_entries, 19,
2844				0,
2845				&m_hash_shift, &m_hash_mask, 0, 0);
2846	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2847				sizeof(struct hlist_head),
2848				mphash_entries, 19,
2849				0,
2850				&mp_hash_shift, &mp_hash_mask, 0, 0);
2851
2852	if (!mount_hashtable || !mountpoint_hashtable)
2853		panic("Failed to allocate mount hash table\n");
2854
2855	for (u = 0; u <= m_hash_mask; u++)
2856		INIT_HLIST_HEAD(&mount_hashtable[u]);
2857	for (u = 0; u <= mp_hash_mask; u++)
2858		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2859
2860	kernfs_init();
2861
2862	err = sysfs_init();
2863	if (err)
2864		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2865			__func__, err);
2866	fs_kobj = kobject_create_and_add("fs", NULL);
2867	if (!fs_kobj)
2868		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2869	init_rootfs();
2870	init_mount_tree();
2871}
2872
2873void put_mnt_ns(struct mnt_namespace *ns)
2874{
2875	if (!atomic_dec_and_test(&ns->count))
2876		return;
2877	drop_collected_mounts(&ns->root->mnt);
2878	free_mnt_ns(ns);
2879}
2880
2881struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2882{
2883	struct vfsmount *mnt;
2884	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2885	if (!IS_ERR(mnt)) {
2886		/*
2887		 * it is a longterm mount, don't release mnt until
2888		 * we unmount before file sys is unregistered
2889		*/
2890		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2891	}
2892	return mnt;
2893}
2894EXPORT_SYMBOL_GPL(kern_mount_data);
2895
2896void kern_unmount(struct vfsmount *mnt)
2897{
2898	/* release long term mount so mount point can be released */
2899	if (!IS_ERR_OR_NULL(mnt)) {
2900		real_mount(mnt)->mnt_ns = NULL;
2901		synchronize_rcu();	/* yecchhh... */
2902		mntput(mnt);
2903	}
2904}
2905EXPORT_SYMBOL(kern_unmount);
2906
2907bool our_mnt(struct vfsmount *mnt)
2908{
2909	return check_mnt(real_mount(mnt));
2910}
2911
2912bool current_chrooted(void)
2913{
2914	/* Does the current process have a non-standard root */
2915	struct path ns_root;
2916	struct path fs_root;
2917	bool chrooted;
2918
2919	/* Find the namespace root */
2920	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2921	ns_root.dentry = ns_root.mnt->mnt_root;
2922	path_get(&ns_root);
2923	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2924		;
2925
2926	get_fs_root(current->fs, &fs_root);
2927
2928	chrooted = !path_equal(&fs_root, &ns_root);
2929
2930	path_put(&fs_root);
2931	path_put(&ns_root);
2932
2933	return chrooted;
2934}
2935
2936bool fs_fully_visible(struct file_system_type *type)
2937{
2938	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2939	struct mount *mnt;
2940	bool visible = false;
2941
2942	if (unlikely(!ns))
2943		return false;
2944
2945	down_read(&namespace_sem);
2946	list_for_each_entry(mnt, &ns->list, mnt_list) {
2947		struct mount *child;
2948		if (mnt->mnt.mnt_sb->s_type != type)
2949			continue;
2950
2951		/* This mount is not fully visible if there are any child mounts
2952		 * that cover anything except for empty directories.
2953		 */
2954		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2955			struct inode *inode = child->mnt_mountpoint->d_inode;
2956			if (!S_ISDIR(inode->i_mode))
2957				goto next;
2958			if (inode->i_nlink > 2)
2959				goto next;
2960		}
2961		visible = true;
2962		goto found;
2963	next:	;
2964	}
2965found:
2966	up_read(&namespace_sem);
2967	return visible;
2968}
2969
2970static void *mntns_get(struct task_struct *task)
2971{
2972	struct mnt_namespace *ns = NULL;
2973	struct nsproxy *nsproxy;
2974
2975	rcu_read_lock();
2976	nsproxy = task_nsproxy(task);
2977	if (nsproxy) {
2978		ns = nsproxy->mnt_ns;
2979		get_mnt_ns(ns);
2980	}
2981	rcu_read_unlock();
2982
2983	return ns;
2984}
2985
2986static void mntns_put(void *ns)
2987{
2988	put_mnt_ns(ns);
2989}
2990
2991static int mntns_install(struct nsproxy *nsproxy, void *ns)
2992{
2993	struct fs_struct *fs = current->fs;
2994	struct mnt_namespace *mnt_ns = ns;
2995	struct path root;
2996
2997	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2998	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2999	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3000		return -EPERM;
3001
3002	if (fs->users != 1)
3003		return -EINVAL;
3004
3005	get_mnt_ns(mnt_ns);
3006	put_mnt_ns(nsproxy->mnt_ns);
3007	nsproxy->mnt_ns = mnt_ns;
3008
3009	/* Find the root */
3010	root.mnt    = &mnt_ns->root->mnt;
3011	root.dentry = mnt_ns->root->mnt.mnt_root;
3012	path_get(&root);
3013	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3014		;
3015
3016	/* Update the pwd and root */
3017	set_fs_pwd(fs, &root);
3018	set_fs_root(fs, &root);
3019
3020	path_put(&root);
3021	return 0;
3022}
3023
3024static unsigned int mntns_inum(void *ns)
3025{
3026	struct mnt_namespace *mnt_ns = ns;
3027	return mnt_ns->proc_inum;
3028}
3029
3030const struct proc_ns_operations mntns_operations = {
3031	.name		= "mnt",
3032	.type		= CLONE_NEWNS,
3033	.get		= mntns_get,
3034	.put		= mntns_put,
3035	.install	= mntns_install,
3036	.inum		= mntns_inum,
3037};