Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
78#include <linux/errqueue.h>
79#include <trace/events/tcp.h>
80#include <linux/jump_label_ratelimit.h>
81#include <net/busy_poll.h>
82
83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84
85#define FLAG_DATA 0x01 /* Incoming frame contained data. */
86#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90#define FLAG_DATA_SACKED 0x20 /* New SACK. */
91#define FLAG_ECE 0x40 /* ECE in this ACK */
92#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102
103#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110
111#define REXMIT_NONE 0 /* no loss recovery to do */
112#define REXMIT_LOST 1 /* retransmit packets marked lost */
113#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
115#if IS_ENABLED(CONFIG_TLS_DEVICE)
116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117
118void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120{
121 icsk->icsk_clean_acked = cad;
122 static_branch_deferred_inc(&clean_acked_data_enabled);
123}
124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
126void clean_acked_data_disable(struct inet_connection_sock *icsk)
127{
128 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
130}
131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132
133void clean_acked_data_flush(void)
134{
135 static_key_deferred_flush(&clean_acked_data_enabled);
136}
137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138#endif
139
140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 unsigned int len)
142{
143 static bool __once __read_mostly;
144
145 if (!__once) {
146 struct net_device *dev;
147
148 __once = true;
149
150 rcu_read_lock();
151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 if (!dev || len >= dev->mtu)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev ? dev->name : "Unknown driver");
155 rcu_read_unlock();
156 }
157}
158
159/* Adapt the MSS value used to make delayed ack decision to the
160 * real world.
161 */
162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163{
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 unsigned int len;
167
168 icsk->icsk_ack.last_seg_size = 0;
169
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
172 */
173 len = skb_shinfo(skb)->gso_size ? : skb->len;
174 if (len >= icsk->icsk_ack.rcv_mss) {
175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 tcp_sk(sk)->advmss);
177 /* Account for possibly-removed options */
178 if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 MAX_TCP_OPTION_SPACE))
180 tcp_gro_dev_warn(sk, skb, len);
181 } else {
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
184 *
185 * "len" is invariant segment length, including TCP header.
186 */
187 len += skb->data - skb_transport_header(skb);
188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
193 */
194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
199 */
200 len -= tcp_sk(sk)->tcp_header_len;
201 icsk->icsk_ack.last_seg_size = len;
202 if (len == lss) {
203 icsk->icsk_ack.rcv_mss = len;
204 return;
205 }
206 }
207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 }
211}
212
213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214{
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217
218 if (quickacks == 0)
219 quickacks = 2;
220 quickacks = min(quickacks, max_quickacks);
221 if (quickacks > icsk->icsk_ack.quick)
222 icsk->icsk_ack.quick = quickacks;
223}
224
225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226{
227 struct inet_connection_sock *icsk = inet_csk(sk);
228
229 tcp_incr_quickack(sk, max_quickacks);
230 inet_csk_exit_pingpong_mode(sk);
231 icsk->icsk_ack.ato = TCP_ATO_MIN;
232}
233EXPORT_SYMBOL(tcp_enter_quickack_mode);
234
235/* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
237 */
238
239static bool tcp_in_quickack_mode(struct sock *sk)
240{
241 const struct inet_connection_sock *icsk = inet_csk(sk);
242 const struct dst_entry *dst = __sk_dst_get(sk);
243
244 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246}
247
248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249{
250 if (tp->ecn_flags & TCP_ECN_OK)
251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252}
253
254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255{
256 if (tcp_hdr(skb)->cwr) {
257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
261 * immediately.
262 */
263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 }
265}
266
267static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268{
269 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
270}
271
272static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273{
274 struct tcp_sock *tp = tcp_sk(sk);
275
276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 case INET_ECN_NOT_ECT:
278 /* Funny extension: if ECT is not set on a segment,
279 * and we already seen ECT on a previous segment,
280 * it is probably a retransmit.
281 */
282 if (tp->ecn_flags & TCP_ECN_SEEN)
283 tcp_enter_quickack_mode(sk, 2);
284 break;
285 case INET_ECN_CE:
286 if (tcp_ca_needs_ecn(sk))
287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288
289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 /* Better not delay acks, sender can have a very low cwnd */
291 tcp_enter_quickack_mode(sk, 2);
292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 }
294 tp->ecn_flags |= TCP_ECN_SEEN;
295 break;
296 default:
297 if (tcp_ca_needs_ecn(sk))
298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 tp->ecn_flags |= TCP_ECN_SEEN;
300 break;
301 }
302}
303
304static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305{
306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 __tcp_ecn_check_ce(sk, skb);
308}
309
310static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311{
312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 tp->ecn_flags &= ~TCP_ECN_OK;
314}
315
316static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317{
318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 tp->ecn_flags &= ~TCP_ECN_OK;
320}
321
322static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323{
324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 return true;
326 return false;
327}
328
329/* Buffer size and advertised window tuning.
330 *
331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332 */
333
334static void tcp_sndbuf_expand(struct sock *sk)
335{
336 const struct tcp_sock *tp = tcp_sk(sk);
337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 int sndmem, per_mss;
339 u32 nr_segs;
340
341 /* Worst case is non GSO/TSO : each frame consumes one skb
342 * and skb->head is kmalloced using power of two area of memory
343 */
344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 MAX_TCP_HEADER +
346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347
348 per_mss = roundup_pow_of_two(per_mss) +
349 SKB_DATA_ALIGN(sizeof(struct sk_buff));
350
351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353
354 /* Fast Recovery (RFC 5681 3.2) :
355 * Cubic needs 1.7 factor, rounded to 2 to include
356 * extra cushion (application might react slowly to EPOLLOUT)
357 */
358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 sndmem *= nr_segs * per_mss;
360
361 if (sk->sk_sndbuf < sndmem)
362 WRITE_ONCE(sk->sk_sndbuf,
363 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
364}
365
366/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367 *
368 * All tcp_full_space() is split to two parts: "network" buffer, allocated
369 * forward and advertised in receiver window (tp->rcv_wnd) and
370 * "application buffer", required to isolate scheduling/application
371 * latencies from network.
372 * window_clamp is maximal advertised window. It can be less than
373 * tcp_full_space(), in this case tcp_full_space() - window_clamp
374 * is reserved for "application" buffer. The less window_clamp is
375 * the smoother our behaviour from viewpoint of network, but the lower
376 * throughput and the higher sensitivity of the connection to losses. 8)
377 *
378 * rcv_ssthresh is more strict window_clamp used at "slow start"
379 * phase to predict further behaviour of this connection.
380 * It is used for two goals:
381 * - to enforce header prediction at sender, even when application
382 * requires some significant "application buffer". It is check #1.
383 * - to prevent pruning of receive queue because of misprediction
384 * of receiver window. Check #2.
385 *
386 * The scheme does not work when sender sends good segments opening
387 * window and then starts to feed us spaghetti. But it should work
388 * in common situations. Otherwise, we have to rely on queue collapsing.
389 */
390
391/* Slow part of check#2. */
392static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393{
394 struct tcp_sock *tp = tcp_sk(sk);
395 /* Optimize this! */
396 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
397 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398
399 while (tp->rcv_ssthresh <= window) {
400 if (truesize <= skb->len)
401 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402
403 truesize >>= 1;
404 window >>= 1;
405 }
406 return 0;
407}
408
409static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410{
411 struct tcp_sock *tp = tcp_sk(sk);
412 int room;
413
414 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415
416 /* Check #1 */
417 if (room > 0 && !tcp_under_memory_pressure(sk)) {
418 int incr;
419
420 /* Check #2. Increase window, if skb with such overhead
421 * will fit to rcvbuf in future.
422 */
423 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
424 incr = 2 * tp->advmss;
425 else
426 incr = __tcp_grow_window(sk, skb);
427
428 if (incr) {
429 incr = max_t(int, incr, 2 * skb->len);
430 tp->rcv_ssthresh += min(room, incr);
431 inet_csk(sk)->icsk_ack.quick |= 1;
432 }
433 }
434}
435
436/* 3. Try to fixup all. It is made immediately after connection enters
437 * established state.
438 */
439void tcp_init_buffer_space(struct sock *sk)
440{
441 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
442 struct tcp_sock *tp = tcp_sk(sk);
443 int maxwin;
444
445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 tcp_sndbuf_expand(sk);
447
448 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
449 tcp_mstamp_refresh(tp);
450 tp->rcvq_space.time = tp->tcp_mstamp;
451 tp->rcvq_space.seq = tp->copied_seq;
452
453 maxwin = tcp_full_space(sk);
454
455 if (tp->window_clamp >= maxwin) {
456 tp->window_clamp = maxwin;
457
458 if (tcp_app_win && maxwin > 4 * tp->advmss)
459 tp->window_clamp = max(maxwin -
460 (maxwin >> tcp_app_win),
461 4 * tp->advmss);
462 }
463
464 /* Force reservation of one segment. */
465 if (tcp_app_win &&
466 tp->window_clamp > 2 * tp->advmss &&
467 tp->window_clamp + tp->advmss > maxwin)
468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469
470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 tp->snd_cwnd_stamp = tcp_jiffies32;
472}
473
474/* 4. Recalculate window clamp after socket hit its memory bounds. */
475static void tcp_clamp_window(struct sock *sk)
476{
477 struct tcp_sock *tp = tcp_sk(sk);
478 struct inet_connection_sock *icsk = inet_csk(sk);
479 struct net *net = sock_net(sk);
480
481 icsk->icsk_ack.quick = 0;
482
483 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 !tcp_under_memory_pressure(sk) &&
486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 WRITE_ONCE(sk->sk_rcvbuf,
488 min(atomic_read(&sk->sk_rmem_alloc),
489 net->ipv4.sysctl_tcp_rmem[2]));
490 }
491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493}
494
495/* Initialize RCV_MSS value.
496 * RCV_MSS is an our guess about MSS used by the peer.
497 * We haven't any direct information about the MSS.
498 * It's better to underestimate the RCV_MSS rather than overestimate.
499 * Overestimations make us ACKing less frequently than needed.
500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501 */
502void tcp_initialize_rcv_mss(struct sock *sk)
503{
504 const struct tcp_sock *tp = tcp_sk(sk);
505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506
507 hint = min(hint, tp->rcv_wnd / 2);
508 hint = min(hint, TCP_MSS_DEFAULT);
509 hint = max(hint, TCP_MIN_MSS);
510
511 inet_csk(sk)->icsk_ack.rcv_mss = hint;
512}
513EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514
515/* Receiver "autotuning" code.
516 *
517 * The algorithm for RTT estimation w/o timestamps is based on
518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519 * <http://public.lanl.gov/radiant/pubs.html#DRS>
520 *
521 * More detail on this code can be found at
522 * <http://staff.psc.edu/jheffner/>,
523 * though this reference is out of date. A new paper
524 * is pending.
525 */
526static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527{
528 u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 long m = sample;
530
531 if (new_sample != 0) {
532 /* If we sample in larger samples in the non-timestamp
533 * case, we could grossly overestimate the RTT especially
534 * with chatty applications or bulk transfer apps which
535 * are stalled on filesystem I/O.
536 *
537 * Also, since we are only going for a minimum in the
538 * non-timestamp case, we do not smooth things out
539 * else with timestamps disabled convergence takes too
540 * long.
541 */
542 if (!win_dep) {
543 m -= (new_sample >> 3);
544 new_sample += m;
545 } else {
546 m <<= 3;
547 if (m < new_sample)
548 new_sample = m;
549 }
550 } else {
551 /* No previous measure. */
552 new_sample = m << 3;
553 }
554
555 tp->rcv_rtt_est.rtt_us = new_sample;
556}
557
558static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559{
560 u32 delta_us;
561
562 if (tp->rcv_rtt_est.time == 0)
563 goto new_measure;
564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 return;
566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 if (!delta_us)
568 delta_us = 1;
569 tcp_rcv_rtt_update(tp, delta_us, 1);
570
571new_measure:
572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 tp->rcv_rtt_est.time = tp->tcp_mstamp;
574}
575
576static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 const struct sk_buff *skb)
578{
579 struct tcp_sock *tp = tcp_sk(sk);
580
581 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 return;
583 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584
585 if (TCP_SKB_CB(skb)->end_seq -
586 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
587 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
588 u32 delta_us;
589
590 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 if (!delta)
592 delta = 1;
593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 tcp_rcv_rtt_update(tp, delta_us, 0);
595 }
596 }
597}
598
599/*
600 * This function should be called every time data is copied to user space.
601 * It calculates the appropriate TCP receive buffer space.
602 */
603void tcp_rcv_space_adjust(struct sock *sk)
604{
605 struct tcp_sock *tp = tcp_sk(sk);
606 u32 copied;
607 int time;
608
609 trace_tcp_rcv_space_adjust(sk);
610
611 tcp_mstamp_refresh(tp);
612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 return;
615
616 /* Number of bytes copied to user in last RTT */
617 copied = tp->copied_seq - tp->rcvq_space.seq;
618 if (copied <= tp->rcvq_space.space)
619 goto new_measure;
620
621 /* A bit of theory :
622 * copied = bytes received in previous RTT, our base window
623 * To cope with packet losses, we need a 2x factor
624 * To cope with slow start, and sender growing its cwin by 100 %
625 * every RTT, we need a 4x factor, because the ACK we are sending
626 * now is for the next RTT, not the current one :
627 * <prev RTT . ><current RTT .. ><next RTT .... >
628 */
629
630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 int rcvmem, rcvbuf;
633 u64 rcvwin, grow;
634
635 /* minimal window to cope with packet losses, assuming
636 * steady state. Add some cushion because of small variations.
637 */
638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639
640 /* Accommodate for sender rate increase (eg. slow start) */
641 grow = rcvwin * (copied - tp->rcvq_space.space);
642 do_div(grow, tp->rcvq_space.space);
643 rcvwin += (grow << 1);
644
645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 rcvmem += 128;
648
649 do_div(rcvwin, tp->advmss);
650 rcvbuf = min_t(u64, rcvwin * rcvmem,
651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 if (rcvbuf > sk->sk_rcvbuf) {
653 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
654
655 /* Make the window clamp follow along. */
656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 }
658 }
659 tp->rcvq_space.space = copied;
660
661new_measure:
662 tp->rcvq_space.seq = tp->copied_seq;
663 tp->rcvq_space.time = tp->tcp_mstamp;
664}
665
666/* There is something which you must keep in mind when you analyze the
667 * behavior of the tp->ato delayed ack timeout interval. When a
668 * connection starts up, we want to ack as quickly as possible. The
669 * problem is that "good" TCP's do slow start at the beginning of data
670 * transmission. The means that until we send the first few ACK's the
671 * sender will sit on his end and only queue most of his data, because
672 * he can only send snd_cwnd unacked packets at any given time. For
673 * each ACK we send, he increments snd_cwnd and transmits more of his
674 * queue. -DaveM
675 */
676static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677{
678 struct tcp_sock *tp = tcp_sk(sk);
679 struct inet_connection_sock *icsk = inet_csk(sk);
680 u32 now;
681
682 inet_csk_schedule_ack(sk);
683
684 tcp_measure_rcv_mss(sk, skb);
685
686 tcp_rcv_rtt_measure(tp);
687
688 now = tcp_jiffies32;
689
690 if (!icsk->icsk_ack.ato) {
691 /* The _first_ data packet received, initialize
692 * delayed ACK engine.
693 */
694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 icsk->icsk_ack.ato = TCP_ATO_MIN;
696 } else {
697 int m = now - icsk->icsk_ack.lrcvtime;
698
699 if (m <= TCP_ATO_MIN / 2) {
700 /* The fastest case is the first. */
701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 } else if (m < icsk->icsk_ack.ato) {
703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 icsk->icsk_ack.ato = icsk->icsk_rto;
706 } else if (m > icsk->icsk_rto) {
707 /* Too long gap. Apparently sender failed to
708 * restart window, so that we send ACKs quickly.
709 */
710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 sk_mem_reclaim(sk);
712 }
713 }
714 icsk->icsk_ack.lrcvtime = now;
715
716 tcp_ecn_check_ce(sk, skb);
717
718 if (skb->len >= 128)
719 tcp_grow_window(sk, skb);
720}
721
722/* Called to compute a smoothed rtt estimate. The data fed to this
723 * routine either comes from timestamps, or from segments that were
724 * known _not_ to have been retransmitted [see Karn/Partridge
725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726 * piece by Van Jacobson.
727 * NOTE: the next three routines used to be one big routine.
728 * To save cycles in the RFC 1323 implementation it was better to break
729 * it up into three procedures. -- erics
730 */
731static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732{
733 struct tcp_sock *tp = tcp_sk(sk);
734 long m = mrtt_us; /* RTT */
735 u32 srtt = tp->srtt_us;
736
737 /* The following amusing code comes from Jacobson's
738 * article in SIGCOMM '88. Note that rtt and mdev
739 * are scaled versions of rtt and mean deviation.
740 * This is designed to be as fast as possible
741 * m stands for "measurement".
742 *
743 * On a 1990 paper the rto value is changed to:
744 * RTO = rtt + 4 * mdev
745 *
746 * Funny. This algorithm seems to be very broken.
747 * These formulae increase RTO, when it should be decreased, increase
748 * too slowly, when it should be increased quickly, decrease too quickly
749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 * does not matter how to _calculate_ it. Seems, it was trap
751 * that VJ failed to avoid. 8)
752 */
753 if (srtt != 0) {
754 m -= (srtt >> 3); /* m is now error in rtt est */
755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
756 if (m < 0) {
757 m = -m; /* m is now abs(error) */
758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
759 /* This is similar to one of Eifel findings.
760 * Eifel blocks mdev updates when rtt decreases.
761 * This solution is a bit different: we use finer gain
762 * for mdev in this case (alpha*beta).
763 * Like Eifel it also prevents growth of rto,
764 * but also it limits too fast rto decreases,
765 * happening in pure Eifel.
766 */
767 if (m > 0)
768 m >>= 3;
769 } else {
770 m -= (tp->mdev_us >> 2); /* similar update on mdev */
771 }
772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
773 if (tp->mdev_us > tp->mdev_max_us) {
774 tp->mdev_max_us = tp->mdev_us;
775 if (tp->mdev_max_us > tp->rttvar_us)
776 tp->rttvar_us = tp->mdev_max_us;
777 }
778 if (after(tp->snd_una, tp->rtt_seq)) {
779 if (tp->mdev_max_us < tp->rttvar_us)
780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 tp->rtt_seq = tp->snd_nxt;
782 tp->mdev_max_us = tcp_rto_min_us(sk);
783
784 tcp_bpf_rtt(sk);
785 }
786 } else {
787 /* no previous measure. */
788 srtt = m << 3; /* take the measured time to be rtt */
789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 tp->mdev_max_us = tp->rttvar_us;
792 tp->rtt_seq = tp->snd_nxt;
793
794 tcp_bpf_rtt(sk);
795 }
796 tp->srtt_us = max(1U, srtt);
797}
798
799static void tcp_update_pacing_rate(struct sock *sk)
800{
801 const struct tcp_sock *tp = tcp_sk(sk);
802 u64 rate;
803
804 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
805 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806
807 /* current rate is (cwnd * mss) / srtt
808 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 *
811 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 * end of slow start and should slow down.
814 */
815 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
817 else
818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
819
820 rate *= max(tp->snd_cwnd, tp->packets_out);
821
822 if (likely(tp->srtt_us))
823 do_div(rate, tp->srtt_us);
824
825 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
826 * without any lock. We want to make sure compiler wont store
827 * intermediate values in this location.
828 */
829 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 sk->sk_max_pacing_rate));
831}
832
833/* Calculate rto without backoff. This is the second half of Van Jacobson's
834 * routine referred to above.
835 */
836static void tcp_set_rto(struct sock *sk)
837{
838 const struct tcp_sock *tp = tcp_sk(sk);
839 /* Old crap is replaced with new one. 8)
840 *
841 * More seriously:
842 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 * It cannot be less due to utterly erratic ACK generation made
844 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 * to do with delayed acks, because at cwnd>2 true delack timeout
846 * is invisible. Actually, Linux-2.4 also generates erratic
847 * ACKs in some circumstances.
848 */
849 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
850
851 /* 2. Fixups made earlier cannot be right.
852 * If we do not estimate RTO correctly without them,
853 * all the algo is pure shit and should be replaced
854 * with correct one. It is exactly, which we pretend to do.
855 */
856
857 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 * guarantees that rto is higher.
859 */
860 tcp_bound_rto(sk);
861}
862
863__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
864{
865 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866
867 if (!cwnd)
868 cwnd = TCP_INIT_CWND;
869 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870}
871
872/* Take a notice that peer is sending D-SACKs */
873static void tcp_dsack_seen(struct tcp_sock *tp)
874{
875 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 tp->rack.dsack_seen = 1;
877 tp->dsack_dups++;
878}
879
880/* It's reordering when higher sequence was delivered (i.e. sacked) before
881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882 * distance is approximated in full-mss packet distance ("reordering").
883 */
884static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 const int ts)
886{
887 struct tcp_sock *tp = tcp_sk(sk);
888 const u32 mss = tp->mss_cache;
889 u32 fack, metric;
890
891 fack = tcp_highest_sack_seq(tp);
892 if (!before(low_seq, fack))
893 return;
894
895 metric = fack - low_seq;
896 if ((metric > tp->reordering * mss) && mss) {
897#if FASTRETRANS_DEBUG > 1
898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 tp->reordering,
901 0,
902 tp->sacked_out,
903 tp->undo_marker ? tp->undo_retrans : 0);
904#endif
905 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
907 }
908
909 /* This exciting event is worth to be remembered. 8) */
910 tp->reord_seen++;
911 NET_INC_STATS(sock_net(sk),
912 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
913}
914
915/* This must be called before lost_out is incremented */
916static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917{
918 if (!tp->retransmit_skb_hint ||
919 before(TCP_SKB_CB(skb)->seq,
920 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
921 tp->retransmit_skb_hint = skb;
922}
923
924/* Sum the number of packets on the wire we have marked as lost.
925 * There are two cases we care about here:
926 * a) Packet hasn't been marked lost (nor retransmitted),
927 * and this is the first loss.
928 * b) Packet has been marked both lost and retransmitted,
929 * and this means we think it was lost again.
930 */
931static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
932{
933 __u8 sacked = TCP_SKB_CB(skb)->sacked;
934
935 if (!(sacked & TCPCB_LOST) ||
936 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
937 tp->lost += tcp_skb_pcount(skb);
938}
939
940static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
941{
942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
943 tcp_verify_retransmit_hint(tp, skb);
944
945 tp->lost_out += tcp_skb_pcount(skb);
946 tcp_sum_lost(tp, skb);
947 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
948 }
949}
950
951void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
952{
953 tcp_verify_retransmit_hint(tp, skb);
954
955 tcp_sum_lost(tp, skb);
956 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
957 tp->lost_out += tcp_skb_pcount(skb);
958 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
959 }
960}
961
962/* This procedure tags the retransmission queue when SACKs arrive.
963 *
964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
965 * Packets in queue with these bits set are counted in variables
966 * sacked_out, retrans_out and lost_out, correspondingly.
967 *
968 * Valid combinations are:
969 * Tag InFlight Description
970 * 0 1 - orig segment is in flight.
971 * S 0 - nothing flies, orig reached receiver.
972 * L 0 - nothing flies, orig lost by net.
973 * R 2 - both orig and retransmit are in flight.
974 * L|R 1 - orig is lost, retransmit is in flight.
975 * S|R 1 - orig reached receiver, retrans is still in flight.
976 * (L|S|R is logically valid, it could occur when L|R is sacked,
977 * but it is equivalent to plain S and code short-curcuits it to S.
978 * L|S is logically invalid, it would mean -1 packet in flight 8))
979 *
980 * These 6 states form finite state machine, controlled by the following events:
981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
983 * 3. Loss detection event of two flavors:
984 * A. Scoreboard estimator decided the packet is lost.
985 * A'. Reno "three dupacks" marks head of queue lost.
986 * B. SACK arrives sacking SND.NXT at the moment, when the
987 * segment was retransmitted.
988 * 4. D-SACK added new rule: D-SACK changes any tag to S.
989 *
990 * It is pleasant to note, that state diagram turns out to be commutative,
991 * so that we are allowed not to be bothered by order of our actions,
992 * when multiple events arrive simultaneously. (see the function below).
993 *
994 * Reordering detection.
995 * --------------------
996 * Reordering metric is maximal distance, which a packet can be displaced
997 * in packet stream. With SACKs we can estimate it:
998 *
999 * 1. SACK fills old hole and the corresponding segment was not
1000 * ever retransmitted -> reordering. Alas, we cannot use it
1001 * when segment was retransmitted.
1002 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1003 * for retransmitted and already SACKed segment -> reordering..
1004 * Both of these heuristics are not used in Loss state, when we cannot
1005 * account for retransmits accurately.
1006 *
1007 * SACK block validation.
1008 * ----------------------
1009 *
1010 * SACK block range validation checks that the received SACK block fits to
1011 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1012 * Note that SND.UNA is not included to the range though being valid because
1013 * it means that the receiver is rather inconsistent with itself reporting
1014 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1015 * perfectly valid, however, in light of RFC2018 which explicitly states
1016 * that "SACK block MUST reflect the newest segment. Even if the newest
1017 * segment is going to be discarded ...", not that it looks very clever
1018 * in case of head skb. Due to potentional receiver driven attacks, we
1019 * choose to avoid immediate execution of a walk in write queue due to
1020 * reneging and defer head skb's loss recovery to standard loss recovery
1021 * procedure that will eventually trigger (nothing forbids us doing this).
1022 *
1023 * Implements also blockage to start_seq wrap-around. Problem lies in the
1024 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1025 * there's no guarantee that it will be before snd_nxt (n). The problem
1026 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027 * wrap (s_w):
1028 *
1029 * <- outs wnd -> <- wrapzone ->
1030 * u e n u_w e_w s n_w
1031 * | | | | | | |
1032 * |<------------+------+----- TCP seqno space --------------+---------->|
1033 * ...-- <2^31 ->| |<--------...
1034 * ...---- >2^31 ------>| |<--------...
1035 *
1036 * Current code wouldn't be vulnerable but it's better still to discard such
1037 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1038 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1039 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1040 * equal to the ideal case (infinite seqno space without wrap caused issues).
1041 *
1042 * With D-SACK the lower bound is extended to cover sequence space below
1043 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1044 * again, D-SACK block must not to go across snd_una (for the same reason as
1045 * for the normal SACK blocks, explained above). But there all simplicity
1046 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1047 * fully below undo_marker they do not affect behavior in anyway and can
1048 * therefore be safely ignored. In rare cases (which are more or less
1049 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1050 * fragmentation and packet reordering past skb's retransmission. To consider
1051 * them correctly, the acceptable range must be extended even more though
1052 * the exact amount is rather hard to quantify. However, tp->max_window can
1053 * be used as an exaggerated estimate.
1054 */
1055static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1056 u32 start_seq, u32 end_seq)
1057{
1058 /* Too far in future, or reversed (interpretation is ambiguous) */
1059 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1060 return false;
1061
1062 /* Nasty start_seq wrap-around check (see comments above) */
1063 if (!before(start_seq, tp->snd_nxt))
1064 return false;
1065
1066 /* In outstanding window? ...This is valid exit for D-SACKs too.
1067 * start_seq == snd_una is non-sensical (see comments above)
1068 */
1069 if (after(start_seq, tp->snd_una))
1070 return true;
1071
1072 if (!is_dsack || !tp->undo_marker)
1073 return false;
1074
1075 /* ...Then it's D-SACK, and must reside below snd_una completely */
1076 if (after(end_seq, tp->snd_una))
1077 return false;
1078
1079 if (!before(start_seq, tp->undo_marker))
1080 return true;
1081
1082 /* Too old */
1083 if (!after(end_seq, tp->undo_marker))
1084 return false;
1085
1086 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1087 * start_seq < undo_marker and end_seq >= undo_marker.
1088 */
1089 return !before(start_seq, end_seq - tp->max_window);
1090}
1091
1092static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093 struct tcp_sack_block_wire *sp, int num_sacks,
1094 u32 prior_snd_una)
1095{
1096 struct tcp_sock *tp = tcp_sk(sk);
1097 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1099 bool dup_sack = false;
1100
1101 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1102 dup_sack = true;
1103 tcp_dsack_seen(tp);
1104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1105 } else if (num_sacks > 1) {
1106 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1108
1109 if (!after(end_seq_0, end_seq_1) &&
1110 !before(start_seq_0, start_seq_1)) {
1111 dup_sack = true;
1112 tcp_dsack_seen(tp);
1113 NET_INC_STATS(sock_net(sk),
1114 LINUX_MIB_TCPDSACKOFORECV);
1115 }
1116 }
1117
1118 /* D-SACK for already forgotten data... Do dumb counting. */
1119 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1120 !after(end_seq_0, prior_snd_una) &&
1121 after(end_seq_0, tp->undo_marker))
1122 tp->undo_retrans--;
1123
1124 return dup_sack;
1125}
1126
1127struct tcp_sacktag_state {
1128 u32 reord;
1129 /* Timestamps for earliest and latest never-retransmitted segment
1130 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1131 * but congestion control should still get an accurate delay signal.
1132 */
1133 u64 first_sackt;
1134 u64 last_sackt;
1135 struct rate_sample *rate;
1136 int flag;
1137 unsigned int mss_now;
1138};
1139
1140/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1141 * the incoming SACK may not exactly match but we can find smaller MSS
1142 * aligned portion of it that matches. Therefore we might need to fragment
1143 * which may fail and creates some hassle (caller must handle error case
1144 * returns).
1145 *
1146 * FIXME: this could be merged to shift decision code
1147 */
1148static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1149 u32 start_seq, u32 end_seq)
1150{
1151 int err;
1152 bool in_sack;
1153 unsigned int pkt_len;
1154 unsigned int mss;
1155
1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1157 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158
1159 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1160 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1161 mss = tcp_skb_mss(skb);
1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163
1164 if (!in_sack) {
1165 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1166 if (pkt_len < mss)
1167 pkt_len = mss;
1168 } else {
1169 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1170 if (pkt_len < mss)
1171 return -EINVAL;
1172 }
1173
1174 /* Round if necessary so that SACKs cover only full MSSes
1175 * and/or the remaining small portion (if present)
1176 */
1177 if (pkt_len > mss) {
1178 unsigned int new_len = (pkt_len / mss) * mss;
1179 if (!in_sack && new_len < pkt_len)
1180 new_len += mss;
1181 pkt_len = new_len;
1182 }
1183
1184 if (pkt_len >= skb->len && !in_sack)
1185 return 0;
1186
1187 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1188 pkt_len, mss, GFP_ATOMIC);
1189 if (err < 0)
1190 return err;
1191 }
1192
1193 return in_sack;
1194}
1195
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198 struct tcp_sacktag_state *state, u8 sacked,
1199 u32 start_seq, u32 end_seq,
1200 int dup_sack, int pcount,
1201 u64 xmit_time)
1202{
1203 struct tcp_sock *tp = tcp_sk(sk);
1204
1205 /* Account D-SACK for retransmitted packet. */
1206 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1207 if (tp->undo_marker && tp->undo_retrans > 0 &&
1208 after(end_seq, tp->undo_marker))
1209 tp->undo_retrans--;
1210 if ((sacked & TCPCB_SACKED_ACKED) &&
1211 before(start_seq, state->reord))
1212 state->reord = start_seq;
1213 }
1214
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 if (!after(end_seq, tp->snd_una))
1217 return sacked;
1218
1219 if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1221
1222 if (sacked & TCPCB_SACKED_RETRANS) {
1223 /* If the segment is not tagged as lost,
1224 * we do not clear RETRANS, believing
1225 * that retransmission is still in flight.
1226 */
1227 if (sacked & TCPCB_LOST) {
1228 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229 tp->lost_out -= pcount;
1230 tp->retrans_out -= pcount;
1231 }
1232 } else {
1233 if (!(sacked & TCPCB_RETRANS)) {
1234 /* New sack for not retransmitted frame,
1235 * which was in hole. It is reordering.
1236 */
1237 if (before(start_seq,
1238 tcp_highest_sack_seq(tp)) &&
1239 before(start_seq, state->reord))
1240 state->reord = start_seq;
1241
1242 if (!after(end_seq, tp->high_seq))
1243 state->flag |= FLAG_ORIG_SACK_ACKED;
1244 if (state->first_sackt == 0)
1245 state->first_sackt = xmit_time;
1246 state->last_sackt = xmit_time;
1247 }
1248
1249 if (sacked & TCPCB_LOST) {
1250 sacked &= ~TCPCB_LOST;
1251 tp->lost_out -= pcount;
1252 }
1253 }
1254
1255 sacked |= TCPCB_SACKED_ACKED;
1256 state->flag |= FLAG_DATA_SACKED;
1257 tp->sacked_out += pcount;
1258 tp->delivered += pcount; /* Out-of-order packets delivered */
1259
1260 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1261 if (tp->lost_skb_hint &&
1262 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1263 tp->lost_cnt_hint += pcount;
1264 }
1265
1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 * are accounted above as well.
1269 */
1270 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271 sacked &= ~TCPCB_SACKED_RETRANS;
1272 tp->retrans_out -= pcount;
1273 }
1274
1275 return sacked;
1276}
1277
1278/* Shift newly-SACKed bytes from this skb to the immediately previous
1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280 */
1281static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1282 struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
1286{
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1289 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1290
1291 BUG_ON(!pcount);
1292
1293 /* Adjust counters and hints for the newly sacked sequence
1294 * range but discard the return value since prev is already
1295 * marked. We must tag the range first because the seq
1296 * advancement below implicitly advances
1297 * tcp_highest_sack_seq() when skb is highest_sack.
1298 */
1299 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1300 start_seq, end_seq, dup_sack, pcount,
1301 tcp_skb_timestamp_us(skb));
1302 tcp_rate_skb_delivered(sk, skb, state->rate);
1303
1304 if (skb == tp->lost_skb_hint)
1305 tp->lost_cnt_hint += pcount;
1306
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
1310 tcp_skb_pcount_add(prev, pcount);
1311 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
1319 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321
1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 if (tcp_skb_pcount(skb) <= 1)
1324 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325
1326 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328
1329 if (skb->len > 0) {
1330 BUG_ON(!tcp_skb_pcount(skb));
1331 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 return false;
1333 }
1334
1335 /* Whole SKB was eaten :-) */
1336
1337 if (skb == tp->retransmit_skb_hint)
1338 tp->retransmit_skb_hint = prev;
1339 if (skb == tp->lost_skb_hint) {
1340 tp->lost_skb_hint = prev;
1341 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 }
1343
1344 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347 TCP_SKB_CB(prev)->end_seq++;
1348
1349 if (skb == tcp_highest_sack(sk))
1350 tcp_advance_highest_sack(sk, skb);
1351
1352 tcp_skb_collapse_tstamp(prev, skb);
1353 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1354 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1355
1356 tcp_rtx_queue_unlink_and_free(skb, sk);
1357
1358 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360 return true;
1361}
1362
1363/* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
1366static int tcp_skb_seglen(const struct sk_buff *skb)
1367{
1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369}
1370
1371/* Shifting pages past head area doesn't work */
1372static int skb_can_shift(const struct sk_buff *skb)
1373{
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375}
1376
1377int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1378 int pcount, int shiftlen)
1379{
1380 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1381 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1382 * to make sure not storing more than 65535 * 8 bytes per skb,
1383 * even if current MSS is bigger.
1384 */
1385 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1386 return 0;
1387 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1388 return 0;
1389 return skb_shift(to, from, shiftlen);
1390}
1391
1392/* Try collapsing SACK blocks spanning across multiple skbs to a single
1393 * skb.
1394 */
1395static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1396 struct tcp_sacktag_state *state,
1397 u32 start_seq, u32 end_seq,
1398 bool dup_sack)
1399{
1400 struct tcp_sock *tp = tcp_sk(sk);
1401 struct sk_buff *prev;
1402 int mss;
1403 int pcount = 0;
1404 int len;
1405 int in_sack;
1406
1407 /* Normally R but no L won't result in plain S */
1408 if (!dup_sack &&
1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410 goto fallback;
1411 if (!skb_can_shift(skb))
1412 goto fallback;
1413 /* This frame is about to be dropped (was ACKed). */
1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 goto fallback;
1416
1417 /* Can only happen with delayed DSACK + discard craziness */
1418 prev = skb_rb_prev(skb);
1419 if (!prev)
1420 goto fallback;
1421
1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 goto fallback;
1424
1425 if (!tcp_skb_can_collapse_to(prev))
1426 goto fallback;
1427
1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430
1431 if (in_sack) {
1432 len = skb->len;
1433 pcount = tcp_skb_pcount(skb);
1434 mss = tcp_skb_seglen(skb);
1435
1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 * drop this restriction as unnecessary
1438 */
1439 if (mss != tcp_skb_seglen(prev))
1440 goto fallback;
1441 } else {
1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 goto noop;
1444 /* CHECKME: This is non-MSS split case only?, this will
1445 * cause skipped skbs due to advancing loop btw, original
1446 * has that feature too
1447 */
1448 if (tcp_skb_pcount(skb) <= 1)
1449 goto noop;
1450
1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 if (!in_sack) {
1453 /* TODO: head merge to next could be attempted here
1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 * though it might not be worth of the additional hassle
1456 *
1457 * ...we can probably just fallback to what was done
1458 * previously. We could try merging non-SACKed ones
1459 * as well but it probably isn't going to buy off
1460 * because later SACKs might again split them, and
1461 * it would make skb timestamp tracking considerably
1462 * harder problem.
1463 */
1464 goto fallback;
1465 }
1466
1467 len = end_seq - TCP_SKB_CB(skb)->seq;
1468 BUG_ON(len < 0);
1469 BUG_ON(len > skb->len);
1470
1471 /* MSS boundaries should be honoured or else pcount will
1472 * severely break even though it makes things bit trickier.
1473 * Optimize common case to avoid most of the divides
1474 */
1475 mss = tcp_skb_mss(skb);
1476
1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 * drop this restriction as unnecessary
1479 */
1480 if (mss != tcp_skb_seglen(prev))
1481 goto fallback;
1482
1483 if (len == mss) {
1484 pcount = 1;
1485 } else if (len < mss) {
1486 goto noop;
1487 } else {
1488 pcount = len / mss;
1489 len = pcount * mss;
1490 }
1491 }
1492
1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 goto fallback;
1496
1497 if (!tcp_skb_shift(prev, skb, pcount, len))
1498 goto fallback;
1499 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1500 goto out;
1501
1502 /* Hole filled allows collapsing with the next as well, this is very
1503 * useful when hole on every nth skb pattern happens
1504 */
1505 skb = skb_rb_next(prev);
1506 if (!skb)
1507 goto out;
1508
1509 if (!skb_can_shift(skb) ||
1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511 (mss != tcp_skb_seglen(skb)))
1512 goto out;
1513
1514 len = skb->len;
1515 pcount = tcp_skb_pcount(skb);
1516 if (tcp_skb_shift(prev, skb, pcount, len))
1517 tcp_shifted_skb(sk, prev, skb, state, pcount,
1518 len, mss, 0);
1519
1520out:
1521 return prev;
1522
1523noop:
1524 return skb;
1525
1526fallback:
1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1528 return NULL;
1529}
1530
1531static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532 struct tcp_sack_block *next_dup,
1533 struct tcp_sacktag_state *state,
1534 u32 start_seq, u32 end_seq,
1535 bool dup_sack_in)
1536{
1537 struct tcp_sock *tp = tcp_sk(sk);
1538 struct sk_buff *tmp;
1539
1540 skb_rbtree_walk_from(skb) {
1541 int in_sack = 0;
1542 bool dup_sack = dup_sack_in;
1543
1544 /* queue is in-order => we can short-circuit the walk early */
1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 break;
1547
1548 if (next_dup &&
1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 next_dup->start_seq,
1552 next_dup->end_seq);
1553 if (in_sack > 0)
1554 dup_sack = true;
1555 }
1556
1557 /* skb reference here is a bit tricky to get right, since
1558 * shifting can eat and free both this skb and the next,
1559 * so not even _safe variant of the loop is enough.
1560 */
1561 if (in_sack <= 0) {
1562 tmp = tcp_shift_skb_data(sk, skb, state,
1563 start_seq, end_seq, dup_sack);
1564 if (tmp) {
1565 if (tmp != skb) {
1566 skb = tmp;
1567 continue;
1568 }
1569
1570 in_sack = 0;
1571 } else {
1572 in_sack = tcp_match_skb_to_sack(sk, skb,
1573 start_seq,
1574 end_seq);
1575 }
1576 }
1577
1578 if (unlikely(in_sack < 0))
1579 break;
1580
1581 if (in_sack) {
1582 TCP_SKB_CB(skb)->sacked =
1583 tcp_sacktag_one(sk,
1584 state,
1585 TCP_SKB_CB(skb)->sacked,
1586 TCP_SKB_CB(skb)->seq,
1587 TCP_SKB_CB(skb)->end_seq,
1588 dup_sack,
1589 tcp_skb_pcount(skb),
1590 tcp_skb_timestamp_us(skb));
1591 tcp_rate_skb_delivered(sk, skb, state->rate);
1592 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1593 list_del_init(&skb->tcp_tsorted_anchor);
1594
1595 if (!before(TCP_SKB_CB(skb)->seq,
1596 tcp_highest_sack_seq(tp)))
1597 tcp_advance_highest_sack(sk, skb);
1598 }
1599 }
1600 return skb;
1601}
1602
1603static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1604{
1605 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1606 struct sk_buff *skb;
1607
1608 while (*p) {
1609 parent = *p;
1610 skb = rb_to_skb(parent);
1611 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1612 p = &parent->rb_left;
1613 continue;
1614 }
1615 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1616 p = &parent->rb_right;
1617 continue;
1618 }
1619 return skb;
1620 }
1621 return NULL;
1622}
1623
1624static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1625 u32 skip_to_seq)
1626{
1627 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1628 return skb;
1629
1630 return tcp_sacktag_bsearch(sk, skip_to_seq);
1631}
1632
1633static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1634 struct sock *sk,
1635 struct tcp_sack_block *next_dup,
1636 struct tcp_sacktag_state *state,
1637 u32 skip_to_seq)
1638{
1639 if (!next_dup)
1640 return skb;
1641
1642 if (before(next_dup->start_seq, skip_to_seq)) {
1643 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1644 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1645 next_dup->start_seq, next_dup->end_seq,
1646 1);
1647 }
1648
1649 return skb;
1650}
1651
1652static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1653{
1654 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1655}
1656
1657static int
1658tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1659 u32 prior_snd_una, struct tcp_sacktag_state *state)
1660{
1661 struct tcp_sock *tp = tcp_sk(sk);
1662 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1663 TCP_SKB_CB(ack_skb)->sacked);
1664 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1665 struct tcp_sack_block sp[TCP_NUM_SACKS];
1666 struct tcp_sack_block *cache;
1667 struct sk_buff *skb;
1668 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1669 int used_sacks;
1670 bool found_dup_sack = false;
1671 int i, j;
1672 int first_sack_index;
1673
1674 state->flag = 0;
1675 state->reord = tp->snd_nxt;
1676
1677 if (!tp->sacked_out)
1678 tcp_highest_sack_reset(sk);
1679
1680 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1681 num_sacks, prior_snd_una);
1682 if (found_dup_sack) {
1683 state->flag |= FLAG_DSACKING_ACK;
1684 tp->delivered++; /* A spurious retransmission is delivered */
1685 }
1686
1687 /* Eliminate too old ACKs, but take into
1688 * account more or less fresh ones, they can
1689 * contain valid SACK info.
1690 */
1691 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1692 return 0;
1693
1694 if (!tp->packets_out)
1695 goto out;
1696
1697 used_sacks = 0;
1698 first_sack_index = 0;
1699 for (i = 0; i < num_sacks; i++) {
1700 bool dup_sack = !i && found_dup_sack;
1701
1702 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1703 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1704
1705 if (!tcp_is_sackblock_valid(tp, dup_sack,
1706 sp[used_sacks].start_seq,
1707 sp[used_sacks].end_seq)) {
1708 int mib_idx;
1709
1710 if (dup_sack) {
1711 if (!tp->undo_marker)
1712 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1713 else
1714 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1715 } else {
1716 /* Don't count olds caused by ACK reordering */
1717 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1718 !after(sp[used_sacks].end_seq, tp->snd_una))
1719 continue;
1720 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1721 }
1722
1723 NET_INC_STATS(sock_net(sk), mib_idx);
1724 if (i == 0)
1725 first_sack_index = -1;
1726 continue;
1727 }
1728
1729 /* Ignore very old stuff early */
1730 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1731 continue;
1732
1733 used_sacks++;
1734 }
1735
1736 /* order SACK blocks to allow in order walk of the retrans queue */
1737 for (i = used_sacks - 1; i > 0; i--) {
1738 for (j = 0; j < i; j++) {
1739 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1740 swap(sp[j], sp[j + 1]);
1741
1742 /* Track where the first SACK block goes to */
1743 if (j == first_sack_index)
1744 first_sack_index = j + 1;
1745 }
1746 }
1747 }
1748
1749 state->mss_now = tcp_current_mss(sk);
1750 skb = NULL;
1751 i = 0;
1752
1753 if (!tp->sacked_out) {
1754 /* It's already past, so skip checking against it */
1755 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1756 } else {
1757 cache = tp->recv_sack_cache;
1758 /* Skip empty blocks in at head of the cache */
1759 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1760 !cache->end_seq)
1761 cache++;
1762 }
1763
1764 while (i < used_sacks) {
1765 u32 start_seq = sp[i].start_seq;
1766 u32 end_seq = sp[i].end_seq;
1767 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1768 struct tcp_sack_block *next_dup = NULL;
1769
1770 if (found_dup_sack && ((i + 1) == first_sack_index))
1771 next_dup = &sp[i + 1];
1772
1773 /* Skip too early cached blocks */
1774 while (tcp_sack_cache_ok(tp, cache) &&
1775 !before(start_seq, cache->end_seq))
1776 cache++;
1777
1778 /* Can skip some work by looking recv_sack_cache? */
1779 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1780 after(end_seq, cache->start_seq)) {
1781
1782 /* Head todo? */
1783 if (before(start_seq, cache->start_seq)) {
1784 skb = tcp_sacktag_skip(skb, sk, start_seq);
1785 skb = tcp_sacktag_walk(skb, sk, next_dup,
1786 state,
1787 start_seq,
1788 cache->start_seq,
1789 dup_sack);
1790 }
1791
1792 /* Rest of the block already fully processed? */
1793 if (!after(end_seq, cache->end_seq))
1794 goto advance_sp;
1795
1796 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1797 state,
1798 cache->end_seq);
1799
1800 /* ...tail remains todo... */
1801 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1802 /* ...but better entrypoint exists! */
1803 skb = tcp_highest_sack(sk);
1804 if (!skb)
1805 break;
1806 cache++;
1807 goto walk;
1808 }
1809
1810 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1811 /* Check overlap against next cached too (past this one already) */
1812 cache++;
1813 continue;
1814 }
1815
1816 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1817 skb = tcp_highest_sack(sk);
1818 if (!skb)
1819 break;
1820 }
1821 skb = tcp_sacktag_skip(skb, sk, start_seq);
1822
1823walk:
1824 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825 start_seq, end_seq, dup_sack);
1826
1827advance_sp:
1828 i++;
1829 }
1830
1831 /* Clear the head of the cache sack blocks so we can skip it next time */
1832 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833 tp->recv_sack_cache[i].start_seq = 0;
1834 tp->recv_sack_cache[i].end_seq = 0;
1835 }
1836 for (j = 0; j < used_sacks; j++)
1837 tp->recv_sack_cache[i++] = sp[j];
1838
1839 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1840 tcp_check_sack_reordering(sk, state->reord, 0);
1841
1842 tcp_verify_left_out(tp);
1843out:
1844
1845#if FASTRETRANS_DEBUG > 0
1846 WARN_ON((int)tp->sacked_out < 0);
1847 WARN_ON((int)tp->lost_out < 0);
1848 WARN_ON((int)tp->retrans_out < 0);
1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850#endif
1851 return state->flag;
1852}
1853
1854/* Limits sacked_out so that sum with lost_out isn't ever larger than
1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856 */
1857static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858{
1859 u32 holes;
1860
1861 holes = max(tp->lost_out, 1U);
1862 holes = min(holes, tp->packets_out);
1863
1864 if ((tp->sacked_out + holes) > tp->packets_out) {
1865 tp->sacked_out = tp->packets_out - holes;
1866 return true;
1867 }
1868 return false;
1869}
1870
1871/* If we receive more dupacks than we expected counting segments
1872 * in assumption of absent reordering, interpret this as reordering.
1873 * The only another reason could be bug in receiver TCP.
1874 */
1875static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876{
1877 struct tcp_sock *tp = tcp_sk(sk);
1878
1879 if (!tcp_limit_reno_sacked(tp))
1880 return;
1881
1882 tp->reordering = min_t(u32, tp->packets_out + addend,
1883 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1884 tp->reord_seen++;
1885 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1886}
1887
1888/* Emulate SACKs for SACKless connection: account for a new dupack. */
1889
1890static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1891{
1892 if (num_dupack) {
1893 struct tcp_sock *tp = tcp_sk(sk);
1894 u32 prior_sacked = tp->sacked_out;
1895 s32 delivered;
1896
1897 tp->sacked_out += num_dupack;
1898 tcp_check_reno_reordering(sk, 0);
1899 delivered = tp->sacked_out - prior_sacked;
1900 if (delivered > 0)
1901 tp->delivered += delivered;
1902 tcp_verify_left_out(tp);
1903 }
1904}
1905
1906/* Account for ACK, ACKing some data in Reno Recovery phase. */
1907
1908static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1909{
1910 struct tcp_sock *tp = tcp_sk(sk);
1911
1912 if (acked > 0) {
1913 /* One ACK acked hole. The rest eat duplicate ACKs. */
1914 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1915 if (acked - 1 >= tp->sacked_out)
1916 tp->sacked_out = 0;
1917 else
1918 tp->sacked_out -= acked - 1;
1919 }
1920 tcp_check_reno_reordering(sk, acked);
1921 tcp_verify_left_out(tp);
1922}
1923
1924static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1925{
1926 tp->sacked_out = 0;
1927}
1928
1929void tcp_clear_retrans(struct tcp_sock *tp)
1930{
1931 tp->retrans_out = 0;
1932 tp->lost_out = 0;
1933 tp->undo_marker = 0;
1934 tp->undo_retrans = -1;
1935 tp->sacked_out = 0;
1936}
1937
1938static inline void tcp_init_undo(struct tcp_sock *tp)
1939{
1940 tp->undo_marker = tp->snd_una;
1941 /* Retransmission still in flight may cause DSACKs later. */
1942 tp->undo_retrans = tp->retrans_out ? : -1;
1943}
1944
1945static bool tcp_is_rack(const struct sock *sk)
1946{
1947 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1948}
1949
1950/* If we detect SACK reneging, forget all SACK information
1951 * and reset tags completely, otherwise preserve SACKs. If receiver
1952 * dropped its ofo queue, we will know this due to reneging detection.
1953 */
1954static void tcp_timeout_mark_lost(struct sock *sk)
1955{
1956 struct tcp_sock *tp = tcp_sk(sk);
1957 struct sk_buff *skb, *head;
1958 bool is_reneg; /* is receiver reneging on SACKs? */
1959
1960 head = tcp_rtx_queue_head(sk);
1961 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1962 if (is_reneg) {
1963 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1964 tp->sacked_out = 0;
1965 /* Mark SACK reneging until we recover from this loss event. */
1966 tp->is_sack_reneg = 1;
1967 } else if (tcp_is_reno(tp)) {
1968 tcp_reset_reno_sack(tp);
1969 }
1970
1971 skb = head;
1972 skb_rbtree_walk_from(skb) {
1973 if (is_reneg)
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 else if (tcp_is_rack(sk) && skb != head &&
1976 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1977 continue; /* Don't mark recently sent ones lost yet */
1978 tcp_mark_skb_lost(sk, skb);
1979 }
1980 tcp_verify_left_out(tp);
1981 tcp_clear_all_retrans_hints(tp);
1982}
1983
1984/* Enter Loss state. */
1985void tcp_enter_loss(struct sock *sk)
1986{
1987 const struct inet_connection_sock *icsk = inet_csk(sk);
1988 struct tcp_sock *tp = tcp_sk(sk);
1989 struct net *net = sock_net(sk);
1990 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1991
1992 tcp_timeout_mark_lost(sk);
1993
1994 /* Reduce ssthresh if it has not yet been made inside this window. */
1995 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1996 !after(tp->high_seq, tp->snd_una) ||
1997 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1998 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1999 tp->prior_cwnd = tp->snd_cwnd;
2000 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2001 tcp_ca_event(sk, CA_EVENT_LOSS);
2002 tcp_init_undo(tp);
2003 }
2004 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2005 tp->snd_cwnd_cnt = 0;
2006 tp->snd_cwnd_stamp = tcp_jiffies32;
2007
2008 /* Timeout in disordered state after receiving substantial DUPACKs
2009 * suggests that the degree of reordering is over-estimated.
2010 */
2011 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2012 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2013 tp->reordering = min_t(unsigned int, tp->reordering,
2014 net->ipv4.sysctl_tcp_reordering);
2015 tcp_set_ca_state(sk, TCP_CA_Loss);
2016 tp->high_seq = tp->snd_nxt;
2017 tcp_ecn_queue_cwr(tp);
2018
2019 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2020 * loss recovery is underway except recurring timeout(s) on
2021 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2022 */
2023 tp->frto = net->ipv4.sysctl_tcp_frto &&
2024 (new_recovery || icsk->icsk_retransmits) &&
2025 !inet_csk(sk)->icsk_mtup.probe_size;
2026}
2027
2028/* If ACK arrived pointing to a remembered SACK, it means that our
2029 * remembered SACKs do not reflect real state of receiver i.e.
2030 * receiver _host_ is heavily congested (or buggy).
2031 *
2032 * To avoid big spurious retransmission bursts due to transient SACK
2033 * scoreboard oddities that look like reneging, we give the receiver a
2034 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2035 * restore sanity to the SACK scoreboard. If the apparent reneging
2036 * persists until this RTO then we'll clear the SACK scoreboard.
2037 */
2038static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2039{
2040 if (flag & FLAG_SACK_RENEGING) {
2041 struct tcp_sock *tp = tcp_sk(sk);
2042 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2043 msecs_to_jiffies(10));
2044
2045 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2046 delay, TCP_RTO_MAX);
2047 return true;
2048 }
2049 return false;
2050}
2051
2052/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2053 * counter when SACK is enabled (without SACK, sacked_out is used for
2054 * that purpose).
2055 *
2056 * With reordering, holes may still be in flight, so RFC3517 recovery
2057 * uses pure sacked_out (total number of SACKed segments) even though
2058 * it violates the RFC that uses duplicate ACKs, often these are equal
2059 * but when e.g. out-of-window ACKs or packet duplication occurs,
2060 * they differ. Since neither occurs due to loss, TCP should really
2061 * ignore them.
2062 */
2063static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2064{
2065 return tp->sacked_out + 1;
2066}
2067
2068/* Linux NewReno/SACK/ECN state machine.
2069 * --------------------------------------
2070 *
2071 * "Open" Normal state, no dubious events, fast path.
2072 * "Disorder" In all the respects it is "Open",
2073 * but requires a bit more attention. It is entered when
2074 * we see some SACKs or dupacks. It is split of "Open"
2075 * mainly to move some processing from fast path to slow one.
2076 * "CWR" CWND was reduced due to some Congestion Notification event.
2077 * It can be ECN, ICMP source quench, local device congestion.
2078 * "Recovery" CWND was reduced, we are fast-retransmitting.
2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2080 *
2081 * tcp_fastretrans_alert() is entered:
2082 * - each incoming ACK, if state is not "Open"
2083 * - when arrived ACK is unusual, namely:
2084 * * SACK
2085 * * Duplicate ACK.
2086 * * ECN ECE.
2087 *
2088 * Counting packets in flight is pretty simple.
2089 *
2090 * in_flight = packets_out - left_out + retrans_out
2091 *
2092 * packets_out is SND.NXT-SND.UNA counted in packets.
2093 *
2094 * retrans_out is number of retransmitted segments.
2095 *
2096 * left_out is number of segments left network, but not ACKed yet.
2097 *
2098 * left_out = sacked_out + lost_out
2099 *
2100 * sacked_out: Packets, which arrived to receiver out of order
2101 * and hence not ACKed. With SACKs this number is simply
2102 * amount of SACKed data. Even without SACKs
2103 * it is easy to give pretty reliable estimate of this number,
2104 * counting duplicate ACKs.
2105 *
2106 * lost_out: Packets lost by network. TCP has no explicit
2107 * "loss notification" feedback from network (for now).
2108 * It means that this number can be only _guessed_.
2109 * Actually, it is the heuristics to predict lossage that
2110 * distinguishes different algorithms.
2111 *
2112 * F.e. after RTO, when all the queue is considered as lost,
2113 * lost_out = packets_out and in_flight = retrans_out.
2114 *
2115 * Essentially, we have now a few algorithms detecting
2116 * lost packets.
2117 *
2118 * If the receiver supports SACK:
2119 *
2120 * RFC6675/3517: It is the conventional algorithm. A packet is
2121 * considered lost if the number of higher sequence packets
2122 * SACKed is greater than or equal the DUPACK thoreshold
2123 * (reordering). This is implemented in tcp_mark_head_lost and
2124 * tcp_update_scoreboard.
2125 *
2126 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2127 * (2017-) that checks timing instead of counting DUPACKs.
2128 * Essentially a packet is considered lost if it's not S/ACKed
2129 * after RTT + reordering_window, where both metrics are
2130 * dynamically measured and adjusted. This is implemented in
2131 * tcp_rack_mark_lost.
2132 *
2133 * If the receiver does not support SACK:
2134 *
2135 * NewReno (RFC6582): in Recovery we assume that one segment
2136 * is lost (classic Reno). While we are in Recovery and
2137 * a partial ACK arrives, we assume that one more packet
2138 * is lost (NewReno). This heuristics are the same in NewReno
2139 * and SACK.
2140 *
2141 * Really tricky (and requiring careful tuning) part of algorithm
2142 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2143 * The first determines the moment _when_ we should reduce CWND and,
2144 * hence, slow down forward transmission. In fact, it determines the moment
2145 * when we decide that hole is caused by loss, rather than by a reorder.
2146 *
2147 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2148 * holes, caused by lost packets.
2149 *
2150 * And the most logically complicated part of algorithm is undo
2151 * heuristics. We detect false retransmits due to both too early
2152 * fast retransmit (reordering) and underestimated RTO, analyzing
2153 * timestamps and D-SACKs. When we detect that some segments were
2154 * retransmitted by mistake and CWND reduction was wrong, we undo
2155 * window reduction and abort recovery phase. This logic is hidden
2156 * inside several functions named tcp_try_undo_<something>.
2157 */
2158
2159/* This function decides, when we should leave Disordered state
2160 * and enter Recovery phase, reducing congestion window.
2161 *
2162 * Main question: may we further continue forward transmission
2163 * with the same cwnd?
2164 */
2165static bool tcp_time_to_recover(struct sock *sk, int flag)
2166{
2167 struct tcp_sock *tp = tcp_sk(sk);
2168
2169 /* Trick#1: The loss is proven. */
2170 if (tp->lost_out)
2171 return true;
2172
2173 /* Not-A-Trick#2 : Classic rule... */
2174 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2175 return true;
2176
2177 return false;
2178}
2179
2180/* Detect loss in event "A" above by marking head of queue up as lost.
2181 * For non-SACK(Reno) senders, the first "packets" number of segments
2182 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2183 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2184 * the maximum SACKed segments to pass before reaching this limit.
2185 */
2186static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2187{
2188 struct tcp_sock *tp = tcp_sk(sk);
2189 struct sk_buff *skb;
2190 int cnt, oldcnt, lost;
2191 unsigned int mss;
2192 /* Use SACK to deduce losses of new sequences sent during recovery */
2193 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2194
2195 WARN_ON(packets > tp->packets_out);
2196 skb = tp->lost_skb_hint;
2197 if (skb) {
2198 /* Head already handled? */
2199 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2200 return;
2201 cnt = tp->lost_cnt_hint;
2202 } else {
2203 skb = tcp_rtx_queue_head(sk);
2204 cnt = 0;
2205 }
2206
2207 skb_rbtree_walk_from(skb) {
2208 /* TODO: do this better */
2209 /* this is not the most efficient way to do this... */
2210 tp->lost_skb_hint = skb;
2211 tp->lost_cnt_hint = cnt;
2212
2213 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2214 break;
2215
2216 oldcnt = cnt;
2217 if (tcp_is_reno(tp) ||
2218 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2219 cnt += tcp_skb_pcount(skb);
2220
2221 if (cnt > packets) {
2222 if (tcp_is_sack(tp) ||
2223 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2224 (oldcnt >= packets))
2225 break;
2226
2227 mss = tcp_skb_mss(skb);
2228 /* If needed, chop off the prefix to mark as lost. */
2229 lost = (packets - oldcnt) * mss;
2230 if (lost < skb->len &&
2231 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2232 lost, mss, GFP_ATOMIC) < 0)
2233 break;
2234 cnt = packets;
2235 }
2236
2237 tcp_skb_mark_lost(tp, skb);
2238
2239 if (mark_head)
2240 break;
2241 }
2242 tcp_verify_left_out(tp);
2243}
2244
2245/* Account newly detected lost packet(s) */
2246
2247static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2248{
2249 struct tcp_sock *tp = tcp_sk(sk);
2250
2251 if (tcp_is_sack(tp)) {
2252 int sacked_upto = tp->sacked_out - tp->reordering;
2253 if (sacked_upto >= 0)
2254 tcp_mark_head_lost(sk, sacked_upto, 0);
2255 else if (fast_rexmit)
2256 tcp_mark_head_lost(sk, 1, 1);
2257 }
2258}
2259
2260static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261{
2262 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263 before(tp->rx_opt.rcv_tsecr, when);
2264}
2265
2266/* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2268 */
2269static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270 const struct sk_buff *skb)
2271{
2272 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274}
2275
2276/* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2278 */
2279static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280{
2281 return tp->retrans_stamp &&
2282 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283}
2284
2285/* Undo procedures. */
2286
2287/* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2295 *
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2300 */
2301static bool tcp_any_retrans_done(const struct sock *sk)
2302{
2303 const struct tcp_sock *tp = tcp_sk(sk);
2304 struct sk_buff *skb;
2305
2306 if (tp->retrans_out)
2307 return true;
2308
2309 skb = tcp_rtx_queue_head(sk);
2310 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311 return true;
2312
2313 return false;
2314}
2315
2316static void DBGUNDO(struct sock *sk, const char *msg)
2317{
2318#if FASTRETRANS_DEBUG > 1
2319 struct tcp_sock *tp = tcp_sk(sk);
2320 struct inet_sock *inet = inet_sk(sk);
2321
2322 if (sk->sk_family == AF_INET) {
2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324 msg,
2325 &inet->inet_daddr, ntohs(inet->inet_dport),
2326 tp->snd_cwnd, tcp_left_out(tp),
2327 tp->snd_ssthresh, tp->prior_ssthresh,
2328 tp->packets_out);
2329 }
2330#if IS_ENABLED(CONFIG_IPV6)
2331 else if (sk->sk_family == AF_INET6) {
2332 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2333 msg,
2334 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2335 tp->snd_cwnd, tcp_left_out(tp),
2336 tp->snd_ssthresh, tp->prior_ssthresh,
2337 tp->packets_out);
2338 }
2339#endif
2340#endif
2341}
2342
2343static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2344{
2345 struct tcp_sock *tp = tcp_sk(sk);
2346
2347 if (unmark_loss) {
2348 struct sk_buff *skb;
2349
2350 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2351 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 }
2353 tp->lost_out = 0;
2354 tcp_clear_all_retrans_hints(tp);
2355 }
2356
2357 if (tp->prior_ssthresh) {
2358 const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2361
2362 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2363 tp->snd_ssthresh = tp->prior_ssthresh;
2364 tcp_ecn_withdraw_cwr(tp);
2365 }
2366 }
2367 tp->snd_cwnd_stamp = tcp_jiffies32;
2368 tp->undo_marker = 0;
2369 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2370}
2371
2372static inline bool tcp_may_undo(const struct tcp_sock *tp)
2373{
2374 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2375}
2376
2377/* People celebrate: "We love our President!" */
2378static bool tcp_try_undo_recovery(struct sock *sk)
2379{
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (tcp_may_undo(tp)) {
2383 int mib_idx;
2384
2385 /* Happy end! We did not retransmit anything
2386 * or our original transmission succeeded.
2387 */
2388 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389 tcp_undo_cwnd_reduction(sk, false);
2390 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2392 else
2393 mib_idx = LINUX_MIB_TCPFULLUNDO;
2394
2395 NET_INC_STATS(sock_net(sk), mib_idx);
2396 } else if (tp->rack.reo_wnd_persist) {
2397 tp->rack.reo_wnd_persist--;
2398 }
2399 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2400 /* Hold old state until something *above* high_seq
2401 * is ACKed. For Reno it is MUST to prevent false
2402 * fast retransmits (RFC2582). SACK TCP is safe. */
2403 if (!tcp_any_retrans_done(sk))
2404 tp->retrans_stamp = 0;
2405 return true;
2406 }
2407 tcp_set_ca_state(sk, TCP_CA_Open);
2408 tp->is_sack_reneg = 0;
2409 return false;
2410}
2411
2412/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413static bool tcp_try_undo_dsack(struct sock *sk)
2414{
2415 struct tcp_sock *tp = tcp_sk(sk);
2416
2417 if (tp->undo_marker && !tp->undo_retrans) {
2418 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2419 tp->rack.reo_wnd_persist + 1);
2420 DBGUNDO(sk, "D-SACK");
2421 tcp_undo_cwnd_reduction(sk, false);
2422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423 return true;
2424 }
2425 return false;
2426}
2427
2428/* Undo during loss recovery after partial ACK or using F-RTO. */
2429static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430{
2431 struct tcp_sock *tp = tcp_sk(sk);
2432
2433 if (frto_undo || tcp_may_undo(tp)) {
2434 tcp_undo_cwnd_reduction(sk, true);
2435
2436 DBGUNDO(sk, "partial loss");
2437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438 if (frto_undo)
2439 NET_INC_STATS(sock_net(sk),
2440 LINUX_MIB_TCPSPURIOUSRTOS);
2441 inet_csk(sk)->icsk_retransmits = 0;
2442 if (frto_undo || tcp_is_sack(tp)) {
2443 tcp_set_ca_state(sk, TCP_CA_Open);
2444 tp->is_sack_reneg = 0;
2445 }
2446 return true;
2447 }
2448 return false;
2449}
2450
2451/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452 * It computes the number of packets to send (sndcnt) based on packets newly
2453 * delivered:
2454 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2455 * cwnd reductions across a full RTT.
2456 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2457 * But when the retransmits are acked without further losses, PRR
2458 * slow starts cwnd up to ssthresh to speed up the recovery.
2459 */
2460static void tcp_init_cwnd_reduction(struct sock *sk)
2461{
2462 struct tcp_sock *tp = tcp_sk(sk);
2463
2464 tp->high_seq = tp->snd_nxt;
2465 tp->tlp_high_seq = 0;
2466 tp->snd_cwnd_cnt = 0;
2467 tp->prior_cwnd = tp->snd_cwnd;
2468 tp->prr_delivered = 0;
2469 tp->prr_out = 0;
2470 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471 tcp_ecn_queue_cwr(tp);
2472}
2473
2474void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2475{
2476 struct tcp_sock *tp = tcp_sk(sk);
2477 int sndcnt = 0;
2478 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2479
2480 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481 return;
2482
2483 tp->prr_delivered += newly_acked_sacked;
2484 if (delta < 0) {
2485 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2486 tp->prior_cwnd - 1;
2487 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2488 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2489 FLAG_RETRANS_DATA_ACKED) {
2490 sndcnt = min_t(int, delta,
2491 max_t(int, tp->prr_delivered - tp->prr_out,
2492 newly_acked_sacked) + 1);
2493 } else {
2494 sndcnt = min(delta, newly_acked_sacked);
2495 }
2496 /* Force a fast retransmit upon entering fast recovery */
2497 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2498 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499}
2500
2501static inline void tcp_end_cwnd_reduction(struct sock *sk)
2502{
2503 struct tcp_sock *tp = tcp_sk(sk);
2504
2505 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2506 return;
2507
2508 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2509 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2510 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2511 tp->snd_cwnd = tp->snd_ssthresh;
2512 tp->snd_cwnd_stamp = tcp_jiffies32;
2513 }
2514 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2515}
2516
2517/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2518void tcp_enter_cwr(struct sock *sk)
2519{
2520 struct tcp_sock *tp = tcp_sk(sk);
2521
2522 tp->prior_ssthresh = 0;
2523 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2524 tp->undo_marker = 0;
2525 tcp_init_cwnd_reduction(sk);
2526 tcp_set_ca_state(sk, TCP_CA_CWR);
2527 }
2528}
2529EXPORT_SYMBOL(tcp_enter_cwr);
2530
2531static void tcp_try_keep_open(struct sock *sk)
2532{
2533 struct tcp_sock *tp = tcp_sk(sk);
2534 int state = TCP_CA_Open;
2535
2536 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2537 state = TCP_CA_Disorder;
2538
2539 if (inet_csk(sk)->icsk_ca_state != state) {
2540 tcp_set_ca_state(sk, state);
2541 tp->high_seq = tp->snd_nxt;
2542 }
2543}
2544
2545static void tcp_try_to_open(struct sock *sk, int flag)
2546{
2547 struct tcp_sock *tp = tcp_sk(sk);
2548
2549 tcp_verify_left_out(tp);
2550
2551 if (!tcp_any_retrans_done(sk))
2552 tp->retrans_stamp = 0;
2553
2554 if (flag & FLAG_ECE)
2555 tcp_enter_cwr(sk);
2556
2557 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2558 tcp_try_keep_open(sk);
2559 }
2560}
2561
2562static void tcp_mtup_probe_failed(struct sock *sk)
2563{
2564 struct inet_connection_sock *icsk = inet_csk(sk);
2565
2566 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2567 icsk->icsk_mtup.probe_size = 0;
2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2569}
2570
2571static void tcp_mtup_probe_success(struct sock *sk)
2572{
2573 struct tcp_sock *tp = tcp_sk(sk);
2574 struct inet_connection_sock *icsk = inet_csk(sk);
2575
2576 /* FIXME: breaks with very large cwnd */
2577 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2578 tp->snd_cwnd = tp->snd_cwnd *
2579 tcp_mss_to_mtu(sk, tp->mss_cache) /
2580 icsk->icsk_mtup.probe_size;
2581 tp->snd_cwnd_cnt = 0;
2582 tp->snd_cwnd_stamp = tcp_jiffies32;
2583 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2584
2585 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2586 icsk->icsk_mtup.probe_size = 0;
2587 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2588 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2589}
2590
2591/* Do a simple retransmit without using the backoff mechanisms in
2592 * tcp_timer. This is used for path mtu discovery.
2593 * The socket is already locked here.
2594 */
2595void tcp_simple_retransmit(struct sock *sk)
2596{
2597 const struct inet_connection_sock *icsk = inet_csk(sk);
2598 struct tcp_sock *tp = tcp_sk(sk);
2599 struct sk_buff *skb;
2600 unsigned int mss = tcp_current_mss(sk);
2601
2602 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2603 if (tcp_skb_seglen(skb) > mss &&
2604 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607 tp->retrans_out -= tcp_skb_pcount(skb);
2608 }
2609 tcp_skb_mark_lost_uncond_verify(tp, skb);
2610 }
2611 }
2612
2613 tcp_clear_retrans_hints_partial(tp);
2614
2615 if (!tp->lost_out)
2616 return;
2617
2618 if (tcp_is_reno(tp))
2619 tcp_limit_reno_sacked(tp);
2620
2621 tcp_verify_left_out(tp);
2622
2623 /* Don't muck with the congestion window here.
2624 * Reason is that we do not increase amount of _data_
2625 * in network, but units changed and effective
2626 * cwnd/ssthresh really reduced now.
2627 */
2628 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629 tp->high_seq = tp->snd_nxt;
2630 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631 tp->prior_ssthresh = 0;
2632 tp->undo_marker = 0;
2633 tcp_set_ca_state(sk, TCP_CA_Loss);
2634 }
2635 tcp_xmit_retransmit_queue(sk);
2636}
2637EXPORT_SYMBOL(tcp_simple_retransmit);
2638
2639void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640{
2641 struct tcp_sock *tp = tcp_sk(sk);
2642 int mib_idx;
2643
2644 if (tcp_is_reno(tp))
2645 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646 else
2647 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648
2649 NET_INC_STATS(sock_net(sk), mib_idx);
2650
2651 tp->prior_ssthresh = 0;
2652 tcp_init_undo(tp);
2653
2654 if (!tcp_in_cwnd_reduction(sk)) {
2655 if (!ece_ack)
2656 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657 tcp_init_cwnd_reduction(sk);
2658 }
2659 tcp_set_ca_state(sk, TCP_CA_Recovery);
2660}
2661
2662/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664 */
2665static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2666 int *rexmit)
2667{
2668 struct tcp_sock *tp = tcp_sk(sk);
2669 bool recovered = !before(tp->snd_una, tp->high_seq);
2670
2671 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2672 tcp_try_undo_loss(sk, false))
2673 return;
2674
2675 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2676 /* Step 3.b. A timeout is spurious if not all data are
2677 * lost, i.e., never-retransmitted data are (s)acked.
2678 */
2679 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2680 tcp_try_undo_loss(sk, true))
2681 return;
2682
2683 if (after(tp->snd_nxt, tp->high_seq)) {
2684 if (flag & FLAG_DATA_SACKED || num_dupack)
2685 tp->frto = 0; /* Step 3.a. loss was real */
2686 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2687 tp->high_seq = tp->snd_nxt;
2688 /* Step 2.b. Try send new data (but deferred until cwnd
2689 * is updated in tcp_ack()). Otherwise fall back to
2690 * the conventional recovery.
2691 */
2692 if (!tcp_write_queue_empty(sk) &&
2693 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2694 *rexmit = REXMIT_NEW;
2695 return;
2696 }
2697 tp->frto = 0;
2698 }
2699 }
2700
2701 if (recovered) {
2702 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2703 tcp_try_undo_recovery(sk);
2704 return;
2705 }
2706 if (tcp_is_reno(tp)) {
2707 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2708 * delivered. Lower inflight to clock out (re)tranmissions.
2709 */
2710 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2711 tcp_add_reno_sack(sk, num_dupack);
2712 else if (flag & FLAG_SND_UNA_ADVANCED)
2713 tcp_reset_reno_sack(tp);
2714 }
2715 *rexmit = REXMIT_LOST;
2716}
2717
2718/* Undo during fast recovery after partial ACK. */
2719static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2720{
2721 struct tcp_sock *tp = tcp_sk(sk);
2722
2723 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2724 /* Plain luck! Hole if filled with delayed
2725 * packet, rather than with a retransmit. Check reordering.
2726 */
2727 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2728
2729 /* We are getting evidence that the reordering degree is higher
2730 * than we realized. If there are no retransmits out then we
2731 * can undo. Otherwise we clock out new packets but do not
2732 * mark more packets lost or retransmit more.
2733 */
2734 if (tp->retrans_out)
2735 return true;
2736
2737 if (!tcp_any_retrans_done(sk))
2738 tp->retrans_stamp = 0;
2739
2740 DBGUNDO(sk, "partial recovery");
2741 tcp_undo_cwnd_reduction(sk, true);
2742 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2743 tcp_try_keep_open(sk);
2744 return true;
2745 }
2746 return false;
2747}
2748
2749static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2750{
2751 struct tcp_sock *tp = tcp_sk(sk);
2752
2753 if (tcp_rtx_queue_empty(sk))
2754 return;
2755
2756 if (unlikely(tcp_is_reno(tp))) {
2757 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2758 } else if (tcp_is_rack(sk)) {
2759 u32 prior_retrans = tp->retrans_out;
2760
2761 tcp_rack_mark_lost(sk);
2762 if (prior_retrans > tp->retrans_out)
2763 *ack_flag |= FLAG_LOST_RETRANS;
2764 }
2765}
2766
2767static bool tcp_force_fast_retransmit(struct sock *sk)
2768{
2769 struct tcp_sock *tp = tcp_sk(sk);
2770
2771 return after(tcp_highest_sack_seq(tp),
2772 tp->snd_una + tp->reordering * tp->mss_cache);
2773}
2774
2775/* Process an event, which can update packets-in-flight not trivially.
2776 * Main goal of this function is to calculate new estimate for left_out,
2777 * taking into account both packets sitting in receiver's buffer and
2778 * packets lost by network.
2779 *
2780 * Besides that it updates the congestion state when packet loss or ECN
2781 * is detected. But it does not reduce the cwnd, it is done by the
2782 * congestion control later.
2783 *
2784 * It does _not_ decide what to send, it is made in function
2785 * tcp_xmit_retransmit_queue().
2786 */
2787static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2788 int num_dupack, int *ack_flag, int *rexmit)
2789{
2790 struct inet_connection_sock *icsk = inet_csk(sk);
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 int fast_rexmit = 0, flag = *ack_flag;
2793 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 tcp_force_fast_retransmit(sk));
2795
2796 if (!tp->packets_out && tp->sacked_out)
2797 tp->sacked_out = 0;
2798
2799 /* Now state machine starts.
2800 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2801 if (flag & FLAG_ECE)
2802 tp->prior_ssthresh = 0;
2803
2804 /* B. In all the states check for reneging SACKs. */
2805 if (tcp_check_sack_reneging(sk, flag))
2806 return;
2807
2808 /* C. Check consistency of the current state. */
2809 tcp_verify_left_out(tp);
2810
2811 /* D. Check state exit conditions. State can be terminated
2812 * when high_seq is ACKed. */
2813 if (icsk->icsk_ca_state == TCP_CA_Open) {
2814 WARN_ON(tp->retrans_out != 0);
2815 tp->retrans_stamp = 0;
2816 } else if (!before(tp->snd_una, tp->high_seq)) {
2817 switch (icsk->icsk_ca_state) {
2818 case TCP_CA_CWR:
2819 /* CWR is to be held something *above* high_seq
2820 * is ACKed for CWR bit to reach receiver. */
2821 if (tp->snd_una != tp->high_seq) {
2822 tcp_end_cwnd_reduction(sk);
2823 tcp_set_ca_state(sk, TCP_CA_Open);
2824 }
2825 break;
2826
2827 case TCP_CA_Recovery:
2828 if (tcp_is_reno(tp))
2829 tcp_reset_reno_sack(tp);
2830 if (tcp_try_undo_recovery(sk))
2831 return;
2832 tcp_end_cwnd_reduction(sk);
2833 break;
2834 }
2835 }
2836
2837 /* E. Process state. */
2838 switch (icsk->icsk_ca_state) {
2839 case TCP_CA_Recovery:
2840 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2841 if (tcp_is_reno(tp))
2842 tcp_add_reno_sack(sk, num_dupack);
2843 } else {
2844 if (tcp_try_undo_partial(sk, prior_snd_una))
2845 return;
2846 /* Partial ACK arrived. Force fast retransmit. */
2847 do_lost = tcp_is_reno(tp) ||
2848 tcp_force_fast_retransmit(sk);
2849 }
2850 if (tcp_try_undo_dsack(sk)) {
2851 tcp_try_keep_open(sk);
2852 return;
2853 }
2854 tcp_identify_packet_loss(sk, ack_flag);
2855 break;
2856 case TCP_CA_Loss:
2857 tcp_process_loss(sk, flag, num_dupack, rexmit);
2858 tcp_identify_packet_loss(sk, ack_flag);
2859 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2860 (*ack_flag & FLAG_LOST_RETRANS)))
2861 return;
2862 /* Change state if cwnd is undone or retransmits are lost */
2863 /* fall through */
2864 default:
2865 if (tcp_is_reno(tp)) {
2866 if (flag & FLAG_SND_UNA_ADVANCED)
2867 tcp_reset_reno_sack(tp);
2868 tcp_add_reno_sack(sk, num_dupack);
2869 }
2870
2871 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2872 tcp_try_undo_dsack(sk);
2873
2874 tcp_identify_packet_loss(sk, ack_flag);
2875 if (!tcp_time_to_recover(sk, flag)) {
2876 tcp_try_to_open(sk, flag);
2877 return;
2878 }
2879
2880 /* MTU probe failure: don't reduce cwnd */
2881 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882 icsk->icsk_mtup.probe_size &&
2883 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884 tcp_mtup_probe_failed(sk);
2885 /* Restores the reduction we did in tcp_mtup_probe() */
2886 tp->snd_cwnd++;
2887 tcp_simple_retransmit(sk);
2888 return;
2889 }
2890
2891 /* Otherwise enter Recovery state */
2892 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893 fast_rexmit = 1;
2894 }
2895
2896 if (!tcp_is_rack(sk) && do_lost)
2897 tcp_update_scoreboard(sk, fast_rexmit);
2898 *rexmit = REXMIT_LOST;
2899}
2900
2901static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2902{
2903 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2904 struct tcp_sock *tp = tcp_sk(sk);
2905
2906 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2907 /* If the remote keeps returning delayed ACKs, eventually
2908 * the min filter would pick it up and overestimate the
2909 * prop. delay when it expires. Skip suspected delayed ACKs.
2910 */
2911 return;
2912 }
2913 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2914 rtt_us ? : jiffies_to_usecs(1));
2915}
2916
2917static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2918 long seq_rtt_us, long sack_rtt_us,
2919 long ca_rtt_us, struct rate_sample *rs)
2920{
2921 const struct tcp_sock *tp = tcp_sk(sk);
2922
2923 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925 * Karn's algorithm forbids taking RTT if some retransmitted data
2926 * is acked (RFC6298).
2927 */
2928 if (seq_rtt_us < 0)
2929 seq_rtt_us = sack_rtt_us;
2930
2931 /* RTTM Rule: A TSecr value received in a segment is used to
2932 * update the averaged RTT measurement only if the segment
2933 * acknowledges some new data, i.e., only if it advances the
2934 * left edge of the send window.
2935 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2936 */
2937 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2938 flag & FLAG_ACKED) {
2939 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2940
2941 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2942 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2943 ca_rtt_us = seq_rtt_us;
2944 }
2945 }
2946 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2947 if (seq_rtt_us < 0)
2948 return false;
2949
2950 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2951 * always taken together with ACK, SACK, or TS-opts. Any negative
2952 * values will be skipped with the seq_rtt_us < 0 check above.
2953 */
2954 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2955 tcp_rtt_estimator(sk, seq_rtt_us);
2956 tcp_set_rto(sk);
2957
2958 /* RFC6298: only reset backoff on valid RTT measurement. */
2959 inet_csk(sk)->icsk_backoff = 0;
2960 return true;
2961}
2962
2963/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2964void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2965{
2966 struct rate_sample rs;
2967 long rtt_us = -1L;
2968
2969 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2970 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2971
2972 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2973}
2974
2975
2976static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2977{
2978 const struct inet_connection_sock *icsk = inet_csk(sk);
2979
2980 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2981 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2982}
2983
2984/* Restart timer after forward progress on connection.
2985 * RFC2988 recommends to restart timer to now+rto.
2986 */
2987void tcp_rearm_rto(struct sock *sk)
2988{
2989 const struct inet_connection_sock *icsk = inet_csk(sk);
2990 struct tcp_sock *tp = tcp_sk(sk);
2991
2992 /* If the retrans timer is currently being used by Fast Open
2993 * for SYN-ACK retrans purpose, stay put.
2994 */
2995 if (rcu_access_pointer(tp->fastopen_rsk))
2996 return;
2997
2998 if (!tp->packets_out) {
2999 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3000 } else {
3001 u32 rto = inet_csk(sk)->icsk_rto;
3002 /* Offset the time elapsed after installing regular RTO */
3003 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3004 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3005 s64 delta_us = tcp_rto_delta_us(sk);
3006 /* delta_us may not be positive if the socket is locked
3007 * when the retrans timer fires and is rescheduled.
3008 */
3009 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3010 }
3011 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3012 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3013 }
3014}
3015
3016/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3017static void tcp_set_xmit_timer(struct sock *sk)
3018{
3019 if (!tcp_schedule_loss_probe(sk, true))
3020 tcp_rearm_rto(sk);
3021}
3022
3023/* If we get here, the whole TSO packet has not been acked. */
3024static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3025{
3026 struct tcp_sock *tp = tcp_sk(sk);
3027 u32 packets_acked;
3028
3029 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3030
3031 packets_acked = tcp_skb_pcount(skb);
3032 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3033 return 0;
3034 packets_acked -= tcp_skb_pcount(skb);
3035
3036 if (packets_acked) {
3037 BUG_ON(tcp_skb_pcount(skb) == 0);
3038 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3039 }
3040
3041 return packets_acked;
3042}
3043
3044static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3045 u32 prior_snd_una)
3046{
3047 const struct skb_shared_info *shinfo;
3048
3049 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3050 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3051 return;
3052
3053 shinfo = skb_shinfo(skb);
3054 if (!before(shinfo->tskey, prior_snd_una) &&
3055 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3056 tcp_skb_tsorted_save(skb) {
3057 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3058 } tcp_skb_tsorted_restore(skb);
3059 }
3060}
3061
3062/* Remove acknowledged frames from the retransmission queue. If our packet
3063 * is before the ack sequence we can discard it as it's confirmed to have
3064 * arrived at the other end.
3065 */
3066static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3067 u32 prior_snd_una,
3068 struct tcp_sacktag_state *sack)
3069{
3070 const struct inet_connection_sock *icsk = inet_csk(sk);
3071 u64 first_ackt, last_ackt;
3072 struct tcp_sock *tp = tcp_sk(sk);
3073 u32 prior_sacked = tp->sacked_out;
3074 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3075 struct sk_buff *skb, *next;
3076 bool fully_acked = true;
3077 long sack_rtt_us = -1L;
3078 long seq_rtt_us = -1L;
3079 long ca_rtt_us = -1L;
3080 u32 pkts_acked = 0;
3081 u32 last_in_flight = 0;
3082 bool rtt_update;
3083 int flag = 0;
3084
3085 first_ackt = 0;
3086
3087 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3088 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3089 const u32 start_seq = scb->seq;
3090 u8 sacked = scb->sacked;
3091 u32 acked_pcount;
3092
3093 tcp_ack_tstamp(sk, skb, prior_snd_una);
3094
3095 /* Determine how many packets and what bytes were acked, tso and else */
3096 if (after(scb->end_seq, tp->snd_una)) {
3097 if (tcp_skb_pcount(skb) == 1 ||
3098 !after(tp->snd_una, scb->seq))
3099 break;
3100
3101 acked_pcount = tcp_tso_acked(sk, skb);
3102 if (!acked_pcount)
3103 break;
3104 fully_acked = false;
3105 } else {
3106 acked_pcount = tcp_skb_pcount(skb);
3107 }
3108
3109 if (unlikely(sacked & TCPCB_RETRANS)) {
3110 if (sacked & TCPCB_SACKED_RETRANS)
3111 tp->retrans_out -= acked_pcount;
3112 flag |= FLAG_RETRANS_DATA_ACKED;
3113 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3114 last_ackt = tcp_skb_timestamp_us(skb);
3115 WARN_ON_ONCE(last_ackt == 0);
3116 if (!first_ackt)
3117 first_ackt = last_ackt;
3118
3119 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3120 if (before(start_seq, reord))
3121 reord = start_seq;
3122 if (!after(scb->end_seq, tp->high_seq))
3123 flag |= FLAG_ORIG_SACK_ACKED;
3124 }
3125
3126 if (sacked & TCPCB_SACKED_ACKED) {
3127 tp->sacked_out -= acked_pcount;
3128 } else if (tcp_is_sack(tp)) {
3129 tp->delivered += acked_pcount;
3130 if (!tcp_skb_spurious_retrans(tp, skb))
3131 tcp_rack_advance(tp, sacked, scb->end_seq,
3132 tcp_skb_timestamp_us(skb));
3133 }
3134 if (sacked & TCPCB_LOST)
3135 tp->lost_out -= acked_pcount;
3136
3137 tp->packets_out -= acked_pcount;
3138 pkts_acked += acked_pcount;
3139 tcp_rate_skb_delivered(sk, skb, sack->rate);
3140
3141 /* Initial outgoing SYN's get put onto the write_queue
3142 * just like anything else we transmit. It is not
3143 * true data, and if we misinform our callers that
3144 * this ACK acks real data, we will erroneously exit
3145 * connection startup slow start one packet too
3146 * quickly. This is severely frowned upon behavior.
3147 */
3148 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3149 flag |= FLAG_DATA_ACKED;
3150 } else {
3151 flag |= FLAG_SYN_ACKED;
3152 tp->retrans_stamp = 0;
3153 }
3154
3155 if (!fully_acked)
3156 break;
3157
3158 next = skb_rb_next(skb);
3159 if (unlikely(skb == tp->retransmit_skb_hint))
3160 tp->retransmit_skb_hint = NULL;
3161 if (unlikely(skb == tp->lost_skb_hint))
3162 tp->lost_skb_hint = NULL;
3163 tcp_rtx_queue_unlink_and_free(skb, sk);
3164 }
3165
3166 if (!skb)
3167 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3168
3169 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3170 tp->snd_up = tp->snd_una;
3171
3172 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3173 flag |= FLAG_SACK_RENEGING;
3174
3175 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3176 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3177 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3178
3179 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3180 last_in_flight && !prior_sacked && fully_acked &&
3181 sack->rate->prior_delivered + 1 == tp->delivered &&
3182 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3183 /* Conservatively mark a delayed ACK. It's typically
3184 * from a lone runt packet over the round trip to
3185 * a receiver w/o out-of-order or CE events.
3186 */
3187 flag |= FLAG_ACK_MAYBE_DELAYED;
3188 }
3189 }
3190 if (sack->first_sackt) {
3191 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3192 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3193 }
3194 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3195 ca_rtt_us, sack->rate);
3196
3197 if (flag & FLAG_ACKED) {
3198 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3199 if (unlikely(icsk->icsk_mtup.probe_size &&
3200 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3201 tcp_mtup_probe_success(sk);
3202 }
3203
3204 if (tcp_is_reno(tp)) {
3205 tcp_remove_reno_sacks(sk, pkts_acked);
3206
3207 /* If any of the cumulatively ACKed segments was
3208 * retransmitted, non-SACK case cannot confirm that
3209 * progress was due to original transmission due to
3210 * lack of TCPCB_SACKED_ACKED bits even if some of
3211 * the packets may have been never retransmitted.
3212 */
3213 if (flag & FLAG_RETRANS_DATA_ACKED)
3214 flag &= ~FLAG_ORIG_SACK_ACKED;
3215 } else {
3216 int delta;
3217
3218 /* Non-retransmitted hole got filled? That's reordering */
3219 if (before(reord, prior_fack))
3220 tcp_check_sack_reordering(sk, reord, 0);
3221
3222 delta = prior_sacked - tp->sacked_out;
3223 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3224 }
3225 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3227 tcp_skb_timestamp_us(skb))) {
3228 /* Do not re-arm RTO if the sack RTT is measured from data sent
3229 * after when the head was last (re)transmitted. Otherwise the
3230 * timeout may continue to extend in loss recovery.
3231 */
3232 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3233 }
3234
3235 if (icsk->icsk_ca_ops->pkts_acked) {
3236 struct ack_sample sample = { .pkts_acked = pkts_acked,
3237 .rtt_us = sack->rate->rtt_us,
3238 .in_flight = last_in_flight };
3239
3240 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3241 }
3242
3243#if FASTRETRANS_DEBUG > 0
3244 WARN_ON((int)tp->sacked_out < 0);
3245 WARN_ON((int)tp->lost_out < 0);
3246 WARN_ON((int)tp->retrans_out < 0);
3247 if (!tp->packets_out && tcp_is_sack(tp)) {
3248 icsk = inet_csk(sk);
3249 if (tp->lost_out) {
3250 pr_debug("Leak l=%u %d\n",
3251 tp->lost_out, icsk->icsk_ca_state);
3252 tp->lost_out = 0;
3253 }
3254 if (tp->sacked_out) {
3255 pr_debug("Leak s=%u %d\n",
3256 tp->sacked_out, icsk->icsk_ca_state);
3257 tp->sacked_out = 0;
3258 }
3259 if (tp->retrans_out) {
3260 pr_debug("Leak r=%u %d\n",
3261 tp->retrans_out, icsk->icsk_ca_state);
3262 tp->retrans_out = 0;
3263 }
3264 }
3265#endif
3266 return flag;
3267}
3268
3269static void tcp_ack_probe(struct sock *sk)
3270{
3271 struct inet_connection_sock *icsk = inet_csk(sk);
3272 struct sk_buff *head = tcp_send_head(sk);
3273 const struct tcp_sock *tp = tcp_sk(sk);
3274
3275 /* Was it a usable window open? */
3276 if (!head)
3277 return;
3278 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3279 icsk->icsk_backoff = 0;
3280 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3281 /* Socket must be waked up by subsequent tcp_data_snd_check().
3282 * This function is not for random using!
3283 */
3284 } else {
3285 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3286
3287 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288 when, TCP_RTO_MAX, NULL);
3289 }
3290}
3291
3292static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3293{
3294 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3295 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3296}
3297
3298/* Decide wheather to run the increase function of congestion control. */
3299static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3300{
3301 /* If reordering is high then always grow cwnd whenever data is
3302 * delivered regardless of its ordering. Otherwise stay conservative
3303 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3304 * new SACK or ECE mark may first advance cwnd here and later reduce
3305 * cwnd in tcp_fastretrans_alert() based on more states.
3306 */
3307 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3308 return flag & FLAG_FORWARD_PROGRESS;
3309
3310 return flag & FLAG_DATA_ACKED;
3311}
3312
3313/* The "ultimate" congestion control function that aims to replace the rigid
3314 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3315 * It's called toward the end of processing an ACK with precise rate
3316 * information. All transmission or retransmission are delayed afterwards.
3317 */
3318static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3319 int flag, const struct rate_sample *rs)
3320{
3321 const struct inet_connection_sock *icsk = inet_csk(sk);
3322
3323 if (icsk->icsk_ca_ops->cong_control) {
3324 icsk->icsk_ca_ops->cong_control(sk, rs);
3325 return;
3326 }
3327
3328 if (tcp_in_cwnd_reduction(sk)) {
3329 /* Reduce cwnd if state mandates */
3330 tcp_cwnd_reduction(sk, acked_sacked, flag);
3331 } else if (tcp_may_raise_cwnd(sk, flag)) {
3332 /* Advance cwnd if state allows */
3333 tcp_cong_avoid(sk, ack, acked_sacked);
3334 }
3335 tcp_update_pacing_rate(sk);
3336}
3337
3338/* Check that window update is acceptable.
3339 * The function assumes that snd_una<=ack<=snd_next.
3340 */
3341static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3342 const u32 ack, const u32 ack_seq,
3343 const u32 nwin)
3344{
3345 return after(ack, tp->snd_una) ||
3346 after(ack_seq, tp->snd_wl1) ||
3347 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3348}
3349
3350/* If we update tp->snd_una, also update tp->bytes_acked */
3351static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3352{
3353 u32 delta = ack - tp->snd_una;
3354
3355 sock_owned_by_me((struct sock *)tp);
3356 tp->bytes_acked += delta;
3357 tp->snd_una = ack;
3358}
3359
3360/* If we update tp->rcv_nxt, also update tp->bytes_received */
3361static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3362{
3363 u32 delta = seq - tp->rcv_nxt;
3364
3365 sock_owned_by_me((struct sock *)tp);
3366 tp->bytes_received += delta;
3367 WRITE_ONCE(tp->rcv_nxt, seq);
3368}
3369
3370/* Update our send window.
3371 *
3372 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3373 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3374 */
3375static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3376 u32 ack_seq)
3377{
3378 struct tcp_sock *tp = tcp_sk(sk);
3379 int flag = 0;
3380 u32 nwin = ntohs(tcp_hdr(skb)->window);
3381
3382 if (likely(!tcp_hdr(skb)->syn))
3383 nwin <<= tp->rx_opt.snd_wscale;
3384
3385 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3386 flag |= FLAG_WIN_UPDATE;
3387 tcp_update_wl(tp, ack_seq);
3388
3389 if (tp->snd_wnd != nwin) {
3390 tp->snd_wnd = nwin;
3391
3392 /* Note, it is the only place, where
3393 * fast path is recovered for sending TCP.
3394 */
3395 tp->pred_flags = 0;
3396 tcp_fast_path_check(sk);
3397
3398 if (!tcp_write_queue_empty(sk))
3399 tcp_slow_start_after_idle_check(sk);
3400
3401 if (nwin > tp->max_window) {
3402 tp->max_window = nwin;
3403 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3404 }
3405 }
3406 }
3407
3408 tcp_snd_una_update(tp, ack);
3409
3410 return flag;
3411}
3412
3413static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3414 u32 *last_oow_ack_time)
3415{
3416 if (*last_oow_ack_time) {
3417 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3418
3419 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3420 NET_INC_STATS(net, mib_idx);
3421 return true; /* rate-limited: don't send yet! */
3422 }
3423 }
3424
3425 *last_oow_ack_time = tcp_jiffies32;
3426
3427 return false; /* not rate-limited: go ahead, send dupack now! */
3428}
3429
3430/* Return true if we're currently rate-limiting out-of-window ACKs and
3431 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3432 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3433 * attacks that send repeated SYNs or ACKs for the same connection. To
3434 * do this, we do not send a duplicate SYNACK or ACK if the remote
3435 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3436 */
3437bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3438 int mib_idx, u32 *last_oow_ack_time)
3439{
3440 /* Data packets without SYNs are not likely part of an ACK loop. */
3441 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3442 !tcp_hdr(skb)->syn)
3443 return false;
3444
3445 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3446}
3447
3448/* RFC 5961 7 [ACK Throttling] */
3449static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3450{
3451 /* unprotected vars, we dont care of overwrites */
3452 static u32 challenge_timestamp;
3453 static unsigned int challenge_count;
3454 struct tcp_sock *tp = tcp_sk(sk);
3455 struct net *net = sock_net(sk);
3456 u32 count, now;
3457
3458 /* First check our per-socket dupack rate limit. */
3459 if (__tcp_oow_rate_limited(net,
3460 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3461 &tp->last_oow_ack_time))
3462 return;
3463
3464 /* Then check host-wide RFC 5961 rate limit. */
3465 now = jiffies / HZ;
3466 if (now != challenge_timestamp) {
3467 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3468 u32 half = (ack_limit + 1) >> 1;
3469
3470 challenge_timestamp = now;
3471 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3472 }
3473 count = READ_ONCE(challenge_count);
3474 if (count > 0) {
3475 WRITE_ONCE(challenge_count, count - 1);
3476 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3477 tcp_send_ack(sk);
3478 }
3479}
3480
3481static void tcp_store_ts_recent(struct tcp_sock *tp)
3482{
3483 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3485}
3486
3487static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488{
3489 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491 * extra check below makes sure this can only happen
3492 * for pure ACK frames. -DaveM
3493 *
3494 * Not only, also it occurs for expired timestamps.
3495 */
3496
3497 if (tcp_paws_check(&tp->rx_opt, 0))
3498 tcp_store_ts_recent(tp);
3499 }
3500}
3501
3502/* This routine deals with acks during a TLP episode.
3503 * We mark the end of a TLP episode on receiving TLP dupack or when
3504 * ack is after tlp_high_seq.
3505 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3506 */
3507static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508{
3509 struct tcp_sock *tp = tcp_sk(sk);
3510
3511 if (before(ack, tp->tlp_high_seq))
3512 return;
3513
3514 if (flag & FLAG_DSACKING_ACK) {
3515 /* This DSACK means original and TLP probe arrived; no loss */
3516 tp->tlp_high_seq = 0;
3517 } else if (after(ack, tp->tlp_high_seq)) {
3518 /* ACK advances: there was a loss, so reduce cwnd. Reset
3519 * tlp_high_seq in tcp_init_cwnd_reduction()
3520 */
3521 tcp_init_cwnd_reduction(sk);
3522 tcp_set_ca_state(sk, TCP_CA_CWR);
3523 tcp_end_cwnd_reduction(sk);
3524 tcp_try_keep_open(sk);
3525 NET_INC_STATS(sock_net(sk),
3526 LINUX_MIB_TCPLOSSPROBERECOVERY);
3527 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529 /* Pure dupack: original and TLP probe arrived; no loss */
3530 tp->tlp_high_seq = 0;
3531 }
3532}
3533
3534static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535{
3536 const struct inet_connection_sock *icsk = inet_csk(sk);
3537
3538 if (icsk->icsk_ca_ops->in_ack_event)
3539 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540}
3541
3542/* Congestion control has updated the cwnd already. So if we're in
3543 * loss recovery then now we do any new sends (for FRTO) or
3544 * retransmits (for CA_Loss or CA_recovery) that make sense.
3545 */
3546static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547{
3548 struct tcp_sock *tp = tcp_sk(sk);
3549
3550 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3551 return;
3552
3553 if (unlikely(rexmit == 2)) {
3554 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555 TCP_NAGLE_OFF);
3556 if (after(tp->snd_nxt, tp->high_seq))
3557 return;
3558 tp->frto = 0;
3559 }
3560 tcp_xmit_retransmit_queue(sk);
3561}
3562
3563/* Returns the number of packets newly acked or sacked by the current ACK */
3564static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3565{
3566 const struct net *net = sock_net(sk);
3567 struct tcp_sock *tp = tcp_sk(sk);
3568 u32 delivered;
3569
3570 delivered = tp->delivered - prior_delivered;
3571 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3572 if (flag & FLAG_ECE) {
3573 tp->delivered_ce += delivered;
3574 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3575 }
3576 return delivered;
3577}
3578
3579/* This routine deals with incoming acks, but not outgoing ones. */
3580static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3581{
3582 struct inet_connection_sock *icsk = inet_csk(sk);
3583 struct tcp_sock *tp = tcp_sk(sk);
3584 struct tcp_sacktag_state sack_state;
3585 struct rate_sample rs = { .prior_delivered = 0 };
3586 u32 prior_snd_una = tp->snd_una;
3587 bool is_sack_reneg = tp->is_sack_reneg;
3588 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3589 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3590 int num_dupack = 0;
3591 int prior_packets = tp->packets_out;
3592 u32 delivered = tp->delivered;
3593 u32 lost = tp->lost;
3594 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3595 u32 prior_fack;
3596
3597 sack_state.first_sackt = 0;
3598 sack_state.rate = &rs;
3599
3600 /* We very likely will need to access rtx queue. */
3601 prefetch(sk->tcp_rtx_queue.rb_node);
3602
3603 /* If the ack is older than previous acks
3604 * then we can probably ignore it.
3605 */
3606 if (before(ack, prior_snd_una)) {
3607 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3608 if (before(ack, prior_snd_una - tp->max_window)) {
3609 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3610 tcp_send_challenge_ack(sk, skb);
3611 return -1;
3612 }
3613 goto old_ack;
3614 }
3615
3616 /* If the ack includes data we haven't sent yet, discard
3617 * this segment (RFC793 Section 3.9).
3618 */
3619 if (after(ack, tp->snd_nxt))
3620 return -1;
3621
3622 if (after(ack, prior_snd_una)) {
3623 flag |= FLAG_SND_UNA_ADVANCED;
3624 icsk->icsk_retransmits = 0;
3625
3626#if IS_ENABLED(CONFIG_TLS_DEVICE)
3627 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3628 if (icsk->icsk_clean_acked)
3629 icsk->icsk_clean_acked(sk, ack);
3630#endif
3631 }
3632
3633 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3634 rs.prior_in_flight = tcp_packets_in_flight(tp);
3635
3636 /* ts_recent update must be made after we are sure that the packet
3637 * is in window.
3638 */
3639 if (flag & FLAG_UPDATE_TS_RECENT)
3640 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3641
3642 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3643 FLAG_SND_UNA_ADVANCED) {
3644 /* Window is constant, pure forward advance.
3645 * No more checks are required.
3646 * Note, we use the fact that SND.UNA>=SND.WL2.
3647 */
3648 tcp_update_wl(tp, ack_seq);
3649 tcp_snd_una_update(tp, ack);
3650 flag |= FLAG_WIN_UPDATE;
3651
3652 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3653
3654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3655 } else {
3656 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3657
3658 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3659 flag |= FLAG_DATA;
3660 else
3661 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3662
3663 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3664
3665 if (TCP_SKB_CB(skb)->sacked)
3666 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3667 &sack_state);
3668
3669 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3670 flag |= FLAG_ECE;
3671 ack_ev_flags |= CA_ACK_ECE;
3672 }
3673
3674 if (flag & FLAG_WIN_UPDATE)
3675 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3676
3677 tcp_in_ack_event(sk, ack_ev_flags);
3678 }
3679
3680 /* We passed data and got it acked, remove any soft error
3681 * log. Something worked...
3682 */
3683 sk->sk_err_soft = 0;
3684 icsk->icsk_probes_out = 0;
3685 tp->rcv_tstamp = tcp_jiffies32;
3686 if (!prior_packets)
3687 goto no_queue;
3688
3689 /* See if we can take anything off of the retransmit queue. */
3690 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3691
3692 tcp_rack_update_reo_wnd(sk, &rs);
3693
3694 if (tp->tlp_high_seq)
3695 tcp_process_tlp_ack(sk, ack, flag);
3696 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3697 if (flag & FLAG_SET_XMIT_TIMER)
3698 tcp_set_xmit_timer(sk);
3699
3700 if (tcp_ack_is_dubious(sk, flag)) {
3701 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3702 num_dupack = 1;
3703 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3704 if (!(flag & FLAG_DATA))
3705 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3706 }
3707 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3708 &rexmit);
3709 }
3710
3711 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712 sk_dst_confirm(sk);
3713
3714 delivered = tcp_newly_delivered(sk, delivered, flag);
3715 lost = tp->lost - lost; /* freshly marked lost */
3716 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3717 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3718 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3719 tcp_xmit_recovery(sk, rexmit);
3720 return 1;
3721
3722no_queue:
3723 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3724 if (flag & FLAG_DSACKING_ACK) {
3725 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3726 &rexmit);
3727 tcp_newly_delivered(sk, delivered, flag);
3728 }
3729 /* If this ack opens up a zero window, clear backoff. It was
3730 * being used to time the probes, and is probably far higher than
3731 * it needs to be for normal retransmission.
3732 */
3733 tcp_ack_probe(sk);
3734
3735 if (tp->tlp_high_seq)
3736 tcp_process_tlp_ack(sk, ack, flag);
3737 return 1;
3738
3739old_ack:
3740 /* If data was SACKed, tag it and see if we should send more data.
3741 * If data was DSACKed, see if we can undo a cwnd reduction.
3742 */
3743 if (TCP_SKB_CB(skb)->sacked) {
3744 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3745 &sack_state);
3746 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3747 &rexmit);
3748 tcp_newly_delivered(sk, delivered, flag);
3749 tcp_xmit_recovery(sk, rexmit);
3750 }
3751
3752 return 0;
3753}
3754
3755static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3756 bool syn, struct tcp_fastopen_cookie *foc,
3757 bool exp_opt)
3758{
3759 /* Valid only in SYN or SYN-ACK with an even length. */
3760 if (!foc || !syn || len < 0 || (len & 1))
3761 return;
3762
3763 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3764 len <= TCP_FASTOPEN_COOKIE_MAX)
3765 memcpy(foc->val, cookie, len);
3766 else if (len != 0)
3767 len = -1;
3768 foc->len = len;
3769 foc->exp = exp_opt;
3770}
3771
3772static void smc_parse_options(const struct tcphdr *th,
3773 struct tcp_options_received *opt_rx,
3774 const unsigned char *ptr,
3775 int opsize)
3776{
3777#if IS_ENABLED(CONFIG_SMC)
3778 if (static_branch_unlikely(&tcp_have_smc)) {
3779 if (th->syn && !(opsize & 1) &&
3780 opsize >= TCPOLEN_EXP_SMC_BASE &&
3781 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3782 opt_rx->smc_ok = 1;
3783 }
3784#endif
3785}
3786
3787/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3788 * value on success.
3789 */
3790static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3791{
3792 const unsigned char *ptr = (const unsigned char *)(th + 1);
3793 int length = (th->doff * 4) - sizeof(struct tcphdr);
3794 u16 mss = 0;
3795
3796 while (length > 0) {
3797 int opcode = *ptr++;
3798 int opsize;
3799
3800 switch (opcode) {
3801 case TCPOPT_EOL:
3802 return mss;
3803 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3804 length--;
3805 continue;
3806 default:
3807 if (length < 2)
3808 return mss;
3809 opsize = *ptr++;
3810 if (opsize < 2) /* "silly options" */
3811 return mss;
3812 if (opsize > length)
3813 return mss; /* fail on partial options */
3814 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3815 u16 in_mss = get_unaligned_be16(ptr);
3816
3817 if (in_mss) {
3818 if (user_mss && user_mss < in_mss)
3819 in_mss = user_mss;
3820 mss = in_mss;
3821 }
3822 }
3823 ptr += opsize - 2;
3824 length -= opsize;
3825 }
3826 }
3827 return mss;
3828}
3829
3830/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3831 * But, this can also be called on packets in the established flow when
3832 * the fast version below fails.
3833 */
3834void tcp_parse_options(const struct net *net,
3835 const struct sk_buff *skb,
3836 struct tcp_options_received *opt_rx, int estab,
3837 struct tcp_fastopen_cookie *foc)
3838{
3839 const unsigned char *ptr;
3840 const struct tcphdr *th = tcp_hdr(skb);
3841 int length = (th->doff * 4) - sizeof(struct tcphdr);
3842
3843 ptr = (const unsigned char *)(th + 1);
3844 opt_rx->saw_tstamp = 0;
3845
3846 while (length > 0) {
3847 int opcode = *ptr++;
3848 int opsize;
3849
3850 switch (opcode) {
3851 case TCPOPT_EOL:
3852 return;
3853 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3854 length--;
3855 continue;
3856 default:
3857 if (length < 2)
3858 return;
3859 opsize = *ptr++;
3860 if (opsize < 2) /* "silly options" */
3861 return;
3862 if (opsize > length)
3863 return; /* don't parse partial options */
3864 switch (opcode) {
3865 case TCPOPT_MSS:
3866 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3867 u16 in_mss = get_unaligned_be16(ptr);
3868 if (in_mss) {
3869 if (opt_rx->user_mss &&
3870 opt_rx->user_mss < in_mss)
3871 in_mss = opt_rx->user_mss;
3872 opt_rx->mss_clamp = in_mss;
3873 }
3874 }
3875 break;
3876 case TCPOPT_WINDOW:
3877 if (opsize == TCPOLEN_WINDOW && th->syn &&
3878 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3879 __u8 snd_wscale = *(__u8 *)ptr;
3880 opt_rx->wscale_ok = 1;
3881 if (snd_wscale > TCP_MAX_WSCALE) {
3882 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3883 __func__,
3884 snd_wscale,
3885 TCP_MAX_WSCALE);
3886 snd_wscale = TCP_MAX_WSCALE;
3887 }
3888 opt_rx->snd_wscale = snd_wscale;
3889 }
3890 break;
3891 case TCPOPT_TIMESTAMP:
3892 if ((opsize == TCPOLEN_TIMESTAMP) &&
3893 ((estab && opt_rx->tstamp_ok) ||
3894 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3895 opt_rx->saw_tstamp = 1;
3896 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3897 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3898 }
3899 break;
3900 case TCPOPT_SACK_PERM:
3901 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3902 !estab && net->ipv4.sysctl_tcp_sack) {
3903 opt_rx->sack_ok = TCP_SACK_SEEN;
3904 tcp_sack_reset(opt_rx);
3905 }
3906 break;
3907
3908 case TCPOPT_SACK:
3909 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3910 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3911 opt_rx->sack_ok) {
3912 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3913 }
3914 break;
3915#ifdef CONFIG_TCP_MD5SIG
3916 case TCPOPT_MD5SIG:
3917 /*
3918 * The MD5 Hash has already been
3919 * checked (see tcp_v{4,6}_do_rcv()).
3920 */
3921 break;
3922#endif
3923 case TCPOPT_FASTOPEN:
3924 tcp_parse_fastopen_option(
3925 opsize - TCPOLEN_FASTOPEN_BASE,
3926 ptr, th->syn, foc, false);
3927 break;
3928
3929 case TCPOPT_EXP:
3930 /* Fast Open option shares code 254 using a
3931 * 16 bits magic number.
3932 */
3933 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3934 get_unaligned_be16(ptr) ==
3935 TCPOPT_FASTOPEN_MAGIC)
3936 tcp_parse_fastopen_option(opsize -
3937 TCPOLEN_EXP_FASTOPEN_BASE,
3938 ptr + 2, th->syn, foc, true);
3939 else
3940 smc_parse_options(th, opt_rx, ptr,
3941 opsize);
3942 break;
3943
3944 }
3945 ptr += opsize-2;
3946 length -= opsize;
3947 }
3948 }
3949}
3950EXPORT_SYMBOL(tcp_parse_options);
3951
3952static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3953{
3954 const __be32 *ptr = (const __be32 *)(th + 1);
3955
3956 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3957 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3958 tp->rx_opt.saw_tstamp = 1;
3959 ++ptr;
3960 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3961 ++ptr;
3962 if (*ptr)
3963 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3964 else
3965 tp->rx_opt.rcv_tsecr = 0;
3966 return true;
3967 }
3968 return false;
3969}
3970
3971/* Fast parse options. This hopes to only see timestamps.
3972 * If it is wrong it falls back on tcp_parse_options().
3973 */
3974static bool tcp_fast_parse_options(const struct net *net,
3975 const struct sk_buff *skb,
3976 const struct tcphdr *th, struct tcp_sock *tp)
3977{
3978 /* In the spirit of fast parsing, compare doff directly to constant
3979 * values. Because equality is used, short doff can be ignored here.
3980 */
3981 if (th->doff == (sizeof(*th) / 4)) {
3982 tp->rx_opt.saw_tstamp = 0;
3983 return false;
3984 } else if (tp->rx_opt.tstamp_ok &&
3985 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3986 if (tcp_parse_aligned_timestamp(tp, th))
3987 return true;
3988 }
3989
3990 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3991 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3992 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3993
3994 return true;
3995}
3996
3997#ifdef CONFIG_TCP_MD5SIG
3998/*
3999 * Parse MD5 Signature option
4000 */
4001const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4002{
4003 int length = (th->doff << 2) - sizeof(*th);
4004 const u8 *ptr = (const u8 *)(th + 1);
4005
4006 /* If not enough data remaining, we can short cut */
4007 while (length >= TCPOLEN_MD5SIG) {
4008 int opcode = *ptr++;
4009 int opsize;
4010
4011 switch (opcode) {
4012 case TCPOPT_EOL:
4013 return NULL;
4014 case TCPOPT_NOP:
4015 length--;
4016 continue;
4017 default:
4018 opsize = *ptr++;
4019 if (opsize < 2 || opsize > length)
4020 return NULL;
4021 if (opcode == TCPOPT_MD5SIG)
4022 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4023 }
4024 ptr += opsize - 2;
4025 length -= opsize;
4026 }
4027 return NULL;
4028}
4029EXPORT_SYMBOL(tcp_parse_md5sig_option);
4030#endif
4031
4032/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4033 *
4034 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4035 * it can pass through stack. So, the following predicate verifies that
4036 * this segment is not used for anything but congestion avoidance or
4037 * fast retransmit. Moreover, we even are able to eliminate most of such
4038 * second order effects, if we apply some small "replay" window (~RTO)
4039 * to timestamp space.
4040 *
4041 * All these measures still do not guarantee that we reject wrapped ACKs
4042 * on networks with high bandwidth, when sequence space is recycled fastly,
4043 * but it guarantees that such events will be very rare and do not affect
4044 * connection seriously. This doesn't look nice, but alas, PAWS is really
4045 * buggy extension.
4046 *
4047 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4048 * states that events when retransmit arrives after original data are rare.
4049 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4050 * the biggest problem on large power networks even with minor reordering.
4051 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4052 * up to bandwidth of 18Gigabit/sec. 8) ]
4053 */
4054
4055static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4056{
4057 const struct tcp_sock *tp = tcp_sk(sk);
4058 const struct tcphdr *th = tcp_hdr(skb);
4059 u32 seq = TCP_SKB_CB(skb)->seq;
4060 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4061
4062 return (/* 1. Pure ACK with correct sequence number. */
4063 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4064
4065 /* 2. ... and duplicate ACK. */
4066 ack == tp->snd_una &&
4067
4068 /* 3. ... and does not update window. */
4069 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4070
4071 /* 4. ... and sits in replay window. */
4072 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4073}
4074
4075static inline bool tcp_paws_discard(const struct sock *sk,
4076 const struct sk_buff *skb)
4077{
4078 const struct tcp_sock *tp = tcp_sk(sk);
4079
4080 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4081 !tcp_disordered_ack(sk, skb);
4082}
4083
4084/* Check segment sequence number for validity.
4085 *
4086 * Segment controls are considered valid, if the segment
4087 * fits to the window after truncation to the window. Acceptability
4088 * of data (and SYN, FIN, of course) is checked separately.
4089 * See tcp_data_queue(), for example.
4090 *
4091 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4092 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4093 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4094 * (borrowed from freebsd)
4095 */
4096
4097static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4098{
4099 return !before(end_seq, tp->rcv_wup) &&
4100 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4101}
4102
4103/* When we get a reset we do this. */
4104void tcp_reset(struct sock *sk)
4105{
4106 trace_tcp_receive_reset(sk);
4107
4108 /* We want the right error as BSD sees it (and indeed as we do). */
4109 switch (sk->sk_state) {
4110 case TCP_SYN_SENT:
4111 sk->sk_err = ECONNREFUSED;
4112 break;
4113 case TCP_CLOSE_WAIT:
4114 sk->sk_err = EPIPE;
4115 break;
4116 case TCP_CLOSE:
4117 return;
4118 default:
4119 sk->sk_err = ECONNRESET;
4120 }
4121 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4122 smp_wmb();
4123
4124 tcp_write_queue_purge(sk);
4125 tcp_done(sk);
4126
4127 if (!sock_flag(sk, SOCK_DEAD))
4128 sk->sk_error_report(sk);
4129}
4130
4131/*
4132 * Process the FIN bit. This now behaves as it is supposed to work
4133 * and the FIN takes effect when it is validly part of sequence
4134 * space. Not before when we get holes.
4135 *
4136 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4137 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4138 * TIME-WAIT)
4139 *
4140 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4141 * close and we go into CLOSING (and later onto TIME-WAIT)
4142 *
4143 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4144 */
4145void tcp_fin(struct sock *sk)
4146{
4147 struct tcp_sock *tp = tcp_sk(sk);
4148
4149 inet_csk_schedule_ack(sk);
4150
4151 sk->sk_shutdown |= RCV_SHUTDOWN;
4152 sock_set_flag(sk, SOCK_DONE);
4153
4154 switch (sk->sk_state) {
4155 case TCP_SYN_RECV:
4156 case TCP_ESTABLISHED:
4157 /* Move to CLOSE_WAIT */
4158 tcp_set_state(sk, TCP_CLOSE_WAIT);
4159 inet_csk_enter_pingpong_mode(sk);
4160 break;
4161
4162 case TCP_CLOSE_WAIT:
4163 case TCP_CLOSING:
4164 /* Received a retransmission of the FIN, do
4165 * nothing.
4166 */
4167 break;
4168 case TCP_LAST_ACK:
4169 /* RFC793: Remain in the LAST-ACK state. */
4170 break;
4171
4172 case TCP_FIN_WAIT1:
4173 /* This case occurs when a simultaneous close
4174 * happens, we must ack the received FIN and
4175 * enter the CLOSING state.
4176 */
4177 tcp_send_ack(sk);
4178 tcp_set_state(sk, TCP_CLOSING);
4179 break;
4180 case TCP_FIN_WAIT2:
4181 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4182 tcp_send_ack(sk);
4183 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4184 break;
4185 default:
4186 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4187 * cases we should never reach this piece of code.
4188 */
4189 pr_err("%s: Impossible, sk->sk_state=%d\n",
4190 __func__, sk->sk_state);
4191 break;
4192 }
4193
4194 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4195 * Probably, we should reset in this case. For now drop them.
4196 */
4197 skb_rbtree_purge(&tp->out_of_order_queue);
4198 if (tcp_is_sack(tp))
4199 tcp_sack_reset(&tp->rx_opt);
4200 sk_mem_reclaim(sk);
4201
4202 if (!sock_flag(sk, SOCK_DEAD)) {
4203 sk->sk_state_change(sk);
4204
4205 /* Do not send POLL_HUP for half duplex close. */
4206 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4207 sk->sk_state == TCP_CLOSE)
4208 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4209 else
4210 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4211 }
4212}
4213
4214static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4215 u32 end_seq)
4216{
4217 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4218 if (before(seq, sp->start_seq))
4219 sp->start_seq = seq;
4220 if (after(end_seq, sp->end_seq))
4221 sp->end_seq = end_seq;
4222 return true;
4223 }
4224 return false;
4225}
4226
4227static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4228{
4229 struct tcp_sock *tp = tcp_sk(sk);
4230
4231 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4232 int mib_idx;
4233
4234 if (before(seq, tp->rcv_nxt))
4235 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4236 else
4237 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4238
4239 NET_INC_STATS(sock_net(sk), mib_idx);
4240
4241 tp->rx_opt.dsack = 1;
4242 tp->duplicate_sack[0].start_seq = seq;
4243 tp->duplicate_sack[0].end_seq = end_seq;
4244 }
4245}
4246
4247static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4248{
4249 struct tcp_sock *tp = tcp_sk(sk);
4250
4251 if (!tp->rx_opt.dsack)
4252 tcp_dsack_set(sk, seq, end_seq);
4253 else
4254 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4255}
4256
4257static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4258{
4259 /* When the ACK path fails or drops most ACKs, the sender would
4260 * timeout and spuriously retransmit the same segment repeatedly.
4261 * The receiver remembers and reflects via DSACKs. Leverage the
4262 * DSACK state and change the txhash to re-route speculatively.
4263 */
4264 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4265 sk_rethink_txhash(sk);
4266}
4267
4268static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269{
4270 struct tcp_sock *tp = tcp_sk(sk);
4271
4272 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4276
4277 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4278 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279
4280 tcp_rcv_spurious_retrans(sk, skb);
4281 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4282 end_seq = tp->rcv_nxt;
4283 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4284 }
4285 }
4286
4287 tcp_send_ack(sk);
4288}
4289
4290/* These routines update the SACK block as out-of-order packets arrive or
4291 * in-order packets close up the sequence space.
4292 */
4293static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4294{
4295 int this_sack;
4296 struct tcp_sack_block *sp = &tp->selective_acks[0];
4297 struct tcp_sack_block *swalk = sp + 1;
4298
4299 /* See if the recent change to the first SACK eats into
4300 * or hits the sequence space of other SACK blocks, if so coalesce.
4301 */
4302 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4303 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4304 int i;
4305
4306 /* Zap SWALK, by moving every further SACK up by one slot.
4307 * Decrease num_sacks.
4308 */
4309 tp->rx_opt.num_sacks--;
4310 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4311 sp[i] = sp[i + 1];
4312 continue;
4313 }
4314 this_sack++, swalk++;
4315 }
4316}
4317
4318static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320 struct tcp_sock *tp = tcp_sk(sk);
4321 struct tcp_sack_block *sp = &tp->selective_acks[0];
4322 int cur_sacks = tp->rx_opt.num_sacks;
4323 int this_sack;
4324
4325 if (!cur_sacks)
4326 goto new_sack;
4327
4328 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4329 if (tcp_sack_extend(sp, seq, end_seq)) {
4330 /* Rotate this_sack to the first one. */
4331 for (; this_sack > 0; this_sack--, sp--)
4332 swap(*sp, *(sp - 1));
4333 if (cur_sacks > 1)
4334 tcp_sack_maybe_coalesce(tp);
4335 return;
4336 }
4337 }
4338
4339 /* Could not find an adjacent existing SACK, build a new one,
4340 * put it at the front, and shift everyone else down. We
4341 * always know there is at least one SACK present already here.
4342 *
4343 * If the sack array is full, forget about the last one.
4344 */
4345 if (this_sack >= TCP_NUM_SACKS) {
4346 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4347 tcp_send_ack(sk);
4348 this_sack--;
4349 tp->rx_opt.num_sacks--;
4350 sp--;
4351 }
4352 for (; this_sack > 0; this_sack--, sp--)
4353 *sp = *(sp - 1);
4354
4355new_sack:
4356 /* Build the new head SACK, and we're done. */
4357 sp->start_seq = seq;
4358 sp->end_seq = end_seq;
4359 tp->rx_opt.num_sacks++;
4360}
4361
4362/* RCV.NXT advances, some SACKs should be eaten. */
4363
4364static void tcp_sack_remove(struct tcp_sock *tp)
4365{
4366 struct tcp_sack_block *sp = &tp->selective_acks[0];
4367 int num_sacks = tp->rx_opt.num_sacks;
4368 int this_sack;
4369
4370 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4371 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4372 tp->rx_opt.num_sacks = 0;
4373 return;
4374 }
4375
4376 for (this_sack = 0; this_sack < num_sacks;) {
4377 /* Check if the start of the sack is covered by RCV.NXT. */
4378 if (!before(tp->rcv_nxt, sp->start_seq)) {
4379 int i;
4380
4381 /* RCV.NXT must cover all the block! */
4382 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4383
4384 /* Zap this SACK, by moving forward any other SACKS. */
4385 for (i = this_sack+1; i < num_sacks; i++)
4386 tp->selective_acks[i-1] = tp->selective_acks[i];
4387 num_sacks--;
4388 continue;
4389 }
4390 this_sack++;
4391 sp++;
4392 }
4393 tp->rx_opt.num_sacks = num_sacks;
4394}
4395
4396/**
4397 * tcp_try_coalesce - try to merge skb to prior one
4398 * @sk: socket
4399 * @dest: destination queue
4400 * @to: prior buffer
4401 * @from: buffer to add in queue
4402 * @fragstolen: pointer to boolean
4403 *
4404 * Before queueing skb @from after @to, try to merge them
4405 * to reduce overall memory use and queue lengths, if cost is small.
4406 * Packets in ofo or receive queues can stay a long time.
4407 * Better try to coalesce them right now to avoid future collapses.
4408 * Returns true if caller should free @from instead of queueing it
4409 */
4410static bool tcp_try_coalesce(struct sock *sk,
4411 struct sk_buff *to,
4412 struct sk_buff *from,
4413 bool *fragstolen)
4414{
4415 int delta;
4416
4417 *fragstolen = false;
4418
4419 /* Its possible this segment overlaps with prior segment in queue */
4420 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4421 return false;
4422
4423#ifdef CONFIG_TLS_DEVICE
4424 if (from->decrypted != to->decrypted)
4425 return false;
4426#endif
4427
4428 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4429 return false;
4430
4431 atomic_add(delta, &sk->sk_rmem_alloc);
4432 sk_mem_charge(sk, delta);
4433 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4434 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4435 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4436 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4437
4438 if (TCP_SKB_CB(from)->has_rxtstamp) {
4439 TCP_SKB_CB(to)->has_rxtstamp = true;
4440 to->tstamp = from->tstamp;
4441 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4442 }
4443
4444 return true;
4445}
4446
4447static bool tcp_ooo_try_coalesce(struct sock *sk,
4448 struct sk_buff *to,
4449 struct sk_buff *from,
4450 bool *fragstolen)
4451{
4452 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4453
4454 /* In case tcp_drop() is called later, update to->gso_segs */
4455 if (res) {
4456 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4457 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4458
4459 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4460 }
4461 return res;
4462}
4463
4464static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4465{
4466 sk_drops_add(sk, skb);
4467 __kfree_skb(skb);
4468}
4469
4470/* This one checks to see if we can put data from the
4471 * out_of_order queue into the receive_queue.
4472 */
4473static void tcp_ofo_queue(struct sock *sk)
4474{
4475 struct tcp_sock *tp = tcp_sk(sk);
4476 __u32 dsack_high = tp->rcv_nxt;
4477 bool fin, fragstolen, eaten;
4478 struct sk_buff *skb, *tail;
4479 struct rb_node *p;
4480
4481 p = rb_first(&tp->out_of_order_queue);
4482 while (p) {
4483 skb = rb_to_skb(p);
4484 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4485 break;
4486
4487 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4488 __u32 dsack = dsack_high;
4489 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4490 dsack_high = TCP_SKB_CB(skb)->end_seq;
4491 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4492 }
4493 p = rb_next(p);
4494 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4495
4496 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4497 tcp_drop(sk, skb);
4498 continue;
4499 }
4500
4501 tail = skb_peek_tail(&sk->sk_receive_queue);
4502 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4503 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4504 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4505 if (!eaten)
4506 __skb_queue_tail(&sk->sk_receive_queue, skb);
4507 else
4508 kfree_skb_partial(skb, fragstolen);
4509
4510 if (unlikely(fin)) {
4511 tcp_fin(sk);
4512 /* tcp_fin() purges tp->out_of_order_queue,
4513 * so we must end this loop right now.
4514 */
4515 break;
4516 }
4517 }
4518}
4519
4520static bool tcp_prune_ofo_queue(struct sock *sk);
4521static int tcp_prune_queue(struct sock *sk);
4522
4523static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4524 unsigned int size)
4525{
4526 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4527 !sk_rmem_schedule(sk, skb, size)) {
4528
4529 if (tcp_prune_queue(sk) < 0)
4530 return -1;
4531
4532 while (!sk_rmem_schedule(sk, skb, size)) {
4533 if (!tcp_prune_ofo_queue(sk))
4534 return -1;
4535 }
4536 }
4537 return 0;
4538}
4539
4540static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4541{
4542 struct tcp_sock *tp = tcp_sk(sk);
4543 struct rb_node **p, *parent;
4544 struct sk_buff *skb1;
4545 u32 seq, end_seq;
4546 bool fragstolen;
4547
4548 tcp_ecn_check_ce(sk, skb);
4549
4550 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4552 tcp_drop(sk, skb);
4553 return;
4554 }
4555
4556 /* Disable header prediction. */
4557 tp->pred_flags = 0;
4558 inet_csk_schedule_ack(sk);
4559
4560 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4561 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4562 seq = TCP_SKB_CB(skb)->seq;
4563 end_seq = TCP_SKB_CB(skb)->end_seq;
4564
4565 p = &tp->out_of_order_queue.rb_node;
4566 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4567 /* Initial out of order segment, build 1 SACK. */
4568 if (tcp_is_sack(tp)) {
4569 tp->rx_opt.num_sacks = 1;
4570 tp->selective_acks[0].start_seq = seq;
4571 tp->selective_acks[0].end_seq = end_seq;
4572 }
4573 rb_link_node(&skb->rbnode, NULL, p);
4574 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4575 tp->ooo_last_skb = skb;
4576 goto end;
4577 }
4578
4579 /* In the typical case, we are adding an skb to the end of the list.
4580 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4581 */
4582 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4583 skb, &fragstolen)) {
4584coalesce_done:
4585 tcp_grow_window(sk, skb);
4586 kfree_skb_partial(skb, fragstolen);
4587 skb = NULL;
4588 goto add_sack;
4589 }
4590 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4591 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4592 parent = &tp->ooo_last_skb->rbnode;
4593 p = &parent->rb_right;
4594 goto insert;
4595 }
4596
4597 /* Find place to insert this segment. Handle overlaps on the way. */
4598 parent = NULL;
4599 while (*p) {
4600 parent = *p;
4601 skb1 = rb_to_skb(parent);
4602 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4603 p = &parent->rb_left;
4604 continue;
4605 }
4606 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4607 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4608 /* All the bits are present. Drop. */
4609 NET_INC_STATS(sock_net(sk),
4610 LINUX_MIB_TCPOFOMERGE);
4611 tcp_drop(sk, skb);
4612 skb = NULL;
4613 tcp_dsack_set(sk, seq, end_seq);
4614 goto add_sack;
4615 }
4616 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4617 /* Partial overlap. */
4618 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4619 } else {
4620 /* skb's seq == skb1's seq and skb covers skb1.
4621 * Replace skb1 with skb.
4622 */
4623 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4624 &tp->out_of_order_queue);
4625 tcp_dsack_extend(sk,
4626 TCP_SKB_CB(skb1)->seq,
4627 TCP_SKB_CB(skb1)->end_seq);
4628 NET_INC_STATS(sock_net(sk),
4629 LINUX_MIB_TCPOFOMERGE);
4630 tcp_drop(sk, skb1);
4631 goto merge_right;
4632 }
4633 } else if (tcp_ooo_try_coalesce(sk, skb1,
4634 skb, &fragstolen)) {
4635 goto coalesce_done;
4636 }
4637 p = &parent->rb_right;
4638 }
4639insert:
4640 /* Insert segment into RB tree. */
4641 rb_link_node(&skb->rbnode, parent, p);
4642 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4643
4644merge_right:
4645 /* Remove other segments covered by skb. */
4646 while ((skb1 = skb_rb_next(skb)) != NULL) {
4647 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4648 break;
4649 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4650 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4651 end_seq);
4652 break;
4653 }
4654 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4655 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4656 TCP_SKB_CB(skb1)->end_seq);
4657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4658 tcp_drop(sk, skb1);
4659 }
4660 /* If there is no skb after us, we are the last_skb ! */
4661 if (!skb1)
4662 tp->ooo_last_skb = skb;
4663
4664add_sack:
4665 if (tcp_is_sack(tp))
4666 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4667end:
4668 if (skb) {
4669 tcp_grow_window(sk, skb);
4670 skb_condense(skb);
4671 skb_set_owner_r(skb, sk);
4672 }
4673}
4674
4675static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4676 bool *fragstolen)
4677{
4678 int eaten;
4679 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4680
4681 eaten = (tail &&
4682 tcp_try_coalesce(sk, tail,
4683 skb, fragstolen)) ? 1 : 0;
4684 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4685 if (!eaten) {
4686 __skb_queue_tail(&sk->sk_receive_queue, skb);
4687 skb_set_owner_r(skb, sk);
4688 }
4689 return eaten;
4690}
4691
4692int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4693{
4694 struct sk_buff *skb;
4695 int err = -ENOMEM;
4696 int data_len = 0;
4697 bool fragstolen;
4698
4699 if (size == 0)
4700 return 0;
4701
4702 if (size > PAGE_SIZE) {
4703 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4704
4705 data_len = npages << PAGE_SHIFT;
4706 size = data_len + (size & ~PAGE_MASK);
4707 }
4708 skb = alloc_skb_with_frags(size - data_len, data_len,
4709 PAGE_ALLOC_COSTLY_ORDER,
4710 &err, sk->sk_allocation);
4711 if (!skb)
4712 goto err;
4713
4714 skb_put(skb, size - data_len);
4715 skb->data_len = data_len;
4716 skb->len = size;
4717
4718 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4719 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4720 goto err_free;
4721 }
4722
4723 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4724 if (err)
4725 goto err_free;
4726
4727 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4728 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4729 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4730
4731 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4732 WARN_ON_ONCE(fragstolen); /* should not happen */
4733 __kfree_skb(skb);
4734 }
4735 return size;
4736
4737err_free:
4738 kfree_skb(skb);
4739err:
4740 return err;
4741
4742}
4743
4744void tcp_data_ready(struct sock *sk)
4745{
4746 const struct tcp_sock *tp = tcp_sk(sk);
4747 int avail = tp->rcv_nxt - tp->copied_seq;
4748
4749 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4750 return;
4751
4752 sk->sk_data_ready(sk);
4753}
4754
4755static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4756{
4757 struct tcp_sock *tp = tcp_sk(sk);
4758 bool fragstolen;
4759 int eaten;
4760
4761 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4762 __kfree_skb(skb);
4763 return;
4764 }
4765 skb_dst_drop(skb);
4766 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4767
4768 tcp_ecn_accept_cwr(sk, skb);
4769
4770 tp->rx_opt.dsack = 0;
4771
4772 /* Queue data for delivery to the user.
4773 * Packets in sequence go to the receive queue.
4774 * Out of sequence packets to the out_of_order_queue.
4775 */
4776 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4777 if (tcp_receive_window(tp) == 0) {
4778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4779 goto out_of_window;
4780 }
4781
4782 /* Ok. In sequence. In window. */
4783queue_and_out:
4784 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4785 sk_forced_mem_schedule(sk, skb->truesize);
4786 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4788 goto drop;
4789 }
4790
4791 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4792 if (skb->len)
4793 tcp_event_data_recv(sk, skb);
4794 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4795 tcp_fin(sk);
4796
4797 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4798 tcp_ofo_queue(sk);
4799
4800 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4801 * gap in queue is filled.
4802 */
4803 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4804 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4805 }
4806
4807 if (tp->rx_opt.num_sacks)
4808 tcp_sack_remove(tp);
4809
4810 tcp_fast_path_check(sk);
4811
4812 if (eaten > 0)
4813 kfree_skb_partial(skb, fragstolen);
4814 if (!sock_flag(sk, SOCK_DEAD))
4815 tcp_data_ready(sk);
4816 return;
4817 }
4818
4819 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4820 tcp_rcv_spurious_retrans(sk, skb);
4821 /* A retransmit, 2nd most common case. Force an immediate ack. */
4822 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4823 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4824
4825out_of_window:
4826 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4827 inet_csk_schedule_ack(sk);
4828drop:
4829 tcp_drop(sk, skb);
4830 return;
4831 }
4832
4833 /* Out of window. F.e. zero window probe. */
4834 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4835 goto out_of_window;
4836
4837 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4838 /* Partial packet, seq < rcv_next < end_seq */
4839 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4840
4841 /* If window is closed, drop tail of packet. But after
4842 * remembering D-SACK for its head made in previous line.
4843 */
4844 if (!tcp_receive_window(tp)) {
4845 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4846 goto out_of_window;
4847 }
4848 goto queue_and_out;
4849 }
4850
4851 tcp_data_queue_ofo(sk, skb);
4852}
4853
4854static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4855{
4856 if (list)
4857 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4858
4859 return skb_rb_next(skb);
4860}
4861
4862static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4863 struct sk_buff_head *list,
4864 struct rb_root *root)
4865{
4866 struct sk_buff *next = tcp_skb_next(skb, list);
4867
4868 if (list)
4869 __skb_unlink(skb, list);
4870 else
4871 rb_erase(&skb->rbnode, root);
4872
4873 __kfree_skb(skb);
4874 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876 return next;
4877}
4878
4879/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4880void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4881{
4882 struct rb_node **p = &root->rb_node;
4883 struct rb_node *parent = NULL;
4884 struct sk_buff *skb1;
4885
4886 while (*p) {
4887 parent = *p;
4888 skb1 = rb_to_skb(parent);
4889 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4890 p = &parent->rb_left;
4891 else
4892 p = &parent->rb_right;
4893 }
4894 rb_link_node(&skb->rbnode, parent, p);
4895 rb_insert_color(&skb->rbnode, root);
4896}
4897
4898/* Collapse contiguous sequence of skbs head..tail with
4899 * sequence numbers start..end.
4900 *
4901 * If tail is NULL, this means until the end of the queue.
4902 *
4903 * Segments with FIN/SYN are not collapsed (only because this
4904 * simplifies code)
4905 */
4906static void
4907tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4908 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4909{
4910 struct sk_buff *skb = head, *n;
4911 struct sk_buff_head tmp;
4912 bool end_of_skbs;
4913
4914 /* First, check that queue is collapsible and find
4915 * the point where collapsing can be useful.
4916 */
4917restart:
4918 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4919 n = tcp_skb_next(skb, list);
4920
4921 /* No new bits? It is possible on ofo queue. */
4922 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4923 skb = tcp_collapse_one(sk, skb, list, root);
4924 if (!skb)
4925 break;
4926 goto restart;
4927 }
4928
4929 /* The first skb to collapse is:
4930 * - not SYN/FIN and
4931 * - bloated or contains data before "start" or
4932 * overlaps to the next one.
4933 */
4934 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4935 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4936 before(TCP_SKB_CB(skb)->seq, start))) {
4937 end_of_skbs = false;
4938 break;
4939 }
4940
4941 if (n && n != tail &&
4942 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4943 end_of_skbs = false;
4944 break;
4945 }
4946
4947 /* Decided to skip this, advance start seq. */
4948 start = TCP_SKB_CB(skb)->end_seq;
4949 }
4950 if (end_of_skbs ||
4951 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4952 return;
4953
4954 __skb_queue_head_init(&tmp);
4955
4956 while (before(start, end)) {
4957 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4958 struct sk_buff *nskb;
4959
4960 nskb = alloc_skb(copy, GFP_ATOMIC);
4961 if (!nskb)
4962 break;
4963
4964 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4965#ifdef CONFIG_TLS_DEVICE
4966 nskb->decrypted = skb->decrypted;
4967#endif
4968 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4969 if (list)
4970 __skb_queue_before(list, skb, nskb);
4971 else
4972 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4973 skb_set_owner_r(nskb, sk);
4974
4975 /* Copy data, releasing collapsed skbs. */
4976 while (copy > 0) {
4977 int offset = start - TCP_SKB_CB(skb)->seq;
4978 int size = TCP_SKB_CB(skb)->end_seq - start;
4979
4980 BUG_ON(offset < 0);
4981 if (size > 0) {
4982 size = min(copy, size);
4983 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4984 BUG();
4985 TCP_SKB_CB(nskb)->end_seq += size;
4986 copy -= size;
4987 start += size;
4988 }
4989 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4990 skb = tcp_collapse_one(sk, skb, list, root);
4991 if (!skb ||
4992 skb == tail ||
4993 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4994 goto end;
4995#ifdef CONFIG_TLS_DEVICE
4996 if (skb->decrypted != nskb->decrypted)
4997 goto end;
4998#endif
4999 }
5000 }
5001 }
5002end:
5003 skb_queue_walk_safe(&tmp, skb, n)
5004 tcp_rbtree_insert(root, skb);
5005}
5006
5007/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5008 * and tcp_collapse() them until all the queue is collapsed.
5009 */
5010static void tcp_collapse_ofo_queue(struct sock *sk)
5011{
5012 struct tcp_sock *tp = tcp_sk(sk);
5013 u32 range_truesize, sum_tiny = 0;
5014 struct sk_buff *skb, *head;
5015 u32 start, end;
5016
5017 skb = skb_rb_first(&tp->out_of_order_queue);
5018new_range:
5019 if (!skb) {
5020 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5021 return;
5022 }
5023 start = TCP_SKB_CB(skb)->seq;
5024 end = TCP_SKB_CB(skb)->end_seq;
5025 range_truesize = skb->truesize;
5026
5027 for (head = skb;;) {
5028 skb = skb_rb_next(skb);
5029
5030 /* Range is terminated when we see a gap or when
5031 * we are at the queue end.
5032 */
5033 if (!skb ||
5034 after(TCP_SKB_CB(skb)->seq, end) ||
5035 before(TCP_SKB_CB(skb)->end_seq, start)) {
5036 /* Do not attempt collapsing tiny skbs */
5037 if (range_truesize != head->truesize ||
5038 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5039 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5040 head, skb, start, end);
5041 } else {
5042 sum_tiny += range_truesize;
5043 if (sum_tiny > sk->sk_rcvbuf >> 3)
5044 return;
5045 }
5046 goto new_range;
5047 }
5048
5049 range_truesize += skb->truesize;
5050 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5051 start = TCP_SKB_CB(skb)->seq;
5052 if (after(TCP_SKB_CB(skb)->end_seq, end))
5053 end = TCP_SKB_CB(skb)->end_seq;
5054 }
5055}
5056
5057/*
5058 * Clean the out-of-order queue to make room.
5059 * We drop high sequences packets to :
5060 * 1) Let a chance for holes to be filled.
5061 * 2) not add too big latencies if thousands of packets sit there.
5062 * (But if application shrinks SO_RCVBUF, we could still end up
5063 * freeing whole queue here)
5064 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5065 *
5066 * Return true if queue has shrunk.
5067 */
5068static bool tcp_prune_ofo_queue(struct sock *sk)
5069{
5070 struct tcp_sock *tp = tcp_sk(sk);
5071 struct rb_node *node, *prev;
5072 int goal;
5073
5074 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5075 return false;
5076
5077 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5078 goal = sk->sk_rcvbuf >> 3;
5079 node = &tp->ooo_last_skb->rbnode;
5080 do {
5081 prev = rb_prev(node);
5082 rb_erase(node, &tp->out_of_order_queue);
5083 goal -= rb_to_skb(node)->truesize;
5084 tcp_drop(sk, rb_to_skb(node));
5085 if (!prev || goal <= 0) {
5086 sk_mem_reclaim(sk);
5087 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5088 !tcp_under_memory_pressure(sk))
5089 break;
5090 goal = sk->sk_rcvbuf >> 3;
5091 }
5092 node = prev;
5093 } while (node);
5094 tp->ooo_last_skb = rb_to_skb(prev);
5095
5096 /* Reset SACK state. A conforming SACK implementation will
5097 * do the same at a timeout based retransmit. When a connection
5098 * is in a sad state like this, we care only about integrity
5099 * of the connection not performance.
5100 */
5101 if (tp->rx_opt.sack_ok)
5102 tcp_sack_reset(&tp->rx_opt);
5103 return true;
5104}
5105
5106/* Reduce allocated memory if we can, trying to get
5107 * the socket within its memory limits again.
5108 *
5109 * Return less than zero if we should start dropping frames
5110 * until the socket owning process reads some of the data
5111 * to stabilize the situation.
5112 */
5113static int tcp_prune_queue(struct sock *sk)
5114{
5115 struct tcp_sock *tp = tcp_sk(sk);
5116
5117 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5118
5119 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5120 tcp_clamp_window(sk);
5121 else if (tcp_under_memory_pressure(sk))
5122 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5123
5124 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5125 return 0;
5126
5127 tcp_collapse_ofo_queue(sk);
5128 if (!skb_queue_empty(&sk->sk_receive_queue))
5129 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5130 skb_peek(&sk->sk_receive_queue),
5131 NULL,
5132 tp->copied_seq, tp->rcv_nxt);
5133 sk_mem_reclaim(sk);
5134
5135 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5136 return 0;
5137
5138 /* Collapsing did not help, destructive actions follow.
5139 * This must not ever occur. */
5140
5141 tcp_prune_ofo_queue(sk);
5142
5143 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5144 return 0;
5145
5146 /* If we are really being abused, tell the caller to silently
5147 * drop receive data on the floor. It will get retransmitted
5148 * and hopefully then we'll have sufficient space.
5149 */
5150 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5151
5152 /* Massive buffer overcommit. */
5153 tp->pred_flags = 0;
5154 return -1;
5155}
5156
5157static bool tcp_should_expand_sndbuf(const struct sock *sk)
5158{
5159 const struct tcp_sock *tp = tcp_sk(sk);
5160
5161 /* If the user specified a specific send buffer setting, do
5162 * not modify it.
5163 */
5164 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5165 return false;
5166
5167 /* If we are under global TCP memory pressure, do not expand. */
5168 if (tcp_under_memory_pressure(sk))
5169 return false;
5170
5171 /* If we are under soft global TCP memory pressure, do not expand. */
5172 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5173 return false;
5174
5175 /* If we filled the congestion window, do not expand. */
5176 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5177 return false;
5178
5179 return true;
5180}
5181
5182/* When incoming ACK allowed to free some skb from write_queue,
5183 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5184 * on the exit from tcp input handler.
5185 *
5186 * PROBLEM: sndbuf expansion does not work well with largesend.
5187 */
5188static void tcp_new_space(struct sock *sk)
5189{
5190 struct tcp_sock *tp = tcp_sk(sk);
5191
5192 if (tcp_should_expand_sndbuf(sk)) {
5193 tcp_sndbuf_expand(sk);
5194 tp->snd_cwnd_stamp = tcp_jiffies32;
5195 }
5196
5197 sk->sk_write_space(sk);
5198}
5199
5200static void tcp_check_space(struct sock *sk)
5201{
5202 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5203 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5204 /* pairs with tcp_poll() */
5205 smp_mb();
5206 if (sk->sk_socket &&
5207 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5208 tcp_new_space(sk);
5209 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5210 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5211 }
5212 }
5213}
5214
5215static inline void tcp_data_snd_check(struct sock *sk)
5216{
5217 tcp_push_pending_frames(sk);
5218 tcp_check_space(sk);
5219}
5220
5221/*
5222 * Check if sending an ack is needed.
5223 */
5224static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5225{
5226 struct tcp_sock *tp = tcp_sk(sk);
5227 unsigned long rtt, delay;
5228
5229 /* More than one full frame received... */
5230 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5231 /* ... and right edge of window advances far enough.
5232 * (tcp_recvmsg() will send ACK otherwise).
5233 * If application uses SO_RCVLOWAT, we want send ack now if
5234 * we have not received enough bytes to satisfy the condition.
5235 */
5236 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5237 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5238 /* We ACK each frame or... */
5239 tcp_in_quickack_mode(sk) ||
5240 /* Protocol state mandates a one-time immediate ACK */
5241 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5242send_now:
5243 tcp_send_ack(sk);
5244 return;
5245 }
5246
5247 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5248 tcp_send_delayed_ack(sk);
5249 return;
5250 }
5251
5252 if (!tcp_is_sack(tp) ||
5253 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5254 goto send_now;
5255
5256 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5257 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5258 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5259 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5260 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5261 tp->compressed_ack = 0;
5262 }
5263
5264 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5265 goto send_now;
5266
5267 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5268 return;
5269
5270 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5271
5272 rtt = tp->rcv_rtt_est.rtt_us;
5273 if (tp->srtt_us && tp->srtt_us < rtt)
5274 rtt = tp->srtt_us;
5275
5276 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5277 rtt * (NSEC_PER_USEC >> 3)/20);
5278 sock_hold(sk);
5279 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5280 HRTIMER_MODE_REL_PINNED_SOFT);
5281}
5282
5283static inline void tcp_ack_snd_check(struct sock *sk)
5284{
5285 if (!inet_csk_ack_scheduled(sk)) {
5286 /* We sent a data segment already. */
5287 return;
5288 }
5289 __tcp_ack_snd_check(sk, 1);
5290}
5291
5292/*
5293 * This routine is only called when we have urgent data
5294 * signaled. Its the 'slow' part of tcp_urg. It could be
5295 * moved inline now as tcp_urg is only called from one
5296 * place. We handle URGent data wrong. We have to - as
5297 * BSD still doesn't use the correction from RFC961.
5298 * For 1003.1g we should support a new option TCP_STDURG to permit
5299 * either form (or just set the sysctl tcp_stdurg).
5300 */
5301
5302static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5303{
5304 struct tcp_sock *tp = tcp_sk(sk);
5305 u32 ptr = ntohs(th->urg_ptr);
5306
5307 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5308 ptr--;
5309 ptr += ntohl(th->seq);
5310
5311 /* Ignore urgent data that we've already seen and read. */
5312 if (after(tp->copied_seq, ptr))
5313 return;
5314
5315 /* Do not replay urg ptr.
5316 *
5317 * NOTE: interesting situation not covered by specs.
5318 * Misbehaving sender may send urg ptr, pointing to segment,
5319 * which we already have in ofo queue. We are not able to fetch
5320 * such data and will stay in TCP_URG_NOTYET until will be eaten
5321 * by recvmsg(). Seems, we are not obliged to handle such wicked
5322 * situations. But it is worth to think about possibility of some
5323 * DoSes using some hypothetical application level deadlock.
5324 */
5325 if (before(ptr, tp->rcv_nxt))
5326 return;
5327
5328 /* Do we already have a newer (or duplicate) urgent pointer? */
5329 if (tp->urg_data && !after(ptr, tp->urg_seq))
5330 return;
5331
5332 /* Tell the world about our new urgent pointer. */
5333 sk_send_sigurg(sk);
5334
5335 /* We may be adding urgent data when the last byte read was
5336 * urgent. To do this requires some care. We cannot just ignore
5337 * tp->copied_seq since we would read the last urgent byte again
5338 * as data, nor can we alter copied_seq until this data arrives
5339 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5340 *
5341 * NOTE. Double Dutch. Rendering to plain English: author of comment
5342 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5343 * and expect that both A and B disappear from stream. This is _wrong_.
5344 * Though this happens in BSD with high probability, this is occasional.
5345 * Any application relying on this is buggy. Note also, that fix "works"
5346 * only in this artificial test. Insert some normal data between A and B and we will
5347 * decline of BSD again. Verdict: it is better to remove to trap
5348 * buggy users.
5349 */
5350 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5351 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5352 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5353 tp->copied_seq++;
5354 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5355 __skb_unlink(skb, &sk->sk_receive_queue);
5356 __kfree_skb(skb);
5357 }
5358 }
5359
5360 tp->urg_data = TCP_URG_NOTYET;
5361 WRITE_ONCE(tp->urg_seq, ptr);
5362
5363 /* Disable header prediction. */
5364 tp->pred_flags = 0;
5365}
5366
5367/* This is the 'fast' part of urgent handling. */
5368static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5369{
5370 struct tcp_sock *tp = tcp_sk(sk);
5371
5372 /* Check if we get a new urgent pointer - normally not. */
5373 if (th->urg)
5374 tcp_check_urg(sk, th);
5375
5376 /* Do we wait for any urgent data? - normally not... */
5377 if (tp->urg_data == TCP_URG_NOTYET) {
5378 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5379 th->syn;
5380
5381 /* Is the urgent pointer pointing into this packet? */
5382 if (ptr < skb->len) {
5383 u8 tmp;
5384 if (skb_copy_bits(skb, ptr, &tmp, 1))
5385 BUG();
5386 tp->urg_data = TCP_URG_VALID | tmp;
5387 if (!sock_flag(sk, SOCK_DEAD))
5388 sk->sk_data_ready(sk);
5389 }
5390 }
5391}
5392
5393/* Accept RST for rcv_nxt - 1 after a FIN.
5394 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5395 * FIN is sent followed by a RST packet. The RST is sent with the same
5396 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5397 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5398 * ACKs on the closed socket. In addition middleboxes can drop either the
5399 * challenge ACK or a subsequent RST.
5400 */
5401static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5402{
5403 struct tcp_sock *tp = tcp_sk(sk);
5404
5405 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5406 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5407 TCPF_CLOSING));
5408}
5409
5410/* Does PAWS and seqno based validation of an incoming segment, flags will
5411 * play significant role here.
5412 */
5413static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5414 const struct tcphdr *th, int syn_inerr)
5415{
5416 struct tcp_sock *tp = tcp_sk(sk);
5417 bool rst_seq_match = false;
5418
5419 /* RFC1323: H1. Apply PAWS check first. */
5420 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5421 tp->rx_opt.saw_tstamp &&
5422 tcp_paws_discard(sk, skb)) {
5423 if (!th->rst) {
5424 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5425 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5426 LINUX_MIB_TCPACKSKIPPEDPAWS,
5427 &tp->last_oow_ack_time))
5428 tcp_send_dupack(sk, skb);
5429 goto discard;
5430 }
5431 /* Reset is accepted even if it did not pass PAWS. */
5432 }
5433
5434 /* Step 1: check sequence number */
5435 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5436 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5437 * (RST) segments are validated by checking their SEQ-fields."
5438 * And page 69: "If an incoming segment is not acceptable,
5439 * an acknowledgment should be sent in reply (unless the RST
5440 * bit is set, if so drop the segment and return)".
5441 */
5442 if (!th->rst) {
5443 if (th->syn)
5444 goto syn_challenge;
5445 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5446 LINUX_MIB_TCPACKSKIPPEDSEQ,
5447 &tp->last_oow_ack_time))
5448 tcp_send_dupack(sk, skb);
5449 } else if (tcp_reset_check(sk, skb)) {
5450 tcp_reset(sk);
5451 }
5452 goto discard;
5453 }
5454
5455 /* Step 2: check RST bit */
5456 if (th->rst) {
5457 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5458 * FIN and SACK too if available):
5459 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5460 * the right-most SACK block,
5461 * then
5462 * RESET the connection
5463 * else
5464 * Send a challenge ACK
5465 */
5466 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5467 tcp_reset_check(sk, skb)) {
5468 rst_seq_match = true;
5469 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5470 struct tcp_sack_block *sp = &tp->selective_acks[0];
5471 int max_sack = sp[0].end_seq;
5472 int this_sack;
5473
5474 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5475 ++this_sack) {
5476 max_sack = after(sp[this_sack].end_seq,
5477 max_sack) ?
5478 sp[this_sack].end_seq : max_sack;
5479 }
5480
5481 if (TCP_SKB_CB(skb)->seq == max_sack)
5482 rst_seq_match = true;
5483 }
5484
5485 if (rst_seq_match)
5486 tcp_reset(sk);
5487 else {
5488 /* Disable TFO if RST is out-of-order
5489 * and no data has been received
5490 * for current active TFO socket
5491 */
5492 if (tp->syn_fastopen && !tp->data_segs_in &&
5493 sk->sk_state == TCP_ESTABLISHED)
5494 tcp_fastopen_active_disable(sk);
5495 tcp_send_challenge_ack(sk, skb);
5496 }
5497 goto discard;
5498 }
5499
5500 /* step 3: check security and precedence [ignored] */
5501
5502 /* step 4: Check for a SYN
5503 * RFC 5961 4.2 : Send a challenge ack
5504 */
5505 if (th->syn) {
5506syn_challenge:
5507 if (syn_inerr)
5508 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5510 tcp_send_challenge_ack(sk, skb);
5511 goto discard;
5512 }
5513
5514 return true;
5515
5516discard:
5517 tcp_drop(sk, skb);
5518 return false;
5519}
5520
5521/*
5522 * TCP receive function for the ESTABLISHED state.
5523 *
5524 * It is split into a fast path and a slow path. The fast path is
5525 * disabled when:
5526 * - A zero window was announced from us - zero window probing
5527 * is only handled properly in the slow path.
5528 * - Out of order segments arrived.
5529 * - Urgent data is expected.
5530 * - There is no buffer space left
5531 * - Unexpected TCP flags/window values/header lengths are received
5532 * (detected by checking the TCP header against pred_flags)
5533 * - Data is sent in both directions. Fast path only supports pure senders
5534 * or pure receivers (this means either the sequence number or the ack
5535 * value must stay constant)
5536 * - Unexpected TCP option.
5537 *
5538 * When these conditions are not satisfied it drops into a standard
5539 * receive procedure patterned after RFC793 to handle all cases.
5540 * The first three cases are guaranteed by proper pred_flags setting,
5541 * the rest is checked inline. Fast processing is turned on in
5542 * tcp_data_queue when everything is OK.
5543 */
5544void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5545{
5546 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5547 struct tcp_sock *tp = tcp_sk(sk);
5548 unsigned int len = skb->len;
5549
5550 /* TCP congestion window tracking */
5551 trace_tcp_probe(sk, skb);
5552
5553 tcp_mstamp_refresh(tp);
5554 if (unlikely(!sk->sk_rx_dst))
5555 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5556 /*
5557 * Header prediction.
5558 * The code loosely follows the one in the famous
5559 * "30 instruction TCP receive" Van Jacobson mail.
5560 *
5561 * Van's trick is to deposit buffers into socket queue
5562 * on a device interrupt, to call tcp_recv function
5563 * on the receive process context and checksum and copy
5564 * the buffer to user space. smart...
5565 *
5566 * Our current scheme is not silly either but we take the
5567 * extra cost of the net_bh soft interrupt processing...
5568 * We do checksum and copy also but from device to kernel.
5569 */
5570
5571 tp->rx_opt.saw_tstamp = 0;
5572
5573 /* pred_flags is 0xS?10 << 16 + snd_wnd
5574 * if header_prediction is to be made
5575 * 'S' will always be tp->tcp_header_len >> 2
5576 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5577 * turn it off (when there are holes in the receive
5578 * space for instance)
5579 * PSH flag is ignored.
5580 */
5581
5582 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5583 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5584 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5585 int tcp_header_len = tp->tcp_header_len;
5586
5587 /* Timestamp header prediction: tcp_header_len
5588 * is automatically equal to th->doff*4 due to pred_flags
5589 * match.
5590 */
5591
5592 /* Check timestamp */
5593 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5594 /* No? Slow path! */
5595 if (!tcp_parse_aligned_timestamp(tp, th))
5596 goto slow_path;
5597
5598 /* If PAWS failed, check it more carefully in slow path */
5599 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5600 goto slow_path;
5601
5602 /* DO NOT update ts_recent here, if checksum fails
5603 * and timestamp was corrupted part, it will result
5604 * in a hung connection since we will drop all
5605 * future packets due to the PAWS test.
5606 */
5607 }
5608
5609 if (len <= tcp_header_len) {
5610 /* Bulk data transfer: sender */
5611 if (len == tcp_header_len) {
5612 /* Predicted packet is in window by definition.
5613 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5614 * Hence, check seq<=rcv_wup reduces to:
5615 */
5616 if (tcp_header_len ==
5617 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5618 tp->rcv_nxt == tp->rcv_wup)
5619 tcp_store_ts_recent(tp);
5620
5621 /* We know that such packets are checksummed
5622 * on entry.
5623 */
5624 tcp_ack(sk, skb, 0);
5625 __kfree_skb(skb);
5626 tcp_data_snd_check(sk);
5627 /* When receiving pure ack in fast path, update
5628 * last ts ecr directly instead of calling
5629 * tcp_rcv_rtt_measure_ts()
5630 */
5631 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5632 return;
5633 } else { /* Header too small */
5634 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5635 goto discard;
5636 }
5637 } else {
5638 int eaten = 0;
5639 bool fragstolen = false;
5640
5641 if (tcp_checksum_complete(skb))
5642 goto csum_error;
5643
5644 if ((int)skb->truesize > sk->sk_forward_alloc)
5645 goto step5;
5646
5647 /* Predicted packet is in window by definition.
5648 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5649 * Hence, check seq<=rcv_wup reduces to:
5650 */
5651 if (tcp_header_len ==
5652 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5653 tp->rcv_nxt == tp->rcv_wup)
5654 tcp_store_ts_recent(tp);
5655
5656 tcp_rcv_rtt_measure_ts(sk, skb);
5657
5658 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5659
5660 /* Bulk data transfer: receiver */
5661 __skb_pull(skb, tcp_header_len);
5662 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5663
5664 tcp_event_data_recv(sk, skb);
5665
5666 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5667 /* Well, only one small jumplet in fast path... */
5668 tcp_ack(sk, skb, FLAG_DATA);
5669 tcp_data_snd_check(sk);
5670 if (!inet_csk_ack_scheduled(sk))
5671 goto no_ack;
5672 }
5673
5674 __tcp_ack_snd_check(sk, 0);
5675no_ack:
5676 if (eaten)
5677 kfree_skb_partial(skb, fragstolen);
5678 tcp_data_ready(sk);
5679 return;
5680 }
5681 }
5682
5683slow_path:
5684 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5685 goto csum_error;
5686
5687 if (!th->ack && !th->rst && !th->syn)
5688 goto discard;
5689
5690 /*
5691 * Standard slow path.
5692 */
5693
5694 if (!tcp_validate_incoming(sk, skb, th, 1))
5695 return;
5696
5697step5:
5698 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5699 goto discard;
5700
5701 tcp_rcv_rtt_measure_ts(sk, skb);
5702
5703 /* Process urgent data. */
5704 tcp_urg(sk, skb, th);
5705
5706 /* step 7: process the segment text */
5707 tcp_data_queue(sk, skb);
5708
5709 tcp_data_snd_check(sk);
5710 tcp_ack_snd_check(sk);
5711 return;
5712
5713csum_error:
5714 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5715 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5716
5717discard:
5718 tcp_drop(sk, skb);
5719}
5720EXPORT_SYMBOL(tcp_rcv_established);
5721
5722void tcp_init_transfer(struct sock *sk, int bpf_op)
5723{
5724 struct inet_connection_sock *icsk = inet_csk(sk);
5725 struct tcp_sock *tp = tcp_sk(sk);
5726
5727 tcp_mtup_init(sk);
5728 icsk->icsk_af_ops->rebuild_header(sk);
5729 tcp_init_metrics(sk);
5730
5731 /* Initialize the congestion window to start the transfer.
5732 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5733 * retransmitted. In light of RFC6298 more aggressive 1sec
5734 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5735 * retransmission has occurred.
5736 */
5737 if (tp->total_retrans > 1 && tp->undo_marker)
5738 tp->snd_cwnd = 1;
5739 else
5740 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5741 tp->snd_cwnd_stamp = tcp_jiffies32;
5742
5743 tcp_call_bpf(sk, bpf_op, 0, NULL);
5744 tcp_init_congestion_control(sk);
5745 tcp_init_buffer_space(sk);
5746}
5747
5748void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5749{
5750 struct tcp_sock *tp = tcp_sk(sk);
5751 struct inet_connection_sock *icsk = inet_csk(sk);
5752
5753 tcp_set_state(sk, TCP_ESTABLISHED);
5754 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5755
5756 if (skb) {
5757 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5758 security_inet_conn_established(sk, skb);
5759 sk_mark_napi_id(sk, skb);
5760 }
5761
5762 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5763
5764 /* Prevent spurious tcp_cwnd_restart() on first data
5765 * packet.
5766 */
5767 tp->lsndtime = tcp_jiffies32;
5768
5769 if (sock_flag(sk, SOCK_KEEPOPEN))
5770 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5771
5772 if (!tp->rx_opt.snd_wscale)
5773 __tcp_fast_path_on(tp, tp->snd_wnd);
5774 else
5775 tp->pred_flags = 0;
5776}
5777
5778static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5779 struct tcp_fastopen_cookie *cookie)
5780{
5781 struct tcp_sock *tp = tcp_sk(sk);
5782 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5783 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5784 bool syn_drop = false;
5785
5786 if (mss == tp->rx_opt.user_mss) {
5787 struct tcp_options_received opt;
5788
5789 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5790 tcp_clear_options(&opt);
5791 opt.user_mss = opt.mss_clamp = 0;
5792 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5793 mss = opt.mss_clamp;
5794 }
5795
5796 if (!tp->syn_fastopen) {
5797 /* Ignore an unsolicited cookie */
5798 cookie->len = -1;
5799 } else if (tp->total_retrans) {
5800 /* SYN timed out and the SYN-ACK neither has a cookie nor
5801 * acknowledges data. Presumably the remote received only
5802 * the retransmitted (regular) SYNs: either the original
5803 * SYN-data or the corresponding SYN-ACK was dropped.
5804 */
5805 syn_drop = (cookie->len < 0 && data);
5806 } else if (cookie->len < 0 && !tp->syn_data) {
5807 /* We requested a cookie but didn't get it. If we did not use
5808 * the (old) exp opt format then try so next time (try_exp=1).
5809 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5810 */
5811 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5812 }
5813
5814 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5815
5816 if (data) { /* Retransmit unacked data in SYN */
5817 skb_rbtree_walk_from(data) {
5818 if (__tcp_retransmit_skb(sk, data, 1))
5819 break;
5820 }
5821 tcp_rearm_rto(sk);
5822 NET_INC_STATS(sock_net(sk),
5823 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5824 return true;
5825 }
5826 tp->syn_data_acked = tp->syn_data;
5827 if (tp->syn_data_acked) {
5828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5829 /* SYN-data is counted as two separate packets in tcp_ack() */
5830 if (tp->delivered > 1)
5831 --tp->delivered;
5832 }
5833
5834 tcp_fastopen_add_skb(sk, synack);
5835
5836 return false;
5837}
5838
5839static void smc_check_reset_syn(struct tcp_sock *tp)
5840{
5841#if IS_ENABLED(CONFIG_SMC)
5842 if (static_branch_unlikely(&tcp_have_smc)) {
5843 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5844 tp->syn_smc = 0;
5845 }
5846#endif
5847}
5848
5849static void tcp_try_undo_spurious_syn(struct sock *sk)
5850{
5851 struct tcp_sock *tp = tcp_sk(sk);
5852 u32 syn_stamp;
5853
5854 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5855 * spurious if the ACK's timestamp option echo value matches the
5856 * original SYN timestamp.
5857 */
5858 syn_stamp = tp->retrans_stamp;
5859 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5860 syn_stamp == tp->rx_opt.rcv_tsecr)
5861 tp->undo_marker = 0;
5862}
5863
5864static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5865 const struct tcphdr *th)
5866{
5867 struct inet_connection_sock *icsk = inet_csk(sk);
5868 struct tcp_sock *tp = tcp_sk(sk);
5869 struct tcp_fastopen_cookie foc = { .len = -1 };
5870 int saved_clamp = tp->rx_opt.mss_clamp;
5871 bool fastopen_fail;
5872
5873 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5874 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5875 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5876
5877 if (th->ack) {
5878 /* rfc793:
5879 * "If the state is SYN-SENT then
5880 * first check the ACK bit
5881 * If the ACK bit is set
5882 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5883 * a reset (unless the RST bit is set, if so drop
5884 * the segment and return)"
5885 */
5886 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5887 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5888 goto reset_and_undo;
5889
5890 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5891 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5892 tcp_time_stamp(tp))) {
5893 NET_INC_STATS(sock_net(sk),
5894 LINUX_MIB_PAWSACTIVEREJECTED);
5895 goto reset_and_undo;
5896 }
5897
5898 /* Now ACK is acceptable.
5899 *
5900 * "If the RST bit is set
5901 * If the ACK was acceptable then signal the user "error:
5902 * connection reset", drop the segment, enter CLOSED state,
5903 * delete TCB, and return."
5904 */
5905
5906 if (th->rst) {
5907 tcp_reset(sk);
5908 goto discard;
5909 }
5910
5911 /* rfc793:
5912 * "fifth, if neither of the SYN or RST bits is set then
5913 * drop the segment and return."
5914 *
5915 * See note below!
5916 * --ANK(990513)
5917 */
5918 if (!th->syn)
5919 goto discard_and_undo;
5920
5921 /* rfc793:
5922 * "If the SYN bit is on ...
5923 * are acceptable then ...
5924 * (our SYN has been ACKed), change the connection
5925 * state to ESTABLISHED..."
5926 */
5927
5928 tcp_ecn_rcv_synack(tp, th);
5929
5930 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5931 tcp_try_undo_spurious_syn(sk);
5932 tcp_ack(sk, skb, FLAG_SLOWPATH);
5933
5934 /* Ok.. it's good. Set up sequence numbers and
5935 * move to established.
5936 */
5937 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5938 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5939
5940 /* RFC1323: The window in SYN & SYN/ACK segments is
5941 * never scaled.
5942 */
5943 tp->snd_wnd = ntohs(th->window);
5944
5945 if (!tp->rx_opt.wscale_ok) {
5946 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5947 tp->window_clamp = min(tp->window_clamp, 65535U);
5948 }
5949
5950 if (tp->rx_opt.saw_tstamp) {
5951 tp->rx_opt.tstamp_ok = 1;
5952 tp->tcp_header_len =
5953 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5954 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5955 tcp_store_ts_recent(tp);
5956 } else {
5957 tp->tcp_header_len = sizeof(struct tcphdr);
5958 }
5959
5960 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5961 tcp_initialize_rcv_mss(sk);
5962
5963 /* Remember, tcp_poll() does not lock socket!
5964 * Change state from SYN-SENT only after copied_seq
5965 * is initialized. */
5966 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5967
5968 smc_check_reset_syn(tp);
5969
5970 smp_mb();
5971
5972 tcp_finish_connect(sk, skb);
5973
5974 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5975 tcp_rcv_fastopen_synack(sk, skb, &foc);
5976
5977 if (!sock_flag(sk, SOCK_DEAD)) {
5978 sk->sk_state_change(sk);
5979 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5980 }
5981 if (fastopen_fail)
5982 return -1;
5983 if (sk->sk_write_pending ||
5984 icsk->icsk_accept_queue.rskq_defer_accept ||
5985 inet_csk_in_pingpong_mode(sk)) {
5986 /* Save one ACK. Data will be ready after
5987 * several ticks, if write_pending is set.
5988 *
5989 * It may be deleted, but with this feature tcpdumps
5990 * look so _wonderfully_ clever, that I was not able
5991 * to stand against the temptation 8) --ANK
5992 */
5993 inet_csk_schedule_ack(sk);
5994 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5996 TCP_DELACK_MAX, TCP_RTO_MAX);
5997
5998discard:
5999 tcp_drop(sk, skb);
6000 return 0;
6001 } else {
6002 tcp_send_ack(sk);
6003 }
6004 return -1;
6005 }
6006
6007 /* No ACK in the segment */
6008
6009 if (th->rst) {
6010 /* rfc793:
6011 * "If the RST bit is set
6012 *
6013 * Otherwise (no ACK) drop the segment and return."
6014 */
6015
6016 goto discard_and_undo;
6017 }
6018
6019 /* PAWS check. */
6020 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6021 tcp_paws_reject(&tp->rx_opt, 0))
6022 goto discard_and_undo;
6023
6024 if (th->syn) {
6025 /* We see SYN without ACK. It is attempt of
6026 * simultaneous connect with crossed SYNs.
6027 * Particularly, it can be connect to self.
6028 */
6029 tcp_set_state(sk, TCP_SYN_RECV);
6030
6031 if (tp->rx_opt.saw_tstamp) {
6032 tp->rx_opt.tstamp_ok = 1;
6033 tcp_store_ts_recent(tp);
6034 tp->tcp_header_len =
6035 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6036 } else {
6037 tp->tcp_header_len = sizeof(struct tcphdr);
6038 }
6039
6040 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6041 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6042 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6043
6044 /* RFC1323: The window in SYN & SYN/ACK segments is
6045 * never scaled.
6046 */
6047 tp->snd_wnd = ntohs(th->window);
6048 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6049 tp->max_window = tp->snd_wnd;
6050
6051 tcp_ecn_rcv_syn(tp, th);
6052
6053 tcp_mtup_init(sk);
6054 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6055 tcp_initialize_rcv_mss(sk);
6056
6057 tcp_send_synack(sk);
6058#if 0
6059 /* Note, we could accept data and URG from this segment.
6060 * There are no obstacles to make this (except that we must
6061 * either change tcp_recvmsg() to prevent it from returning data
6062 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6063 *
6064 * However, if we ignore data in ACKless segments sometimes,
6065 * we have no reasons to accept it sometimes.
6066 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6067 * is not flawless. So, discard packet for sanity.
6068 * Uncomment this return to process the data.
6069 */
6070 return -1;
6071#else
6072 goto discard;
6073#endif
6074 }
6075 /* "fifth, if neither of the SYN or RST bits is set then
6076 * drop the segment and return."
6077 */
6078
6079discard_and_undo:
6080 tcp_clear_options(&tp->rx_opt);
6081 tp->rx_opt.mss_clamp = saved_clamp;
6082 goto discard;
6083
6084reset_and_undo:
6085 tcp_clear_options(&tp->rx_opt);
6086 tp->rx_opt.mss_clamp = saved_clamp;
6087 return 1;
6088}
6089
6090static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6091{
6092 struct request_sock *req;
6093
6094 tcp_try_undo_loss(sk, false);
6095
6096 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6097 tcp_sk(sk)->retrans_stamp = 0;
6098 inet_csk(sk)->icsk_retransmits = 0;
6099
6100 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6101 * we no longer need req so release it.
6102 */
6103 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6104 lockdep_sock_is_held(sk));
6105 reqsk_fastopen_remove(sk, req, false);
6106
6107 /* Re-arm the timer because data may have been sent out.
6108 * This is similar to the regular data transmission case
6109 * when new data has just been ack'ed.
6110 *
6111 * (TFO) - we could try to be more aggressive and
6112 * retransmitting any data sooner based on when they
6113 * are sent out.
6114 */
6115 tcp_rearm_rto(sk);
6116}
6117
6118/*
6119 * This function implements the receiving procedure of RFC 793 for
6120 * all states except ESTABLISHED and TIME_WAIT.
6121 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6122 * address independent.
6123 */
6124
6125int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6126{
6127 struct tcp_sock *tp = tcp_sk(sk);
6128 struct inet_connection_sock *icsk = inet_csk(sk);
6129 const struct tcphdr *th = tcp_hdr(skb);
6130 struct request_sock *req;
6131 int queued = 0;
6132 bool acceptable;
6133
6134 switch (sk->sk_state) {
6135 case TCP_CLOSE:
6136 goto discard;
6137
6138 case TCP_LISTEN:
6139 if (th->ack)
6140 return 1;
6141
6142 if (th->rst)
6143 goto discard;
6144
6145 if (th->syn) {
6146 if (th->fin)
6147 goto discard;
6148 /* It is possible that we process SYN packets from backlog,
6149 * so we need to make sure to disable BH and RCU right there.
6150 */
6151 rcu_read_lock();
6152 local_bh_disable();
6153 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6154 local_bh_enable();
6155 rcu_read_unlock();
6156
6157 if (!acceptable)
6158 return 1;
6159 consume_skb(skb);
6160 return 0;
6161 }
6162 goto discard;
6163
6164 case TCP_SYN_SENT:
6165 tp->rx_opt.saw_tstamp = 0;
6166 tcp_mstamp_refresh(tp);
6167 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6168 if (queued >= 0)
6169 return queued;
6170
6171 /* Do step6 onward by hand. */
6172 tcp_urg(sk, skb, th);
6173 __kfree_skb(skb);
6174 tcp_data_snd_check(sk);
6175 return 0;
6176 }
6177
6178 tcp_mstamp_refresh(tp);
6179 tp->rx_opt.saw_tstamp = 0;
6180 req = rcu_dereference_protected(tp->fastopen_rsk,
6181 lockdep_sock_is_held(sk));
6182 if (req) {
6183 bool req_stolen;
6184
6185 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6186 sk->sk_state != TCP_FIN_WAIT1);
6187
6188 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6189 goto discard;
6190 }
6191
6192 if (!th->ack && !th->rst && !th->syn)
6193 goto discard;
6194
6195 if (!tcp_validate_incoming(sk, skb, th, 0))
6196 return 0;
6197
6198 /* step 5: check the ACK field */
6199 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6200 FLAG_UPDATE_TS_RECENT |
6201 FLAG_NO_CHALLENGE_ACK) > 0;
6202
6203 if (!acceptable) {
6204 if (sk->sk_state == TCP_SYN_RECV)
6205 return 1; /* send one RST */
6206 tcp_send_challenge_ack(sk, skb);
6207 goto discard;
6208 }
6209 switch (sk->sk_state) {
6210 case TCP_SYN_RECV:
6211 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6212 if (!tp->srtt_us)
6213 tcp_synack_rtt_meas(sk, req);
6214
6215 if (req) {
6216 tcp_rcv_synrecv_state_fastopen(sk);
6217 } else {
6218 tcp_try_undo_spurious_syn(sk);
6219 tp->retrans_stamp = 0;
6220 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6221 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6222 }
6223 smp_mb();
6224 tcp_set_state(sk, TCP_ESTABLISHED);
6225 sk->sk_state_change(sk);
6226
6227 /* Note, that this wakeup is only for marginal crossed SYN case.
6228 * Passively open sockets are not waked up, because
6229 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6230 */
6231 if (sk->sk_socket)
6232 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6233
6234 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6235 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6236 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6237
6238 if (tp->rx_opt.tstamp_ok)
6239 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6240
6241 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6242 tcp_update_pacing_rate(sk);
6243
6244 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6245 tp->lsndtime = tcp_jiffies32;
6246
6247 tcp_initialize_rcv_mss(sk);
6248 tcp_fast_path_on(tp);
6249 break;
6250
6251 case TCP_FIN_WAIT1: {
6252 int tmo;
6253
6254 if (req)
6255 tcp_rcv_synrecv_state_fastopen(sk);
6256
6257 if (tp->snd_una != tp->write_seq)
6258 break;
6259
6260 tcp_set_state(sk, TCP_FIN_WAIT2);
6261 sk->sk_shutdown |= SEND_SHUTDOWN;
6262
6263 sk_dst_confirm(sk);
6264
6265 if (!sock_flag(sk, SOCK_DEAD)) {
6266 /* Wake up lingering close() */
6267 sk->sk_state_change(sk);
6268 break;
6269 }
6270
6271 if (tp->linger2 < 0) {
6272 tcp_done(sk);
6273 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6274 return 1;
6275 }
6276 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6277 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6278 /* Receive out of order FIN after close() */
6279 if (tp->syn_fastopen && th->fin)
6280 tcp_fastopen_active_disable(sk);
6281 tcp_done(sk);
6282 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6283 return 1;
6284 }
6285
6286 tmo = tcp_fin_time(sk);
6287 if (tmo > TCP_TIMEWAIT_LEN) {
6288 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6289 } else if (th->fin || sock_owned_by_user(sk)) {
6290 /* Bad case. We could lose such FIN otherwise.
6291 * It is not a big problem, but it looks confusing
6292 * and not so rare event. We still can lose it now,
6293 * if it spins in bh_lock_sock(), but it is really
6294 * marginal case.
6295 */
6296 inet_csk_reset_keepalive_timer(sk, tmo);
6297 } else {
6298 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6299 goto discard;
6300 }
6301 break;
6302 }
6303
6304 case TCP_CLOSING:
6305 if (tp->snd_una == tp->write_seq) {
6306 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6307 goto discard;
6308 }
6309 break;
6310
6311 case TCP_LAST_ACK:
6312 if (tp->snd_una == tp->write_seq) {
6313 tcp_update_metrics(sk);
6314 tcp_done(sk);
6315 goto discard;
6316 }
6317 break;
6318 }
6319
6320 /* step 6: check the URG bit */
6321 tcp_urg(sk, skb, th);
6322
6323 /* step 7: process the segment text */
6324 switch (sk->sk_state) {
6325 case TCP_CLOSE_WAIT:
6326 case TCP_CLOSING:
6327 case TCP_LAST_ACK:
6328 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6329 break;
6330 /* fall through */
6331 case TCP_FIN_WAIT1:
6332 case TCP_FIN_WAIT2:
6333 /* RFC 793 says to queue data in these states,
6334 * RFC 1122 says we MUST send a reset.
6335 * BSD 4.4 also does reset.
6336 */
6337 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6338 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6339 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6341 tcp_reset(sk);
6342 return 1;
6343 }
6344 }
6345 /* Fall through */
6346 case TCP_ESTABLISHED:
6347 tcp_data_queue(sk, skb);
6348 queued = 1;
6349 break;
6350 }
6351
6352 /* tcp_data could move socket to TIME-WAIT */
6353 if (sk->sk_state != TCP_CLOSE) {
6354 tcp_data_snd_check(sk);
6355 tcp_ack_snd_check(sk);
6356 }
6357
6358 if (!queued) {
6359discard:
6360 tcp_drop(sk, skb);
6361 }
6362 return 0;
6363}
6364EXPORT_SYMBOL(tcp_rcv_state_process);
6365
6366static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6367{
6368 struct inet_request_sock *ireq = inet_rsk(req);
6369
6370 if (family == AF_INET)
6371 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6372 &ireq->ir_rmt_addr, port);
6373#if IS_ENABLED(CONFIG_IPV6)
6374 else if (family == AF_INET6)
6375 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6376 &ireq->ir_v6_rmt_addr, port);
6377#endif
6378}
6379
6380/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6381 *
6382 * If we receive a SYN packet with these bits set, it means a
6383 * network is playing bad games with TOS bits. In order to
6384 * avoid possible false congestion notifications, we disable
6385 * TCP ECN negotiation.
6386 *
6387 * Exception: tcp_ca wants ECN. This is required for DCTCP
6388 * congestion control: Linux DCTCP asserts ECT on all packets,
6389 * including SYN, which is most optimal solution; however,
6390 * others, such as FreeBSD do not.
6391 *
6392 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6393 * set, indicating the use of a future TCP extension (such as AccECN). See
6394 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6395 * extensions.
6396 */
6397static void tcp_ecn_create_request(struct request_sock *req,
6398 const struct sk_buff *skb,
6399 const struct sock *listen_sk,
6400 const struct dst_entry *dst)
6401{
6402 const struct tcphdr *th = tcp_hdr(skb);
6403 const struct net *net = sock_net(listen_sk);
6404 bool th_ecn = th->ece && th->cwr;
6405 bool ect, ecn_ok;
6406 u32 ecn_ok_dst;
6407
6408 if (!th_ecn)
6409 return;
6410
6411 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6412 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6413 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6414
6415 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6416 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6417 tcp_bpf_ca_needs_ecn((struct sock *)req))
6418 inet_rsk(req)->ecn_ok = 1;
6419}
6420
6421static void tcp_openreq_init(struct request_sock *req,
6422 const struct tcp_options_received *rx_opt,
6423 struct sk_buff *skb, const struct sock *sk)
6424{
6425 struct inet_request_sock *ireq = inet_rsk(req);
6426
6427 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6428 req->cookie_ts = 0;
6429 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6430 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6431 tcp_rsk(req)->snt_synack = 0;
6432 tcp_rsk(req)->last_oow_ack_time = 0;
6433 req->mss = rx_opt->mss_clamp;
6434 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6435 ireq->tstamp_ok = rx_opt->tstamp_ok;
6436 ireq->sack_ok = rx_opt->sack_ok;
6437 ireq->snd_wscale = rx_opt->snd_wscale;
6438 ireq->wscale_ok = rx_opt->wscale_ok;
6439 ireq->acked = 0;
6440 ireq->ecn_ok = 0;
6441 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6442 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6443 ireq->ir_mark = inet_request_mark(sk, skb);
6444#if IS_ENABLED(CONFIG_SMC)
6445 ireq->smc_ok = rx_opt->smc_ok;
6446#endif
6447}
6448
6449struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6450 struct sock *sk_listener,
6451 bool attach_listener)
6452{
6453 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6454 attach_listener);
6455
6456 if (req) {
6457 struct inet_request_sock *ireq = inet_rsk(req);
6458
6459 ireq->ireq_opt = NULL;
6460#if IS_ENABLED(CONFIG_IPV6)
6461 ireq->pktopts = NULL;
6462#endif
6463 atomic64_set(&ireq->ir_cookie, 0);
6464 ireq->ireq_state = TCP_NEW_SYN_RECV;
6465 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6466 ireq->ireq_family = sk_listener->sk_family;
6467 }
6468
6469 return req;
6470}
6471EXPORT_SYMBOL(inet_reqsk_alloc);
6472
6473/*
6474 * Return true if a syncookie should be sent
6475 */
6476static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6477{
6478 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6479 const char *msg = "Dropping request";
6480 bool want_cookie = false;
6481 struct net *net = sock_net(sk);
6482
6483#ifdef CONFIG_SYN_COOKIES
6484 if (net->ipv4.sysctl_tcp_syncookies) {
6485 msg = "Sending cookies";
6486 want_cookie = true;
6487 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6488 } else
6489#endif
6490 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6491
6492 if (!queue->synflood_warned &&
6493 net->ipv4.sysctl_tcp_syncookies != 2 &&
6494 xchg(&queue->synflood_warned, 1) == 0)
6495 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6496 proto, sk->sk_num, msg);
6497
6498 return want_cookie;
6499}
6500
6501static void tcp_reqsk_record_syn(const struct sock *sk,
6502 struct request_sock *req,
6503 const struct sk_buff *skb)
6504{
6505 if (tcp_sk(sk)->save_syn) {
6506 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6507 u32 *copy;
6508
6509 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6510 if (copy) {
6511 copy[0] = len;
6512 memcpy(©[1], skb_network_header(skb), len);
6513 req->saved_syn = copy;
6514 }
6515 }
6516}
6517
6518/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6519 * used for SYN cookie generation.
6520 */
6521u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6522 const struct tcp_request_sock_ops *af_ops,
6523 struct sock *sk, struct tcphdr *th)
6524{
6525 struct tcp_sock *tp = tcp_sk(sk);
6526 u16 mss;
6527
6528 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6529 !inet_csk_reqsk_queue_is_full(sk))
6530 return 0;
6531
6532 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6533 return 0;
6534
6535 if (sk_acceptq_is_full(sk)) {
6536 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6537 return 0;
6538 }
6539
6540 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6541 if (!mss)
6542 mss = af_ops->mss_clamp;
6543
6544 return mss;
6545}
6546EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6547
6548int tcp_conn_request(struct request_sock_ops *rsk_ops,
6549 const struct tcp_request_sock_ops *af_ops,
6550 struct sock *sk, struct sk_buff *skb)
6551{
6552 struct tcp_fastopen_cookie foc = { .len = -1 };
6553 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6554 struct tcp_options_received tmp_opt;
6555 struct tcp_sock *tp = tcp_sk(sk);
6556 struct net *net = sock_net(sk);
6557 struct sock *fastopen_sk = NULL;
6558 struct request_sock *req;
6559 bool want_cookie = false;
6560 struct dst_entry *dst;
6561 struct flowi fl;
6562
6563 /* TW buckets are converted to open requests without
6564 * limitations, they conserve resources and peer is
6565 * evidently real one.
6566 */
6567 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6568 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6569 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6570 if (!want_cookie)
6571 goto drop;
6572 }
6573
6574 if (sk_acceptq_is_full(sk)) {
6575 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6576 goto drop;
6577 }
6578
6579 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6580 if (!req)
6581 goto drop;
6582
6583 tcp_rsk(req)->af_specific = af_ops;
6584 tcp_rsk(req)->ts_off = 0;
6585
6586 tcp_clear_options(&tmp_opt);
6587 tmp_opt.mss_clamp = af_ops->mss_clamp;
6588 tmp_opt.user_mss = tp->rx_opt.user_mss;
6589 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6590 want_cookie ? NULL : &foc);
6591
6592 if (want_cookie && !tmp_opt.saw_tstamp)
6593 tcp_clear_options(&tmp_opt);
6594
6595 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6596 tmp_opt.smc_ok = 0;
6597
6598 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6599 tcp_openreq_init(req, &tmp_opt, skb, sk);
6600 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6601
6602 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6603 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6604
6605 af_ops->init_req(req, sk, skb);
6606
6607 if (security_inet_conn_request(sk, skb, req))
6608 goto drop_and_free;
6609
6610 if (tmp_opt.tstamp_ok)
6611 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6612
6613 dst = af_ops->route_req(sk, &fl, req);
6614 if (!dst)
6615 goto drop_and_free;
6616
6617 if (!want_cookie && !isn) {
6618 /* Kill the following clause, if you dislike this way. */
6619 if (!net->ipv4.sysctl_tcp_syncookies &&
6620 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6621 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6622 !tcp_peer_is_proven(req, dst)) {
6623 /* Without syncookies last quarter of
6624 * backlog is filled with destinations,
6625 * proven to be alive.
6626 * It means that we continue to communicate
6627 * to destinations, already remembered
6628 * to the moment of synflood.
6629 */
6630 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6631 rsk_ops->family);
6632 goto drop_and_release;
6633 }
6634
6635 isn = af_ops->init_seq(skb);
6636 }
6637
6638 tcp_ecn_create_request(req, skb, sk, dst);
6639
6640 if (want_cookie) {
6641 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6642 req->cookie_ts = tmp_opt.tstamp_ok;
6643 if (!tmp_opt.tstamp_ok)
6644 inet_rsk(req)->ecn_ok = 0;
6645 }
6646
6647 tcp_rsk(req)->snt_isn = isn;
6648 tcp_rsk(req)->txhash = net_tx_rndhash();
6649 tcp_openreq_init_rwin(req, sk, dst);
6650 sk_rx_queue_set(req_to_sk(req), skb);
6651 if (!want_cookie) {
6652 tcp_reqsk_record_syn(sk, req, skb);
6653 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6654 }
6655 if (fastopen_sk) {
6656 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6657 &foc, TCP_SYNACK_FASTOPEN);
6658 /* Add the child socket directly into the accept queue */
6659 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6660 reqsk_fastopen_remove(fastopen_sk, req, false);
6661 bh_unlock_sock(fastopen_sk);
6662 sock_put(fastopen_sk);
6663 goto drop_and_free;
6664 }
6665 sk->sk_data_ready(sk);
6666 bh_unlock_sock(fastopen_sk);
6667 sock_put(fastopen_sk);
6668 } else {
6669 tcp_rsk(req)->tfo_listener = false;
6670 if (!want_cookie)
6671 inet_csk_reqsk_queue_hash_add(sk, req,
6672 tcp_timeout_init((struct sock *)req));
6673 af_ops->send_synack(sk, dst, &fl, req, &foc,
6674 !want_cookie ? TCP_SYNACK_NORMAL :
6675 TCP_SYNACK_COOKIE);
6676 if (want_cookie) {
6677 reqsk_free(req);
6678 return 0;
6679 }
6680 }
6681 reqsk_put(req);
6682 return 0;
6683
6684drop_and_release:
6685 dst_release(dst);
6686drop_and_free:
6687 __reqsk_free(req);
6688drop:
6689 tcp_listendrop(sk);
6690 return 0;
6691}
6692EXPORT_SYMBOL(tcp_conn_request);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/proto_memory.h>
76#include <net/inet_common.h>
77#include <linux/ipsec.h>
78#include <linux/unaligned.h>
79#include <linux/errqueue.h>
80#include <trace/events/tcp.h>
81#include <linux/jump_label_ratelimit.h>
82#include <net/busy_poll.h>
83#include <net/mptcp.h>
84
85int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87#define FLAG_DATA 0x01 /* Incoming frame contained data. */
88#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92#define FLAG_DATA_SACKED 0x20 /* New SACK. */
93#define FLAG_ECE 0x40 /* ECE in this ACK */
94#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104#define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105
106#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113
114#define REXMIT_NONE 0 /* no loss recovery to do */
115#define REXMIT_LOST 1 /* retransmit packets marked lost */
116#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
117
118#if IS_ENABLED(CONFIG_TLS_DEVICE)
119static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120
121void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 void (*cad)(struct sock *sk, u32 ack_seq))
123{
124 icsk->icsk_clean_acked = cad;
125 static_branch_deferred_inc(&clean_acked_data_enabled);
126}
127EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128
129void clean_acked_data_disable(struct inet_connection_sock *icsk)
130{
131 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 icsk->icsk_clean_acked = NULL;
133}
134EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135
136void clean_acked_data_flush(void)
137{
138 static_key_deferred_flush(&clean_acked_data_enabled);
139}
140EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141#endif
142
143#ifdef CONFIG_CGROUP_BPF
144static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145{
146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 struct bpf_sock_ops_kern sock_ops;
152
153 if (likely(!unknown_opt && !parse_all_opt))
154 return;
155
156 /* The skb will be handled in the
157 * bpf_skops_established() or
158 * bpf_skops_write_hdr_opt().
159 */
160 switch (sk->sk_state) {
161 case TCP_SYN_RECV:
162 case TCP_SYN_SENT:
163 case TCP_LISTEN:
164 return;
165 }
166
167 sock_owned_by_me(sk);
168
169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 sock_ops.is_fullsock = 1;
172 sock_ops.sk = sk;
173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174
175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176}
177
178static void bpf_skops_established(struct sock *sk, int bpf_op,
179 struct sk_buff *skb)
180{
181 struct bpf_sock_ops_kern sock_ops;
182
183 sock_owned_by_me(sk);
184
185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 sock_ops.op = bpf_op;
187 sock_ops.is_fullsock = 1;
188 sock_ops.sk = sk;
189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 if (skb)
191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192
193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194}
195#else
196static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197{
198}
199
200static void bpf_skops_established(struct sock *sk, int bpf_op,
201 struct sk_buff *skb)
202{
203}
204#endif
205
206static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 unsigned int len)
208{
209 struct net_device *dev;
210
211 rcu_read_lock();
212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 if (!dev || len >= READ_ONCE(dev->mtu))
214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 dev ? dev->name : "Unknown driver");
216 rcu_read_unlock();
217}
218
219/* Adapt the MSS value used to make delayed ack decision to the
220 * real world.
221 */
222static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223{
224 struct inet_connection_sock *icsk = inet_csk(sk);
225 const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 unsigned int len;
227
228 icsk->icsk_ack.last_seg_size = 0;
229
230 /* skb->len may jitter because of SACKs, even if peer
231 * sends good full-sized frames.
232 */
233 len = skb_shinfo(skb)->gso_size ? : skb->len;
234 if (len >= icsk->icsk_ack.rcv_mss) {
235 /* Note: divides are still a bit expensive.
236 * For the moment, only adjust scaling_ratio
237 * when we update icsk_ack.rcv_mss.
238 */
239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
242
243 do_div(val, skb->truesize);
244 tcp_sk(sk)->scaling_ratio = val ? val : 1;
245
246 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
247 struct tcp_sock *tp = tcp_sk(sk);
248
249 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
250 tcp_set_window_clamp(sk, val);
251
252 if (tp->window_clamp < tp->rcvq_space.space)
253 tp->rcvq_space.space = tp->window_clamp;
254 }
255 }
256 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
257 tcp_sk(sk)->advmss);
258 /* Account for possibly-removed options */
259 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
260 tcp_gro_dev_warn, sk, skb, len);
261 /* If the skb has a len of exactly 1*MSS and has the PSH bit
262 * set then it is likely the end of an application write. So
263 * more data may not be arriving soon, and yet the data sender
264 * may be waiting for an ACK if cwnd-bound or using TX zero
265 * copy. So we set ICSK_ACK_PUSHED here so that
266 * tcp_cleanup_rbuf() will send an ACK immediately if the app
267 * reads all of the data and is not ping-pong. If len > MSS
268 * then this logic does not matter (and does not hurt) because
269 * tcp_cleanup_rbuf() will always ACK immediately if the app
270 * reads data and there is more than an MSS of unACKed data.
271 */
272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 } else {
275 /* Otherwise, we make more careful check taking into account,
276 * that SACKs block is variable.
277 *
278 * "len" is invariant segment length, including TCP header.
279 */
280 len += skb->data - skb_transport_header(skb);
281 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
282 /* If PSH is not set, packet should be
283 * full sized, provided peer TCP is not badly broken.
284 * This observation (if it is correct 8)) allows
285 * to handle super-low mtu links fairly.
286 */
287 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
288 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
289 /* Subtract also invariant (if peer is RFC compliant),
290 * tcp header plus fixed timestamp option length.
291 * Resulting "len" is MSS free of SACK jitter.
292 */
293 len -= tcp_sk(sk)->tcp_header_len;
294 icsk->icsk_ack.last_seg_size = len;
295 if (len == lss) {
296 icsk->icsk_ack.rcv_mss = len;
297 return;
298 }
299 }
300 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
301 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
303 }
304}
305
306static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
307{
308 struct inet_connection_sock *icsk = inet_csk(sk);
309 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
310
311 if (quickacks == 0)
312 quickacks = 2;
313 quickacks = min(quickacks, max_quickacks);
314 if (quickacks > icsk->icsk_ack.quick)
315 icsk->icsk_ack.quick = quickacks;
316}
317
318static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
319{
320 struct inet_connection_sock *icsk = inet_csk(sk);
321
322 tcp_incr_quickack(sk, max_quickacks);
323 inet_csk_exit_pingpong_mode(sk);
324 icsk->icsk_ack.ato = TCP_ATO_MIN;
325}
326
327/* Send ACKs quickly, if "quick" count is not exhausted
328 * and the session is not interactive.
329 */
330
331static bool tcp_in_quickack_mode(struct sock *sk)
332{
333 const struct inet_connection_sock *icsk = inet_csk(sk);
334 const struct dst_entry *dst = __sk_dst_get(sk);
335
336 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
337 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
338}
339
340static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
341{
342 if (tp->ecn_flags & TCP_ECN_OK)
343 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
344}
345
346static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
347{
348 if (tcp_hdr(skb)->cwr) {
349 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
350
351 /* If the sender is telling us it has entered CWR, then its
352 * cwnd may be very low (even just 1 packet), so we should ACK
353 * immediately.
354 */
355 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
356 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
357 }
358}
359
360static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
361{
362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363}
364
365static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
366{
367 struct tcp_sock *tp = tcp_sk(sk);
368
369 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
370 case INET_ECN_NOT_ECT:
371 /* Funny extension: if ECT is not set on a segment,
372 * and we already seen ECT on a previous segment,
373 * it is probably a retransmit.
374 */
375 if (tp->ecn_flags & TCP_ECN_SEEN)
376 tcp_enter_quickack_mode(sk, 2);
377 break;
378 case INET_ECN_CE:
379 if (tcp_ca_needs_ecn(sk))
380 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
381
382 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
383 /* Better not delay acks, sender can have a very low cwnd */
384 tcp_enter_quickack_mode(sk, 2);
385 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
386 }
387 tp->ecn_flags |= TCP_ECN_SEEN;
388 break;
389 default:
390 if (tcp_ca_needs_ecn(sk))
391 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
392 tp->ecn_flags |= TCP_ECN_SEEN;
393 break;
394 }
395}
396
397static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
398{
399 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
400 __tcp_ecn_check_ce(sk, skb);
401}
402
403static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
404{
405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
406 tp->ecn_flags &= ~TCP_ECN_OK;
407}
408
409static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
410{
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413}
414
415static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
416{
417 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
418 return true;
419 return false;
420}
421
422/* Buffer size and advertised window tuning.
423 *
424 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
425 */
426
427static void tcp_sndbuf_expand(struct sock *sk)
428{
429 const struct tcp_sock *tp = tcp_sk(sk);
430 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
431 int sndmem, per_mss;
432 u32 nr_segs;
433
434 /* Worst case is non GSO/TSO : each frame consumes one skb
435 * and skb->head is kmalloced using power of two area of memory
436 */
437 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
438 MAX_TCP_HEADER +
439 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
440
441 per_mss = roundup_pow_of_two(per_mss) +
442 SKB_DATA_ALIGN(sizeof(struct sk_buff));
443
444 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
445 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
446
447 /* Fast Recovery (RFC 5681 3.2) :
448 * Cubic needs 1.7 factor, rounded to 2 to include
449 * extra cushion (application might react slowly to EPOLLOUT)
450 */
451 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
452 sndmem *= nr_segs * per_mss;
453
454 if (sk->sk_sndbuf < sndmem)
455 WRITE_ONCE(sk->sk_sndbuf,
456 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
457}
458
459/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
460 *
461 * All tcp_full_space() is split to two parts: "network" buffer, allocated
462 * forward and advertised in receiver window (tp->rcv_wnd) and
463 * "application buffer", required to isolate scheduling/application
464 * latencies from network.
465 * window_clamp is maximal advertised window. It can be less than
466 * tcp_full_space(), in this case tcp_full_space() - window_clamp
467 * is reserved for "application" buffer. The less window_clamp is
468 * the smoother our behaviour from viewpoint of network, but the lower
469 * throughput and the higher sensitivity of the connection to losses. 8)
470 *
471 * rcv_ssthresh is more strict window_clamp used at "slow start"
472 * phase to predict further behaviour of this connection.
473 * It is used for two goals:
474 * - to enforce header prediction at sender, even when application
475 * requires some significant "application buffer". It is check #1.
476 * - to prevent pruning of receive queue because of misprediction
477 * of receiver window. Check #2.
478 *
479 * The scheme does not work when sender sends good segments opening
480 * window and then starts to feed us spaghetti. But it should work
481 * in common situations. Otherwise, we have to rely on queue collapsing.
482 */
483
484/* Slow part of check#2. */
485static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
486 unsigned int skbtruesize)
487{
488 const struct tcp_sock *tp = tcp_sk(sk);
489 /* Optimize this! */
490 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
491 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
492
493 while (tp->rcv_ssthresh <= window) {
494 if (truesize <= skb->len)
495 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
496
497 truesize >>= 1;
498 window >>= 1;
499 }
500 return 0;
501}
502
503/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
504 * can play nice with us, as sk_buff and skb->head might be either
505 * freed or shared with up to MAX_SKB_FRAGS segments.
506 * Only give a boost to drivers using page frag(s) to hold the frame(s),
507 * and if no payload was pulled in skb->head before reaching us.
508 */
509static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
510{
511 u32 truesize = skb->truesize;
512
513 if (adjust && !skb_headlen(skb)) {
514 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
515 /* paranoid check, some drivers might be buggy */
516 if (unlikely((int)truesize < (int)skb->len))
517 truesize = skb->truesize;
518 }
519 return truesize;
520}
521
522static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
523 bool adjust)
524{
525 struct tcp_sock *tp = tcp_sk(sk);
526 int room;
527
528 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
529
530 if (room <= 0)
531 return;
532
533 /* Check #1 */
534 if (!tcp_under_memory_pressure(sk)) {
535 unsigned int truesize = truesize_adjust(adjust, skb);
536 int incr;
537
538 /* Check #2. Increase window, if skb with such overhead
539 * will fit to rcvbuf in future.
540 */
541 if (tcp_win_from_space(sk, truesize) <= skb->len)
542 incr = 2 * tp->advmss;
543 else
544 incr = __tcp_grow_window(sk, skb, truesize);
545
546 if (incr) {
547 incr = max_t(int, incr, 2 * skb->len);
548 tp->rcv_ssthresh += min(room, incr);
549 inet_csk(sk)->icsk_ack.quick |= 1;
550 }
551 } else {
552 /* Under pressure:
553 * Adjust rcv_ssthresh according to reserved mem
554 */
555 tcp_adjust_rcv_ssthresh(sk);
556 }
557}
558
559/* 3. Try to fixup all. It is made immediately after connection enters
560 * established state.
561 */
562static void tcp_init_buffer_space(struct sock *sk)
563{
564 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
565 struct tcp_sock *tp = tcp_sk(sk);
566 int maxwin;
567
568 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
569 tcp_sndbuf_expand(sk);
570
571 tcp_mstamp_refresh(tp);
572 tp->rcvq_space.time = tp->tcp_mstamp;
573 tp->rcvq_space.seq = tp->copied_seq;
574
575 maxwin = tcp_full_space(sk);
576
577 if (tp->window_clamp >= maxwin) {
578 WRITE_ONCE(tp->window_clamp, maxwin);
579
580 if (tcp_app_win && maxwin > 4 * tp->advmss)
581 WRITE_ONCE(tp->window_clamp,
582 max(maxwin - (maxwin >> tcp_app_win),
583 4 * tp->advmss));
584 }
585
586 /* Force reservation of one segment. */
587 if (tcp_app_win &&
588 tp->window_clamp > 2 * tp->advmss &&
589 tp->window_clamp + tp->advmss > maxwin)
590 WRITE_ONCE(tp->window_clamp,
591 max(2 * tp->advmss, maxwin - tp->advmss));
592
593 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
594 tp->snd_cwnd_stamp = tcp_jiffies32;
595 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
596 (u32)TCP_INIT_CWND * tp->advmss);
597}
598
599/* 4. Recalculate window clamp after socket hit its memory bounds. */
600static void tcp_clamp_window(struct sock *sk)
601{
602 struct tcp_sock *tp = tcp_sk(sk);
603 struct inet_connection_sock *icsk = inet_csk(sk);
604 struct net *net = sock_net(sk);
605 int rmem2;
606
607 icsk->icsk_ack.quick = 0;
608 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
609
610 if (sk->sk_rcvbuf < rmem2 &&
611 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
612 !tcp_under_memory_pressure(sk) &&
613 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
614 WRITE_ONCE(sk->sk_rcvbuf,
615 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
616 }
617 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
618 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
619}
620
621/* Initialize RCV_MSS value.
622 * RCV_MSS is an our guess about MSS used by the peer.
623 * We haven't any direct information about the MSS.
624 * It's better to underestimate the RCV_MSS rather than overestimate.
625 * Overestimations make us ACKing less frequently than needed.
626 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
627 */
628void tcp_initialize_rcv_mss(struct sock *sk)
629{
630 const struct tcp_sock *tp = tcp_sk(sk);
631 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
632
633 hint = min(hint, tp->rcv_wnd / 2);
634 hint = min(hint, TCP_MSS_DEFAULT);
635 hint = max(hint, TCP_MIN_MSS);
636
637 inet_csk(sk)->icsk_ack.rcv_mss = hint;
638}
639EXPORT_SYMBOL(tcp_initialize_rcv_mss);
640
641/* Receiver "autotuning" code.
642 *
643 * The algorithm for RTT estimation w/o timestamps is based on
644 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
645 * <https://public.lanl.gov/radiant/pubs.html#DRS>
646 *
647 * More detail on this code can be found at
648 * <http://staff.psc.edu/jheffner/>,
649 * though this reference is out of date. A new paper
650 * is pending.
651 */
652static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
653{
654 u32 new_sample = tp->rcv_rtt_est.rtt_us;
655 long m = sample;
656
657 if (new_sample != 0) {
658 /* If we sample in larger samples in the non-timestamp
659 * case, we could grossly overestimate the RTT especially
660 * with chatty applications or bulk transfer apps which
661 * are stalled on filesystem I/O.
662 *
663 * Also, since we are only going for a minimum in the
664 * non-timestamp case, we do not smooth things out
665 * else with timestamps disabled convergence takes too
666 * long.
667 */
668 if (!win_dep) {
669 m -= (new_sample >> 3);
670 new_sample += m;
671 } else {
672 m <<= 3;
673 if (m < new_sample)
674 new_sample = m;
675 }
676 } else {
677 /* No previous measure. */
678 new_sample = m << 3;
679 }
680
681 tp->rcv_rtt_est.rtt_us = new_sample;
682}
683
684static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
685{
686 u32 delta_us;
687
688 if (tp->rcv_rtt_est.time == 0)
689 goto new_measure;
690 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
691 return;
692 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
693 if (!delta_us)
694 delta_us = 1;
695 tcp_rcv_rtt_update(tp, delta_us, 1);
696
697new_measure:
698 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
699 tp->rcv_rtt_est.time = tp->tcp_mstamp;
700}
701
702static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
703{
704 u32 delta, delta_us;
705
706 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
707 if (tp->tcp_usec_ts)
708 return delta;
709
710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
711 if (!delta)
712 delta = 1;
713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714 return delta_us;
715 }
716 return -1;
717}
718
719static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
720 const struct sk_buff *skb)
721{
722 struct tcp_sock *tp = tcp_sk(sk);
723
724 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
725 return;
726 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
727
728 if (TCP_SKB_CB(skb)->end_seq -
729 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
730 s32 delta = tcp_rtt_tsopt_us(tp);
731
732 if (delta >= 0)
733 tcp_rcv_rtt_update(tp, delta, 0);
734 }
735}
736
737/*
738 * This function should be called every time data is copied to user space.
739 * It calculates the appropriate TCP receive buffer space.
740 */
741void tcp_rcv_space_adjust(struct sock *sk)
742{
743 struct tcp_sock *tp = tcp_sk(sk);
744 u32 copied;
745 int time;
746
747 trace_tcp_rcv_space_adjust(sk);
748
749 tcp_mstamp_refresh(tp);
750 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
751 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
752 return;
753
754 /* Number of bytes copied to user in last RTT */
755 copied = tp->copied_seq - tp->rcvq_space.seq;
756 if (copied <= tp->rcvq_space.space)
757 goto new_measure;
758
759 /* A bit of theory :
760 * copied = bytes received in previous RTT, our base window
761 * To cope with packet losses, we need a 2x factor
762 * To cope with slow start, and sender growing its cwin by 100 %
763 * every RTT, we need a 4x factor, because the ACK we are sending
764 * now is for the next RTT, not the current one :
765 * <prev RTT . ><current RTT .. ><next RTT .... >
766 */
767
768 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
769 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
770 u64 rcvwin, grow;
771 int rcvbuf;
772
773 /* minimal window to cope with packet losses, assuming
774 * steady state. Add some cushion because of small variations.
775 */
776 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
777
778 /* Accommodate for sender rate increase (eg. slow start) */
779 grow = rcvwin * (copied - tp->rcvq_space.space);
780 do_div(grow, tp->rcvq_space.space);
781 rcvwin += (grow << 1);
782
783 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
784 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
785 if (rcvbuf > sk->sk_rcvbuf) {
786 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
787
788 /* Make the window clamp follow along. */
789 WRITE_ONCE(tp->window_clamp,
790 tcp_win_from_space(sk, rcvbuf));
791 }
792 }
793 tp->rcvq_space.space = copied;
794
795new_measure:
796 tp->rcvq_space.seq = tp->copied_seq;
797 tp->rcvq_space.time = tp->tcp_mstamp;
798}
799
800static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
801{
802#if IS_ENABLED(CONFIG_IPV6)
803 struct inet_connection_sock *icsk = inet_csk(sk);
804
805 if (skb->protocol == htons(ETH_P_IPV6))
806 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
807#endif
808}
809
810/* There is something which you must keep in mind when you analyze the
811 * behavior of the tp->ato delayed ack timeout interval. When a
812 * connection starts up, we want to ack as quickly as possible. The
813 * problem is that "good" TCP's do slow start at the beginning of data
814 * transmission. The means that until we send the first few ACK's the
815 * sender will sit on his end and only queue most of his data, because
816 * he can only send snd_cwnd unacked packets at any given time. For
817 * each ACK we send, he increments snd_cwnd and transmits more of his
818 * queue. -DaveM
819 */
820static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
821{
822 struct tcp_sock *tp = tcp_sk(sk);
823 struct inet_connection_sock *icsk = inet_csk(sk);
824 u32 now;
825
826 inet_csk_schedule_ack(sk);
827
828 tcp_measure_rcv_mss(sk, skb);
829
830 tcp_rcv_rtt_measure(tp);
831
832 now = tcp_jiffies32;
833
834 if (!icsk->icsk_ack.ato) {
835 /* The _first_ data packet received, initialize
836 * delayed ACK engine.
837 */
838 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
839 icsk->icsk_ack.ato = TCP_ATO_MIN;
840 } else {
841 int m = now - icsk->icsk_ack.lrcvtime;
842
843 if (m <= TCP_ATO_MIN / 2) {
844 /* The fastest case is the first. */
845 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
846 } else if (m < icsk->icsk_ack.ato) {
847 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
848 if (icsk->icsk_ack.ato > icsk->icsk_rto)
849 icsk->icsk_ack.ato = icsk->icsk_rto;
850 } else if (m > icsk->icsk_rto) {
851 /* Too long gap. Apparently sender failed to
852 * restart window, so that we send ACKs quickly.
853 */
854 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
855 }
856 }
857 icsk->icsk_ack.lrcvtime = now;
858 tcp_save_lrcv_flowlabel(sk, skb);
859
860 tcp_ecn_check_ce(sk, skb);
861
862 if (skb->len >= 128)
863 tcp_grow_window(sk, skb, true);
864}
865
866/* Called to compute a smoothed rtt estimate. The data fed to this
867 * routine either comes from timestamps, or from segments that were
868 * known _not_ to have been retransmitted [see Karn/Partridge
869 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
870 * piece by Van Jacobson.
871 * NOTE: the next three routines used to be one big routine.
872 * To save cycles in the RFC 1323 implementation it was better to break
873 * it up into three procedures. -- erics
874 */
875static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
876{
877 struct tcp_sock *tp = tcp_sk(sk);
878 long m = mrtt_us; /* RTT */
879 u32 srtt = tp->srtt_us;
880
881 /* The following amusing code comes from Jacobson's
882 * article in SIGCOMM '88. Note that rtt and mdev
883 * are scaled versions of rtt and mean deviation.
884 * This is designed to be as fast as possible
885 * m stands for "measurement".
886 *
887 * On a 1990 paper the rto value is changed to:
888 * RTO = rtt + 4 * mdev
889 *
890 * Funny. This algorithm seems to be very broken.
891 * These formulae increase RTO, when it should be decreased, increase
892 * too slowly, when it should be increased quickly, decrease too quickly
893 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
894 * does not matter how to _calculate_ it. Seems, it was trap
895 * that VJ failed to avoid. 8)
896 */
897 if (srtt != 0) {
898 m -= (srtt >> 3); /* m is now error in rtt est */
899 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
900 if (m < 0) {
901 m = -m; /* m is now abs(error) */
902 m -= (tp->mdev_us >> 2); /* similar update on mdev */
903 /* This is similar to one of Eifel findings.
904 * Eifel blocks mdev updates when rtt decreases.
905 * This solution is a bit different: we use finer gain
906 * for mdev in this case (alpha*beta).
907 * Like Eifel it also prevents growth of rto,
908 * but also it limits too fast rto decreases,
909 * happening in pure Eifel.
910 */
911 if (m > 0)
912 m >>= 3;
913 } else {
914 m -= (tp->mdev_us >> 2); /* similar update on mdev */
915 }
916 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
917 if (tp->mdev_us > tp->mdev_max_us) {
918 tp->mdev_max_us = tp->mdev_us;
919 if (tp->mdev_max_us > tp->rttvar_us)
920 tp->rttvar_us = tp->mdev_max_us;
921 }
922 if (after(tp->snd_una, tp->rtt_seq)) {
923 if (tp->mdev_max_us < tp->rttvar_us)
924 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
925 tp->rtt_seq = tp->snd_nxt;
926 tp->mdev_max_us = tcp_rto_min_us(sk);
927
928 tcp_bpf_rtt(sk, mrtt_us, srtt);
929 }
930 } else {
931 /* no previous measure. */
932 srtt = m << 3; /* take the measured time to be rtt */
933 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
934 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
935 tp->mdev_max_us = tp->rttvar_us;
936 tp->rtt_seq = tp->snd_nxt;
937
938 tcp_bpf_rtt(sk, mrtt_us, srtt);
939 }
940 tp->srtt_us = max(1U, srtt);
941}
942
943static void tcp_update_pacing_rate(struct sock *sk)
944{
945 const struct tcp_sock *tp = tcp_sk(sk);
946 u64 rate;
947
948 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
949 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
950
951 /* current rate is (cwnd * mss) / srtt
952 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
953 * In Congestion Avoidance phase, set it to 120 % the current rate.
954 *
955 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
956 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
957 * end of slow start and should slow down.
958 */
959 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
960 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
961 else
962 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
963
964 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
965
966 if (likely(tp->srtt_us))
967 do_div(rate, tp->srtt_us);
968
969 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
970 * without any lock. We want to make sure compiler wont store
971 * intermediate values in this location.
972 */
973 WRITE_ONCE(sk->sk_pacing_rate,
974 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
975}
976
977/* Calculate rto without backoff. This is the second half of Van Jacobson's
978 * routine referred to above.
979 */
980static void tcp_set_rto(struct sock *sk)
981{
982 const struct tcp_sock *tp = tcp_sk(sk);
983 /* Old crap is replaced with new one. 8)
984 *
985 * More seriously:
986 * 1. If rtt variance happened to be less 50msec, it is hallucination.
987 * It cannot be less due to utterly erratic ACK generation made
988 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
989 * to do with delayed acks, because at cwnd>2 true delack timeout
990 * is invisible. Actually, Linux-2.4 also generates erratic
991 * ACKs in some circumstances.
992 */
993 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
994
995 /* 2. Fixups made earlier cannot be right.
996 * If we do not estimate RTO correctly without them,
997 * all the algo is pure shit and should be replaced
998 * with correct one. It is exactly, which we pretend to do.
999 */
1000
1001 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1002 * guarantees that rto is higher.
1003 */
1004 tcp_bound_rto(sk);
1005}
1006
1007__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1008{
1009 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1010
1011 if (!cwnd)
1012 cwnd = TCP_INIT_CWND;
1013 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1014}
1015
1016struct tcp_sacktag_state {
1017 /* Timestamps for earliest and latest never-retransmitted segment
1018 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1019 * but congestion control should still get an accurate delay signal.
1020 */
1021 u64 first_sackt;
1022 u64 last_sackt;
1023 u32 reord;
1024 u32 sack_delivered;
1025 int flag;
1026 unsigned int mss_now;
1027 struct rate_sample *rate;
1028};
1029
1030/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1031 * and spurious retransmission information if this DSACK is unlikely caused by
1032 * sender's action:
1033 * - DSACKed sequence range is larger than maximum receiver's window.
1034 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1035 */
1036static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1037 u32 end_seq, struct tcp_sacktag_state *state)
1038{
1039 u32 seq_len, dup_segs = 1;
1040
1041 if (!before(start_seq, end_seq))
1042 return 0;
1043
1044 seq_len = end_seq - start_seq;
1045 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1046 if (seq_len > tp->max_window)
1047 return 0;
1048 if (seq_len > tp->mss_cache)
1049 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1050 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1051 state->flag |= FLAG_DSACK_TLP;
1052
1053 tp->dsack_dups += dup_segs;
1054 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1055 if (tp->dsack_dups > tp->total_retrans)
1056 return 0;
1057
1058 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1059 /* We increase the RACK ordering window in rounds where we receive
1060 * DSACKs that may have been due to reordering causing RACK to trigger
1061 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1062 * without having seen reordering, or that match TLP probes (TLP
1063 * is timer-driven, not triggered by RACK).
1064 */
1065 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1066 tp->rack.dsack_seen = 1;
1067
1068 state->flag |= FLAG_DSACKING_ACK;
1069 /* A spurious retransmission is delivered */
1070 state->sack_delivered += dup_segs;
1071
1072 return dup_segs;
1073}
1074
1075/* It's reordering when higher sequence was delivered (i.e. sacked) before
1076 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1077 * distance is approximated in full-mss packet distance ("reordering").
1078 */
1079static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1080 const int ts)
1081{
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 const u32 mss = tp->mss_cache;
1084 u32 fack, metric;
1085
1086 fack = tcp_highest_sack_seq(tp);
1087 if (!before(low_seq, fack))
1088 return;
1089
1090 metric = fack - low_seq;
1091 if ((metric > tp->reordering * mss) && mss) {
1092#if FASTRETRANS_DEBUG > 1
1093 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1094 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1095 tp->reordering,
1096 0,
1097 tp->sacked_out,
1098 tp->undo_marker ? tp->undo_retrans : 0);
1099#endif
1100 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1101 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1102 }
1103
1104 /* This exciting event is worth to be remembered. 8) */
1105 tp->reord_seen++;
1106 NET_INC_STATS(sock_net(sk),
1107 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1108}
1109
1110 /* This must be called before lost_out or retrans_out are updated
1111 * on a new loss, because we want to know if all skbs previously
1112 * known to be lost have already been retransmitted, indicating
1113 * that this newly lost skb is our next skb to retransmit.
1114 */
1115static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1116{
1117 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1118 (tp->retransmit_skb_hint &&
1119 before(TCP_SKB_CB(skb)->seq,
1120 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1121 tp->retransmit_skb_hint = skb;
1122}
1123
1124/* Sum the number of packets on the wire we have marked as lost, and
1125 * notify the congestion control module that the given skb was marked lost.
1126 */
1127static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1128{
1129 tp->lost += tcp_skb_pcount(skb);
1130}
1131
1132void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1133{
1134 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1135 struct tcp_sock *tp = tcp_sk(sk);
1136
1137 if (sacked & TCPCB_SACKED_ACKED)
1138 return;
1139
1140 tcp_verify_retransmit_hint(tp, skb);
1141 if (sacked & TCPCB_LOST) {
1142 if (sacked & TCPCB_SACKED_RETRANS) {
1143 /* Account for retransmits that are lost again */
1144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1145 tp->retrans_out -= tcp_skb_pcount(skb);
1146 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1147 tcp_skb_pcount(skb));
1148 tcp_notify_skb_loss_event(tp, skb);
1149 }
1150 } else {
1151 tp->lost_out += tcp_skb_pcount(skb);
1152 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1153 tcp_notify_skb_loss_event(tp, skb);
1154 }
1155}
1156
1157/* Updates the delivered and delivered_ce counts */
1158static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1159 bool ece_ack)
1160{
1161 tp->delivered += delivered;
1162 if (ece_ack)
1163 tp->delivered_ce += delivered;
1164}
1165
1166/* This procedure tags the retransmission queue when SACKs arrive.
1167 *
1168 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1169 * Packets in queue with these bits set are counted in variables
1170 * sacked_out, retrans_out and lost_out, correspondingly.
1171 *
1172 * Valid combinations are:
1173 * Tag InFlight Description
1174 * 0 1 - orig segment is in flight.
1175 * S 0 - nothing flies, orig reached receiver.
1176 * L 0 - nothing flies, orig lost by net.
1177 * R 2 - both orig and retransmit are in flight.
1178 * L|R 1 - orig is lost, retransmit is in flight.
1179 * S|R 1 - orig reached receiver, retrans is still in flight.
1180 * (L|S|R is logically valid, it could occur when L|R is sacked,
1181 * but it is equivalent to plain S and code short-circuits it to S.
1182 * L|S is logically invalid, it would mean -1 packet in flight 8))
1183 *
1184 * These 6 states form finite state machine, controlled by the following events:
1185 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1186 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1187 * 3. Loss detection event of two flavors:
1188 * A. Scoreboard estimator decided the packet is lost.
1189 * A'. Reno "three dupacks" marks head of queue lost.
1190 * B. SACK arrives sacking SND.NXT at the moment, when the
1191 * segment was retransmitted.
1192 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1193 *
1194 * It is pleasant to note, that state diagram turns out to be commutative,
1195 * so that we are allowed not to be bothered by order of our actions,
1196 * when multiple events arrive simultaneously. (see the function below).
1197 *
1198 * Reordering detection.
1199 * --------------------
1200 * Reordering metric is maximal distance, which a packet can be displaced
1201 * in packet stream. With SACKs we can estimate it:
1202 *
1203 * 1. SACK fills old hole and the corresponding segment was not
1204 * ever retransmitted -> reordering. Alas, we cannot use it
1205 * when segment was retransmitted.
1206 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1207 * for retransmitted and already SACKed segment -> reordering..
1208 * Both of these heuristics are not used in Loss state, when we cannot
1209 * account for retransmits accurately.
1210 *
1211 * SACK block validation.
1212 * ----------------------
1213 *
1214 * SACK block range validation checks that the received SACK block fits to
1215 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1216 * Note that SND.UNA is not included to the range though being valid because
1217 * it means that the receiver is rather inconsistent with itself reporting
1218 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1219 * perfectly valid, however, in light of RFC2018 which explicitly states
1220 * that "SACK block MUST reflect the newest segment. Even if the newest
1221 * segment is going to be discarded ...", not that it looks very clever
1222 * in case of head skb. Due to potentional receiver driven attacks, we
1223 * choose to avoid immediate execution of a walk in write queue due to
1224 * reneging and defer head skb's loss recovery to standard loss recovery
1225 * procedure that will eventually trigger (nothing forbids us doing this).
1226 *
1227 * Implements also blockage to start_seq wrap-around. Problem lies in the
1228 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1229 * there's no guarantee that it will be before snd_nxt (n). The problem
1230 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1231 * wrap (s_w):
1232 *
1233 * <- outs wnd -> <- wrapzone ->
1234 * u e n u_w e_w s n_w
1235 * | | | | | | |
1236 * |<------------+------+----- TCP seqno space --------------+---------->|
1237 * ...-- <2^31 ->| |<--------...
1238 * ...---- >2^31 ------>| |<--------...
1239 *
1240 * Current code wouldn't be vulnerable but it's better still to discard such
1241 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1242 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1243 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1244 * equal to the ideal case (infinite seqno space without wrap caused issues).
1245 *
1246 * With D-SACK the lower bound is extended to cover sequence space below
1247 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1248 * again, D-SACK block must not to go across snd_una (for the same reason as
1249 * for the normal SACK blocks, explained above). But there all simplicity
1250 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1251 * fully below undo_marker they do not affect behavior in anyway and can
1252 * therefore be safely ignored. In rare cases (which are more or less
1253 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1254 * fragmentation and packet reordering past skb's retransmission. To consider
1255 * them correctly, the acceptable range must be extended even more though
1256 * the exact amount is rather hard to quantify. However, tp->max_window can
1257 * be used as an exaggerated estimate.
1258 */
1259static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1260 u32 start_seq, u32 end_seq)
1261{
1262 /* Too far in future, or reversed (interpretation is ambiguous) */
1263 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1264 return false;
1265
1266 /* Nasty start_seq wrap-around check (see comments above) */
1267 if (!before(start_seq, tp->snd_nxt))
1268 return false;
1269
1270 /* In outstanding window? ...This is valid exit for D-SACKs too.
1271 * start_seq == snd_una is non-sensical (see comments above)
1272 */
1273 if (after(start_seq, tp->snd_una))
1274 return true;
1275
1276 if (!is_dsack || !tp->undo_marker)
1277 return false;
1278
1279 /* ...Then it's D-SACK, and must reside below snd_una completely */
1280 if (after(end_seq, tp->snd_una))
1281 return false;
1282
1283 if (!before(start_seq, tp->undo_marker))
1284 return true;
1285
1286 /* Too old */
1287 if (!after(end_seq, tp->undo_marker))
1288 return false;
1289
1290 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1291 * start_seq < undo_marker and end_seq >= undo_marker.
1292 */
1293 return !before(start_seq, end_seq - tp->max_window);
1294}
1295
1296static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1297 struct tcp_sack_block_wire *sp, int num_sacks,
1298 u32 prior_snd_una, struct tcp_sacktag_state *state)
1299{
1300 struct tcp_sock *tp = tcp_sk(sk);
1301 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1302 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1303 u32 dup_segs;
1304
1305 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1307 } else if (num_sacks > 1) {
1308 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1309 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1310
1311 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1312 return false;
1313 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1314 } else {
1315 return false;
1316 }
1317
1318 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1319 if (!dup_segs) { /* Skip dubious DSACK */
1320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1321 return false;
1322 }
1323
1324 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1325
1326 /* D-SACK for already forgotten data... Do dumb counting. */
1327 if (tp->undo_marker && tp->undo_retrans > 0 &&
1328 !after(end_seq_0, prior_snd_una) &&
1329 after(end_seq_0, tp->undo_marker))
1330 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1331
1332 return true;
1333}
1334
1335/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1336 * the incoming SACK may not exactly match but we can find smaller MSS
1337 * aligned portion of it that matches. Therefore we might need to fragment
1338 * which may fail and creates some hassle (caller must handle error case
1339 * returns).
1340 *
1341 * FIXME: this could be merged to shift decision code
1342 */
1343static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1344 u32 start_seq, u32 end_seq)
1345{
1346 int err;
1347 bool in_sack;
1348 unsigned int pkt_len;
1349 unsigned int mss;
1350
1351 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1352 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1353
1354 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1355 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1356 mss = tcp_skb_mss(skb);
1357 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358
1359 if (!in_sack) {
1360 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1361 if (pkt_len < mss)
1362 pkt_len = mss;
1363 } else {
1364 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1365 if (pkt_len < mss)
1366 return -EINVAL;
1367 }
1368
1369 /* Round if necessary so that SACKs cover only full MSSes
1370 * and/or the remaining small portion (if present)
1371 */
1372 if (pkt_len > mss) {
1373 unsigned int new_len = (pkt_len / mss) * mss;
1374 if (!in_sack && new_len < pkt_len)
1375 new_len += mss;
1376 pkt_len = new_len;
1377 }
1378
1379 if (pkt_len >= skb->len && !in_sack)
1380 return 0;
1381
1382 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1383 pkt_len, mss, GFP_ATOMIC);
1384 if (err < 0)
1385 return err;
1386 }
1387
1388 return in_sack;
1389}
1390
1391/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1392static u8 tcp_sacktag_one(struct sock *sk,
1393 struct tcp_sacktag_state *state, u8 sacked,
1394 u32 start_seq, u32 end_seq,
1395 int dup_sack, int pcount,
1396 u64 xmit_time)
1397{
1398 struct tcp_sock *tp = tcp_sk(sk);
1399
1400 /* Account D-SACK for retransmitted packet. */
1401 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1402 if (tp->undo_marker && tp->undo_retrans > 0 &&
1403 after(end_seq, tp->undo_marker))
1404 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1405 if ((sacked & TCPCB_SACKED_ACKED) &&
1406 before(start_seq, state->reord))
1407 state->reord = start_seq;
1408 }
1409
1410 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1411 if (!after(end_seq, tp->snd_una))
1412 return sacked;
1413
1414 if (!(sacked & TCPCB_SACKED_ACKED)) {
1415 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1416
1417 if (sacked & TCPCB_SACKED_RETRANS) {
1418 /* If the segment is not tagged as lost,
1419 * we do not clear RETRANS, believing
1420 * that retransmission is still in flight.
1421 */
1422 if (sacked & TCPCB_LOST) {
1423 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1424 tp->lost_out -= pcount;
1425 tp->retrans_out -= pcount;
1426 }
1427 } else {
1428 if (!(sacked & TCPCB_RETRANS)) {
1429 /* New sack for not retransmitted frame,
1430 * which was in hole. It is reordering.
1431 */
1432 if (before(start_seq,
1433 tcp_highest_sack_seq(tp)) &&
1434 before(start_seq, state->reord))
1435 state->reord = start_seq;
1436
1437 if (!after(end_seq, tp->high_seq))
1438 state->flag |= FLAG_ORIG_SACK_ACKED;
1439 if (state->first_sackt == 0)
1440 state->first_sackt = xmit_time;
1441 state->last_sackt = xmit_time;
1442 }
1443
1444 if (sacked & TCPCB_LOST) {
1445 sacked &= ~TCPCB_LOST;
1446 tp->lost_out -= pcount;
1447 }
1448 }
1449
1450 sacked |= TCPCB_SACKED_ACKED;
1451 state->flag |= FLAG_DATA_SACKED;
1452 tp->sacked_out += pcount;
1453 /* Out-of-order packets delivered */
1454 state->sack_delivered += pcount;
1455
1456 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1457 if (tp->lost_skb_hint &&
1458 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1459 tp->lost_cnt_hint += pcount;
1460 }
1461
1462 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1463 * frames and clear it. undo_retrans is decreased above, L|R frames
1464 * are accounted above as well.
1465 */
1466 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1467 sacked &= ~TCPCB_SACKED_RETRANS;
1468 tp->retrans_out -= pcount;
1469 }
1470
1471 return sacked;
1472}
1473
1474/* Shift newly-SACKed bytes from this skb to the immediately previous
1475 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1476 */
1477static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1478 struct sk_buff *skb,
1479 struct tcp_sacktag_state *state,
1480 unsigned int pcount, int shifted, int mss,
1481 bool dup_sack)
1482{
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1485 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1486
1487 BUG_ON(!pcount);
1488
1489 /* Adjust counters and hints for the newly sacked sequence
1490 * range but discard the return value since prev is already
1491 * marked. We must tag the range first because the seq
1492 * advancement below implicitly advances
1493 * tcp_highest_sack_seq() when skb is highest_sack.
1494 */
1495 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1496 start_seq, end_seq, dup_sack, pcount,
1497 tcp_skb_timestamp_us(skb));
1498 tcp_rate_skb_delivered(sk, skb, state->rate);
1499
1500 if (skb == tp->lost_skb_hint)
1501 tp->lost_cnt_hint += pcount;
1502
1503 TCP_SKB_CB(prev)->end_seq += shifted;
1504 TCP_SKB_CB(skb)->seq += shifted;
1505
1506 tcp_skb_pcount_add(prev, pcount);
1507 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1508 tcp_skb_pcount_add(skb, -pcount);
1509
1510 /* When we're adding to gso_segs == 1, gso_size will be zero,
1511 * in theory this shouldn't be necessary but as long as DSACK
1512 * code can come after this skb later on it's better to keep
1513 * setting gso_size to something.
1514 */
1515 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1516 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1517
1518 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1519 if (tcp_skb_pcount(skb) <= 1)
1520 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1521
1522 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1523 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1524
1525 if (skb->len > 0) {
1526 BUG_ON(!tcp_skb_pcount(skb));
1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1528 return false;
1529 }
1530
1531 /* Whole SKB was eaten :-) */
1532
1533 if (skb == tp->retransmit_skb_hint)
1534 tp->retransmit_skb_hint = prev;
1535 if (skb == tp->lost_skb_hint) {
1536 tp->lost_skb_hint = prev;
1537 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1538 }
1539
1540 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1541 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1542 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1543 TCP_SKB_CB(prev)->end_seq++;
1544
1545 if (skb == tcp_highest_sack(sk))
1546 tcp_advance_highest_sack(sk, skb);
1547
1548 tcp_skb_collapse_tstamp(prev, skb);
1549 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1550 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1551
1552 tcp_rtx_queue_unlink_and_free(skb, sk);
1553
1554 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1555
1556 return true;
1557}
1558
1559/* I wish gso_size would have a bit more sane initialization than
1560 * something-or-zero which complicates things
1561 */
1562static int tcp_skb_seglen(const struct sk_buff *skb)
1563{
1564 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1565}
1566
1567/* Shifting pages past head area doesn't work */
1568static int skb_can_shift(const struct sk_buff *skb)
1569{
1570 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1571}
1572
1573int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1574 int pcount, int shiftlen)
1575{
1576 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1577 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1578 * to make sure not storing more than 65535 * 8 bytes per skb,
1579 * even if current MSS is bigger.
1580 */
1581 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1582 return 0;
1583 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1584 return 0;
1585 return skb_shift(to, from, shiftlen);
1586}
1587
1588/* Try collapsing SACK blocks spanning across multiple skbs to a single
1589 * skb.
1590 */
1591static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1592 struct tcp_sacktag_state *state,
1593 u32 start_seq, u32 end_seq,
1594 bool dup_sack)
1595{
1596 struct tcp_sock *tp = tcp_sk(sk);
1597 struct sk_buff *prev;
1598 int mss;
1599 int pcount = 0;
1600 int len;
1601 int in_sack;
1602
1603 /* Normally R but no L won't result in plain S */
1604 if (!dup_sack &&
1605 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1606 goto fallback;
1607 if (!skb_can_shift(skb))
1608 goto fallback;
1609 /* This frame is about to be dropped (was ACKed). */
1610 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1611 goto fallback;
1612
1613 /* Can only happen with delayed DSACK + discard craziness */
1614 prev = skb_rb_prev(skb);
1615 if (!prev)
1616 goto fallback;
1617
1618 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1619 goto fallback;
1620
1621 if (!tcp_skb_can_collapse(prev, skb))
1622 goto fallback;
1623
1624 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1625 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1626
1627 if (in_sack) {
1628 len = skb->len;
1629 pcount = tcp_skb_pcount(skb);
1630 mss = tcp_skb_seglen(skb);
1631
1632 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1633 * drop this restriction as unnecessary
1634 */
1635 if (mss != tcp_skb_seglen(prev))
1636 goto fallback;
1637 } else {
1638 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1639 goto noop;
1640 /* CHECKME: This is non-MSS split case only?, this will
1641 * cause skipped skbs due to advancing loop btw, original
1642 * has that feature too
1643 */
1644 if (tcp_skb_pcount(skb) <= 1)
1645 goto noop;
1646
1647 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1648 if (!in_sack) {
1649 /* TODO: head merge to next could be attempted here
1650 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1651 * though it might not be worth of the additional hassle
1652 *
1653 * ...we can probably just fallback to what was done
1654 * previously. We could try merging non-SACKed ones
1655 * as well but it probably isn't going to buy off
1656 * because later SACKs might again split them, and
1657 * it would make skb timestamp tracking considerably
1658 * harder problem.
1659 */
1660 goto fallback;
1661 }
1662
1663 len = end_seq - TCP_SKB_CB(skb)->seq;
1664 BUG_ON(len < 0);
1665 BUG_ON(len > skb->len);
1666
1667 /* MSS boundaries should be honoured or else pcount will
1668 * severely break even though it makes things bit trickier.
1669 * Optimize common case to avoid most of the divides
1670 */
1671 mss = tcp_skb_mss(skb);
1672
1673 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1674 * drop this restriction as unnecessary
1675 */
1676 if (mss != tcp_skb_seglen(prev))
1677 goto fallback;
1678
1679 if (len == mss) {
1680 pcount = 1;
1681 } else if (len < mss) {
1682 goto noop;
1683 } else {
1684 pcount = len / mss;
1685 len = pcount * mss;
1686 }
1687 }
1688
1689 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1690 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1691 goto fallback;
1692
1693 if (!tcp_skb_shift(prev, skb, pcount, len))
1694 goto fallback;
1695 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1696 goto out;
1697
1698 /* Hole filled allows collapsing with the next as well, this is very
1699 * useful when hole on every nth skb pattern happens
1700 */
1701 skb = skb_rb_next(prev);
1702 if (!skb)
1703 goto out;
1704
1705 if (!skb_can_shift(skb) ||
1706 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1707 (mss != tcp_skb_seglen(skb)))
1708 goto out;
1709
1710 if (!tcp_skb_can_collapse(prev, skb))
1711 goto out;
1712 len = skb->len;
1713 pcount = tcp_skb_pcount(skb);
1714 if (tcp_skb_shift(prev, skb, pcount, len))
1715 tcp_shifted_skb(sk, prev, skb, state, pcount,
1716 len, mss, 0);
1717
1718out:
1719 return prev;
1720
1721noop:
1722 return skb;
1723
1724fallback:
1725 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1726 return NULL;
1727}
1728
1729static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1730 struct tcp_sack_block *next_dup,
1731 struct tcp_sacktag_state *state,
1732 u32 start_seq, u32 end_seq,
1733 bool dup_sack_in)
1734{
1735 struct tcp_sock *tp = tcp_sk(sk);
1736 struct sk_buff *tmp;
1737
1738 skb_rbtree_walk_from(skb) {
1739 int in_sack = 0;
1740 bool dup_sack = dup_sack_in;
1741
1742 /* queue is in-order => we can short-circuit the walk early */
1743 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1744 break;
1745
1746 if (next_dup &&
1747 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1748 in_sack = tcp_match_skb_to_sack(sk, skb,
1749 next_dup->start_seq,
1750 next_dup->end_seq);
1751 if (in_sack > 0)
1752 dup_sack = true;
1753 }
1754
1755 /* skb reference here is a bit tricky to get right, since
1756 * shifting can eat and free both this skb and the next,
1757 * so not even _safe variant of the loop is enough.
1758 */
1759 if (in_sack <= 0) {
1760 tmp = tcp_shift_skb_data(sk, skb, state,
1761 start_seq, end_seq, dup_sack);
1762 if (tmp) {
1763 if (tmp != skb) {
1764 skb = tmp;
1765 continue;
1766 }
1767
1768 in_sack = 0;
1769 } else {
1770 in_sack = tcp_match_skb_to_sack(sk, skb,
1771 start_seq,
1772 end_seq);
1773 }
1774 }
1775
1776 if (unlikely(in_sack < 0))
1777 break;
1778
1779 if (in_sack) {
1780 TCP_SKB_CB(skb)->sacked =
1781 tcp_sacktag_one(sk,
1782 state,
1783 TCP_SKB_CB(skb)->sacked,
1784 TCP_SKB_CB(skb)->seq,
1785 TCP_SKB_CB(skb)->end_seq,
1786 dup_sack,
1787 tcp_skb_pcount(skb),
1788 tcp_skb_timestamp_us(skb));
1789 tcp_rate_skb_delivered(sk, skb, state->rate);
1790 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1791 list_del_init(&skb->tcp_tsorted_anchor);
1792
1793 if (!before(TCP_SKB_CB(skb)->seq,
1794 tcp_highest_sack_seq(tp)))
1795 tcp_advance_highest_sack(sk, skb);
1796 }
1797 }
1798 return skb;
1799}
1800
1801static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1802{
1803 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1804 struct sk_buff *skb;
1805
1806 while (*p) {
1807 parent = *p;
1808 skb = rb_to_skb(parent);
1809 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1810 p = &parent->rb_left;
1811 continue;
1812 }
1813 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1814 p = &parent->rb_right;
1815 continue;
1816 }
1817 return skb;
1818 }
1819 return NULL;
1820}
1821
1822static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1823 u32 skip_to_seq)
1824{
1825 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1826 return skb;
1827
1828 return tcp_sacktag_bsearch(sk, skip_to_seq);
1829}
1830
1831static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1832 struct sock *sk,
1833 struct tcp_sack_block *next_dup,
1834 struct tcp_sacktag_state *state,
1835 u32 skip_to_seq)
1836{
1837 if (!next_dup)
1838 return skb;
1839
1840 if (before(next_dup->start_seq, skip_to_seq)) {
1841 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1842 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1843 next_dup->start_seq, next_dup->end_seq,
1844 1);
1845 }
1846
1847 return skb;
1848}
1849
1850static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1851{
1852 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1853}
1854
1855static int
1856tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1857 u32 prior_snd_una, struct tcp_sacktag_state *state)
1858{
1859 struct tcp_sock *tp = tcp_sk(sk);
1860 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1861 TCP_SKB_CB(ack_skb)->sacked);
1862 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1863 struct tcp_sack_block sp[TCP_NUM_SACKS];
1864 struct tcp_sack_block *cache;
1865 struct sk_buff *skb;
1866 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1867 int used_sacks;
1868 bool found_dup_sack = false;
1869 int i, j;
1870 int first_sack_index;
1871
1872 state->flag = 0;
1873 state->reord = tp->snd_nxt;
1874
1875 if (!tp->sacked_out)
1876 tcp_highest_sack_reset(sk);
1877
1878 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1879 num_sacks, prior_snd_una, state);
1880
1881 /* Eliminate too old ACKs, but take into
1882 * account more or less fresh ones, they can
1883 * contain valid SACK info.
1884 */
1885 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1886 return 0;
1887
1888 if (!tp->packets_out)
1889 goto out;
1890
1891 used_sacks = 0;
1892 first_sack_index = 0;
1893 for (i = 0; i < num_sacks; i++) {
1894 bool dup_sack = !i && found_dup_sack;
1895
1896 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1897 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1898
1899 if (!tcp_is_sackblock_valid(tp, dup_sack,
1900 sp[used_sacks].start_seq,
1901 sp[used_sacks].end_seq)) {
1902 int mib_idx;
1903
1904 if (dup_sack) {
1905 if (!tp->undo_marker)
1906 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1907 else
1908 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1909 } else {
1910 /* Don't count olds caused by ACK reordering */
1911 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1912 !after(sp[used_sacks].end_seq, tp->snd_una))
1913 continue;
1914 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1915 }
1916
1917 NET_INC_STATS(sock_net(sk), mib_idx);
1918 if (i == 0)
1919 first_sack_index = -1;
1920 continue;
1921 }
1922
1923 /* Ignore very old stuff early */
1924 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1925 if (i == 0)
1926 first_sack_index = -1;
1927 continue;
1928 }
1929
1930 used_sacks++;
1931 }
1932
1933 /* order SACK blocks to allow in order walk of the retrans queue */
1934 for (i = used_sacks - 1; i > 0; i--) {
1935 for (j = 0; j < i; j++) {
1936 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1937 swap(sp[j], sp[j + 1]);
1938
1939 /* Track where the first SACK block goes to */
1940 if (j == first_sack_index)
1941 first_sack_index = j + 1;
1942 }
1943 }
1944 }
1945
1946 state->mss_now = tcp_current_mss(sk);
1947 skb = NULL;
1948 i = 0;
1949
1950 if (!tp->sacked_out) {
1951 /* It's already past, so skip checking against it */
1952 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1953 } else {
1954 cache = tp->recv_sack_cache;
1955 /* Skip empty blocks in at head of the cache */
1956 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1957 !cache->end_seq)
1958 cache++;
1959 }
1960
1961 while (i < used_sacks) {
1962 u32 start_seq = sp[i].start_seq;
1963 u32 end_seq = sp[i].end_seq;
1964 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1965 struct tcp_sack_block *next_dup = NULL;
1966
1967 if (found_dup_sack && ((i + 1) == first_sack_index))
1968 next_dup = &sp[i + 1];
1969
1970 /* Skip too early cached blocks */
1971 while (tcp_sack_cache_ok(tp, cache) &&
1972 !before(start_seq, cache->end_seq))
1973 cache++;
1974
1975 /* Can skip some work by looking recv_sack_cache? */
1976 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1977 after(end_seq, cache->start_seq)) {
1978
1979 /* Head todo? */
1980 if (before(start_seq, cache->start_seq)) {
1981 skb = tcp_sacktag_skip(skb, sk, start_seq);
1982 skb = tcp_sacktag_walk(skb, sk, next_dup,
1983 state,
1984 start_seq,
1985 cache->start_seq,
1986 dup_sack);
1987 }
1988
1989 /* Rest of the block already fully processed? */
1990 if (!after(end_seq, cache->end_seq))
1991 goto advance_sp;
1992
1993 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1994 state,
1995 cache->end_seq);
1996
1997 /* ...tail remains todo... */
1998 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1999 /* ...but better entrypoint exists! */
2000 skb = tcp_highest_sack(sk);
2001 if (!skb)
2002 break;
2003 cache++;
2004 goto walk;
2005 }
2006
2007 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2008 /* Check overlap against next cached too (past this one already) */
2009 cache++;
2010 continue;
2011 }
2012
2013 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2014 skb = tcp_highest_sack(sk);
2015 if (!skb)
2016 break;
2017 }
2018 skb = tcp_sacktag_skip(skb, sk, start_seq);
2019
2020walk:
2021 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2022 start_seq, end_seq, dup_sack);
2023
2024advance_sp:
2025 i++;
2026 }
2027
2028 /* Clear the head of the cache sack blocks so we can skip it next time */
2029 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2030 tp->recv_sack_cache[i].start_seq = 0;
2031 tp->recv_sack_cache[i].end_seq = 0;
2032 }
2033 for (j = 0; j < used_sacks; j++)
2034 tp->recv_sack_cache[i++] = sp[j];
2035
2036 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2037 tcp_check_sack_reordering(sk, state->reord, 0);
2038
2039 tcp_verify_left_out(tp);
2040out:
2041
2042#if FASTRETRANS_DEBUG > 0
2043 WARN_ON((int)tp->sacked_out < 0);
2044 WARN_ON((int)tp->lost_out < 0);
2045 WARN_ON((int)tp->retrans_out < 0);
2046 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2047#endif
2048 return state->flag;
2049}
2050
2051/* Limits sacked_out so that sum with lost_out isn't ever larger than
2052 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2053 */
2054static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2055{
2056 u32 holes;
2057
2058 holes = max(tp->lost_out, 1U);
2059 holes = min(holes, tp->packets_out);
2060
2061 if ((tp->sacked_out + holes) > tp->packets_out) {
2062 tp->sacked_out = tp->packets_out - holes;
2063 return true;
2064 }
2065 return false;
2066}
2067
2068/* If we receive more dupacks than we expected counting segments
2069 * in assumption of absent reordering, interpret this as reordering.
2070 * The only another reason could be bug in receiver TCP.
2071 */
2072static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2073{
2074 struct tcp_sock *tp = tcp_sk(sk);
2075
2076 if (!tcp_limit_reno_sacked(tp))
2077 return;
2078
2079 tp->reordering = min_t(u32, tp->packets_out + addend,
2080 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2081 tp->reord_seen++;
2082 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2083}
2084
2085/* Emulate SACKs for SACKless connection: account for a new dupack. */
2086
2087static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2088{
2089 if (num_dupack) {
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 u32 prior_sacked = tp->sacked_out;
2092 s32 delivered;
2093
2094 tp->sacked_out += num_dupack;
2095 tcp_check_reno_reordering(sk, 0);
2096 delivered = tp->sacked_out - prior_sacked;
2097 if (delivered > 0)
2098 tcp_count_delivered(tp, delivered, ece_ack);
2099 tcp_verify_left_out(tp);
2100 }
2101}
2102
2103/* Account for ACK, ACKing some data in Reno Recovery phase. */
2104
2105static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2106{
2107 struct tcp_sock *tp = tcp_sk(sk);
2108
2109 if (acked > 0) {
2110 /* One ACK acked hole. The rest eat duplicate ACKs. */
2111 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2112 ece_ack);
2113 if (acked - 1 >= tp->sacked_out)
2114 tp->sacked_out = 0;
2115 else
2116 tp->sacked_out -= acked - 1;
2117 }
2118 tcp_check_reno_reordering(sk, acked);
2119 tcp_verify_left_out(tp);
2120}
2121
2122static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2123{
2124 tp->sacked_out = 0;
2125}
2126
2127void tcp_clear_retrans(struct tcp_sock *tp)
2128{
2129 tp->retrans_out = 0;
2130 tp->lost_out = 0;
2131 tp->undo_marker = 0;
2132 tp->undo_retrans = -1;
2133 tp->sacked_out = 0;
2134 tp->rto_stamp = 0;
2135 tp->total_rto = 0;
2136 tp->total_rto_recoveries = 0;
2137 tp->total_rto_time = 0;
2138}
2139
2140static inline void tcp_init_undo(struct tcp_sock *tp)
2141{
2142 tp->undo_marker = tp->snd_una;
2143
2144 /* Retransmission still in flight may cause DSACKs later. */
2145 /* First, account for regular retransmits in flight: */
2146 tp->undo_retrans = tp->retrans_out;
2147 /* Next, account for TLP retransmits in flight: */
2148 if (tp->tlp_high_seq && tp->tlp_retrans)
2149 tp->undo_retrans++;
2150 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2151 if (!tp->undo_retrans)
2152 tp->undo_retrans = -1;
2153}
2154
2155static bool tcp_is_rack(const struct sock *sk)
2156{
2157 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2158 TCP_RACK_LOSS_DETECTION;
2159}
2160
2161/* If we detect SACK reneging, forget all SACK information
2162 * and reset tags completely, otherwise preserve SACKs. If receiver
2163 * dropped its ofo queue, we will know this due to reneging detection.
2164 */
2165static void tcp_timeout_mark_lost(struct sock *sk)
2166{
2167 struct tcp_sock *tp = tcp_sk(sk);
2168 struct sk_buff *skb, *head;
2169 bool is_reneg; /* is receiver reneging on SACKs? */
2170
2171 head = tcp_rtx_queue_head(sk);
2172 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2173 if (is_reneg) {
2174 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2175 tp->sacked_out = 0;
2176 /* Mark SACK reneging until we recover from this loss event. */
2177 tp->is_sack_reneg = 1;
2178 } else if (tcp_is_reno(tp)) {
2179 tcp_reset_reno_sack(tp);
2180 }
2181
2182 skb = head;
2183 skb_rbtree_walk_from(skb) {
2184 if (is_reneg)
2185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2186 else if (tcp_is_rack(sk) && skb != head &&
2187 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2188 continue; /* Don't mark recently sent ones lost yet */
2189 tcp_mark_skb_lost(sk, skb);
2190 }
2191 tcp_verify_left_out(tp);
2192 tcp_clear_all_retrans_hints(tp);
2193}
2194
2195/* Enter Loss state. */
2196void tcp_enter_loss(struct sock *sk)
2197{
2198 const struct inet_connection_sock *icsk = inet_csk(sk);
2199 struct tcp_sock *tp = tcp_sk(sk);
2200 struct net *net = sock_net(sk);
2201 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2202 u8 reordering;
2203
2204 tcp_timeout_mark_lost(sk);
2205
2206 /* Reduce ssthresh if it has not yet been made inside this window. */
2207 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2208 !after(tp->high_seq, tp->snd_una) ||
2209 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2210 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2211 tp->prior_cwnd = tcp_snd_cwnd(tp);
2212 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2213 tcp_ca_event(sk, CA_EVENT_LOSS);
2214 tcp_init_undo(tp);
2215 }
2216 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2217 tp->snd_cwnd_cnt = 0;
2218 tp->snd_cwnd_stamp = tcp_jiffies32;
2219
2220 /* Timeout in disordered state after receiving substantial DUPACKs
2221 * suggests that the degree of reordering is over-estimated.
2222 */
2223 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2224 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2225 tp->sacked_out >= reordering)
2226 tp->reordering = min_t(unsigned int, tp->reordering,
2227 reordering);
2228
2229 tcp_set_ca_state(sk, TCP_CA_Loss);
2230 tp->high_seq = tp->snd_nxt;
2231 tp->tlp_high_seq = 0;
2232 tcp_ecn_queue_cwr(tp);
2233
2234 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2235 * loss recovery is underway except recurring timeout(s) on
2236 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2237 */
2238 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2239 (new_recovery || icsk->icsk_retransmits) &&
2240 !inet_csk(sk)->icsk_mtup.probe_size;
2241}
2242
2243/* If ACK arrived pointing to a remembered SACK, it means that our
2244 * remembered SACKs do not reflect real state of receiver i.e.
2245 * receiver _host_ is heavily congested (or buggy).
2246 *
2247 * To avoid big spurious retransmission bursts due to transient SACK
2248 * scoreboard oddities that look like reneging, we give the receiver a
2249 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2250 * restore sanity to the SACK scoreboard. If the apparent reneging
2251 * persists until this RTO then we'll clear the SACK scoreboard.
2252 */
2253static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2254{
2255 if (*ack_flag & FLAG_SACK_RENEGING &&
2256 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2257 struct tcp_sock *tp = tcp_sk(sk);
2258 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2259 msecs_to_jiffies(10));
2260
2261 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2262 delay, TCP_RTO_MAX);
2263 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2264 return true;
2265 }
2266 return false;
2267}
2268
2269/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2270 * counter when SACK is enabled (without SACK, sacked_out is used for
2271 * that purpose).
2272 *
2273 * With reordering, holes may still be in flight, so RFC3517 recovery
2274 * uses pure sacked_out (total number of SACKed segments) even though
2275 * it violates the RFC that uses duplicate ACKs, often these are equal
2276 * but when e.g. out-of-window ACKs or packet duplication occurs,
2277 * they differ. Since neither occurs due to loss, TCP should really
2278 * ignore them.
2279 */
2280static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2281{
2282 return tp->sacked_out + 1;
2283}
2284
2285/* Linux NewReno/SACK/ECN state machine.
2286 * --------------------------------------
2287 *
2288 * "Open" Normal state, no dubious events, fast path.
2289 * "Disorder" In all the respects it is "Open",
2290 * but requires a bit more attention. It is entered when
2291 * we see some SACKs or dupacks. It is split of "Open"
2292 * mainly to move some processing from fast path to slow one.
2293 * "CWR" CWND was reduced due to some Congestion Notification event.
2294 * It can be ECN, ICMP source quench, local device congestion.
2295 * "Recovery" CWND was reduced, we are fast-retransmitting.
2296 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2297 *
2298 * tcp_fastretrans_alert() is entered:
2299 * - each incoming ACK, if state is not "Open"
2300 * - when arrived ACK is unusual, namely:
2301 * * SACK
2302 * * Duplicate ACK.
2303 * * ECN ECE.
2304 *
2305 * Counting packets in flight is pretty simple.
2306 *
2307 * in_flight = packets_out - left_out + retrans_out
2308 *
2309 * packets_out is SND.NXT-SND.UNA counted in packets.
2310 *
2311 * retrans_out is number of retransmitted segments.
2312 *
2313 * left_out is number of segments left network, but not ACKed yet.
2314 *
2315 * left_out = sacked_out + lost_out
2316 *
2317 * sacked_out: Packets, which arrived to receiver out of order
2318 * and hence not ACKed. With SACKs this number is simply
2319 * amount of SACKed data. Even without SACKs
2320 * it is easy to give pretty reliable estimate of this number,
2321 * counting duplicate ACKs.
2322 *
2323 * lost_out: Packets lost by network. TCP has no explicit
2324 * "loss notification" feedback from network (for now).
2325 * It means that this number can be only _guessed_.
2326 * Actually, it is the heuristics to predict lossage that
2327 * distinguishes different algorithms.
2328 *
2329 * F.e. after RTO, when all the queue is considered as lost,
2330 * lost_out = packets_out and in_flight = retrans_out.
2331 *
2332 * Essentially, we have now a few algorithms detecting
2333 * lost packets.
2334 *
2335 * If the receiver supports SACK:
2336 *
2337 * RFC6675/3517: It is the conventional algorithm. A packet is
2338 * considered lost if the number of higher sequence packets
2339 * SACKed is greater than or equal the DUPACK thoreshold
2340 * (reordering). This is implemented in tcp_mark_head_lost and
2341 * tcp_update_scoreboard.
2342 *
2343 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2344 * (2017-) that checks timing instead of counting DUPACKs.
2345 * Essentially a packet is considered lost if it's not S/ACKed
2346 * after RTT + reordering_window, where both metrics are
2347 * dynamically measured and adjusted. This is implemented in
2348 * tcp_rack_mark_lost.
2349 *
2350 * If the receiver does not support SACK:
2351 *
2352 * NewReno (RFC6582): in Recovery we assume that one segment
2353 * is lost (classic Reno). While we are in Recovery and
2354 * a partial ACK arrives, we assume that one more packet
2355 * is lost (NewReno). This heuristics are the same in NewReno
2356 * and SACK.
2357 *
2358 * Really tricky (and requiring careful tuning) part of algorithm
2359 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2360 * The first determines the moment _when_ we should reduce CWND and,
2361 * hence, slow down forward transmission. In fact, it determines the moment
2362 * when we decide that hole is caused by loss, rather than by a reorder.
2363 *
2364 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2365 * holes, caused by lost packets.
2366 *
2367 * And the most logically complicated part of algorithm is undo
2368 * heuristics. We detect false retransmits due to both too early
2369 * fast retransmit (reordering) and underestimated RTO, analyzing
2370 * timestamps and D-SACKs. When we detect that some segments were
2371 * retransmitted by mistake and CWND reduction was wrong, we undo
2372 * window reduction and abort recovery phase. This logic is hidden
2373 * inside several functions named tcp_try_undo_<something>.
2374 */
2375
2376/* This function decides, when we should leave Disordered state
2377 * and enter Recovery phase, reducing congestion window.
2378 *
2379 * Main question: may we further continue forward transmission
2380 * with the same cwnd?
2381 */
2382static bool tcp_time_to_recover(struct sock *sk, int flag)
2383{
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 /* Trick#1: The loss is proven. */
2387 if (tp->lost_out)
2388 return true;
2389
2390 /* Not-A-Trick#2 : Classic rule... */
2391 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2392 return true;
2393
2394 return false;
2395}
2396
2397/* Detect loss in event "A" above by marking head of queue up as lost.
2398 * For RFC3517 SACK, a segment is considered lost if it
2399 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2400 * the maximum SACKed segments to pass before reaching this limit.
2401 */
2402static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2403{
2404 struct tcp_sock *tp = tcp_sk(sk);
2405 struct sk_buff *skb;
2406 int cnt;
2407 /* Use SACK to deduce losses of new sequences sent during recovery */
2408 const u32 loss_high = tp->snd_nxt;
2409
2410 WARN_ON(packets > tp->packets_out);
2411 skb = tp->lost_skb_hint;
2412 if (skb) {
2413 /* Head already handled? */
2414 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2415 return;
2416 cnt = tp->lost_cnt_hint;
2417 } else {
2418 skb = tcp_rtx_queue_head(sk);
2419 cnt = 0;
2420 }
2421
2422 skb_rbtree_walk_from(skb) {
2423 /* TODO: do this better */
2424 /* this is not the most efficient way to do this... */
2425 tp->lost_skb_hint = skb;
2426 tp->lost_cnt_hint = cnt;
2427
2428 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2429 break;
2430
2431 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2432 cnt += tcp_skb_pcount(skb);
2433
2434 if (cnt > packets)
2435 break;
2436
2437 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2438 tcp_mark_skb_lost(sk, skb);
2439
2440 if (mark_head)
2441 break;
2442 }
2443 tcp_verify_left_out(tp);
2444}
2445
2446/* Account newly detected lost packet(s) */
2447
2448static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2449{
2450 struct tcp_sock *tp = tcp_sk(sk);
2451
2452 if (tcp_is_sack(tp)) {
2453 int sacked_upto = tp->sacked_out - tp->reordering;
2454 if (sacked_upto >= 0)
2455 tcp_mark_head_lost(sk, sacked_upto, 0);
2456 else if (fast_rexmit)
2457 tcp_mark_head_lost(sk, 1, 1);
2458 }
2459}
2460
2461static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2462{
2463 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2464 before(tp->rx_opt.rcv_tsecr, when);
2465}
2466
2467/* skb is spurious retransmitted if the returned timestamp echo
2468 * reply is prior to the skb transmission time
2469 */
2470static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2471 const struct sk_buff *skb)
2472{
2473 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2474 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2475}
2476
2477/* Nothing was retransmitted or returned timestamp is less
2478 * than timestamp of the first retransmission.
2479 */
2480static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2481{
2482 const struct sock *sk = (const struct sock *)tp;
2483
2484 if (tp->retrans_stamp &&
2485 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2486 return true; /* got echoed TS before first retransmission */
2487
2488 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2489 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2490 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2491 * retrans_stamp even if we had retransmitted the SYN.
2492 */
2493 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2494 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2495 return true; /* nothing was retransmitted */
2496
2497 return false;
2498}
2499
2500/* Undo procedures. */
2501
2502/* We can clear retrans_stamp when there are no retransmissions in the
2503 * window. It would seem that it is trivially available for us in
2504 * tp->retrans_out, however, that kind of assumptions doesn't consider
2505 * what will happen if errors occur when sending retransmission for the
2506 * second time. ...It could the that such segment has only
2507 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2508 * the head skb is enough except for some reneging corner cases that
2509 * are not worth the effort.
2510 *
2511 * Main reason for all this complexity is the fact that connection dying
2512 * time now depends on the validity of the retrans_stamp, in particular,
2513 * that successive retransmissions of a segment must not advance
2514 * retrans_stamp under any conditions.
2515 */
2516static bool tcp_any_retrans_done(const struct sock *sk)
2517{
2518 const struct tcp_sock *tp = tcp_sk(sk);
2519 struct sk_buff *skb;
2520
2521 if (tp->retrans_out)
2522 return true;
2523
2524 skb = tcp_rtx_queue_head(sk);
2525 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2526 return true;
2527
2528 return false;
2529}
2530
2531/* If loss recovery is finished and there are no retransmits out in the
2532 * network, then we clear retrans_stamp so that upon the next loss recovery
2533 * retransmits_timed_out() and timestamp-undo are using the correct value.
2534 */
2535static void tcp_retrans_stamp_cleanup(struct sock *sk)
2536{
2537 if (!tcp_any_retrans_done(sk))
2538 tcp_sk(sk)->retrans_stamp = 0;
2539}
2540
2541static void DBGUNDO(struct sock *sk, const char *msg)
2542{
2543#if FASTRETRANS_DEBUG > 1
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 struct inet_sock *inet = inet_sk(sk);
2546
2547 if (sk->sk_family == AF_INET) {
2548 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2549 msg,
2550 &inet->inet_daddr, ntohs(inet->inet_dport),
2551 tcp_snd_cwnd(tp), tcp_left_out(tp),
2552 tp->snd_ssthresh, tp->prior_ssthresh,
2553 tp->packets_out);
2554 }
2555#if IS_ENABLED(CONFIG_IPV6)
2556 else if (sk->sk_family == AF_INET6) {
2557 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2558 msg,
2559 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2560 tcp_snd_cwnd(tp), tcp_left_out(tp),
2561 tp->snd_ssthresh, tp->prior_ssthresh,
2562 tp->packets_out);
2563 }
2564#endif
2565#endif
2566}
2567
2568static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2569{
2570 struct tcp_sock *tp = tcp_sk(sk);
2571
2572 if (unmark_loss) {
2573 struct sk_buff *skb;
2574
2575 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2576 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2577 }
2578 tp->lost_out = 0;
2579 tcp_clear_all_retrans_hints(tp);
2580 }
2581
2582 if (tp->prior_ssthresh) {
2583 const struct inet_connection_sock *icsk = inet_csk(sk);
2584
2585 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2586
2587 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2588 tp->snd_ssthresh = tp->prior_ssthresh;
2589 tcp_ecn_withdraw_cwr(tp);
2590 }
2591 }
2592 tp->snd_cwnd_stamp = tcp_jiffies32;
2593 tp->undo_marker = 0;
2594 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2595}
2596
2597static inline bool tcp_may_undo(const struct tcp_sock *tp)
2598{
2599 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2600}
2601
2602static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2603{
2604 struct tcp_sock *tp = tcp_sk(sk);
2605
2606 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2607 /* Hold old state until something *above* high_seq
2608 * is ACKed. For Reno it is MUST to prevent false
2609 * fast retransmits (RFC2582). SACK TCP is safe. */
2610 if (!tcp_any_retrans_done(sk))
2611 tp->retrans_stamp = 0;
2612 return true;
2613 }
2614 return false;
2615}
2616
2617/* People celebrate: "We love our President!" */
2618static bool tcp_try_undo_recovery(struct sock *sk)
2619{
2620 struct tcp_sock *tp = tcp_sk(sk);
2621
2622 if (tcp_may_undo(tp)) {
2623 int mib_idx;
2624
2625 /* Happy end! We did not retransmit anything
2626 * or our original transmission succeeded.
2627 */
2628 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2629 tcp_undo_cwnd_reduction(sk, false);
2630 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2631 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2632 else
2633 mib_idx = LINUX_MIB_TCPFULLUNDO;
2634
2635 NET_INC_STATS(sock_net(sk), mib_idx);
2636 } else if (tp->rack.reo_wnd_persist) {
2637 tp->rack.reo_wnd_persist--;
2638 }
2639 if (tcp_is_non_sack_preventing_reopen(sk))
2640 return true;
2641 tcp_set_ca_state(sk, TCP_CA_Open);
2642 tp->is_sack_reneg = 0;
2643 return false;
2644}
2645
2646/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2647static bool tcp_try_undo_dsack(struct sock *sk)
2648{
2649 struct tcp_sock *tp = tcp_sk(sk);
2650
2651 if (tp->undo_marker && !tp->undo_retrans) {
2652 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2653 tp->rack.reo_wnd_persist + 1);
2654 DBGUNDO(sk, "D-SACK");
2655 tcp_undo_cwnd_reduction(sk, false);
2656 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2657 return true;
2658 }
2659 return false;
2660}
2661
2662/* Undo during loss recovery after partial ACK or using F-RTO. */
2663static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2664{
2665 struct tcp_sock *tp = tcp_sk(sk);
2666
2667 if (frto_undo || tcp_may_undo(tp)) {
2668 tcp_undo_cwnd_reduction(sk, true);
2669
2670 DBGUNDO(sk, "partial loss");
2671 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2672 if (frto_undo)
2673 NET_INC_STATS(sock_net(sk),
2674 LINUX_MIB_TCPSPURIOUSRTOS);
2675 inet_csk(sk)->icsk_retransmits = 0;
2676 if (tcp_is_non_sack_preventing_reopen(sk))
2677 return true;
2678 if (frto_undo || tcp_is_sack(tp)) {
2679 tcp_set_ca_state(sk, TCP_CA_Open);
2680 tp->is_sack_reneg = 0;
2681 }
2682 return true;
2683 }
2684 return false;
2685}
2686
2687/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2688 * It computes the number of packets to send (sndcnt) based on packets newly
2689 * delivered:
2690 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2691 * cwnd reductions across a full RTT.
2692 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2693 * But when SND_UNA is acked without further losses,
2694 * slow starts cwnd up to ssthresh to speed up the recovery.
2695 */
2696static void tcp_init_cwnd_reduction(struct sock *sk)
2697{
2698 struct tcp_sock *tp = tcp_sk(sk);
2699
2700 tp->high_seq = tp->snd_nxt;
2701 tp->tlp_high_seq = 0;
2702 tp->snd_cwnd_cnt = 0;
2703 tp->prior_cwnd = tcp_snd_cwnd(tp);
2704 tp->prr_delivered = 0;
2705 tp->prr_out = 0;
2706 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2707 tcp_ecn_queue_cwr(tp);
2708}
2709
2710void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2711{
2712 struct tcp_sock *tp = tcp_sk(sk);
2713 int sndcnt = 0;
2714 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2715
2716 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2717 return;
2718
2719 tp->prr_delivered += newly_acked_sacked;
2720 if (delta < 0) {
2721 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2722 tp->prior_cwnd - 1;
2723 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2724 } else {
2725 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2726 newly_acked_sacked);
2727 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2728 sndcnt++;
2729 sndcnt = min(delta, sndcnt);
2730 }
2731 /* Force a fast retransmit upon entering fast recovery */
2732 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2733 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2734}
2735
2736static inline void tcp_end_cwnd_reduction(struct sock *sk)
2737{
2738 struct tcp_sock *tp = tcp_sk(sk);
2739
2740 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2741 return;
2742
2743 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2744 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2745 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2746 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2747 tp->snd_cwnd_stamp = tcp_jiffies32;
2748 }
2749 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2750}
2751
2752/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2753void tcp_enter_cwr(struct sock *sk)
2754{
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 tp->prior_ssthresh = 0;
2758 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2759 tp->undo_marker = 0;
2760 tcp_init_cwnd_reduction(sk);
2761 tcp_set_ca_state(sk, TCP_CA_CWR);
2762 }
2763}
2764EXPORT_SYMBOL(tcp_enter_cwr);
2765
2766static void tcp_try_keep_open(struct sock *sk)
2767{
2768 struct tcp_sock *tp = tcp_sk(sk);
2769 int state = TCP_CA_Open;
2770
2771 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2772 state = TCP_CA_Disorder;
2773
2774 if (inet_csk(sk)->icsk_ca_state != state) {
2775 tcp_set_ca_state(sk, state);
2776 tp->high_seq = tp->snd_nxt;
2777 }
2778}
2779
2780static void tcp_try_to_open(struct sock *sk, int flag)
2781{
2782 struct tcp_sock *tp = tcp_sk(sk);
2783
2784 tcp_verify_left_out(tp);
2785
2786 if (!tcp_any_retrans_done(sk))
2787 tp->retrans_stamp = 0;
2788
2789 if (flag & FLAG_ECE)
2790 tcp_enter_cwr(sk);
2791
2792 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2793 tcp_try_keep_open(sk);
2794 }
2795}
2796
2797static void tcp_mtup_probe_failed(struct sock *sk)
2798{
2799 struct inet_connection_sock *icsk = inet_csk(sk);
2800
2801 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2802 icsk->icsk_mtup.probe_size = 0;
2803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2804}
2805
2806static void tcp_mtup_probe_success(struct sock *sk)
2807{
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 struct inet_connection_sock *icsk = inet_csk(sk);
2810 u64 val;
2811
2812 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2813
2814 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2815 do_div(val, icsk->icsk_mtup.probe_size);
2816 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2817 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2818
2819 tp->snd_cwnd_cnt = 0;
2820 tp->snd_cwnd_stamp = tcp_jiffies32;
2821 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2822
2823 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2824 icsk->icsk_mtup.probe_size = 0;
2825 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2827}
2828
2829/* Sometimes we deduce that packets have been dropped due to reasons other than
2830 * congestion, like path MTU reductions or failed client TFO attempts. In these
2831 * cases we call this function to retransmit as many packets as cwnd allows,
2832 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2833 * non-zero value (and may do so in a later calling context due to TSQ), we
2834 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2835 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2836 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2837 * prematurely).
2838 */
2839static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2840{
2841 const struct inet_connection_sock *icsk = inet_csk(sk);
2842 struct tcp_sock *tp = tcp_sk(sk);
2843
2844 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2845 tp->high_seq = tp->snd_nxt;
2846 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2847 tp->prior_ssthresh = 0;
2848 tp->undo_marker = 0;
2849 tcp_set_ca_state(sk, TCP_CA_Loss);
2850 }
2851 tcp_xmit_retransmit_queue(sk);
2852}
2853
2854/* Do a simple retransmit without using the backoff mechanisms in
2855 * tcp_timer. This is used for path mtu discovery.
2856 * The socket is already locked here.
2857 */
2858void tcp_simple_retransmit(struct sock *sk)
2859{
2860 struct tcp_sock *tp = tcp_sk(sk);
2861 struct sk_buff *skb;
2862 int mss;
2863
2864 /* A fastopen SYN request is stored as two separate packets within
2865 * the retransmit queue, this is done by tcp_send_syn_data().
2866 * As a result simply checking the MSS of the frames in the queue
2867 * will not work for the SYN packet.
2868 *
2869 * Us being here is an indication of a path MTU issue so we can
2870 * assume that the fastopen SYN was lost and just mark all the
2871 * frames in the retransmit queue as lost. We will use an MSS of
2872 * -1 to mark all frames as lost, otherwise compute the current MSS.
2873 */
2874 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2875 mss = -1;
2876 else
2877 mss = tcp_current_mss(sk);
2878
2879 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2880 if (tcp_skb_seglen(skb) > mss)
2881 tcp_mark_skb_lost(sk, skb);
2882 }
2883
2884 tcp_clear_retrans_hints_partial(tp);
2885
2886 if (!tp->lost_out)
2887 return;
2888
2889 if (tcp_is_reno(tp))
2890 tcp_limit_reno_sacked(tp);
2891
2892 tcp_verify_left_out(tp);
2893
2894 /* Don't muck with the congestion window here.
2895 * Reason is that we do not increase amount of _data_
2896 * in network, but units changed and effective
2897 * cwnd/ssthresh really reduced now.
2898 */
2899 tcp_non_congestion_loss_retransmit(sk);
2900}
2901EXPORT_SYMBOL(tcp_simple_retransmit);
2902
2903void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2904{
2905 struct tcp_sock *tp = tcp_sk(sk);
2906 int mib_idx;
2907
2908 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2909 tcp_retrans_stamp_cleanup(sk);
2910
2911 if (tcp_is_reno(tp))
2912 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2913 else
2914 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2915
2916 NET_INC_STATS(sock_net(sk), mib_idx);
2917
2918 tp->prior_ssthresh = 0;
2919 tcp_init_undo(tp);
2920
2921 if (!tcp_in_cwnd_reduction(sk)) {
2922 if (!ece_ack)
2923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924 tcp_init_cwnd_reduction(sk);
2925 }
2926 tcp_set_ca_state(sk, TCP_CA_Recovery);
2927}
2928
2929static void tcp_update_rto_time(struct tcp_sock *tp)
2930{
2931 if (tp->rto_stamp) {
2932 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2933 tp->rto_stamp = 0;
2934 }
2935}
2936
2937/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2938 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2939 */
2940static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2941 int *rexmit)
2942{
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 bool recovered = !before(tp->snd_una, tp->high_seq);
2945
2946 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2947 tcp_try_undo_loss(sk, false))
2948 return;
2949
2950 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2951 /* Step 3.b. A timeout is spurious if not all data are
2952 * lost, i.e., never-retransmitted data are (s)acked.
2953 */
2954 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2955 tcp_try_undo_loss(sk, true))
2956 return;
2957
2958 if (after(tp->snd_nxt, tp->high_seq)) {
2959 if (flag & FLAG_DATA_SACKED || num_dupack)
2960 tp->frto = 0; /* Step 3.a. loss was real */
2961 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2962 tp->high_seq = tp->snd_nxt;
2963 /* Step 2.b. Try send new data (but deferred until cwnd
2964 * is updated in tcp_ack()). Otherwise fall back to
2965 * the conventional recovery.
2966 */
2967 if (!tcp_write_queue_empty(sk) &&
2968 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2969 *rexmit = REXMIT_NEW;
2970 return;
2971 }
2972 tp->frto = 0;
2973 }
2974 }
2975
2976 if (recovered) {
2977 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2978 tcp_try_undo_recovery(sk);
2979 return;
2980 }
2981 if (tcp_is_reno(tp)) {
2982 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2983 * delivered. Lower inflight to clock out (re)transmissions.
2984 */
2985 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2986 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2987 else if (flag & FLAG_SND_UNA_ADVANCED)
2988 tcp_reset_reno_sack(tp);
2989 }
2990 *rexmit = REXMIT_LOST;
2991}
2992
2993static bool tcp_force_fast_retransmit(struct sock *sk)
2994{
2995 struct tcp_sock *tp = tcp_sk(sk);
2996
2997 return after(tcp_highest_sack_seq(tp),
2998 tp->snd_una + tp->reordering * tp->mss_cache);
2999}
3000
3001/* Undo during fast recovery after partial ACK. */
3002static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3003 bool *do_lost)
3004{
3005 struct tcp_sock *tp = tcp_sk(sk);
3006
3007 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3008 /* Plain luck! Hole if filled with delayed
3009 * packet, rather than with a retransmit. Check reordering.
3010 */
3011 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3012
3013 /* We are getting evidence that the reordering degree is higher
3014 * than we realized. If there are no retransmits out then we
3015 * can undo. Otherwise we clock out new packets but do not
3016 * mark more packets lost or retransmit more.
3017 */
3018 if (tp->retrans_out)
3019 return true;
3020
3021 if (!tcp_any_retrans_done(sk))
3022 tp->retrans_stamp = 0;
3023
3024 DBGUNDO(sk, "partial recovery");
3025 tcp_undo_cwnd_reduction(sk, true);
3026 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3027 tcp_try_keep_open(sk);
3028 } else {
3029 /* Partial ACK arrived. Force fast retransmit. */
3030 *do_lost = tcp_force_fast_retransmit(sk);
3031 }
3032 return false;
3033}
3034
3035static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3036{
3037 struct tcp_sock *tp = tcp_sk(sk);
3038
3039 if (tcp_rtx_queue_empty(sk))
3040 return;
3041
3042 if (unlikely(tcp_is_reno(tp))) {
3043 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3044 } else if (tcp_is_rack(sk)) {
3045 u32 prior_retrans = tp->retrans_out;
3046
3047 if (tcp_rack_mark_lost(sk))
3048 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3049 if (prior_retrans > tp->retrans_out)
3050 *ack_flag |= FLAG_LOST_RETRANS;
3051 }
3052}
3053
3054/* Process an event, which can update packets-in-flight not trivially.
3055 * Main goal of this function is to calculate new estimate for left_out,
3056 * taking into account both packets sitting in receiver's buffer and
3057 * packets lost by network.
3058 *
3059 * Besides that it updates the congestion state when packet loss or ECN
3060 * is detected. But it does not reduce the cwnd, it is done by the
3061 * congestion control later.
3062 *
3063 * It does _not_ decide what to send, it is made in function
3064 * tcp_xmit_retransmit_queue().
3065 */
3066static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3067 int num_dupack, int *ack_flag, int *rexmit)
3068{
3069 struct inet_connection_sock *icsk = inet_csk(sk);
3070 struct tcp_sock *tp = tcp_sk(sk);
3071 int fast_rexmit = 0, flag = *ack_flag;
3072 bool ece_ack = flag & FLAG_ECE;
3073 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3074 tcp_force_fast_retransmit(sk));
3075
3076 if (!tp->packets_out && tp->sacked_out)
3077 tp->sacked_out = 0;
3078
3079 /* Now state machine starts.
3080 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3081 if (ece_ack)
3082 tp->prior_ssthresh = 0;
3083
3084 /* B. In all the states check for reneging SACKs. */
3085 if (tcp_check_sack_reneging(sk, ack_flag))
3086 return;
3087
3088 /* C. Check consistency of the current state. */
3089 tcp_verify_left_out(tp);
3090
3091 /* D. Check state exit conditions. State can be terminated
3092 * when high_seq is ACKed. */
3093 if (icsk->icsk_ca_state == TCP_CA_Open) {
3094 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3095 tp->retrans_stamp = 0;
3096 } else if (!before(tp->snd_una, tp->high_seq)) {
3097 switch (icsk->icsk_ca_state) {
3098 case TCP_CA_CWR:
3099 /* CWR is to be held something *above* high_seq
3100 * is ACKed for CWR bit to reach receiver. */
3101 if (tp->snd_una != tp->high_seq) {
3102 tcp_end_cwnd_reduction(sk);
3103 tcp_set_ca_state(sk, TCP_CA_Open);
3104 }
3105 break;
3106
3107 case TCP_CA_Recovery:
3108 if (tcp_is_reno(tp))
3109 tcp_reset_reno_sack(tp);
3110 if (tcp_try_undo_recovery(sk))
3111 return;
3112 tcp_end_cwnd_reduction(sk);
3113 break;
3114 }
3115 }
3116
3117 /* E. Process state. */
3118 switch (icsk->icsk_ca_state) {
3119 case TCP_CA_Recovery:
3120 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3121 if (tcp_is_reno(tp))
3122 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3123 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3124 return;
3125
3126 if (tcp_try_undo_dsack(sk))
3127 tcp_try_to_open(sk, flag);
3128
3129 tcp_identify_packet_loss(sk, ack_flag);
3130 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3131 if (!tcp_time_to_recover(sk, flag))
3132 return;
3133 /* Undo reverts the recovery state. If loss is evident,
3134 * starts a new recovery (e.g. reordering then loss);
3135 */
3136 tcp_enter_recovery(sk, ece_ack);
3137 }
3138 break;
3139 case TCP_CA_Loss:
3140 tcp_process_loss(sk, flag, num_dupack, rexmit);
3141 if (icsk->icsk_ca_state != TCP_CA_Loss)
3142 tcp_update_rto_time(tp);
3143 tcp_identify_packet_loss(sk, ack_flag);
3144 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3145 (*ack_flag & FLAG_LOST_RETRANS)))
3146 return;
3147 /* Change state if cwnd is undone or retransmits are lost */
3148 fallthrough;
3149 default:
3150 if (tcp_is_reno(tp)) {
3151 if (flag & FLAG_SND_UNA_ADVANCED)
3152 tcp_reset_reno_sack(tp);
3153 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3154 }
3155
3156 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3157 tcp_try_undo_dsack(sk);
3158
3159 tcp_identify_packet_loss(sk, ack_flag);
3160 if (!tcp_time_to_recover(sk, flag)) {
3161 tcp_try_to_open(sk, flag);
3162 return;
3163 }
3164
3165 /* MTU probe failure: don't reduce cwnd */
3166 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3167 icsk->icsk_mtup.probe_size &&
3168 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3169 tcp_mtup_probe_failed(sk);
3170 /* Restores the reduction we did in tcp_mtup_probe() */
3171 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3172 tcp_simple_retransmit(sk);
3173 return;
3174 }
3175
3176 /* Otherwise enter Recovery state */
3177 tcp_enter_recovery(sk, ece_ack);
3178 fast_rexmit = 1;
3179 }
3180
3181 if (!tcp_is_rack(sk) && do_lost)
3182 tcp_update_scoreboard(sk, fast_rexmit);
3183 *rexmit = REXMIT_LOST;
3184}
3185
3186static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3187{
3188 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3189 struct tcp_sock *tp = tcp_sk(sk);
3190
3191 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3192 /* If the remote keeps returning delayed ACKs, eventually
3193 * the min filter would pick it up and overestimate the
3194 * prop. delay when it expires. Skip suspected delayed ACKs.
3195 */
3196 return;
3197 }
3198 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3199 rtt_us ? : jiffies_to_usecs(1));
3200}
3201
3202static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3203 long seq_rtt_us, long sack_rtt_us,
3204 long ca_rtt_us, struct rate_sample *rs)
3205{
3206 const struct tcp_sock *tp = tcp_sk(sk);
3207
3208 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3209 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3210 * Karn's algorithm forbids taking RTT if some retransmitted data
3211 * is acked (RFC6298).
3212 */
3213 if (seq_rtt_us < 0)
3214 seq_rtt_us = sack_rtt_us;
3215
3216 /* RTTM Rule: A TSecr value received in a segment is used to
3217 * update the averaged RTT measurement only if the segment
3218 * acknowledges some new data, i.e., only if it advances the
3219 * left edge of the send window.
3220 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3221 */
3222 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3223 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3224 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3225
3226 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3227 if (seq_rtt_us < 0)
3228 return false;
3229
3230 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3231 * always taken together with ACK, SACK, or TS-opts. Any negative
3232 * values will be skipped with the seq_rtt_us < 0 check above.
3233 */
3234 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3235 tcp_rtt_estimator(sk, seq_rtt_us);
3236 tcp_set_rto(sk);
3237
3238 /* RFC6298: only reset backoff on valid RTT measurement. */
3239 inet_csk(sk)->icsk_backoff = 0;
3240 return true;
3241}
3242
3243/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3244void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3245{
3246 struct rate_sample rs;
3247 long rtt_us = -1L;
3248
3249 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3250 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3251
3252 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3253}
3254
3255
3256static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3257{
3258 const struct inet_connection_sock *icsk = inet_csk(sk);
3259
3260 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3261 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3262}
3263
3264/* Restart timer after forward progress on connection.
3265 * RFC2988 recommends to restart timer to now+rto.
3266 */
3267void tcp_rearm_rto(struct sock *sk)
3268{
3269 const struct inet_connection_sock *icsk = inet_csk(sk);
3270 struct tcp_sock *tp = tcp_sk(sk);
3271
3272 /* If the retrans timer is currently being used by Fast Open
3273 * for SYN-ACK retrans purpose, stay put.
3274 */
3275 if (rcu_access_pointer(tp->fastopen_rsk))
3276 return;
3277
3278 if (!tp->packets_out) {
3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3280 } else {
3281 u32 rto = inet_csk(sk)->icsk_rto;
3282 /* Offset the time elapsed after installing regular RTO */
3283 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3284 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3285 s64 delta_us = tcp_rto_delta_us(sk);
3286 /* delta_us may not be positive if the socket is locked
3287 * when the retrans timer fires and is rescheduled.
3288 */
3289 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3290 }
3291 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3292 TCP_RTO_MAX);
3293 }
3294}
3295
3296/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3297static void tcp_set_xmit_timer(struct sock *sk)
3298{
3299 if (!tcp_schedule_loss_probe(sk, true))
3300 tcp_rearm_rto(sk);
3301}
3302
3303/* If we get here, the whole TSO packet has not been acked. */
3304static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3305{
3306 struct tcp_sock *tp = tcp_sk(sk);
3307 u32 packets_acked;
3308
3309 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3310
3311 packets_acked = tcp_skb_pcount(skb);
3312 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3313 return 0;
3314 packets_acked -= tcp_skb_pcount(skb);
3315
3316 if (packets_acked) {
3317 BUG_ON(tcp_skb_pcount(skb) == 0);
3318 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3319 }
3320
3321 return packets_acked;
3322}
3323
3324static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3325 const struct sk_buff *ack_skb, u32 prior_snd_una)
3326{
3327 const struct skb_shared_info *shinfo;
3328
3329 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3330 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3331 return;
3332
3333 shinfo = skb_shinfo(skb);
3334 if (!before(shinfo->tskey, prior_snd_una) &&
3335 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3336 tcp_skb_tsorted_save(skb) {
3337 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3338 } tcp_skb_tsorted_restore(skb);
3339 }
3340}
3341
3342/* Remove acknowledged frames from the retransmission queue. If our packet
3343 * is before the ack sequence we can discard it as it's confirmed to have
3344 * arrived at the other end.
3345 */
3346static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3347 u32 prior_fack, u32 prior_snd_una,
3348 struct tcp_sacktag_state *sack, bool ece_ack)
3349{
3350 const struct inet_connection_sock *icsk = inet_csk(sk);
3351 u64 first_ackt, last_ackt;
3352 struct tcp_sock *tp = tcp_sk(sk);
3353 u32 prior_sacked = tp->sacked_out;
3354 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3355 struct sk_buff *skb, *next;
3356 bool fully_acked = true;
3357 long sack_rtt_us = -1L;
3358 long seq_rtt_us = -1L;
3359 long ca_rtt_us = -1L;
3360 u32 pkts_acked = 0;
3361 bool rtt_update;
3362 int flag = 0;
3363
3364 first_ackt = 0;
3365
3366 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3367 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3368 const u32 start_seq = scb->seq;
3369 u8 sacked = scb->sacked;
3370 u32 acked_pcount;
3371
3372 /* Determine how many packets and what bytes were acked, tso and else */
3373 if (after(scb->end_seq, tp->snd_una)) {
3374 if (tcp_skb_pcount(skb) == 1 ||
3375 !after(tp->snd_una, scb->seq))
3376 break;
3377
3378 acked_pcount = tcp_tso_acked(sk, skb);
3379 if (!acked_pcount)
3380 break;
3381 fully_acked = false;
3382 } else {
3383 acked_pcount = tcp_skb_pcount(skb);
3384 }
3385
3386 if (unlikely(sacked & TCPCB_RETRANS)) {
3387 if (sacked & TCPCB_SACKED_RETRANS)
3388 tp->retrans_out -= acked_pcount;
3389 flag |= FLAG_RETRANS_DATA_ACKED;
3390 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3391 last_ackt = tcp_skb_timestamp_us(skb);
3392 WARN_ON_ONCE(last_ackt == 0);
3393 if (!first_ackt)
3394 first_ackt = last_ackt;
3395
3396 if (before(start_seq, reord))
3397 reord = start_seq;
3398 if (!after(scb->end_seq, tp->high_seq))
3399 flag |= FLAG_ORIG_SACK_ACKED;
3400 }
3401
3402 if (sacked & TCPCB_SACKED_ACKED) {
3403 tp->sacked_out -= acked_pcount;
3404 } else if (tcp_is_sack(tp)) {
3405 tcp_count_delivered(tp, acked_pcount, ece_ack);
3406 if (!tcp_skb_spurious_retrans(tp, skb))
3407 tcp_rack_advance(tp, sacked, scb->end_seq,
3408 tcp_skb_timestamp_us(skb));
3409 }
3410 if (sacked & TCPCB_LOST)
3411 tp->lost_out -= acked_pcount;
3412
3413 tp->packets_out -= acked_pcount;
3414 pkts_acked += acked_pcount;
3415 tcp_rate_skb_delivered(sk, skb, sack->rate);
3416
3417 /* Initial outgoing SYN's get put onto the write_queue
3418 * just like anything else we transmit. It is not
3419 * true data, and if we misinform our callers that
3420 * this ACK acks real data, we will erroneously exit
3421 * connection startup slow start one packet too
3422 * quickly. This is severely frowned upon behavior.
3423 */
3424 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3425 flag |= FLAG_DATA_ACKED;
3426 } else {
3427 flag |= FLAG_SYN_ACKED;
3428 tp->retrans_stamp = 0;
3429 }
3430
3431 if (!fully_acked)
3432 break;
3433
3434 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3435
3436 next = skb_rb_next(skb);
3437 if (unlikely(skb == tp->retransmit_skb_hint))
3438 tp->retransmit_skb_hint = NULL;
3439 if (unlikely(skb == tp->lost_skb_hint))
3440 tp->lost_skb_hint = NULL;
3441 tcp_highest_sack_replace(sk, skb, next);
3442 tcp_rtx_queue_unlink_and_free(skb, sk);
3443 }
3444
3445 if (!skb)
3446 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3447
3448 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3449 tp->snd_up = tp->snd_una;
3450
3451 if (skb) {
3452 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3453 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3454 flag |= FLAG_SACK_RENEGING;
3455 }
3456
3457 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3458 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3459 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3460
3461 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3462 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3463 sack->rate->prior_delivered + 1 == tp->delivered &&
3464 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3465 /* Conservatively mark a delayed ACK. It's typically
3466 * from a lone runt packet over the round trip to
3467 * a receiver w/o out-of-order or CE events.
3468 */
3469 flag |= FLAG_ACK_MAYBE_DELAYED;
3470 }
3471 }
3472 if (sack->first_sackt) {
3473 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3474 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3475 }
3476 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3477 ca_rtt_us, sack->rate);
3478
3479 if (flag & FLAG_ACKED) {
3480 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3481 if (unlikely(icsk->icsk_mtup.probe_size &&
3482 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3483 tcp_mtup_probe_success(sk);
3484 }
3485
3486 if (tcp_is_reno(tp)) {
3487 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3488
3489 /* If any of the cumulatively ACKed segments was
3490 * retransmitted, non-SACK case cannot confirm that
3491 * progress was due to original transmission due to
3492 * lack of TCPCB_SACKED_ACKED bits even if some of
3493 * the packets may have been never retransmitted.
3494 */
3495 if (flag & FLAG_RETRANS_DATA_ACKED)
3496 flag &= ~FLAG_ORIG_SACK_ACKED;
3497 } else {
3498 int delta;
3499
3500 /* Non-retransmitted hole got filled? That's reordering */
3501 if (before(reord, prior_fack))
3502 tcp_check_sack_reordering(sk, reord, 0);
3503
3504 delta = prior_sacked - tp->sacked_out;
3505 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3506 }
3507 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3508 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3509 tcp_skb_timestamp_us(skb))) {
3510 /* Do not re-arm RTO if the sack RTT is measured from data sent
3511 * after when the head was last (re)transmitted. Otherwise the
3512 * timeout may continue to extend in loss recovery.
3513 */
3514 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3515 }
3516
3517 if (icsk->icsk_ca_ops->pkts_acked) {
3518 struct ack_sample sample = { .pkts_acked = pkts_acked,
3519 .rtt_us = sack->rate->rtt_us };
3520
3521 sample.in_flight = tp->mss_cache *
3522 (tp->delivered - sack->rate->prior_delivered);
3523 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3524 }
3525
3526#if FASTRETRANS_DEBUG > 0
3527 WARN_ON((int)tp->sacked_out < 0);
3528 WARN_ON((int)tp->lost_out < 0);
3529 WARN_ON((int)tp->retrans_out < 0);
3530 if (!tp->packets_out && tcp_is_sack(tp)) {
3531 icsk = inet_csk(sk);
3532 if (tp->lost_out) {
3533 pr_debug("Leak l=%u %d\n",
3534 tp->lost_out, icsk->icsk_ca_state);
3535 tp->lost_out = 0;
3536 }
3537 if (tp->sacked_out) {
3538 pr_debug("Leak s=%u %d\n",
3539 tp->sacked_out, icsk->icsk_ca_state);
3540 tp->sacked_out = 0;
3541 }
3542 if (tp->retrans_out) {
3543 pr_debug("Leak r=%u %d\n",
3544 tp->retrans_out, icsk->icsk_ca_state);
3545 tp->retrans_out = 0;
3546 }
3547 }
3548#endif
3549 return flag;
3550}
3551
3552static void tcp_ack_probe(struct sock *sk)
3553{
3554 struct inet_connection_sock *icsk = inet_csk(sk);
3555 struct sk_buff *head = tcp_send_head(sk);
3556 const struct tcp_sock *tp = tcp_sk(sk);
3557
3558 /* Was it a usable window open? */
3559 if (!head)
3560 return;
3561 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3562 icsk->icsk_backoff = 0;
3563 icsk->icsk_probes_tstamp = 0;
3564 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3565 /* Socket must be waked up by subsequent tcp_data_snd_check().
3566 * This function is not for random using!
3567 */
3568 } else {
3569 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3570
3571 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3572 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3573 }
3574}
3575
3576static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3577{
3578 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3579 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3580}
3581
3582/* Decide wheather to run the increase function of congestion control. */
3583static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3584{
3585 /* If reordering is high then always grow cwnd whenever data is
3586 * delivered regardless of its ordering. Otherwise stay conservative
3587 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3588 * new SACK or ECE mark may first advance cwnd here and later reduce
3589 * cwnd in tcp_fastretrans_alert() based on more states.
3590 */
3591 if (tcp_sk(sk)->reordering >
3592 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3593 return flag & FLAG_FORWARD_PROGRESS;
3594
3595 return flag & FLAG_DATA_ACKED;
3596}
3597
3598/* The "ultimate" congestion control function that aims to replace the rigid
3599 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3600 * It's called toward the end of processing an ACK with precise rate
3601 * information. All transmission or retransmission are delayed afterwards.
3602 */
3603static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3604 int flag, const struct rate_sample *rs)
3605{
3606 const struct inet_connection_sock *icsk = inet_csk(sk);
3607
3608 if (icsk->icsk_ca_ops->cong_control) {
3609 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3610 return;
3611 }
3612
3613 if (tcp_in_cwnd_reduction(sk)) {
3614 /* Reduce cwnd if state mandates */
3615 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3616 } else if (tcp_may_raise_cwnd(sk, flag)) {
3617 /* Advance cwnd if state allows */
3618 tcp_cong_avoid(sk, ack, acked_sacked);
3619 }
3620 tcp_update_pacing_rate(sk);
3621}
3622
3623/* Check that window update is acceptable.
3624 * The function assumes that snd_una<=ack<=snd_next.
3625 */
3626static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3627 const u32 ack, const u32 ack_seq,
3628 const u32 nwin)
3629{
3630 return after(ack, tp->snd_una) ||
3631 after(ack_seq, tp->snd_wl1) ||
3632 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3633}
3634
3635static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3636{
3637#ifdef CONFIG_TCP_AO
3638 struct tcp_ao_info *ao;
3639
3640 if (!static_branch_unlikely(&tcp_ao_needed.key))
3641 return;
3642
3643 ao = rcu_dereference_protected(tp->ao_info,
3644 lockdep_sock_is_held((struct sock *)tp));
3645 if (ao && ack < tp->snd_una) {
3646 ao->snd_sne++;
3647 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3648 }
3649#endif
3650}
3651
3652/* If we update tp->snd_una, also update tp->bytes_acked */
3653static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3654{
3655 u32 delta = ack - tp->snd_una;
3656
3657 sock_owned_by_me((struct sock *)tp);
3658 tp->bytes_acked += delta;
3659 tcp_snd_sne_update(tp, ack);
3660 tp->snd_una = ack;
3661}
3662
3663static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3664{
3665#ifdef CONFIG_TCP_AO
3666 struct tcp_ao_info *ao;
3667
3668 if (!static_branch_unlikely(&tcp_ao_needed.key))
3669 return;
3670
3671 ao = rcu_dereference_protected(tp->ao_info,
3672 lockdep_sock_is_held((struct sock *)tp));
3673 if (ao && seq < tp->rcv_nxt) {
3674 ao->rcv_sne++;
3675 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3676 }
3677#endif
3678}
3679
3680/* If we update tp->rcv_nxt, also update tp->bytes_received */
3681static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3682{
3683 u32 delta = seq - tp->rcv_nxt;
3684
3685 sock_owned_by_me((struct sock *)tp);
3686 tp->bytes_received += delta;
3687 tcp_rcv_sne_update(tp, seq);
3688 WRITE_ONCE(tp->rcv_nxt, seq);
3689}
3690
3691/* Update our send window.
3692 *
3693 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3694 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3695 */
3696static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3697 u32 ack_seq)
3698{
3699 struct tcp_sock *tp = tcp_sk(sk);
3700 int flag = 0;
3701 u32 nwin = ntohs(tcp_hdr(skb)->window);
3702
3703 if (likely(!tcp_hdr(skb)->syn))
3704 nwin <<= tp->rx_opt.snd_wscale;
3705
3706 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3707 flag |= FLAG_WIN_UPDATE;
3708 tcp_update_wl(tp, ack_seq);
3709
3710 if (tp->snd_wnd != nwin) {
3711 tp->snd_wnd = nwin;
3712
3713 /* Note, it is the only place, where
3714 * fast path is recovered for sending TCP.
3715 */
3716 tp->pred_flags = 0;
3717 tcp_fast_path_check(sk);
3718
3719 if (!tcp_write_queue_empty(sk))
3720 tcp_slow_start_after_idle_check(sk);
3721
3722 if (nwin > tp->max_window) {
3723 tp->max_window = nwin;
3724 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3725 }
3726 }
3727 }
3728
3729 tcp_snd_una_update(tp, ack);
3730
3731 return flag;
3732}
3733
3734static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3735 u32 *last_oow_ack_time)
3736{
3737 /* Paired with the WRITE_ONCE() in this function. */
3738 u32 val = READ_ONCE(*last_oow_ack_time);
3739
3740 if (val) {
3741 s32 elapsed = (s32)(tcp_jiffies32 - val);
3742
3743 if (0 <= elapsed &&
3744 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3745 NET_INC_STATS(net, mib_idx);
3746 return true; /* rate-limited: don't send yet! */
3747 }
3748 }
3749
3750 /* Paired with the prior READ_ONCE() and with itself,
3751 * as we might be lockless.
3752 */
3753 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3754
3755 return false; /* not rate-limited: go ahead, send dupack now! */
3756}
3757
3758/* Return true if we're currently rate-limiting out-of-window ACKs and
3759 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3760 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3761 * attacks that send repeated SYNs or ACKs for the same connection. To
3762 * do this, we do not send a duplicate SYNACK or ACK if the remote
3763 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3764 */
3765bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3766 int mib_idx, u32 *last_oow_ack_time)
3767{
3768 /* Data packets without SYNs are not likely part of an ACK loop. */
3769 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3770 !tcp_hdr(skb)->syn)
3771 return false;
3772
3773 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3774}
3775
3776/* RFC 5961 7 [ACK Throttling] */
3777static void tcp_send_challenge_ack(struct sock *sk)
3778{
3779 struct tcp_sock *tp = tcp_sk(sk);
3780 struct net *net = sock_net(sk);
3781 u32 count, now, ack_limit;
3782
3783 /* First check our per-socket dupack rate limit. */
3784 if (__tcp_oow_rate_limited(net,
3785 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3786 &tp->last_oow_ack_time))
3787 return;
3788
3789 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3790 if (ack_limit == INT_MAX)
3791 goto send_ack;
3792
3793 /* Then check host-wide RFC 5961 rate limit. */
3794 now = jiffies / HZ;
3795 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3796 u32 half = (ack_limit + 1) >> 1;
3797
3798 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3799 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3800 get_random_u32_inclusive(half, ack_limit + half - 1));
3801 }
3802 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3803 if (count > 0) {
3804 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3805send_ack:
3806 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3807 tcp_send_ack(sk);
3808 }
3809}
3810
3811static void tcp_store_ts_recent(struct tcp_sock *tp)
3812{
3813 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3814 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3815}
3816
3817static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3818{
3819 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3820 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3821 * extra check below makes sure this can only happen
3822 * for pure ACK frames. -DaveM
3823 *
3824 * Not only, also it occurs for expired timestamps.
3825 */
3826
3827 if (tcp_paws_check(&tp->rx_opt, 0))
3828 tcp_store_ts_recent(tp);
3829 }
3830}
3831
3832/* This routine deals with acks during a TLP episode and ends an episode by
3833 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3834 */
3835static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3836{
3837 struct tcp_sock *tp = tcp_sk(sk);
3838
3839 if (before(ack, tp->tlp_high_seq))
3840 return;
3841
3842 if (!tp->tlp_retrans) {
3843 /* TLP of new data has been acknowledged */
3844 tp->tlp_high_seq = 0;
3845 } else if (flag & FLAG_DSACK_TLP) {
3846 /* This DSACK means original and TLP probe arrived; no loss */
3847 tp->tlp_high_seq = 0;
3848 } else if (after(ack, tp->tlp_high_seq)) {
3849 /* ACK advances: there was a loss, so reduce cwnd. Reset
3850 * tlp_high_seq in tcp_init_cwnd_reduction()
3851 */
3852 tcp_init_cwnd_reduction(sk);
3853 tcp_set_ca_state(sk, TCP_CA_CWR);
3854 tcp_end_cwnd_reduction(sk);
3855 tcp_try_keep_open(sk);
3856 NET_INC_STATS(sock_net(sk),
3857 LINUX_MIB_TCPLOSSPROBERECOVERY);
3858 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3859 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3860 /* Pure dupack: original and TLP probe arrived; no loss */
3861 tp->tlp_high_seq = 0;
3862 }
3863}
3864
3865static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3866{
3867 const struct inet_connection_sock *icsk = inet_csk(sk);
3868
3869 if (icsk->icsk_ca_ops->in_ack_event)
3870 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3871}
3872
3873/* Congestion control has updated the cwnd already. So if we're in
3874 * loss recovery then now we do any new sends (for FRTO) or
3875 * retransmits (for CA_Loss or CA_recovery) that make sense.
3876 */
3877static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3878{
3879 struct tcp_sock *tp = tcp_sk(sk);
3880
3881 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3882 return;
3883
3884 if (unlikely(rexmit == REXMIT_NEW)) {
3885 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3886 TCP_NAGLE_OFF);
3887 if (after(tp->snd_nxt, tp->high_seq))
3888 return;
3889 tp->frto = 0;
3890 }
3891 tcp_xmit_retransmit_queue(sk);
3892}
3893
3894/* Returns the number of packets newly acked or sacked by the current ACK */
3895static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3896{
3897 const struct net *net = sock_net(sk);
3898 struct tcp_sock *tp = tcp_sk(sk);
3899 u32 delivered;
3900
3901 delivered = tp->delivered - prior_delivered;
3902 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3903 if (flag & FLAG_ECE)
3904 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3905
3906 return delivered;
3907}
3908
3909/* This routine deals with incoming acks, but not outgoing ones. */
3910static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3911{
3912 struct inet_connection_sock *icsk = inet_csk(sk);
3913 struct tcp_sock *tp = tcp_sk(sk);
3914 struct tcp_sacktag_state sack_state;
3915 struct rate_sample rs = { .prior_delivered = 0 };
3916 u32 prior_snd_una = tp->snd_una;
3917 bool is_sack_reneg = tp->is_sack_reneg;
3918 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3919 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3920 int num_dupack = 0;
3921 int prior_packets = tp->packets_out;
3922 u32 delivered = tp->delivered;
3923 u32 lost = tp->lost;
3924 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3925 u32 prior_fack;
3926
3927 sack_state.first_sackt = 0;
3928 sack_state.rate = &rs;
3929 sack_state.sack_delivered = 0;
3930
3931 /* We very likely will need to access rtx queue. */
3932 prefetch(sk->tcp_rtx_queue.rb_node);
3933
3934 /* If the ack is older than previous acks
3935 * then we can probably ignore it.
3936 */
3937 if (before(ack, prior_snd_una)) {
3938 u32 max_window;
3939
3940 /* do not accept ACK for bytes we never sent. */
3941 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3942 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3943 if (before(ack, prior_snd_una - max_window)) {
3944 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3945 tcp_send_challenge_ack(sk);
3946 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3947 }
3948 goto old_ack;
3949 }
3950
3951 /* If the ack includes data we haven't sent yet, discard
3952 * this segment (RFC793 Section 3.9).
3953 */
3954 if (after(ack, tp->snd_nxt))
3955 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3956
3957 if (after(ack, prior_snd_una)) {
3958 flag |= FLAG_SND_UNA_ADVANCED;
3959 icsk->icsk_retransmits = 0;
3960
3961#if IS_ENABLED(CONFIG_TLS_DEVICE)
3962 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3963 if (icsk->icsk_clean_acked)
3964 icsk->icsk_clean_acked(sk, ack);
3965#endif
3966 }
3967
3968 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3969 rs.prior_in_flight = tcp_packets_in_flight(tp);
3970
3971 /* ts_recent update must be made after we are sure that the packet
3972 * is in window.
3973 */
3974 if (flag & FLAG_UPDATE_TS_RECENT)
3975 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3976
3977 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3978 FLAG_SND_UNA_ADVANCED) {
3979 /* Window is constant, pure forward advance.
3980 * No more checks are required.
3981 * Note, we use the fact that SND.UNA>=SND.WL2.
3982 */
3983 tcp_update_wl(tp, ack_seq);
3984 tcp_snd_una_update(tp, ack);
3985 flag |= FLAG_WIN_UPDATE;
3986
3987 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3988
3989 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3990 } else {
3991 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3992
3993 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3994 flag |= FLAG_DATA;
3995 else
3996 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3997
3998 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3999
4000 if (TCP_SKB_CB(skb)->sacked)
4001 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4002 &sack_state);
4003
4004 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
4005 flag |= FLAG_ECE;
4006 ack_ev_flags |= CA_ACK_ECE;
4007 }
4008
4009 if (sack_state.sack_delivered)
4010 tcp_count_delivered(tp, sack_state.sack_delivered,
4011 flag & FLAG_ECE);
4012
4013 if (flag & FLAG_WIN_UPDATE)
4014 ack_ev_flags |= CA_ACK_WIN_UPDATE;
4015
4016 tcp_in_ack_event(sk, ack_ev_flags);
4017 }
4018
4019 /* This is a deviation from RFC3168 since it states that:
4020 * "When the TCP data sender is ready to set the CWR bit after reducing
4021 * the congestion window, it SHOULD set the CWR bit only on the first
4022 * new data packet that it transmits."
4023 * We accept CWR on pure ACKs to be more robust
4024 * with widely-deployed TCP implementations that do this.
4025 */
4026 tcp_ecn_accept_cwr(sk, skb);
4027
4028 /* We passed data and got it acked, remove any soft error
4029 * log. Something worked...
4030 */
4031 WRITE_ONCE(sk->sk_err_soft, 0);
4032 icsk->icsk_probes_out = 0;
4033 tp->rcv_tstamp = tcp_jiffies32;
4034 if (!prior_packets)
4035 goto no_queue;
4036
4037 /* See if we can take anything off of the retransmit queue. */
4038 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4039 &sack_state, flag & FLAG_ECE);
4040
4041 tcp_rack_update_reo_wnd(sk, &rs);
4042
4043 if (tp->tlp_high_seq)
4044 tcp_process_tlp_ack(sk, ack, flag);
4045
4046 if (tcp_ack_is_dubious(sk, flag)) {
4047 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4048 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4049 num_dupack = 1;
4050 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4051 if (!(flag & FLAG_DATA))
4052 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4053 }
4054 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4055 &rexmit);
4056 }
4057
4058 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4059 if (flag & FLAG_SET_XMIT_TIMER)
4060 tcp_set_xmit_timer(sk);
4061
4062 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4063 sk_dst_confirm(sk);
4064
4065 delivered = tcp_newly_delivered(sk, delivered, flag);
4066 lost = tp->lost - lost; /* freshly marked lost */
4067 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4068 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4069 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4070 tcp_xmit_recovery(sk, rexmit);
4071 return 1;
4072
4073no_queue:
4074 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4075 if (flag & FLAG_DSACKING_ACK) {
4076 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4077 &rexmit);
4078 tcp_newly_delivered(sk, delivered, flag);
4079 }
4080 /* If this ack opens up a zero window, clear backoff. It was
4081 * being used to time the probes, and is probably far higher than
4082 * it needs to be for normal retransmission.
4083 */
4084 tcp_ack_probe(sk);
4085
4086 if (tp->tlp_high_seq)
4087 tcp_process_tlp_ack(sk, ack, flag);
4088 return 1;
4089
4090old_ack:
4091 /* If data was SACKed, tag it and see if we should send more data.
4092 * If data was DSACKed, see if we can undo a cwnd reduction.
4093 */
4094 if (TCP_SKB_CB(skb)->sacked) {
4095 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4096 &sack_state);
4097 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4098 &rexmit);
4099 tcp_newly_delivered(sk, delivered, flag);
4100 tcp_xmit_recovery(sk, rexmit);
4101 }
4102
4103 return 0;
4104}
4105
4106static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4107 bool syn, struct tcp_fastopen_cookie *foc,
4108 bool exp_opt)
4109{
4110 /* Valid only in SYN or SYN-ACK with an even length. */
4111 if (!foc || !syn || len < 0 || (len & 1))
4112 return;
4113
4114 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4115 len <= TCP_FASTOPEN_COOKIE_MAX)
4116 memcpy(foc->val, cookie, len);
4117 else if (len != 0)
4118 len = -1;
4119 foc->len = len;
4120 foc->exp = exp_opt;
4121}
4122
4123static bool smc_parse_options(const struct tcphdr *th,
4124 struct tcp_options_received *opt_rx,
4125 const unsigned char *ptr,
4126 int opsize)
4127{
4128#if IS_ENABLED(CONFIG_SMC)
4129 if (static_branch_unlikely(&tcp_have_smc)) {
4130 if (th->syn && !(opsize & 1) &&
4131 opsize >= TCPOLEN_EXP_SMC_BASE &&
4132 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4133 opt_rx->smc_ok = 1;
4134 return true;
4135 }
4136 }
4137#endif
4138 return false;
4139}
4140
4141/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4142 * value on success.
4143 */
4144u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4145{
4146 const unsigned char *ptr = (const unsigned char *)(th + 1);
4147 int length = (th->doff * 4) - sizeof(struct tcphdr);
4148 u16 mss = 0;
4149
4150 while (length > 0) {
4151 int opcode = *ptr++;
4152 int opsize;
4153
4154 switch (opcode) {
4155 case TCPOPT_EOL:
4156 return mss;
4157 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4158 length--;
4159 continue;
4160 default:
4161 if (length < 2)
4162 return mss;
4163 opsize = *ptr++;
4164 if (opsize < 2) /* "silly options" */
4165 return mss;
4166 if (opsize > length)
4167 return mss; /* fail on partial options */
4168 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4169 u16 in_mss = get_unaligned_be16(ptr);
4170
4171 if (in_mss) {
4172 if (user_mss && user_mss < in_mss)
4173 in_mss = user_mss;
4174 mss = in_mss;
4175 }
4176 }
4177 ptr += opsize - 2;
4178 length -= opsize;
4179 }
4180 }
4181 return mss;
4182}
4183EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4184
4185/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4186 * But, this can also be called on packets in the established flow when
4187 * the fast version below fails.
4188 */
4189void tcp_parse_options(const struct net *net,
4190 const struct sk_buff *skb,
4191 struct tcp_options_received *opt_rx, int estab,
4192 struct tcp_fastopen_cookie *foc)
4193{
4194 const unsigned char *ptr;
4195 const struct tcphdr *th = tcp_hdr(skb);
4196 int length = (th->doff * 4) - sizeof(struct tcphdr);
4197
4198 ptr = (const unsigned char *)(th + 1);
4199 opt_rx->saw_tstamp = 0;
4200 opt_rx->saw_unknown = 0;
4201
4202 while (length > 0) {
4203 int opcode = *ptr++;
4204 int opsize;
4205
4206 switch (opcode) {
4207 case TCPOPT_EOL:
4208 return;
4209 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4210 length--;
4211 continue;
4212 default:
4213 if (length < 2)
4214 return;
4215 opsize = *ptr++;
4216 if (opsize < 2) /* "silly options" */
4217 return;
4218 if (opsize > length)
4219 return; /* don't parse partial options */
4220 switch (opcode) {
4221 case TCPOPT_MSS:
4222 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4223 u16 in_mss = get_unaligned_be16(ptr);
4224 if (in_mss) {
4225 if (opt_rx->user_mss &&
4226 opt_rx->user_mss < in_mss)
4227 in_mss = opt_rx->user_mss;
4228 opt_rx->mss_clamp = in_mss;
4229 }
4230 }
4231 break;
4232 case TCPOPT_WINDOW:
4233 if (opsize == TCPOLEN_WINDOW && th->syn &&
4234 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4235 __u8 snd_wscale = *(__u8 *)ptr;
4236 opt_rx->wscale_ok = 1;
4237 if (snd_wscale > TCP_MAX_WSCALE) {
4238 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4239 __func__,
4240 snd_wscale,
4241 TCP_MAX_WSCALE);
4242 snd_wscale = TCP_MAX_WSCALE;
4243 }
4244 opt_rx->snd_wscale = snd_wscale;
4245 }
4246 break;
4247 case TCPOPT_TIMESTAMP:
4248 if ((opsize == TCPOLEN_TIMESTAMP) &&
4249 ((estab && opt_rx->tstamp_ok) ||
4250 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4251 opt_rx->saw_tstamp = 1;
4252 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4253 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4254 }
4255 break;
4256 case TCPOPT_SACK_PERM:
4257 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4258 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4259 opt_rx->sack_ok = TCP_SACK_SEEN;
4260 tcp_sack_reset(opt_rx);
4261 }
4262 break;
4263
4264 case TCPOPT_SACK:
4265 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4266 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4267 opt_rx->sack_ok) {
4268 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4269 }
4270 break;
4271#ifdef CONFIG_TCP_MD5SIG
4272 case TCPOPT_MD5SIG:
4273 /* The MD5 Hash has already been
4274 * checked (see tcp_v{4,6}_rcv()).
4275 */
4276 break;
4277#endif
4278#ifdef CONFIG_TCP_AO
4279 case TCPOPT_AO:
4280 /* TCP AO has already been checked
4281 * (see tcp_inbound_ao_hash()).
4282 */
4283 break;
4284#endif
4285 case TCPOPT_FASTOPEN:
4286 tcp_parse_fastopen_option(
4287 opsize - TCPOLEN_FASTOPEN_BASE,
4288 ptr, th->syn, foc, false);
4289 break;
4290
4291 case TCPOPT_EXP:
4292 /* Fast Open option shares code 254 using a
4293 * 16 bits magic number.
4294 */
4295 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4296 get_unaligned_be16(ptr) ==
4297 TCPOPT_FASTOPEN_MAGIC) {
4298 tcp_parse_fastopen_option(opsize -
4299 TCPOLEN_EXP_FASTOPEN_BASE,
4300 ptr + 2, th->syn, foc, true);
4301 break;
4302 }
4303
4304 if (smc_parse_options(th, opt_rx, ptr, opsize))
4305 break;
4306
4307 opt_rx->saw_unknown = 1;
4308 break;
4309
4310 default:
4311 opt_rx->saw_unknown = 1;
4312 }
4313 ptr += opsize-2;
4314 length -= opsize;
4315 }
4316 }
4317}
4318EXPORT_SYMBOL(tcp_parse_options);
4319
4320static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4321{
4322 const __be32 *ptr = (const __be32 *)(th + 1);
4323
4324 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4325 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4326 tp->rx_opt.saw_tstamp = 1;
4327 ++ptr;
4328 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4329 ++ptr;
4330 if (*ptr)
4331 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4332 else
4333 tp->rx_opt.rcv_tsecr = 0;
4334 return true;
4335 }
4336 return false;
4337}
4338
4339/* Fast parse options. This hopes to only see timestamps.
4340 * If it is wrong it falls back on tcp_parse_options().
4341 */
4342static bool tcp_fast_parse_options(const struct net *net,
4343 const struct sk_buff *skb,
4344 const struct tcphdr *th, struct tcp_sock *tp)
4345{
4346 /* In the spirit of fast parsing, compare doff directly to constant
4347 * values. Because equality is used, short doff can be ignored here.
4348 */
4349 if (th->doff == (sizeof(*th) / 4)) {
4350 tp->rx_opt.saw_tstamp = 0;
4351 return false;
4352 } else if (tp->rx_opt.tstamp_ok &&
4353 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4354 if (tcp_parse_aligned_timestamp(tp, th))
4355 return true;
4356 }
4357
4358 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4359 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4360 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4361
4362 return true;
4363}
4364
4365#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4366/*
4367 * Parse Signature options
4368 */
4369int tcp_do_parse_auth_options(const struct tcphdr *th,
4370 const u8 **md5_hash, const u8 **ao_hash)
4371{
4372 int length = (th->doff << 2) - sizeof(*th);
4373 const u8 *ptr = (const u8 *)(th + 1);
4374 unsigned int minlen = TCPOLEN_MD5SIG;
4375
4376 if (IS_ENABLED(CONFIG_TCP_AO))
4377 minlen = sizeof(struct tcp_ao_hdr) + 1;
4378
4379 *md5_hash = NULL;
4380 *ao_hash = NULL;
4381
4382 /* If not enough data remaining, we can short cut */
4383 while (length >= minlen) {
4384 int opcode = *ptr++;
4385 int opsize;
4386
4387 switch (opcode) {
4388 case TCPOPT_EOL:
4389 return 0;
4390 case TCPOPT_NOP:
4391 length--;
4392 continue;
4393 default:
4394 opsize = *ptr++;
4395 if (opsize < 2 || opsize > length)
4396 return -EINVAL;
4397 if (opcode == TCPOPT_MD5SIG) {
4398 if (opsize != TCPOLEN_MD5SIG)
4399 return -EINVAL;
4400 if (unlikely(*md5_hash || *ao_hash))
4401 return -EEXIST;
4402 *md5_hash = ptr;
4403 } else if (opcode == TCPOPT_AO) {
4404 if (opsize <= sizeof(struct tcp_ao_hdr))
4405 return -EINVAL;
4406 if (unlikely(*md5_hash || *ao_hash))
4407 return -EEXIST;
4408 *ao_hash = ptr;
4409 }
4410 }
4411 ptr += opsize - 2;
4412 length -= opsize;
4413 }
4414 return 0;
4415}
4416EXPORT_SYMBOL(tcp_do_parse_auth_options);
4417#endif
4418
4419/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4420 *
4421 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4422 * it can pass through stack. So, the following predicate verifies that
4423 * this segment is not used for anything but congestion avoidance or
4424 * fast retransmit. Moreover, we even are able to eliminate most of such
4425 * second order effects, if we apply some small "replay" window (~RTO)
4426 * to timestamp space.
4427 *
4428 * All these measures still do not guarantee that we reject wrapped ACKs
4429 * on networks with high bandwidth, when sequence space is recycled fastly,
4430 * but it guarantees that such events will be very rare and do not affect
4431 * connection seriously. This doesn't look nice, but alas, PAWS is really
4432 * buggy extension.
4433 *
4434 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4435 * states that events when retransmit arrives after original data are rare.
4436 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4437 * the biggest problem on large power networks even with minor reordering.
4438 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4439 * up to bandwidth of 18Gigabit/sec. 8) ]
4440 */
4441
4442/* Estimates max number of increments of remote peer TSval in
4443 * a replay window (based on our current RTO estimation).
4444 */
4445static u32 tcp_tsval_replay(const struct sock *sk)
4446{
4447 /* If we use usec TS resolution,
4448 * then expect the remote peer to use the same resolution.
4449 */
4450 if (tcp_sk(sk)->tcp_usec_ts)
4451 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4452
4453 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4454 * We know that some OS (including old linux) can use 1200 Hz.
4455 */
4456 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4457}
4458
4459static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4460{
4461 const struct tcp_sock *tp = tcp_sk(sk);
4462 const struct tcphdr *th = tcp_hdr(skb);
4463 u32 seq = TCP_SKB_CB(skb)->seq;
4464 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4465
4466 return /* 1. Pure ACK with correct sequence number. */
4467 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4468
4469 /* 2. ... and duplicate ACK. */
4470 ack == tp->snd_una &&
4471
4472 /* 3. ... and does not update window. */
4473 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4474
4475 /* 4. ... and sits in replay window. */
4476 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4477 tcp_tsval_replay(sk);
4478}
4479
4480static inline bool tcp_paws_discard(const struct sock *sk,
4481 const struct sk_buff *skb)
4482{
4483 const struct tcp_sock *tp = tcp_sk(sk);
4484
4485 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4486 !tcp_disordered_ack(sk, skb);
4487}
4488
4489/* Check segment sequence number for validity.
4490 *
4491 * Segment controls are considered valid, if the segment
4492 * fits to the window after truncation to the window. Acceptability
4493 * of data (and SYN, FIN, of course) is checked separately.
4494 * See tcp_data_queue(), for example.
4495 *
4496 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4497 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4498 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4499 * (borrowed from freebsd)
4500 */
4501
4502static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4503 u32 seq, u32 end_seq)
4504{
4505 if (before(end_seq, tp->rcv_wup))
4506 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4507
4508 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4509 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4510
4511 return SKB_NOT_DROPPED_YET;
4512}
4513
4514
4515void tcp_done_with_error(struct sock *sk, int err)
4516{
4517 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4518 WRITE_ONCE(sk->sk_err, err);
4519 smp_wmb();
4520
4521 tcp_write_queue_purge(sk);
4522 tcp_done(sk);
4523
4524 if (!sock_flag(sk, SOCK_DEAD))
4525 sk_error_report(sk);
4526}
4527EXPORT_SYMBOL(tcp_done_with_error);
4528
4529/* When we get a reset we do this. */
4530void tcp_reset(struct sock *sk, struct sk_buff *skb)
4531{
4532 int err;
4533
4534 trace_tcp_receive_reset(sk);
4535
4536 /* mptcp can't tell us to ignore reset pkts,
4537 * so just ignore the return value of mptcp_incoming_options().
4538 */
4539 if (sk_is_mptcp(sk))
4540 mptcp_incoming_options(sk, skb);
4541
4542 /* We want the right error as BSD sees it (and indeed as we do). */
4543 switch (sk->sk_state) {
4544 case TCP_SYN_SENT:
4545 err = ECONNREFUSED;
4546 break;
4547 case TCP_CLOSE_WAIT:
4548 err = EPIPE;
4549 break;
4550 case TCP_CLOSE:
4551 return;
4552 default:
4553 err = ECONNRESET;
4554 }
4555 tcp_done_with_error(sk, err);
4556}
4557
4558/*
4559 * Process the FIN bit. This now behaves as it is supposed to work
4560 * and the FIN takes effect when it is validly part of sequence
4561 * space. Not before when we get holes.
4562 *
4563 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4564 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4565 * TIME-WAIT)
4566 *
4567 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4568 * close and we go into CLOSING (and later onto TIME-WAIT)
4569 *
4570 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4571 */
4572void tcp_fin(struct sock *sk)
4573{
4574 struct tcp_sock *tp = tcp_sk(sk);
4575
4576 inet_csk_schedule_ack(sk);
4577
4578 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4579 sock_set_flag(sk, SOCK_DONE);
4580
4581 switch (sk->sk_state) {
4582 case TCP_SYN_RECV:
4583 case TCP_ESTABLISHED:
4584 /* Move to CLOSE_WAIT */
4585 tcp_set_state(sk, TCP_CLOSE_WAIT);
4586 inet_csk_enter_pingpong_mode(sk);
4587 break;
4588
4589 case TCP_CLOSE_WAIT:
4590 case TCP_CLOSING:
4591 /* Received a retransmission of the FIN, do
4592 * nothing.
4593 */
4594 break;
4595 case TCP_LAST_ACK:
4596 /* RFC793: Remain in the LAST-ACK state. */
4597 break;
4598
4599 case TCP_FIN_WAIT1:
4600 /* This case occurs when a simultaneous close
4601 * happens, we must ack the received FIN and
4602 * enter the CLOSING state.
4603 */
4604 tcp_send_ack(sk);
4605 tcp_set_state(sk, TCP_CLOSING);
4606 break;
4607 case TCP_FIN_WAIT2:
4608 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4609 tcp_send_ack(sk);
4610 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4611 break;
4612 default:
4613 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4614 * cases we should never reach this piece of code.
4615 */
4616 pr_err("%s: Impossible, sk->sk_state=%d\n",
4617 __func__, sk->sk_state);
4618 break;
4619 }
4620
4621 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4622 * Probably, we should reset in this case. For now drop them.
4623 */
4624 skb_rbtree_purge(&tp->out_of_order_queue);
4625 if (tcp_is_sack(tp))
4626 tcp_sack_reset(&tp->rx_opt);
4627
4628 if (!sock_flag(sk, SOCK_DEAD)) {
4629 sk->sk_state_change(sk);
4630
4631 /* Do not send POLL_HUP for half duplex close. */
4632 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4633 sk->sk_state == TCP_CLOSE)
4634 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4635 else
4636 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4637 }
4638}
4639
4640static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4641 u32 end_seq)
4642{
4643 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4644 if (before(seq, sp->start_seq))
4645 sp->start_seq = seq;
4646 if (after(end_seq, sp->end_seq))
4647 sp->end_seq = end_seq;
4648 return true;
4649 }
4650 return false;
4651}
4652
4653static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4654{
4655 struct tcp_sock *tp = tcp_sk(sk);
4656
4657 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4658 int mib_idx;
4659
4660 if (before(seq, tp->rcv_nxt))
4661 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4662 else
4663 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4664
4665 NET_INC_STATS(sock_net(sk), mib_idx);
4666
4667 tp->rx_opt.dsack = 1;
4668 tp->duplicate_sack[0].start_seq = seq;
4669 tp->duplicate_sack[0].end_seq = end_seq;
4670 }
4671}
4672
4673static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4674{
4675 struct tcp_sock *tp = tcp_sk(sk);
4676
4677 if (!tp->rx_opt.dsack)
4678 tcp_dsack_set(sk, seq, end_seq);
4679 else
4680 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4681}
4682
4683static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4684{
4685 /* When the ACK path fails or drops most ACKs, the sender would
4686 * timeout and spuriously retransmit the same segment repeatedly.
4687 * If it seems our ACKs are not reaching the other side,
4688 * based on receiving a duplicate data segment with new flowlabel
4689 * (suggesting the sender suffered an RTO), and we are not already
4690 * repathing due to our own RTO, then rehash the socket to repath our
4691 * packets.
4692 */
4693#if IS_ENABLED(CONFIG_IPV6)
4694 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4695 skb->protocol == htons(ETH_P_IPV6) &&
4696 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4697 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4698 sk_rethink_txhash(sk))
4699 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4700
4701 /* Save last flowlabel after a spurious retrans. */
4702 tcp_save_lrcv_flowlabel(sk, skb);
4703#endif
4704}
4705
4706static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4707{
4708 struct tcp_sock *tp = tcp_sk(sk);
4709
4710 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4711 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4712 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4713 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4714
4715 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4716 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4717
4718 tcp_rcv_spurious_retrans(sk, skb);
4719 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4720 end_seq = tp->rcv_nxt;
4721 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4722 }
4723 }
4724
4725 tcp_send_ack(sk);
4726}
4727
4728/* These routines update the SACK block as out-of-order packets arrive or
4729 * in-order packets close up the sequence space.
4730 */
4731static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4732{
4733 int this_sack;
4734 struct tcp_sack_block *sp = &tp->selective_acks[0];
4735 struct tcp_sack_block *swalk = sp + 1;
4736
4737 /* See if the recent change to the first SACK eats into
4738 * or hits the sequence space of other SACK blocks, if so coalesce.
4739 */
4740 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4741 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4742 int i;
4743
4744 /* Zap SWALK, by moving every further SACK up by one slot.
4745 * Decrease num_sacks.
4746 */
4747 tp->rx_opt.num_sacks--;
4748 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4749 sp[i] = sp[i + 1];
4750 continue;
4751 }
4752 this_sack++;
4753 swalk++;
4754 }
4755}
4756
4757void tcp_sack_compress_send_ack(struct sock *sk)
4758{
4759 struct tcp_sock *tp = tcp_sk(sk);
4760
4761 if (!tp->compressed_ack)
4762 return;
4763
4764 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4765 __sock_put(sk);
4766
4767 /* Since we have to send one ack finally,
4768 * substract one from tp->compressed_ack to keep
4769 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4770 */
4771 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4772 tp->compressed_ack - 1);
4773
4774 tp->compressed_ack = 0;
4775 tcp_send_ack(sk);
4776}
4777
4778/* Reasonable amount of sack blocks included in TCP SACK option
4779 * The max is 4, but this becomes 3 if TCP timestamps are there.
4780 * Given that SACK packets might be lost, be conservative and use 2.
4781 */
4782#define TCP_SACK_BLOCKS_EXPECTED 2
4783
4784static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4785{
4786 struct tcp_sock *tp = tcp_sk(sk);
4787 struct tcp_sack_block *sp = &tp->selective_acks[0];
4788 int cur_sacks = tp->rx_opt.num_sacks;
4789 int this_sack;
4790
4791 if (!cur_sacks)
4792 goto new_sack;
4793
4794 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4795 if (tcp_sack_extend(sp, seq, end_seq)) {
4796 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4797 tcp_sack_compress_send_ack(sk);
4798 /* Rotate this_sack to the first one. */
4799 for (; this_sack > 0; this_sack--, sp--)
4800 swap(*sp, *(sp - 1));
4801 if (cur_sacks > 1)
4802 tcp_sack_maybe_coalesce(tp);
4803 return;
4804 }
4805 }
4806
4807 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4808 tcp_sack_compress_send_ack(sk);
4809
4810 /* Could not find an adjacent existing SACK, build a new one,
4811 * put it at the front, and shift everyone else down. We
4812 * always know there is at least one SACK present already here.
4813 *
4814 * If the sack array is full, forget about the last one.
4815 */
4816 if (this_sack >= TCP_NUM_SACKS) {
4817 this_sack--;
4818 tp->rx_opt.num_sacks--;
4819 sp--;
4820 }
4821 for (; this_sack > 0; this_sack--, sp--)
4822 *sp = *(sp - 1);
4823
4824new_sack:
4825 /* Build the new head SACK, and we're done. */
4826 sp->start_seq = seq;
4827 sp->end_seq = end_seq;
4828 tp->rx_opt.num_sacks++;
4829}
4830
4831/* RCV.NXT advances, some SACKs should be eaten. */
4832
4833static void tcp_sack_remove(struct tcp_sock *tp)
4834{
4835 struct tcp_sack_block *sp = &tp->selective_acks[0];
4836 int num_sacks = tp->rx_opt.num_sacks;
4837 int this_sack;
4838
4839 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4840 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4841 tp->rx_opt.num_sacks = 0;
4842 return;
4843 }
4844
4845 for (this_sack = 0; this_sack < num_sacks;) {
4846 /* Check if the start of the sack is covered by RCV.NXT. */
4847 if (!before(tp->rcv_nxt, sp->start_seq)) {
4848 int i;
4849
4850 /* RCV.NXT must cover all the block! */
4851 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4852
4853 /* Zap this SACK, by moving forward any other SACKS. */
4854 for (i = this_sack+1; i < num_sacks; i++)
4855 tp->selective_acks[i-1] = tp->selective_acks[i];
4856 num_sacks--;
4857 continue;
4858 }
4859 this_sack++;
4860 sp++;
4861 }
4862 tp->rx_opt.num_sacks = num_sacks;
4863}
4864
4865/**
4866 * tcp_try_coalesce - try to merge skb to prior one
4867 * @sk: socket
4868 * @to: prior buffer
4869 * @from: buffer to add in queue
4870 * @fragstolen: pointer to boolean
4871 *
4872 * Before queueing skb @from after @to, try to merge them
4873 * to reduce overall memory use and queue lengths, if cost is small.
4874 * Packets in ofo or receive queues can stay a long time.
4875 * Better try to coalesce them right now to avoid future collapses.
4876 * Returns true if caller should free @from instead of queueing it
4877 */
4878static bool tcp_try_coalesce(struct sock *sk,
4879 struct sk_buff *to,
4880 struct sk_buff *from,
4881 bool *fragstolen)
4882{
4883 int delta;
4884
4885 *fragstolen = false;
4886
4887 /* Its possible this segment overlaps with prior segment in queue */
4888 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4889 return false;
4890
4891 if (!tcp_skb_can_collapse_rx(to, from))
4892 return false;
4893
4894 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4895 return false;
4896
4897 atomic_add(delta, &sk->sk_rmem_alloc);
4898 sk_mem_charge(sk, delta);
4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4900 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4901 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4902 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4903
4904 if (TCP_SKB_CB(from)->has_rxtstamp) {
4905 TCP_SKB_CB(to)->has_rxtstamp = true;
4906 to->tstamp = from->tstamp;
4907 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4908 }
4909
4910 return true;
4911}
4912
4913static bool tcp_ooo_try_coalesce(struct sock *sk,
4914 struct sk_buff *to,
4915 struct sk_buff *from,
4916 bool *fragstolen)
4917{
4918 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4919
4920 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4921 if (res) {
4922 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4923 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4924
4925 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4926 }
4927 return res;
4928}
4929
4930noinline_for_tracing static void
4931tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4932{
4933 sk_drops_add(sk, skb);
4934 sk_skb_reason_drop(sk, skb, reason);
4935}
4936
4937/* This one checks to see if we can put data from the
4938 * out_of_order queue into the receive_queue.
4939 */
4940static void tcp_ofo_queue(struct sock *sk)
4941{
4942 struct tcp_sock *tp = tcp_sk(sk);
4943 __u32 dsack_high = tp->rcv_nxt;
4944 bool fin, fragstolen, eaten;
4945 struct sk_buff *skb, *tail;
4946 struct rb_node *p;
4947
4948 p = rb_first(&tp->out_of_order_queue);
4949 while (p) {
4950 skb = rb_to_skb(p);
4951 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4952 break;
4953
4954 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4955 __u32 dsack = dsack_high;
4956 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4957 dsack_high = TCP_SKB_CB(skb)->end_seq;
4958 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4959 }
4960 p = rb_next(p);
4961 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4962
4963 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4964 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4965 continue;
4966 }
4967
4968 tail = skb_peek_tail(&sk->sk_receive_queue);
4969 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4970 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4971 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4972 if (!eaten)
4973 tcp_add_receive_queue(sk, skb);
4974 else
4975 kfree_skb_partial(skb, fragstolen);
4976
4977 if (unlikely(fin)) {
4978 tcp_fin(sk);
4979 /* tcp_fin() purges tp->out_of_order_queue,
4980 * so we must end this loop right now.
4981 */
4982 break;
4983 }
4984 }
4985}
4986
4987static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4988static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4989
4990static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4991 unsigned int size)
4992{
4993 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4994 !sk_rmem_schedule(sk, skb, size)) {
4995
4996 if (tcp_prune_queue(sk, skb) < 0)
4997 return -1;
4998
4999 while (!sk_rmem_schedule(sk, skb, size)) {
5000 if (!tcp_prune_ofo_queue(sk, skb))
5001 return -1;
5002 }
5003 }
5004 return 0;
5005}
5006
5007static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5008{
5009 struct tcp_sock *tp = tcp_sk(sk);
5010 struct rb_node **p, *parent;
5011 struct sk_buff *skb1;
5012 u32 seq, end_seq;
5013 bool fragstolen;
5014
5015 tcp_save_lrcv_flowlabel(sk, skb);
5016 tcp_ecn_check_ce(sk, skb);
5017
5018 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5020 sk->sk_data_ready(sk);
5021 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5022 return;
5023 }
5024
5025 /* Disable header prediction. */
5026 tp->pred_flags = 0;
5027 inet_csk_schedule_ack(sk);
5028
5029 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5030 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5031 seq = TCP_SKB_CB(skb)->seq;
5032 end_seq = TCP_SKB_CB(skb)->end_seq;
5033
5034 p = &tp->out_of_order_queue.rb_node;
5035 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5036 /* Initial out of order segment, build 1 SACK. */
5037 if (tcp_is_sack(tp)) {
5038 tp->rx_opt.num_sacks = 1;
5039 tp->selective_acks[0].start_seq = seq;
5040 tp->selective_acks[0].end_seq = end_seq;
5041 }
5042 rb_link_node(&skb->rbnode, NULL, p);
5043 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5044 tp->ooo_last_skb = skb;
5045 goto end;
5046 }
5047
5048 /* In the typical case, we are adding an skb to the end of the list.
5049 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5050 */
5051 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5052 skb, &fragstolen)) {
5053coalesce_done:
5054 /* For non sack flows, do not grow window to force DUPACK
5055 * and trigger fast retransmit.
5056 */
5057 if (tcp_is_sack(tp))
5058 tcp_grow_window(sk, skb, true);
5059 kfree_skb_partial(skb, fragstolen);
5060 skb = NULL;
5061 goto add_sack;
5062 }
5063 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5064 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5065 parent = &tp->ooo_last_skb->rbnode;
5066 p = &parent->rb_right;
5067 goto insert;
5068 }
5069
5070 /* Find place to insert this segment. Handle overlaps on the way. */
5071 parent = NULL;
5072 while (*p) {
5073 parent = *p;
5074 skb1 = rb_to_skb(parent);
5075 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5076 p = &parent->rb_left;
5077 continue;
5078 }
5079 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5080 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5081 /* All the bits are present. Drop. */
5082 NET_INC_STATS(sock_net(sk),
5083 LINUX_MIB_TCPOFOMERGE);
5084 tcp_drop_reason(sk, skb,
5085 SKB_DROP_REASON_TCP_OFOMERGE);
5086 skb = NULL;
5087 tcp_dsack_set(sk, seq, end_seq);
5088 goto add_sack;
5089 }
5090 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5091 /* Partial overlap. */
5092 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5093 } else {
5094 /* skb's seq == skb1's seq and skb covers skb1.
5095 * Replace skb1 with skb.
5096 */
5097 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5098 &tp->out_of_order_queue);
5099 tcp_dsack_extend(sk,
5100 TCP_SKB_CB(skb1)->seq,
5101 TCP_SKB_CB(skb1)->end_seq);
5102 NET_INC_STATS(sock_net(sk),
5103 LINUX_MIB_TCPOFOMERGE);
5104 tcp_drop_reason(sk, skb1,
5105 SKB_DROP_REASON_TCP_OFOMERGE);
5106 goto merge_right;
5107 }
5108 } else if (tcp_ooo_try_coalesce(sk, skb1,
5109 skb, &fragstolen)) {
5110 goto coalesce_done;
5111 }
5112 p = &parent->rb_right;
5113 }
5114insert:
5115 /* Insert segment into RB tree. */
5116 rb_link_node(&skb->rbnode, parent, p);
5117 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5118
5119merge_right:
5120 /* Remove other segments covered by skb. */
5121 while ((skb1 = skb_rb_next(skb)) != NULL) {
5122 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5123 break;
5124 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5125 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5126 end_seq);
5127 break;
5128 }
5129 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5130 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5131 TCP_SKB_CB(skb1)->end_seq);
5132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5133 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5134 }
5135 /* If there is no skb after us, we are the last_skb ! */
5136 if (!skb1)
5137 tp->ooo_last_skb = skb;
5138
5139add_sack:
5140 if (tcp_is_sack(tp))
5141 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5142end:
5143 if (skb) {
5144 /* For non sack flows, do not grow window to force DUPACK
5145 * and trigger fast retransmit.
5146 */
5147 if (tcp_is_sack(tp))
5148 tcp_grow_window(sk, skb, false);
5149 skb_condense(skb);
5150 skb_set_owner_r(skb, sk);
5151 }
5152}
5153
5154static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5155 bool *fragstolen)
5156{
5157 int eaten;
5158 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5159
5160 eaten = (tail &&
5161 tcp_try_coalesce(sk, tail,
5162 skb, fragstolen)) ? 1 : 0;
5163 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5164 if (!eaten) {
5165 tcp_add_receive_queue(sk, skb);
5166 skb_set_owner_r(skb, sk);
5167 }
5168 return eaten;
5169}
5170
5171int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5172{
5173 struct sk_buff *skb;
5174 int err = -ENOMEM;
5175 int data_len = 0;
5176 bool fragstolen;
5177
5178 if (size == 0)
5179 return 0;
5180
5181 if (size > PAGE_SIZE) {
5182 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5183
5184 data_len = npages << PAGE_SHIFT;
5185 size = data_len + (size & ~PAGE_MASK);
5186 }
5187 skb = alloc_skb_with_frags(size - data_len, data_len,
5188 PAGE_ALLOC_COSTLY_ORDER,
5189 &err, sk->sk_allocation);
5190 if (!skb)
5191 goto err;
5192
5193 skb_put(skb, size - data_len);
5194 skb->data_len = data_len;
5195 skb->len = size;
5196
5197 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5198 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5199 goto err_free;
5200 }
5201
5202 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5203 if (err)
5204 goto err_free;
5205
5206 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5207 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5208 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5209
5210 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5211 WARN_ON_ONCE(fragstolen); /* should not happen */
5212 __kfree_skb(skb);
5213 }
5214 return size;
5215
5216err_free:
5217 kfree_skb(skb);
5218err:
5219 return err;
5220
5221}
5222
5223void tcp_data_ready(struct sock *sk)
5224{
5225 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5226 sk->sk_data_ready(sk);
5227}
5228
5229static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5230{
5231 struct tcp_sock *tp = tcp_sk(sk);
5232 enum skb_drop_reason reason;
5233 bool fragstolen;
5234 int eaten;
5235
5236 /* If a subflow has been reset, the packet should not continue
5237 * to be processed, drop the packet.
5238 */
5239 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5240 __kfree_skb(skb);
5241 return;
5242 }
5243
5244 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5245 __kfree_skb(skb);
5246 return;
5247 }
5248 tcp_cleanup_skb(skb);
5249 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5250
5251 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5252 tp->rx_opt.dsack = 0;
5253
5254 /* Queue data for delivery to the user.
5255 * Packets in sequence go to the receive queue.
5256 * Out of sequence packets to the out_of_order_queue.
5257 */
5258 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5259 if (tcp_receive_window(tp) == 0) {
5260 /* Some stacks are known to send bare FIN packets
5261 * in a loop even if we send RWIN 0 in our ACK.
5262 * Accepting this FIN does not hurt memory pressure
5263 * because the FIN flag will simply be merged to the
5264 * receive queue tail skb in most cases.
5265 */
5266 if (!skb->len &&
5267 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5268 goto queue_and_out;
5269
5270 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5271 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5272 goto out_of_window;
5273 }
5274
5275 /* Ok. In sequence. In window. */
5276queue_and_out:
5277 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5278 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5279 inet_csk(sk)->icsk_ack.pending |=
5280 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5281 inet_csk_schedule_ack(sk);
5282 sk->sk_data_ready(sk);
5283
5284 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5285 reason = SKB_DROP_REASON_PROTO_MEM;
5286 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5287 goto drop;
5288 }
5289 sk_forced_mem_schedule(sk, skb->truesize);
5290 }
5291
5292 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5293 if (skb->len)
5294 tcp_event_data_recv(sk, skb);
5295 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5296 tcp_fin(sk);
5297
5298 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5299 tcp_ofo_queue(sk);
5300
5301 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5302 * gap in queue is filled.
5303 */
5304 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5305 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5306 }
5307
5308 if (tp->rx_opt.num_sacks)
5309 tcp_sack_remove(tp);
5310
5311 tcp_fast_path_check(sk);
5312
5313 if (eaten > 0)
5314 kfree_skb_partial(skb, fragstolen);
5315 if (!sock_flag(sk, SOCK_DEAD))
5316 tcp_data_ready(sk);
5317 return;
5318 }
5319
5320 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5321 tcp_rcv_spurious_retrans(sk, skb);
5322 /* A retransmit, 2nd most common case. Force an immediate ack. */
5323 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5324 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5325 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5326
5327out_of_window:
5328 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5329 inet_csk_schedule_ack(sk);
5330drop:
5331 tcp_drop_reason(sk, skb, reason);
5332 return;
5333 }
5334
5335 /* Out of window. F.e. zero window probe. */
5336 if (!before(TCP_SKB_CB(skb)->seq,
5337 tp->rcv_nxt + tcp_receive_window(tp))) {
5338 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5339 goto out_of_window;
5340 }
5341
5342 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5343 /* Partial packet, seq < rcv_next < end_seq */
5344 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5345
5346 /* If window is closed, drop tail of packet. But after
5347 * remembering D-SACK for its head made in previous line.
5348 */
5349 if (!tcp_receive_window(tp)) {
5350 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5351 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5352 goto out_of_window;
5353 }
5354 goto queue_and_out;
5355 }
5356
5357 tcp_data_queue_ofo(sk, skb);
5358}
5359
5360static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5361{
5362 if (list)
5363 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5364
5365 return skb_rb_next(skb);
5366}
5367
5368static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5369 struct sk_buff_head *list,
5370 struct rb_root *root)
5371{
5372 struct sk_buff *next = tcp_skb_next(skb, list);
5373
5374 if (list)
5375 __skb_unlink(skb, list);
5376 else
5377 rb_erase(&skb->rbnode, root);
5378
5379 __kfree_skb(skb);
5380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5381
5382 return next;
5383}
5384
5385/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5386void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5387{
5388 struct rb_node **p = &root->rb_node;
5389 struct rb_node *parent = NULL;
5390 struct sk_buff *skb1;
5391
5392 while (*p) {
5393 parent = *p;
5394 skb1 = rb_to_skb(parent);
5395 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5396 p = &parent->rb_left;
5397 else
5398 p = &parent->rb_right;
5399 }
5400 rb_link_node(&skb->rbnode, parent, p);
5401 rb_insert_color(&skb->rbnode, root);
5402}
5403
5404/* Collapse contiguous sequence of skbs head..tail with
5405 * sequence numbers start..end.
5406 *
5407 * If tail is NULL, this means until the end of the queue.
5408 *
5409 * Segments with FIN/SYN are not collapsed (only because this
5410 * simplifies code)
5411 */
5412static void
5413tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5414 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5415{
5416 struct sk_buff *skb = head, *n;
5417 struct sk_buff_head tmp;
5418 bool end_of_skbs;
5419
5420 /* First, check that queue is collapsible and find
5421 * the point where collapsing can be useful.
5422 */
5423restart:
5424 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5425 n = tcp_skb_next(skb, list);
5426
5427 if (!skb_frags_readable(skb))
5428 goto skip_this;
5429
5430 /* No new bits? It is possible on ofo queue. */
5431 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5432 skb = tcp_collapse_one(sk, skb, list, root);
5433 if (!skb)
5434 break;
5435 goto restart;
5436 }
5437
5438 /* The first skb to collapse is:
5439 * - not SYN/FIN and
5440 * - bloated or contains data before "start" or
5441 * overlaps to the next one and mptcp allow collapsing.
5442 */
5443 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5444 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5445 before(TCP_SKB_CB(skb)->seq, start))) {
5446 end_of_skbs = false;
5447 break;
5448 }
5449
5450 if (n && n != tail && skb_frags_readable(n) &&
5451 tcp_skb_can_collapse_rx(skb, n) &&
5452 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5453 end_of_skbs = false;
5454 break;
5455 }
5456
5457skip_this:
5458 /* Decided to skip this, advance start seq. */
5459 start = TCP_SKB_CB(skb)->end_seq;
5460 }
5461 if (end_of_skbs ||
5462 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5463 !skb_frags_readable(skb))
5464 return;
5465
5466 __skb_queue_head_init(&tmp);
5467
5468 while (before(start, end)) {
5469 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5470 struct sk_buff *nskb;
5471
5472 nskb = alloc_skb(copy, GFP_ATOMIC);
5473 if (!nskb)
5474 break;
5475
5476 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5477 skb_copy_decrypted(nskb, skb);
5478 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5479 if (list)
5480 __skb_queue_before(list, skb, nskb);
5481 else
5482 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5483 skb_set_owner_r(nskb, sk);
5484 mptcp_skb_ext_move(nskb, skb);
5485
5486 /* Copy data, releasing collapsed skbs. */
5487 while (copy > 0) {
5488 int offset = start - TCP_SKB_CB(skb)->seq;
5489 int size = TCP_SKB_CB(skb)->end_seq - start;
5490
5491 BUG_ON(offset < 0);
5492 if (size > 0) {
5493 size = min(copy, size);
5494 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5495 BUG();
5496 TCP_SKB_CB(nskb)->end_seq += size;
5497 copy -= size;
5498 start += size;
5499 }
5500 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5501 skb = tcp_collapse_one(sk, skb, list, root);
5502 if (!skb ||
5503 skb == tail ||
5504 !tcp_skb_can_collapse_rx(nskb, skb) ||
5505 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5506 !skb_frags_readable(skb))
5507 goto end;
5508 }
5509 }
5510 }
5511end:
5512 skb_queue_walk_safe(&tmp, skb, n)
5513 tcp_rbtree_insert(root, skb);
5514}
5515
5516/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5517 * and tcp_collapse() them until all the queue is collapsed.
5518 */
5519static void tcp_collapse_ofo_queue(struct sock *sk)
5520{
5521 struct tcp_sock *tp = tcp_sk(sk);
5522 u32 range_truesize, sum_tiny = 0;
5523 struct sk_buff *skb, *head;
5524 u32 start, end;
5525
5526 skb = skb_rb_first(&tp->out_of_order_queue);
5527new_range:
5528 if (!skb) {
5529 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5530 return;
5531 }
5532 start = TCP_SKB_CB(skb)->seq;
5533 end = TCP_SKB_CB(skb)->end_seq;
5534 range_truesize = skb->truesize;
5535
5536 for (head = skb;;) {
5537 skb = skb_rb_next(skb);
5538
5539 /* Range is terminated when we see a gap or when
5540 * we are at the queue end.
5541 */
5542 if (!skb ||
5543 after(TCP_SKB_CB(skb)->seq, end) ||
5544 before(TCP_SKB_CB(skb)->end_seq, start)) {
5545 /* Do not attempt collapsing tiny skbs */
5546 if (range_truesize != head->truesize ||
5547 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5548 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5549 head, skb, start, end);
5550 } else {
5551 sum_tiny += range_truesize;
5552 if (sum_tiny > sk->sk_rcvbuf >> 3)
5553 return;
5554 }
5555 goto new_range;
5556 }
5557
5558 range_truesize += skb->truesize;
5559 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5560 start = TCP_SKB_CB(skb)->seq;
5561 if (after(TCP_SKB_CB(skb)->end_seq, end))
5562 end = TCP_SKB_CB(skb)->end_seq;
5563 }
5564}
5565
5566/*
5567 * Clean the out-of-order queue to make room.
5568 * We drop high sequences packets to :
5569 * 1) Let a chance for holes to be filled.
5570 * This means we do not drop packets from ooo queue if their sequence
5571 * is before incoming packet sequence.
5572 * 2) not add too big latencies if thousands of packets sit there.
5573 * (But if application shrinks SO_RCVBUF, we could still end up
5574 * freeing whole queue here)
5575 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5576 *
5577 * Return true if queue has shrunk.
5578 */
5579static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5580{
5581 struct tcp_sock *tp = tcp_sk(sk);
5582 struct rb_node *node, *prev;
5583 bool pruned = false;
5584 int goal;
5585
5586 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5587 return false;
5588
5589 goal = sk->sk_rcvbuf >> 3;
5590 node = &tp->ooo_last_skb->rbnode;
5591
5592 do {
5593 struct sk_buff *skb = rb_to_skb(node);
5594
5595 /* If incoming skb would land last in ofo queue, stop pruning. */
5596 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5597 break;
5598 pruned = true;
5599 prev = rb_prev(node);
5600 rb_erase(node, &tp->out_of_order_queue);
5601 goal -= skb->truesize;
5602 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5603 tp->ooo_last_skb = rb_to_skb(prev);
5604 if (!prev || goal <= 0) {
5605 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5606 !tcp_under_memory_pressure(sk))
5607 break;
5608 goal = sk->sk_rcvbuf >> 3;
5609 }
5610 node = prev;
5611 } while (node);
5612
5613 if (pruned) {
5614 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5615 /* Reset SACK state. A conforming SACK implementation will
5616 * do the same at a timeout based retransmit. When a connection
5617 * is in a sad state like this, we care only about integrity
5618 * of the connection not performance.
5619 */
5620 if (tp->rx_opt.sack_ok)
5621 tcp_sack_reset(&tp->rx_opt);
5622 }
5623 return pruned;
5624}
5625
5626/* Reduce allocated memory if we can, trying to get
5627 * the socket within its memory limits again.
5628 *
5629 * Return less than zero if we should start dropping frames
5630 * until the socket owning process reads some of the data
5631 * to stabilize the situation.
5632 */
5633static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5634{
5635 struct tcp_sock *tp = tcp_sk(sk);
5636
5637 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5638
5639 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5640 tcp_clamp_window(sk);
5641 else if (tcp_under_memory_pressure(sk))
5642 tcp_adjust_rcv_ssthresh(sk);
5643
5644 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5645 return 0;
5646
5647 tcp_collapse_ofo_queue(sk);
5648 if (!skb_queue_empty(&sk->sk_receive_queue))
5649 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5650 skb_peek(&sk->sk_receive_queue),
5651 NULL,
5652 tp->copied_seq, tp->rcv_nxt);
5653
5654 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5655 return 0;
5656
5657 /* Collapsing did not help, destructive actions follow.
5658 * This must not ever occur. */
5659
5660 tcp_prune_ofo_queue(sk, in_skb);
5661
5662 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5663 return 0;
5664
5665 /* If we are really being abused, tell the caller to silently
5666 * drop receive data on the floor. It will get retransmitted
5667 * and hopefully then we'll have sufficient space.
5668 */
5669 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5670
5671 /* Massive buffer overcommit. */
5672 tp->pred_flags = 0;
5673 return -1;
5674}
5675
5676static bool tcp_should_expand_sndbuf(struct sock *sk)
5677{
5678 const struct tcp_sock *tp = tcp_sk(sk);
5679
5680 /* If the user specified a specific send buffer setting, do
5681 * not modify it.
5682 */
5683 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5684 return false;
5685
5686 /* If we are under global TCP memory pressure, do not expand. */
5687 if (tcp_under_memory_pressure(sk)) {
5688 int unused_mem = sk_unused_reserved_mem(sk);
5689
5690 /* Adjust sndbuf according to reserved mem. But make sure
5691 * it never goes below SOCK_MIN_SNDBUF.
5692 * See sk_stream_moderate_sndbuf() for more details.
5693 */
5694 if (unused_mem > SOCK_MIN_SNDBUF)
5695 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5696
5697 return false;
5698 }
5699
5700 /* If we are under soft global TCP memory pressure, do not expand. */
5701 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5702 return false;
5703
5704 /* If we filled the congestion window, do not expand. */
5705 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5706 return false;
5707
5708 return true;
5709}
5710
5711static void tcp_new_space(struct sock *sk)
5712{
5713 struct tcp_sock *tp = tcp_sk(sk);
5714
5715 if (tcp_should_expand_sndbuf(sk)) {
5716 tcp_sndbuf_expand(sk);
5717 tp->snd_cwnd_stamp = tcp_jiffies32;
5718 }
5719
5720 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5721}
5722
5723/* Caller made space either from:
5724 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5725 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5726 *
5727 * We might be able to generate EPOLLOUT to the application if:
5728 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5729 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5730 * small enough that tcp_stream_memory_free() decides it
5731 * is time to generate EPOLLOUT.
5732 */
5733void tcp_check_space(struct sock *sk)
5734{
5735 /* pairs with tcp_poll() */
5736 smp_mb();
5737 if (sk->sk_socket &&
5738 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5739 tcp_new_space(sk);
5740 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5741 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5742 }
5743}
5744
5745static inline void tcp_data_snd_check(struct sock *sk)
5746{
5747 tcp_push_pending_frames(sk);
5748 tcp_check_space(sk);
5749}
5750
5751/*
5752 * Check if sending an ack is needed.
5753 */
5754static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5755{
5756 struct tcp_sock *tp = tcp_sk(sk);
5757 unsigned long rtt, delay;
5758
5759 /* More than one full frame received... */
5760 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5761 /* ... and right edge of window advances far enough.
5762 * (tcp_recvmsg() will send ACK otherwise).
5763 * If application uses SO_RCVLOWAT, we want send ack now if
5764 * we have not received enough bytes to satisfy the condition.
5765 */
5766 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5767 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5768 /* We ACK each frame or... */
5769 tcp_in_quickack_mode(sk) ||
5770 /* Protocol state mandates a one-time immediate ACK */
5771 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5772 /* If we are running from __release_sock() in user context,
5773 * Defer the ack until tcp_release_cb().
5774 */
5775 if (sock_owned_by_user_nocheck(sk) &&
5776 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5777 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5778 return;
5779 }
5780send_now:
5781 tcp_send_ack(sk);
5782 return;
5783 }
5784
5785 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5786 tcp_send_delayed_ack(sk);
5787 return;
5788 }
5789
5790 if (!tcp_is_sack(tp) ||
5791 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5792 goto send_now;
5793
5794 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5795 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5796 tp->dup_ack_counter = 0;
5797 }
5798 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5799 tp->dup_ack_counter++;
5800 goto send_now;
5801 }
5802 tp->compressed_ack++;
5803 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5804 return;
5805
5806 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5807
5808 rtt = tp->rcv_rtt_est.rtt_us;
5809 if (tp->srtt_us && tp->srtt_us < rtt)
5810 rtt = tp->srtt_us;
5811
5812 delay = min_t(unsigned long,
5813 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5814 rtt * (NSEC_PER_USEC >> 3)/20);
5815 sock_hold(sk);
5816 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5817 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5818 HRTIMER_MODE_REL_PINNED_SOFT);
5819}
5820
5821static inline void tcp_ack_snd_check(struct sock *sk)
5822{
5823 if (!inet_csk_ack_scheduled(sk)) {
5824 /* We sent a data segment already. */
5825 return;
5826 }
5827 __tcp_ack_snd_check(sk, 1);
5828}
5829
5830/*
5831 * This routine is only called when we have urgent data
5832 * signaled. Its the 'slow' part of tcp_urg. It could be
5833 * moved inline now as tcp_urg is only called from one
5834 * place. We handle URGent data wrong. We have to - as
5835 * BSD still doesn't use the correction from RFC961.
5836 * For 1003.1g we should support a new option TCP_STDURG to permit
5837 * either form (or just set the sysctl tcp_stdurg).
5838 */
5839
5840static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5841{
5842 struct tcp_sock *tp = tcp_sk(sk);
5843 u32 ptr = ntohs(th->urg_ptr);
5844
5845 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5846 ptr--;
5847 ptr += ntohl(th->seq);
5848
5849 /* Ignore urgent data that we've already seen and read. */
5850 if (after(tp->copied_seq, ptr))
5851 return;
5852
5853 /* Do not replay urg ptr.
5854 *
5855 * NOTE: interesting situation not covered by specs.
5856 * Misbehaving sender may send urg ptr, pointing to segment,
5857 * which we already have in ofo queue. We are not able to fetch
5858 * such data and will stay in TCP_URG_NOTYET until will be eaten
5859 * by recvmsg(). Seems, we are not obliged to handle such wicked
5860 * situations. But it is worth to think about possibility of some
5861 * DoSes using some hypothetical application level deadlock.
5862 */
5863 if (before(ptr, tp->rcv_nxt))
5864 return;
5865
5866 /* Do we already have a newer (or duplicate) urgent pointer? */
5867 if (tp->urg_data && !after(ptr, tp->urg_seq))
5868 return;
5869
5870 /* Tell the world about our new urgent pointer. */
5871 sk_send_sigurg(sk);
5872
5873 /* We may be adding urgent data when the last byte read was
5874 * urgent. To do this requires some care. We cannot just ignore
5875 * tp->copied_seq since we would read the last urgent byte again
5876 * as data, nor can we alter copied_seq until this data arrives
5877 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5878 *
5879 * NOTE. Double Dutch. Rendering to plain English: author of comment
5880 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5881 * and expect that both A and B disappear from stream. This is _wrong_.
5882 * Though this happens in BSD with high probability, this is occasional.
5883 * Any application relying on this is buggy. Note also, that fix "works"
5884 * only in this artificial test. Insert some normal data between A and B and we will
5885 * decline of BSD again. Verdict: it is better to remove to trap
5886 * buggy users.
5887 */
5888 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5889 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5890 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5891 tp->copied_seq++;
5892 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5893 __skb_unlink(skb, &sk->sk_receive_queue);
5894 __kfree_skb(skb);
5895 }
5896 }
5897
5898 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5899 WRITE_ONCE(tp->urg_seq, ptr);
5900
5901 /* Disable header prediction. */
5902 tp->pred_flags = 0;
5903}
5904
5905/* This is the 'fast' part of urgent handling. */
5906static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5907{
5908 struct tcp_sock *tp = tcp_sk(sk);
5909
5910 /* Check if we get a new urgent pointer - normally not. */
5911 if (unlikely(th->urg))
5912 tcp_check_urg(sk, th);
5913
5914 /* Do we wait for any urgent data? - normally not... */
5915 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5916 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5917 th->syn;
5918
5919 /* Is the urgent pointer pointing into this packet? */
5920 if (ptr < skb->len) {
5921 u8 tmp;
5922 if (skb_copy_bits(skb, ptr, &tmp, 1))
5923 BUG();
5924 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5925 if (!sock_flag(sk, SOCK_DEAD))
5926 sk->sk_data_ready(sk);
5927 }
5928 }
5929}
5930
5931/* Accept RST for rcv_nxt - 1 after a FIN.
5932 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5933 * FIN is sent followed by a RST packet. The RST is sent with the same
5934 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5935 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5936 * ACKs on the closed socket. In addition middleboxes can drop either the
5937 * challenge ACK or a subsequent RST.
5938 */
5939static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5940{
5941 const struct tcp_sock *tp = tcp_sk(sk);
5942
5943 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5944 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5945 TCPF_CLOSING));
5946}
5947
5948/* Does PAWS and seqno based validation of an incoming segment, flags will
5949 * play significant role here.
5950 */
5951static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5952 const struct tcphdr *th, int syn_inerr)
5953{
5954 struct tcp_sock *tp = tcp_sk(sk);
5955 SKB_DR(reason);
5956
5957 /* RFC1323: H1. Apply PAWS check first. */
5958 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5959 tp->rx_opt.saw_tstamp &&
5960 tcp_paws_discard(sk, skb)) {
5961 if (!th->rst) {
5962 if (unlikely(th->syn))
5963 goto syn_challenge;
5964 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5965 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5966 LINUX_MIB_TCPACKSKIPPEDPAWS,
5967 &tp->last_oow_ack_time))
5968 tcp_send_dupack(sk, skb);
5969 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5970 goto discard;
5971 }
5972 /* Reset is accepted even if it did not pass PAWS. */
5973 }
5974
5975 /* Step 1: check sequence number */
5976 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5977 if (reason) {
5978 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5979 * (RST) segments are validated by checking their SEQ-fields."
5980 * And page 69: "If an incoming segment is not acceptable,
5981 * an acknowledgment should be sent in reply (unless the RST
5982 * bit is set, if so drop the segment and return)".
5983 */
5984 if (!th->rst) {
5985 if (th->syn)
5986 goto syn_challenge;
5987 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5988 LINUX_MIB_TCPACKSKIPPEDSEQ,
5989 &tp->last_oow_ack_time))
5990 tcp_send_dupack(sk, skb);
5991 } else if (tcp_reset_check(sk, skb)) {
5992 goto reset;
5993 }
5994 goto discard;
5995 }
5996
5997 /* Step 2: check RST bit */
5998 if (th->rst) {
5999 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6000 * FIN and SACK too if available):
6001 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6002 * the right-most SACK block,
6003 * then
6004 * RESET the connection
6005 * else
6006 * Send a challenge ACK
6007 */
6008 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6009 tcp_reset_check(sk, skb))
6010 goto reset;
6011
6012 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6013 struct tcp_sack_block *sp = &tp->selective_acks[0];
6014 int max_sack = sp[0].end_seq;
6015 int this_sack;
6016
6017 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6018 ++this_sack) {
6019 max_sack = after(sp[this_sack].end_seq,
6020 max_sack) ?
6021 sp[this_sack].end_seq : max_sack;
6022 }
6023
6024 if (TCP_SKB_CB(skb)->seq == max_sack)
6025 goto reset;
6026 }
6027
6028 /* Disable TFO if RST is out-of-order
6029 * and no data has been received
6030 * for current active TFO socket
6031 */
6032 if (tp->syn_fastopen && !tp->data_segs_in &&
6033 sk->sk_state == TCP_ESTABLISHED)
6034 tcp_fastopen_active_disable(sk);
6035 tcp_send_challenge_ack(sk);
6036 SKB_DR_SET(reason, TCP_RESET);
6037 goto discard;
6038 }
6039
6040 /* step 3: check security and precedence [ignored] */
6041
6042 /* step 4: Check for a SYN
6043 * RFC 5961 4.2 : Send a challenge ack
6044 */
6045 if (th->syn) {
6046 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6047 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6048 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6049 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6050 goto pass;
6051syn_challenge:
6052 if (syn_inerr)
6053 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6055 tcp_send_challenge_ack(sk);
6056 SKB_DR_SET(reason, TCP_INVALID_SYN);
6057 goto discard;
6058 }
6059
6060pass:
6061 bpf_skops_parse_hdr(sk, skb);
6062
6063 return true;
6064
6065discard:
6066 tcp_drop_reason(sk, skb, reason);
6067 return false;
6068
6069reset:
6070 tcp_reset(sk, skb);
6071 __kfree_skb(skb);
6072 return false;
6073}
6074
6075/*
6076 * TCP receive function for the ESTABLISHED state.
6077 *
6078 * It is split into a fast path and a slow path. The fast path is
6079 * disabled when:
6080 * - A zero window was announced from us - zero window probing
6081 * is only handled properly in the slow path.
6082 * - Out of order segments arrived.
6083 * - Urgent data is expected.
6084 * - There is no buffer space left
6085 * - Unexpected TCP flags/window values/header lengths are received
6086 * (detected by checking the TCP header against pred_flags)
6087 * - Data is sent in both directions. Fast path only supports pure senders
6088 * or pure receivers (this means either the sequence number or the ack
6089 * value must stay constant)
6090 * - Unexpected TCP option.
6091 *
6092 * When these conditions are not satisfied it drops into a standard
6093 * receive procedure patterned after RFC793 to handle all cases.
6094 * The first three cases are guaranteed by proper pred_flags setting,
6095 * the rest is checked inline. Fast processing is turned on in
6096 * tcp_data_queue when everything is OK.
6097 */
6098void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6099{
6100 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6101 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6102 struct tcp_sock *tp = tcp_sk(sk);
6103 unsigned int len = skb->len;
6104
6105 /* TCP congestion window tracking */
6106 trace_tcp_probe(sk, skb);
6107
6108 tcp_mstamp_refresh(tp);
6109 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6110 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6111 /*
6112 * Header prediction.
6113 * The code loosely follows the one in the famous
6114 * "30 instruction TCP receive" Van Jacobson mail.
6115 *
6116 * Van's trick is to deposit buffers into socket queue
6117 * on a device interrupt, to call tcp_recv function
6118 * on the receive process context and checksum and copy
6119 * the buffer to user space. smart...
6120 *
6121 * Our current scheme is not silly either but we take the
6122 * extra cost of the net_bh soft interrupt processing...
6123 * We do checksum and copy also but from device to kernel.
6124 */
6125
6126 tp->rx_opt.saw_tstamp = 0;
6127
6128 /* pred_flags is 0xS?10 << 16 + snd_wnd
6129 * if header_prediction is to be made
6130 * 'S' will always be tp->tcp_header_len >> 2
6131 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6132 * turn it off (when there are holes in the receive
6133 * space for instance)
6134 * PSH flag is ignored.
6135 */
6136
6137 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6138 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6139 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6140 int tcp_header_len = tp->tcp_header_len;
6141
6142 /* Timestamp header prediction: tcp_header_len
6143 * is automatically equal to th->doff*4 due to pred_flags
6144 * match.
6145 */
6146
6147 /* Check timestamp */
6148 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6149 /* No? Slow path! */
6150 if (!tcp_parse_aligned_timestamp(tp, th))
6151 goto slow_path;
6152
6153 /* If PAWS failed, check it more carefully in slow path */
6154 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6155 goto slow_path;
6156
6157 /* DO NOT update ts_recent here, if checksum fails
6158 * and timestamp was corrupted part, it will result
6159 * in a hung connection since we will drop all
6160 * future packets due to the PAWS test.
6161 */
6162 }
6163
6164 if (len <= tcp_header_len) {
6165 /* Bulk data transfer: sender */
6166 if (len == tcp_header_len) {
6167 /* Predicted packet is in window by definition.
6168 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6169 * Hence, check seq<=rcv_wup reduces to:
6170 */
6171 if (tcp_header_len ==
6172 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6173 tp->rcv_nxt == tp->rcv_wup)
6174 tcp_store_ts_recent(tp);
6175
6176 /* We know that such packets are checksummed
6177 * on entry.
6178 */
6179 tcp_ack(sk, skb, 0);
6180 __kfree_skb(skb);
6181 tcp_data_snd_check(sk);
6182 /* When receiving pure ack in fast path, update
6183 * last ts ecr directly instead of calling
6184 * tcp_rcv_rtt_measure_ts()
6185 */
6186 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6187 return;
6188 } else { /* Header too small */
6189 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6190 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6191 goto discard;
6192 }
6193 } else {
6194 int eaten = 0;
6195 bool fragstolen = false;
6196
6197 if (tcp_checksum_complete(skb))
6198 goto csum_error;
6199
6200 if ((int)skb->truesize > sk->sk_forward_alloc)
6201 goto step5;
6202
6203 /* Predicted packet is in window by definition.
6204 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6205 * Hence, check seq<=rcv_wup reduces to:
6206 */
6207 if (tcp_header_len ==
6208 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6209 tp->rcv_nxt == tp->rcv_wup)
6210 tcp_store_ts_recent(tp);
6211
6212 tcp_rcv_rtt_measure_ts(sk, skb);
6213
6214 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6215
6216 /* Bulk data transfer: receiver */
6217 tcp_cleanup_skb(skb);
6218 __skb_pull(skb, tcp_header_len);
6219 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6220
6221 tcp_event_data_recv(sk, skb);
6222
6223 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6224 /* Well, only one small jumplet in fast path... */
6225 tcp_ack(sk, skb, FLAG_DATA);
6226 tcp_data_snd_check(sk);
6227 if (!inet_csk_ack_scheduled(sk))
6228 goto no_ack;
6229 } else {
6230 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6231 }
6232
6233 __tcp_ack_snd_check(sk, 0);
6234no_ack:
6235 if (eaten)
6236 kfree_skb_partial(skb, fragstolen);
6237 tcp_data_ready(sk);
6238 return;
6239 }
6240 }
6241
6242slow_path:
6243 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6244 goto csum_error;
6245
6246 if (!th->ack && !th->rst && !th->syn) {
6247 reason = SKB_DROP_REASON_TCP_FLAGS;
6248 goto discard;
6249 }
6250
6251 /*
6252 * Standard slow path.
6253 */
6254
6255 if (!tcp_validate_incoming(sk, skb, th, 1))
6256 return;
6257
6258step5:
6259 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6260 if ((int)reason < 0) {
6261 reason = -reason;
6262 goto discard;
6263 }
6264 tcp_rcv_rtt_measure_ts(sk, skb);
6265
6266 /* Process urgent data. */
6267 tcp_urg(sk, skb, th);
6268
6269 /* step 7: process the segment text */
6270 tcp_data_queue(sk, skb);
6271
6272 tcp_data_snd_check(sk);
6273 tcp_ack_snd_check(sk);
6274 return;
6275
6276csum_error:
6277 reason = SKB_DROP_REASON_TCP_CSUM;
6278 trace_tcp_bad_csum(skb);
6279 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6280 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6281
6282discard:
6283 tcp_drop_reason(sk, skb, reason);
6284}
6285EXPORT_SYMBOL(tcp_rcv_established);
6286
6287void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6288{
6289 struct inet_connection_sock *icsk = inet_csk(sk);
6290 struct tcp_sock *tp = tcp_sk(sk);
6291
6292 tcp_mtup_init(sk);
6293 icsk->icsk_af_ops->rebuild_header(sk);
6294 tcp_init_metrics(sk);
6295
6296 /* Initialize the congestion window to start the transfer.
6297 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6298 * retransmitted. In light of RFC6298 more aggressive 1sec
6299 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6300 * retransmission has occurred.
6301 */
6302 if (tp->total_retrans > 1 && tp->undo_marker)
6303 tcp_snd_cwnd_set(tp, 1);
6304 else
6305 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6306 tp->snd_cwnd_stamp = tcp_jiffies32;
6307
6308 bpf_skops_established(sk, bpf_op, skb);
6309 /* Initialize congestion control unless BPF initialized it already: */
6310 if (!icsk->icsk_ca_initialized)
6311 tcp_init_congestion_control(sk);
6312 tcp_init_buffer_space(sk);
6313}
6314
6315void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6316{
6317 struct tcp_sock *tp = tcp_sk(sk);
6318 struct inet_connection_sock *icsk = inet_csk(sk);
6319
6320 tcp_ao_finish_connect(sk, skb);
6321 tcp_set_state(sk, TCP_ESTABLISHED);
6322 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6323
6324 if (skb) {
6325 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6326 security_inet_conn_established(sk, skb);
6327 sk_mark_napi_id(sk, skb);
6328 }
6329
6330 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6331
6332 /* Prevent spurious tcp_cwnd_restart() on first data
6333 * packet.
6334 */
6335 tp->lsndtime = tcp_jiffies32;
6336
6337 if (sock_flag(sk, SOCK_KEEPOPEN))
6338 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6339
6340 if (!tp->rx_opt.snd_wscale)
6341 __tcp_fast_path_on(tp, tp->snd_wnd);
6342 else
6343 tp->pred_flags = 0;
6344}
6345
6346static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6347 struct tcp_fastopen_cookie *cookie)
6348{
6349 struct tcp_sock *tp = tcp_sk(sk);
6350 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6351 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6352 bool syn_drop = false;
6353
6354 if (mss == tp->rx_opt.user_mss) {
6355 struct tcp_options_received opt;
6356
6357 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6358 tcp_clear_options(&opt);
6359 opt.user_mss = opt.mss_clamp = 0;
6360 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6361 mss = opt.mss_clamp;
6362 }
6363
6364 if (!tp->syn_fastopen) {
6365 /* Ignore an unsolicited cookie */
6366 cookie->len = -1;
6367 } else if (tp->total_retrans) {
6368 /* SYN timed out and the SYN-ACK neither has a cookie nor
6369 * acknowledges data. Presumably the remote received only
6370 * the retransmitted (regular) SYNs: either the original
6371 * SYN-data or the corresponding SYN-ACK was dropped.
6372 */
6373 syn_drop = (cookie->len < 0 && data);
6374 } else if (cookie->len < 0 && !tp->syn_data) {
6375 /* We requested a cookie but didn't get it. If we did not use
6376 * the (old) exp opt format then try so next time (try_exp=1).
6377 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6378 */
6379 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6380 }
6381
6382 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6383
6384 if (data) { /* Retransmit unacked data in SYN */
6385 if (tp->total_retrans)
6386 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6387 else
6388 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6389 skb_rbtree_walk_from(data)
6390 tcp_mark_skb_lost(sk, data);
6391 tcp_non_congestion_loss_retransmit(sk);
6392 NET_INC_STATS(sock_net(sk),
6393 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6394 return true;
6395 }
6396 tp->syn_data_acked = tp->syn_data;
6397 if (tp->syn_data_acked) {
6398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6399 /* SYN-data is counted as two separate packets in tcp_ack() */
6400 if (tp->delivered > 1)
6401 --tp->delivered;
6402 }
6403
6404 tcp_fastopen_add_skb(sk, synack);
6405
6406 return false;
6407}
6408
6409static void smc_check_reset_syn(struct tcp_sock *tp)
6410{
6411#if IS_ENABLED(CONFIG_SMC)
6412 if (static_branch_unlikely(&tcp_have_smc)) {
6413 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6414 tp->syn_smc = 0;
6415 }
6416#endif
6417}
6418
6419static void tcp_try_undo_spurious_syn(struct sock *sk)
6420{
6421 struct tcp_sock *tp = tcp_sk(sk);
6422 u32 syn_stamp;
6423
6424 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6425 * spurious if the ACK's timestamp option echo value matches the
6426 * original SYN timestamp.
6427 */
6428 syn_stamp = tp->retrans_stamp;
6429 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6430 syn_stamp == tp->rx_opt.rcv_tsecr)
6431 tp->undo_marker = 0;
6432}
6433
6434static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6435 const struct tcphdr *th)
6436{
6437 struct inet_connection_sock *icsk = inet_csk(sk);
6438 struct tcp_sock *tp = tcp_sk(sk);
6439 struct tcp_fastopen_cookie foc = { .len = -1 };
6440 int saved_clamp = tp->rx_opt.mss_clamp;
6441 bool fastopen_fail;
6442 SKB_DR(reason);
6443
6444 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6445 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6446 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6447
6448 if (th->ack) {
6449 /* rfc793:
6450 * "If the state is SYN-SENT then
6451 * first check the ACK bit
6452 * If the ACK bit is set
6453 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6454 * a reset (unless the RST bit is set, if so drop
6455 * the segment and return)"
6456 */
6457 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6458 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6459 /* Previous FIN/ACK or RST/ACK might be ignored. */
6460 if (icsk->icsk_retransmits == 0)
6461 inet_csk_reset_xmit_timer(sk,
6462 ICSK_TIME_RETRANS,
6463 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6464 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6465 goto reset_and_undo;
6466 }
6467
6468 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6469 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6470 tcp_time_stamp_ts(tp))) {
6471 NET_INC_STATS(sock_net(sk),
6472 LINUX_MIB_PAWSACTIVEREJECTED);
6473 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6474 goto reset_and_undo;
6475 }
6476
6477 /* Now ACK is acceptable.
6478 *
6479 * "If the RST bit is set
6480 * If the ACK was acceptable then signal the user "error:
6481 * connection reset", drop the segment, enter CLOSED state,
6482 * delete TCB, and return."
6483 */
6484
6485 if (th->rst) {
6486 tcp_reset(sk, skb);
6487consume:
6488 __kfree_skb(skb);
6489 return 0;
6490 }
6491
6492 /* rfc793:
6493 * "fifth, if neither of the SYN or RST bits is set then
6494 * drop the segment and return."
6495 *
6496 * See note below!
6497 * --ANK(990513)
6498 */
6499 if (!th->syn) {
6500 SKB_DR_SET(reason, TCP_FLAGS);
6501 goto discard_and_undo;
6502 }
6503 /* rfc793:
6504 * "If the SYN bit is on ...
6505 * are acceptable then ...
6506 * (our SYN has been ACKed), change the connection
6507 * state to ESTABLISHED..."
6508 */
6509
6510 tcp_ecn_rcv_synack(tp, th);
6511
6512 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6513 tcp_try_undo_spurious_syn(sk);
6514 tcp_ack(sk, skb, FLAG_SLOWPATH);
6515
6516 /* Ok.. it's good. Set up sequence numbers and
6517 * move to established.
6518 */
6519 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6520 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6521
6522 /* RFC1323: The window in SYN & SYN/ACK segments is
6523 * never scaled.
6524 */
6525 tp->snd_wnd = ntohs(th->window);
6526
6527 if (!tp->rx_opt.wscale_ok) {
6528 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6529 WRITE_ONCE(tp->window_clamp,
6530 min(tp->window_clamp, 65535U));
6531 }
6532
6533 if (tp->rx_opt.saw_tstamp) {
6534 tp->rx_opt.tstamp_ok = 1;
6535 tp->tcp_header_len =
6536 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6537 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6538 tcp_store_ts_recent(tp);
6539 } else {
6540 tp->tcp_header_len = sizeof(struct tcphdr);
6541 }
6542
6543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6544 tcp_initialize_rcv_mss(sk);
6545
6546 /* Remember, tcp_poll() does not lock socket!
6547 * Change state from SYN-SENT only after copied_seq
6548 * is initialized. */
6549 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6550
6551 smc_check_reset_syn(tp);
6552
6553 smp_mb();
6554
6555 tcp_finish_connect(sk, skb);
6556
6557 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6558 tcp_rcv_fastopen_synack(sk, skb, &foc);
6559
6560 if (!sock_flag(sk, SOCK_DEAD)) {
6561 sk->sk_state_change(sk);
6562 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6563 }
6564 if (fastopen_fail)
6565 return -1;
6566 if (sk->sk_write_pending ||
6567 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6568 inet_csk_in_pingpong_mode(sk)) {
6569 /* Save one ACK. Data will be ready after
6570 * several ticks, if write_pending is set.
6571 *
6572 * It may be deleted, but with this feature tcpdumps
6573 * look so _wonderfully_ clever, that I was not able
6574 * to stand against the temptation 8) --ANK
6575 */
6576 inet_csk_schedule_ack(sk);
6577 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6578 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6579 TCP_DELACK_MAX, TCP_RTO_MAX);
6580 goto consume;
6581 }
6582 tcp_send_ack(sk);
6583 return -1;
6584 }
6585
6586 /* No ACK in the segment */
6587
6588 if (th->rst) {
6589 /* rfc793:
6590 * "If the RST bit is set
6591 *
6592 * Otherwise (no ACK) drop the segment and return."
6593 */
6594 SKB_DR_SET(reason, TCP_RESET);
6595 goto discard_and_undo;
6596 }
6597
6598 /* PAWS check. */
6599 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6600 tcp_paws_reject(&tp->rx_opt, 0)) {
6601 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6602 goto discard_and_undo;
6603 }
6604 if (th->syn) {
6605 /* We see SYN without ACK. It is attempt of
6606 * simultaneous connect with crossed SYNs.
6607 * Particularly, it can be connect to self.
6608 */
6609#ifdef CONFIG_TCP_AO
6610 struct tcp_ao_info *ao;
6611
6612 ao = rcu_dereference_protected(tp->ao_info,
6613 lockdep_sock_is_held(sk));
6614 if (ao) {
6615 WRITE_ONCE(ao->risn, th->seq);
6616 ao->rcv_sne = 0;
6617 }
6618#endif
6619 tcp_set_state(sk, TCP_SYN_RECV);
6620
6621 if (tp->rx_opt.saw_tstamp) {
6622 tp->rx_opt.tstamp_ok = 1;
6623 tcp_store_ts_recent(tp);
6624 tp->tcp_header_len =
6625 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6626 } else {
6627 tp->tcp_header_len = sizeof(struct tcphdr);
6628 }
6629
6630 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6631 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6632 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6633
6634 /* RFC1323: The window in SYN & SYN/ACK segments is
6635 * never scaled.
6636 */
6637 tp->snd_wnd = ntohs(th->window);
6638 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6639 tp->max_window = tp->snd_wnd;
6640
6641 tcp_ecn_rcv_syn(tp, th);
6642
6643 tcp_mtup_init(sk);
6644 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6645 tcp_initialize_rcv_mss(sk);
6646
6647 tcp_send_synack(sk);
6648#if 0
6649 /* Note, we could accept data and URG from this segment.
6650 * There are no obstacles to make this (except that we must
6651 * either change tcp_recvmsg() to prevent it from returning data
6652 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6653 *
6654 * However, if we ignore data in ACKless segments sometimes,
6655 * we have no reasons to accept it sometimes.
6656 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6657 * is not flawless. So, discard packet for sanity.
6658 * Uncomment this return to process the data.
6659 */
6660 return -1;
6661#else
6662 goto consume;
6663#endif
6664 }
6665 /* "fifth, if neither of the SYN or RST bits is set then
6666 * drop the segment and return."
6667 */
6668
6669discard_and_undo:
6670 tcp_clear_options(&tp->rx_opt);
6671 tp->rx_opt.mss_clamp = saved_clamp;
6672 tcp_drop_reason(sk, skb, reason);
6673 return 0;
6674
6675reset_and_undo:
6676 tcp_clear_options(&tp->rx_opt);
6677 tp->rx_opt.mss_clamp = saved_clamp;
6678 /* we can reuse/return @reason to its caller to handle the exception */
6679 return reason;
6680}
6681
6682static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6683{
6684 struct tcp_sock *tp = tcp_sk(sk);
6685 struct request_sock *req;
6686
6687 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6688 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6689 */
6690 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6691 tcp_try_undo_recovery(sk);
6692
6693 tcp_update_rto_time(tp);
6694 inet_csk(sk)->icsk_retransmits = 0;
6695 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6696 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6697 * need to zero retrans_stamp here to prevent spurious
6698 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6699 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6700 * set entering CA_Recovery, for correct retransmits_timed_out() and
6701 * undo behavior.
6702 */
6703 tcp_retrans_stamp_cleanup(sk);
6704
6705 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6706 * we no longer need req so release it.
6707 */
6708 req = rcu_dereference_protected(tp->fastopen_rsk,
6709 lockdep_sock_is_held(sk));
6710 reqsk_fastopen_remove(sk, req, false);
6711
6712 /* Re-arm the timer because data may have been sent out.
6713 * This is similar to the regular data transmission case
6714 * when new data has just been ack'ed.
6715 *
6716 * (TFO) - we could try to be more aggressive and
6717 * retransmitting any data sooner based on when they
6718 * are sent out.
6719 */
6720 tcp_rearm_rto(sk);
6721}
6722
6723/*
6724 * This function implements the receiving procedure of RFC 793 for
6725 * all states except ESTABLISHED and TIME_WAIT.
6726 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6727 * address independent.
6728 */
6729
6730enum skb_drop_reason
6731tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6732{
6733 struct tcp_sock *tp = tcp_sk(sk);
6734 struct inet_connection_sock *icsk = inet_csk(sk);
6735 const struct tcphdr *th = tcp_hdr(skb);
6736 struct request_sock *req;
6737 int queued = 0;
6738 SKB_DR(reason);
6739
6740 switch (sk->sk_state) {
6741 case TCP_CLOSE:
6742 SKB_DR_SET(reason, TCP_CLOSE);
6743 goto discard;
6744
6745 case TCP_LISTEN:
6746 if (th->ack)
6747 return SKB_DROP_REASON_TCP_FLAGS;
6748
6749 if (th->rst) {
6750 SKB_DR_SET(reason, TCP_RESET);
6751 goto discard;
6752 }
6753 if (th->syn) {
6754 if (th->fin) {
6755 SKB_DR_SET(reason, TCP_FLAGS);
6756 goto discard;
6757 }
6758 /* It is possible that we process SYN packets from backlog,
6759 * so we need to make sure to disable BH and RCU right there.
6760 */
6761 rcu_read_lock();
6762 local_bh_disable();
6763 icsk->icsk_af_ops->conn_request(sk, skb);
6764 local_bh_enable();
6765 rcu_read_unlock();
6766
6767 consume_skb(skb);
6768 return 0;
6769 }
6770 SKB_DR_SET(reason, TCP_FLAGS);
6771 goto discard;
6772
6773 case TCP_SYN_SENT:
6774 tp->rx_opt.saw_tstamp = 0;
6775 tcp_mstamp_refresh(tp);
6776 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6777 if (queued >= 0)
6778 return queued;
6779
6780 /* Do step6 onward by hand. */
6781 tcp_urg(sk, skb, th);
6782 __kfree_skb(skb);
6783 tcp_data_snd_check(sk);
6784 return 0;
6785 }
6786
6787 tcp_mstamp_refresh(tp);
6788 tp->rx_opt.saw_tstamp = 0;
6789 req = rcu_dereference_protected(tp->fastopen_rsk,
6790 lockdep_sock_is_held(sk));
6791 if (req) {
6792 bool req_stolen;
6793
6794 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6795 sk->sk_state != TCP_FIN_WAIT1);
6796
6797 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6798 SKB_DR_SET(reason, TCP_FASTOPEN);
6799 goto discard;
6800 }
6801 }
6802
6803 if (!th->ack && !th->rst && !th->syn) {
6804 SKB_DR_SET(reason, TCP_FLAGS);
6805 goto discard;
6806 }
6807 if (!tcp_validate_incoming(sk, skb, th, 0))
6808 return 0;
6809
6810 /* step 5: check the ACK field */
6811 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6812 FLAG_UPDATE_TS_RECENT |
6813 FLAG_NO_CHALLENGE_ACK);
6814
6815 if ((int)reason <= 0) {
6816 if (sk->sk_state == TCP_SYN_RECV) {
6817 /* send one RST */
6818 if (!reason)
6819 return SKB_DROP_REASON_TCP_OLD_ACK;
6820 return -reason;
6821 }
6822 /* accept old ack during closing */
6823 if ((int)reason < 0) {
6824 tcp_send_challenge_ack(sk);
6825 reason = -reason;
6826 goto discard;
6827 }
6828 }
6829 SKB_DR_SET(reason, NOT_SPECIFIED);
6830 switch (sk->sk_state) {
6831 case TCP_SYN_RECV:
6832 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6833 if (!tp->srtt_us)
6834 tcp_synack_rtt_meas(sk, req);
6835
6836 if (req) {
6837 tcp_rcv_synrecv_state_fastopen(sk);
6838 } else {
6839 tcp_try_undo_spurious_syn(sk);
6840 tp->retrans_stamp = 0;
6841 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6842 skb);
6843 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6844 }
6845 tcp_ao_established(sk);
6846 smp_mb();
6847 tcp_set_state(sk, TCP_ESTABLISHED);
6848 sk->sk_state_change(sk);
6849
6850 /* Note, that this wakeup is only for marginal crossed SYN case.
6851 * Passively open sockets are not waked up, because
6852 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6853 */
6854 if (sk->sk_socket)
6855 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6856
6857 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6858 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6859 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6860
6861 if (tp->rx_opt.tstamp_ok)
6862 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6863
6864 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6865 tcp_update_pacing_rate(sk);
6866
6867 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6868 tp->lsndtime = tcp_jiffies32;
6869
6870 tcp_initialize_rcv_mss(sk);
6871 tcp_fast_path_on(tp);
6872 if (sk->sk_shutdown & SEND_SHUTDOWN)
6873 tcp_shutdown(sk, SEND_SHUTDOWN);
6874 break;
6875
6876 case TCP_FIN_WAIT1: {
6877 int tmo;
6878
6879 if (req)
6880 tcp_rcv_synrecv_state_fastopen(sk);
6881
6882 if (tp->snd_una != tp->write_seq)
6883 break;
6884
6885 tcp_set_state(sk, TCP_FIN_WAIT2);
6886 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6887
6888 sk_dst_confirm(sk);
6889
6890 if (!sock_flag(sk, SOCK_DEAD)) {
6891 /* Wake up lingering close() */
6892 sk->sk_state_change(sk);
6893 break;
6894 }
6895
6896 if (READ_ONCE(tp->linger2) < 0) {
6897 tcp_done(sk);
6898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6899 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6900 }
6901 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6902 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6903 /* Receive out of order FIN after close() */
6904 if (tp->syn_fastopen && th->fin)
6905 tcp_fastopen_active_disable(sk);
6906 tcp_done(sk);
6907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6908 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6909 }
6910
6911 tmo = tcp_fin_time(sk);
6912 if (tmo > TCP_TIMEWAIT_LEN) {
6913 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6914 } else if (th->fin || sock_owned_by_user(sk)) {
6915 /* Bad case. We could lose such FIN otherwise.
6916 * It is not a big problem, but it looks confusing
6917 * and not so rare event. We still can lose it now,
6918 * if it spins in bh_lock_sock(), but it is really
6919 * marginal case.
6920 */
6921 inet_csk_reset_keepalive_timer(sk, tmo);
6922 } else {
6923 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6924 goto consume;
6925 }
6926 break;
6927 }
6928
6929 case TCP_CLOSING:
6930 if (tp->snd_una == tp->write_seq) {
6931 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6932 goto consume;
6933 }
6934 break;
6935
6936 case TCP_LAST_ACK:
6937 if (tp->snd_una == tp->write_seq) {
6938 tcp_update_metrics(sk);
6939 tcp_done(sk);
6940 goto consume;
6941 }
6942 break;
6943 }
6944
6945 /* step 6: check the URG bit */
6946 tcp_urg(sk, skb, th);
6947
6948 /* step 7: process the segment text */
6949 switch (sk->sk_state) {
6950 case TCP_CLOSE_WAIT:
6951 case TCP_CLOSING:
6952 case TCP_LAST_ACK:
6953 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6954 /* If a subflow has been reset, the packet should not
6955 * continue to be processed, drop the packet.
6956 */
6957 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6958 goto discard;
6959 break;
6960 }
6961 fallthrough;
6962 case TCP_FIN_WAIT1:
6963 case TCP_FIN_WAIT2:
6964 /* RFC 793 says to queue data in these states,
6965 * RFC 1122 says we MUST send a reset.
6966 * BSD 4.4 also does reset.
6967 */
6968 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6969 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6970 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6971 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6972 tcp_reset(sk, skb);
6973 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6974 }
6975 }
6976 fallthrough;
6977 case TCP_ESTABLISHED:
6978 tcp_data_queue(sk, skb);
6979 queued = 1;
6980 break;
6981 }
6982
6983 /* tcp_data could move socket to TIME-WAIT */
6984 if (sk->sk_state != TCP_CLOSE) {
6985 tcp_data_snd_check(sk);
6986 tcp_ack_snd_check(sk);
6987 }
6988
6989 if (!queued) {
6990discard:
6991 tcp_drop_reason(sk, skb, reason);
6992 }
6993 return 0;
6994
6995consume:
6996 __kfree_skb(skb);
6997 return 0;
6998}
6999EXPORT_SYMBOL(tcp_rcv_state_process);
7000
7001static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7002{
7003 struct inet_request_sock *ireq = inet_rsk(req);
7004
7005 if (family == AF_INET)
7006 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7007 &ireq->ir_rmt_addr, port);
7008#if IS_ENABLED(CONFIG_IPV6)
7009 else if (family == AF_INET6)
7010 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7011 &ireq->ir_v6_rmt_addr, port);
7012#endif
7013}
7014
7015/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7016 *
7017 * If we receive a SYN packet with these bits set, it means a
7018 * network is playing bad games with TOS bits. In order to
7019 * avoid possible false congestion notifications, we disable
7020 * TCP ECN negotiation.
7021 *
7022 * Exception: tcp_ca wants ECN. This is required for DCTCP
7023 * congestion control: Linux DCTCP asserts ECT on all packets,
7024 * including SYN, which is most optimal solution; however,
7025 * others, such as FreeBSD do not.
7026 *
7027 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7028 * set, indicating the use of a future TCP extension (such as AccECN). See
7029 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7030 * extensions.
7031 */
7032static void tcp_ecn_create_request(struct request_sock *req,
7033 const struct sk_buff *skb,
7034 const struct sock *listen_sk,
7035 const struct dst_entry *dst)
7036{
7037 const struct tcphdr *th = tcp_hdr(skb);
7038 const struct net *net = sock_net(listen_sk);
7039 bool th_ecn = th->ece && th->cwr;
7040 bool ect, ecn_ok;
7041 u32 ecn_ok_dst;
7042
7043 if (!th_ecn)
7044 return;
7045
7046 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7047 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7048 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7049
7050 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7051 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7052 tcp_bpf_ca_needs_ecn((struct sock *)req))
7053 inet_rsk(req)->ecn_ok = 1;
7054}
7055
7056static void tcp_openreq_init(struct request_sock *req,
7057 const struct tcp_options_received *rx_opt,
7058 struct sk_buff *skb, const struct sock *sk)
7059{
7060 struct inet_request_sock *ireq = inet_rsk(req);
7061
7062 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7063 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7064 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7065 tcp_rsk(req)->snt_synack = 0;
7066 tcp_rsk(req)->last_oow_ack_time = 0;
7067 req->mss = rx_opt->mss_clamp;
7068 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7069 ireq->tstamp_ok = rx_opt->tstamp_ok;
7070 ireq->sack_ok = rx_opt->sack_ok;
7071 ireq->snd_wscale = rx_opt->snd_wscale;
7072 ireq->wscale_ok = rx_opt->wscale_ok;
7073 ireq->acked = 0;
7074 ireq->ecn_ok = 0;
7075 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7076 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7077 ireq->ir_mark = inet_request_mark(sk, skb);
7078#if IS_ENABLED(CONFIG_SMC)
7079 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7080 tcp_sk(sk)->smc_hs_congested(sk));
7081#endif
7082}
7083
7084/*
7085 * Return true if a syncookie should be sent
7086 */
7087static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7088{
7089 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7090 const char *msg = "Dropping request";
7091 struct net *net = sock_net(sk);
7092 bool want_cookie = false;
7093 u8 syncookies;
7094
7095 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7096
7097#ifdef CONFIG_SYN_COOKIES
7098 if (syncookies) {
7099 msg = "Sending cookies";
7100 want_cookie = true;
7101 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7102 } else
7103#endif
7104 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7105
7106 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7107 xchg(&queue->synflood_warned, 1) == 0) {
7108 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7109 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7110 proto, inet6_rcv_saddr(sk),
7111 sk->sk_num, msg);
7112 } else {
7113 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7114 proto, &sk->sk_rcv_saddr,
7115 sk->sk_num, msg);
7116 }
7117 }
7118
7119 return want_cookie;
7120}
7121
7122static void tcp_reqsk_record_syn(const struct sock *sk,
7123 struct request_sock *req,
7124 const struct sk_buff *skb)
7125{
7126 if (tcp_sk(sk)->save_syn) {
7127 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7128 struct saved_syn *saved_syn;
7129 u32 mac_hdrlen;
7130 void *base;
7131
7132 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7133 base = skb_mac_header(skb);
7134 mac_hdrlen = skb_mac_header_len(skb);
7135 len += mac_hdrlen;
7136 } else {
7137 base = skb_network_header(skb);
7138 mac_hdrlen = 0;
7139 }
7140
7141 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7142 GFP_ATOMIC);
7143 if (saved_syn) {
7144 saved_syn->mac_hdrlen = mac_hdrlen;
7145 saved_syn->network_hdrlen = skb_network_header_len(skb);
7146 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7147 memcpy(saved_syn->data, base, len);
7148 req->saved_syn = saved_syn;
7149 }
7150 }
7151}
7152
7153/* If a SYN cookie is required and supported, returns a clamped MSS value to be
7154 * used for SYN cookie generation.
7155 */
7156u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7157 const struct tcp_request_sock_ops *af_ops,
7158 struct sock *sk, struct tcphdr *th)
7159{
7160 struct tcp_sock *tp = tcp_sk(sk);
7161 u16 mss;
7162
7163 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7164 !inet_csk_reqsk_queue_is_full(sk))
7165 return 0;
7166
7167 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7168 return 0;
7169
7170 if (sk_acceptq_is_full(sk)) {
7171 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7172 return 0;
7173 }
7174
7175 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7176 if (!mss)
7177 mss = af_ops->mss_clamp;
7178
7179 return mss;
7180}
7181EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7182
7183int tcp_conn_request(struct request_sock_ops *rsk_ops,
7184 const struct tcp_request_sock_ops *af_ops,
7185 struct sock *sk, struct sk_buff *skb)
7186{
7187 struct tcp_fastopen_cookie foc = { .len = -1 };
7188 struct tcp_options_received tmp_opt;
7189 struct tcp_sock *tp = tcp_sk(sk);
7190 struct net *net = sock_net(sk);
7191 struct sock *fastopen_sk = NULL;
7192 struct request_sock *req;
7193 bool want_cookie = false;
7194 struct dst_entry *dst;
7195 struct flowi fl;
7196 u8 syncookies;
7197 u32 isn;
7198
7199#ifdef CONFIG_TCP_AO
7200 const struct tcp_ao_hdr *aoh;
7201#endif
7202
7203 isn = __this_cpu_read(tcp_tw_isn);
7204 if (isn) {
7205 /* TW buckets are converted to open requests without
7206 * limitations, they conserve resources and peer is
7207 * evidently real one.
7208 */
7209 __this_cpu_write(tcp_tw_isn, 0);
7210 } else {
7211 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7212
7213 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7214 want_cookie = tcp_syn_flood_action(sk,
7215 rsk_ops->slab_name);
7216 if (!want_cookie)
7217 goto drop;
7218 }
7219 }
7220
7221 if (sk_acceptq_is_full(sk)) {
7222 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7223 goto drop;
7224 }
7225
7226 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7227 if (!req)
7228 goto drop;
7229
7230 req->syncookie = want_cookie;
7231 tcp_rsk(req)->af_specific = af_ops;
7232 tcp_rsk(req)->ts_off = 0;
7233 tcp_rsk(req)->req_usec_ts = false;
7234#if IS_ENABLED(CONFIG_MPTCP)
7235 tcp_rsk(req)->is_mptcp = 0;
7236#endif
7237
7238 tcp_clear_options(&tmp_opt);
7239 tmp_opt.mss_clamp = af_ops->mss_clamp;
7240 tmp_opt.user_mss = tp->rx_opt.user_mss;
7241 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7242 want_cookie ? NULL : &foc);
7243
7244 if (want_cookie && !tmp_opt.saw_tstamp)
7245 tcp_clear_options(&tmp_opt);
7246
7247 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7248 tmp_opt.smc_ok = 0;
7249
7250 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7251 tcp_openreq_init(req, &tmp_opt, skb, sk);
7252 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7253
7254 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7255 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7256
7257 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7258 if (!dst)
7259 goto drop_and_free;
7260
7261 if (tmp_opt.tstamp_ok) {
7262 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7263 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7264 }
7265 if (!want_cookie && !isn) {
7266 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7267
7268 /* Kill the following clause, if you dislike this way. */
7269 if (!syncookies &&
7270 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7271 (max_syn_backlog >> 2)) &&
7272 !tcp_peer_is_proven(req, dst)) {
7273 /* Without syncookies last quarter of
7274 * backlog is filled with destinations,
7275 * proven to be alive.
7276 * It means that we continue to communicate
7277 * to destinations, already remembered
7278 * to the moment of synflood.
7279 */
7280 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7281 rsk_ops->family);
7282 goto drop_and_release;
7283 }
7284
7285 isn = af_ops->init_seq(skb);
7286 }
7287
7288 tcp_ecn_create_request(req, skb, sk, dst);
7289
7290 if (want_cookie) {
7291 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7292 if (!tmp_opt.tstamp_ok)
7293 inet_rsk(req)->ecn_ok = 0;
7294 }
7295
7296#ifdef CONFIG_TCP_AO
7297 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7298 goto drop_and_release; /* Invalid TCP options */
7299 if (aoh) {
7300 tcp_rsk(req)->used_tcp_ao = true;
7301 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7302 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7303
7304 } else {
7305 tcp_rsk(req)->used_tcp_ao = false;
7306 }
7307#endif
7308 tcp_rsk(req)->snt_isn = isn;
7309 tcp_rsk(req)->txhash = net_tx_rndhash();
7310 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7311 tcp_openreq_init_rwin(req, sk, dst);
7312 sk_rx_queue_set(req_to_sk(req), skb);
7313 if (!want_cookie) {
7314 tcp_reqsk_record_syn(sk, req, skb);
7315 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7316 }
7317 if (fastopen_sk) {
7318 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7319 &foc, TCP_SYNACK_FASTOPEN, skb);
7320 /* Add the child socket directly into the accept queue */
7321 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7322 reqsk_fastopen_remove(fastopen_sk, req, false);
7323 bh_unlock_sock(fastopen_sk);
7324 sock_put(fastopen_sk);
7325 goto drop_and_free;
7326 }
7327 sk->sk_data_ready(sk);
7328 bh_unlock_sock(fastopen_sk);
7329 sock_put(fastopen_sk);
7330 } else {
7331 tcp_rsk(req)->tfo_listener = false;
7332 if (!want_cookie) {
7333 req->timeout = tcp_timeout_init((struct sock *)req);
7334 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7335 req->timeout))) {
7336 reqsk_free(req);
7337 dst_release(dst);
7338 return 0;
7339 }
7340
7341 }
7342 af_ops->send_synack(sk, dst, &fl, req, &foc,
7343 !want_cookie ? TCP_SYNACK_NORMAL :
7344 TCP_SYNACK_COOKIE,
7345 skb);
7346 if (want_cookie) {
7347 reqsk_free(req);
7348 return 0;
7349 }
7350 }
7351 reqsk_put(req);
7352 return 0;
7353
7354drop_and_release:
7355 dst_release(dst);
7356drop_and_free:
7357 __reqsk_free(req);
7358drop:
7359 tcp_listendrop(sk);
7360 return 0;
7361}
7362EXPORT_SYMBOL(tcp_conn_request);