Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
 
 
 
 
 
 
 
 
 
  84
  85#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  86#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  87#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  88#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  89#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  90#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  91#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  92#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  93#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  94#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  95#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  96#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  97#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  98#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
  99#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 100#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 101#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 102
 103#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 104#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 105#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 106#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 
 107
 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 110
 111#define REXMIT_NONE	0 /* no loss recovery to do */
 112#define REXMIT_LOST	1 /* retransmit packets marked lost */
 113#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 114
 115#if IS_ENABLED(CONFIG_TLS_DEVICE)
 116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 117
 118void clean_acked_data_enable(struct inet_connection_sock *icsk,
 119			     void (*cad)(struct sock *sk, u32 ack_seq))
 120{
 121	icsk->icsk_clean_acked = cad;
 122	static_branch_deferred_inc(&clean_acked_data_enabled);
 123}
 124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 125
 126void clean_acked_data_disable(struct inet_connection_sock *icsk)
 127{
 128	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 129	icsk->icsk_clean_acked = NULL;
 130}
 131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 132
 133void clean_acked_data_flush(void)
 134{
 135	static_key_deferred_flush(&clean_acked_data_enabled);
 136}
 137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 138#endif
 139
 140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 141			     unsigned int len)
 142{
 143	static bool __once __read_mostly;
 144
 145	if (!__once) {
 146		struct net_device *dev;
 147
 148		__once = true;
 149
 150		rcu_read_lock();
 151		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 152		if (!dev || len >= dev->mtu)
 153			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 154				dev ? dev->name : "Unknown driver");
 155		rcu_read_unlock();
 156	}
 157}
 158
 159/* Adapt the MSS value used to make delayed ack decision to the
 160 * real world.
 161 */
 162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 163{
 164	struct inet_connection_sock *icsk = inet_csk(sk);
 165	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 166	unsigned int len;
 167
 168	icsk->icsk_ack.last_seg_size = 0;
 169
 170	/* skb->len may jitter because of SACKs, even if peer
 171	 * sends good full-sized frames.
 172	 */
 173	len = skb_shinfo(skb)->gso_size ? : skb->len;
 174	if (len >= icsk->icsk_ack.rcv_mss) {
 175		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 176					       tcp_sk(sk)->advmss);
 177		/* Account for possibly-removed options */
 178		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 179				   MAX_TCP_OPTION_SPACE))
 180			tcp_gro_dev_warn(sk, skb, len);
 181	} else {
 182		/* Otherwise, we make more careful check taking into account,
 183		 * that SACKs block is variable.
 184		 *
 185		 * "len" is invariant segment length, including TCP header.
 186		 */
 187		len += skb->data - skb_transport_header(skb);
 188		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 189		    /* If PSH is not set, packet should be
 190		     * full sized, provided peer TCP is not badly broken.
 191		     * This observation (if it is correct 8)) allows
 192		     * to handle super-low mtu links fairly.
 193		     */
 194		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 195		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 196			/* Subtract also invariant (if peer is RFC compliant),
 197			 * tcp header plus fixed timestamp option length.
 198			 * Resulting "len" is MSS free of SACK jitter.
 199			 */
 200			len -= tcp_sk(sk)->tcp_header_len;
 201			icsk->icsk_ack.last_seg_size = len;
 202			if (len == lss) {
 203				icsk->icsk_ack.rcv_mss = len;
 204				return;
 205			}
 206		}
 207		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 208			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 209		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 210	}
 211}
 212
 213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 214{
 215	struct inet_connection_sock *icsk = inet_csk(sk);
 216	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 217
 218	if (quickacks == 0)
 219		quickacks = 2;
 220	quickacks = min(quickacks, max_quickacks);
 221	if (quickacks > icsk->icsk_ack.quick)
 222		icsk->icsk_ack.quick = quickacks;
 223}
 224
 225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 226{
 227	struct inet_connection_sock *icsk = inet_csk(sk);
 228
 229	tcp_incr_quickack(sk, max_quickacks);
 230	inet_csk_exit_pingpong_mode(sk);
 231	icsk->icsk_ack.ato = TCP_ATO_MIN;
 232}
 233EXPORT_SYMBOL(tcp_enter_quickack_mode);
 234
 235/* Send ACKs quickly, if "quick" count is not exhausted
 236 * and the session is not interactive.
 237 */
 238
 239static bool tcp_in_quickack_mode(struct sock *sk)
 240{
 241	const struct inet_connection_sock *icsk = inet_csk(sk);
 242	const struct dst_entry *dst = __sk_dst_get(sk);
 243
 244	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 245		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 246}
 247
 248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 249{
 250	if (tp->ecn_flags & TCP_ECN_OK)
 251		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 252}
 253
 254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 255{
 256	if (tcp_hdr(skb)->cwr) {
 257		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 258
 259		/* If the sender is telling us it has entered CWR, then its
 260		 * cwnd may be very low (even just 1 packet), so we should ACK
 261		 * immediately.
 262		 */
 263		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 264	}
 265}
 266
 267static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 268{
 269	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 270}
 271
 272static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 273{
 274	struct tcp_sock *tp = tcp_sk(sk);
 
 275
 276	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 277	case INET_ECN_NOT_ECT:
 278		/* Funny extension: if ECT is not set on a segment,
 279		 * and we already seen ECT on a previous segment,
 280		 * it is probably a retransmit.
 281		 */
 282		if (tp->ecn_flags & TCP_ECN_SEEN)
 283			tcp_enter_quickack_mode(sk, 2);
 284		break;
 285	case INET_ECN_CE:
 286		if (tcp_ca_needs_ecn(sk))
 287			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 288
 289		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 290			/* Better not delay acks, sender can have a very low cwnd */
 291			tcp_enter_quickack_mode(sk, 2);
 292			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 293		}
 294		tp->ecn_flags |= TCP_ECN_SEEN;
 295		break;
 296	default:
 297		if (tcp_ca_needs_ecn(sk))
 298			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 299		tp->ecn_flags |= TCP_ECN_SEEN;
 300		break;
 301	}
 302}
 303
 304static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 305{
 306	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 307		__tcp_ecn_check_ce(sk, skb);
 308}
 309
 310static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 311{
 312	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 313		tp->ecn_flags &= ~TCP_ECN_OK;
 314}
 315
 316static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 317{
 318	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 319		tp->ecn_flags &= ~TCP_ECN_OK;
 320}
 321
 322static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 323{
 324	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 325		return true;
 326	return false;
 327}
 328
 329/* Buffer size and advertised window tuning.
 330 *
 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 332 */
 333
 334static void tcp_sndbuf_expand(struct sock *sk)
 335{
 336	const struct tcp_sock *tp = tcp_sk(sk);
 337	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 338	int sndmem, per_mss;
 339	u32 nr_segs;
 340
 341	/* Worst case is non GSO/TSO : each frame consumes one skb
 342	 * and skb->head is kmalloced using power of two area of memory
 343	 */
 344	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 345		  MAX_TCP_HEADER +
 346		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 347
 348	per_mss = roundup_pow_of_two(per_mss) +
 349		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 350
 351	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 352	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 353
 354	/* Fast Recovery (RFC 5681 3.2) :
 355	 * Cubic needs 1.7 factor, rounded to 2 to include
 356	 * extra cushion (application might react slowly to EPOLLOUT)
 357	 */
 358	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 359	sndmem *= nr_segs * per_mss;
 360
 
 361	if (sk->sk_sndbuf < sndmem)
 362		WRITE_ONCE(sk->sk_sndbuf,
 363			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
 364}
 365
 366/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 367 *
 368 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 369 * forward and advertised in receiver window (tp->rcv_wnd) and
 370 * "application buffer", required to isolate scheduling/application
 371 * latencies from network.
 372 * window_clamp is maximal advertised window. It can be less than
 373 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 374 * is reserved for "application" buffer. The less window_clamp is
 375 * the smoother our behaviour from viewpoint of network, but the lower
 376 * throughput and the higher sensitivity of the connection to losses. 8)
 377 *
 378 * rcv_ssthresh is more strict window_clamp used at "slow start"
 379 * phase to predict further behaviour of this connection.
 380 * It is used for two goals:
 381 * - to enforce header prediction at sender, even when application
 382 *   requires some significant "application buffer". It is check #1.
 383 * - to prevent pruning of receive queue because of misprediction
 384 *   of receiver window. Check #2.
 385 *
 386 * The scheme does not work when sender sends good segments opening
 387 * window and then starts to feed us spaghetti. But it should work
 388 * in common situations. Otherwise, we have to rely on queue collapsing.
 389 */
 390
 391/* Slow part of check#2. */
 392static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 393{
 394	struct tcp_sock *tp = tcp_sk(sk);
 395	/* Optimize this! */
 396	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 397	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 398
 399	while (tp->rcv_ssthresh <= window) {
 400		if (truesize <= skb->len)
 401			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 402
 403		truesize >>= 1;
 404		window >>= 1;
 405	}
 406	return 0;
 407}
 408
 409static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 410{
 411	struct tcp_sock *tp = tcp_sk(sk);
 412	int room;
 413
 414	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 415
 416	/* Check #1 */
 417	if (room > 0 && !tcp_under_memory_pressure(sk)) {
 
 
 418		int incr;
 419
 420		/* Check #2. Increase window, if skb with such overhead
 421		 * will fit to rcvbuf in future.
 422		 */
 423		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 424			incr = 2 * tp->advmss;
 425		else
 426			incr = __tcp_grow_window(sk, skb);
 427
 428		if (incr) {
 429			incr = max_t(int, incr, 2 * skb->len);
 430			tp->rcv_ssthresh += min(room, incr);
 
 431			inet_csk(sk)->icsk_ack.quick |= 1;
 432		}
 433	}
 434}
 435
 436/* 3. Try to fixup all. It is made immediately after connection enters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437 *    established state.
 438 */
 439void tcp_init_buffer_space(struct sock *sk)
 440{
 441	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 442	struct tcp_sock *tp = tcp_sk(sk);
 443	int maxwin;
 444
 
 
 445	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 446		tcp_sndbuf_expand(sk);
 447
 448	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
 449	tcp_mstamp_refresh(tp);
 450	tp->rcvq_space.time = tp->tcp_mstamp;
 451	tp->rcvq_space.seq = tp->copied_seq;
 452
 453	maxwin = tcp_full_space(sk);
 454
 455	if (tp->window_clamp >= maxwin) {
 456		tp->window_clamp = maxwin;
 457
 458		if (tcp_app_win && maxwin > 4 * tp->advmss)
 459			tp->window_clamp = max(maxwin -
 460					       (maxwin >> tcp_app_win),
 461					       4 * tp->advmss);
 462	}
 463
 464	/* Force reservation of one segment. */
 465	if (tcp_app_win &&
 466	    tp->window_clamp > 2 * tp->advmss &&
 467	    tp->window_clamp + tp->advmss > maxwin)
 468		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 469
 470	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 471	tp->snd_cwnd_stamp = tcp_jiffies32;
 472}
 473
 474/* 4. Recalculate window clamp after socket hit its memory bounds. */
 475static void tcp_clamp_window(struct sock *sk)
 476{
 477	struct tcp_sock *tp = tcp_sk(sk);
 478	struct inet_connection_sock *icsk = inet_csk(sk);
 479	struct net *net = sock_net(sk);
 480
 481	icsk->icsk_ack.quick = 0;
 482
 483	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 484	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 485	    !tcp_under_memory_pressure(sk) &&
 486	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 487		WRITE_ONCE(sk->sk_rcvbuf,
 488			   min(atomic_read(&sk->sk_rmem_alloc),
 489			       net->ipv4.sysctl_tcp_rmem[2]));
 490	}
 491	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 492		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 493}
 494
 495/* Initialize RCV_MSS value.
 496 * RCV_MSS is an our guess about MSS used by the peer.
 497 * We haven't any direct information about the MSS.
 498 * It's better to underestimate the RCV_MSS rather than overestimate.
 499 * Overestimations make us ACKing less frequently than needed.
 500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 501 */
 502void tcp_initialize_rcv_mss(struct sock *sk)
 503{
 504	const struct tcp_sock *tp = tcp_sk(sk);
 505	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 506
 507	hint = min(hint, tp->rcv_wnd / 2);
 508	hint = min(hint, TCP_MSS_DEFAULT);
 509	hint = max(hint, TCP_MIN_MSS);
 510
 511	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 512}
 513EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 514
 515/* Receiver "autotuning" code.
 516 *
 517 * The algorithm for RTT estimation w/o timestamps is based on
 518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 519 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 520 *
 521 * More detail on this code can be found at
 522 * <http://staff.psc.edu/jheffner/>,
 523 * though this reference is out of date.  A new paper
 524 * is pending.
 525 */
 526static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 527{
 528	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 529	long m = sample;
 530
 
 
 
 531	if (new_sample != 0) {
 532		/* If we sample in larger samples in the non-timestamp
 533		 * case, we could grossly overestimate the RTT especially
 534		 * with chatty applications or bulk transfer apps which
 535		 * are stalled on filesystem I/O.
 536		 *
 537		 * Also, since we are only going for a minimum in the
 538		 * non-timestamp case, we do not smooth things out
 539		 * else with timestamps disabled convergence takes too
 540		 * long.
 541		 */
 542		if (!win_dep) {
 543			m -= (new_sample >> 3);
 544			new_sample += m;
 545		} else {
 546			m <<= 3;
 547			if (m < new_sample)
 548				new_sample = m;
 549		}
 550	} else {
 551		/* No previous measure. */
 552		new_sample = m << 3;
 553	}
 554
 555	tp->rcv_rtt_est.rtt_us = new_sample;
 
 556}
 557
 558static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 559{
 560	u32 delta_us;
 561
 562	if (tp->rcv_rtt_est.time == 0)
 563		goto new_measure;
 564	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 565		return;
 566	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 567	if (!delta_us)
 568		delta_us = 1;
 569	tcp_rcv_rtt_update(tp, delta_us, 1);
 570
 571new_measure:
 572	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 573	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 574}
 575
 576static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 577					  const struct sk_buff *skb)
 578{
 579	struct tcp_sock *tp = tcp_sk(sk);
 580
 581	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 582		return;
 583	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 584
 585	if (TCP_SKB_CB(skb)->end_seq -
 586	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 587		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 588		u32 delta_us;
 589
 590		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 591			if (!delta)
 592				delta = 1;
 593			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 594			tcp_rcv_rtt_update(tp, delta_us, 0);
 595		}
 596	}
 597}
 598
 599/*
 600 * This function should be called every time data is copied to user space.
 601 * It calculates the appropriate TCP receive buffer space.
 602 */
 603void tcp_rcv_space_adjust(struct sock *sk)
 604{
 605	struct tcp_sock *tp = tcp_sk(sk);
 606	u32 copied;
 607	int time;
 
 608
 609	trace_tcp_rcv_space_adjust(sk);
 
 610
 611	tcp_mstamp_refresh(tp);
 612	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 613	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 614		return;
 615
 616	/* Number of bytes copied to user in last RTT */
 617	copied = tp->copied_seq - tp->rcvq_space.seq;
 618	if (copied <= tp->rcvq_space.space)
 619		goto new_measure;
 620
 621	/* A bit of theory :
 622	 * copied = bytes received in previous RTT, our base window
 623	 * To cope with packet losses, we need a 2x factor
 624	 * To cope with slow start, and sender growing its cwin by 100 %
 625	 * every RTT, we need a 4x factor, because the ACK we are sending
 626	 * now is for the next RTT, not the current one :
 627	 * <prev RTT . ><current RTT .. ><next RTT .... >
 628	 */
 629
 630	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 631	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 632		int rcvmem, rcvbuf;
 633		u64 rcvwin, grow;
 634
 635		/* minimal window to cope with packet losses, assuming
 636		 * steady state. Add some cushion because of small variations.
 637		 */
 638		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 639
 640		/* Accommodate for sender rate increase (eg. slow start) */
 641		grow = rcvwin * (copied - tp->rcvq_space.space);
 642		do_div(grow, tp->rcvq_space.space);
 643		rcvwin += (grow << 1);
 644
 645		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 646		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 647			rcvmem += 128;
 648
 649		do_div(rcvwin, tp->advmss);
 650		rcvbuf = min_t(u64, rcvwin * rcvmem,
 651			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 652		if (rcvbuf > sk->sk_rcvbuf) {
 653			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 
 
 
 
 
 
 
 
 
 654
 655			/* Make the window clamp follow along.  */
 656			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 
 657		}
 658	}
 659	tp->rcvq_space.space = copied;
 660
 661new_measure:
 662	tp->rcvq_space.seq = tp->copied_seq;
 663	tp->rcvq_space.time = tp->tcp_mstamp;
 664}
 665
 666/* There is something which you must keep in mind when you analyze the
 667 * behavior of the tp->ato delayed ack timeout interval.  When a
 668 * connection starts up, we want to ack as quickly as possible.  The
 669 * problem is that "good" TCP's do slow start at the beginning of data
 670 * transmission.  The means that until we send the first few ACK's the
 671 * sender will sit on his end and only queue most of his data, because
 672 * he can only send snd_cwnd unacked packets at any given time.  For
 673 * each ACK we send, he increments snd_cwnd and transmits more of his
 674 * queue.  -DaveM
 675 */
 676static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 677{
 678	struct tcp_sock *tp = tcp_sk(sk);
 679	struct inet_connection_sock *icsk = inet_csk(sk);
 680	u32 now;
 681
 682	inet_csk_schedule_ack(sk);
 683
 684	tcp_measure_rcv_mss(sk, skb);
 685
 686	tcp_rcv_rtt_measure(tp);
 687
 688	now = tcp_jiffies32;
 689
 690	if (!icsk->icsk_ack.ato) {
 691		/* The _first_ data packet received, initialize
 692		 * delayed ACK engine.
 693		 */
 694		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 695		icsk->icsk_ack.ato = TCP_ATO_MIN;
 696	} else {
 697		int m = now - icsk->icsk_ack.lrcvtime;
 698
 699		if (m <= TCP_ATO_MIN / 2) {
 700			/* The fastest case is the first. */
 701			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 702		} else if (m < icsk->icsk_ack.ato) {
 703			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 704			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 705				icsk->icsk_ack.ato = icsk->icsk_rto;
 706		} else if (m > icsk->icsk_rto) {
 707			/* Too long gap. Apparently sender failed to
 708			 * restart window, so that we send ACKs quickly.
 709			 */
 710			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 711			sk_mem_reclaim(sk);
 712		}
 713	}
 714	icsk->icsk_ack.lrcvtime = now;
 715
 716	tcp_ecn_check_ce(sk, skb);
 717
 718	if (skb->len >= 128)
 719		tcp_grow_window(sk, skb);
 720}
 721
 722/* Called to compute a smoothed rtt estimate. The data fed to this
 723 * routine either comes from timestamps, or from segments that were
 724 * known _not_ to have been retransmitted [see Karn/Partridge
 725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 726 * piece by Van Jacobson.
 727 * NOTE: the next three routines used to be one big routine.
 728 * To save cycles in the RFC 1323 implementation it was better to break
 729 * it up into three procedures. -- erics
 730 */
 731static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 732{
 733	struct tcp_sock *tp = tcp_sk(sk);
 734	long m = mrtt_us; /* RTT */
 735	u32 srtt = tp->srtt_us;
 736
 737	/*	The following amusing code comes from Jacobson's
 738	 *	article in SIGCOMM '88.  Note that rtt and mdev
 739	 *	are scaled versions of rtt and mean deviation.
 740	 *	This is designed to be as fast as possible
 741	 *	m stands for "measurement".
 742	 *
 743	 *	On a 1990 paper the rto value is changed to:
 744	 *	RTO = rtt + 4 * mdev
 745	 *
 746	 * Funny. This algorithm seems to be very broken.
 747	 * These formulae increase RTO, when it should be decreased, increase
 748	 * too slowly, when it should be increased quickly, decrease too quickly
 749	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 750	 * does not matter how to _calculate_ it. Seems, it was trap
 751	 * that VJ failed to avoid. 8)
 752	 */
 753	if (srtt != 0) {
 754		m -= (srtt >> 3);	/* m is now error in rtt est */
 755		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 
 
 756		if (m < 0) {
 757			m = -m;		/* m is now abs(error) */
 758			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 759			/* This is similar to one of Eifel findings.
 760			 * Eifel blocks mdev updates when rtt decreases.
 761			 * This solution is a bit different: we use finer gain
 762			 * for mdev in this case (alpha*beta).
 763			 * Like Eifel it also prevents growth of rto,
 764			 * but also it limits too fast rto decreases,
 765			 * happening in pure Eifel.
 766			 */
 767			if (m > 0)
 768				m >>= 3;
 769		} else {
 770			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 771		}
 772		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 773		if (tp->mdev_us > tp->mdev_max_us) {
 774			tp->mdev_max_us = tp->mdev_us;
 775			if (tp->mdev_max_us > tp->rttvar_us)
 776				tp->rttvar_us = tp->mdev_max_us;
 777		}
 778		if (after(tp->snd_una, tp->rtt_seq)) {
 779			if (tp->mdev_max_us < tp->rttvar_us)
 780				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 781			tp->rtt_seq = tp->snd_nxt;
 782			tp->mdev_max_us = tcp_rto_min_us(sk);
 783
 784			tcp_bpf_rtt(sk);
 785		}
 786	} else {
 787		/* no previous measure. */
 788		srtt = m << 3;		/* take the measured time to be rtt */
 789		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 790		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 791		tp->mdev_max_us = tp->rttvar_us;
 792		tp->rtt_seq = tp->snd_nxt;
 793
 794		tcp_bpf_rtt(sk);
 795	}
 796	tp->srtt_us = max(1U, srtt);
 797}
 798
 799static void tcp_update_pacing_rate(struct sock *sk)
 800{
 801	const struct tcp_sock *tp = tcp_sk(sk);
 802	u64 rate;
 803
 804	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 805	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 806
 807	/* current rate is (cwnd * mss) / srtt
 808	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 809	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 810	 *
 811	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 812	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 813	 *	 end of slow start and should slow down.
 814	 */
 815	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 816		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 817	else
 818		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 819
 820	rate *= max(tp->snd_cwnd, tp->packets_out);
 821
 822	if (likely(tp->srtt_us))
 823		do_div(rate, tp->srtt_us);
 824
 825	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 826	 * without any lock. We want to make sure compiler wont store
 827	 * intermediate values in this location.
 828	 */
 829	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 830					     sk->sk_max_pacing_rate));
 831}
 832
 833/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 834 * routine referred to above.
 835 */
 836static void tcp_set_rto(struct sock *sk)
 837{
 838	const struct tcp_sock *tp = tcp_sk(sk);
 839	/* Old crap is replaced with new one. 8)
 840	 *
 841	 * More seriously:
 842	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 843	 *    It cannot be less due to utterly erratic ACK generation made
 844	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 845	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 846	 *    is invisible. Actually, Linux-2.4 also generates erratic
 847	 *    ACKs in some circumstances.
 848	 */
 849	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 850
 851	/* 2. Fixups made earlier cannot be right.
 852	 *    If we do not estimate RTO correctly without them,
 853	 *    all the algo is pure shit and should be replaced
 854	 *    with correct one. It is exactly, which we pretend to do.
 855	 */
 856
 857	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 858	 * guarantees that rto is higher.
 859	 */
 860	tcp_bound_rto(sk);
 861}
 862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 864{
 865	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 866
 867	if (!cwnd)
 868		cwnd = TCP_INIT_CWND;
 869	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 870}
 871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872/* Take a notice that peer is sending D-SACKs */
 873static void tcp_dsack_seen(struct tcp_sock *tp)
 874{
 875	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 876	tp->rack.dsack_seen = 1;
 877	tp->dsack_dups++;
 878}
 879
 880/* It's reordering when higher sequence was delivered (i.e. sacked) before
 881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 882 * distance is approximated in full-mss packet distance ("reordering").
 883 */
 884static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 885				      const int ts)
 886{
 887	struct tcp_sock *tp = tcp_sk(sk);
 888	const u32 mss = tp->mss_cache;
 889	u32 fack, metric;
 890
 891	fack = tcp_highest_sack_seq(tp);
 892	if (!before(low_seq, fack))
 893		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	metric = fack - low_seq;
 896	if ((metric > tp->reordering * mss) && mss) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897#if FASTRETRANS_DEBUG > 1
 898		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 899			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 900			 tp->reordering,
 901			 0,
 902			 tp->sacked_out,
 903			 tp->undo_marker ? tp->undo_retrans : 0);
 904#endif
 905		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 906				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 907	}
 908
 909	/* This exciting event is worth to be remembered. 8) */
 910	tp->reord_seen++;
 911	NET_INC_STATS(sock_net(sk),
 912		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 913}
 914
 915/* This must be called before lost_out is incremented */
 916static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 917{
 918	if (!tp->retransmit_skb_hint ||
 919	    before(TCP_SKB_CB(skb)->seq,
 920		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 921		tp->retransmit_skb_hint = skb;
 922}
 923
 924/* Sum the number of packets on the wire we have marked as lost.
 925 * There are two cases we care about here:
 926 * a) Packet hasn't been marked lost (nor retransmitted),
 927 *    and this is the first loss.
 928 * b) Packet has been marked both lost and retransmitted,
 929 *    and this means we think it was lost again.
 930 */
 931static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 932{
 933	__u8 sacked = TCP_SKB_CB(skb)->sacked;
 934
 935	if (!(sacked & TCPCB_LOST) ||
 936	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 937		tp->lost += tcp_skb_pcount(skb);
 938}
 939
 940static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 941{
 942	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 943		tcp_verify_retransmit_hint(tp, skb);
 944
 945		tp->lost_out += tcp_skb_pcount(skb);
 946		tcp_sum_lost(tp, skb);
 947		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 948	}
 949}
 950
 951void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 
 952{
 953	tcp_verify_retransmit_hint(tp, skb);
 954
 955	tcp_sum_lost(tp, skb);
 956	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 957		tp->lost_out += tcp_skb_pcount(skb);
 958		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 959	}
 960}
 961
 962/* This procedure tags the retransmission queue when SACKs arrive.
 963 *
 964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 965 * Packets in queue with these bits set are counted in variables
 966 * sacked_out, retrans_out and lost_out, correspondingly.
 967 *
 968 * Valid combinations are:
 969 * Tag  InFlight	Description
 970 * 0	1		- orig segment is in flight.
 971 * S	0		- nothing flies, orig reached receiver.
 972 * L	0		- nothing flies, orig lost by net.
 973 * R	2		- both orig and retransmit are in flight.
 974 * L|R	1		- orig is lost, retransmit is in flight.
 975 * S|R  1		- orig reached receiver, retrans is still in flight.
 976 * (L|S|R is logically valid, it could occur when L|R is sacked,
 977 *  but it is equivalent to plain S and code short-curcuits it to S.
 978 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 979 *
 980 * These 6 states form finite state machine, controlled by the following events:
 981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 983 * 3. Loss detection event of two flavors:
 984 *	A. Scoreboard estimator decided the packet is lost.
 985 *	   A'. Reno "three dupacks" marks head of queue lost.
 
 986 *	B. SACK arrives sacking SND.NXT at the moment, when the
 987 *	   segment was retransmitted.
 988 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 989 *
 990 * It is pleasant to note, that state diagram turns out to be commutative,
 991 * so that we are allowed not to be bothered by order of our actions,
 992 * when multiple events arrive simultaneously. (see the function below).
 993 *
 994 * Reordering detection.
 995 * --------------------
 996 * Reordering metric is maximal distance, which a packet can be displaced
 997 * in packet stream. With SACKs we can estimate it:
 998 *
 999 * 1. SACK fills old hole and the corresponding segment was not
1000 *    ever retransmitted -> reordering. Alas, we cannot use it
1001 *    when segment was retransmitted.
1002 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1003 *    for retransmitted and already SACKed segment -> reordering..
1004 * Both of these heuristics are not used in Loss state, when we cannot
1005 * account for retransmits accurately.
1006 *
1007 * SACK block validation.
1008 * ----------------------
1009 *
1010 * SACK block range validation checks that the received SACK block fits to
1011 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1012 * Note that SND.UNA is not included to the range though being valid because
1013 * it means that the receiver is rather inconsistent with itself reporting
1014 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1015 * perfectly valid, however, in light of RFC2018 which explicitly states
1016 * that "SACK block MUST reflect the newest segment.  Even if the newest
1017 * segment is going to be discarded ...", not that it looks very clever
1018 * in case of head skb. Due to potentional receiver driven attacks, we
1019 * choose to avoid immediate execution of a walk in write queue due to
1020 * reneging and defer head skb's loss recovery to standard loss recovery
1021 * procedure that will eventually trigger (nothing forbids us doing this).
1022 *
1023 * Implements also blockage to start_seq wrap-around. Problem lies in the
1024 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1025 * there's no guarantee that it will be before snd_nxt (n). The problem
1026 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027 * wrap (s_w):
1028 *
1029 *         <- outs wnd ->                          <- wrapzone ->
1030 *         u     e      n                         u_w   e_w  s n_w
1031 *         |     |      |                          |     |   |  |
1032 * |<------------+------+----- TCP seqno space --------------+---------->|
1033 * ...-- <2^31 ->|                                           |<--------...
1034 * ...---- >2^31 ------>|                                    |<--------...
1035 *
1036 * Current code wouldn't be vulnerable but it's better still to discard such
1037 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1038 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1039 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1040 * equal to the ideal case (infinite seqno space without wrap caused issues).
1041 *
1042 * With D-SACK the lower bound is extended to cover sequence space below
1043 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1044 * again, D-SACK block must not to go across snd_una (for the same reason as
1045 * for the normal SACK blocks, explained above). But there all simplicity
1046 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1047 * fully below undo_marker they do not affect behavior in anyway and can
1048 * therefore be safely ignored. In rare cases (which are more or less
1049 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1050 * fragmentation and packet reordering past skb's retransmission. To consider
1051 * them correctly, the acceptable range must be extended even more though
1052 * the exact amount is rather hard to quantify. However, tp->max_window can
1053 * be used as an exaggerated estimate.
1054 */
1055static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1056				   u32 start_seq, u32 end_seq)
1057{
1058	/* Too far in future, or reversed (interpretation is ambiguous) */
1059	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1060		return false;
1061
1062	/* Nasty start_seq wrap-around check (see comments above) */
1063	if (!before(start_seq, tp->snd_nxt))
1064		return false;
1065
1066	/* In outstanding window? ...This is valid exit for D-SACKs too.
1067	 * start_seq == snd_una is non-sensical (see comments above)
1068	 */
1069	if (after(start_seq, tp->snd_una))
1070		return true;
1071
1072	if (!is_dsack || !tp->undo_marker)
1073		return false;
1074
1075	/* ...Then it's D-SACK, and must reside below snd_una completely */
1076	if (after(end_seq, tp->snd_una))
1077		return false;
1078
1079	if (!before(start_seq, tp->undo_marker))
1080		return true;
1081
1082	/* Too old */
1083	if (!after(end_seq, tp->undo_marker))
1084		return false;
1085
1086	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1087	 *   start_seq < undo_marker and end_seq >= undo_marker.
1088	 */
1089	return !before(start_seq, end_seq - tp->max_window);
1090}
1091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093			    struct tcp_sack_block_wire *sp, int num_sacks,
1094			    u32 prior_snd_una)
1095{
1096	struct tcp_sock *tp = tcp_sk(sk);
1097	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1099	bool dup_sack = false;
1100
1101	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1102		dup_sack = true;
1103		tcp_dsack_seen(tp);
1104		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1105	} else if (num_sacks > 1) {
1106		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1108
1109		if (!after(end_seq_0, end_seq_1) &&
1110		    !before(start_seq_0, start_seq_1)) {
1111			dup_sack = true;
1112			tcp_dsack_seen(tp);
1113			NET_INC_STATS(sock_net(sk),
1114					LINUX_MIB_TCPDSACKOFORECV);
1115		}
1116	}
1117
1118	/* D-SACK for already forgotten data... Do dumb counting. */
1119	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1120	    !after(end_seq_0, prior_snd_una) &&
1121	    after(end_seq_0, tp->undo_marker))
1122		tp->undo_retrans--;
1123
1124	return dup_sack;
1125}
1126
1127struct tcp_sacktag_state {
1128	u32	reord;
1129	/* Timestamps for earliest and latest never-retransmitted segment
1130	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1131	 * but congestion control should still get an accurate delay signal.
1132	 */
1133	u64	first_sackt;
1134	u64	last_sackt;
1135	struct rate_sample *rate;
1136	int	flag;
1137	unsigned int mss_now;
1138};
1139
1140/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1141 * the incoming SACK may not exactly match but we can find smaller MSS
1142 * aligned portion of it that matches. Therefore we might need to fragment
1143 * which may fail and creates some hassle (caller must handle error case
1144 * returns).
1145 *
1146 * FIXME: this could be merged to shift decision code
1147 */
1148static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1149				  u32 start_seq, u32 end_seq)
1150{
1151	int err;
1152	bool in_sack;
1153	unsigned int pkt_len;
1154	unsigned int mss;
1155
1156	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1157		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158
1159	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1160	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1161		mss = tcp_skb_mss(skb);
1162		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163
1164		if (!in_sack) {
1165			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1166			if (pkt_len < mss)
1167				pkt_len = mss;
1168		} else {
1169			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1170			if (pkt_len < mss)
1171				return -EINVAL;
1172		}
1173
1174		/* Round if necessary so that SACKs cover only full MSSes
1175		 * and/or the remaining small portion (if present)
1176		 */
1177		if (pkt_len > mss) {
1178			unsigned int new_len = (pkt_len / mss) * mss;
1179			if (!in_sack && new_len < pkt_len)
1180				new_len += mss;
 
 
 
1181			pkt_len = new_len;
1182		}
1183
1184		if (pkt_len >= skb->len && !in_sack)
1185			return 0;
1186
1187		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1188				   pkt_len, mss, GFP_ATOMIC);
1189		if (err < 0)
1190			return err;
1191	}
1192
1193	return in_sack;
1194}
1195
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198			  struct tcp_sacktag_state *state, u8 sacked,
1199			  u32 start_seq, u32 end_seq,
1200			  int dup_sack, int pcount,
1201			  u64 xmit_time)
1202{
1203	struct tcp_sock *tp = tcp_sk(sk);
 
1204
1205	/* Account D-SACK for retransmitted packet. */
1206	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1207		if (tp->undo_marker && tp->undo_retrans > 0 &&
1208		    after(end_seq, tp->undo_marker))
1209			tp->undo_retrans--;
1210		if ((sacked & TCPCB_SACKED_ACKED) &&
1211		    before(start_seq, state->reord))
1212				state->reord = start_seq;
1213	}
1214
1215	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216	if (!after(end_seq, tp->snd_una))
1217		return sacked;
1218
1219	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1221
1222		if (sacked & TCPCB_SACKED_RETRANS) {
1223			/* If the segment is not tagged as lost,
1224			 * we do not clear RETRANS, believing
1225			 * that retransmission is still in flight.
1226			 */
1227			if (sacked & TCPCB_LOST) {
1228				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229				tp->lost_out -= pcount;
1230				tp->retrans_out -= pcount;
1231			}
1232		} else {
1233			if (!(sacked & TCPCB_RETRANS)) {
1234				/* New sack for not retransmitted frame,
1235				 * which was in hole. It is reordering.
1236				 */
1237				if (before(start_seq,
1238					   tcp_highest_sack_seq(tp)) &&
1239				    before(start_seq, state->reord))
1240					state->reord = start_seq;
1241
1242				if (!after(end_seq, tp->high_seq))
1243					state->flag |= FLAG_ORIG_SACK_ACKED;
1244				if (state->first_sackt == 0)
1245					state->first_sackt = xmit_time;
1246				state->last_sackt = xmit_time;
1247			}
1248
1249			if (sacked & TCPCB_LOST) {
1250				sacked &= ~TCPCB_LOST;
1251				tp->lost_out -= pcount;
1252			}
1253		}
1254
1255		sacked |= TCPCB_SACKED_ACKED;
1256		state->flag |= FLAG_DATA_SACKED;
1257		tp->sacked_out += pcount;
1258		tp->delivered += pcount;  /* Out-of-order packets delivered */
 
1259
1260		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1261		if (tp->lost_skb_hint &&
1262		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1263			tp->lost_cnt_hint += pcount;
 
 
 
1264	}
1265
1266	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1267	 * frames and clear it. undo_retrans is decreased above, L|R frames
1268	 * are accounted above as well.
1269	 */
1270	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271		sacked &= ~TCPCB_SACKED_RETRANS;
1272		tp->retrans_out -= pcount;
1273	}
1274
1275	return sacked;
1276}
1277
1278/* Shift newly-SACKed bytes from this skb to the immediately previous
1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280 */
1281static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1282			    struct sk_buff *skb,
1283			    struct tcp_sacktag_state *state,
1284			    unsigned int pcount, int shifted, int mss,
1285			    bool dup_sack)
1286{
1287	struct tcp_sock *tp = tcp_sk(sk);
 
1288	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1289	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1290
1291	BUG_ON(!pcount);
1292
1293	/* Adjust counters and hints for the newly sacked sequence
1294	 * range but discard the return value since prev is already
1295	 * marked. We must tag the range first because the seq
1296	 * advancement below implicitly advances
1297	 * tcp_highest_sack_seq() when skb is highest_sack.
1298	 */
1299	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1300			start_seq, end_seq, dup_sack, pcount,
1301			tcp_skb_timestamp_us(skb));
1302	tcp_rate_skb_delivered(sk, skb, state->rate);
1303
1304	if (skb == tp->lost_skb_hint)
1305		tp->lost_cnt_hint += pcount;
1306
1307	TCP_SKB_CB(prev)->end_seq += shifted;
1308	TCP_SKB_CB(skb)->seq += shifted;
1309
1310	tcp_skb_pcount_add(prev, pcount);
1311	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1312	tcp_skb_pcount_add(skb, -pcount);
1313
1314	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315	 * in theory this shouldn't be necessary but as long as DSACK
1316	 * code can come after this skb later on it's better to keep
1317	 * setting gso_size to something.
1318	 */
1319	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320		TCP_SKB_CB(prev)->tcp_gso_size = mss;
 
 
1321
1322	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323	if (tcp_skb_pcount(skb) <= 1)
1324		TCP_SKB_CB(skb)->tcp_gso_size = 0;
 
 
1325
1326	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328
1329	if (skb->len > 0) {
1330		BUG_ON(!tcp_skb_pcount(skb));
1331		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332		return false;
1333	}
1334
1335	/* Whole SKB was eaten :-) */
1336
1337	if (skb == tp->retransmit_skb_hint)
1338		tp->retransmit_skb_hint = prev;
 
 
1339	if (skb == tp->lost_skb_hint) {
1340		tp->lost_skb_hint = prev;
1341		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342	}
1343
1344	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1346	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347		TCP_SKB_CB(prev)->end_seq++;
1348
1349	if (skb == tcp_highest_sack(sk))
1350		tcp_advance_highest_sack(sk, skb);
1351
1352	tcp_skb_collapse_tstamp(prev, skb);
1353	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1354		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1355
1356	tcp_rtx_queue_unlink_and_free(skb, sk);
1357
1358	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360	return true;
1361}
1362
1363/* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
1366static int tcp_skb_seglen(const struct sk_buff *skb)
1367{
1368	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369}
1370
1371/* Shifting pages past head area doesn't work */
1372static int skb_can_shift(const struct sk_buff *skb)
1373{
1374	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375}
1376
1377int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1378		  int pcount, int shiftlen)
1379{
1380	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1381	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1382	 * to make sure not storing more than 65535 * 8 bytes per skb,
1383	 * even if current MSS is bigger.
1384	 */
1385	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1386		return 0;
1387	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1388		return 0;
1389	return skb_shift(to, from, shiftlen);
1390}
1391
1392/* Try collapsing SACK blocks spanning across multiple skbs to a single
1393 * skb.
1394 */
1395static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1396					  struct tcp_sacktag_state *state,
1397					  u32 start_seq, u32 end_seq,
1398					  bool dup_sack)
1399{
1400	struct tcp_sock *tp = tcp_sk(sk);
1401	struct sk_buff *prev;
1402	int mss;
1403	int pcount = 0;
1404	int len;
1405	int in_sack;
1406
 
 
 
1407	/* Normally R but no L won't result in plain S */
1408	if (!dup_sack &&
1409	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410		goto fallback;
1411	if (!skb_can_shift(skb))
1412		goto fallback;
1413	/* This frame is about to be dropped (was ACKed). */
1414	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415		goto fallback;
1416
1417	/* Can only happen with delayed DSACK + discard craziness */
1418	prev = skb_rb_prev(skb);
1419	if (!prev)
1420		goto fallback;
 
1421
1422	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423		goto fallback;
1424
1425	if (!tcp_skb_can_collapse_to(prev))
1426		goto fallback;
1427
1428	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430
1431	if (in_sack) {
1432		len = skb->len;
1433		pcount = tcp_skb_pcount(skb);
1434		mss = tcp_skb_seglen(skb);
1435
1436		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437		 * drop this restriction as unnecessary
1438		 */
1439		if (mss != tcp_skb_seglen(prev))
1440			goto fallback;
1441	} else {
1442		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443			goto noop;
1444		/* CHECKME: This is non-MSS split case only?, this will
1445		 * cause skipped skbs due to advancing loop btw, original
1446		 * has that feature too
1447		 */
1448		if (tcp_skb_pcount(skb) <= 1)
1449			goto noop;
1450
1451		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452		if (!in_sack) {
1453			/* TODO: head merge to next could be attempted here
1454			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455			 * though it might not be worth of the additional hassle
1456			 *
1457			 * ...we can probably just fallback to what was done
1458			 * previously. We could try merging non-SACKed ones
1459			 * as well but it probably isn't going to buy off
1460			 * because later SACKs might again split them, and
1461			 * it would make skb timestamp tracking considerably
1462			 * harder problem.
1463			 */
1464			goto fallback;
1465		}
1466
1467		len = end_seq - TCP_SKB_CB(skb)->seq;
1468		BUG_ON(len < 0);
1469		BUG_ON(len > skb->len);
1470
1471		/* MSS boundaries should be honoured or else pcount will
1472		 * severely break even though it makes things bit trickier.
1473		 * Optimize common case to avoid most of the divides
1474		 */
1475		mss = tcp_skb_mss(skb);
1476
1477		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478		 * drop this restriction as unnecessary
1479		 */
1480		if (mss != tcp_skb_seglen(prev))
1481			goto fallback;
1482
1483		if (len == mss) {
1484			pcount = 1;
1485		} else if (len < mss) {
1486			goto noop;
1487		} else {
1488			pcount = len / mss;
1489			len = pcount * mss;
1490		}
1491	}
1492
1493	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495		goto fallback;
1496
1497	if (!tcp_skb_shift(prev, skb, pcount, len))
1498		goto fallback;
1499	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1500		goto out;
1501
1502	/* Hole filled allows collapsing with the next as well, this is very
1503	 * useful when hole on every nth skb pattern happens
1504	 */
1505	skb = skb_rb_next(prev);
1506	if (!skb)
1507		goto out;
 
1508
1509	if (!skb_can_shift(skb) ||
 
1510	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511	    (mss != tcp_skb_seglen(skb)))
1512		goto out;
1513
1514	len = skb->len;
1515	pcount = tcp_skb_pcount(skb);
1516	if (tcp_skb_shift(prev, skb, pcount, len))
1517		tcp_shifted_skb(sk, prev, skb, state, pcount,
1518				len, mss, 0);
1519
1520out:
 
1521	return prev;
1522
1523noop:
1524	return skb;
1525
1526fallback:
1527	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1528	return NULL;
1529}
1530
1531static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532					struct tcp_sack_block *next_dup,
1533					struct tcp_sacktag_state *state,
1534					u32 start_seq, u32 end_seq,
1535					bool dup_sack_in)
1536{
1537	struct tcp_sock *tp = tcp_sk(sk);
1538	struct sk_buff *tmp;
1539
1540	skb_rbtree_walk_from(skb) {
1541		int in_sack = 0;
1542		bool dup_sack = dup_sack_in;
1543
 
 
 
1544		/* queue is in-order => we can short-circuit the walk early */
1545		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546			break;
1547
1548		if (next_dup  &&
1549		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550			in_sack = tcp_match_skb_to_sack(sk, skb,
1551							next_dup->start_seq,
1552							next_dup->end_seq);
1553			if (in_sack > 0)
1554				dup_sack = true;
1555		}
1556
1557		/* skb reference here is a bit tricky to get right, since
1558		 * shifting can eat and free both this skb and the next,
1559		 * so not even _safe variant of the loop is enough.
1560		 */
1561		if (in_sack <= 0) {
1562			tmp = tcp_shift_skb_data(sk, skb, state,
1563						 start_seq, end_seq, dup_sack);
1564			if (tmp) {
1565				if (tmp != skb) {
1566					skb = tmp;
1567					continue;
1568				}
1569
1570				in_sack = 0;
1571			} else {
1572				in_sack = tcp_match_skb_to_sack(sk, skb,
1573								start_seq,
1574								end_seq);
1575			}
1576		}
1577
1578		if (unlikely(in_sack < 0))
1579			break;
1580
1581		if (in_sack) {
1582			TCP_SKB_CB(skb)->sacked =
1583				tcp_sacktag_one(sk,
1584						state,
1585						TCP_SKB_CB(skb)->sacked,
1586						TCP_SKB_CB(skb)->seq,
1587						TCP_SKB_CB(skb)->end_seq,
1588						dup_sack,
1589						tcp_skb_pcount(skb),
1590						tcp_skb_timestamp_us(skb));
1591			tcp_rate_skb_delivered(sk, skb, state->rate);
1592			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1593				list_del_init(&skb->tcp_tsorted_anchor);
1594
1595			if (!before(TCP_SKB_CB(skb)->seq,
1596				    tcp_highest_sack_seq(tp)))
1597				tcp_advance_highest_sack(sk, skb);
1598		}
1599	}
1600	return skb;
1601}
1602
1603static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1604{
1605	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1606	struct sk_buff *skb;
1607
1608	while (*p) {
1609		parent = *p;
1610		skb = rb_to_skb(parent);
1611		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1612			p = &parent->rb_left;
1613			continue;
1614		}
1615		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1616			p = &parent->rb_right;
1617			continue;
1618		}
1619		return skb;
1620	}
1621	return NULL;
1622}
1623
 
 
 
1624static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
 
1625					u32 skip_to_seq)
1626{
1627	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1628		return skb;
 
1629
1630	return tcp_sacktag_bsearch(sk, skip_to_seq);
 
 
 
 
 
1631}
1632
1633static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1634						struct sock *sk,
1635						struct tcp_sack_block *next_dup,
1636						struct tcp_sacktag_state *state,
1637						u32 skip_to_seq)
1638{
1639	if (!next_dup)
1640		return skb;
1641
1642	if (before(next_dup->start_seq, skip_to_seq)) {
1643		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1644		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1645				       next_dup->start_seq, next_dup->end_seq,
1646				       1);
1647	}
1648
1649	return skb;
1650}
1651
1652static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1653{
1654	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1655}
1656
1657static int
1658tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1659			u32 prior_snd_una, struct tcp_sacktag_state *state)
1660{
 
1661	struct tcp_sock *tp = tcp_sk(sk);
1662	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1663				    TCP_SKB_CB(ack_skb)->sacked);
1664	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1665	struct tcp_sack_block sp[TCP_NUM_SACKS];
1666	struct tcp_sack_block *cache;
 
1667	struct sk_buff *skb;
1668	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1669	int used_sacks;
1670	bool found_dup_sack = false;
1671	int i, j;
1672	int first_sack_index;
1673
1674	state->flag = 0;
1675	state->reord = tp->snd_nxt;
1676
1677	if (!tp->sacked_out)
 
 
1678		tcp_highest_sack_reset(sk);
 
1679
1680	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1681					 num_sacks, prior_snd_una);
1682	if (found_dup_sack) {
1683		state->flag |= FLAG_DSACKING_ACK;
1684		tp->delivered++; /* A spurious retransmission is delivered */
1685	}
1686
1687	/* Eliminate too old ACKs, but take into
1688	 * account more or less fresh ones, they can
1689	 * contain valid SACK info.
1690	 */
1691	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1692		return 0;
1693
1694	if (!tp->packets_out)
1695		goto out;
1696
1697	used_sacks = 0;
1698	first_sack_index = 0;
1699	for (i = 0; i < num_sacks; i++) {
1700		bool dup_sack = !i && found_dup_sack;
1701
1702		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1703		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1704
1705		if (!tcp_is_sackblock_valid(tp, dup_sack,
1706					    sp[used_sacks].start_seq,
1707					    sp[used_sacks].end_seq)) {
1708			int mib_idx;
1709
1710			if (dup_sack) {
1711				if (!tp->undo_marker)
1712					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1713				else
1714					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1715			} else {
1716				/* Don't count olds caused by ACK reordering */
1717				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1718				    !after(sp[used_sacks].end_seq, tp->snd_una))
1719					continue;
1720				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1721			}
1722
1723			NET_INC_STATS(sock_net(sk), mib_idx);
1724			if (i == 0)
1725				first_sack_index = -1;
1726			continue;
1727		}
1728
1729		/* Ignore very old stuff early */
1730		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1731			continue;
1732
1733		used_sacks++;
1734	}
1735
1736	/* order SACK blocks to allow in order walk of the retrans queue */
1737	for (i = used_sacks - 1; i > 0; i--) {
1738		for (j = 0; j < i; j++) {
1739			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1740				swap(sp[j], sp[j + 1]);
1741
1742				/* Track where the first SACK block goes to */
1743				if (j == first_sack_index)
1744					first_sack_index = j + 1;
1745			}
1746		}
1747	}
1748
1749	state->mss_now = tcp_current_mss(sk);
1750	skb = NULL;
1751	i = 0;
1752
1753	if (!tp->sacked_out) {
1754		/* It's already past, so skip checking against it */
1755		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1756	} else {
1757		cache = tp->recv_sack_cache;
1758		/* Skip empty blocks in at head of the cache */
1759		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1760		       !cache->end_seq)
1761			cache++;
1762	}
1763
1764	while (i < used_sacks) {
1765		u32 start_seq = sp[i].start_seq;
1766		u32 end_seq = sp[i].end_seq;
1767		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1768		struct tcp_sack_block *next_dup = NULL;
1769
1770		if (found_dup_sack && ((i + 1) == first_sack_index))
1771			next_dup = &sp[i + 1];
1772
1773		/* Skip too early cached blocks */
1774		while (tcp_sack_cache_ok(tp, cache) &&
1775		       !before(start_seq, cache->end_seq))
1776			cache++;
1777
1778		/* Can skip some work by looking recv_sack_cache? */
1779		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1780		    after(end_seq, cache->start_seq)) {
1781
1782			/* Head todo? */
1783			if (before(start_seq, cache->start_seq)) {
1784				skb = tcp_sacktag_skip(skb, sk, start_seq);
 
1785				skb = tcp_sacktag_walk(skb, sk, next_dup,
1786						       state,
1787						       start_seq,
1788						       cache->start_seq,
1789						       dup_sack);
1790			}
1791
1792			/* Rest of the block already fully processed? */
1793			if (!after(end_seq, cache->end_seq))
1794				goto advance_sp;
1795
1796			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1797						       state,
1798						       cache->end_seq);
1799
1800			/* ...tail remains todo... */
1801			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1802				/* ...but better entrypoint exists! */
1803				skb = tcp_highest_sack(sk);
1804				if (!skb)
1805					break;
 
1806				cache++;
1807				goto walk;
1808			}
1809
1810			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1811			/* Check overlap against next cached too (past this one already) */
1812			cache++;
1813			continue;
1814		}
1815
1816		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1817			skb = tcp_highest_sack(sk);
1818			if (!skb)
1819				break;
 
1820		}
1821		skb = tcp_sacktag_skip(skb, sk, start_seq);
1822
1823walk:
1824		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825				       start_seq, end_seq, dup_sack);
1826
1827advance_sp:
 
 
 
 
 
 
1828		i++;
1829	}
1830
1831	/* Clear the head of the cache sack blocks so we can skip it next time */
1832	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833		tp->recv_sack_cache[i].start_seq = 0;
1834		tp->recv_sack_cache[i].end_seq = 0;
1835	}
1836	for (j = 0; j < used_sacks; j++)
1837		tp->recv_sack_cache[i++] = sp[j];
1838
1839	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1840		tcp_check_sack_reordering(sk, state->reord, 0);
1841
1842	tcp_verify_left_out(tp);
 
 
 
 
 
 
1843out:
1844
1845#if FASTRETRANS_DEBUG > 0
1846	WARN_ON((int)tp->sacked_out < 0);
1847	WARN_ON((int)tp->lost_out < 0);
1848	WARN_ON((int)tp->retrans_out < 0);
1849	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850#endif
1851	return state->flag;
1852}
1853
1854/* Limits sacked_out so that sum with lost_out isn't ever larger than
1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856 */
1857static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858{
1859	u32 holes;
1860
1861	holes = max(tp->lost_out, 1U);
1862	holes = min(holes, tp->packets_out);
1863
1864	if ((tp->sacked_out + holes) > tp->packets_out) {
1865		tp->sacked_out = tp->packets_out - holes;
1866		return true;
1867	}
1868	return false;
1869}
1870
1871/* If we receive more dupacks than we expected counting segments
1872 * in assumption of absent reordering, interpret this as reordering.
1873 * The only another reason could be bug in receiver TCP.
1874 */
1875static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876{
1877	struct tcp_sock *tp = tcp_sk(sk);
1878
1879	if (!tcp_limit_reno_sacked(tp))
1880		return;
1881
1882	tp->reordering = min_t(u32, tp->packets_out + addend,
1883			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1884	tp->reord_seen++;
1885	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1886}
1887
1888/* Emulate SACKs for SACKless connection: account for a new dupack. */
1889
1890static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1891{
1892	if (num_dupack) {
1893		struct tcp_sock *tp = tcp_sk(sk);
1894		u32 prior_sacked = tp->sacked_out;
1895		s32 delivered;
1896
1897		tp->sacked_out += num_dupack;
1898		tcp_check_reno_reordering(sk, 0);
1899		delivered = tp->sacked_out - prior_sacked;
1900		if (delivered > 0)
1901			tp->delivered += delivered;
1902		tcp_verify_left_out(tp);
1903	}
1904}
1905
1906/* Account for ACK, ACKing some data in Reno Recovery phase. */
1907
1908static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1909{
1910	struct tcp_sock *tp = tcp_sk(sk);
1911
1912	if (acked > 0) {
1913		/* One ACK acked hole. The rest eat duplicate ACKs. */
1914		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1915		if (acked - 1 >= tp->sacked_out)
1916			tp->sacked_out = 0;
1917		else
1918			tp->sacked_out -= acked - 1;
1919	}
1920	tcp_check_reno_reordering(sk, acked);
1921	tcp_verify_left_out(tp);
1922}
1923
1924static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1925{
1926	tp->sacked_out = 0;
1927}
1928
1929void tcp_clear_retrans(struct tcp_sock *tp)
1930{
1931	tp->retrans_out = 0;
1932	tp->lost_out = 0;
1933	tp->undo_marker = 0;
1934	tp->undo_retrans = -1;
1935	tp->sacked_out = 0;
1936}
1937
1938static inline void tcp_init_undo(struct tcp_sock *tp)
 
 
 
1939{
1940	tp->undo_marker = tp->snd_una;
1941	/* Retransmission still in flight may cause DSACKs later. */
1942	tp->undo_retrans = tp->retrans_out ? : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943}
1944
1945static bool tcp_is_rack(const struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
1946{
1947	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948}
1949
1950/* If we detect SACK reneging, forget all SACK information
1951 * and reset tags completely, otherwise preserve SACKs. If receiver
1952 * dropped its ofo queue, we will know this due to reneging detection.
1953 */
1954static void tcp_timeout_mark_lost(struct sock *sk)
1955{
1956	struct tcp_sock *tp = tcp_sk(sk);
1957	struct sk_buff *skb, *head;
1958	bool is_reneg;			/* is receiver reneging on SACKs? */
1959
1960	head = tcp_rtx_queue_head(sk);
1961	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1962	if (is_reneg) {
1963		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1964		tp->sacked_out = 0;
1965		/* Mark SACK reneging until we recover from this loss event. */
1966		tp->is_sack_reneg = 1;
1967	} else if (tcp_is_reno(tp)) {
1968		tcp_reset_reno_sack(tp);
1969	}
1970
1971	skb = head;
1972	skb_rbtree_walk_from(skb) {
1973		if (is_reneg)
1974			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975		else if (tcp_is_rack(sk) && skb != head &&
1976			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1977			continue; /* Don't mark recently sent ones lost yet */
1978		tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979	}
1980	tcp_verify_left_out(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1981	tcp_clear_all_retrans_hints(tp);
1982}
1983
1984/* Enter Loss state. */
1985void tcp_enter_loss(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986{
1987	const struct inet_connection_sock *icsk = inet_csk(sk);
1988	struct tcp_sock *tp = tcp_sk(sk);
1989	struct net *net = sock_net(sk);
1990	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1991
1992	tcp_timeout_mark_lost(sk);
1993
1994	/* Reduce ssthresh if it has not yet been made inside this window. */
1995	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1996	    !after(tp->high_seq, tp->snd_una) ||
1997	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1998		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1999		tp->prior_cwnd = tp->snd_cwnd;
2000		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2001		tcp_ca_event(sk, CA_EVENT_LOSS);
2002		tcp_init_undo(tp);
2003	}
2004	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2005	tp->snd_cwnd_cnt   = 0;
2006	tp->snd_cwnd_stamp = tcp_jiffies32;
2007
2008	/* Timeout in disordered state after receiving substantial DUPACKs
2009	 * suggests that the degree of reordering is over-estimated.
2010	 */
2011	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2012	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2013		tp->reordering = min_t(unsigned int, tp->reordering,
2014				       net->ipv4.sysctl_tcp_reordering);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015	tcp_set_ca_state(sk, TCP_CA_Loss);
2016	tp->high_seq = tp->snd_nxt;
2017	tcp_ecn_queue_cwr(tp);
2018
2019	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2020	 * loss recovery is underway except recurring timeout(s) on
2021	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2022	 */
2023	tp->frto = net->ipv4.sysctl_tcp_frto &&
2024		   (new_recovery || icsk->icsk_retransmits) &&
2025		   !inet_csk(sk)->icsk_mtup.probe_size;
2026}
2027
2028/* If ACK arrived pointing to a remembered SACK, it means that our
2029 * remembered SACKs do not reflect real state of receiver i.e.
2030 * receiver _host_ is heavily congested (or buggy).
2031 *
2032 * To avoid big spurious retransmission bursts due to transient SACK
2033 * scoreboard oddities that look like reneging, we give the receiver a
2034 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2035 * restore sanity to the SACK scoreboard. If the apparent reneging
2036 * persists until this RTO then we'll clear the SACK scoreboard.
2037 */
2038static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2039{
2040	if (flag & FLAG_SACK_RENEGING) {
2041		struct tcp_sock *tp = tcp_sk(sk);
2042		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2043					  msecs_to_jiffies(10));
2044
 
 
 
2045		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2046					  delay, TCP_RTO_MAX);
2047		return true;
2048	}
2049	return false;
2050}
2051
 
 
 
 
 
2052/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2053 * counter when SACK is enabled (without SACK, sacked_out is used for
2054 * that purpose).
2055 *
 
 
 
 
2056 * With reordering, holes may still be in flight, so RFC3517 recovery
2057 * uses pure sacked_out (total number of SACKed segments) even though
2058 * it violates the RFC that uses duplicate ACKs, often these are equal
2059 * but when e.g. out-of-window ACKs or packet duplication occurs,
2060 * they differ. Since neither occurs due to loss, TCP should really
2061 * ignore them.
2062 */
2063static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2064{
2065	return tp->sacked_out + 1;
2066}
2067
2068/* Linux NewReno/SACK/ECN state machine.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069 * --------------------------------------
2070 *
2071 * "Open"	Normal state, no dubious events, fast path.
2072 * "Disorder"   In all the respects it is "Open",
2073 *		but requires a bit more attention. It is entered when
2074 *		we see some SACKs or dupacks. It is split of "Open"
2075 *		mainly to move some processing from fast path to slow one.
2076 * "CWR"	CWND was reduced due to some Congestion Notification event.
2077 *		It can be ECN, ICMP source quench, local device congestion.
2078 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2079 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2080 *
2081 * tcp_fastretrans_alert() is entered:
2082 * - each incoming ACK, if state is not "Open"
2083 * - when arrived ACK is unusual, namely:
2084 *	* SACK
2085 *	* Duplicate ACK.
2086 *	* ECN ECE.
2087 *
2088 * Counting packets in flight is pretty simple.
2089 *
2090 *	in_flight = packets_out - left_out + retrans_out
2091 *
2092 *	packets_out is SND.NXT-SND.UNA counted in packets.
2093 *
2094 *	retrans_out is number of retransmitted segments.
2095 *
2096 *	left_out is number of segments left network, but not ACKed yet.
2097 *
2098 *		left_out = sacked_out + lost_out
2099 *
2100 *     sacked_out: Packets, which arrived to receiver out of order
2101 *		   and hence not ACKed. With SACKs this number is simply
2102 *		   amount of SACKed data. Even without SACKs
2103 *		   it is easy to give pretty reliable estimate of this number,
2104 *		   counting duplicate ACKs.
2105 *
2106 *       lost_out: Packets lost by network. TCP has no explicit
2107 *		   "loss notification" feedback from network (for now).
2108 *		   It means that this number can be only _guessed_.
2109 *		   Actually, it is the heuristics to predict lossage that
2110 *		   distinguishes different algorithms.
2111 *
2112 *	F.e. after RTO, when all the queue is considered as lost,
2113 *	lost_out = packets_out and in_flight = retrans_out.
2114 *
2115 *		Essentially, we have now a few algorithms detecting
2116 *		lost packets.
2117 *
2118 *		If the receiver supports SACK:
2119 *
2120 *		RFC6675/3517: It is the conventional algorithm. A packet is
2121 *		considered lost if the number of higher sequence packets
2122 *		SACKed is greater than or equal the DUPACK thoreshold
2123 *		(reordering). This is implemented in tcp_mark_head_lost and
2124 *		tcp_update_scoreboard.
2125 *
2126 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2127 *		(2017-) that checks timing instead of counting DUPACKs.
2128 *		Essentially a packet is considered lost if it's not S/ACKed
2129 *		after RTT + reordering_window, where both metrics are
2130 *		dynamically measured and adjusted. This is implemented in
2131 *		tcp_rack_mark_lost.
2132 *
2133 *		If the receiver does not support SACK:
2134 *
2135 *		NewReno (RFC6582): in Recovery we assume that one segment
2136 *		is lost (classic Reno). While we are in Recovery and
2137 *		a partial ACK arrives, we assume that one more packet
2138 *		is lost (NewReno). This heuristics are the same in NewReno
2139 *		and SACK.
2140 *
 
 
 
 
2141 * Really tricky (and requiring careful tuning) part of algorithm
2142 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2143 * The first determines the moment _when_ we should reduce CWND and,
2144 * hence, slow down forward transmission. In fact, it determines the moment
2145 * when we decide that hole is caused by loss, rather than by a reorder.
2146 *
2147 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2148 * holes, caused by lost packets.
2149 *
2150 * And the most logically complicated part of algorithm is undo
2151 * heuristics. We detect false retransmits due to both too early
2152 * fast retransmit (reordering) and underestimated RTO, analyzing
2153 * timestamps and D-SACKs. When we detect that some segments were
2154 * retransmitted by mistake and CWND reduction was wrong, we undo
2155 * window reduction and abort recovery phase. This logic is hidden
2156 * inside several functions named tcp_try_undo_<something>.
2157 */
2158
2159/* This function decides, when we should leave Disordered state
2160 * and enter Recovery phase, reducing congestion window.
2161 *
2162 * Main question: may we further continue forward transmission
2163 * with the same cwnd?
2164 */
2165static bool tcp_time_to_recover(struct sock *sk, int flag)
2166{
2167	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
2168
2169	/* Trick#1: The loss is proven. */
2170	if (tp->lost_out)
2171		return true;
2172
2173	/* Not-A-Trick#2 : Classic rule... */
2174	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2175		return true;
2176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2177	return false;
2178}
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180/* Detect loss in event "A" above by marking head of queue up as lost.
2181 * For non-SACK(Reno) senders, the first "packets" number of segments
2182 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2183 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2184 * the maximum SACKed segments to pass before reaching this limit.
2185 */
2186static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2187{
2188	struct tcp_sock *tp = tcp_sk(sk);
2189	struct sk_buff *skb;
2190	int cnt, oldcnt, lost;
 
2191	unsigned int mss;
2192	/* Use SACK to deduce losses of new sequences sent during recovery */
2193	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2194
2195	WARN_ON(packets > tp->packets_out);
2196	skb = tp->lost_skb_hint;
2197	if (skb) {
 
2198		/* Head already handled? */
2199		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2200			return;
2201		cnt = tp->lost_cnt_hint;
2202	} else {
2203		skb = tcp_rtx_queue_head(sk);
2204		cnt = 0;
2205	}
2206
2207	skb_rbtree_walk_from(skb) {
 
 
2208		/* TODO: do this better */
2209		/* this is not the most efficient way to do this... */
2210		tp->lost_skb_hint = skb;
2211		tp->lost_cnt_hint = cnt;
2212
2213		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2214			break;
2215
2216		oldcnt = cnt;
2217		if (tcp_is_reno(tp) ||
2218		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2219			cnt += tcp_skb_pcount(skb);
2220
2221		if (cnt > packets) {
2222			if (tcp_is_sack(tp) ||
2223			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2224			    (oldcnt >= packets))
2225				break;
2226
2227			mss = tcp_skb_mss(skb);
2228			/* If needed, chop off the prefix to mark as lost. */
2229			lost = (packets - oldcnt) * mss;
2230			if (lost < skb->len &&
2231			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2232					 lost, mss, GFP_ATOMIC) < 0)
2233				break;
2234			cnt = packets;
2235		}
2236
2237		tcp_skb_mark_lost(tp, skb);
2238
2239		if (mark_head)
2240			break;
2241	}
2242	tcp_verify_left_out(tp);
2243}
2244
2245/* Account newly detected lost packet(s) */
2246
2247static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2248{
2249	struct tcp_sock *tp = tcp_sk(sk);
2250
2251	if (tcp_is_sack(tp)) {
 
 
 
 
 
 
 
2252		int sacked_upto = tp->sacked_out - tp->reordering;
2253		if (sacked_upto >= 0)
2254			tcp_mark_head_lost(sk, sacked_upto, 0);
2255		else if (fast_rexmit)
2256			tcp_mark_head_lost(sk, 1, 1);
2257	}
2258}
2259
2260static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261{
2262	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263	       before(tp->rx_opt.rcv_tsecr, when);
2264}
2265
2266/* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2268 */
2269static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270				     const struct sk_buff *skb)
2271{
2272	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
 
2274}
2275
2276/* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2278 */
2279static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280{
2281	return tp->retrans_stamp &&
2282	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283}
2284
2285/* Undo procedures. */
 
2286
2287/* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2295 *
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2300 */
2301static bool tcp_any_retrans_done(const struct sock *sk)
2302{
2303	const struct tcp_sock *tp = tcp_sk(sk);
2304	struct sk_buff *skb;
2305
2306	if (tp->retrans_out)
2307		return true;
 
 
2308
2309	skb = tcp_rtx_queue_head(sk);
2310	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311		return true;
2312
2313	return false;
 
 
2314}
2315
2316static void DBGUNDO(struct sock *sk, const char *msg)
 
 
 
2317{
 
 
 
 
 
 
 
2318#if FASTRETRANS_DEBUG > 1
 
 
2319	struct tcp_sock *tp = tcp_sk(sk);
2320	struct inet_sock *inet = inet_sk(sk);
2321
2322	if (sk->sk_family == AF_INET) {
2323		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324			 msg,
2325			 &inet->inet_daddr, ntohs(inet->inet_dport),
2326			 tp->snd_cwnd, tcp_left_out(tp),
2327			 tp->snd_ssthresh, tp->prior_ssthresh,
2328			 tp->packets_out);
2329	}
2330#if IS_ENABLED(CONFIG_IPV6)
2331	else if (sk->sk_family == AF_INET6) {
 
2332		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2333			 msg,
2334			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2335			 tp->snd_cwnd, tcp_left_out(tp),
2336			 tp->snd_ssthresh, tp->prior_ssthresh,
2337			 tp->packets_out);
2338	}
2339#endif
2340#endif
2341}
 
 
 
2342
2343static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2344{
2345	struct tcp_sock *tp = tcp_sk(sk);
2346
2347	if (unmark_loss) {
2348		struct sk_buff *skb;
2349
2350		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2351			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352		}
2353		tp->lost_out = 0;
2354		tcp_clear_all_retrans_hints(tp);
2355	}
2356
2357	if (tp->prior_ssthresh) {
2358		const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
 
 
 
2361
2362		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2363			tp->snd_ssthresh = tp->prior_ssthresh;
2364			tcp_ecn_withdraw_cwr(tp);
2365		}
 
 
2366	}
2367	tp->snd_cwnd_stamp = tcp_jiffies32;
2368	tp->undo_marker = 0;
2369	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2370}
2371
2372static inline bool tcp_may_undo(const struct tcp_sock *tp)
2373{
2374	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2375}
2376
2377/* People celebrate: "We love our President!" */
2378static bool tcp_try_undo_recovery(struct sock *sk)
2379{
2380	struct tcp_sock *tp = tcp_sk(sk);
2381
2382	if (tcp_may_undo(tp)) {
2383		int mib_idx;
2384
2385		/* Happy end! We did not retransmit anything
2386		 * or our original transmission succeeded.
2387		 */
2388		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389		tcp_undo_cwnd_reduction(sk, false);
2390		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2392		else
2393			mib_idx = LINUX_MIB_TCPFULLUNDO;
2394
2395		NET_INC_STATS(sock_net(sk), mib_idx);
2396	} else if (tp->rack.reo_wnd_persist) {
2397		tp->rack.reo_wnd_persist--;
2398	}
2399	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2400		/* Hold old state until something *above* high_seq
2401		 * is ACKed. For Reno it is MUST to prevent false
2402		 * fast retransmits (RFC2582). SACK TCP is safe. */
2403		if (!tcp_any_retrans_done(sk))
2404			tp->retrans_stamp = 0;
2405		return true;
2406	}
2407	tcp_set_ca_state(sk, TCP_CA_Open);
2408	tp->is_sack_reneg = 0;
2409	return false;
2410}
2411
2412/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413static bool tcp_try_undo_dsack(struct sock *sk)
2414{
2415	struct tcp_sock *tp = tcp_sk(sk);
2416
2417	if (tp->undo_marker && !tp->undo_retrans) {
2418		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2419					       tp->rack.reo_wnd_persist + 1);
2420		DBGUNDO(sk, "D-SACK");
2421		tcp_undo_cwnd_reduction(sk, false);
2422		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423		return true;
2424	}
2425	return false;
2426}
2427
2428/* Undo during loss recovery after partial ACK or using F-RTO. */
2429static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
 
 
 
 
 
 
 
 
 
 
 
 
 
2430{
2431	struct tcp_sock *tp = tcp_sk(sk);
 
2432
2433	if (frto_undo || tcp_may_undo(tp)) {
2434		tcp_undo_cwnd_reduction(sk, true);
2435
2436		DBGUNDO(sk, "partial loss");
2437		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438		if (frto_undo)
2439			NET_INC_STATS(sock_net(sk),
2440					LINUX_MIB_TCPSPURIOUSRTOS);
2441		inet_csk(sk)->icsk_retransmits = 0;
2442		if (frto_undo || tcp_is_sack(tp)) {
2443			tcp_set_ca_state(sk, TCP_CA_Open);
2444			tp->is_sack_reneg = 0;
2445		}
2446		return true;
2447	}
2448	return false;
2449}
2450
2451/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452 * It computes the number of packets to send (sndcnt) based on packets newly
2453 * delivered:
2454 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2455 *	cwnd reductions across a full RTT.
2456 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2457 *      But when the retransmits are acked without further losses, PRR
2458 *      slow starts cwnd up to ssthresh to speed up the recovery.
2459 */
2460static void tcp_init_cwnd_reduction(struct sock *sk)
2461{
2462	struct tcp_sock *tp = tcp_sk(sk);
 
 
2463
2464	tp->high_seq = tp->snd_nxt;
2465	tp->tlp_high_seq = 0;
2466	tp->snd_cwnd_cnt = 0;
2467	tp->prior_cwnd = tp->snd_cwnd;
2468	tp->prr_delivered = 0;
2469	tp->prr_out = 0;
2470	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471	tcp_ecn_queue_cwr(tp);
2472}
2473
2474void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2475{
2476	struct tcp_sock *tp = tcp_sk(sk);
2477	int sndcnt = 0;
2478	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2479
2480	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481		return;
 
2482
2483	tp->prr_delivered += newly_acked_sacked;
2484	if (delta < 0) {
2485		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2486			       tp->prior_cwnd - 1;
2487		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2488	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2489		   FLAG_RETRANS_DATA_ACKED) {
2490		sndcnt = min_t(int, delta,
2491			       max_t(int, tp->prr_delivered - tp->prr_out,
2492				     newly_acked_sacked) + 1);
2493	} else {
2494		sndcnt = min(delta, newly_acked_sacked);
2495	}
2496	/* Force a fast retransmit upon entering fast recovery */
2497	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2498	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499}
2500
2501static inline void tcp_end_cwnd_reduction(struct sock *sk)
 
2502{
2503	struct tcp_sock *tp = tcp_sk(sk);
2504
2505	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2506		return;
 
 
 
 
 
2507
2508	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2509	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2510	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2511		tp->snd_cwnd = tp->snd_ssthresh;
2512		tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 
 
 
 
2513	}
2514	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2515}
2516
2517/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2518void tcp_enter_cwr(struct sock *sk)
2519{
2520	struct tcp_sock *tp = tcp_sk(sk);
2521
2522	tp->prior_ssthresh = 0;
2523	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2524		tp->undo_marker = 0;
2525		tcp_init_cwnd_reduction(sk);
2526		tcp_set_ca_state(sk, TCP_CA_CWR);
 
 
 
 
 
2527	}
 
2528}
2529EXPORT_SYMBOL(tcp_enter_cwr);
2530
2531static void tcp_try_keep_open(struct sock *sk)
2532{
2533	struct tcp_sock *tp = tcp_sk(sk);
2534	int state = TCP_CA_Open;
2535
2536	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2537		state = TCP_CA_Disorder;
2538
2539	if (inet_csk(sk)->icsk_ca_state != state) {
2540		tcp_set_ca_state(sk, state);
2541		tp->high_seq = tp->snd_nxt;
2542	}
2543}
2544
2545static void tcp_try_to_open(struct sock *sk, int flag)
2546{
2547	struct tcp_sock *tp = tcp_sk(sk);
2548
2549	tcp_verify_left_out(tp);
2550
2551	if (!tcp_any_retrans_done(sk))
2552		tp->retrans_stamp = 0;
2553
2554	if (flag & FLAG_ECE)
2555		tcp_enter_cwr(sk);
2556
2557	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2558		tcp_try_keep_open(sk);
 
 
 
 
2559	}
2560}
2561
2562static void tcp_mtup_probe_failed(struct sock *sk)
2563{
2564	struct inet_connection_sock *icsk = inet_csk(sk);
2565
2566	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2567	icsk->icsk_mtup.probe_size = 0;
2568	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2569}
2570
2571static void tcp_mtup_probe_success(struct sock *sk)
2572{
2573	struct tcp_sock *tp = tcp_sk(sk);
2574	struct inet_connection_sock *icsk = inet_csk(sk);
2575
2576	/* FIXME: breaks with very large cwnd */
2577	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2578	tp->snd_cwnd = tp->snd_cwnd *
2579		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2580		       icsk->icsk_mtup.probe_size;
2581	tp->snd_cwnd_cnt = 0;
2582	tp->snd_cwnd_stamp = tcp_jiffies32;
2583	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2584
2585	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2586	icsk->icsk_mtup.probe_size = 0;
2587	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2588	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2589}
2590
2591/* Do a simple retransmit without using the backoff mechanisms in
2592 * tcp_timer. This is used for path mtu discovery.
2593 * The socket is already locked here.
2594 */
2595void tcp_simple_retransmit(struct sock *sk)
2596{
2597	const struct inet_connection_sock *icsk = inet_csk(sk);
2598	struct tcp_sock *tp = tcp_sk(sk);
2599	struct sk_buff *skb;
2600	unsigned int mss = tcp_current_mss(sk);
 
2601
2602	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
 
 
2603		if (tcp_skb_seglen(skb) > mss &&
2604		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607				tp->retrans_out -= tcp_skb_pcount(skb);
2608			}
2609			tcp_skb_mark_lost_uncond_verify(tp, skb);
2610		}
2611	}
2612
2613	tcp_clear_retrans_hints_partial(tp);
2614
2615	if (!tp->lost_out)
2616		return;
2617
2618	if (tcp_is_reno(tp))
2619		tcp_limit_reno_sacked(tp);
2620
2621	tcp_verify_left_out(tp);
2622
2623	/* Don't muck with the congestion window here.
2624	 * Reason is that we do not increase amount of _data_
2625	 * in network, but units changed and effective
2626	 * cwnd/ssthresh really reduced now.
2627	 */
2628	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629		tp->high_seq = tp->snd_nxt;
2630		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631		tp->prior_ssthresh = 0;
2632		tp->undo_marker = 0;
2633		tcp_set_ca_state(sk, TCP_CA_Loss);
2634	}
2635	tcp_xmit_retransmit_queue(sk);
2636}
2637EXPORT_SYMBOL(tcp_simple_retransmit);
2638
2639void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640{
2641	struct tcp_sock *tp = tcp_sk(sk);
2642	int mib_idx;
2643
2644	if (tcp_is_reno(tp))
2645		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646	else
2647		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648
2649	NET_INC_STATS(sock_net(sk), mib_idx);
2650
2651	tp->prior_ssthresh = 0;
2652	tcp_init_undo(tp);
2653
2654	if (!tcp_in_cwnd_reduction(sk)) {
2655		if (!ece_ack)
2656			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657		tcp_init_cwnd_reduction(sk);
2658	}
2659	tcp_set_ca_state(sk, TCP_CA_Recovery);
2660}
2661
2662/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664 */
2665static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2666			     int *rexmit)
2667{
2668	struct tcp_sock *tp = tcp_sk(sk);
2669	bool recovered = !before(tp->snd_una, tp->high_seq);
2670
2671	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2672	    tcp_try_undo_loss(sk, false))
2673		return;
2674
2675	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2676		/* Step 3.b. A timeout is spurious if not all data are
2677		 * lost, i.e., never-retransmitted data are (s)acked.
2678		 */
2679		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2680		    tcp_try_undo_loss(sk, true))
2681			return;
2682
2683		if (after(tp->snd_nxt, tp->high_seq)) {
2684			if (flag & FLAG_DATA_SACKED || num_dupack)
2685				tp->frto = 0; /* Step 3.a. loss was real */
2686		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2687			tp->high_seq = tp->snd_nxt;
2688			/* Step 2.b. Try send new data (but deferred until cwnd
2689			 * is updated in tcp_ack()). Otherwise fall back to
2690			 * the conventional recovery.
2691			 */
2692			if (!tcp_write_queue_empty(sk) &&
2693			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2694				*rexmit = REXMIT_NEW;
2695				return;
2696			}
2697			tp->frto = 0;
2698		}
2699	}
2700
2701	if (recovered) {
2702		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2703		tcp_try_undo_recovery(sk);
2704		return;
2705	}
2706	if (tcp_is_reno(tp)) {
2707		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2708		 * delivered. Lower inflight to clock out (re)tranmissions.
2709		 */
2710		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2711			tcp_add_reno_sack(sk, num_dupack);
2712		else if (flag & FLAG_SND_UNA_ADVANCED)
2713			tcp_reset_reno_sack(tp);
2714	}
2715	*rexmit = REXMIT_LOST;
2716}
2717
2718/* Undo during fast recovery after partial ACK. */
2719static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2720{
2721	struct tcp_sock *tp = tcp_sk(sk);
 
2722
2723	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2724		/* Plain luck! Hole if filled with delayed
2725		 * packet, rather than with a retransmit. Check reordering.
2726		 */
2727		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2728
2729		/* We are getting evidence that the reordering degree is higher
2730		 * than we realized. If there are no retransmits out then we
2731		 * can undo. Otherwise we clock out new packets but do not
2732		 * mark more packets lost or retransmit more.
2733		 */
2734		if (tp->retrans_out)
2735			return true;
2736
2737		if (!tcp_any_retrans_done(sk))
2738			tp->retrans_stamp = 0;
2739
2740		DBGUNDO(sk, "partial recovery");
2741		tcp_undo_cwnd_reduction(sk, true);
2742		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2743		tcp_try_keep_open(sk);
2744		return true;
2745	}
2746	return false;
2747}
2748
2749static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2750{
2751	struct tcp_sock *tp = tcp_sk(sk);
2752
2753	if (tcp_rtx_queue_empty(sk))
2754		return;
2755
2756	if (unlikely(tcp_is_reno(tp))) {
2757		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2758	} else if (tcp_is_rack(sk)) {
2759		u32 prior_retrans = tp->retrans_out;
2760
2761		tcp_rack_mark_lost(sk);
2762		if (prior_retrans > tp->retrans_out)
2763			*ack_flag |= FLAG_LOST_RETRANS;
 
 
2764	}
2765}
2766
2767static bool tcp_force_fast_retransmit(struct sock *sk)
2768{
2769	struct tcp_sock *tp = tcp_sk(sk);
2770
2771	return after(tcp_highest_sack_seq(tp),
2772		     tp->snd_una + tp->reordering * tp->mss_cache);
 
 
 
 
2773}
2774
2775/* Process an event, which can update packets-in-flight not trivially.
2776 * Main goal of this function is to calculate new estimate for left_out,
2777 * taking into account both packets sitting in receiver's buffer and
2778 * packets lost by network.
2779 *
2780 * Besides that it updates the congestion state when packet loss or ECN
2781 * is detected. But it does not reduce the cwnd, it is done by the
2782 * congestion control later.
2783 *
2784 * It does _not_ decide what to send, it is made in function
2785 * tcp_xmit_retransmit_queue().
2786 */
2787static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2788				  int num_dupack, int *ack_flag, int *rexmit)
 
2789{
2790	struct inet_connection_sock *icsk = inet_csk(sk);
2791	struct tcp_sock *tp = tcp_sk(sk);
2792	int fast_rexmit = 0, flag = *ack_flag;
2793	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2794				      tcp_force_fast_retransmit(sk));
 
2795
2796	if (!tp->packets_out && tp->sacked_out)
2797		tp->sacked_out = 0;
 
 
2798
2799	/* Now state machine starts.
2800	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2801	if (flag & FLAG_ECE)
2802		tp->prior_ssthresh = 0;
2803
2804	/* B. In all the states check for reneging SACKs. */
2805	if (tcp_check_sack_reneging(sk, flag))
2806		return;
2807
2808	/* C. Check consistency of the current state. */
2809	tcp_verify_left_out(tp);
2810
2811	/* D. Check state exit conditions. State can be terminated
2812	 *    when high_seq is ACKed. */
2813	if (icsk->icsk_ca_state == TCP_CA_Open) {
2814		WARN_ON(tp->retrans_out != 0);
2815		tp->retrans_stamp = 0;
2816	} else if (!before(tp->snd_una, tp->high_seq)) {
2817		switch (icsk->icsk_ca_state) {
 
 
 
 
 
 
2818		case TCP_CA_CWR:
2819			/* CWR is to be held something *above* high_seq
2820			 * is ACKed for CWR bit to reach receiver. */
2821			if (tp->snd_una != tp->high_seq) {
2822				tcp_end_cwnd_reduction(sk);
2823				tcp_set_ca_state(sk, TCP_CA_Open);
2824			}
2825			break;
2826
2827		case TCP_CA_Recovery:
2828			if (tcp_is_reno(tp))
2829				tcp_reset_reno_sack(tp);
2830			if (tcp_try_undo_recovery(sk))
2831				return;
2832			tcp_end_cwnd_reduction(sk);
2833			break;
2834		}
2835	}
2836
2837	/* E. Process state. */
2838	switch (icsk->icsk_ca_state) {
2839	case TCP_CA_Recovery:
2840		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2841			if (tcp_is_reno(tp))
2842				tcp_add_reno_sack(sk, num_dupack);
2843		} else {
2844			if (tcp_try_undo_partial(sk, prior_snd_una))
2845				return;
2846			/* Partial ACK arrived. Force fast retransmit. */
2847			do_lost = tcp_is_reno(tp) ||
2848				  tcp_force_fast_retransmit(sk);
2849		}
2850		if (tcp_try_undo_dsack(sk)) {
2851			tcp_try_keep_open(sk);
2852			return;
2853		}
2854		tcp_identify_packet_loss(sk, ack_flag);
2855		break;
2856	case TCP_CA_Loss:
2857		tcp_process_loss(sk, flag, num_dupack, rexmit);
2858		tcp_identify_packet_loss(sk, ack_flag);
2859		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2860		      (*ack_flag & FLAG_LOST_RETRANS)))
 
 
 
2861			return;
2862		/* Change state if cwnd is undone or retransmits are lost */
2863		/* fall through */
 
 
2864	default:
2865		if (tcp_is_reno(tp)) {
2866			if (flag & FLAG_SND_UNA_ADVANCED)
2867				tcp_reset_reno_sack(tp);
2868			tcp_add_reno_sack(sk, num_dupack);
 
2869		}
 
2870
2871		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2872			tcp_try_undo_dsack(sk);
2873
2874		tcp_identify_packet_loss(sk, ack_flag);
2875		if (!tcp_time_to_recover(sk, flag)) {
2876			tcp_try_to_open(sk, flag);
2877			return;
2878		}
2879
2880		/* MTU probe failure: don't reduce cwnd */
2881		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882		    icsk->icsk_mtup.probe_size &&
2883		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884			tcp_mtup_probe_failed(sk);
2885			/* Restores the reduction we did in tcp_mtup_probe() */
2886			tp->snd_cwnd++;
2887			tcp_simple_retransmit(sk);
2888			return;
2889		}
2890
2891		/* Otherwise enter Recovery state */
2892		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893		fast_rexmit = 1;
2894	}
2895
2896	if (!tcp_is_rack(sk) && do_lost)
2897		tcp_update_scoreboard(sk, fast_rexmit);
2898	*rexmit = REXMIT_LOST;
 
 
2899}
2900
2901static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2902{
2903	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2904	struct tcp_sock *tp = tcp_sk(sk);
2905
2906	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2907		/* If the remote keeps returning delayed ACKs, eventually
2908		 * the min filter would pick it up and overestimate the
2909		 * prop. delay when it expires. Skip suspected delayed ACKs.
2910		 */
2911		return;
2912	}
2913	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2914			   rtt_us ? : jiffies_to_usecs(1));
2915}
 
2916
2917static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2918			       long seq_rtt_us, long sack_rtt_us,
2919			       long ca_rtt_us, struct rate_sample *rs)
 
2920{
2921	const struct tcp_sock *tp = tcp_sk(sk);
2922
2923	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925	 * Karn's algorithm forbids taking RTT if some retransmitted data
2926	 * is acked (RFC6298).
2927	 */
2928	if (seq_rtt_us < 0)
2929		seq_rtt_us = sack_rtt_us;
2930
2931	/* RTTM Rule: A TSecr value received in a segment is used to
2932	 * update the averaged RTT measurement only if the segment
2933	 * acknowledges some new data, i.e., only if it advances the
2934	 * left edge of the send window.
 
2935	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
 
 
 
 
 
 
 
 
2936	 */
2937	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2938	    flag & FLAG_ACKED) {
2939		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2940
2941		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2942			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2943			ca_rtt_us = seq_rtt_us;
2944		}
2945	}
2946	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2947	if (seq_rtt_us < 0)
2948		return false;
2949
2950	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2951	 * always taken together with ACK, SACK, or TS-opts. Any negative
2952	 * values will be skipped with the seq_rtt_us < 0 check above.
2953	 */
2954	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2955	tcp_rtt_estimator(sk, seq_rtt_us);
2956	tcp_set_rto(sk);
2957
2958	/* RFC6298: only reset backoff on valid RTT measurement. */
2959	inet_csk(sk)->icsk_backoff = 0;
2960	return true;
2961}
2962
2963/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2964void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2965{
2966	struct rate_sample rs;
2967	long rtt_us = -1L;
 
 
 
 
 
 
2968
2969	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2970		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2971
2972	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2973}
2974
 
 
 
 
 
 
 
 
 
 
2975
2976static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2977{
2978	const struct inet_connection_sock *icsk = inet_csk(sk);
2979
2980	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2981	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2982}
2983
2984/* Restart timer after forward progress on connection.
2985 * RFC2988 recommends to restart timer to now+rto.
2986 */
2987void tcp_rearm_rto(struct sock *sk)
2988{
2989	const struct inet_connection_sock *icsk = inet_csk(sk);
2990	struct tcp_sock *tp = tcp_sk(sk);
2991
2992	/* If the retrans timer is currently being used by Fast Open
2993	 * for SYN-ACK retrans purpose, stay put.
2994	 */
2995	if (rcu_access_pointer(tp->fastopen_rsk))
2996		return;
2997
2998	if (!tp->packets_out) {
2999		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3000	} else {
3001		u32 rto = inet_csk(sk)->icsk_rto;
3002		/* Offset the time elapsed after installing regular RTO */
3003		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3004		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3005			s64 delta_us = tcp_rto_delta_us(sk);
3006			/* delta_us may not be positive if the socket is locked
3007			 * when the retrans timer fires and is rescheduled.
 
3008			 */
3009			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
 
3010		}
3011		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3012				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3013	}
 
3014}
3015
3016/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3017static void tcp_set_xmit_timer(struct sock *sk)
 
 
3018{
3019	if (!tcp_schedule_loss_probe(sk, true))
3020		tcp_rearm_rto(sk);
 
 
 
 
 
 
 
 
 
3021}
3022
3023/* If we get here, the whole TSO packet has not been acked. */
3024static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3025{
3026	struct tcp_sock *tp = tcp_sk(sk);
3027	u32 packets_acked;
3028
3029	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3030
3031	packets_acked = tcp_skb_pcount(skb);
3032	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3033		return 0;
3034	packets_acked -= tcp_skb_pcount(skb);
3035
3036	if (packets_acked) {
3037		BUG_ON(tcp_skb_pcount(skb) == 0);
3038		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3039	}
3040
3041	return packets_acked;
3042}
3043
3044static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3045			   u32 prior_snd_una)
3046{
3047	const struct skb_shared_info *shinfo;
3048
3049	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3050	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3051		return;
3052
3053	shinfo = skb_shinfo(skb);
3054	if (!before(shinfo->tskey, prior_snd_una) &&
3055	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3056		tcp_skb_tsorted_save(skb) {
3057			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3058		} tcp_skb_tsorted_restore(skb);
3059	}
3060}
3061
3062/* Remove acknowledged frames from the retransmission queue. If our packet
3063 * is before the ack sequence we can discard it as it's confirmed to have
3064 * arrived at the other end.
3065 */
3066static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3067			       u32 prior_snd_una,
3068			       struct tcp_sacktag_state *sack)
3069{
3070	const struct inet_connection_sock *icsk = inet_csk(sk);
3071	u64 first_ackt, last_ackt;
3072	struct tcp_sock *tp = tcp_sk(sk);
3073	u32 prior_sacked = tp->sacked_out;
3074	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3075	struct sk_buff *skb, *next;
3076	bool fully_acked = true;
3077	long sack_rtt_us = -1L;
3078	long seq_rtt_us = -1L;
3079	long ca_rtt_us = -1L;
3080	u32 pkts_acked = 0;
3081	u32 last_in_flight = 0;
3082	bool rtt_update;
3083	int flag = 0;
 
 
 
 
 
 
3084
3085	first_ackt = 0;
3086
3087	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3088		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3089		const u32 start_seq = scb->seq;
3090		u8 sacked = scb->sacked;
3091		u32 acked_pcount;
3092
3093		tcp_ack_tstamp(sk, skb, prior_snd_una);
3094
3095		/* Determine how many packets and what bytes were acked, tso and else */
3096		if (after(scb->end_seq, tp->snd_una)) {
3097			if (tcp_skb_pcount(skb) == 1 ||
3098			    !after(tp->snd_una, scb->seq))
3099				break;
3100
3101			acked_pcount = tcp_tso_acked(sk, skb);
3102			if (!acked_pcount)
3103				break;
 
3104			fully_acked = false;
3105		} else {
3106			acked_pcount = tcp_skb_pcount(skb);
3107		}
3108
3109		if (unlikely(sacked & TCPCB_RETRANS)) {
3110			if (sacked & TCPCB_SACKED_RETRANS)
3111				tp->retrans_out -= acked_pcount;
3112			flag |= FLAG_RETRANS_DATA_ACKED;
3113		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3114			last_ackt = tcp_skb_timestamp_us(skb);
3115			WARN_ON_ONCE(last_ackt == 0);
3116			if (!first_ackt)
3117				first_ackt = last_ackt;
3118
3119			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3120			if (before(start_seq, reord))
3121				reord = start_seq;
3122			if (!after(scb->end_seq, tp->high_seq))
3123				flag |= FLAG_ORIG_SACK_ACKED;
 
3124		}
3125
3126		if (sacked & TCPCB_SACKED_ACKED) {
3127			tp->sacked_out -= acked_pcount;
3128		} else if (tcp_is_sack(tp)) {
3129			tp->delivered += acked_pcount;
3130			if (!tcp_skb_spurious_retrans(tp, skb))
3131				tcp_rack_advance(tp, sacked, scb->end_seq,
3132						 tcp_skb_timestamp_us(skb));
3133		}
3134		if (sacked & TCPCB_LOST)
3135			tp->lost_out -= acked_pcount;
3136
3137		tp->packets_out -= acked_pcount;
3138		pkts_acked += acked_pcount;
3139		tcp_rate_skb_delivered(sk, skb, sack->rate);
3140
3141		/* Initial outgoing SYN's get put onto the write_queue
3142		 * just like anything else we transmit.  It is not
3143		 * true data, and if we misinform our callers that
3144		 * this ACK acks real data, we will erroneously exit
3145		 * connection startup slow start one packet too
3146		 * quickly.  This is severely frowned upon behavior.
3147		 */
3148		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3149			flag |= FLAG_DATA_ACKED;
3150		} else {
3151			flag |= FLAG_SYN_ACKED;
3152			tp->retrans_stamp = 0;
3153		}
3154
3155		if (!fully_acked)
3156			break;
3157
3158		next = skb_rb_next(skb);
3159		if (unlikely(skb == tp->retransmit_skb_hint))
 
 
3160			tp->retransmit_skb_hint = NULL;
3161		if (unlikely(skb == tp->lost_skb_hint))
3162			tp->lost_skb_hint = NULL;
3163		tcp_rtx_queue_unlink_and_free(skb, sk);
3164	}
3165
3166	if (!skb)
3167		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3168
3169	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3170		tp->snd_up = tp->snd_una;
3171
3172	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3173		flag |= FLAG_SACK_RENEGING;
3174
3175	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3176		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3177		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3178
3179		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3180		    last_in_flight && !prior_sacked && fully_acked &&
3181		    sack->rate->prior_delivered + 1 == tp->delivered &&
3182		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3183			/* Conservatively mark a delayed ACK. It's typically
3184			 * from a lone runt packet over the round trip to
3185			 * a receiver w/o out-of-order or CE events.
3186			 */
3187			flag |= FLAG_ACK_MAYBE_DELAYED;
3188		}
3189	}
3190	if (sack->first_sackt) {
3191		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3192		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3193	}
3194	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3195					ca_rtt_us, sack->rate);
3196
3197	if (flag & FLAG_ACKED) {
3198		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
 
 
3199		if (unlikely(icsk->icsk_mtup.probe_size &&
3200			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3201			tcp_mtup_probe_success(sk);
3202		}
3203
 
 
 
3204		if (tcp_is_reno(tp)) {
3205			tcp_remove_reno_sacks(sk, pkts_acked);
3206
3207			/* If any of the cumulatively ACKed segments was
3208			 * retransmitted, non-SACK case cannot confirm that
3209			 * progress was due to original transmission due to
3210			 * lack of TCPCB_SACKED_ACKED bits even if some of
3211			 * the packets may have been never retransmitted.
3212			 */
3213			if (flag & FLAG_RETRANS_DATA_ACKED)
3214				flag &= ~FLAG_ORIG_SACK_ACKED;
3215		} else {
3216			int delta;
3217
3218			/* Non-retransmitted hole got filled? That's reordering */
3219			if (before(reord, prior_fack))
3220				tcp_check_sack_reordering(sk, reord, 0);
3221
3222			delta = prior_sacked - tp->sacked_out;
 
3223			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3224		}
3225	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3227						    tcp_skb_timestamp_us(skb))) {
3228		/* Do not re-arm RTO if the sack RTT is measured from data sent
3229		 * after when the head was last (re)transmitted. Otherwise the
3230		 * timeout may continue to extend in loss recovery.
3231		 */
3232		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3233	}
3234
3235	if (icsk->icsk_ca_ops->pkts_acked) {
3236		struct ack_sample sample = { .pkts_acked = pkts_acked,
3237					     .rtt_us = sack->rate->rtt_us,
3238					     .in_flight = last_in_flight };
3239
3240		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241	}
3242
3243#if FASTRETRANS_DEBUG > 0
3244	WARN_ON((int)tp->sacked_out < 0);
3245	WARN_ON((int)tp->lost_out < 0);
3246	WARN_ON((int)tp->retrans_out < 0);
3247	if (!tp->packets_out && tcp_is_sack(tp)) {
3248		icsk = inet_csk(sk);
3249		if (tp->lost_out) {
3250			pr_debug("Leak l=%u %d\n",
3251				 tp->lost_out, icsk->icsk_ca_state);
3252			tp->lost_out = 0;
3253		}
3254		if (tp->sacked_out) {
3255			pr_debug("Leak s=%u %d\n",
3256				 tp->sacked_out, icsk->icsk_ca_state);
3257			tp->sacked_out = 0;
3258		}
3259		if (tp->retrans_out) {
3260			pr_debug("Leak r=%u %d\n",
3261				 tp->retrans_out, icsk->icsk_ca_state);
3262			tp->retrans_out = 0;
3263		}
3264	}
3265#endif
3266	return flag;
3267}
3268
3269static void tcp_ack_probe(struct sock *sk)
3270{
3271	struct inet_connection_sock *icsk = inet_csk(sk);
3272	struct sk_buff *head = tcp_send_head(sk);
3273	const struct tcp_sock *tp = tcp_sk(sk);
 
3274
3275	/* Was it a usable window open? */
3276	if (!head)
3277		return;
3278	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3279		icsk->icsk_backoff = 0;
3280		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3281		/* Socket must be waked up by subsequent tcp_data_snd_check().
3282		 * This function is not for random using!
3283		 */
3284	} else {
3285		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3286
3287		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288				     when, TCP_RTO_MAX, NULL);
3289	}
3290}
3291
3292static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3293{
3294	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3295		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3296}
3297
3298/* Decide wheather to run the increase function of congestion control. */
3299static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3300{
3301	/* If reordering is high then always grow cwnd whenever data is
3302	 * delivered regardless of its ordering. Otherwise stay conservative
3303	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3304	 * new SACK or ECE mark may first advance cwnd here and later reduce
3305	 * cwnd in tcp_fastretrans_alert() based on more states.
3306	 */
3307	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3308		return flag & FLAG_FORWARD_PROGRESS;
3309
3310	return flag & FLAG_DATA_ACKED;
3311}
3312
3313/* The "ultimate" congestion control function that aims to replace the rigid
3314 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3315 * It's called toward the end of processing an ACK with precise rate
3316 * information. All transmission or retransmission are delayed afterwards.
3317 */
3318static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3319			     int flag, const struct rate_sample *rs)
3320{
3321	const struct inet_connection_sock *icsk = inet_csk(sk);
3322
3323	if (icsk->icsk_ca_ops->cong_control) {
3324		icsk->icsk_ca_ops->cong_control(sk, rs);
3325		return;
3326	}
3327
3328	if (tcp_in_cwnd_reduction(sk)) {
3329		/* Reduce cwnd if state mandates */
3330		tcp_cwnd_reduction(sk, acked_sacked, flag);
3331	} else if (tcp_may_raise_cwnd(sk, flag)) {
3332		/* Advance cwnd if state allows */
3333		tcp_cong_avoid(sk, ack, acked_sacked);
3334	}
3335	tcp_update_pacing_rate(sk);
3336}
3337
3338/* Check that window update is acceptable.
3339 * The function assumes that snd_una<=ack<=snd_next.
3340 */
3341static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3342					const u32 ack, const u32 ack_seq,
3343					const u32 nwin)
3344{
3345	return	after(ack, tp->snd_una) ||
3346		after(ack_seq, tp->snd_wl1) ||
3347		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3348}
3349
3350/* If we update tp->snd_una, also update tp->bytes_acked */
3351static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3352{
3353	u32 delta = ack - tp->snd_una;
3354
3355	sock_owned_by_me((struct sock *)tp);
3356	tp->bytes_acked += delta;
3357	tp->snd_una = ack;
3358}
3359
3360/* If we update tp->rcv_nxt, also update tp->bytes_received */
3361static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3362{
3363	u32 delta = seq - tp->rcv_nxt;
3364
3365	sock_owned_by_me((struct sock *)tp);
3366	tp->bytes_received += delta;
3367	WRITE_ONCE(tp->rcv_nxt, seq);
3368}
3369
3370/* Update our send window.
3371 *
3372 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3373 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3374 */
3375static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3376				 u32 ack_seq)
3377{
3378	struct tcp_sock *tp = tcp_sk(sk);
3379	int flag = 0;
3380	u32 nwin = ntohs(tcp_hdr(skb)->window);
3381
3382	if (likely(!tcp_hdr(skb)->syn))
3383		nwin <<= tp->rx_opt.snd_wscale;
3384
3385	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3386		flag |= FLAG_WIN_UPDATE;
3387		tcp_update_wl(tp, ack_seq);
3388
3389		if (tp->snd_wnd != nwin) {
3390			tp->snd_wnd = nwin;
3391
3392			/* Note, it is the only place, where
3393			 * fast path is recovered for sending TCP.
3394			 */
3395			tp->pred_flags = 0;
3396			tcp_fast_path_check(sk);
3397
3398			if (!tcp_write_queue_empty(sk))
3399				tcp_slow_start_after_idle_check(sk);
3400
3401			if (nwin > tp->max_window) {
3402				tp->max_window = nwin;
3403				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3404			}
3405		}
3406	}
3407
3408	tcp_snd_una_update(tp, ack);
3409
3410	return flag;
3411}
3412
3413static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3414				   u32 *last_oow_ack_time)
3415{
3416	if (*last_oow_ack_time) {
3417		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3418
3419		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3420			NET_INC_STATS(net, mib_idx);
3421			return true;	/* rate-limited: don't send yet! */
3422		}
3423	}
3424
3425	*last_oow_ack_time = tcp_jiffies32;
3426
3427	return false;	/* not rate-limited: go ahead, send dupack now! */
3428}
3429
3430/* Return true if we're currently rate-limiting out-of-window ACKs and
3431 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3432 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3433 * attacks that send repeated SYNs or ACKs for the same connection. To
3434 * do this, we do not send a duplicate SYNACK or ACK if the remote
3435 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3436 */
3437bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3438			  int mib_idx, u32 *last_oow_ack_time)
3439{
3440	/* Data packets without SYNs are not likely part of an ACK loop. */
3441	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3442	    !tcp_hdr(skb)->syn)
3443		return false;
3444
3445	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3446}
3447
3448/* RFC 5961 7 [ACK Throttling] */
3449static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3450{
3451	/* unprotected vars, we dont care of overwrites */
3452	static u32 challenge_timestamp;
3453	static unsigned int challenge_count;
3454	struct tcp_sock *tp = tcp_sk(sk);
3455	struct net *net = sock_net(sk);
3456	u32 count, now;
3457
3458	/* First check our per-socket dupack rate limit. */
3459	if (__tcp_oow_rate_limited(net,
3460				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3461				   &tp->last_oow_ack_time))
3462		return;
3463
3464	/* Then check host-wide RFC 5961 rate limit. */
3465	now = jiffies / HZ;
3466	if (now != challenge_timestamp) {
3467		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3468		u32 half = (ack_limit + 1) >> 1;
3469
3470		challenge_timestamp = now;
3471		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3472	}
3473	count = READ_ONCE(challenge_count);
3474	if (count > 0) {
3475		WRITE_ONCE(challenge_count, count - 1);
3476		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3477		tcp_send_ack(sk);
3478	}
3479}
3480
3481static void tcp_store_ts_recent(struct tcp_sock *tp)
 
 
 
3482{
3483	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3485}
3486
3487static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488{
3489	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491		 * extra check below makes sure this can only happen
3492		 * for pure ACK frames.  -DaveM
3493		 *
3494		 * Not only, also it occurs for expired timestamps.
3495		 */
3496
3497		if (tcp_paws_check(&tp->rx_opt, 0))
3498			tcp_store_ts_recent(tp);
3499	}
3500}
3501
3502/* This routine deals with acks during a TLP episode.
3503 * We mark the end of a TLP episode on receiving TLP dupack or when
3504 * ack is after tlp_high_seq.
3505 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3506 */
3507static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508{
3509	struct tcp_sock *tp = tcp_sk(sk);
3510
3511	if (before(ack, tp->tlp_high_seq))
3512		return;
3513
3514	if (flag & FLAG_DSACKING_ACK) {
3515		/* This DSACK means original and TLP probe arrived; no loss */
3516		tp->tlp_high_seq = 0;
3517	} else if (after(ack, tp->tlp_high_seq)) {
3518		/* ACK advances: there was a loss, so reduce cwnd. Reset
3519		 * tlp_high_seq in tcp_init_cwnd_reduction()
3520		 */
3521		tcp_init_cwnd_reduction(sk);
3522		tcp_set_ca_state(sk, TCP_CA_CWR);
3523		tcp_end_cwnd_reduction(sk);
3524		tcp_try_keep_open(sk);
3525		NET_INC_STATS(sock_net(sk),
3526				LINUX_MIB_TCPLOSSPROBERECOVERY);
3527	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529		/* Pure dupack: original and TLP probe arrived; no loss */
3530		tp->tlp_high_seq = 0;
3531	}
3532}
3533
3534static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535{
3536	const struct inet_connection_sock *icsk = inet_csk(sk);
3537
3538	if (icsk->icsk_ca_ops->in_ack_event)
3539		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540}
 
3541
3542/* Congestion control has updated the cwnd already. So if we're in
3543 * loss recovery then now we do any new sends (for FRTO) or
3544 * retransmits (for CA_Loss or CA_recovery) that make sense.
3545 */
3546static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547{
3548	struct tcp_sock *tp = tcp_sk(sk);
3549
3550	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3551		return;
 
 
 
 
 
 
 
 
 
 
3552
3553	if (unlikely(rexmit == 2)) {
3554		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555					  TCP_NAGLE_OFF);
3556		if (after(tp->snd_nxt, tp->high_seq))
3557			return;
3558		tp->frto = 0;
 
 
 
 
 
 
3559	}
3560	tcp_xmit_retransmit_queue(sk);
3561}
3562
3563/* Returns the number of packets newly acked or sacked by the current ACK */
3564static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3565{
3566	const struct net *net = sock_net(sk);
3567	struct tcp_sock *tp = tcp_sk(sk);
3568	u32 delivered;
3569
3570	delivered = tp->delivered - prior_delivered;
3571	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3572	if (flag & FLAG_ECE) {
3573		tp->delivered_ce += delivered;
3574		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3575	}
3576	return delivered;
3577}
3578
3579/* This routine deals with incoming acks, but not outgoing ones. */
3580static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3581{
3582	struct inet_connection_sock *icsk = inet_csk(sk);
3583	struct tcp_sock *tp = tcp_sk(sk);
3584	struct tcp_sacktag_state sack_state;
3585	struct rate_sample rs = { .prior_delivered = 0 };
3586	u32 prior_snd_una = tp->snd_una;
3587	bool is_sack_reneg = tp->is_sack_reneg;
3588	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3589	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3590	int num_dupack = 0;
3591	int prior_packets = tp->packets_out;
3592	u32 delivered = tp->delivered;
3593	u32 lost = tp->lost;
3594	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3595	u32 prior_fack;
3596
3597	sack_state.first_sackt = 0;
3598	sack_state.rate = &rs;
3599
3600	/* We very likely will need to access rtx queue. */
3601	prefetch(sk->tcp_rtx_queue.rb_node);
3602
3603	/* If the ack is older than previous acks
3604	 * then we can probably ignore it.
3605	 */
3606	if (before(ack, prior_snd_una)) {
3607		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3608		if (before(ack, prior_snd_una - tp->max_window)) {
3609			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3610				tcp_send_challenge_ack(sk, skb);
3611			return -1;
3612		}
3613		goto old_ack;
3614	}
3615
3616	/* If the ack includes data we haven't sent yet, discard
3617	 * this segment (RFC793 Section 3.9).
3618	 */
3619	if (after(ack, tp->snd_nxt))
3620		return -1;
 
 
 
3621
3622	if (after(ack, prior_snd_una)) {
3623		flag |= FLAG_SND_UNA_ADVANCED;
3624		icsk->icsk_retransmits = 0;
3625
3626#if IS_ENABLED(CONFIG_TLS_DEVICE)
3627		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3628			if (icsk->icsk_clean_acked)
3629				icsk->icsk_clean_acked(sk, ack);
3630#endif
 
 
3631	}
3632
3633	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3634	rs.prior_in_flight = tcp_packets_in_flight(tp);
3635
3636	/* ts_recent update must be made after we are sure that the packet
3637	 * is in window.
3638	 */
3639	if (flag & FLAG_UPDATE_TS_RECENT)
3640		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3641
3642	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3643	    FLAG_SND_UNA_ADVANCED) {
3644		/* Window is constant, pure forward advance.
3645		 * No more checks are required.
3646		 * Note, we use the fact that SND.UNA>=SND.WL2.
3647		 */
3648		tcp_update_wl(tp, ack_seq);
3649		tcp_snd_una_update(tp, ack);
3650		flag |= FLAG_WIN_UPDATE;
3651
3652		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3653
3654		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3655	} else {
3656		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3657
3658		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3659			flag |= FLAG_DATA;
3660		else
3661			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3662
3663		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3664
3665		if (TCP_SKB_CB(skb)->sacked)
3666			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3667							&sack_state);
3668
3669		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3670			flag |= FLAG_ECE;
3671			ack_ev_flags |= CA_ACK_ECE;
3672		}
3673
3674		if (flag & FLAG_WIN_UPDATE)
3675			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3676
3677		tcp_in_ack_event(sk, ack_ev_flags);
3678	}
3679
3680	/* We passed data and got it acked, remove any soft error
3681	 * log. Something worked...
3682	 */
3683	sk->sk_err_soft = 0;
3684	icsk->icsk_probes_out = 0;
3685	tp->rcv_tstamp = tcp_jiffies32;
 
3686	if (!prior_packets)
3687		goto no_queue;
3688
3689	/* See if we can take anything off of the retransmit queue. */
3690	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3691
3692	tcp_rack_update_reo_wnd(sk, &rs);
3693
3694	if (tp->tlp_high_seq)
3695		tcp_process_tlp_ack(sk, ack, flag);
3696	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3697	if (flag & FLAG_SET_XMIT_TIMER)
3698		tcp_set_xmit_timer(sk);
3699
3700	if (tcp_ack_is_dubious(sk, flag)) {
3701		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3702			num_dupack = 1;
3703			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3704			if (!(flag & FLAG_DATA))
3705				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3706		}
3707		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3708				      &rexmit);
 
 
3709	}
3710
3711	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712		sk_dst_confirm(sk);
3713
3714	delivered = tcp_newly_delivered(sk, delivered, flag);
3715	lost = tp->lost - lost;			/* freshly marked lost */
3716	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3717	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3718	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3719	tcp_xmit_recovery(sk, rexmit);
3720	return 1;
3721
3722no_queue:
3723	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3724	if (flag & FLAG_DSACKING_ACK) {
3725		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3726				      &rexmit);
3727		tcp_newly_delivered(sk, delivered, flag);
3728	}
3729	/* If this ack opens up a zero window, clear backoff.  It was
3730	 * being used to time the probes, and is probably far higher than
3731	 * it needs to be for normal retransmission.
3732	 */
3733	tcp_ack_probe(sk);
3734
3735	if (tp->tlp_high_seq)
3736		tcp_process_tlp_ack(sk, ack, flag);
3737	return 1;
3738
 
 
 
 
3739old_ack:
3740	/* If data was SACKed, tag it and see if we should send more data.
3741	 * If data was DSACKed, see if we can undo a cwnd reduction.
3742	 */
3743	if (TCP_SKB_CB(skb)->sacked) {
3744		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3745						&sack_state);
3746		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3747				      &rexmit);
3748		tcp_newly_delivered(sk, delivered, flag);
3749		tcp_xmit_recovery(sk, rexmit);
3750	}
3751
 
3752	return 0;
3753}
3754
3755static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3756				      bool syn, struct tcp_fastopen_cookie *foc,
3757				      bool exp_opt)
3758{
3759	/* Valid only in SYN or SYN-ACK with an even length.  */
3760	if (!foc || !syn || len < 0 || (len & 1))
3761		return;
3762
3763	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3764	    len <= TCP_FASTOPEN_COOKIE_MAX)
3765		memcpy(foc->val, cookie, len);
3766	else if (len != 0)
3767		len = -1;
3768	foc->len = len;
3769	foc->exp = exp_opt;
3770}
3771
3772static void smc_parse_options(const struct tcphdr *th,
3773			      struct tcp_options_received *opt_rx,
3774			      const unsigned char *ptr,
3775			      int opsize)
3776{
3777#if IS_ENABLED(CONFIG_SMC)
3778	if (static_branch_unlikely(&tcp_have_smc)) {
3779		if (th->syn && !(opsize & 1) &&
3780		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3781		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3782			opt_rx->smc_ok = 1;
3783	}
3784#endif
3785}
3786
3787/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3788 * value on success.
3789 */
3790static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3791{
3792	const unsigned char *ptr = (const unsigned char *)(th + 1);
3793	int length = (th->doff * 4) - sizeof(struct tcphdr);
3794	u16 mss = 0;
3795
3796	while (length > 0) {
3797		int opcode = *ptr++;
3798		int opsize;
3799
3800		switch (opcode) {
3801		case TCPOPT_EOL:
3802			return mss;
3803		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3804			length--;
3805			continue;
3806		default:
3807			if (length < 2)
3808				return mss;
3809			opsize = *ptr++;
3810			if (opsize < 2) /* "silly options" */
3811				return mss;
3812			if (opsize > length)
3813				return mss;	/* fail on partial options */
3814			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3815				u16 in_mss = get_unaligned_be16(ptr);
3816
3817				if (in_mss) {
3818					if (user_mss && user_mss < in_mss)
3819						in_mss = user_mss;
3820					mss = in_mss;
3821				}
3822			}
3823			ptr += opsize - 2;
3824			length -= opsize;
3825		}
3826	}
3827	return mss;
3828}
3829
3830/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3831 * But, this can also be called on packets in the established flow when
3832 * the fast version below fails.
3833 */
3834void tcp_parse_options(const struct net *net,
3835		       const struct sk_buff *skb,
3836		       struct tcp_options_received *opt_rx, int estab,
3837		       struct tcp_fastopen_cookie *foc)
3838{
3839	const unsigned char *ptr;
3840	const struct tcphdr *th = tcp_hdr(skb);
3841	int length = (th->doff * 4) - sizeof(struct tcphdr);
3842
3843	ptr = (const unsigned char *)(th + 1);
3844	opt_rx->saw_tstamp = 0;
3845
3846	while (length > 0) {
3847		int opcode = *ptr++;
3848		int opsize;
3849
3850		switch (opcode) {
3851		case TCPOPT_EOL:
3852			return;
3853		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3854			length--;
3855			continue;
3856		default:
3857			if (length < 2)
3858				return;
3859			opsize = *ptr++;
3860			if (opsize < 2) /* "silly options" */
3861				return;
3862			if (opsize > length)
3863				return;	/* don't parse partial options */
3864			switch (opcode) {
3865			case TCPOPT_MSS:
3866				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3867					u16 in_mss = get_unaligned_be16(ptr);
3868					if (in_mss) {
3869						if (opt_rx->user_mss &&
3870						    opt_rx->user_mss < in_mss)
3871							in_mss = opt_rx->user_mss;
3872						opt_rx->mss_clamp = in_mss;
3873					}
3874				}
3875				break;
3876			case TCPOPT_WINDOW:
3877				if (opsize == TCPOLEN_WINDOW && th->syn &&
3878				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3879					__u8 snd_wscale = *(__u8 *)ptr;
3880					opt_rx->wscale_ok = 1;
3881					if (snd_wscale > TCP_MAX_WSCALE) {
3882						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3883								     __func__,
3884								     snd_wscale,
3885								     TCP_MAX_WSCALE);
3886						snd_wscale = TCP_MAX_WSCALE;
3887					}
3888					opt_rx->snd_wscale = snd_wscale;
3889				}
3890				break;
3891			case TCPOPT_TIMESTAMP:
3892				if ((opsize == TCPOLEN_TIMESTAMP) &&
3893				    ((estab && opt_rx->tstamp_ok) ||
3894				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3895					opt_rx->saw_tstamp = 1;
3896					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3897					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3898				}
3899				break;
3900			case TCPOPT_SACK_PERM:
3901				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3902				    !estab && net->ipv4.sysctl_tcp_sack) {
3903					opt_rx->sack_ok = TCP_SACK_SEEN;
3904					tcp_sack_reset(opt_rx);
3905				}
3906				break;
3907
3908			case TCPOPT_SACK:
3909				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3910				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3911				   opt_rx->sack_ok) {
3912					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3913				}
3914				break;
3915#ifdef CONFIG_TCP_MD5SIG
3916			case TCPOPT_MD5SIG:
3917				/*
3918				 * The MD5 Hash has already been
3919				 * checked (see tcp_v{4,6}_do_rcv()).
3920				 */
3921				break;
3922#endif
3923			case TCPOPT_FASTOPEN:
3924				tcp_parse_fastopen_option(
3925					opsize - TCPOLEN_FASTOPEN_BASE,
3926					ptr, th->syn, foc, false);
3927				break;
3928
3929			case TCPOPT_EXP:
3930				/* Fast Open option shares code 254 using a
3931				 * 16 bits magic number.
3932				 */
3933				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3934				    get_unaligned_be16(ptr) ==
3935				    TCPOPT_FASTOPEN_MAGIC)
3936					tcp_parse_fastopen_option(opsize -
3937						TCPOLEN_EXP_FASTOPEN_BASE,
3938						ptr + 2, th->syn, foc, true);
3939				else
3940					smc_parse_options(th, opt_rx, ptr,
3941							  opsize);
 
 
 
 
 
 
 
 
 
 
 
3942				break;
3943
3944			}
 
3945			ptr += opsize-2;
3946			length -= opsize;
3947		}
3948	}
3949}
3950EXPORT_SYMBOL(tcp_parse_options);
3951
3952static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3953{
3954	const __be32 *ptr = (const __be32 *)(th + 1);
3955
3956	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3957			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3958		tp->rx_opt.saw_tstamp = 1;
3959		++ptr;
3960		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3961		++ptr;
3962		if (*ptr)
3963			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3964		else
3965			tp->rx_opt.rcv_tsecr = 0;
3966		return true;
3967	}
3968	return false;
3969}
3970
3971/* Fast parse options. This hopes to only see timestamps.
3972 * If it is wrong it falls back on tcp_parse_options().
3973 */
3974static bool tcp_fast_parse_options(const struct net *net,
3975				   const struct sk_buff *skb,
3976				   const struct tcphdr *th, struct tcp_sock *tp)
3977{
3978	/* In the spirit of fast parsing, compare doff directly to constant
3979	 * values.  Because equality is used, short doff can be ignored here.
3980	 */
3981	if (th->doff == (sizeof(*th) / 4)) {
3982		tp->rx_opt.saw_tstamp = 0;
3983		return false;
3984	} else if (tp->rx_opt.tstamp_ok &&
3985		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3986		if (tcp_parse_aligned_timestamp(tp, th))
3987			return true;
3988	}
3989
3990	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3991	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3992		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3993
3994	return true;
3995}
3996
3997#ifdef CONFIG_TCP_MD5SIG
3998/*
3999 * Parse MD5 Signature option
4000 */
4001const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4002{
4003	int length = (th->doff << 2) - sizeof(*th);
4004	const u8 *ptr = (const u8 *)(th + 1);
4005
4006	/* If not enough data remaining, we can short cut */
4007	while (length >= TCPOLEN_MD5SIG) {
 
 
 
4008		int opcode = *ptr++;
4009		int opsize;
4010
4011		switch (opcode) {
4012		case TCPOPT_EOL:
4013			return NULL;
4014		case TCPOPT_NOP:
4015			length--;
4016			continue;
4017		default:
4018			opsize = *ptr++;
4019			if (opsize < 2 || opsize > length)
4020				return NULL;
4021			if (opcode == TCPOPT_MD5SIG)
4022				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4023		}
4024		ptr += opsize - 2;
4025		length -= opsize;
4026	}
4027	return NULL;
4028}
4029EXPORT_SYMBOL(tcp_parse_md5sig_option);
4030#endif
4031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4032/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4033 *
4034 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4035 * it can pass through stack. So, the following predicate verifies that
4036 * this segment is not used for anything but congestion avoidance or
4037 * fast retransmit. Moreover, we even are able to eliminate most of such
4038 * second order effects, if we apply some small "replay" window (~RTO)
4039 * to timestamp space.
4040 *
4041 * All these measures still do not guarantee that we reject wrapped ACKs
4042 * on networks with high bandwidth, when sequence space is recycled fastly,
4043 * but it guarantees that such events will be very rare and do not affect
4044 * connection seriously. This doesn't look nice, but alas, PAWS is really
4045 * buggy extension.
4046 *
4047 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4048 * states that events when retransmit arrives after original data are rare.
4049 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4050 * the biggest problem on large power networks even with minor reordering.
4051 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4052 * up to bandwidth of 18Gigabit/sec. 8) ]
4053 */
4054
4055static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4056{
4057	const struct tcp_sock *tp = tcp_sk(sk);
4058	const struct tcphdr *th = tcp_hdr(skb);
4059	u32 seq = TCP_SKB_CB(skb)->seq;
4060	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4061
4062	return (/* 1. Pure ACK with correct sequence number. */
4063		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4064
4065		/* 2. ... and duplicate ACK. */
4066		ack == tp->snd_una &&
4067
4068		/* 3. ... and does not update window. */
4069		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4070
4071		/* 4. ... and sits in replay window. */
4072		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4073}
4074
4075static inline bool tcp_paws_discard(const struct sock *sk,
4076				   const struct sk_buff *skb)
4077{
4078	const struct tcp_sock *tp = tcp_sk(sk);
4079
4080	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4081	       !tcp_disordered_ack(sk, skb);
4082}
4083
4084/* Check segment sequence number for validity.
4085 *
4086 * Segment controls are considered valid, if the segment
4087 * fits to the window after truncation to the window. Acceptability
4088 * of data (and SYN, FIN, of course) is checked separately.
4089 * See tcp_data_queue(), for example.
4090 *
4091 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4092 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4093 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4094 * (borrowed from freebsd)
4095 */
4096
4097static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4098{
4099	return	!before(end_seq, tp->rcv_wup) &&
4100		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4101}
4102
4103/* When we get a reset we do this. */
4104void tcp_reset(struct sock *sk)
4105{
4106	trace_tcp_receive_reset(sk);
4107
4108	/* We want the right error as BSD sees it (and indeed as we do). */
4109	switch (sk->sk_state) {
4110	case TCP_SYN_SENT:
4111		sk->sk_err = ECONNREFUSED;
4112		break;
4113	case TCP_CLOSE_WAIT:
4114		sk->sk_err = EPIPE;
4115		break;
4116	case TCP_CLOSE:
4117		return;
4118	default:
4119		sk->sk_err = ECONNRESET;
4120	}
4121	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4122	smp_wmb();
4123
4124	tcp_write_queue_purge(sk);
4125	tcp_done(sk);
4126
4127	if (!sock_flag(sk, SOCK_DEAD))
4128		sk->sk_error_report(sk);
 
 
4129}
4130
4131/*
4132 * 	Process the FIN bit. This now behaves as it is supposed to work
4133 *	and the FIN takes effect when it is validly part of sequence
4134 *	space. Not before when we get holes.
4135 *
4136 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4137 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4138 *	TIME-WAIT)
4139 *
4140 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4141 *	close and we go into CLOSING (and later onto TIME-WAIT)
4142 *
4143 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4144 */
4145void tcp_fin(struct sock *sk)
4146{
4147	struct tcp_sock *tp = tcp_sk(sk);
4148
4149	inet_csk_schedule_ack(sk);
4150
4151	sk->sk_shutdown |= RCV_SHUTDOWN;
4152	sock_set_flag(sk, SOCK_DONE);
4153
4154	switch (sk->sk_state) {
4155	case TCP_SYN_RECV:
4156	case TCP_ESTABLISHED:
4157		/* Move to CLOSE_WAIT */
4158		tcp_set_state(sk, TCP_CLOSE_WAIT);
4159		inet_csk_enter_pingpong_mode(sk);
4160		break;
4161
4162	case TCP_CLOSE_WAIT:
4163	case TCP_CLOSING:
4164		/* Received a retransmission of the FIN, do
4165		 * nothing.
4166		 */
4167		break;
4168	case TCP_LAST_ACK:
4169		/* RFC793: Remain in the LAST-ACK state. */
4170		break;
4171
4172	case TCP_FIN_WAIT1:
4173		/* This case occurs when a simultaneous close
4174		 * happens, we must ack the received FIN and
4175		 * enter the CLOSING state.
4176		 */
4177		tcp_send_ack(sk);
4178		tcp_set_state(sk, TCP_CLOSING);
4179		break;
4180	case TCP_FIN_WAIT2:
4181		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4182		tcp_send_ack(sk);
4183		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4184		break;
4185	default:
4186		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4187		 * cases we should never reach this piece of code.
4188		 */
4189		pr_err("%s: Impossible, sk->sk_state=%d\n",
4190		       __func__, sk->sk_state);
4191		break;
4192	}
4193
4194	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4195	 * Probably, we should reset in this case. For now drop them.
4196	 */
4197	skb_rbtree_purge(&tp->out_of_order_queue);
4198	if (tcp_is_sack(tp))
4199		tcp_sack_reset(&tp->rx_opt);
4200	sk_mem_reclaim(sk);
4201
4202	if (!sock_flag(sk, SOCK_DEAD)) {
4203		sk->sk_state_change(sk);
4204
4205		/* Do not send POLL_HUP for half duplex close. */
4206		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4207		    sk->sk_state == TCP_CLOSE)
4208			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4209		else
4210			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4211	}
4212}
4213
4214static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4215				  u32 end_seq)
4216{
4217	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4218		if (before(seq, sp->start_seq))
4219			sp->start_seq = seq;
4220		if (after(end_seq, sp->end_seq))
4221			sp->end_seq = end_seq;
4222		return true;
4223	}
4224	return false;
4225}
4226
4227static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4228{
4229	struct tcp_sock *tp = tcp_sk(sk);
4230
4231	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4232		int mib_idx;
4233
4234		if (before(seq, tp->rcv_nxt))
4235			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4236		else
4237			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4238
4239		NET_INC_STATS(sock_net(sk), mib_idx);
4240
4241		tp->rx_opt.dsack = 1;
4242		tp->duplicate_sack[0].start_seq = seq;
4243		tp->duplicate_sack[0].end_seq = end_seq;
4244	}
4245}
4246
4247static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4248{
4249	struct tcp_sock *tp = tcp_sk(sk);
4250
4251	if (!tp->rx_opt.dsack)
4252		tcp_dsack_set(sk, seq, end_seq);
4253	else
4254		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4255}
4256
4257static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4258{
4259	/* When the ACK path fails or drops most ACKs, the sender would
4260	 * timeout and spuriously retransmit the same segment repeatedly.
4261	 * The receiver remembers and reflects via DSACKs. Leverage the
4262	 * DSACK state and change the txhash to re-route speculatively.
4263	 */
4264	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4265		sk_rethink_txhash(sk);
4266}
4267
4268static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269{
4270	struct tcp_sock *tp = tcp_sk(sk);
4271
4272	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4276
4277		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4278			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279
4280			tcp_rcv_spurious_retrans(sk, skb);
4281			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4282				end_seq = tp->rcv_nxt;
4283			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4284		}
4285	}
4286
4287	tcp_send_ack(sk);
4288}
4289
4290/* These routines update the SACK block as out-of-order packets arrive or
4291 * in-order packets close up the sequence space.
4292 */
4293static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4294{
4295	int this_sack;
4296	struct tcp_sack_block *sp = &tp->selective_acks[0];
4297	struct tcp_sack_block *swalk = sp + 1;
4298
4299	/* See if the recent change to the first SACK eats into
4300	 * or hits the sequence space of other SACK blocks, if so coalesce.
4301	 */
4302	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4303		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4304			int i;
4305
4306			/* Zap SWALK, by moving every further SACK up by one slot.
4307			 * Decrease num_sacks.
4308			 */
4309			tp->rx_opt.num_sacks--;
4310			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4311				sp[i] = sp[i + 1];
4312			continue;
4313		}
4314		this_sack++, swalk++;
4315	}
4316}
4317
4318static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320	struct tcp_sock *tp = tcp_sk(sk);
4321	struct tcp_sack_block *sp = &tp->selective_acks[0];
4322	int cur_sacks = tp->rx_opt.num_sacks;
4323	int this_sack;
4324
4325	if (!cur_sacks)
4326		goto new_sack;
4327
4328	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4329		if (tcp_sack_extend(sp, seq, end_seq)) {
4330			/* Rotate this_sack to the first one. */
4331			for (; this_sack > 0; this_sack--, sp--)
4332				swap(*sp, *(sp - 1));
4333			if (cur_sacks > 1)
4334				tcp_sack_maybe_coalesce(tp);
4335			return;
4336		}
4337	}
4338
4339	/* Could not find an adjacent existing SACK, build a new one,
4340	 * put it at the front, and shift everyone else down.  We
4341	 * always know there is at least one SACK present already here.
4342	 *
4343	 * If the sack array is full, forget about the last one.
4344	 */
4345	if (this_sack >= TCP_NUM_SACKS) {
4346		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4347			tcp_send_ack(sk);
4348		this_sack--;
4349		tp->rx_opt.num_sacks--;
4350		sp--;
4351	}
4352	for (; this_sack > 0; this_sack--, sp--)
4353		*sp = *(sp - 1);
4354
4355new_sack:
4356	/* Build the new head SACK, and we're done. */
4357	sp->start_seq = seq;
4358	sp->end_seq = end_seq;
4359	tp->rx_opt.num_sacks++;
4360}
4361
4362/* RCV.NXT advances, some SACKs should be eaten. */
4363
4364static void tcp_sack_remove(struct tcp_sock *tp)
4365{
4366	struct tcp_sack_block *sp = &tp->selective_acks[0];
4367	int num_sacks = tp->rx_opt.num_sacks;
4368	int this_sack;
4369
4370	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4371	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4372		tp->rx_opt.num_sacks = 0;
4373		return;
4374	}
4375
4376	for (this_sack = 0; this_sack < num_sacks;) {
4377		/* Check if the start of the sack is covered by RCV.NXT. */
4378		if (!before(tp->rcv_nxt, sp->start_seq)) {
4379			int i;
4380
4381			/* RCV.NXT must cover all the block! */
4382			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4383
4384			/* Zap this SACK, by moving forward any other SACKS. */
4385			for (i = this_sack+1; i < num_sacks; i++)
4386				tp->selective_acks[i-1] = tp->selective_acks[i];
4387			num_sacks--;
4388			continue;
4389		}
4390		this_sack++;
4391		sp++;
4392	}
4393	tp->rx_opt.num_sacks = num_sacks;
4394}
4395
4396/**
4397 * tcp_try_coalesce - try to merge skb to prior one
4398 * @sk: socket
4399 * @dest: destination queue
4400 * @to: prior buffer
4401 * @from: buffer to add in queue
4402 * @fragstolen: pointer to boolean
4403 *
4404 * Before queueing skb @from after @to, try to merge them
4405 * to reduce overall memory use and queue lengths, if cost is small.
4406 * Packets in ofo or receive queues can stay a long time.
4407 * Better try to coalesce them right now to avoid future collapses.
4408 * Returns true if caller should free @from instead of queueing it
4409 */
4410static bool tcp_try_coalesce(struct sock *sk,
4411			     struct sk_buff *to,
4412			     struct sk_buff *from,
4413			     bool *fragstolen)
4414{
4415	int delta;
4416
4417	*fragstolen = false;
4418
4419	/* Its possible this segment overlaps with prior segment in queue */
4420	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4421		return false;
4422
4423#ifdef CONFIG_TLS_DEVICE
4424	if (from->decrypted != to->decrypted)
4425		return false;
4426#endif
4427
4428	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4429		return false;
4430
4431	atomic_add(delta, &sk->sk_rmem_alloc);
4432	sk_mem_charge(sk, delta);
4433	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4434	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4435	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4436	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4437
4438	if (TCP_SKB_CB(from)->has_rxtstamp) {
4439		TCP_SKB_CB(to)->has_rxtstamp = true;
4440		to->tstamp = from->tstamp;
4441		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4442	}
4443
4444	return true;
4445}
4446
4447static bool tcp_ooo_try_coalesce(struct sock *sk,
4448			     struct sk_buff *to,
4449			     struct sk_buff *from,
4450			     bool *fragstolen)
4451{
4452	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4453
4454	/* In case tcp_drop() is called later, update to->gso_segs */
4455	if (res) {
4456		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4457			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4458
4459		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4460	}
4461	return res;
4462}
4463
4464static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4465{
4466	sk_drops_add(sk, skb);
4467	__kfree_skb(skb);
4468}
4469
4470/* This one checks to see if we can put data from the
4471 * out_of_order queue into the receive_queue.
4472 */
4473static void tcp_ofo_queue(struct sock *sk)
4474{
4475	struct tcp_sock *tp = tcp_sk(sk);
4476	__u32 dsack_high = tp->rcv_nxt;
4477	bool fin, fragstolen, eaten;
4478	struct sk_buff *skb, *tail;
4479	struct rb_node *p;
4480
4481	p = rb_first(&tp->out_of_order_queue);
4482	while (p) {
4483		skb = rb_to_skb(p);
4484		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4485			break;
4486
4487		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4488			__u32 dsack = dsack_high;
4489			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4490				dsack_high = TCP_SKB_CB(skb)->end_seq;
4491			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4492		}
4493		p = rb_next(p);
4494		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4495
4496		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4497			tcp_drop(sk, skb);
 
 
4498			continue;
4499		}
 
 
 
4500
4501		tail = skb_peek_tail(&sk->sk_receive_queue);
4502		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4503		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4504		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4505		if (!eaten)
4506			__skb_queue_tail(&sk->sk_receive_queue, skb);
4507		else
4508			kfree_skb_partial(skb, fragstolen);
4509
4510		if (unlikely(fin)) {
4511			tcp_fin(sk);
4512			/* tcp_fin() purges tp->out_of_order_queue,
4513			 * so we must end this loop right now.
4514			 */
4515			break;
4516		}
4517	}
4518}
4519
4520static bool tcp_prune_ofo_queue(struct sock *sk);
4521static int tcp_prune_queue(struct sock *sk);
4522
4523static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4524				 unsigned int size)
4525{
4526	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4527	    !sk_rmem_schedule(sk, skb, size)) {
4528
4529		if (tcp_prune_queue(sk) < 0)
4530			return -1;
4531
4532		while (!sk_rmem_schedule(sk, skb, size)) {
4533			if (!tcp_prune_ofo_queue(sk))
4534				return -1;
 
 
 
4535		}
4536	}
4537	return 0;
4538}
4539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4540static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4541{
4542	struct tcp_sock *tp = tcp_sk(sk);
4543	struct rb_node **p, *parent;
4544	struct sk_buff *skb1;
4545	u32 seq, end_seq;
4546	bool fragstolen;
4547
4548	tcp_ecn_check_ce(sk, skb);
4549
4550	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4551		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4552		tcp_drop(sk, skb);
4553		return;
4554	}
4555
4556	/* Disable header prediction. */
4557	tp->pred_flags = 0;
4558	inet_csk_schedule_ack(sk);
4559
4560	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4561	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4562	seq = TCP_SKB_CB(skb)->seq;
4563	end_seq = TCP_SKB_CB(skb)->end_seq;
4564
4565	p = &tp->out_of_order_queue.rb_node;
4566	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4567		/* Initial out of order segment, build 1 SACK. */
4568		if (tcp_is_sack(tp)) {
4569			tp->rx_opt.num_sacks = 1;
4570			tp->selective_acks[0].start_seq = seq;
4571			tp->selective_acks[0].end_seq = end_seq;
 
4572		}
4573		rb_link_node(&skb->rbnode, NULL, p);
4574		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4575		tp->ooo_last_skb = skb;
4576		goto end;
4577	}
4578
4579	/* In the typical case, we are adding an skb to the end of the list.
4580	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4581	 */
4582	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4583				 skb, &fragstolen)) {
4584coalesce_done:
4585		tcp_grow_window(sk, skb);
4586		kfree_skb_partial(skb, fragstolen);
4587		skb = NULL;
4588		goto add_sack;
4589	}
4590	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4591	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4592		parent = &tp->ooo_last_skb->rbnode;
4593		p = &parent->rb_right;
4594		goto insert;
4595	}
4596
4597	/* Find place to insert this segment. Handle overlaps on the way. */
4598	parent = NULL;
4599	while (*p) {
4600		parent = *p;
4601		skb1 = rb_to_skb(parent);
4602		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4603			p = &parent->rb_left;
4604			continue;
4605		}
4606		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4607			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4608				/* All the bits are present. Drop. */
4609				NET_INC_STATS(sock_net(sk),
4610					      LINUX_MIB_TCPOFOMERGE);
4611				tcp_drop(sk, skb);
4612				skb = NULL;
4613				tcp_dsack_set(sk, seq, end_seq);
4614				goto add_sack;
4615			}
4616			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4617				/* Partial overlap. */
4618				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4619			} else {
4620				/* skb's seq == skb1's seq and skb covers skb1.
4621				 * Replace skb1 with skb.
4622				 */
4623				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4624						&tp->out_of_order_queue);
4625				tcp_dsack_extend(sk,
4626						 TCP_SKB_CB(skb1)->seq,
4627						 TCP_SKB_CB(skb1)->end_seq);
4628				NET_INC_STATS(sock_net(sk),
4629					      LINUX_MIB_TCPOFOMERGE);
4630				tcp_drop(sk, skb1);
4631				goto merge_right;
4632			}
4633		} else if (tcp_ooo_try_coalesce(sk, skb1,
4634						skb, &fragstolen)) {
4635			goto coalesce_done;
4636		}
4637		p = &parent->rb_right;
4638	}
4639insert:
4640	/* Insert segment into RB tree. */
4641	rb_link_node(&skb->rbnode, parent, p);
4642	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4643
4644merge_right:
4645	/* Remove other segments covered by skb. */
4646	while ((skb1 = skb_rb_next(skb)) != NULL) {
 
 
 
 
 
 
 
 
 
 
 
 
4647		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4648			break;
4649		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4650			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4651					 end_seq);
4652			break;
4653		}
4654		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4655		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4656				 TCP_SKB_CB(skb1)->end_seq);
4657		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4658		tcp_drop(sk, skb1);
4659	}
4660	/* If there is no skb after us, we are the last_skb ! */
4661	if (!skb1)
4662		tp->ooo_last_skb = skb;
4663
4664add_sack:
4665	if (tcp_is_sack(tp))
4666		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4667end:
4668	if (skb) {
4669		tcp_grow_window(sk, skb);
4670		skb_condense(skb);
4671		skb_set_owner_r(skb, sk);
4672	}
4673}
4674
4675static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4676				      bool *fragstolen)
4677{
4678	int eaten;
4679	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4680
 
4681	eaten = (tail &&
4682		 tcp_try_coalesce(sk, tail,
4683				  skb, fragstolen)) ? 1 : 0;
4684	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4685	if (!eaten) {
4686		__skb_queue_tail(&sk->sk_receive_queue, skb);
4687		skb_set_owner_r(skb, sk);
4688	}
4689	return eaten;
4690}
4691
4692int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4693{
4694	struct sk_buff *skb;
4695	int err = -ENOMEM;
4696	int data_len = 0;
4697	bool fragstolen;
4698
4699	if (size == 0)
4700		return 0;
4701
4702	if (size > PAGE_SIZE) {
4703		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4704
4705		data_len = npages << PAGE_SHIFT;
4706		size = data_len + (size & ~PAGE_MASK);
4707	}
4708	skb = alloc_skb_with_frags(size - data_len, data_len,
4709				   PAGE_ALLOC_COSTLY_ORDER,
4710				   &err, sk->sk_allocation);
4711	if (!skb)
4712		goto err;
4713
4714	skb_put(skb, size - data_len);
4715	skb->data_len = data_len;
4716	skb->len = size;
4717
4718	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4719		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4720		goto err_free;
4721	}
4722
4723	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4724	if (err)
4725		goto err_free;
4726
4727	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4728	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4729	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4730
4731	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4732		WARN_ON_ONCE(fragstolen); /* should not happen */
4733		__kfree_skb(skb);
4734	}
4735	return size;
4736
4737err_free:
4738	kfree_skb(skb);
4739err:
4740	return err;
4741
4742}
4743
4744void tcp_data_ready(struct sock *sk)
4745{
4746	const struct tcp_sock *tp = tcp_sk(sk);
4747	int avail = tp->rcv_nxt - tp->copied_seq;
4748
4749	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4750		return;
4751
4752	sk->sk_data_ready(sk);
4753}
4754
4755static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4756{
 
4757	struct tcp_sock *tp = tcp_sk(sk);
4758	bool fragstolen;
4759	int eaten;
 
 
 
4760
4761	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4762		__kfree_skb(skb);
4763		return;
4764	}
4765	skb_dst_drop(skb);
4766	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4767
4768	tcp_ecn_accept_cwr(sk, skb);
4769
4770	tp->rx_opt.dsack = 0;
4771
4772	/*  Queue data for delivery to the user.
4773	 *  Packets in sequence go to the receive queue.
4774	 *  Out of sequence packets to the out_of_order_queue.
4775	 */
4776	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4777		if (tcp_receive_window(tp) == 0) {
4778			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4779			goto out_of_window;
4780		}
4781
4782		/* Ok. In sequence. In window. */
4783queue_and_out:
4784		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4785			sk_forced_mem_schedule(sk, skb->truesize);
4786		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4787			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4788			goto drop;
 
 
 
 
 
 
 
 
 
 
4789		}
4790
4791		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
 
 
 
 
 
 
 
 
4792		if (skb->len)
4793			tcp_event_data_recv(sk, skb);
4794		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4795			tcp_fin(sk);
4796
4797		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4798			tcp_ofo_queue(sk);
4799
4800			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4801			 * gap in queue is filled.
4802			 */
4803			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4804				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4805		}
4806
4807		if (tp->rx_opt.num_sacks)
4808			tcp_sack_remove(tp);
4809
4810		tcp_fast_path_check(sk);
4811
4812		if (eaten > 0)
4813			kfree_skb_partial(skb, fragstolen);
4814		if (!sock_flag(sk, SOCK_DEAD))
4815			tcp_data_ready(sk);
4816		return;
4817	}
4818
4819	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4820		tcp_rcv_spurious_retrans(sk, skb);
4821		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4822		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4823		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4824
4825out_of_window:
4826		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4827		inet_csk_schedule_ack(sk);
4828drop:
4829		tcp_drop(sk, skb);
4830		return;
4831	}
4832
4833	/* Out of window. F.e. zero window probe. */
4834	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4835		goto out_of_window;
4836
 
 
4837	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4838		/* Partial packet, seq < rcv_next < end_seq */
 
 
 
 
4839		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4840
4841		/* If window is closed, drop tail of packet. But after
4842		 * remembering D-SACK for its head made in previous line.
4843		 */
4844		if (!tcp_receive_window(tp)) {
4845			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4846			goto out_of_window;
4847		}
4848		goto queue_and_out;
4849	}
4850
4851	tcp_data_queue_ofo(sk, skb);
4852}
4853
4854static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4855{
4856	if (list)
4857		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4858
4859	return skb_rb_next(skb);
4860}
4861
4862static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4863					struct sk_buff_head *list,
4864					struct rb_root *root)
4865{
4866	struct sk_buff *next = tcp_skb_next(skb, list);
4867
4868	if (list)
4869		__skb_unlink(skb, list);
4870	else
4871		rb_erase(&skb->rbnode, root);
4872
 
4873	__kfree_skb(skb);
4874	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876	return next;
4877}
4878
4879/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4880void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4881{
4882	struct rb_node **p = &root->rb_node;
4883	struct rb_node *parent = NULL;
4884	struct sk_buff *skb1;
4885
4886	while (*p) {
4887		parent = *p;
4888		skb1 = rb_to_skb(parent);
4889		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4890			p = &parent->rb_left;
4891		else
4892			p = &parent->rb_right;
4893	}
4894	rb_link_node(&skb->rbnode, parent, p);
4895	rb_insert_color(&skb->rbnode, root);
4896}
4897
4898/* Collapse contiguous sequence of skbs head..tail with
4899 * sequence numbers start..end.
4900 *
4901 * If tail is NULL, this means until the end of the queue.
4902 *
4903 * Segments with FIN/SYN are not collapsed (only because this
4904 * simplifies code)
4905 */
4906static void
4907tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4908	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
 
4909{
4910	struct sk_buff *skb = head, *n;
4911	struct sk_buff_head tmp;
4912	bool end_of_skbs;
4913
4914	/* First, check that queue is collapsible and find
4915	 * the point where collapsing can be useful.
4916	 */
4917restart:
4918	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4919		n = tcp_skb_next(skb, list);
4920
 
4921		/* No new bits? It is possible on ofo queue. */
4922		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4923			skb = tcp_collapse_one(sk, skb, list, root);
4924			if (!skb)
4925				break;
4926			goto restart;
4927		}
4928
4929		/* The first skb to collapse is:
4930		 * - not SYN/FIN and
4931		 * - bloated or contains data before "start" or
4932		 *   overlaps to the next one.
4933		 */
4934		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4935		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4936		     before(TCP_SKB_CB(skb)->seq, start))) {
4937			end_of_skbs = false;
4938			break;
4939		}
4940
4941		if (n && n != tail &&
4942		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4943			end_of_skbs = false;
4944			break;
 
 
 
4945		}
4946
4947		/* Decided to skip this, advance start seq. */
4948		start = TCP_SKB_CB(skb)->end_seq;
4949	}
4950	if (end_of_skbs ||
4951	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4952		return;
4953
4954	__skb_queue_head_init(&tmp);
4955
4956	while (before(start, end)) {
4957		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4958		struct sk_buff *nskb;
 
 
4959
4960		nskb = alloc_skb(copy, GFP_ATOMIC);
 
 
 
 
 
4961		if (!nskb)
4962			break;
4963
 
 
 
 
 
 
 
4964		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4965#ifdef CONFIG_TLS_DEVICE
4966		nskb->decrypted = skb->decrypted;
4967#endif
4968		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4969		if (list)
4970			__skb_queue_before(list, skb, nskb);
4971		else
4972			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4973		skb_set_owner_r(nskb, sk);
4974
4975		/* Copy data, releasing collapsed skbs. */
4976		while (copy > 0) {
4977			int offset = start - TCP_SKB_CB(skb)->seq;
4978			int size = TCP_SKB_CB(skb)->end_seq - start;
4979
4980			BUG_ON(offset < 0);
4981			if (size > 0) {
4982				size = min(copy, size);
4983				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4984					BUG();
4985				TCP_SKB_CB(nskb)->end_seq += size;
4986				copy -= size;
4987				start += size;
4988			}
4989			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4990				skb = tcp_collapse_one(sk, skb, list, root);
4991				if (!skb ||
4992				    skb == tail ||
4993				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4994					goto end;
4995#ifdef CONFIG_TLS_DEVICE
4996				if (skb->decrypted != nskb->decrypted)
4997					goto end;
4998#endif
4999			}
5000		}
5001	}
5002end:
5003	skb_queue_walk_safe(&tmp, skb, n)
5004		tcp_rbtree_insert(root, skb);
5005}
5006
5007/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5008 * and tcp_collapse() them until all the queue is collapsed.
5009 */
5010static void tcp_collapse_ofo_queue(struct sock *sk)
5011{
5012	struct tcp_sock *tp = tcp_sk(sk);
5013	u32 range_truesize, sum_tiny = 0;
5014	struct sk_buff *skb, *head;
5015	u32 start, end;
5016
5017	skb = skb_rb_first(&tp->out_of_order_queue);
5018new_range:
5019	if (!skb) {
5020		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5021		return;
5022	}
5023	start = TCP_SKB_CB(skb)->seq;
5024	end = TCP_SKB_CB(skb)->end_seq;
5025	range_truesize = skb->truesize;
5026
5027	for (head = skb;;) {
5028		skb = skb_rb_next(skb);
5029
5030		/* Range is terminated when we see a gap or when
5031		 * we are at the queue end.
5032		 */
 
 
 
5033		if (!skb ||
5034		    after(TCP_SKB_CB(skb)->seq, end) ||
5035		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5036			/* Do not attempt collapsing tiny skbs */
5037			if (range_truesize != head->truesize ||
5038			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5039				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5040					     head, skb, start, end);
5041			} else {
5042				sum_tiny += range_truesize;
5043				if (sum_tiny > sk->sk_rcvbuf >> 3)
5044					return;
5045			}
5046			goto new_range;
5047		}
5048
5049		range_truesize += skb->truesize;
5050		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5051			start = TCP_SKB_CB(skb)->seq;
5052		if (after(TCP_SKB_CB(skb)->end_seq, end))
5053			end = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
 
 
5054	}
5055}
5056
5057/*
5058 * Clean the out-of-order queue to make room.
5059 * We drop high sequences packets to :
5060 * 1) Let a chance for holes to be filled.
5061 * 2) not add too big latencies if thousands of packets sit there.
5062 *    (But if application shrinks SO_RCVBUF, we could still end up
5063 *     freeing whole queue here)
5064 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5065 *
5066 * Return true if queue has shrunk.
5067 */
5068static bool tcp_prune_ofo_queue(struct sock *sk)
5069{
5070	struct tcp_sock *tp = tcp_sk(sk);
5071	struct rb_node *node, *prev;
5072	int goal;
5073
5074	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5075		return false;
5076
5077	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5078	goal = sk->sk_rcvbuf >> 3;
5079	node = &tp->ooo_last_skb->rbnode;
5080	do {
5081		prev = rb_prev(node);
5082		rb_erase(node, &tp->out_of_order_queue);
5083		goal -= rb_to_skb(node)->truesize;
5084		tcp_drop(sk, rb_to_skb(node));
5085		if (!prev || goal <= 0) {
5086			sk_mem_reclaim(sk);
5087			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5088			    !tcp_under_memory_pressure(sk))
5089				break;
5090			goal = sk->sk_rcvbuf >> 3;
5091		}
5092		node = prev;
5093	} while (node);
5094	tp->ooo_last_skb = rb_to_skb(prev);
5095
5096	/* Reset SACK state.  A conforming SACK implementation will
5097	 * do the same at a timeout based retransmit.  When a connection
5098	 * is in a sad state like this, we care only about integrity
5099	 * of the connection not performance.
5100	 */
5101	if (tp->rx_opt.sack_ok)
5102		tcp_sack_reset(&tp->rx_opt);
5103	return true;
5104}
5105
5106/* Reduce allocated memory if we can, trying to get
5107 * the socket within its memory limits again.
5108 *
5109 * Return less than zero if we should start dropping frames
5110 * until the socket owning process reads some of the data
5111 * to stabilize the situation.
5112 */
5113static int tcp_prune_queue(struct sock *sk)
5114{
5115	struct tcp_sock *tp = tcp_sk(sk);
5116
5117	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
 
 
5118
5119	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5120		tcp_clamp_window(sk);
5121	else if (tcp_under_memory_pressure(sk))
5122		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5123
5124	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5125		return 0;
5126
5127	tcp_collapse_ofo_queue(sk);
5128	if (!skb_queue_empty(&sk->sk_receive_queue))
5129		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5130			     skb_peek(&sk->sk_receive_queue),
5131			     NULL,
5132			     tp->copied_seq, tp->rcv_nxt);
5133	sk_mem_reclaim(sk);
5134
5135	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5136		return 0;
5137
5138	/* Collapsing did not help, destructive actions follow.
5139	 * This must not ever occur. */
5140
5141	tcp_prune_ofo_queue(sk);
5142
5143	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5144		return 0;
5145
5146	/* If we are really being abused, tell the caller to silently
5147	 * drop receive data on the floor.  It will get retransmitted
5148	 * and hopefully then we'll have sufficient space.
5149	 */
5150	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5151
5152	/* Massive buffer overcommit. */
5153	tp->pred_flags = 0;
5154	return -1;
5155}
5156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5157static bool tcp_should_expand_sndbuf(const struct sock *sk)
5158{
5159	const struct tcp_sock *tp = tcp_sk(sk);
5160
5161	/* If the user specified a specific send buffer setting, do
5162	 * not modify it.
5163	 */
5164	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5165		return false;
5166
5167	/* If we are under global TCP memory pressure, do not expand.  */
5168	if (tcp_under_memory_pressure(sk))
5169		return false;
5170
5171	/* If we are under soft global TCP memory pressure, do not expand.  */
5172	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5173		return false;
5174
5175	/* If we filled the congestion window, do not expand.  */
5176	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5177		return false;
5178
5179	return true;
5180}
5181
5182/* When incoming ACK allowed to free some skb from write_queue,
5183 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5184 * on the exit from tcp input handler.
5185 *
5186 * PROBLEM: sndbuf expansion does not work well with largesend.
5187 */
5188static void tcp_new_space(struct sock *sk)
5189{
5190	struct tcp_sock *tp = tcp_sk(sk);
5191
5192	if (tcp_should_expand_sndbuf(sk)) {
5193		tcp_sndbuf_expand(sk);
5194		tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 
 
 
 
 
 
5195	}
5196
5197	sk->sk_write_space(sk);
5198}
5199
5200static void tcp_check_space(struct sock *sk)
5201{
5202	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5203		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5204		/* pairs with tcp_poll() */
5205		smp_mb();
5206		if (sk->sk_socket &&
5207		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5208			tcp_new_space(sk);
5209			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5210				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5211		}
5212	}
5213}
5214
5215static inline void tcp_data_snd_check(struct sock *sk)
5216{
5217	tcp_push_pending_frames(sk);
5218	tcp_check_space(sk);
5219}
5220
5221/*
5222 * Check if sending an ack is needed.
5223 */
5224static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5225{
5226	struct tcp_sock *tp = tcp_sk(sk);
5227	unsigned long rtt, delay;
5228
5229	    /* More than one full frame received... */
5230	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5231	     /* ... and right edge of window advances far enough.
5232	      * (tcp_recvmsg() will send ACK otherwise).
5233	      * If application uses SO_RCVLOWAT, we want send ack now if
5234	      * we have not received enough bytes to satisfy the condition.
5235	      */
5236	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5237	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5238	    /* We ACK each frame or... */
5239	    tcp_in_quickack_mode(sk) ||
5240	    /* Protocol state mandates a one-time immediate ACK */
5241	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5242send_now:
5243		tcp_send_ack(sk);
5244		return;
5245	}
5246
5247	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5248		tcp_send_delayed_ack(sk);
5249		return;
5250	}
5251
5252	if (!tcp_is_sack(tp) ||
5253	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5254		goto send_now;
5255
5256	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5257		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5258		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5259			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5260				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5261		tp->compressed_ack = 0;
5262	}
5263
5264	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5265		goto send_now;
5266
5267	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5268		return;
5269
5270	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5271
5272	rtt = tp->rcv_rtt_est.rtt_us;
5273	if (tp->srtt_us && tp->srtt_us < rtt)
5274		rtt = tp->srtt_us;
5275
5276	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5277		      rtt * (NSEC_PER_USEC >> 3)/20);
5278	sock_hold(sk);
5279	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5280		      HRTIMER_MODE_REL_PINNED_SOFT);
5281}
5282
5283static inline void tcp_ack_snd_check(struct sock *sk)
5284{
5285	if (!inet_csk_ack_scheduled(sk)) {
5286		/* We sent a data segment already. */
5287		return;
5288	}
5289	__tcp_ack_snd_check(sk, 1);
5290}
5291
5292/*
5293 *	This routine is only called when we have urgent data
5294 *	signaled. Its the 'slow' part of tcp_urg. It could be
5295 *	moved inline now as tcp_urg is only called from one
5296 *	place. We handle URGent data wrong. We have to - as
5297 *	BSD still doesn't use the correction from RFC961.
5298 *	For 1003.1g we should support a new option TCP_STDURG to permit
5299 *	either form (or just set the sysctl tcp_stdurg).
5300 */
5301
5302static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5303{
5304	struct tcp_sock *tp = tcp_sk(sk);
5305	u32 ptr = ntohs(th->urg_ptr);
5306
5307	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5308		ptr--;
5309	ptr += ntohl(th->seq);
5310
5311	/* Ignore urgent data that we've already seen and read. */
5312	if (after(tp->copied_seq, ptr))
5313		return;
5314
5315	/* Do not replay urg ptr.
5316	 *
5317	 * NOTE: interesting situation not covered by specs.
5318	 * Misbehaving sender may send urg ptr, pointing to segment,
5319	 * which we already have in ofo queue. We are not able to fetch
5320	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5321	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5322	 * situations. But it is worth to think about possibility of some
5323	 * DoSes using some hypothetical application level deadlock.
5324	 */
5325	if (before(ptr, tp->rcv_nxt))
5326		return;
5327
5328	/* Do we already have a newer (or duplicate) urgent pointer? */
5329	if (tp->urg_data && !after(ptr, tp->urg_seq))
5330		return;
5331
5332	/* Tell the world about our new urgent pointer. */
5333	sk_send_sigurg(sk);
5334
5335	/* We may be adding urgent data when the last byte read was
5336	 * urgent. To do this requires some care. We cannot just ignore
5337	 * tp->copied_seq since we would read the last urgent byte again
5338	 * as data, nor can we alter copied_seq until this data arrives
5339	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5340	 *
5341	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5342	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5343	 * and expect that both A and B disappear from stream. This is _wrong_.
5344	 * Though this happens in BSD with high probability, this is occasional.
5345	 * Any application relying on this is buggy. Note also, that fix "works"
5346	 * only in this artificial test. Insert some normal data between A and B and we will
5347	 * decline of BSD again. Verdict: it is better to remove to trap
5348	 * buggy users.
5349	 */
5350	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5351	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5352		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5353		tp->copied_seq++;
5354		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5355			__skb_unlink(skb, &sk->sk_receive_queue);
5356			__kfree_skb(skb);
5357		}
5358	}
5359
5360	tp->urg_data = TCP_URG_NOTYET;
5361	WRITE_ONCE(tp->urg_seq, ptr);
5362
5363	/* Disable header prediction. */
5364	tp->pred_flags = 0;
5365}
5366
5367/* This is the 'fast' part of urgent handling. */
5368static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5369{
5370	struct tcp_sock *tp = tcp_sk(sk);
5371
5372	/* Check if we get a new urgent pointer - normally not. */
5373	if (th->urg)
5374		tcp_check_urg(sk, th);
5375
5376	/* Do we wait for any urgent data? - normally not... */
5377	if (tp->urg_data == TCP_URG_NOTYET) {
5378		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5379			  th->syn;
5380
5381		/* Is the urgent pointer pointing into this packet? */
5382		if (ptr < skb->len) {
5383			u8 tmp;
5384			if (skb_copy_bits(skb, ptr, &tmp, 1))
5385				BUG();
5386			tp->urg_data = TCP_URG_VALID | tmp;
5387			if (!sock_flag(sk, SOCK_DEAD))
5388				sk->sk_data_ready(sk);
5389		}
5390	}
5391}
5392
5393/* Accept RST for rcv_nxt - 1 after a FIN.
5394 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5395 * FIN is sent followed by a RST packet. The RST is sent with the same
5396 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5397 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5398 * ACKs on the closed socket. In addition middleboxes can drop either the
5399 * challenge ACK or a subsequent RST.
5400 */
5401static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5402{
5403	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
5404
5405	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5406			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5407					       TCPF_CLOSING));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5408}
 
5409
5410/* Does PAWS and seqno based validation of an incoming segment, flags will
5411 * play significant role here.
5412 */
5413static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5414				  const struct tcphdr *th, int syn_inerr)
5415{
 
5416	struct tcp_sock *tp = tcp_sk(sk);
5417	bool rst_seq_match = false;
5418
5419	/* RFC1323: H1. Apply PAWS check first. */
5420	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5421	    tp->rx_opt.saw_tstamp &&
5422	    tcp_paws_discard(sk, skb)) {
5423		if (!th->rst) {
5424			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5425			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5426						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5427						  &tp->last_oow_ack_time))
5428				tcp_send_dupack(sk, skb);
5429			goto discard;
5430		}
5431		/* Reset is accepted even if it did not pass PAWS. */
5432	}
5433
5434	/* Step 1: check sequence number */
5435	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5436		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5437		 * (RST) segments are validated by checking their SEQ-fields."
5438		 * And page 69: "If an incoming segment is not acceptable,
5439		 * an acknowledgment should be sent in reply (unless the RST
5440		 * bit is set, if so drop the segment and return)".
5441		 */
5442		if (!th->rst) {
5443			if (th->syn)
5444				goto syn_challenge;
5445			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5446						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5447						  &tp->last_oow_ack_time))
5448				tcp_send_dupack(sk, skb);
5449		} else if (tcp_reset_check(sk, skb)) {
5450			tcp_reset(sk);
5451		}
5452		goto discard;
5453	}
5454
5455	/* Step 2: check RST bit */
5456	if (th->rst) {
5457		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5458		 * FIN and SACK too if available):
5459		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5460		 * the right-most SACK block,
5461		 * then
5462		 *     RESET the connection
5463		 * else
5464		 *     Send a challenge ACK
5465		 */
5466		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5467		    tcp_reset_check(sk, skb)) {
5468			rst_seq_match = true;
5469		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5470			struct tcp_sack_block *sp = &tp->selective_acks[0];
5471			int max_sack = sp[0].end_seq;
5472			int this_sack;
5473
5474			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5475			     ++this_sack) {
5476				max_sack = after(sp[this_sack].end_seq,
5477						 max_sack) ?
5478					sp[this_sack].end_seq : max_sack;
5479			}
5480
5481			if (TCP_SKB_CB(skb)->seq == max_sack)
5482				rst_seq_match = true;
5483		}
5484
5485		if (rst_seq_match)
5486			tcp_reset(sk);
5487		else {
5488			/* Disable TFO if RST is out-of-order
5489			 * and no data has been received
5490			 * for current active TFO socket
5491			 */
5492			if (tp->syn_fastopen && !tp->data_segs_in &&
5493			    sk->sk_state == TCP_ESTABLISHED)
5494				tcp_fastopen_active_disable(sk);
5495			tcp_send_challenge_ack(sk, skb);
5496		}
5497		goto discard;
5498	}
5499
 
 
 
 
 
5500	/* step 3: check security and precedence [ignored] */
5501
5502	/* step 4: Check for a SYN
5503	 * RFC 5961 4.2 : Send a challenge ack
5504	 */
5505	if (th->syn) {
5506syn_challenge:
5507		if (syn_inerr)
5508			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5509		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5510		tcp_send_challenge_ack(sk, skb);
5511		goto discard;
5512	}
5513
5514	return true;
5515
5516discard:
5517	tcp_drop(sk, skb);
5518	return false;
5519}
5520
5521/*
5522 *	TCP receive function for the ESTABLISHED state.
5523 *
5524 *	It is split into a fast path and a slow path. The fast path is
5525 * 	disabled when:
5526 *	- A zero window was announced from us - zero window probing
5527 *        is only handled properly in the slow path.
5528 *	- Out of order segments arrived.
5529 *	- Urgent data is expected.
5530 *	- There is no buffer space left
5531 *	- Unexpected TCP flags/window values/header lengths are received
5532 *	  (detected by checking the TCP header against pred_flags)
5533 *	- Data is sent in both directions. Fast path only supports pure senders
5534 *	  or pure receivers (this means either the sequence number or the ack
5535 *	  value must stay constant)
5536 *	- Unexpected TCP option.
5537 *
5538 *	When these conditions are not satisfied it drops into a standard
5539 *	receive procedure patterned after RFC793 to handle all cases.
5540 *	The first three cases are guaranteed by proper pred_flags setting,
5541 *	the rest is checked inline. Fast processing is turned on in
5542 *	tcp_data_queue when everything is OK.
5543 */
5544void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
 
5545{
5546	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5547	struct tcp_sock *tp = tcp_sk(sk);
5548	unsigned int len = skb->len;
5549
5550	/* TCP congestion window tracking */
5551	trace_tcp_probe(sk, skb);
5552
5553	tcp_mstamp_refresh(tp);
5554	if (unlikely(!sk->sk_rx_dst))
5555		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5556	/*
5557	 *	Header prediction.
5558	 *	The code loosely follows the one in the famous
5559	 *	"30 instruction TCP receive" Van Jacobson mail.
5560	 *
5561	 *	Van's trick is to deposit buffers into socket queue
5562	 *	on a device interrupt, to call tcp_recv function
5563	 *	on the receive process context and checksum and copy
5564	 *	the buffer to user space. smart...
5565	 *
5566	 *	Our current scheme is not silly either but we take the
5567	 *	extra cost of the net_bh soft interrupt processing...
5568	 *	We do checksum and copy also but from device to kernel.
5569	 */
5570
5571	tp->rx_opt.saw_tstamp = 0;
5572
5573	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5574	 *	if header_prediction is to be made
5575	 *	'S' will always be tp->tcp_header_len >> 2
5576	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5577	 *  turn it off	(when there are holes in the receive
5578	 *	 space for instance)
5579	 *	PSH flag is ignored.
5580	 */
5581
5582	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5583	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5584	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5585		int tcp_header_len = tp->tcp_header_len;
5586
5587		/* Timestamp header prediction: tcp_header_len
5588		 * is automatically equal to th->doff*4 due to pred_flags
5589		 * match.
5590		 */
5591
5592		/* Check timestamp */
5593		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5594			/* No? Slow path! */
5595			if (!tcp_parse_aligned_timestamp(tp, th))
5596				goto slow_path;
5597
5598			/* If PAWS failed, check it more carefully in slow path */
5599			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5600				goto slow_path;
5601
5602			/* DO NOT update ts_recent here, if checksum fails
5603			 * and timestamp was corrupted part, it will result
5604			 * in a hung connection since we will drop all
5605			 * future packets due to the PAWS test.
5606			 */
5607		}
5608
5609		if (len <= tcp_header_len) {
5610			/* Bulk data transfer: sender */
5611			if (len == tcp_header_len) {
5612				/* Predicted packet is in window by definition.
5613				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5614				 * Hence, check seq<=rcv_wup reduces to:
5615				 */
5616				if (tcp_header_len ==
5617				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5618				    tp->rcv_nxt == tp->rcv_wup)
5619					tcp_store_ts_recent(tp);
5620
5621				/* We know that such packets are checksummed
5622				 * on entry.
5623				 */
5624				tcp_ack(sk, skb, 0);
5625				__kfree_skb(skb);
5626				tcp_data_snd_check(sk);
5627				/* When receiving pure ack in fast path, update
5628				 * last ts ecr directly instead of calling
5629				 * tcp_rcv_rtt_measure_ts()
5630				 */
5631				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5632				return;
5633			} else { /* Header too small */
5634				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5635				goto discard;
5636			}
5637		} else {
5638			int eaten = 0;
 
5639			bool fragstolen = false;
5640
5641			if (tcp_checksum_complete(skb))
5642				goto csum_error;
 
 
 
 
 
 
 
 
 
 
 
5643
5644			if ((int)skb->truesize > sk->sk_forward_alloc)
5645				goto step5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5646
5647			/* Predicted packet is in window by definition.
5648			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5649			 * Hence, check seq<=rcv_wup reduces to:
5650			 */
5651			if (tcp_header_len ==
5652			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5653			    tp->rcv_nxt == tp->rcv_wup)
5654				tcp_store_ts_recent(tp);
5655
5656			tcp_rcv_rtt_measure_ts(sk, skb);
5657
5658			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5659
5660			/* Bulk data transfer: receiver */
5661			__skb_pull(skb, tcp_header_len);
5662			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
 
 
 
 
5663
5664			tcp_event_data_recv(sk, skb);
5665
5666			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5667				/* Well, only one small jumplet in fast path... */
5668				tcp_ack(sk, skb, FLAG_DATA);
5669				tcp_data_snd_check(sk);
5670				if (!inet_csk_ack_scheduled(sk))
5671					goto no_ack;
5672			}
5673
5674			__tcp_ack_snd_check(sk, 0);
 
5675no_ack:
 
 
 
 
 
5676			if (eaten)
5677				kfree_skb_partial(skb, fragstolen);
5678			tcp_data_ready(sk);
5679			return;
 
5680		}
5681	}
5682
5683slow_path:
5684	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5685		goto csum_error;
5686
5687	if (!th->ack && !th->rst && !th->syn)
5688		goto discard;
5689
5690	/*
5691	 *	Standard slow path.
5692	 */
5693
5694	if (!tcp_validate_incoming(sk, skb, th, 1))
5695		return;
 
5696
5697step5:
5698	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5699		goto discard;
5700
5701	tcp_rcv_rtt_measure_ts(sk, skb);
5702
5703	/* Process urgent data. */
5704	tcp_urg(sk, skb, th);
5705
5706	/* step 7: process the segment text */
5707	tcp_data_queue(sk, skb);
5708
5709	tcp_data_snd_check(sk);
5710	tcp_ack_snd_check(sk);
5711	return;
5712
5713csum_error:
5714	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5715	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5716
5717discard:
5718	tcp_drop(sk, skb);
 
5719}
5720EXPORT_SYMBOL(tcp_rcv_established);
5721
5722void tcp_init_transfer(struct sock *sk, int bpf_op)
5723{
5724	struct inet_connection_sock *icsk = inet_csk(sk);
5725	struct tcp_sock *tp = tcp_sk(sk);
5726
5727	tcp_mtup_init(sk);
5728	icsk->icsk_af_ops->rebuild_header(sk);
5729	tcp_init_metrics(sk);
5730
5731	/* Initialize the congestion window to start the transfer.
5732	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5733	 * retransmitted. In light of RFC6298 more aggressive 1sec
5734	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5735	 * retransmission has occurred.
5736	 */
5737	if (tp->total_retrans > 1 && tp->undo_marker)
5738		tp->snd_cwnd = 1;
5739	else
5740		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5741	tp->snd_cwnd_stamp = tcp_jiffies32;
5742
5743	tcp_call_bpf(sk, bpf_op, 0, NULL);
5744	tcp_init_congestion_control(sk);
5745	tcp_init_buffer_space(sk);
5746}
5747
5748void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5749{
5750	struct tcp_sock *tp = tcp_sk(sk);
5751	struct inet_connection_sock *icsk = inet_csk(sk);
5752
5753	tcp_set_state(sk, TCP_ESTABLISHED);
5754	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5755
5756	if (skb) {
5757		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5758		security_inet_conn_established(sk, skb);
5759		sk_mark_napi_id(sk, skb);
5760	}
5761
5762	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
 
 
 
 
 
5763
5764	/* Prevent spurious tcp_cwnd_restart() on first data
5765	 * packet.
5766	 */
5767	tp->lsndtime = tcp_jiffies32;
 
 
5768
5769	if (sock_flag(sk, SOCK_KEEPOPEN))
5770		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5771
5772	if (!tp->rx_opt.snd_wscale)
5773		__tcp_fast_path_on(tp, tp->snd_wnd);
5774	else
5775		tp->pred_flags = 0;
5776}
5777
5778static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5779				    struct tcp_fastopen_cookie *cookie)
5780{
5781	struct tcp_sock *tp = tcp_sk(sk);
5782	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5783	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5784	bool syn_drop = false;
5785
5786	if (mss == tp->rx_opt.user_mss) {
5787		struct tcp_options_received opt;
5788
5789		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5790		tcp_clear_options(&opt);
5791		opt.user_mss = opt.mss_clamp = 0;
5792		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5793		mss = opt.mss_clamp;
5794	}
5795
5796	if (!tp->syn_fastopen) {
5797		/* Ignore an unsolicited cookie */
5798		cookie->len = -1;
5799	} else if (tp->total_retrans) {
5800		/* SYN timed out and the SYN-ACK neither has a cookie nor
5801		 * acknowledges data. Presumably the remote received only
5802		 * the retransmitted (regular) SYNs: either the original
5803		 * SYN-data or the corresponding SYN-ACK was dropped.
5804		 */
5805		syn_drop = (cookie->len < 0 && data);
5806	} else if (cookie->len < 0 && !tp->syn_data) {
5807		/* We requested a cookie but didn't get it. If we did not use
5808		 * the (old) exp opt format then try so next time (try_exp=1).
5809		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5810		 */
5811		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5812	}
5813
5814	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5815
5816	if (data) { /* Retransmit unacked data in SYN */
5817		skb_rbtree_walk_from(data) {
5818			if (__tcp_retransmit_skb(sk, data, 1))
5819				break;
5820		}
5821		tcp_rearm_rto(sk);
5822		NET_INC_STATS(sock_net(sk),
5823				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5824		return true;
5825	}
5826	tp->syn_data_acked = tp->syn_data;
5827	if (tp->syn_data_acked) {
5828		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5829		/* SYN-data is counted as two separate packets in tcp_ack() */
5830		if (tp->delivered > 1)
5831			--tp->delivered;
5832	}
5833
5834	tcp_fastopen_add_skb(sk, synack);
5835
5836	return false;
5837}
5838
5839static void smc_check_reset_syn(struct tcp_sock *tp)
5840{
5841#if IS_ENABLED(CONFIG_SMC)
5842	if (static_branch_unlikely(&tcp_have_smc)) {
5843		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5844			tp->syn_smc = 0;
5845	}
5846#endif
5847}
5848
5849static void tcp_try_undo_spurious_syn(struct sock *sk)
5850{
5851	struct tcp_sock *tp = tcp_sk(sk);
5852	u32 syn_stamp;
5853
5854	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5855	 * spurious if the ACK's timestamp option echo value matches the
5856	 * original SYN timestamp.
5857	 */
5858	syn_stamp = tp->retrans_stamp;
5859	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5860	    syn_stamp == tp->rx_opt.rcv_tsecr)
5861		tp->undo_marker = 0;
5862}
5863
5864static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5865					 const struct tcphdr *th)
5866{
 
5867	struct inet_connection_sock *icsk = inet_csk(sk);
5868	struct tcp_sock *tp = tcp_sk(sk);
5869	struct tcp_fastopen_cookie foc = { .len = -1 };
5870	int saved_clamp = tp->rx_opt.mss_clamp;
5871	bool fastopen_fail;
5872
5873	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5874	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5875		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5876
5877	if (th->ack) {
5878		/* rfc793:
5879		 * "If the state is SYN-SENT then
5880		 *    first check the ACK bit
5881		 *      If the ACK bit is set
5882		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5883		 *        a reset (unless the RST bit is set, if so drop
5884		 *        the segment and return)"
 
 
 
5885		 */
5886		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5887		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5888			goto reset_and_undo;
5889
5890		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5891		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5892			     tcp_time_stamp(tp))) {
5893			NET_INC_STATS(sock_net(sk),
5894					LINUX_MIB_PAWSACTIVEREJECTED);
5895			goto reset_and_undo;
5896		}
5897
5898		/* Now ACK is acceptable.
5899		 *
5900		 * "If the RST bit is set
5901		 *    If the ACK was acceptable then signal the user "error:
5902		 *    connection reset", drop the segment, enter CLOSED state,
5903		 *    delete TCB, and return."
5904		 */
5905
5906		if (th->rst) {
5907			tcp_reset(sk);
5908			goto discard;
5909		}
5910
5911		/* rfc793:
5912		 *   "fifth, if neither of the SYN or RST bits is set then
5913		 *    drop the segment and return."
5914		 *
5915		 *    See note below!
5916		 *                                        --ANK(990513)
5917		 */
5918		if (!th->syn)
5919			goto discard_and_undo;
5920
5921		/* rfc793:
5922		 *   "If the SYN bit is on ...
5923		 *    are acceptable then ...
5924		 *    (our SYN has been ACKed), change the connection
5925		 *    state to ESTABLISHED..."
5926		 */
5927
5928		tcp_ecn_rcv_synack(tp, th);
5929
5930		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5931		tcp_try_undo_spurious_syn(sk);
5932		tcp_ack(sk, skb, FLAG_SLOWPATH);
5933
5934		/* Ok.. it's good. Set up sequence numbers and
5935		 * move to established.
5936		 */
5937		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5938		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5939
5940		/* RFC1323: The window in SYN & SYN/ACK segments is
5941		 * never scaled.
5942		 */
5943		tp->snd_wnd = ntohs(th->window);
 
5944
5945		if (!tp->rx_opt.wscale_ok) {
5946			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5947			tp->window_clamp = min(tp->window_clamp, 65535U);
5948		}
5949
5950		if (tp->rx_opt.saw_tstamp) {
5951			tp->rx_opt.tstamp_ok	   = 1;
5952			tp->tcp_header_len =
5953				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5954			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5955			tcp_store_ts_recent(tp);
5956		} else {
5957			tp->tcp_header_len = sizeof(struct tcphdr);
5958		}
5959
 
 
 
 
5960		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5961		tcp_initialize_rcv_mss(sk);
5962
5963		/* Remember, tcp_poll() does not lock socket!
5964		 * Change state from SYN-SENT only after copied_seq
5965		 * is initialized. */
5966		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5967
5968		smc_check_reset_syn(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5969
5970		smp_mb();
5971
5972		tcp_finish_connect(sk, skb);
5973
5974		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5975				tcp_rcv_fastopen_synack(sk, skb, &foc);
5976
5977		if (!sock_flag(sk, SOCK_DEAD)) {
5978			sk->sk_state_change(sk);
5979			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5980		}
5981		if (fastopen_fail)
5982			return -1;
5983		if (sk->sk_write_pending ||
5984		    icsk->icsk_accept_queue.rskq_defer_accept ||
5985		    inet_csk_in_pingpong_mode(sk)) {
5986			/* Save one ACK. Data will be ready after
5987			 * several ticks, if write_pending is set.
5988			 *
5989			 * It may be deleted, but with this feature tcpdumps
5990			 * look so _wonderfully_ clever, that I was not able
5991			 * to stand against the temptation 8)     --ANK
5992			 */
5993			inet_csk_schedule_ack(sk);
5994			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
 
5995			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5996						  TCP_DELACK_MAX, TCP_RTO_MAX);
5997
5998discard:
5999			tcp_drop(sk, skb);
6000			return 0;
6001		} else {
6002			tcp_send_ack(sk);
6003		}
6004		return -1;
6005	}
6006
6007	/* No ACK in the segment */
6008
6009	if (th->rst) {
6010		/* rfc793:
6011		 * "If the RST bit is set
6012		 *
6013		 *      Otherwise (no ACK) drop the segment and return."
6014		 */
6015
6016		goto discard_and_undo;
6017	}
6018
6019	/* PAWS check. */
6020	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6021	    tcp_paws_reject(&tp->rx_opt, 0))
6022		goto discard_and_undo;
6023
6024	if (th->syn) {
6025		/* We see SYN without ACK. It is attempt of
6026		 * simultaneous connect with crossed SYNs.
6027		 * Particularly, it can be connect to self.
6028		 */
6029		tcp_set_state(sk, TCP_SYN_RECV);
6030
6031		if (tp->rx_opt.saw_tstamp) {
6032			tp->rx_opt.tstamp_ok = 1;
6033			tcp_store_ts_recent(tp);
6034			tp->tcp_header_len =
6035				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6036		} else {
6037			tp->tcp_header_len = sizeof(struct tcphdr);
6038		}
6039
6040		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6041		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6042		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6043
6044		/* RFC1323: The window in SYN & SYN/ACK segments is
6045		 * never scaled.
6046		 */
6047		tp->snd_wnd    = ntohs(th->window);
6048		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6049		tp->max_window = tp->snd_wnd;
6050
6051		tcp_ecn_rcv_syn(tp, th);
6052
6053		tcp_mtup_init(sk);
6054		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6055		tcp_initialize_rcv_mss(sk);
6056
6057		tcp_send_synack(sk);
6058#if 0
6059		/* Note, we could accept data and URG from this segment.
6060		 * There are no obstacles to make this (except that we must
6061		 * either change tcp_recvmsg() to prevent it from returning data
6062		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6063		 *
6064		 * However, if we ignore data in ACKless segments sometimes,
6065		 * we have no reasons to accept it sometimes.
6066		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6067		 * is not flawless. So, discard packet for sanity.
6068		 * Uncomment this return to process the data.
6069		 */
6070		return -1;
6071#else
6072		goto discard;
6073#endif
6074	}
6075	/* "fifth, if neither of the SYN or RST bits is set then
6076	 * drop the segment and return."
6077	 */
6078
6079discard_and_undo:
6080	tcp_clear_options(&tp->rx_opt);
6081	tp->rx_opt.mss_clamp = saved_clamp;
6082	goto discard;
6083
6084reset_and_undo:
6085	tcp_clear_options(&tp->rx_opt);
6086	tp->rx_opt.mss_clamp = saved_clamp;
6087	return 1;
6088}
6089
6090static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6091{
6092	struct request_sock *req;
6093
6094	tcp_try_undo_loss(sk, false);
6095
6096	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6097	tcp_sk(sk)->retrans_stamp = 0;
6098	inet_csk(sk)->icsk_retransmits = 0;
6099
6100	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6101	 * we no longer need req so release it.
6102	 */
6103	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6104					lockdep_sock_is_held(sk));
6105	reqsk_fastopen_remove(sk, req, false);
6106
6107	/* Re-arm the timer because data may have been sent out.
6108	 * This is similar to the regular data transmission case
6109	 * when new data has just been ack'ed.
6110	 *
6111	 * (TFO) - we could try to be more aggressive and
6112	 * retransmitting any data sooner based on when they
6113	 * are sent out.
6114	 */
6115	tcp_rearm_rto(sk);
6116}
6117
6118/*
6119 *	This function implements the receiving procedure of RFC 793 for
6120 *	all states except ESTABLISHED and TIME_WAIT.
6121 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6122 *	address independent.
6123 */
6124
6125int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
 
6126{
6127	struct tcp_sock *tp = tcp_sk(sk);
6128	struct inet_connection_sock *icsk = inet_csk(sk);
6129	const struct tcphdr *th = tcp_hdr(skb);
6130	struct request_sock *req;
6131	int queued = 0;
6132	bool acceptable;
 
 
6133
6134	switch (sk->sk_state) {
6135	case TCP_CLOSE:
6136		goto discard;
6137
6138	case TCP_LISTEN:
6139		if (th->ack)
6140			return 1;
6141
6142		if (th->rst)
6143			goto discard;
6144
6145		if (th->syn) {
6146			if (th->fin)
6147				goto discard;
6148			/* It is possible that we process SYN packets from backlog,
6149			 * so we need to make sure to disable BH and RCU right there.
6150			 */
6151			rcu_read_lock();
6152			local_bh_disable();
6153			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6154			local_bh_enable();
6155			rcu_read_unlock();
6156
6157			if (!acceptable)
6158				return 1;
6159			consume_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6160			return 0;
6161		}
6162		goto discard;
6163
6164	case TCP_SYN_SENT:
6165		tp->rx_opt.saw_tstamp = 0;
6166		tcp_mstamp_refresh(tp);
6167		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6168		if (queued >= 0)
6169			return queued;
6170
6171		/* Do step6 onward by hand. */
6172		tcp_urg(sk, skb, th);
6173		__kfree_skb(skb);
6174		tcp_data_snd_check(sk);
6175		return 0;
6176	}
6177
6178	tcp_mstamp_refresh(tp);
6179	tp->rx_opt.saw_tstamp = 0;
6180	req = rcu_dereference_protected(tp->fastopen_rsk,
6181					lockdep_sock_is_held(sk));
6182	if (req) {
6183		bool req_stolen;
6184
6185		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6186		    sk->sk_state != TCP_FIN_WAIT1);
6187
6188		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6189			goto discard;
6190	}
6191
6192	if (!th->ack && !th->rst && !th->syn)
6193		goto discard;
6194
6195	if (!tcp_validate_incoming(sk, skb, th, 0))
6196		return 0;
6197
6198	/* step 5: check the ACK field */
6199	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6200				      FLAG_UPDATE_TS_RECENT |
6201				      FLAG_NO_CHALLENGE_ACK) > 0;
6202
6203	if (!acceptable) {
6204		if (sk->sk_state == TCP_SYN_RECV)
6205			return 1;	/* send one RST */
6206		tcp_send_challenge_ack(sk, skb);
6207		goto discard;
6208	}
6209	switch (sk->sk_state) {
6210	case TCP_SYN_RECV:
6211		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6212		if (!tp->srtt_us)
6213			tcp_synack_rtt_meas(sk, req);
6214
6215		if (req) {
6216			tcp_rcv_synrecv_state_fastopen(sk);
6217		} else {
6218			tcp_try_undo_spurious_syn(sk);
6219			tp->retrans_stamp = 0;
6220			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6221			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6222		}
6223		smp_mb();
6224		tcp_set_state(sk, TCP_ESTABLISHED);
6225		sk->sk_state_change(sk);
6226
6227		/* Note, that this wakeup is only for marginal crossed SYN case.
6228		 * Passively open sockets are not waked up, because
6229		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6230		 */
6231		if (sk->sk_socket)
6232			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6233
6234		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6235		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6236		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6237
6238		if (tp->rx_opt.tstamp_ok)
6239			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6240
6241		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6242			tcp_update_pacing_rate(sk);
6243
6244		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6245		tp->lsndtime = tcp_jiffies32;
 
 
6246
6247		tcp_initialize_rcv_mss(sk);
6248		tcp_fast_path_on(tp);
6249		break;
6250
6251	case TCP_FIN_WAIT1: {
6252		int tmo;
6253
6254		if (req)
6255			tcp_rcv_synrecv_state_fastopen(sk);
 
 
6256
6257		if (tp->snd_una != tp->write_seq)
 
 
 
 
 
 
6258			break;
6259
6260		tcp_set_state(sk, TCP_FIN_WAIT2);
6261		sk->sk_shutdown |= SEND_SHUTDOWN;
6262
6263		sk_dst_confirm(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6264
6265		if (!sock_flag(sk, SOCK_DEAD)) {
6266			/* Wake up lingering close() */
6267			sk->sk_state_change(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6268			break;
6269		}
6270
6271		if (tp->linger2 < 0) {
6272			tcp_done(sk);
6273			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6274			return 1;
6275		}
6276		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6277		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6278			/* Receive out of order FIN after close() */
6279			if (tp->syn_fastopen && th->fin)
6280				tcp_fastopen_active_disable(sk);
6281			tcp_done(sk);
6282			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6283			return 1;
6284		}
6285
6286		tmo = tcp_fin_time(sk);
6287		if (tmo > TCP_TIMEWAIT_LEN) {
6288			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6289		} else if (th->fin || sock_owned_by_user(sk)) {
6290			/* Bad case. We could lose such FIN otherwise.
6291			 * It is not a big problem, but it looks confusing
6292			 * and not so rare event. We still can lose it now,
6293			 * if it spins in bh_lock_sock(), but it is really
6294			 * marginal case.
6295			 */
6296			inet_csk_reset_keepalive_timer(sk, tmo);
6297		} else {
6298			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6299			goto discard;
6300		}
6301		break;
6302	}
6303
6304	case TCP_CLOSING:
6305		if (tp->snd_una == tp->write_seq) {
6306			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6307			goto discard;
6308		}
6309		break;
6310
6311	case TCP_LAST_ACK:
6312		if (tp->snd_una == tp->write_seq) {
6313			tcp_update_metrics(sk);
6314			tcp_done(sk);
6315			goto discard;
 
 
6316		}
6317		break;
6318	}
6319
6320	/* step 6: check the URG bit */
6321	tcp_urg(sk, skb, th);
6322
6323	/* step 7: process the segment text */
6324	switch (sk->sk_state) {
6325	case TCP_CLOSE_WAIT:
6326	case TCP_CLOSING:
6327	case TCP_LAST_ACK:
6328		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6329			break;
6330		/* fall through */
6331	case TCP_FIN_WAIT1:
6332	case TCP_FIN_WAIT2:
6333		/* RFC 793 says to queue data in these states,
6334		 * RFC 1122 says we MUST send a reset.
6335		 * BSD 4.4 also does reset.
6336		 */
6337		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6338			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6339			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6340				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6341				tcp_reset(sk);
6342				return 1;
6343			}
6344		}
6345		/* Fall through */
6346	case TCP_ESTABLISHED:
6347		tcp_data_queue(sk, skb);
6348		queued = 1;
6349		break;
6350	}
6351
6352	/* tcp_data could move socket to TIME-WAIT */
6353	if (sk->sk_state != TCP_CLOSE) {
6354		tcp_data_snd_check(sk);
6355		tcp_ack_snd_check(sk);
6356	}
6357
6358	if (!queued) {
6359discard:
6360		tcp_drop(sk, skb);
6361	}
6362	return 0;
6363}
6364EXPORT_SYMBOL(tcp_rcv_state_process);
6365
6366static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6367{
6368	struct inet_request_sock *ireq = inet_rsk(req);
6369
6370	if (family == AF_INET)
6371		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6372				    &ireq->ir_rmt_addr, port);
6373#if IS_ENABLED(CONFIG_IPV6)
6374	else if (family == AF_INET6)
6375		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6376				    &ireq->ir_v6_rmt_addr, port);
6377#endif
6378}
6379
6380/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6381 *
6382 * If we receive a SYN packet with these bits set, it means a
6383 * network is playing bad games with TOS bits. In order to
6384 * avoid possible false congestion notifications, we disable
6385 * TCP ECN negotiation.
6386 *
6387 * Exception: tcp_ca wants ECN. This is required for DCTCP
6388 * congestion control: Linux DCTCP asserts ECT on all packets,
6389 * including SYN, which is most optimal solution; however,
6390 * others, such as FreeBSD do not.
6391 *
6392 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6393 * set, indicating the use of a future TCP extension (such as AccECN). See
6394 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6395 * extensions.
6396 */
6397static void tcp_ecn_create_request(struct request_sock *req,
6398				   const struct sk_buff *skb,
6399				   const struct sock *listen_sk,
6400				   const struct dst_entry *dst)
6401{
6402	const struct tcphdr *th = tcp_hdr(skb);
6403	const struct net *net = sock_net(listen_sk);
6404	bool th_ecn = th->ece && th->cwr;
6405	bool ect, ecn_ok;
6406	u32 ecn_ok_dst;
6407
6408	if (!th_ecn)
6409		return;
6410
6411	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6412	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6413	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6414
6415	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6416	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6417	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6418		inet_rsk(req)->ecn_ok = 1;
6419}
6420
6421static void tcp_openreq_init(struct request_sock *req,
6422			     const struct tcp_options_received *rx_opt,
6423			     struct sk_buff *skb, const struct sock *sk)
6424{
6425	struct inet_request_sock *ireq = inet_rsk(req);
6426
6427	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6428	req->cookie_ts = 0;
6429	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6430	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6431	tcp_rsk(req)->snt_synack = 0;
6432	tcp_rsk(req)->last_oow_ack_time = 0;
6433	req->mss = rx_opt->mss_clamp;
6434	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6435	ireq->tstamp_ok = rx_opt->tstamp_ok;
6436	ireq->sack_ok = rx_opt->sack_ok;
6437	ireq->snd_wscale = rx_opt->snd_wscale;
6438	ireq->wscale_ok = rx_opt->wscale_ok;
6439	ireq->acked = 0;
6440	ireq->ecn_ok = 0;
6441	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6442	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6443	ireq->ir_mark = inet_request_mark(sk, skb);
6444#if IS_ENABLED(CONFIG_SMC)
6445	ireq->smc_ok = rx_opt->smc_ok;
6446#endif
6447}
6448
6449struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6450				      struct sock *sk_listener,
6451				      bool attach_listener)
6452{
6453	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6454					       attach_listener);
6455
6456	if (req) {
6457		struct inet_request_sock *ireq = inet_rsk(req);
6458
6459		ireq->ireq_opt = NULL;
6460#if IS_ENABLED(CONFIG_IPV6)
6461		ireq->pktopts = NULL;
6462#endif
6463		atomic64_set(&ireq->ir_cookie, 0);
6464		ireq->ireq_state = TCP_NEW_SYN_RECV;
6465		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6466		ireq->ireq_family = sk_listener->sk_family;
6467	}
6468
6469	return req;
6470}
6471EXPORT_SYMBOL(inet_reqsk_alloc);
6472
6473/*
6474 * Return true if a syncookie should be sent
6475 */
6476static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6477{
6478	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6479	const char *msg = "Dropping request";
6480	bool want_cookie = false;
6481	struct net *net = sock_net(sk);
6482
6483#ifdef CONFIG_SYN_COOKIES
6484	if (net->ipv4.sysctl_tcp_syncookies) {
6485		msg = "Sending cookies";
6486		want_cookie = true;
6487		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6488	} else
6489#endif
6490		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6491
6492	if (!queue->synflood_warned &&
6493	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6494	    xchg(&queue->synflood_warned, 1) == 0)
6495		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6496				     proto, sk->sk_num, msg);
6497
6498	return want_cookie;
6499}
6500
6501static void tcp_reqsk_record_syn(const struct sock *sk,
6502				 struct request_sock *req,
6503				 const struct sk_buff *skb)
6504{
6505	if (tcp_sk(sk)->save_syn) {
6506		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6507		u32 *copy;
6508
6509		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6510		if (copy) {
6511			copy[0] = len;
6512			memcpy(&copy[1], skb_network_header(skb), len);
6513			req->saved_syn = copy;
6514		}
6515	}
6516}
6517
6518/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6519 * used for SYN cookie generation.
6520 */
6521u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6522			  const struct tcp_request_sock_ops *af_ops,
6523			  struct sock *sk, struct tcphdr *th)
6524{
6525	struct tcp_sock *tp = tcp_sk(sk);
6526	u16 mss;
6527
6528	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6529	    !inet_csk_reqsk_queue_is_full(sk))
6530		return 0;
6531
6532	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6533		return 0;
6534
6535	if (sk_acceptq_is_full(sk)) {
6536		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6537		return 0;
6538	}
6539
6540	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6541	if (!mss)
6542		mss = af_ops->mss_clamp;
6543
6544	return mss;
6545}
6546EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6547
6548int tcp_conn_request(struct request_sock_ops *rsk_ops,
6549		     const struct tcp_request_sock_ops *af_ops,
6550		     struct sock *sk, struct sk_buff *skb)
6551{
6552	struct tcp_fastopen_cookie foc = { .len = -1 };
6553	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6554	struct tcp_options_received tmp_opt;
6555	struct tcp_sock *tp = tcp_sk(sk);
6556	struct net *net = sock_net(sk);
6557	struct sock *fastopen_sk = NULL;
6558	struct request_sock *req;
6559	bool want_cookie = false;
6560	struct dst_entry *dst;
6561	struct flowi fl;
6562
6563	/* TW buckets are converted to open requests without
6564	 * limitations, they conserve resources and peer is
6565	 * evidently real one.
6566	 */
6567	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6568	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6569		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6570		if (!want_cookie)
6571			goto drop;
6572	}
6573
6574	if (sk_acceptq_is_full(sk)) {
6575		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6576		goto drop;
6577	}
6578
6579	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6580	if (!req)
6581		goto drop;
6582
6583	tcp_rsk(req)->af_specific = af_ops;
6584	tcp_rsk(req)->ts_off = 0;
6585
6586	tcp_clear_options(&tmp_opt);
6587	tmp_opt.mss_clamp = af_ops->mss_clamp;
6588	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6589	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6590			  want_cookie ? NULL : &foc);
6591
6592	if (want_cookie && !tmp_opt.saw_tstamp)
6593		tcp_clear_options(&tmp_opt);
6594
6595	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6596		tmp_opt.smc_ok = 0;
6597
6598	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6599	tcp_openreq_init(req, &tmp_opt, skb, sk);
6600	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6601
6602	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6603	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6604
6605	af_ops->init_req(req, sk, skb);
6606
6607	if (security_inet_conn_request(sk, skb, req))
6608		goto drop_and_free;
6609
6610	if (tmp_opt.tstamp_ok)
6611		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6612
6613	dst = af_ops->route_req(sk, &fl, req);
6614	if (!dst)
6615		goto drop_and_free;
6616
6617	if (!want_cookie && !isn) {
6618		/* Kill the following clause, if you dislike this way. */
6619		if (!net->ipv4.sysctl_tcp_syncookies &&
6620		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6621		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6622		    !tcp_peer_is_proven(req, dst)) {
6623			/* Without syncookies last quarter of
6624			 * backlog is filled with destinations,
6625			 * proven to be alive.
6626			 * It means that we continue to communicate
6627			 * to destinations, already remembered
6628			 * to the moment of synflood.
6629			 */
6630			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6631				    rsk_ops->family);
6632			goto drop_and_release;
6633		}
6634
6635		isn = af_ops->init_seq(skb);
6636	}
6637
6638	tcp_ecn_create_request(req, skb, sk, dst);
6639
6640	if (want_cookie) {
6641		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6642		req->cookie_ts = tmp_opt.tstamp_ok;
6643		if (!tmp_opt.tstamp_ok)
6644			inet_rsk(req)->ecn_ok = 0;
6645	}
6646
6647	tcp_rsk(req)->snt_isn = isn;
6648	tcp_rsk(req)->txhash = net_tx_rndhash();
6649	tcp_openreq_init_rwin(req, sk, dst);
6650	sk_rx_queue_set(req_to_sk(req), skb);
6651	if (!want_cookie) {
6652		tcp_reqsk_record_syn(sk, req, skb);
6653		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6654	}
6655	if (fastopen_sk) {
6656		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6657				    &foc, TCP_SYNACK_FASTOPEN);
6658		/* Add the child socket directly into the accept queue */
6659		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6660			reqsk_fastopen_remove(fastopen_sk, req, false);
6661			bh_unlock_sock(fastopen_sk);
6662			sock_put(fastopen_sk);
6663			goto drop_and_free;
6664		}
6665		sk->sk_data_ready(sk);
6666		bh_unlock_sock(fastopen_sk);
6667		sock_put(fastopen_sk);
6668	} else {
6669		tcp_rsk(req)->tfo_listener = false;
6670		if (!want_cookie)
6671			inet_csk_reqsk_queue_hash_add(sk, req,
6672				tcp_timeout_init((struct sock *)req));
6673		af_ops->send_synack(sk, dst, &fl, req, &foc,
6674				    !want_cookie ? TCP_SYNACK_NORMAL :
6675						   TCP_SYNACK_COOKIE);
6676		if (want_cookie) {
6677			reqsk_free(req);
6678			return 0;
6679		}
6680	}
6681	reqsk_put(req);
6682	return 0;
6683
6684drop_and_release:
6685	dst_release(dst);
6686drop_and_free:
6687	__reqsk_free(req);
6688drop:
6689	tcp_listendrop(sk);
6690	return 0;
6691}
6692EXPORT_SYMBOL(tcp_conn_request);
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
 
  71#include <net/dst.h>
  72#include <net/tcp.h>
  73#include <net/inet_common.h>
  74#include <linux/ipsec.h>
  75#include <asm/unaligned.h>
  76#include <net/netdma.h>
 
 
 
  77
  78int sysctl_tcp_timestamps __read_mostly = 1;
  79int sysctl_tcp_window_scaling __read_mostly = 1;
  80int sysctl_tcp_sack __read_mostly = 1;
  81int sysctl_tcp_fack __read_mostly = 1;
  82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  83EXPORT_SYMBOL(sysctl_tcp_reordering);
  84int sysctl_tcp_ecn __read_mostly = 2;
  85EXPORT_SYMBOL(sysctl_tcp_ecn);
  86int sysctl_tcp_dsack __read_mostly = 1;
  87int sysctl_tcp_app_win __read_mostly = 31;
  88int sysctl_tcp_adv_win_scale __read_mostly = 1;
  89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  90
  91int sysctl_tcp_stdurg __read_mostly;
  92int sysctl_tcp_rfc1337 __read_mostly;
  93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  94int sysctl_tcp_frto __read_mostly = 2;
  95int sysctl_tcp_frto_response __read_mostly;
  96int sysctl_tcp_nometrics_save __read_mostly;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_abc __read_mostly;
 102int sysctl_tcp_early_retrans __read_mostly = 2;
 103
 104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 
 111#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 112#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
 113#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 114#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 115#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
 116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 
 
 
 117
 118#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 119#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 120#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 121#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 122#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127/* Adapt the MSS value used to make delayed ack decision to the
 128 * real world.
 129 */
 130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 131{
 132	struct inet_connection_sock *icsk = inet_csk(sk);
 133	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 134	unsigned int len;
 135
 136	icsk->icsk_ack.last_seg_size = 0;
 137
 138	/* skb->len may jitter because of SACKs, even if peer
 139	 * sends good full-sized frames.
 140	 */
 141	len = skb_shinfo(skb)->gso_size ? : skb->len;
 142	if (len >= icsk->icsk_ack.rcv_mss) {
 143		icsk->icsk_ack.rcv_mss = len;
 
 
 
 
 
 144	} else {
 145		/* Otherwise, we make more careful check taking into account,
 146		 * that SACKs block is variable.
 147		 *
 148		 * "len" is invariant segment length, including TCP header.
 149		 */
 150		len += skb->data - skb_transport_header(skb);
 151		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 152		    /* If PSH is not set, packet should be
 153		     * full sized, provided peer TCP is not badly broken.
 154		     * This observation (if it is correct 8)) allows
 155		     * to handle super-low mtu links fairly.
 156		     */
 157		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 158		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 159			/* Subtract also invariant (if peer is RFC compliant),
 160			 * tcp header plus fixed timestamp option length.
 161			 * Resulting "len" is MSS free of SACK jitter.
 162			 */
 163			len -= tcp_sk(sk)->tcp_header_len;
 164			icsk->icsk_ack.last_seg_size = len;
 165			if (len == lss) {
 166				icsk->icsk_ack.rcv_mss = len;
 167				return;
 168			}
 169		}
 170		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 171			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 172		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 173	}
 174}
 175
 176static void tcp_incr_quickack(struct sock *sk)
 177{
 178	struct inet_connection_sock *icsk = inet_csk(sk);
 179	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 180
 181	if (quickacks == 0)
 182		quickacks = 2;
 
 183	if (quickacks > icsk->icsk_ack.quick)
 184		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 185}
 186
 187static void tcp_enter_quickack_mode(struct sock *sk)
 188{
 189	struct inet_connection_sock *icsk = inet_csk(sk);
 190	tcp_incr_quickack(sk);
 191	icsk->icsk_ack.pingpong = 0;
 
 192	icsk->icsk_ack.ato = TCP_ATO_MIN;
 193}
 
 194
 195/* Send ACKs quickly, if "quick" count is not exhausted
 196 * and the session is not interactive.
 197 */
 198
 199static inline bool tcp_in_quickack_mode(const struct sock *sk)
 200{
 201	const struct inet_connection_sock *icsk = inet_csk(sk);
 
 202
 203	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 
 204}
 205
 206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 207{
 208	if (tp->ecn_flags & TCP_ECN_OK)
 209		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 210}
 211
 212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 213{
 214	if (tcp_hdr(skb)->cwr)
 215		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 
 
 
 
 
 
 
 216}
 217
 218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 219{
 220	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 221}
 222
 223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 224{
 225	if (!(tp->ecn_flags & TCP_ECN_OK))
 226		return;
 227
 228	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 229	case INET_ECN_NOT_ECT:
 230		/* Funny extension: if ECT is not set on a segment,
 231		 * and we already seen ECT on a previous segment,
 232		 * it is probably a retransmit.
 233		 */
 234		if (tp->ecn_flags & TCP_ECN_SEEN)
 235			tcp_enter_quickack_mode((struct sock *)tp);
 236		break;
 237	case INET_ECN_CE:
 238		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 239		/* fallinto */
 
 
 
 
 
 
 
 
 240	default:
 
 
 241		tp->ecn_flags |= TCP_ECN_SEEN;
 
 242	}
 243}
 244
 245static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 
 
 
 
 
 
 246{
 247	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 248		tp->ecn_flags &= ~TCP_ECN_OK;
 249}
 250
 251static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 252{
 253	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 254		tp->ecn_flags &= ~TCP_ECN_OK;
 255}
 256
 257static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 258{
 259	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 260		return true;
 261	return false;
 262}
 263
 264/* Buffer size and advertised window tuning.
 265 *
 266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 267 */
 268
 269static void tcp_fixup_sndbuf(struct sock *sk)
 270{
 271	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272
 273	sndmem *= TCP_INIT_CWND;
 274	if (sk->sk_sndbuf < sndmem)
 275		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 
 276}
 277
 278/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 279 *
 280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 281 * forward and advertised in receiver window (tp->rcv_wnd) and
 282 * "application buffer", required to isolate scheduling/application
 283 * latencies from network.
 284 * window_clamp is maximal advertised window. It can be less than
 285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 286 * is reserved for "application" buffer. The less window_clamp is
 287 * the smoother our behaviour from viewpoint of network, but the lower
 288 * throughput and the higher sensitivity of the connection to losses. 8)
 289 *
 290 * rcv_ssthresh is more strict window_clamp used at "slow start"
 291 * phase to predict further behaviour of this connection.
 292 * It is used for two goals:
 293 * - to enforce header prediction at sender, even when application
 294 *   requires some significant "application buffer". It is check #1.
 295 * - to prevent pruning of receive queue because of misprediction
 296 *   of receiver window. Check #2.
 297 *
 298 * The scheme does not work when sender sends good segments opening
 299 * window and then starts to feed us spaghetti. But it should work
 300 * in common situations. Otherwise, we have to rely on queue collapsing.
 301 */
 302
 303/* Slow part of check#2. */
 304static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 305{
 306	struct tcp_sock *tp = tcp_sk(sk);
 307	/* Optimize this! */
 308	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 309	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 310
 311	while (tp->rcv_ssthresh <= window) {
 312		if (truesize <= skb->len)
 313			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 314
 315		truesize >>= 1;
 316		window >>= 1;
 317	}
 318	return 0;
 319}
 320
 321static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 322{
 323	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 324
 325	/* Check #1 */
 326	if (tp->rcv_ssthresh < tp->window_clamp &&
 327	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 328	    !sk_under_memory_pressure(sk)) {
 329		int incr;
 330
 331		/* Check #2. Increase window, if skb with such overhead
 332		 * will fit to rcvbuf in future.
 333		 */
 334		if (tcp_win_from_space(skb->truesize) <= skb->len)
 335			incr = 2 * tp->advmss;
 336		else
 337			incr = __tcp_grow_window(sk, skb);
 338
 339		if (incr) {
 340			incr = max_t(int, incr, 2 * skb->len);
 341			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 342					       tp->window_clamp);
 343			inet_csk(sk)->icsk_ack.quick |= 1;
 344		}
 345	}
 346}
 347
 348/* 3. Tuning rcvbuf, when connection enters established state. */
 349
 350static void tcp_fixup_rcvbuf(struct sock *sk)
 351{
 352	u32 mss = tcp_sk(sk)->advmss;
 353	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
 354	int rcvmem;
 355
 356	/* Limit to 10 segments if mss <= 1460,
 357	 * or 14600/mss segments, with a minimum of two segments.
 358	 */
 359	if (mss > 1460)
 360		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
 361
 362	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
 363	while (tcp_win_from_space(rcvmem) < mss)
 364		rcvmem += 128;
 365
 366	rcvmem *= icwnd;
 367
 368	if (sk->sk_rcvbuf < rcvmem)
 369		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 370}
 371
 372/* 4. Try to fixup all. It is made immediately after connection enters
 373 *    established state.
 374 */
 375static void tcp_init_buffer_space(struct sock *sk)
 376{
 
 377	struct tcp_sock *tp = tcp_sk(sk);
 378	int maxwin;
 379
 380	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 381		tcp_fixup_rcvbuf(sk);
 382	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 383		tcp_fixup_sndbuf(sk);
 384
 385	tp->rcvq_space.space = tp->rcv_wnd;
 
 
 
 386
 387	maxwin = tcp_full_space(sk);
 388
 389	if (tp->window_clamp >= maxwin) {
 390		tp->window_clamp = maxwin;
 391
 392		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 393			tp->window_clamp = max(maxwin -
 394					       (maxwin >> sysctl_tcp_app_win),
 395					       4 * tp->advmss);
 396	}
 397
 398	/* Force reservation of one segment. */
 399	if (sysctl_tcp_app_win &&
 400	    tp->window_clamp > 2 * tp->advmss &&
 401	    tp->window_clamp + tp->advmss > maxwin)
 402		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 403
 404	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 405	tp->snd_cwnd_stamp = tcp_time_stamp;
 406}
 407
 408/* 5. Recalculate window clamp after socket hit its memory bounds. */
 409static void tcp_clamp_window(struct sock *sk)
 410{
 411	struct tcp_sock *tp = tcp_sk(sk);
 412	struct inet_connection_sock *icsk = inet_csk(sk);
 
 413
 414	icsk->icsk_ack.quick = 0;
 415
 416	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 417	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 418	    !sk_under_memory_pressure(sk) &&
 419	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 420		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 421				    sysctl_tcp_rmem[2]);
 
 422	}
 423	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 424		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 425}
 426
 427/* Initialize RCV_MSS value.
 428 * RCV_MSS is an our guess about MSS used by the peer.
 429 * We haven't any direct information about the MSS.
 430 * It's better to underestimate the RCV_MSS rather than overestimate.
 431 * Overestimations make us ACKing less frequently than needed.
 432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 433 */
 434void tcp_initialize_rcv_mss(struct sock *sk)
 435{
 436	const struct tcp_sock *tp = tcp_sk(sk);
 437	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 438
 439	hint = min(hint, tp->rcv_wnd / 2);
 440	hint = min(hint, TCP_MSS_DEFAULT);
 441	hint = max(hint, TCP_MIN_MSS);
 442
 443	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 444}
 445EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 446
 447/* Receiver "autotuning" code.
 448 *
 449 * The algorithm for RTT estimation w/o timestamps is based on
 450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 452 *
 453 * More detail on this code can be found at
 454 * <http://staff.psc.edu/jheffner/>,
 455 * though this reference is out of date.  A new paper
 456 * is pending.
 457 */
 458static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 459{
 460	u32 new_sample = tp->rcv_rtt_est.rtt;
 461	long m = sample;
 462
 463	if (m == 0)
 464		m = 1;
 465
 466	if (new_sample != 0) {
 467		/* If we sample in larger samples in the non-timestamp
 468		 * case, we could grossly overestimate the RTT especially
 469		 * with chatty applications or bulk transfer apps which
 470		 * are stalled on filesystem I/O.
 471		 *
 472		 * Also, since we are only going for a minimum in the
 473		 * non-timestamp case, we do not smooth things out
 474		 * else with timestamps disabled convergence takes too
 475		 * long.
 476		 */
 477		if (!win_dep) {
 478			m -= (new_sample >> 3);
 479			new_sample += m;
 480		} else {
 481			m <<= 3;
 482			if (m < new_sample)
 483				new_sample = m;
 484		}
 485	} else {
 486		/* No previous measure. */
 487		new_sample = m << 3;
 488	}
 489
 490	if (tp->rcv_rtt_est.rtt != new_sample)
 491		tp->rcv_rtt_est.rtt = new_sample;
 492}
 493
 494static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 495{
 
 
 496	if (tp->rcv_rtt_est.time == 0)
 497		goto new_measure;
 498	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 499		return;
 500	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 
 
 
 501
 502new_measure:
 503	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 504	tp->rcv_rtt_est.time = tcp_time_stamp;
 505}
 506
 507static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 508					  const struct sk_buff *skb)
 509{
 510	struct tcp_sock *tp = tcp_sk(sk);
 511	if (tp->rx_opt.rcv_tsecr &&
 512	    (TCP_SKB_CB(skb)->end_seq -
 513	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 514		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 515}
 516
 517/*
 518 * This function should be called every time data is copied to user space.
 519 * It calculates the appropriate TCP receive buffer space.
 520 */
 521void tcp_rcv_space_adjust(struct sock *sk)
 522{
 523	struct tcp_sock *tp = tcp_sk(sk);
 
 524	int time;
 525	int space;
 526
 527	if (tp->rcvq_space.time == 0)
 528		goto new_measure;
 529
 530	time = tcp_time_stamp - tp->rcvq_space.time;
 531	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 
 532		return;
 533
 534	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 
 
 
 
 
 
 
 
 
 
 
 
 535
 536	space = max(tp->rcvq_space.space, space);
 
 
 
 537
 538	if (tp->rcvq_space.space != space) {
 539		int rcvmem;
 
 
 540
 541		tp->rcvq_space.space = space;
 
 
 
 542
 543		if (sysctl_tcp_moderate_rcvbuf &&
 544		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 545			int new_clamp = space;
 546
 547			/* Receive space grows, normalize in order to
 548			 * take into account packet headers and sk_buff
 549			 * structure overhead.
 550			 */
 551			space /= tp->advmss;
 552			if (!space)
 553				space = 1;
 554			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 555			while (tcp_win_from_space(rcvmem) < tp->advmss)
 556				rcvmem += 128;
 557			space *= rcvmem;
 558			space = min(space, sysctl_tcp_rmem[2]);
 559			if (space > sk->sk_rcvbuf) {
 560				sk->sk_rcvbuf = space;
 561
 562				/* Make the window clamp follow along.  */
 563				tp->window_clamp = new_clamp;
 564			}
 565		}
 566	}
 
 567
 568new_measure:
 569	tp->rcvq_space.seq = tp->copied_seq;
 570	tp->rcvq_space.time = tcp_time_stamp;
 571}
 572
 573/* There is something which you must keep in mind when you analyze the
 574 * behavior of the tp->ato delayed ack timeout interval.  When a
 575 * connection starts up, we want to ack as quickly as possible.  The
 576 * problem is that "good" TCP's do slow start at the beginning of data
 577 * transmission.  The means that until we send the first few ACK's the
 578 * sender will sit on his end and only queue most of his data, because
 579 * he can only send snd_cwnd unacked packets at any given time.  For
 580 * each ACK we send, he increments snd_cwnd and transmits more of his
 581 * queue.  -DaveM
 582 */
 583static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 584{
 585	struct tcp_sock *tp = tcp_sk(sk);
 586	struct inet_connection_sock *icsk = inet_csk(sk);
 587	u32 now;
 588
 589	inet_csk_schedule_ack(sk);
 590
 591	tcp_measure_rcv_mss(sk, skb);
 592
 593	tcp_rcv_rtt_measure(tp);
 594
 595	now = tcp_time_stamp;
 596
 597	if (!icsk->icsk_ack.ato) {
 598		/* The _first_ data packet received, initialize
 599		 * delayed ACK engine.
 600		 */
 601		tcp_incr_quickack(sk);
 602		icsk->icsk_ack.ato = TCP_ATO_MIN;
 603	} else {
 604		int m = now - icsk->icsk_ack.lrcvtime;
 605
 606		if (m <= TCP_ATO_MIN / 2) {
 607			/* The fastest case is the first. */
 608			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 609		} else if (m < icsk->icsk_ack.ato) {
 610			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 611			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 612				icsk->icsk_ack.ato = icsk->icsk_rto;
 613		} else if (m > icsk->icsk_rto) {
 614			/* Too long gap. Apparently sender failed to
 615			 * restart window, so that we send ACKs quickly.
 616			 */
 617			tcp_incr_quickack(sk);
 618			sk_mem_reclaim(sk);
 619		}
 620	}
 621	icsk->icsk_ack.lrcvtime = now;
 622
 623	TCP_ECN_check_ce(tp, skb);
 624
 625	if (skb->len >= 128)
 626		tcp_grow_window(sk, skb);
 627}
 628
 629/* Called to compute a smoothed rtt estimate. The data fed to this
 630 * routine either comes from timestamps, or from segments that were
 631 * known _not_ to have been retransmitted [see Karn/Partridge
 632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 633 * piece by Van Jacobson.
 634 * NOTE: the next three routines used to be one big routine.
 635 * To save cycles in the RFC 1323 implementation it was better to break
 636 * it up into three procedures. -- erics
 637 */
 638static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 639{
 640	struct tcp_sock *tp = tcp_sk(sk);
 641	long m = mrtt; /* RTT */
 
 642
 643	/*	The following amusing code comes from Jacobson's
 644	 *	article in SIGCOMM '88.  Note that rtt and mdev
 645	 *	are scaled versions of rtt and mean deviation.
 646	 *	This is designed to be as fast as possible
 647	 *	m stands for "measurement".
 648	 *
 649	 *	On a 1990 paper the rto value is changed to:
 650	 *	RTO = rtt + 4 * mdev
 651	 *
 652	 * Funny. This algorithm seems to be very broken.
 653	 * These formulae increase RTO, when it should be decreased, increase
 654	 * too slowly, when it should be increased quickly, decrease too quickly
 655	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 656	 * does not matter how to _calculate_ it. Seems, it was trap
 657	 * that VJ failed to avoid. 8)
 658	 */
 659	if (m == 0)
 660		m = 1;
 661	if (tp->srtt != 0) {
 662		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
 663		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 664		if (m < 0) {
 665			m = -m;		/* m is now abs(error) */
 666			m -= (tp->mdev >> 2);   /* similar update on mdev */
 667			/* This is similar to one of Eifel findings.
 668			 * Eifel blocks mdev updates when rtt decreases.
 669			 * This solution is a bit different: we use finer gain
 670			 * for mdev in this case (alpha*beta).
 671			 * Like Eifel it also prevents growth of rto,
 672			 * but also it limits too fast rto decreases,
 673			 * happening in pure Eifel.
 674			 */
 675			if (m > 0)
 676				m >>= 3;
 677		} else {
 678			m -= (tp->mdev >> 2);   /* similar update on mdev */
 679		}
 680		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
 681		if (tp->mdev > tp->mdev_max) {
 682			tp->mdev_max = tp->mdev;
 683			if (tp->mdev_max > tp->rttvar)
 684				tp->rttvar = tp->mdev_max;
 685		}
 686		if (after(tp->snd_una, tp->rtt_seq)) {
 687			if (tp->mdev_max < tp->rttvar)
 688				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 689			tp->rtt_seq = tp->snd_nxt;
 690			tp->mdev_max = tcp_rto_min(sk);
 
 
 691		}
 692	} else {
 693		/* no previous measure. */
 694		tp->srtt = m << 3;	/* take the measured time to be rtt */
 695		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
 696		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 
 697		tp->rtt_seq = tp->snd_nxt;
 
 
 698	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 702 * routine referred to above.
 703 */
 704static inline void tcp_set_rto(struct sock *sk)
 705{
 706	const struct tcp_sock *tp = tcp_sk(sk);
 707	/* Old crap is replaced with new one. 8)
 708	 *
 709	 * More seriously:
 710	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 711	 *    It cannot be less due to utterly erratic ACK generation made
 712	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 713	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 714	 *    is invisible. Actually, Linux-2.4 also generates erratic
 715	 *    ACKs in some circumstances.
 716	 */
 717	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 718
 719	/* 2. Fixups made earlier cannot be right.
 720	 *    If we do not estimate RTO correctly without them,
 721	 *    all the algo is pure shit and should be replaced
 722	 *    with correct one. It is exactly, which we pretend to do.
 723	 */
 724
 725	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 726	 * guarantees that rto is higher.
 727	 */
 728	tcp_bound_rto(sk);
 729}
 730
 731/* Save metrics learned by this TCP session.
 732   This function is called only, when TCP finishes successfully
 733   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 734 */
 735void tcp_update_metrics(struct sock *sk)
 736{
 737	struct tcp_sock *tp = tcp_sk(sk);
 738	struct dst_entry *dst = __sk_dst_get(sk);
 739
 740	if (sysctl_tcp_nometrics_save)
 741		return;
 742
 743	dst_confirm(dst);
 744
 745	if (dst && (dst->flags & DST_HOST)) {
 746		const struct inet_connection_sock *icsk = inet_csk(sk);
 747		int m;
 748		unsigned long rtt;
 749
 750		if (icsk->icsk_backoff || !tp->srtt) {
 751			/* This session failed to estimate rtt. Why?
 752			 * Probably, no packets returned in time.
 753			 * Reset our results.
 754			 */
 755			if (!(dst_metric_locked(dst, RTAX_RTT)))
 756				dst_metric_set(dst, RTAX_RTT, 0);
 757			return;
 758		}
 759
 760		rtt = dst_metric_rtt(dst, RTAX_RTT);
 761		m = rtt - tp->srtt;
 762
 763		/* If newly calculated rtt larger than stored one,
 764		 * store new one. Otherwise, use EWMA. Remember,
 765		 * rtt overestimation is always better than underestimation.
 766		 */
 767		if (!(dst_metric_locked(dst, RTAX_RTT))) {
 768			if (m <= 0)
 769				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
 770			else
 771				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
 772		}
 773
 774		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
 775			unsigned long var;
 776			if (m < 0)
 777				m = -m;
 778
 779			/* Scale deviation to rttvar fixed point */
 780			m >>= 1;
 781			if (m < tp->mdev)
 782				m = tp->mdev;
 783
 784			var = dst_metric_rtt(dst, RTAX_RTTVAR);
 785			if (m >= var)
 786				var = m;
 787			else
 788				var -= (var - m) >> 2;
 789
 790			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
 791		}
 792
 793		if (tcp_in_initial_slowstart(tp)) {
 794			/* Slow start still did not finish. */
 795			if (dst_metric(dst, RTAX_SSTHRESH) &&
 796			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 797			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
 798				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
 799			if (!dst_metric_locked(dst, RTAX_CWND) &&
 800			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
 801				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
 802		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
 803			   icsk->icsk_ca_state == TCP_CA_Open) {
 804			/* Cong. avoidance phase, cwnd is reliable. */
 805			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
 806				dst_metric_set(dst, RTAX_SSTHRESH,
 807					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
 808			if (!dst_metric_locked(dst, RTAX_CWND))
 809				dst_metric_set(dst, RTAX_CWND,
 810					       (dst_metric(dst, RTAX_CWND) +
 811						tp->snd_cwnd) >> 1);
 812		} else {
 813			/* Else slow start did not finish, cwnd is non-sense,
 814			   ssthresh may be also invalid.
 815			 */
 816			if (!dst_metric_locked(dst, RTAX_CWND))
 817				dst_metric_set(dst, RTAX_CWND,
 818					       (dst_metric(dst, RTAX_CWND) +
 819						tp->snd_ssthresh) >> 1);
 820			if (dst_metric(dst, RTAX_SSTHRESH) &&
 821			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 822			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
 823				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
 824		}
 825
 826		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
 827			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
 828			    tp->reordering != sysctl_tcp_reordering)
 829				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
 830		}
 831	}
 832}
 833
 834__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 835{
 836	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 837
 838	if (!cwnd)
 839		cwnd = TCP_INIT_CWND;
 840	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 841}
 842
 843/* Set slow start threshold and cwnd not falling to slow start */
 844void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
 845{
 846	struct tcp_sock *tp = tcp_sk(sk);
 847	const struct inet_connection_sock *icsk = inet_csk(sk);
 848
 849	tp->prior_ssthresh = 0;
 850	tp->bytes_acked = 0;
 851	if (icsk->icsk_ca_state < TCP_CA_CWR) {
 852		tp->undo_marker = 0;
 853		if (set_ssthresh)
 854			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
 855		tp->snd_cwnd = min(tp->snd_cwnd,
 856				   tcp_packets_in_flight(tp) + 1U);
 857		tp->snd_cwnd_cnt = 0;
 858		tp->high_seq = tp->snd_nxt;
 859		tp->snd_cwnd_stamp = tcp_time_stamp;
 860		TCP_ECN_queue_cwr(tp);
 861
 862		tcp_set_ca_state(sk, TCP_CA_CWR);
 863	}
 864}
 865
 866/*
 867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 868 * disables it when reordering is detected
 869 */
 870static void tcp_disable_fack(struct tcp_sock *tp)
 871{
 872	/* RFC3517 uses different metric in lost marker => reset on change */
 873	if (tcp_is_fack(tp))
 874		tp->lost_skb_hint = NULL;
 875	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 876}
 877
 878/* Take a notice that peer is sending D-SACKs */
 879static void tcp_dsack_seen(struct tcp_sock *tp)
 880{
 881	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 
 
 882}
 883
 884/* Initialize metrics on socket. */
 885
 886static void tcp_init_metrics(struct sock *sk)
 
 
 
 887{
 888	struct tcp_sock *tp = tcp_sk(sk);
 889	struct dst_entry *dst = __sk_dst_get(sk);
 
 890
 891	if (dst == NULL)
 892		goto reset;
 893
 894	dst_confirm(dst);
 895
 896	if (dst_metric_locked(dst, RTAX_CWND))
 897		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
 898	if (dst_metric(dst, RTAX_SSTHRESH)) {
 899		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
 900		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
 901			tp->snd_ssthresh = tp->snd_cwnd_clamp;
 902	} else {
 903		/* ssthresh may have been reduced unnecessarily during.
 904		 * 3WHS. Restore it back to its initial default.
 905		 */
 906		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 907	}
 908	if (dst_metric(dst, RTAX_REORDERING) &&
 909	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
 910		tcp_disable_fack(tp);
 911		tcp_disable_early_retrans(tp);
 912		tp->reordering = dst_metric(dst, RTAX_REORDERING);
 913	}
 914
 915	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
 916		goto reset;
 917
 918	/* Initial rtt is determined from SYN,SYN-ACK.
 919	 * The segment is small and rtt may appear much
 920	 * less than real one. Use per-dst memory
 921	 * to make it more realistic.
 922	 *
 923	 * A bit of theory. RTT is time passed after "normal" sized packet
 924	 * is sent until it is ACKed. In normal circumstances sending small
 925	 * packets force peer to delay ACKs and calculation is correct too.
 926	 * The algorithm is adaptive and, provided we follow specs, it
 927	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
 928	 * tricks sort of "quick acks" for time long enough to decrease RTT
 929	 * to low value, and then abruptly stops to do it and starts to delay
 930	 * ACKs, wait for troubles.
 931	 */
 932	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
 933		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
 934		tp->rtt_seq = tp->snd_nxt;
 935	}
 936	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
 937		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
 938		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 939	}
 940	tcp_set_rto(sk);
 941reset:
 942	if (tp->srtt == 0) {
 943		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
 944		 * 3WHS. This is most likely due to retransmission,
 945		 * including spurious one. Reset the RTO back to 3secs
 946		 * from the more aggressive 1sec to avoid more spurious
 947		 * retransmission.
 948		 */
 949		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
 950		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
 951	}
 952	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
 953	 * retransmitted. In light of RFC6298 more aggressive 1sec
 954	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
 955	 * retransmission has occurred.
 956	 */
 957	if (tp->total_retrans > 1)
 958		tp->snd_cwnd = 1;
 959	else
 960		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
 961	tp->snd_cwnd_stamp = tcp_time_stamp;
 962}
 963
 964static void tcp_update_reordering(struct sock *sk, const int metric,
 965				  const int ts)
 966{
 967	struct tcp_sock *tp = tcp_sk(sk);
 968	if (metric > tp->reordering) {
 969		int mib_idx;
 970
 971		tp->reordering = min(TCP_MAX_REORDERING, metric);
 972
 973		/* This exciting event is worth to be remembered. 8) */
 974		if (ts)
 975			mib_idx = LINUX_MIB_TCPTSREORDER;
 976		else if (tcp_is_reno(tp))
 977			mib_idx = LINUX_MIB_TCPRENOREORDER;
 978		else if (tcp_is_fack(tp))
 979			mib_idx = LINUX_MIB_TCPFACKREORDER;
 980		else
 981			mib_idx = LINUX_MIB_TCPSACKREORDER;
 982
 983		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 984#if FASTRETRANS_DEBUG > 1
 985		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 986			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 987			 tp->reordering,
 988			 tp->fackets_out,
 989			 tp->sacked_out,
 990			 tp->undo_marker ? tp->undo_retrans : 0);
 991#endif
 992		tcp_disable_fack(tp);
 
 993	}
 994
 995	if (metric > 0)
 996		tcp_disable_early_retrans(tp);
 
 
 997}
 998
 999/* This must be called before lost_out is incremented */
1000static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002	if ((tp->retransmit_skb_hint == NULL) ||
1003	    before(TCP_SKB_CB(skb)->seq,
1004		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005		tp->retransmit_skb_hint = skb;
 
1006
1007	if (!tp->lost_out ||
1008	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
 
 
 
 
 
 
 
1010}
1011
1012static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013{
1014	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015		tcp_verify_retransmit_hint(tp, skb);
1016
1017		tp->lost_out += tcp_skb_pcount(skb);
 
1018		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019	}
1020}
1021
1022static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023					    struct sk_buff *skb)
1024{
1025	tcp_verify_retransmit_hint(tp, skb);
1026
 
1027	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028		tp->lost_out += tcp_skb_pcount(skb);
1029		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030	}
1031}
1032
1033/* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag  InFlight	Description
1041 * 0	1		- orig segment is in flight.
1042 * S	0		- nothing flies, orig reached receiver.
1043 * L	0		- nothing flies, orig lost by net.
1044 * R	2		- both orig and retransmit are in flight.
1045 * L|R	1		- orig is lost, retransmit is in flight.
1046 * S|R  1		- orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 *  but it is equivalent to plain S and code short-curcuits it to S.
1049 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054 * 3. Loss detection event of two flavors:
1055 *	A. Scoreboard estimator decided the packet is lost.
1056 *	   A'. Reno "three dupacks" marks head of queue lost.
1057 *	   A''. Its FACK modification, head until snd.fack is lost.
1058 *	B. SACK arrives sacking SND.NXT at the moment, when the
1059 *	   segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 *    ever retransmitted -> reordering. Alas, we cannot use it
1073 *    when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 *    for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment.  Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 *         <- outs wnd ->                          <- wrapzone ->
1102 *         u     e      n                         u_w   e_w  s n_w
1103 *         |     |      |                          |     |   |  |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->|                                           |<--------...
1106 * ...---- >2^31 ------>|                                    |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116 * again, D-SACK block must not to go across snd_una (for the same reason as
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1126 */
1127static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128				   u32 start_seq, u32 end_seq)
1129{
1130	/* Too far in future, or reversed (interpretation is ambiguous) */
1131	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132		return false;
1133
1134	/* Nasty start_seq wrap-around check (see comments above) */
1135	if (!before(start_seq, tp->snd_nxt))
1136		return false;
1137
1138	/* In outstanding window? ...This is valid exit for D-SACKs too.
1139	 * start_seq == snd_una is non-sensical (see comments above)
1140	 */
1141	if (after(start_seq, tp->snd_una))
1142		return true;
1143
1144	if (!is_dsack || !tp->undo_marker)
1145		return false;
1146
1147	/* ...Then it's D-SACK, and must reside below snd_una completely */
1148	if (after(end_seq, tp->snd_una))
1149		return false;
1150
1151	if (!before(start_seq, tp->undo_marker))
1152		return true;
1153
1154	/* Too old */
1155	if (!after(end_seq, tp->undo_marker))
1156		return false;
1157
1158	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1159	 *   start_seq < undo_marker and end_seq >= undo_marker.
1160	 */
1161	return !before(start_seq, end_seq - tp->max_window);
1162}
1163
1164/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1166 * for reordering! Ugly, but should help.
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1172 */
1173static void tcp_mark_lost_retrans(struct sock *sk)
1174{
1175	const struct inet_connection_sock *icsk = inet_csk(sk);
1176	struct tcp_sock *tp = tcp_sk(sk);
1177	struct sk_buff *skb;
1178	int cnt = 0;
1179	u32 new_low_seq = tp->snd_nxt;
1180	u32 received_upto = tcp_highest_sack_seq(tp);
1181
1182	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183	    !after(received_upto, tp->lost_retrans_low) ||
1184	    icsk->icsk_ca_state != TCP_CA_Recovery)
1185		return;
1186
1187	tcp_for_write_queue(skb, sk) {
1188		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190		if (skb == tcp_send_head(sk))
1191			break;
1192		if (cnt == tp->retrans_out)
1193			break;
1194		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195			continue;
1196
1197		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198			continue;
1199
1200		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1201		 * constraint here (see above) but figuring out that at
1202		 * least tp->reordering SACK blocks reside between ack_seq
1203		 * and received_upto is not easy task to do cheaply with
1204		 * the available datastructures.
1205		 *
1206		 * Whether FACK should check here for tp->reordering segs
1207		 * in-between one could argue for either way (it would be
1208		 * rather simple to implement as we could count fack_count
1209		 * during the walk and do tp->fackets_out - fack_count).
1210		 */
1211		if (after(received_upto, ack_seq)) {
1212			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213			tp->retrans_out -= tcp_skb_pcount(skb);
1214
1215			tcp_skb_mark_lost_uncond_verify(tp, skb);
1216			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217		} else {
1218			if (before(ack_seq, new_low_seq))
1219				new_low_seq = ack_seq;
1220			cnt += tcp_skb_pcount(skb);
1221		}
1222	}
1223
1224	if (tp->retrans_out)
1225		tp->lost_retrans_low = new_low_seq;
1226}
1227
1228static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229			    struct tcp_sack_block_wire *sp, int num_sacks,
1230			    u32 prior_snd_una)
1231{
1232	struct tcp_sock *tp = tcp_sk(sk);
1233	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235	bool dup_sack = false;
1236
1237	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238		dup_sack = true;
1239		tcp_dsack_seen(tp);
1240		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241	} else if (num_sacks > 1) {
1242		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244
1245		if (!after(end_seq_0, end_seq_1) &&
1246		    !before(start_seq_0, start_seq_1)) {
1247			dup_sack = true;
1248			tcp_dsack_seen(tp);
1249			NET_INC_STATS_BH(sock_net(sk),
1250					LINUX_MIB_TCPDSACKOFORECV);
1251		}
1252	}
1253
1254	/* D-SACK for already forgotten data... Do dumb counting. */
1255	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256	    !after(end_seq_0, prior_snd_una) &&
1257	    after(end_seq_0, tp->undo_marker))
1258		tp->undo_retrans--;
1259
1260	return dup_sack;
1261}
1262
1263struct tcp_sacktag_state {
1264	int reord;
1265	int fack_count;
1266	int flag;
 
 
 
 
 
 
 
1267};
1268
1269/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
1274 *
1275 * FIXME: this could be merged to shift decision code
1276 */
1277static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278				  u32 start_seq, u32 end_seq)
1279{
1280	int err;
1281	bool in_sack;
1282	unsigned int pkt_len;
1283	unsigned int mss;
1284
1285	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290		mss = tcp_skb_mss(skb);
1291		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293		if (!in_sack) {
1294			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295			if (pkt_len < mss)
1296				pkt_len = mss;
1297		} else {
1298			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299			if (pkt_len < mss)
1300				return -EINVAL;
1301		}
1302
1303		/* Round if necessary so that SACKs cover only full MSSes
1304		 * and/or the remaining small portion (if present)
1305		 */
1306		if (pkt_len > mss) {
1307			unsigned int new_len = (pkt_len / mss) * mss;
1308			if (!in_sack && new_len < pkt_len) {
1309				new_len += mss;
1310				if (new_len > skb->len)
1311					return 0;
1312			}
1313			pkt_len = new_len;
1314		}
1315		err = tcp_fragment(sk, skb, pkt_len, mss);
 
 
 
 
 
1316		if (err < 0)
1317			return err;
1318	}
1319
1320	return in_sack;
1321}
1322
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325			  struct tcp_sacktag_state *state, u8 sacked,
1326			  u32 start_seq, u32 end_seq,
1327			  bool dup_sack, int pcount)
 
1328{
1329	struct tcp_sock *tp = tcp_sk(sk);
1330	int fack_count = state->fack_count;
1331
1332	/* Account D-SACK for retransmitted packet. */
1333	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334		if (tp->undo_marker && tp->undo_retrans &&
1335		    after(end_seq, tp->undo_marker))
1336			tp->undo_retrans--;
1337		if (sacked & TCPCB_SACKED_ACKED)
1338			state->reord = min(fack_count, state->reord);
 
1339	}
1340
1341	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342	if (!after(end_seq, tp->snd_una))
1343		return sacked;
1344
1345	if (!(sacked & TCPCB_SACKED_ACKED)) {
 
 
1346		if (sacked & TCPCB_SACKED_RETRANS) {
1347			/* If the segment is not tagged as lost,
1348			 * we do not clear RETRANS, believing
1349			 * that retransmission is still in flight.
1350			 */
1351			if (sacked & TCPCB_LOST) {
1352				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353				tp->lost_out -= pcount;
1354				tp->retrans_out -= pcount;
1355			}
1356		} else {
1357			if (!(sacked & TCPCB_RETRANS)) {
1358				/* New sack for not retransmitted frame,
1359				 * which was in hole. It is reordering.
1360				 */
1361				if (before(start_seq,
1362					   tcp_highest_sack_seq(tp)))
1363					state->reord = min(fack_count,
1364							   state->reord);
1365
1366				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367				if (!after(end_seq, tp->frto_highmark))
1368					state->flag |= FLAG_ONLY_ORIG_SACKED;
 
 
1369			}
1370
1371			if (sacked & TCPCB_LOST) {
1372				sacked &= ~TCPCB_LOST;
1373				tp->lost_out -= pcount;
1374			}
1375		}
1376
1377		sacked |= TCPCB_SACKED_ACKED;
1378		state->flag |= FLAG_DATA_SACKED;
1379		tp->sacked_out += pcount;
1380
1381		fack_count += pcount;
1382
1383		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386			tp->lost_cnt_hint += pcount;
1387
1388		if (fack_count > tp->fackets_out)
1389			tp->fackets_out = fack_count;
1390	}
1391
1392	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1393	 * frames and clear it. undo_retrans is decreased above, L|R frames
1394	 * are accounted above as well.
1395	 */
1396	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397		sacked &= ~TCPCB_SACKED_RETRANS;
1398		tp->retrans_out -= pcount;
1399	}
1400
1401	return sacked;
1402}
1403
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
 
1408			    struct tcp_sacktag_state *state,
1409			    unsigned int pcount, int shifted, int mss,
1410			    bool dup_sack)
1411{
1412	struct tcp_sock *tp = tcp_sk(sk);
1413	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1415	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1416
1417	BUG_ON(!pcount);
1418
1419	/* Adjust counters and hints for the newly sacked sequence
1420	 * range but discard the return value since prev is already
1421	 * marked. We must tag the range first because the seq
1422	 * advancement below implicitly advances
1423	 * tcp_highest_sack_seq() when skb is highest_sack.
1424	 */
1425	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426			start_seq, end_seq, dup_sack, pcount);
 
 
1427
1428	if (skb == tp->lost_skb_hint)
1429		tp->lost_cnt_hint += pcount;
1430
1431	TCP_SKB_CB(prev)->end_seq += shifted;
1432	TCP_SKB_CB(skb)->seq += shifted;
1433
1434	skb_shinfo(prev)->gso_segs += pcount;
1435	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436	skb_shinfo(skb)->gso_segs -= pcount;
1437
1438	/* When we're adding to gso_segs == 1, gso_size will be zero,
1439	 * in theory this shouldn't be necessary but as long as DSACK
1440	 * code can come after this skb later on it's better to keep
1441	 * setting gso_size to something.
1442	 */
1443	if (!skb_shinfo(prev)->gso_size) {
1444		skb_shinfo(prev)->gso_size = mss;
1445		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446	}
1447
1448	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449	if (skb_shinfo(skb)->gso_segs <= 1) {
1450		skb_shinfo(skb)->gso_size = 0;
1451		skb_shinfo(skb)->gso_type = 0;
1452	}
1453
1454	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457	if (skb->len > 0) {
1458		BUG_ON(!tcp_skb_pcount(skb));
1459		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460		return false;
1461	}
1462
1463	/* Whole SKB was eaten :-) */
1464
1465	if (skb == tp->retransmit_skb_hint)
1466		tp->retransmit_skb_hint = prev;
1467	if (skb == tp->scoreboard_skb_hint)
1468		tp->scoreboard_skb_hint = prev;
1469	if (skb == tp->lost_skb_hint) {
1470		tp->lost_skb_hint = prev;
1471		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472	}
1473
1474	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
 
 
 
 
1475	if (skb == tcp_highest_sack(sk))
1476		tcp_advance_highest_sack(sk, skb);
1477
1478	tcp_unlink_write_queue(skb, sk);
1479	sk_wmem_free_skb(sk, skb);
 
1480
1481	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
 
 
1482
1483	return true;
1484}
1485
1486/* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
1489static int tcp_skb_seglen(const struct sk_buff *skb)
1490{
1491	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492}
1493
1494/* Shifting pages past head area doesn't work */
1495static int skb_can_shift(const struct sk_buff *skb)
1496{
1497	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498}
1499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500/* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504					  struct tcp_sacktag_state *state,
1505					  u32 start_seq, u32 end_seq,
1506					  bool dup_sack)
1507{
1508	struct tcp_sock *tp = tcp_sk(sk);
1509	struct sk_buff *prev;
1510	int mss;
1511	int pcount = 0;
1512	int len;
1513	int in_sack;
1514
1515	if (!sk_can_gso(sk))
1516		goto fallback;
1517
1518	/* Normally R but no L won't result in plain S */
1519	if (!dup_sack &&
1520	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521		goto fallback;
1522	if (!skb_can_shift(skb))
1523		goto fallback;
1524	/* This frame is about to be dropped (was ACKed). */
1525	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526		goto fallback;
1527
1528	/* Can only happen with delayed DSACK + discard craziness */
1529	if (unlikely(skb == tcp_write_queue_head(sk)))
 
1530		goto fallback;
1531	prev = tcp_write_queue_prev(sk, skb);
1532
1533	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534		goto fallback;
1535
 
 
 
1536	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539	if (in_sack) {
1540		len = skb->len;
1541		pcount = tcp_skb_pcount(skb);
1542		mss = tcp_skb_seglen(skb);
1543
1544		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545		 * drop this restriction as unnecessary
1546		 */
1547		if (mss != tcp_skb_seglen(prev))
1548			goto fallback;
1549	} else {
1550		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551			goto noop;
1552		/* CHECKME: This is non-MSS split case only?, this will
1553		 * cause skipped skbs due to advancing loop btw, original
1554		 * has that feature too
1555		 */
1556		if (tcp_skb_pcount(skb) <= 1)
1557			goto noop;
1558
1559		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560		if (!in_sack) {
1561			/* TODO: head merge to next could be attempted here
1562			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563			 * though it might not be worth of the additional hassle
1564			 *
1565			 * ...we can probably just fallback to what was done
1566			 * previously. We could try merging non-SACKed ones
1567			 * as well but it probably isn't going to buy off
1568			 * because later SACKs might again split them, and
1569			 * it would make skb timestamp tracking considerably
1570			 * harder problem.
1571			 */
1572			goto fallback;
1573		}
1574
1575		len = end_seq - TCP_SKB_CB(skb)->seq;
1576		BUG_ON(len < 0);
1577		BUG_ON(len > skb->len);
1578
1579		/* MSS boundaries should be honoured or else pcount will
1580		 * severely break even though it makes things bit trickier.
1581		 * Optimize common case to avoid most of the divides
1582		 */
1583		mss = tcp_skb_mss(skb);
1584
1585		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586		 * drop this restriction as unnecessary
1587		 */
1588		if (mss != tcp_skb_seglen(prev))
1589			goto fallback;
1590
1591		if (len == mss) {
1592			pcount = 1;
1593		} else if (len < mss) {
1594			goto noop;
1595		} else {
1596			pcount = len / mss;
1597			len = pcount * mss;
1598		}
1599	}
1600
1601	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603		goto fallback;
1604
1605	if (!skb_shift(prev, skb, len))
1606		goto fallback;
1607	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608		goto out;
1609
1610	/* Hole filled allows collapsing with the next as well, this is very
1611	 * useful when hole on every nth skb pattern happens
1612	 */
1613	if (prev == tcp_write_queue_tail(sk))
 
1614		goto out;
1615	skb = tcp_write_queue_next(sk, prev);
1616
1617	if (!skb_can_shift(skb) ||
1618	    (skb == tcp_send_head(sk)) ||
1619	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620	    (mss != tcp_skb_seglen(skb)))
1621		goto out;
1622
1623	len = skb->len;
1624	if (skb_shift(prev, skb, len)) {
1625		pcount += tcp_skb_pcount(skb);
1626		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627	}
1628
1629out:
1630	state->fack_count += pcount;
1631	return prev;
1632
1633noop:
1634	return skb;
1635
1636fallback:
1637	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638	return NULL;
1639}
1640
1641static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642					struct tcp_sack_block *next_dup,
1643					struct tcp_sacktag_state *state,
1644					u32 start_seq, u32 end_seq,
1645					bool dup_sack_in)
1646{
1647	struct tcp_sock *tp = tcp_sk(sk);
1648	struct sk_buff *tmp;
1649
1650	tcp_for_write_queue_from(skb, sk) {
1651		int in_sack = 0;
1652		bool dup_sack = dup_sack_in;
1653
1654		if (skb == tcp_send_head(sk))
1655			break;
1656
1657		/* queue is in-order => we can short-circuit the walk early */
1658		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659			break;
1660
1661		if ((next_dup != NULL) &&
1662		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663			in_sack = tcp_match_skb_to_sack(sk, skb,
1664							next_dup->start_seq,
1665							next_dup->end_seq);
1666			if (in_sack > 0)
1667				dup_sack = true;
1668		}
1669
1670		/* skb reference here is a bit tricky to get right, since
1671		 * shifting can eat and free both this skb and the next,
1672		 * so not even _safe variant of the loop is enough.
1673		 */
1674		if (in_sack <= 0) {
1675			tmp = tcp_shift_skb_data(sk, skb, state,
1676						 start_seq, end_seq, dup_sack);
1677			if (tmp != NULL) {
1678				if (tmp != skb) {
1679					skb = tmp;
1680					continue;
1681				}
1682
1683				in_sack = 0;
1684			} else {
1685				in_sack = tcp_match_skb_to_sack(sk, skb,
1686								start_seq,
1687								end_seq);
1688			}
1689		}
1690
1691		if (unlikely(in_sack < 0))
1692			break;
1693
1694		if (in_sack) {
1695			TCP_SKB_CB(skb)->sacked =
1696				tcp_sacktag_one(sk,
1697						state,
1698						TCP_SKB_CB(skb)->sacked,
1699						TCP_SKB_CB(skb)->seq,
1700						TCP_SKB_CB(skb)->end_seq,
1701						dup_sack,
1702						tcp_skb_pcount(skb));
 
 
 
 
1703
1704			if (!before(TCP_SKB_CB(skb)->seq,
1705				    tcp_highest_sack_seq(tp)))
1706				tcp_advance_highest_sack(sk, skb);
1707		}
 
 
 
 
 
 
 
 
1708
1709		state->fack_count += tcp_skb_pcount(skb);
 
 
 
 
 
 
 
 
 
 
 
1710	}
1711	return skb;
1712}
1713
1714/* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718					struct tcp_sacktag_state *state,
1719					u32 skip_to_seq)
1720{
1721	tcp_for_write_queue_from(skb, sk) {
1722		if (skb == tcp_send_head(sk))
1723			break;
1724
1725		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726			break;
1727
1728		state->fack_count += tcp_skb_pcount(skb);
1729	}
1730	return skb;
1731}
1732
1733static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734						struct sock *sk,
1735						struct tcp_sack_block *next_dup,
1736						struct tcp_sacktag_state *state,
1737						u32 skip_to_seq)
1738{
1739	if (next_dup == NULL)
1740		return skb;
1741
1742	if (before(next_dup->start_seq, skip_to_seq)) {
1743		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745				       next_dup->start_seq, next_dup->end_seq,
1746				       1);
1747	}
1748
1749	return skb;
1750}
1751
1752static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753{
1754	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755}
1756
1757static int
1758tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759			u32 prior_snd_una)
1760{
1761	const struct inet_connection_sock *icsk = inet_csk(sk);
1762	struct tcp_sock *tp = tcp_sk(sk);
1763	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764				    TCP_SKB_CB(ack_skb)->sacked);
1765	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766	struct tcp_sack_block sp[TCP_NUM_SACKS];
1767	struct tcp_sack_block *cache;
1768	struct tcp_sacktag_state state;
1769	struct sk_buff *skb;
1770	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771	int used_sacks;
1772	bool found_dup_sack = false;
1773	int i, j;
1774	int first_sack_index;
1775
1776	state.flag = 0;
1777	state.reord = tp->packets_out;
1778
1779	if (!tp->sacked_out) {
1780		if (WARN_ON(tp->fackets_out))
1781			tp->fackets_out = 0;
1782		tcp_highest_sack_reset(sk);
1783	}
1784
1785	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786					 num_sacks, prior_snd_una);
1787	if (found_dup_sack)
1788		state.flag |= FLAG_DSACKING_ACK;
 
 
1789
1790	/* Eliminate too old ACKs, but take into
1791	 * account more or less fresh ones, they can
1792	 * contain valid SACK info.
1793	 */
1794	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795		return 0;
1796
1797	if (!tp->packets_out)
1798		goto out;
1799
1800	used_sacks = 0;
1801	first_sack_index = 0;
1802	for (i = 0; i < num_sacks; i++) {
1803		bool dup_sack = !i && found_dup_sack;
1804
1805		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808		if (!tcp_is_sackblock_valid(tp, dup_sack,
1809					    sp[used_sacks].start_seq,
1810					    sp[used_sacks].end_seq)) {
1811			int mib_idx;
1812
1813			if (dup_sack) {
1814				if (!tp->undo_marker)
1815					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816				else
1817					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818			} else {
1819				/* Don't count olds caused by ACK reordering */
1820				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821				    !after(sp[used_sacks].end_seq, tp->snd_una))
1822					continue;
1823				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824			}
1825
1826			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827			if (i == 0)
1828				first_sack_index = -1;
1829			continue;
1830		}
1831
1832		/* Ignore very old stuff early */
1833		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834			continue;
1835
1836		used_sacks++;
1837	}
1838
1839	/* order SACK blocks to allow in order walk of the retrans queue */
1840	for (i = used_sacks - 1; i > 0; i--) {
1841		for (j = 0; j < i; j++) {
1842			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843				swap(sp[j], sp[j + 1]);
1844
1845				/* Track where the first SACK block goes to */
1846				if (j == first_sack_index)
1847					first_sack_index = j + 1;
1848			}
1849		}
1850	}
1851
1852	skb = tcp_write_queue_head(sk);
1853	state.fack_count = 0;
1854	i = 0;
1855
1856	if (!tp->sacked_out) {
1857		/* It's already past, so skip checking against it */
1858		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859	} else {
1860		cache = tp->recv_sack_cache;
1861		/* Skip empty blocks in at head of the cache */
1862		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863		       !cache->end_seq)
1864			cache++;
1865	}
1866
1867	while (i < used_sacks) {
1868		u32 start_seq = sp[i].start_seq;
1869		u32 end_seq = sp[i].end_seq;
1870		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871		struct tcp_sack_block *next_dup = NULL;
1872
1873		if (found_dup_sack && ((i + 1) == first_sack_index))
1874			next_dup = &sp[i + 1];
1875
1876		/* Skip too early cached blocks */
1877		while (tcp_sack_cache_ok(tp, cache) &&
1878		       !before(start_seq, cache->end_seq))
1879			cache++;
1880
1881		/* Can skip some work by looking recv_sack_cache? */
1882		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883		    after(end_seq, cache->start_seq)) {
1884
1885			/* Head todo? */
1886			if (before(start_seq, cache->start_seq)) {
1887				skb = tcp_sacktag_skip(skb, sk, &state,
1888						       start_seq);
1889				skb = tcp_sacktag_walk(skb, sk, next_dup,
1890						       &state,
1891						       start_seq,
1892						       cache->start_seq,
1893						       dup_sack);
1894			}
1895
1896			/* Rest of the block already fully processed? */
1897			if (!after(end_seq, cache->end_seq))
1898				goto advance_sp;
1899
1900			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901						       &state,
1902						       cache->end_seq);
1903
1904			/* ...tail remains todo... */
1905			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906				/* ...but better entrypoint exists! */
1907				skb = tcp_highest_sack(sk);
1908				if (skb == NULL)
1909					break;
1910				state.fack_count = tp->fackets_out;
1911				cache++;
1912				goto walk;
1913			}
1914
1915			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916			/* Check overlap against next cached too (past this one already) */
1917			cache++;
1918			continue;
1919		}
1920
1921		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922			skb = tcp_highest_sack(sk);
1923			if (skb == NULL)
1924				break;
1925			state.fack_count = tp->fackets_out;
1926		}
1927		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929walk:
1930		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931				       start_seq, end_seq, dup_sack);
1932
1933advance_sp:
1934		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935		 * due to in-order walk
1936		 */
1937		if (after(end_seq, tp->frto_highmark))
1938			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940		i++;
1941	}
1942
1943	/* Clear the head of the cache sack blocks so we can skip it next time */
1944	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945		tp->recv_sack_cache[i].start_seq = 0;
1946		tp->recv_sack_cache[i].end_seq = 0;
1947	}
1948	for (j = 0; j < used_sacks; j++)
1949		tp->recv_sack_cache[i++] = sp[j];
1950
1951	tcp_mark_lost_retrans(sk);
 
1952
1953	tcp_verify_left_out(tp);
1954
1955	if ((state.reord < tp->fackets_out) &&
1956	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960out:
1961
1962#if FASTRETRANS_DEBUG > 0
1963	WARN_ON((int)tp->sacked_out < 0);
1964	WARN_ON((int)tp->lost_out < 0);
1965	WARN_ON((int)tp->retrans_out < 0);
1966	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967#endif
1968	return state.flag;
1969}
1970
1971/* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973 */
1974static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975{
1976	u32 holes;
1977
1978	holes = max(tp->lost_out, 1U);
1979	holes = min(holes, tp->packets_out);
1980
1981	if ((tp->sacked_out + holes) > tp->packets_out) {
1982		tp->sacked_out = tp->packets_out - holes;
1983		return true;
1984	}
1985	return false;
1986}
1987
1988/* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
1992static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993{
1994	struct tcp_sock *tp = tcp_sk(sk);
1995	if (tcp_limit_reno_sacked(tp))
1996		tcp_update_reordering(sk, tp->packets_out + addend, 0);
 
 
 
 
 
 
1997}
1998
1999/* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
2001static void tcp_add_reno_sack(struct sock *sk)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
2004	tp->sacked_out++;
2005	tcp_check_reno_reordering(sk, 0);
2006	tcp_verify_left_out(tp);
 
 
 
 
 
 
 
 
2007}
2008
2009/* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
2011static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012{
2013	struct tcp_sock *tp = tcp_sk(sk);
2014
2015	if (acked > 0) {
2016		/* One ACK acked hole. The rest eat duplicate ACKs. */
 
2017		if (acked - 1 >= tp->sacked_out)
2018			tp->sacked_out = 0;
2019		else
2020			tp->sacked_out -= acked - 1;
2021	}
2022	tcp_check_reno_reordering(sk, acked);
2023	tcp_verify_left_out(tp);
2024}
2025
2026static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027{
2028	tp->sacked_out = 0;
2029}
2030
2031static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032{
2033	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
 
 
 
 
2034}
2035
2036/* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
2039bool tcp_use_frto(struct sock *sk)
2040{
2041	const struct tcp_sock *tp = tcp_sk(sk);
2042	const struct inet_connection_sock *icsk = inet_csk(sk);
2043	struct sk_buff *skb;
2044
2045	if (!sysctl_tcp_frto)
2046		return false;
2047
2048	/* MTU probe and F-RTO won't really play nicely along currently */
2049	if (icsk->icsk_mtup.probe_size)
2050		return false;
2051
2052	if (tcp_is_sackfrto(tp))
2053		return true;
2054
2055	/* Avoid expensive walking of rexmit queue if possible */
2056	if (tp->retrans_out > 1)
2057		return false;
2058
2059	skb = tcp_write_queue_head(sk);
2060	if (tcp_skb_is_last(sk, skb))
2061		return true;
2062	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2063	tcp_for_write_queue_from(skb, sk) {
2064		if (skb == tcp_send_head(sk))
2065			break;
2066		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067			return false;
2068		/* Short-circuit when first non-SACKed skb has been checked */
2069		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070			break;
2071	}
2072	return true;
2073}
2074
2075/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 *  "Reduce ssthresh if it has not yet been made inside this window."
2086 */
2087void tcp_enter_frto(struct sock *sk)
2088{
2089	const struct inet_connection_sock *icsk = inet_csk(sk);
2090	struct tcp_sock *tp = tcp_sk(sk);
2091	struct sk_buff *skb;
2092
2093	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094	    tp->snd_una == tp->high_seq ||
2095	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096	     !icsk->icsk_retransmits)) {
2097		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098		/* Our state is too optimistic in ssthresh() call because cwnd
2099		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100		 * recovery has not yet completed. Pattern would be this: RTO,
2101		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102		 * up here twice).
2103		 * RFC4138 should be more specific on what to do, even though
2104		 * RTO is quite unlikely to occur after the first Cumulative ACK
2105		 * due to back-off and complexity of triggering events ...
2106		 */
2107		if (tp->frto_counter) {
2108			u32 stored_cwnd;
2109			stored_cwnd = tp->snd_cwnd;
2110			tp->snd_cwnd = 2;
2111			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112			tp->snd_cwnd = stored_cwnd;
2113		} else {
2114			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115		}
2116		/* ... in theory, cong.control module could do "any tricks" in
2117		 * ssthresh(), which means that ca_state, lost bits and lost_out
2118		 * counter would have to be faked before the call occurs. We
2119		 * consider that too expensive, unlikely and hacky, so modules
2120		 * using these in ssthresh() must deal these incompatibility
2121		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122		 */
2123		tcp_ca_event(sk, CA_EVENT_FRTO);
2124	}
2125
2126	tp->undo_marker = tp->snd_una;
2127	tp->undo_retrans = 0;
2128
2129	skb = tcp_write_queue_head(sk);
2130	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131		tp->undo_marker = 0;
2132	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134		tp->retrans_out -= tcp_skb_pcount(skb);
2135	}
2136	tcp_verify_left_out(tp);
2137
2138	/* Too bad if TCP was application limited */
2139	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2142	 * The last condition is necessary at least in tp->frto_counter case.
2143	 */
2144	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146	    after(tp->high_seq, tp->snd_una)) {
2147		tp->frto_highmark = tp->high_seq;
2148	} else {
2149		tp->frto_highmark = tp->snd_nxt;
2150	}
2151	tcp_set_ca_state(sk, TCP_CA_Disorder);
2152	tp->high_seq = tp->snd_nxt;
2153	tp->frto_counter = 1;
2154}
2155
2156/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
2160static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161{
2162	struct tcp_sock *tp = tcp_sk(sk);
2163	struct sk_buff *skb;
 
2164
2165	tp->lost_out = 0;
2166	tp->retrans_out = 0;
2167	if (tcp_is_reno(tp))
 
 
 
 
 
2168		tcp_reset_reno_sack(tp);
 
2169
2170	tcp_for_write_queue(skb, sk) {
2171		if (skb == tcp_send_head(sk))
2172			break;
2173
2174		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175		/*
2176		 * Count the retransmission made on RTO correctly (only when
2177		 * waiting for the first ACK and did not get it)...
2178		 */
2179		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180			/* For some reason this R-bit might get cleared? */
2181			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182				tp->retrans_out += tcp_skb_pcount(skb);
2183			/* ...enter this if branch just for the first segment */
2184			flag |= FLAG_DATA_ACKED;
2185		} else {
2186			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187				tp->undo_marker = 0;
2188			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189		}
2190
2191		/* Marking forward transmissions that were made after RTO lost
2192		 * can cause unnecessary retransmissions in some scenarios,
2193		 * SACK blocks will mitigate that in some but not in all cases.
2194		 * We used to not mark them but it was causing break-ups with
2195		 * receivers that do only in-order receival.
2196		 *
2197		 * TODO: we could detect presence of such receiver and select
2198		 * different behavior per flow.
2199		 */
2200		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202			tp->lost_out += tcp_skb_pcount(skb);
2203			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204		}
2205	}
2206	tcp_verify_left_out(tp);
2207
2208	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209	tp->snd_cwnd_cnt = 0;
2210	tp->snd_cwnd_stamp = tcp_time_stamp;
2211	tp->frto_counter = 0;
2212	tp->bytes_acked = 0;
2213
2214	tp->reordering = min_t(unsigned int, tp->reordering,
2215			       sysctl_tcp_reordering);
2216	tcp_set_ca_state(sk, TCP_CA_Loss);
2217	tp->high_seq = tp->snd_nxt;
2218	TCP_ECN_queue_cwr(tp);
2219
2220	tcp_clear_all_retrans_hints(tp);
2221}
2222
2223static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224{
2225	tp->retrans_out = 0;
2226	tp->lost_out = 0;
2227
2228	tp->undo_marker = 0;
2229	tp->undo_retrans = 0;
2230}
2231
2232void tcp_clear_retrans(struct tcp_sock *tp)
2233{
2234	tcp_clear_retrans_partial(tp);
2235
2236	tp->fackets_out = 0;
2237	tp->sacked_out = 0;
2238}
2239
2240/* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
2244void tcp_enter_loss(struct sock *sk, int how)
2245{
2246	const struct inet_connection_sock *icsk = inet_csk(sk);
2247	struct tcp_sock *tp = tcp_sk(sk);
2248	struct sk_buff *skb;
 
 
 
2249
2250	/* Reduce ssthresh if it has not yet been made inside this window. */
2251	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
 
2252	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253		tp->prior_ssthresh = tcp_current_ssthresh(sk);
 
2254		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255		tcp_ca_event(sk, CA_EVENT_LOSS);
 
2256	}
2257	tp->snd_cwnd	   = 1;
2258	tp->snd_cwnd_cnt   = 0;
2259	tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261	tp->bytes_acked = 0;
2262	tcp_clear_retrans_partial(tp);
2263
2264	if (tcp_is_reno(tp))
2265		tcp_reset_reno_sack(tp);
2266
2267	if (!how) {
2268		/* Push undo marker, if it was plain RTO and nothing
2269		 * was retransmitted. */
2270		tp->undo_marker = tp->snd_una;
2271	} else {
2272		tp->sacked_out = 0;
2273		tp->fackets_out = 0;
2274	}
2275	tcp_clear_all_retrans_hints(tp);
2276
2277	tcp_for_write_queue(skb, sk) {
2278		if (skb == tcp_send_head(sk))
2279			break;
2280
2281		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282			tp->undo_marker = 0;
2283		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287			tp->lost_out += tcp_skb_pcount(skb);
2288			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289		}
2290	}
2291	tcp_verify_left_out(tp);
2292
2293	tp->reordering = min_t(unsigned int, tp->reordering,
2294			       sysctl_tcp_reordering);
2295	tcp_set_ca_state(sk, TCP_CA_Loss);
2296	tp->high_seq = tp->snd_nxt;
2297	TCP_ECN_queue_cwr(tp);
2298	/* Abort F-RTO algorithm if one is in progress */
2299	tp->frto_counter = 0;
 
 
 
 
 
 
2300}
2301
2302/* If ACK arrived pointing to a remembered SACK, it means that our
2303 * remembered SACKs do not reflect real state of receiver i.e.
2304 * receiver _host_ is heavily congested (or buggy).
2305 *
2306 * Do processing similar to RTO timeout.
 
 
 
 
2307 */
2308static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309{
2310	if (flag & FLAG_SACK_RENEGING) {
2311		struct inet_connection_sock *icsk = inet_csk(sk);
2312		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
 
2313
2314		tcp_enter_loss(sk, 1);
2315		icsk->icsk_retransmits++;
2316		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318					  icsk->icsk_rto, TCP_RTO_MAX);
2319		return true;
2320	}
2321	return false;
2322}
2323
2324static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325{
2326	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327}
2328
2329/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * that purpose).
2332 *
2333 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334 * segments up to the highest received SACK block so far and holes in
2335 * between them.
2336 *
2337 * With reordering, holes may still be in flight, so RFC3517 recovery
2338 * uses pure sacked_out (total number of SACKed segments) even though
2339 * it violates the RFC that uses duplicate ACKs, often these are equal
2340 * but when e.g. out-of-window ACKs or packet duplication occurs,
2341 * they differ. Since neither occurs due to loss, TCP should really
2342 * ignore them.
2343 */
2344static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345{
2346	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347}
2348
2349static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350{
2351	struct tcp_sock *tp = tcp_sk(sk);
2352	unsigned long delay;
2353
2354	/* Delay early retransmit and entering fast recovery for
2355	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356	 * available, or RTO is scheduled to fire first.
2357	 */
2358	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2359		return false;
2360
2361	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2362	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363		return false;
2364
2365	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366	tp->early_retrans_delayed = 1;
2367	return true;
2368}
2369
2370static inline int tcp_skb_timedout(const struct sock *sk,
2371				   const struct sk_buff *skb)
2372{
2373	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374}
2375
2376static inline int tcp_head_timedout(const struct sock *sk)
2377{
2378	const struct tcp_sock *tp = tcp_sk(sk);
2379
2380	return tp->packets_out &&
2381	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382}
2383
2384/* Linux NewReno/SACK/FACK/ECN state machine.
2385 * --------------------------------------
2386 *
2387 * "Open"	Normal state, no dubious events, fast path.
2388 * "Disorder"   In all the respects it is "Open",
2389 *		but requires a bit more attention. It is entered when
2390 *		we see some SACKs or dupacks. It is split of "Open"
2391 *		mainly to move some processing from fast path to slow one.
2392 * "CWR"	CWND was reduced due to some Congestion Notification event.
2393 *		It can be ECN, ICMP source quench, local device congestion.
2394 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2395 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2396 *
2397 * tcp_fastretrans_alert() is entered:
2398 * - each incoming ACK, if state is not "Open"
2399 * - when arrived ACK is unusual, namely:
2400 *	* SACK
2401 *	* Duplicate ACK.
2402 *	* ECN ECE.
2403 *
2404 * Counting packets in flight is pretty simple.
2405 *
2406 *	in_flight = packets_out - left_out + retrans_out
2407 *
2408 *	packets_out is SND.NXT-SND.UNA counted in packets.
2409 *
2410 *	retrans_out is number of retransmitted segments.
2411 *
2412 *	left_out is number of segments left network, but not ACKed yet.
2413 *
2414 *		left_out = sacked_out + lost_out
2415 *
2416 *     sacked_out: Packets, which arrived to receiver out of order
2417 *		   and hence not ACKed. With SACKs this number is simply
2418 *		   amount of SACKed data. Even without SACKs
2419 *		   it is easy to give pretty reliable estimate of this number,
2420 *		   counting duplicate ACKs.
2421 *
2422 *       lost_out: Packets lost by network. TCP has no explicit
2423 *		   "loss notification" feedback from network (for now).
2424 *		   It means that this number can be only _guessed_.
2425 *		   Actually, it is the heuristics to predict lossage that
2426 *		   distinguishes different algorithms.
2427 *
2428 *	F.e. after RTO, when all the queue is considered as lost,
2429 *	lost_out = packets_out and in_flight = retrans_out.
2430 *
2431 *		Essentially, we have now two algorithms counting
2432 *		lost packets.
2433 *
2434 *		FACK: It is the simplest heuristics. As soon as we decided
2435 *		that something is lost, we decide that _all_ not SACKed
2436 *		packets until the most forward SACK are lost. I.e.
2437 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438 *		It is absolutely correct estimate, if network does not reorder
2439 *		packets. And it loses any connection to reality when reordering
2440 *		takes place. We use FACK by default until reordering
2441 *		is suspected on the path to this destination.
 
 
 
 
 
 
 
 
2442 *
2443 *		NewReno: when Recovery is entered, we assume that one segment
2444 *		is lost (classic Reno). While we are in Recovery and
2445 *		a partial ACK arrives, we assume that one more packet
2446 *		is lost (NewReno). This heuristics are the same in NewReno
2447 *		and SACK.
2448 *
2449 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2450 *  deflation etc. CWND is real congestion window, never inflated, changes
2451 *  only according to classic VJ rules.
2452 *
2453 * Really tricky (and requiring careful tuning) part of algorithm
2454 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455 * The first determines the moment _when_ we should reduce CWND and,
2456 * hence, slow down forward transmission. In fact, it determines the moment
2457 * when we decide that hole is caused by loss, rather than by a reorder.
2458 *
2459 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460 * holes, caused by lost packets.
2461 *
2462 * And the most logically complicated part of algorithm is undo
2463 * heuristics. We detect false retransmits due to both too early
2464 * fast retransmit (reordering) and underestimated RTO, analyzing
2465 * timestamps and D-SACKs. When we detect that some segments were
2466 * retransmitted by mistake and CWND reduction was wrong, we undo
2467 * window reduction and abort recovery phase. This logic is hidden
2468 * inside several functions named tcp_try_undo_<something>.
2469 */
2470
2471/* This function decides, when we should leave Disordered state
2472 * and enter Recovery phase, reducing congestion window.
2473 *
2474 * Main question: may we further continue forward transmission
2475 * with the same cwnd?
2476 */
2477static bool tcp_time_to_recover(struct sock *sk, int flag)
2478{
2479	struct tcp_sock *tp = tcp_sk(sk);
2480	__u32 packets_out;
2481
2482	/* Do not perform any recovery during F-RTO algorithm */
2483	if (tp->frto_counter)
2484		return false;
2485
2486	/* Trick#1: The loss is proven. */
2487	if (tp->lost_out)
2488		return true;
2489
2490	/* Not-A-Trick#2 : Classic rule... */
2491	if (tcp_dupack_heuristics(tp) > tp->reordering)
2492		return true;
2493
2494	/* Trick#3 : when we use RFC2988 timer restart, fast
2495	 * retransmit can be triggered by timeout of queue head.
2496	 */
2497	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498		return true;
2499
2500	/* Trick#4: It is still not OK... But will it be useful to delay
2501	 * recovery more?
2502	 */
2503	packets_out = tp->packets_out;
2504	if (packets_out <= tp->reordering &&
2505	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506	    !tcp_may_send_now(sk)) {
2507		/* We have nothing to send. This connection is limited
2508		 * either by receiver window or by application.
2509		 */
2510		return true;
2511	}
2512
2513	/* If a thin stream is detected, retransmit after first
2514	 * received dupack. Employ only if SACK is supported in order
2515	 * to avoid possible corner-case series of spurious retransmissions
2516	 * Use only if there are no unsent data.
2517	 */
2518	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520	    tcp_is_sack(tp) && !tcp_send_head(sk))
2521		return true;
2522
2523	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2524	 * retransmissions due to small network reorderings, we implement
2525	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526	 * interval if appropriate.
2527	 */
2528	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530	    !tcp_may_send_now(sk))
2531		return !tcp_pause_early_retransmit(sk, flag);
2532
2533	return false;
2534}
2535
2536/* New heuristics: it is possible only after we switched to restart timer
2537 * each time when something is ACKed. Hence, we can detect timed out packets
2538 * during fast retransmit without falling to slow start.
2539 *
2540 * Usefulness of this as is very questionable, since we should know which of
2541 * the segments is the next to timeout which is relatively expensive to find
2542 * in general case unless we add some data structure just for that. The
2543 * current approach certainly won't find the right one too often and when it
2544 * finally does find _something_ it usually marks large part of the window
2545 * right away (because a retransmission with a larger timestamp blocks the
2546 * loop from advancing). -ij
2547 */
2548static void tcp_timeout_skbs(struct sock *sk)
2549{
2550	struct tcp_sock *tp = tcp_sk(sk);
2551	struct sk_buff *skb;
2552
2553	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554		return;
2555
2556	skb = tp->scoreboard_skb_hint;
2557	if (tp->scoreboard_skb_hint == NULL)
2558		skb = tcp_write_queue_head(sk);
2559
2560	tcp_for_write_queue_from(skb, sk) {
2561		if (skb == tcp_send_head(sk))
2562			break;
2563		if (!tcp_skb_timedout(sk, skb))
2564			break;
2565
2566		tcp_skb_mark_lost(tp, skb);
2567	}
2568
2569	tp->scoreboard_skb_hint = skb;
2570
2571	tcp_verify_left_out(tp);
2572}
2573
2574/* Detect loss in event "A" above by marking head of queue up as lost.
2575 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578 * the maximum SACKed segments to pass before reaching this limit.
2579 */
2580static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581{
2582	struct tcp_sock *tp = tcp_sk(sk);
2583	struct sk_buff *skb;
2584	int cnt, oldcnt;
2585	int err;
2586	unsigned int mss;
2587	/* Use SACK to deduce losses of new sequences sent during recovery */
2588	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2589
2590	WARN_ON(packets > tp->packets_out);
2591	if (tp->lost_skb_hint) {
2592		skb = tp->lost_skb_hint;
2593		cnt = tp->lost_cnt_hint;
2594		/* Head already handled? */
2595		if (mark_head && skb != tcp_write_queue_head(sk))
2596			return;
 
2597	} else {
2598		skb = tcp_write_queue_head(sk);
2599		cnt = 0;
2600	}
2601
2602	tcp_for_write_queue_from(skb, sk) {
2603		if (skb == tcp_send_head(sk))
2604			break;
2605		/* TODO: do this better */
2606		/* this is not the most efficient way to do this... */
2607		tp->lost_skb_hint = skb;
2608		tp->lost_cnt_hint = cnt;
2609
2610		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611			break;
2612
2613		oldcnt = cnt;
2614		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616			cnt += tcp_skb_pcount(skb);
2617
2618		if (cnt > packets) {
2619			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621			    (oldcnt >= packets))
2622				break;
2623
2624			mss = skb_shinfo(skb)->gso_size;
2625			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626			if (err < 0)
 
 
 
2627				break;
2628			cnt = packets;
2629		}
2630
2631		tcp_skb_mark_lost(tp, skb);
2632
2633		if (mark_head)
2634			break;
2635	}
2636	tcp_verify_left_out(tp);
2637}
2638
2639/* Account newly detected lost packet(s) */
2640
2641static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642{
2643	struct tcp_sock *tp = tcp_sk(sk);
2644
2645	if (tcp_is_reno(tp)) {
2646		tcp_mark_head_lost(sk, 1, 1);
2647	} else if (tcp_is_fack(tp)) {
2648		int lost = tp->fackets_out - tp->reordering;
2649		if (lost <= 0)
2650			lost = 1;
2651		tcp_mark_head_lost(sk, lost, 0);
2652	} else {
2653		int sacked_upto = tp->sacked_out - tp->reordering;
2654		if (sacked_upto >= 0)
2655			tcp_mark_head_lost(sk, sacked_upto, 0);
2656		else if (fast_rexmit)
2657			tcp_mark_head_lost(sk, 1, 1);
2658	}
 
2659
2660	tcp_timeout_skbs(sk);
 
 
 
2661}
2662
2663/* CWND moderation, preventing bursts due to too big ACKs
2664 * in dubious situations.
2665 */
2666static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
 
2667{
2668	tp->snd_cwnd = min(tp->snd_cwnd,
2669			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670	tp->snd_cwnd_stamp = tcp_time_stamp;
2671}
2672
2673/* Lower bound on congestion window is slow start threshold
2674 * unless congestion avoidance choice decides to overide it.
2675 */
2676static inline u32 tcp_cwnd_min(const struct sock *sk)
2677{
2678	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 
 
2679
2680	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681}
2682
2683/* Decrease cwnd each second ack. */
2684static void tcp_cwnd_down(struct sock *sk, int flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
2685{
2686	struct tcp_sock *tp = tcp_sk(sk);
2687	int decr = tp->snd_cwnd_cnt + 1;
2688
2689	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691		tp->snd_cwnd_cnt = decr & 1;
2692		decr >>= 1;
2693
2694		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695			tp->snd_cwnd -= decr;
 
2696
2697		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698		tp->snd_cwnd_stamp = tcp_time_stamp;
2699	}
2700}
2701
2702/* Nothing was retransmitted or returned timestamp is less
2703 * than timestamp of the first retransmission.
2704 */
2705static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706{
2707	return !tp->retrans_stamp ||
2708		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710}
2711
2712/* Undo procedures. */
2713
2714#if FASTRETRANS_DEBUG > 1
2715static void DBGUNDO(struct sock *sk, const char *msg)
2716{
2717	struct tcp_sock *tp = tcp_sk(sk);
2718	struct inet_sock *inet = inet_sk(sk);
2719
2720	if (sk->sk_family == AF_INET) {
2721		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722			 msg,
2723			 &inet->inet_daddr, ntohs(inet->inet_dport),
2724			 tp->snd_cwnd, tcp_left_out(tp),
2725			 tp->snd_ssthresh, tp->prior_ssthresh,
2726			 tp->packets_out);
2727	}
2728#if IS_ENABLED(CONFIG_IPV6)
2729	else if (sk->sk_family == AF_INET6) {
2730		struct ipv6_pinfo *np = inet6_sk(sk);
2731		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732			 msg,
2733			 &np->daddr, ntohs(inet->inet_dport),
2734			 tp->snd_cwnd, tcp_left_out(tp),
2735			 tp->snd_ssthresh, tp->prior_ssthresh,
2736			 tp->packets_out);
2737	}
2738#endif
 
2739}
2740#else
2741#define DBGUNDO(x...) do { } while (0)
2742#endif
2743
2744static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745{
2746	struct tcp_sock *tp = tcp_sk(sk);
2747
 
 
 
 
 
 
 
 
 
 
2748	if (tp->prior_ssthresh) {
2749		const struct inet_connection_sock *icsk = inet_csk(sk);
2750
2751		if (icsk->icsk_ca_ops->undo_cwnd)
2752			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753		else
2754			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755
2756		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757			tp->snd_ssthresh = tp->prior_ssthresh;
2758			TCP_ECN_withdraw_cwr(tp);
2759		}
2760	} else {
2761		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762	}
2763	tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
2764}
2765
2766static inline int tcp_may_undo(const struct tcp_sock *tp)
2767{
2768	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769}
2770
2771/* People celebrate: "We love our President!" */
2772static bool tcp_try_undo_recovery(struct sock *sk)
2773{
2774	struct tcp_sock *tp = tcp_sk(sk);
2775
2776	if (tcp_may_undo(tp)) {
2777		int mib_idx;
2778
2779		/* Happy end! We did not retransmit anything
2780		 * or our original transmission succeeded.
2781		 */
2782		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783		tcp_undo_cwr(sk, true);
2784		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786		else
2787			mib_idx = LINUX_MIB_TCPFULLUNDO;
2788
2789		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790		tp->undo_marker = 0;
 
2791	}
2792	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793		/* Hold old state until something *above* high_seq
2794		 * is ACKed. For Reno it is MUST to prevent false
2795		 * fast retransmits (RFC2582). SACK TCP is safe. */
2796		tcp_moderate_cwnd(tp);
 
2797		return true;
2798	}
2799	tcp_set_ca_state(sk, TCP_CA_Open);
 
2800	return false;
2801}
2802
2803/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804static void tcp_try_undo_dsack(struct sock *sk)
2805{
2806	struct tcp_sock *tp = tcp_sk(sk);
2807
2808	if (tp->undo_marker && !tp->undo_retrans) {
 
 
2809		DBGUNDO(sk, "D-SACK");
2810		tcp_undo_cwr(sk, true);
2811		tp->undo_marker = 0;
2812		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2813	}
 
2814}
2815
2816/* We can clear retrans_stamp when there are no retransmissions in the
2817 * window. It would seem that it is trivially available for us in
2818 * tp->retrans_out, however, that kind of assumptions doesn't consider
2819 * what will happen if errors occur when sending retransmission for the
2820 * second time. ...It could the that such segment has only
2821 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822 * the head skb is enough except for some reneging corner cases that
2823 * are not worth the effort.
2824 *
2825 * Main reason for all this complexity is the fact that connection dying
2826 * time now depends on the validity of the retrans_stamp, in particular,
2827 * that successive retransmissions of a segment must not advance
2828 * retrans_stamp under any conditions.
2829 */
2830static bool tcp_any_retrans_done(const struct sock *sk)
2831{
2832	const struct tcp_sock *tp = tcp_sk(sk);
2833	struct sk_buff *skb;
2834
2835	if (tp->retrans_out)
2836		return true;
2837
2838	skb = tcp_write_queue_head(sk);
2839	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
 
 
 
 
 
 
 
 
2840		return true;
2841
2842	return false;
2843}
2844
2845/* Undo during fast recovery after partial ACK. */
2846
2847static int tcp_try_undo_partial(struct sock *sk, int acked)
 
 
 
 
 
 
 
2848{
2849	struct tcp_sock *tp = tcp_sk(sk);
2850	/* Partial ACK arrived. Force Hoe's retransmit. */
2851	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852
2853	if (tcp_may_undo(tp)) {
2854		/* Plain luck! Hole if filled with delayed
2855		 * packet, rather than with a retransmit.
2856		 */
2857		if (!tcp_any_retrans_done(sk))
2858			tp->retrans_stamp = 0;
 
 
 
2859
2860		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
 
 
 
 
2861
2862		DBGUNDO(sk, "Hoe");
2863		tcp_undo_cwr(sk, false);
2864		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865
2866		/* So... Do not make Hoe's retransmit yet.
2867		 * If the first packet was delayed, the rest
2868		 * ones are most probably delayed as well.
2869		 */
2870		failed = 0;
 
 
 
 
 
 
 
2871	}
2872	return failed;
 
 
2873}
2874
2875/* Undo during loss recovery after partial ACK. */
2876static bool tcp_try_undo_loss(struct sock *sk)
2877{
2878	struct tcp_sock *tp = tcp_sk(sk);
2879
2880	if (tcp_may_undo(tp)) {
2881		struct sk_buff *skb;
2882		tcp_for_write_queue(skb, sk) {
2883			if (skb == tcp_send_head(sk))
2884				break;
2885			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886		}
2887
2888		tcp_clear_all_retrans_hints(tp);
2889
2890		DBGUNDO(sk, "partial loss");
2891		tp->lost_out = 0;
2892		tcp_undo_cwr(sk, true);
2893		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894		inet_csk(sk)->icsk_retransmits = 0;
2895		tp->undo_marker = 0;
2896		if (tcp_is_sack(tp))
2897			tcp_set_ca_state(sk, TCP_CA_Open);
2898		return true;
2899	}
2900	return false;
2901}
2902
2903static inline void tcp_complete_cwr(struct sock *sk)
 
2904{
2905	struct tcp_sock *tp = tcp_sk(sk);
2906
2907	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908	if (tp->undo_marker) {
2909		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911			tp->snd_cwnd_stamp = tcp_time_stamp;
2912		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913			/* PRR algorithm. */
2914			tp->snd_cwnd = tp->snd_ssthresh;
2915			tp->snd_cwnd_stamp = tcp_time_stamp;
2916		}
2917	}
2918	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919}
 
2920
2921static void tcp_try_keep_open(struct sock *sk)
2922{
2923	struct tcp_sock *tp = tcp_sk(sk);
2924	int state = TCP_CA_Open;
2925
2926	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927		state = TCP_CA_Disorder;
2928
2929	if (inet_csk(sk)->icsk_ca_state != state) {
2930		tcp_set_ca_state(sk, state);
2931		tp->high_seq = tp->snd_nxt;
2932	}
2933}
2934
2935static void tcp_try_to_open(struct sock *sk, int flag)
2936{
2937	struct tcp_sock *tp = tcp_sk(sk);
2938
2939	tcp_verify_left_out(tp);
2940
2941	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942		tp->retrans_stamp = 0;
2943
2944	if (flag & FLAG_ECE)
2945		tcp_enter_cwr(sk, 1);
2946
2947	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948		tcp_try_keep_open(sk);
2949		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950			tcp_moderate_cwnd(tp);
2951	} else {
2952		tcp_cwnd_down(sk, flag);
2953	}
2954}
2955
2956static void tcp_mtup_probe_failed(struct sock *sk)
2957{
2958	struct inet_connection_sock *icsk = inet_csk(sk);
2959
2960	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961	icsk->icsk_mtup.probe_size = 0;
 
2962}
2963
2964static void tcp_mtup_probe_success(struct sock *sk)
2965{
2966	struct tcp_sock *tp = tcp_sk(sk);
2967	struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969	/* FIXME: breaks with very large cwnd */
2970	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971	tp->snd_cwnd = tp->snd_cwnd *
2972		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2973		       icsk->icsk_mtup.probe_size;
2974	tp->snd_cwnd_cnt = 0;
2975	tp->snd_cwnd_stamp = tcp_time_stamp;
2976	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977
2978	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979	icsk->icsk_mtup.probe_size = 0;
2980	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
 
2981}
2982
2983/* Do a simple retransmit without using the backoff mechanisms in
2984 * tcp_timer. This is used for path mtu discovery.
2985 * The socket is already locked here.
2986 */
2987void tcp_simple_retransmit(struct sock *sk)
2988{
2989	const struct inet_connection_sock *icsk = inet_csk(sk);
2990	struct tcp_sock *tp = tcp_sk(sk);
2991	struct sk_buff *skb;
2992	unsigned int mss = tcp_current_mss(sk);
2993	u32 prior_lost = tp->lost_out;
2994
2995	tcp_for_write_queue(skb, sk) {
2996		if (skb == tcp_send_head(sk))
2997			break;
2998		if (tcp_skb_seglen(skb) > mss &&
2999		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002				tp->retrans_out -= tcp_skb_pcount(skb);
3003			}
3004			tcp_skb_mark_lost_uncond_verify(tp, skb);
3005		}
3006	}
3007
3008	tcp_clear_retrans_hints_partial(tp);
3009
3010	if (prior_lost == tp->lost_out)
3011		return;
3012
3013	if (tcp_is_reno(tp))
3014		tcp_limit_reno_sacked(tp);
3015
3016	tcp_verify_left_out(tp);
3017
3018	/* Don't muck with the congestion window here.
3019	 * Reason is that we do not increase amount of _data_
3020	 * in network, but units changed and effective
3021	 * cwnd/ssthresh really reduced now.
3022	 */
3023	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024		tp->high_seq = tp->snd_nxt;
3025		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026		tp->prior_ssthresh = 0;
3027		tp->undo_marker = 0;
3028		tcp_set_ca_state(sk, TCP_CA_Loss);
3029	}
3030	tcp_xmit_retransmit_queue(sk);
3031}
3032EXPORT_SYMBOL(tcp_simple_retransmit);
3033
3034/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035 * (proportional rate reduction with slow start reduction bound) as described in
3036 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037 * It computes the number of packets to send (sndcnt) based on packets newly
3038 * delivered:
3039 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3040 *	cwnd reductions across a full RTT.
3041 *   2) If packets in flight is lower than ssthresh (such as due to excess
3042 *	losses and/or application stalls), do not perform any further cwnd
3043 *	reductions, but instead slow start up to ssthresh.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044 */
3045static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046					int fast_rexmit, int flag)
3047{
3048	struct tcp_sock *tp = tcp_sk(sk);
3049	int sndcnt = 0;
3050	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
 
 
 
 
 
 
 
 
 
 
 
3051
3052	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054			       tp->prior_cwnd - 1;
3055		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056	} else {
3057		sndcnt = min_t(int, delta,
3058			       max_t(int, tp->prr_delivered - tp->prr_out,
3059				     newly_acked_sacked) + 1);
 
 
 
 
 
 
 
 
3060	}
3061
3062	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
3064}
3065
3066static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
 
3067{
3068	struct tcp_sock *tp = tcp_sk(sk);
3069	int mib_idx;
3070
3071	if (tcp_is_reno(tp))
3072		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073	else
3074		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3075
3076	NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
3077
3078	tp->high_seq = tp->snd_nxt;
3079	tp->prior_ssthresh = 0;
3080	tp->undo_marker = tp->snd_una;
3081	tp->undo_retrans = tp->retrans_out;
3082
3083	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084		if (!ece_ack)
3085			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087		TCP_ECN_queue_cwr(tp);
3088	}
 
 
 
 
 
3089
3090	tp->bytes_acked = 0;
3091	tp->snd_cwnd_cnt = 0;
3092	tp->prior_cwnd = tp->snd_cwnd;
3093	tp->prr_delivered = 0;
3094	tp->prr_out = 0;
3095	tcp_set_ca_state(sk, TCP_CA_Recovery);
3096}
3097
3098/* Process an event, which can update packets-in-flight not trivially.
3099 * Main goal of this function is to calculate new estimate for left_out,
3100 * taking into account both packets sitting in receiver's buffer and
3101 * packets lost by network.
3102 *
3103 * Besides that it does CWND reduction, when packet loss is detected
3104 * and changes state of machine.
 
3105 *
3106 * It does _not_ decide what to send, it is made in function
3107 * tcp_xmit_retransmit_queue().
3108 */
3109static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110				  int prior_sacked, bool is_dupack,
3111				  int flag)
3112{
3113	struct inet_connection_sock *icsk = inet_csk(sk);
3114	struct tcp_sock *tp = tcp_sk(sk);
3115	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3116				    (tcp_fackets_out(tp) > tp->reordering));
3117	int newly_acked_sacked = 0;
3118	int fast_rexmit = 0;
3119
3120	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3121		tp->sacked_out = 0;
3122	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3123		tp->fackets_out = 0;
3124
3125	/* Now state machine starts.
3126	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3127	if (flag & FLAG_ECE)
3128		tp->prior_ssthresh = 0;
3129
3130	/* B. In all the states check for reneging SACKs. */
3131	if (tcp_check_sack_reneging(sk, flag))
3132		return;
3133
3134	/* C. Check consistency of the current state. */
3135	tcp_verify_left_out(tp);
3136
3137	/* D. Check state exit conditions. State can be terminated
3138	 *    when high_seq is ACKed. */
3139	if (icsk->icsk_ca_state == TCP_CA_Open) {
3140		WARN_ON(tp->retrans_out != 0);
3141		tp->retrans_stamp = 0;
3142	} else if (!before(tp->snd_una, tp->high_seq)) {
3143		switch (icsk->icsk_ca_state) {
3144		case TCP_CA_Loss:
3145			icsk->icsk_retransmits = 0;
3146			if (tcp_try_undo_recovery(sk))
3147				return;
3148			break;
3149
3150		case TCP_CA_CWR:
3151			/* CWR is to be held something *above* high_seq
3152			 * is ACKed for CWR bit to reach receiver. */
3153			if (tp->snd_una != tp->high_seq) {
3154				tcp_complete_cwr(sk);
3155				tcp_set_ca_state(sk, TCP_CA_Open);
3156			}
3157			break;
3158
3159		case TCP_CA_Recovery:
3160			if (tcp_is_reno(tp))
3161				tcp_reset_reno_sack(tp);
3162			if (tcp_try_undo_recovery(sk))
3163				return;
3164			tcp_complete_cwr(sk);
3165			break;
3166		}
3167	}
3168
3169	/* E. Process state. */
3170	switch (icsk->icsk_ca_state) {
3171	case TCP_CA_Recovery:
3172		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3173			if (tcp_is_reno(tp) && is_dupack)
3174				tcp_add_reno_sack(sk);
3175		} else
3176			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3177		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
 
 
 
 
 
 
 
 
 
3178		break;
3179	case TCP_CA_Loss:
3180		if (flag & FLAG_DATA_ACKED)
3181			icsk->icsk_retransmits = 0;
3182		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3183			tcp_reset_reno_sack(tp);
3184		if (!tcp_try_undo_loss(sk)) {
3185			tcp_moderate_cwnd(tp);
3186			tcp_xmit_retransmit_queue(sk);
3187			return;
3188		}
3189		if (icsk->icsk_ca_state != TCP_CA_Open)
3190			return;
3191		/* Loss is undone; fall through to processing in Open state. */
3192	default:
3193		if (tcp_is_reno(tp)) {
3194			if (flag & FLAG_SND_UNA_ADVANCED)
3195				tcp_reset_reno_sack(tp);
3196			if (is_dupack)
3197				tcp_add_reno_sack(sk);
3198		}
3199		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3200
3201		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3202			tcp_try_undo_dsack(sk);
3203
 
3204		if (!tcp_time_to_recover(sk, flag)) {
3205			tcp_try_to_open(sk, flag);
3206			return;
3207		}
3208
3209		/* MTU probe failure: don't reduce cwnd */
3210		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3211		    icsk->icsk_mtup.probe_size &&
3212		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3213			tcp_mtup_probe_failed(sk);
3214			/* Restores the reduction we did in tcp_mtup_probe() */
3215			tp->snd_cwnd++;
3216			tcp_simple_retransmit(sk);
3217			return;
3218		}
3219
3220		/* Otherwise enter Recovery state */
3221		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3222		fast_rexmit = 1;
3223	}
3224
3225	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3226		tcp_update_scoreboard(sk, fast_rexmit);
3227	tp->prr_delivered += newly_acked_sacked;
3228	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3229	tcp_xmit_retransmit_queue(sk);
3230}
3231
3232void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3233{
3234	tcp_rtt_estimator(sk, seq_rtt);
3235	tcp_set_rto(sk);
3236	inet_csk(sk)->icsk_backoff = 0;
 
 
 
 
 
 
 
 
 
3237}
3238EXPORT_SYMBOL(tcp_valid_rtt_meas);
3239
3240/* Read draft-ietf-tcplw-high-performance before mucking
3241 * with this code. (Supersedes RFC1323)
3242 */
3243static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3244{
 
 
 
 
 
 
 
 
 
 
3245	/* RTTM Rule: A TSecr value received in a segment is used to
3246	 * update the averaged RTT measurement only if the segment
3247	 * acknowledges some new data, i.e., only if it advances the
3248	 * left edge of the send window.
3249	 *
3250	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3251	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3252	 *
3253	 * Changed: reset backoff as soon as we see the first valid sample.
3254	 * If we do not, we get strongly overestimated rto. With timestamps
3255	 * samples are accepted even from very old segments: f.e., when rtt=1
3256	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3257	 * answer arrives rto becomes 120 seconds! If at least one of segments
3258	 * in window is lost... Voila.	 			--ANK (010210)
3259	 */
3260	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261
3262	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
 
 
3263}
3264
3265static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
 
3266{
3267	/* We don't have a timestamp. Can only use
3268	 * packets that are not retransmitted to determine
3269	 * rtt estimates. Also, we must not reset the
3270	 * backoff for rto until we get a non-retransmitted
3271	 * packet. This allows us to deal with a situation
3272	 * where the network delay has increased suddenly.
3273	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3274	 */
3275
3276	if (flag & FLAG_RETRANS_DATA_ACKED)
3277		return;
3278
3279	tcp_valid_rtt_meas(sk, seq_rtt);
3280}
3281
3282static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3283				      const s32 seq_rtt)
3284{
3285	const struct tcp_sock *tp = tcp_sk(sk);
3286	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3287	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3288		tcp_ack_saw_tstamp(sk, flag);
3289	else if (seq_rtt >= 0)
3290		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3291}
3292
3293static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3294{
3295	const struct inet_connection_sock *icsk = inet_csk(sk);
3296	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3297	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
 
3298}
3299
3300/* Restart timer after forward progress on connection.
3301 * RFC2988 recommends to restart timer to now+rto.
3302 */
3303void tcp_rearm_rto(struct sock *sk)
3304{
 
3305	struct tcp_sock *tp = tcp_sk(sk);
3306
 
 
 
 
 
 
3307	if (!tp->packets_out) {
3308		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3309	} else {
3310		u32 rto = inet_csk(sk)->icsk_rto;
3311		/* Offset the time elapsed after installing regular RTO */
3312		if (tp->early_retrans_delayed) {
3313			struct sk_buff *skb = tcp_write_queue_head(sk);
3314			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3315			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3316			/* delta may not be positive if the socket is locked
3317			 * when the delayed ER timer fires and is rescheduled.
3318			 */
3319			if (delta > 0)
3320				rto = delta;
3321		}
3322		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3323					  TCP_RTO_MAX);
3324	}
3325	tp->early_retrans_delayed = 0;
3326}
3327
3328/* This function is called when the delayed ER timer fires. TCP enters
3329 * fast recovery and performs fast-retransmit.
3330 */
3331void tcp_resume_early_retransmit(struct sock *sk)
3332{
3333	struct tcp_sock *tp = tcp_sk(sk);
3334
3335	tcp_rearm_rto(sk);
3336
3337	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3338	if (!tp->do_early_retrans)
3339		return;
3340
3341	tcp_enter_recovery(sk, false);
3342	tcp_update_scoreboard(sk, 1);
3343	tcp_xmit_retransmit_queue(sk);
3344}
3345
3346/* If we get here, the whole TSO packet has not been acked. */
3347static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3348{
3349	struct tcp_sock *tp = tcp_sk(sk);
3350	u32 packets_acked;
3351
3352	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3353
3354	packets_acked = tcp_skb_pcount(skb);
3355	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356		return 0;
3357	packets_acked -= tcp_skb_pcount(skb);
3358
3359	if (packets_acked) {
3360		BUG_ON(tcp_skb_pcount(skb) == 0);
3361		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3362	}
3363
3364	return packets_acked;
3365}
3366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3367/* Remove acknowledged frames from the retransmission queue. If our packet
3368 * is before the ack sequence we can discard it as it's confirmed to have
3369 * arrived at the other end.
3370 */
3371static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3372			       u32 prior_snd_una)
 
3373{
 
 
3374	struct tcp_sock *tp = tcp_sk(sk);
3375	const struct inet_connection_sock *icsk = inet_csk(sk);
3376	struct sk_buff *skb;
3377	u32 now = tcp_time_stamp;
3378	int fully_acked = true;
 
 
 
 
 
 
3379	int flag = 0;
3380	u32 pkts_acked = 0;
3381	u32 reord = tp->packets_out;
3382	u32 prior_sacked = tp->sacked_out;
3383	s32 seq_rtt = -1;
3384	s32 ca_seq_rtt = -1;
3385	ktime_t last_ackt = net_invalid_timestamp();
3386
3387	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
 
 
3388		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
 
 
3389		u32 acked_pcount;
3390		u8 sacked = scb->sacked;
 
3391
3392		/* Determine how many packets and what bytes were acked, tso and else */
3393		if (after(scb->end_seq, tp->snd_una)) {
3394			if (tcp_skb_pcount(skb) == 1 ||
3395			    !after(tp->snd_una, scb->seq))
3396				break;
3397
3398			acked_pcount = tcp_tso_acked(sk, skb);
3399			if (!acked_pcount)
3400				break;
3401
3402			fully_acked = false;
3403		} else {
3404			acked_pcount = tcp_skb_pcount(skb);
3405		}
3406
3407		if (sacked & TCPCB_RETRANS) {
3408			if (sacked & TCPCB_SACKED_RETRANS)
3409				tp->retrans_out -= acked_pcount;
3410			flag |= FLAG_RETRANS_DATA_ACKED;
3411			ca_seq_rtt = -1;
3412			seq_rtt = -1;
3413			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3414				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3415		} else {
3416			ca_seq_rtt = now - scb->when;
3417			last_ackt = skb->tstamp;
3418			if (seq_rtt < 0) {
3419				seq_rtt = ca_seq_rtt;
3420			}
3421			if (!(sacked & TCPCB_SACKED_ACKED))
3422				reord = min(pkts_acked, reord);
3423		}
3424
3425		if (sacked & TCPCB_SACKED_ACKED)
3426			tp->sacked_out -= acked_pcount;
 
 
 
 
 
 
3427		if (sacked & TCPCB_LOST)
3428			tp->lost_out -= acked_pcount;
3429
3430		tp->packets_out -= acked_pcount;
3431		pkts_acked += acked_pcount;
 
3432
3433		/* Initial outgoing SYN's get put onto the write_queue
3434		 * just like anything else we transmit.  It is not
3435		 * true data, and if we misinform our callers that
3436		 * this ACK acks real data, we will erroneously exit
3437		 * connection startup slow start one packet too
3438		 * quickly.  This is severely frowned upon behavior.
3439		 */
3440		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3441			flag |= FLAG_DATA_ACKED;
3442		} else {
3443			flag |= FLAG_SYN_ACKED;
3444			tp->retrans_stamp = 0;
3445		}
3446
3447		if (!fully_acked)
3448			break;
3449
3450		tcp_unlink_write_queue(skb, sk);
3451		sk_wmem_free_skb(sk, skb);
3452		tp->scoreboard_skb_hint = NULL;
3453		if (skb == tp->retransmit_skb_hint)
3454			tp->retransmit_skb_hint = NULL;
3455		if (skb == tp->lost_skb_hint)
3456			tp->lost_skb_hint = NULL;
 
3457	}
3458
 
 
 
3459	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3460		tp->snd_up = tp->snd_una;
3461
3462	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3463		flag |= FLAG_SACK_RENEGING;
3464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	if (flag & FLAG_ACKED) {
3466		const struct tcp_congestion_ops *ca_ops
3467			= inet_csk(sk)->icsk_ca_ops;
3468
3469		if (unlikely(icsk->icsk_mtup.probe_size &&
3470			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3471			tcp_mtup_probe_success(sk);
3472		}
3473
3474		tcp_ack_update_rtt(sk, flag, seq_rtt);
3475		tcp_rearm_rto(sk);
3476
3477		if (tcp_is_reno(tp)) {
3478			tcp_remove_reno_sacks(sk, pkts_acked);
 
 
 
 
 
 
 
 
 
3479		} else {
3480			int delta;
3481
3482			/* Non-retransmitted hole got filled? That's reordering */
3483			if (reord < prior_fackets)
3484				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3485
3486			delta = tcp_is_fack(tp) ? pkts_acked :
3487						  prior_sacked - tp->sacked_out;
3488			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3489		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3490
3491		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3492
3493		if (ca_ops->pkts_acked) {
3494			s32 rtt_us = -1;
3495
3496			/* Is the ACK triggering packet unambiguous? */
3497			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3498				/* High resolution needed and available? */
3499				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3500				    !ktime_equal(last_ackt,
3501						 net_invalid_timestamp()))
3502					rtt_us = ktime_us_delta(ktime_get_real(),
3503								last_ackt);
3504				else if (ca_seq_rtt >= 0)
3505					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3506			}
3507
3508			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3509		}
3510	}
3511
3512#if FASTRETRANS_DEBUG > 0
3513	WARN_ON((int)tp->sacked_out < 0);
3514	WARN_ON((int)tp->lost_out < 0);
3515	WARN_ON((int)tp->retrans_out < 0);
3516	if (!tp->packets_out && tcp_is_sack(tp)) {
3517		icsk = inet_csk(sk);
3518		if (tp->lost_out) {
3519			pr_debug("Leak l=%u %d\n",
3520				 tp->lost_out, icsk->icsk_ca_state);
3521			tp->lost_out = 0;
3522		}
3523		if (tp->sacked_out) {
3524			pr_debug("Leak s=%u %d\n",
3525				 tp->sacked_out, icsk->icsk_ca_state);
3526			tp->sacked_out = 0;
3527		}
3528		if (tp->retrans_out) {
3529			pr_debug("Leak r=%u %d\n",
3530				 tp->retrans_out, icsk->icsk_ca_state);
3531			tp->retrans_out = 0;
3532		}
3533	}
3534#endif
3535	return flag;
3536}
3537
3538static void tcp_ack_probe(struct sock *sk)
3539{
 
 
3540	const struct tcp_sock *tp = tcp_sk(sk);
3541	struct inet_connection_sock *icsk = inet_csk(sk);
3542
3543	/* Was it a usable window open? */
3544
3545	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
 
3546		icsk->icsk_backoff = 0;
3547		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3548		/* Socket must be waked up by subsequent tcp_data_snd_check().
3549		 * This function is not for random using!
3550		 */
3551	} else {
3552		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3553					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3554					  TCP_RTO_MAX);
 
3555	}
3556}
3557
3558static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3559{
3560	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3561		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3562}
3563
3564static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
 
3565{
3566	const struct tcp_sock *tp = tcp_sk(sk);
3567	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3568		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3569}
3570
3571/* Check that window update is acceptable.
3572 * The function assumes that snd_una<=ack<=snd_next.
3573 */
3574static inline int tcp_may_update_window(const struct tcp_sock *tp,
3575					const u32 ack, const u32 ack_seq,
3576					const u32 nwin)
3577{
3578	return	after(ack, tp->snd_una) ||
3579		after(ack_seq, tp->snd_wl1) ||
3580		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3581}
3582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3583/* Update our send window.
3584 *
3585 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3586 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3587 */
3588static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3589				 u32 ack_seq)
3590{
3591	struct tcp_sock *tp = tcp_sk(sk);
3592	int flag = 0;
3593	u32 nwin = ntohs(tcp_hdr(skb)->window);
3594
3595	if (likely(!tcp_hdr(skb)->syn))
3596		nwin <<= tp->rx_opt.snd_wscale;
3597
3598	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3599		flag |= FLAG_WIN_UPDATE;
3600		tcp_update_wl(tp, ack_seq);
3601
3602		if (tp->snd_wnd != nwin) {
3603			tp->snd_wnd = nwin;
3604
3605			/* Note, it is the only place, where
3606			 * fast path is recovered for sending TCP.
3607			 */
3608			tp->pred_flags = 0;
3609			tcp_fast_path_check(sk);
3610
 
 
 
3611			if (nwin > tp->max_window) {
3612				tp->max_window = nwin;
3613				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3614			}
3615		}
3616	}
3617
3618	tp->snd_una = ack;
3619
3620	return flag;
3621}
3622
3623/* A very conservative spurious RTO response algorithm: reduce cwnd and
3624 * continue in congestion avoidance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3625 */
3626static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
 
 
3627{
3628	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3629	tp->snd_cwnd_cnt = 0;
3630	tp->bytes_acked = 0;
3631	TCP_ECN_queue_cwr(tp);
3632	tcp_moderate_cwnd(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633}
3634
3635/* A conservative spurious RTO response algorithm: reduce cwnd using
3636 * rate halving and continue in congestion avoidance.
3637 */
3638static void tcp_ratehalving_spur_to_response(struct sock *sk)
3639{
3640	tcp_enter_cwr(sk, 0);
 
3641}
3642
3643static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3644{
3645	if (flag & FLAG_ECE)
3646		tcp_ratehalving_spur_to_response(sk);
3647	else
3648		tcp_undo_cwr(sk, true);
 
 
 
 
 
 
 
3649}
3650
3651/* F-RTO spurious RTO detection algorithm (RFC4138)
3652 *
3653 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3654 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3655 * window (but not to or beyond highest sequence sent before RTO):
3656 *   On First ACK,  send two new segments out.
3657 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3658 *                  algorithm is not part of the F-RTO detection algorithm
3659 *                  given in RFC4138 but can be selected separately).
3660 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3661 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3662 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3663 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3664 *
3665 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3666 * original window even after we transmit two new data segments.
3667 *
3668 * SACK version:
3669 *   on first step, wait until first cumulative ACK arrives, then move to
3670 *   the second step. In second step, the next ACK decides.
3671 *
3672 * F-RTO is implemented (mainly) in four functions:
3673 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3674 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3675 *     called when tcp_use_frto() showed green light
3676 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3677 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3678 *     to prove that the RTO is indeed spurious. It transfers the control
3679 *     from F-RTO to the conventional RTO recovery
3680 */
3681static bool tcp_process_frto(struct sock *sk, int flag)
3682{
3683	struct tcp_sock *tp = tcp_sk(sk);
3684
3685	tcp_verify_left_out(tp);
 
3686
3687	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3688	if (flag & FLAG_DATA_ACKED)
3689		inet_csk(sk)->icsk_retransmits = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3690
3691	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3692	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3693		tp->undo_marker = 0;
3694
3695	if (!before(tp->snd_una, tp->frto_highmark)) {
3696		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3697		return true;
3698	}
3699
3700	if (!tcp_is_sackfrto(tp)) {
3701		/* RFC4138 shortcoming in step 2; should also have case c):
3702		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3703		 * data, winupdate
3704		 */
3705		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3706			return true;
3707
3708		if (!(flag & FLAG_DATA_ACKED)) {
3709			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3710					    flag);
3711			return true;
3712		}
3713	} else {
3714		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3715			/* Prevent sending of new data. */
3716			tp->snd_cwnd = min(tp->snd_cwnd,
3717					   tcp_packets_in_flight(tp));
3718			return true;
3719		}
3720
3721		if ((tp->frto_counter >= 2) &&
3722		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3723		     ((flag & FLAG_DATA_SACKED) &&
3724		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3725			/* RFC4138 shortcoming (see comment above) */
3726			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3727			    (flag & FLAG_NOT_DUP))
3728				return true;
3729
3730			tcp_enter_frto_loss(sk, 3, flag);
3731			return true;
3732		}
3733	}
 
 
3734
3735	if (tp->frto_counter == 1) {
3736		/* tcp_may_send_now needs to see updated state */
3737		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3738		tp->frto_counter = 2;
 
 
3739
3740		if (!tcp_may_send_now(sk))
3741			tcp_enter_frto_loss(sk, 2, flag);
3742
3743		return true;
3744	} else {
3745		switch (sysctl_tcp_frto_response) {
3746		case 2:
3747			tcp_undo_spur_to_response(sk, flag);
3748			break;
3749		case 1:
3750			tcp_conservative_spur_to_response(tp);
3751			break;
3752		default:
3753			tcp_ratehalving_spur_to_response(sk);
3754			break;
3755		}
3756		tp->frto_counter = 0;
3757		tp->undo_marker = 0;
3758		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3759	}
3760	return false;
3761}
3762
3763/* This routine deals with incoming acks, but not outgoing ones. */
3764static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3765{
3766	struct inet_connection_sock *icsk = inet_csk(sk);
3767	struct tcp_sock *tp = tcp_sk(sk);
 
 
3768	u32 prior_snd_una = tp->snd_una;
 
3769	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3770	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3771	bool is_dupack = false;
3772	u32 prior_in_flight;
3773	u32 prior_fackets;
3774	int prior_packets;
3775	int prior_sacked = tp->sacked_out;
3776	int pkts_acked = 0;
3777	bool frto_cwnd = false;
 
 
 
 
 
3778
3779	/* If the ack is older than previous acks
3780	 * then we can probably ignore it.
3781	 */
3782	if (before(ack, prior_snd_una))
 
 
 
 
 
 
3783		goto old_ack;
 
3784
3785	/* If the ack includes data we haven't sent yet, discard
3786	 * this segment (RFC793 Section 3.9).
3787	 */
3788	if (after(ack, tp->snd_nxt))
3789		goto invalid_ack;
3790
3791	if (tp->early_retrans_delayed)
3792		tcp_rearm_rto(sk);
3793
3794	if (after(ack, prior_snd_una))
3795		flag |= FLAG_SND_UNA_ADVANCED;
 
3796
3797	if (sysctl_tcp_abc) {
3798		if (icsk->icsk_ca_state < TCP_CA_CWR)
3799			tp->bytes_acked += ack - prior_snd_una;
3800		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3801			/* we assume just one segment left network */
3802			tp->bytes_acked += min(ack - prior_snd_una,
3803					       tp->mss_cache);
3804	}
3805
3806	prior_fackets = tp->fackets_out;
3807	prior_in_flight = tcp_packets_in_flight(tp);
 
 
 
 
 
 
3808
3809	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
 
3810		/* Window is constant, pure forward advance.
3811		 * No more checks are required.
3812		 * Note, we use the fact that SND.UNA>=SND.WL2.
3813		 */
3814		tcp_update_wl(tp, ack_seq);
3815		tp->snd_una = ack;
3816		flag |= FLAG_WIN_UPDATE;
3817
3818		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3819
3820		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3821	} else {
 
 
3822		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3823			flag |= FLAG_DATA;
3824		else
3825			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3826
3827		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3828
3829		if (TCP_SKB_CB(skb)->sacked)
3830			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
 
3831
3832		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3833			flag |= FLAG_ECE;
 
 
 
 
 
3834
3835		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3836	}
3837
3838	/* We passed data and got it acked, remove any soft error
3839	 * log. Something worked...
3840	 */
3841	sk->sk_err_soft = 0;
3842	icsk->icsk_probes_out = 0;
3843	tp->rcv_tstamp = tcp_time_stamp;
3844	prior_packets = tp->packets_out;
3845	if (!prior_packets)
3846		goto no_queue;
3847
3848	/* See if we can take anything off of the retransmit queue. */
3849	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3850
3851	pkts_acked = prior_packets - tp->packets_out;
3852
3853	if (tp->frto_counter)
3854		frto_cwnd = tcp_process_frto(sk, flag);
3855	/* Guarantee sacktag reordering detection against wrap-arounds */
3856	if (before(tp->frto_highmark, tp->snd_una))
3857		tp->frto_highmark = 0;
3858
3859	if (tcp_ack_is_dubious(sk, flag)) {
3860		/* Advance CWND, if state allows this. */
3861		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862		    tcp_may_raise_cwnd(sk, flag))
3863			tcp_cong_avoid(sk, ack, prior_in_flight);
3864		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3866				      is_dupack, flag);
3867	} else {
3868		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869			tcp_cong_avoid(sk, ack, prior_in_flight);
3870	}
3871
3872	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3873		dst_confirm(__sk_dst_get(sk));
3874
 
 
 
 
 
 
3875	return 1;
3876
3877no_queue:
3878	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3879	if (flag & FLAG_DSACKING_ACK)
3880		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3881				      is_dupack, flag);
 
 
3882	/* If this ack opens up a zero window, clear backoff.  It was
3883	 * being used to time the probes, and is probably far higher than
3884	 * it needs to be for normal retransmission.
3885	 */
3886	if (tcp_send_head(sk))
3887		tcp_ack_probe(sk);
 
 
3888	return 1;
3889
3890invalid_ack:
3891	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3892	return -1;
3893
3894old_ack:
3895	/* If data was SACKed, tag it and see if we should send more data.
3896	 * If data was DSACKed, see if we can undo a cwnd reduction.
3897	 */
3898	if (TCP_SKB_CB(skb)->sacked) {
3899		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3900		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3901				      is_dupack, flag);
 
 
 
3902	}
3903
3904	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3905	return 0;
3906}
3907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3909 * But, this can also be called on packets in the established flow when
3910 * the fast version below fails.
3911 */
3912void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3913		       const u8 **hvpp, int estab)
 
 
3914{
3915	const unsigned char *ptr;
3916	const struct tcphdr *th = tcp_hdr(skb);
3917	int length = (th->doff * 4) - sizeof(struct tcphdr);
3918
3919	ptr = (const unsigned char *)(th + 1);
3920	opt_rx->saw_tstamp = 0;
3921
3922	while (length > 0) {
3923		int opcode = *ptr++;
3924		int opsize;
3925
3926		switch (opcode) {
3927		case TCPOPT_EOL:
3928			return;
3929		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3930			length--;
3931			continue;
3932		default:
 
 
3933			opsize = *ptr++;
3934			if (opsize < 2) /* "silly options" */
3935				return;
3936			if (opsize > length)
3937				return;	/* don't parse partial options */
3938			switch (opcode) {
3939			case TCPOPT_MSS:
3940				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3941					u16 in_mss = get_unaligned_be16(ptr);
3942					if (in_mss) {
3943						if (opt_rx->user_mss &&
3944						    opt_rx->user_mss < in_mss)
3945							in_mss = opt_rx->user_mss;
3946						opt_rx->mss_clamp = in_mss;
3947					}
3948				}
3949				break;
3950			case TCPOPT_WINDOW:
3951				if (opsize == TCPOLEN_WINDOW && th->syn &&
3952				    !estab && sysctl_tcp_window_scaling) {
3953					__u8 snd_wscale = *(__u8 *)ptr;
3954					opt_rx->wscale_ok = 1;
3955					if (snd_wscale > 14) {
3956						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3957								     __func__,
3958								     snd_wscale);
3959						snd_wscale = 14;
 
3960					}
3961					opt_rx->snd_wscale = snd_wscale;
3962				}
3963				break;
3964			case TCPOPT_TIMESTAMP:
3965				if ((opsize == TCPOLEN_TIMESTAMP) &&
3966				    ((estab && opt_rx->tstamp_ok) ||
3967				     (!estab && sysctl_tcp_timestamps))) {
3968					opt_rx->saw_tstamp = 1;
3969					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3970					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3971				}
3972				break;
3973			case TCPOPT_SACK_PERM:
3974				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3975				    !estab && sysctl_tcp_sack) {
3976					opt_rx->sack_ok = TCP_SACK_SEEN;
3977					tcp_sack_reset(opt_rx);
3978				}
3979				break;
3980
3981			case TCPOPT_SACK:
3982				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3983				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3984				   opt_rx->sack_ok) {
3985					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3986				}
3987				break;
3988#ifdef CONFIG_TCP_MD5SIG
3989			case TCPOPT_MD5SIG:
3990				/*
3991				 * The MD5 Hash has already been
3992				 * checked (see tcp_v{4,6}_do_rcv()).
3993				 */
3994				break;
3995#endif
3996			case TCPOPT_COOKIE:
3997				/* This option is variable length.
 
 
 
 
 
 
 
3998				 */
3999				switch (opsize) {
4000				case TCPOLEN_COOKIE_BASE:
4001					/* not yet implemented */
4002					break;
4003				case TCPOLEN_COOKIE_PAIR:
4004					/* not yet implemented */
4005					break;
4006				case TCPOLEN_COOKIE_MIN+0:
4007				case TCPOLEN_COOKIE_MIN+2:
4008				case TCPOLEN_COOKIE_MIN+4:
4009				case TCPOLEN_COOKIE_MIN+6:
4010				case TCPOLEN_COOKIE_MAX:
4011					/* 16-bit multiple */
4012					opt_rx->cookie_plus = opsize;
4013					*hvpp = ptr;
4014					break;
4015				default:
4016					/* ignore option */
4017					break;
4018				}
4019				break;
 
4020			}
4021
4022			ptr += opsize-2;
4023			length -= opsize;
4024		}
4025	}
4026}
4027EXPORT_SYMBOL(tcp_parse_options);
4028
4029static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4030{
4031	const __be32 *ptr = (const __be32 *)(th + 1);
4032
4033	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4034			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4035		tp->rx_opt.saw_tstamp = 1;
4036		++ptr;
4037		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4038		++ptr;
4039		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
 
 
 
4040		return true;
4041	}
4042	return false;
4043}
4044
4045/* Fast parse options. This hopes to only see timestamps.
4046 * If it is wrong it falls back on tcp_parse_options().
4047 */
4048static bool tcp_fast_parse_options(const struct sk_buff *skb,
4049				   const struct tcphdr *th,
4050				   struct tcp_sock *tp, const u8 **hvpp)
4051{
4052	/* In the spirit of fast parsing, compare doff directly to constant
4053	 * values.  Because equality is used, short doff can be ignored here.
4054	 */
4055	if (th->doff == (sizeof(*th) / 4)) {
4056		tp->rx_opt.saw_tstamp = 0;
4057		return false;
4058	} else if (tp->rx_opt.tstamp_ok &&
4059		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4060		if (tcp_parse_aligned_timestamp(tp, th))
4061			return true;
4062	}
4063	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
 
 
 
 
4064	return true;
4065}
4066
4067#ifdef CONFIG_TCP_MD5SIG
4068/*
4069 * Parse MD5 Signature option
4070 */
4071const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4072{
4073	int length = (th->doff << 2) - sizeof(*th);
4074	const u8 *ptr = (const u8 *)(th + 1);
4075
4076	/* If the TCP option is too short, we can short cut */
4077	if (length < TCPOLEN_MD5SIG)
4078		return NULL;
4079
4080	while (length > 0) {
4081		int opcode = *ptr++;
4082		int opsize;
4083
4084		switch(opcode) {
4085		case TCPOPT_EOL:
4086			return NULL;
4087		case TCPOPT_NOP:
4088			length--;
4089			continue;
4090		default:
4091			opsize = *ptr++;
4092			if (opsize < 2 || opsize > length)
4093				return NULL;
4094			if (opcode == TCPOPT_MD5SIG)
4095				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4096		}
4097		ptr += opsize - 2;
4098		length -= opsize;
4099	}
4100	return NULL;
4101}
4102EXPORT_SYMBOL(tcp_parse_md5sig_option);
4103#endif
4104
4105static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4106{
4107	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4108	tp->rx_opt.ts_recent_stamp = get_seconds();
4109}
4110
4111static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4112{
4113	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4114		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4115		 * extra check below makes sure this can only happen
4116		 * for pure ACK frames.  -DaveM
4117		 *
4118		 * Not only, also it occurs for expired timestamps.
4119		 */
4120
4121		if (tcp_paws_check(&tp->rx_opt, 0))
4122			tcp_store_ts_recent(tp);
4123	}
4124}
4125
4126/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4127 *
4128 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4129 * it can pass through stack. So, the following predicate verifies that
4130 * this segment is not used for anything but congestion avoidance or
4131 * fast retransmit. Moreover, we even are able to eliminate most of such
4132 * second order effects, if we apply some small "replay" window (~RTO)
4133 * to timestamp space.
4134 *
4135 * All these measures still do not guarantee that we reject wrapped ACKs
4136 * on networks with high bandwidth, when sequence space is recycled fastly,
4137 * but it guarantees that such events will be very rare and do not affect
4138 * connection seriously. This doesn't look nice, but alas, PAWS is really
4139 * buggy extension.
4140 *
4141 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4142 * states that events when retransmit arrives after original data are rare.
4143 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4144 * the biggest problem on large power networks even with minor reordering.
4145 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4146 * up to bandwidth of 18Gigabit/sec. 8) ]
4147 */
4148
4149static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4150{
4151	const struct tcp_sock *tp = tcp_sk(sk);
4152	const struct tcphdr *th = tcp_hdr(skb);
4153	u32 seq = TCP_SKB_CB(skb)->seq;
4154	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4155
4156	return (/* 1. Pure ACK with correct sequence number. */
4157		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4158
4159		/* 2. ... and duplicate ACK. */
4160		ack == tp->snd_una &&
4161
4162		/* 3. ... and does not update window. */
4163		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4164
4165		/* 4. ... and sits in replay window. */
4166		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4167}
4168
4169static inline int tcp_paws_discard(const struct sock *sk,
4170				   const struct sk_buff *skb)
4171{
4172	const struct tcp_sock *tp = tcp_sk(sk);
4173
4174	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4175	       !tcp_disordered_ack(sk, skb);
4176}
4177
4178/* Check segment sequence number for validity.
4179 *
4180 * Segment controls are considered valid, if the segment
4181 * fits to the window after truncation to the window. Acceptability
4182 * of data (and SYN, FIN, of course) is checked separately.
4183 * See tcp_data_queue(), for example.
4184 *
4185 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4186 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4187 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4188 * (borrowed from freebsd)
4189 */
4190
4191static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4192{
4193	return	!before(end_seq, tp->rcv_wup) &&
4194		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4195}
4196
4197/* When we get a reset we do this. */
4198static void tcp_reset(struct sock *sk)
4199{
 
 
4200	/* We want the right error as BSD sees it (and indeed as we do). */
4201	switch (sk->sk_state) {
4202	case TCP_SYN_SENT:
4203		sk->sk_err = ECONNREFUSED;
4204		break;
4205	case TCP_CLOSE_WAIT:
4206		sk->sk_err = EPIPE;
4207		break;
4208	case TCP_CLOSE:
4209		return;
4210	default:
4211		sk->sk_err = ECONNRESET;
4212	}
4213	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4214	smp_wmb();
4215
 
 
 
4216	if (!sock_flag(sk, SOCK_DEAD))
4217		sk->sk_error_report(sk);
4218
4219	tcp_done(sk);
4220}
4221
4222/*
4223 * 	Process the FIN bit. This now behaves as it is supposed to work
4224 *	and the FIN takes effect when it is validly part of sequence
4225 *	space. Not before when we get holes.
4226 *
4227 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4228 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4229 *	TIME-WAIT)
4230 *
4231 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4232 *	close and we go into CLOSING (and later onto TIME-WAIT)
4233 *
4234 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4235 */
4236static void tcp_fin(struct sock *sk)
4237{
4238	struct tcp_sock *tp = tcp_sk(sk);
4239
4240	inet_csk_schedule_ack(sk);
4241
4242	sk->sk_shutdown |= RCV_SHUTDOWN;
4243	sock_set_flag(sk, SOCK_DONE);
4244
4245	switch (sk->sk_state) {
4246	case TCP_SYN_RECV:
4247	case TCP_ESTABLISHED:
4248		/* Move to CLOSE_WAIT */
4249		tcp_set_state(sk, TCP_CLOSE_WAIT);
4250		inet_csk(sk)->icsk_ack.pingpong = 1;
4251		break;
4252
4253	case TCP_CLOSE_WAIT:
4254	case TCP_CLOSING:
4255		/* Received a retransmission of the FIN, do
4256		 * nothing.
4257		 */
4258		break;
4259	case TCP_LAST_ACK:
4260		/* RFC793: Remain in the LAST-ACK state. */
4261		break;
4262
4263	case TCP_FIN_WAIT1:
4264		/* This case occurs when a simultaneous close
4265		 * happens, we must ack the received FIN and
4266		 * enter the CLOSING state.
4267		 */
4268		tcp_send_ack(sk);
4269		tcp_set_state(sk, TCP_CLOSING);
4270		break;
4271	case TCP_FIN_WAIT2:
4272		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4273		tcp_send_ack(sk);
4274		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4275		break;
4276	default:
4277		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4278		 * cases we should never reach this piece of code.
4279		 */
4280		pr_err("%s: Impossible, sk->sk_state=%d\n",
4281		       __func__, sk->sk_state);
4282		break;
4283	}
4284
4285	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4286	 * Probably, we should reset in this case. For now drop them.
4287	 */
4288	__skb_queue_purge(&tp->out_of_order_queue);
4289	if (tcp_is_sack(tp))
4290		tcp_sack_reset(&tp->rx_opt);
4291	sk_mem_reclaim(sk);
4292
4293	if (!sock_flag(sk, SOCK_DEAD)) {
4294		sk->sk_state_change(sk);
4295
4296		/* Do not send POLL_HUP for half duplex close. */
4297		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4298		    sk->sk_state == TCP_CLOSE)
4299			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4300		else
4301			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4302	}
4303}
4304
4305static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4306				  u32 end_seq)
4307{
4308	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4309		if (before(seq, sp->start_seq))
4310			sp->start_seq = seq;
4311		if (after(end_seq, sp->end_seq))
4312			sp->end_seq = end_seq;
4313		return true;
4314	}
4315	return false;
4316}
4317
4318static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320	struct tcp_sock *tp = tcp_sk(sk);
4321
4322	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4323		int mib_idx;
4324
4325		if (before(seq, tp->rcv_nxt))
4326			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4327		else
4328			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4329
4330		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4331
4332		tp->rx_opt.dsack = 1;
4333		tp->duplicate_sack[0].start_seq = seq;
4334		tp->duplicate_sack[0].end_seq = end_seq;
4335	}
4336}
4337
4338static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4339{
4340	struct tcp_sock *tp = tcp_sk(sk);
4341
4342	if (!tp->rx_opt.dsack)
4343		tcp_dsack_set(sk, seq, end_seq);
4344	else
4345		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4346}
4347
 
 
 
 
 
 
 
 
 
 
 
4348static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4349{
4350	struct tcp_sock *tp = tcp_sk(sk);
4351
4352	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4353	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4354		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4355		tcp_enter_quickack_mode(sk);
4356
4357		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4358			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4359
 
4360			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4361				end_seq = tp->rcv_nxt;
4362			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4363		}
4364	}
4365
4366	tcp_send_ack(sk);
4367}
4368
4369/* These routines update the SACK block as out-of-order packets arrive or
4370 * in-order packets close up the sequence space.
4371 */
4372static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4373{
4374	int this_sack;
4375	struct tcp_sack_block *sp = &tp->selective_acks[0];
4376	struct tcp_sack_block *swalk = sp + 1;
4377
4378	/* See if the recent change to the first SACK eats into
4379	 * or hits the sequence space of other SACK blocks, if so coalesce.
4380	 */
4381	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4382		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4383			int i;
4384
4385			/* Zap SWALK, by moving every further SACK up by one slot.
4386			 * Decrease num_sacks.
4387			 */
4388			tp->rx_opt.num_sacks--;
4389			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4390				sp[i] = sp[i + 1];
4391			continue;
4392		}
4393		this_sack++, swalk++;
4394	}
4395}
4396
4397static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398{
4399	struct tcp_sock *tp = tcp_sk(sk);
4400	struct tcp_sack_block *sp = &tp->selective_acks[0];
4401	int cur_sacks = tp->rx_opt.num_sacks;
4402	int this_sack;
4403
4404	if (!cur_sacks)
4405		goto new_sack;
4406
4407	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408		if (tcp_sack_extend(sp, seq, end_seq)) {
4409			/* Rotate this_sack to the first one. */
4410			for (; this_sack > 0; this_sack--, sp--)
4411				swap(*sp, *(sp - 1));
4412			if (cur_sacks > 1)
4413				tcp_sack_maybe_coalesce(tp);
4414			return;
4415		}
4416	}
4417
4418	/* Could not find an adjacent existing SACK, build a new one,
4419	 * put it at the front, and shift everyone else down.  We
4420	 * always know there is at least one SACK present already here.
4421	 *
4422	 * If the sack array is full, forget about the last one.
4423	 */
4424	if (this_sack >= TCP_NUM_SACKS) {
 
 
4425		this_sack--;
4426		tp->rx_opt.num_sacks--;
4427		sp--;
4428	}
4429	for (; this_sack > 0; this_sack--, sp--)
4430		*sp = *(sp - 1);
4431
4432new_sack:
4433	/* Build the new head SACK, and we're done. */
4434	sp->start_seq = seq;
4435	sp->end_seq = end_seq;
4436	tp->rx_opt.num_sacks++;
4437}
4438
4439/* RCV.NXT advances, some SACKs should be eaten. */
4440
4441static void tcp_sack_remove(struct tcp_sock *tp)
4442{
4443	struct tcp_sack_block *sp = &tp->selective_acks[0];
4444	int num_sacks = tp->rx_opt.num_sacks;
4445	int this_sack;
4446
4447	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4448	if (skb_queue_empty(&tp->out_of_order_queue)) {
4449		tp->rx_opt.num_sacks = 0;
4450		return;
4451	}
4452
4453	for (this_sack = 0; this_sack < num_sacks;) {
4454		/* Check if the start of the sack is covered by RCV.NXT. */
4455		if (!before(tp->rcv_nxt, sp->start_seq)) {
4456			int i;
4457
4458			/* RCV.NXT must cover all the block! */
4459			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4460
4461			/* Zap this SACK, by moving forward any other SACKS. */
4462			for (i=this_sack+1; i < num_sacks; i++)
4463				tp->selective_acks[i-1] = tp->selective_acks[i];
4464			num_sacks--;
4465			continue;
4466		}
4467		this_sack++;
4468		sp++;
4469	}
4470	tp->rx_opt.num_sacks = num_sacks;
4471}
4472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4473/* This one checks to see if we can put data from the
4474 * out_of_order queue into the receive_queue.
4475 */
4476static void tcp_ofo_queue(struct sock *sk)
4477{
4478	struct tcp_sock *tp = tcp_sk(sk);
4479	__u32 dsack_high = tp->rcv_nxt;
4480	struct sk_buff *skb;
4481
4482	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
 
 
 
 
4483		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4484			break;
4485
4486		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4487			__u32 dsack = dsack_high;
4488			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4489				dsack_high = TCP_SKB_CB(skb)->end_seq;
4490			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4491		}
 
 
4492
4493		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4494			SOCK_DEBUG(sk, "ofo packet was already received\n");
4495			__skb_unlink(skb, &tp->out_of_order_queue);
4496			__kfree_skb(skb);
4497			continue;
4498		}
4499		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4500			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4501			   TCP_SKB_CB(skb)->end_seq);
4502
4503		__skb_unlink(skb, &tp->out_of_order_queue);
4504		__skb_queue_tail(&sk->sk_receive_queue, skb);
4505		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4506		if (tcp_hdr(skb)->fin)
 
 
 
 
 
 
4507			tcp_fin(sk);
 
 
 
 
 
4508	}
4509}
4510
4511static bool tcp_prune_ofo_queue(struct sock *sk);
4512static int tcp_prune_queue(struct sock *sk);
4513
4514static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
 
4515{
4516	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4517	    !sk_rmem_schedule(sk, size)) {
4518
4519		if (tcp_prune_queue(sk) < 0)
4520			return -1;
4521
4522		if (!sk_rmem_schedule(sk, size)) {
4523			if (!tcp_prune_ofo_queue(sk))
4524				return -1;
4525
4526			if (!sk_rmem_schedule(sk, size))
4527				return -1;
4528		}
4529	}
4530	return 0;
4531}
4532
4533/**
4534 * tcp_try_coalesce - try to merge skb to prior one
4535 * @sk: socket
4536 * @to: prior buffer
4537 * @from: buffer to add in queue
4538 * @fragstolen: pointer to boolean
4539 *
4540 * Before queueing skb @from after @to, try to merge them
4541 * to reduce overall memory use and queue lengths, if cost is small.
4542 * Packets in ofo or receive queues can stay a long time.
4543 * Better try to coalesce them right now to avoid future collapses.
4544 * Returns true if caller should free @from instead of queueing it
4545 */
4546static bool tcp_try_coalesce(struct sock *sk,
4547			     struct sk_buff *to,
4548			     struct sk_buff *from,
4549			     bool *fragstolen)
4550{
4551	int delta;
4552
4553	*fragstolen = false;
4554
4555	if (tcp_hdr(from)->fin)
4556		return false;
4557
4558	/* Its possible this segment overlaps with prior segment in queue */
4559	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4560		return false;
4561
4562	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4563		return false;
4564
4565	atomic_add(delta, &sk->sk_rmem_alloc);
4566	sk_mem_charge(sk, delta);
4567	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4568	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4569	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4570	return true;
4571}
4572
4573static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4574{
4575	struct tcp_sock *tp = tcp_sk(sk);
 
4576	struct sk_buff *skb1;
4577	u32 seq, end_seq;
 
4578
4579	TCP_ECN_check_ce(tp, skb);
4580
4581	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4582		/* TODO: should increment a counter */
4583		__kfree_skb(skb);
4584		return;
4585	}
4586
4587	/* Disable header prediction. */
4588	tp->pred_flags = 0;
4589	inet_csk_schedule_ack(sk);
4590
4591	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4592		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
 
 
4593
4594	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4595	if (!skb1) {
4596		/* Initial out of order segment, build 1 SACK. */
4597		if (tcp_is_sack(tp)) {
4598			tp->rx_opt.num_sacks = 1;
4599			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4600			tp->selective_acks[0].end_seq =
4601						TCP_SKB_CB(skb)->end_seq;
4602		}
4603		__skb_queue_head(&tp->out_of_order_queue, skb);
 
 
4604		goto end;
4605	}
4606
4607	seq = TCP_SKB_CB(skb)->seq;
4608	end_seq = TCP_SKB_CB(skb)->end_seq;
4609
4610	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4611		bool fragstolen;
4612
4613		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4614			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4615		} else {
4616			kfree_skb_partial(skb, fragstolen);
4617			skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4618		}
4619
4620		if (!tp->rx_opt.num_sacks ||
4621		    tp->selective_acks[0].end_seq != seq)
4622			goto add_sack;
4623
4624		/* Common case: data arrive in order after hole. */
4625		tp->selective_acks[0].end_seq = end_seq;
4626		goto end;
4627	}
4628
4629	/* Find place to insert this segment. */
4630	while (1) {
4631		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4632			break;
4633		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4634			skb1 = NULL;
4635			break;
4636		}
4637		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4638	}
4639
4640	/* Do skb overlap to previous one? */
4641	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4642		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4643			/* All the bits are present. Drop. */
4644			__kfree_skb(skb);
4645			skb = NULL;
4646			tcp_dsack_set(sk, seq, end_seq);
4647			goto add_sack;
4648		}
4649		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4650			/* Partial overlap. */
4651			tcp_dsack_set(sk, seq,
4652				      TCP_SKB_CB(skb1)->end_seq);
4653		} else {
4654			if (skb_queue_is_first(&tp->out_of_order_queue,
4655					       skb1))
4656				skb1 = NULL;
4657			else
4658				skb1 = skb_queue_prev(
4659					&tp->out_of_order_queue,
4660					skb1);
4661		}
4662	}
4663	if (!skb1)
4664		__skb_queue_head(&tp->out_of_order_queue, skb);
4665	else
4666		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4667
4668	/* And clean segments covered by new one as whole. */
4669	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4670		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4671
4672		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4673			break;
4674		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4676					 end_seq);
4677			break;
4678		}
4679		__skb_unlink(skb1, &tp->out_of_order_queue);
4680		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4681				 TCP_SKB_CB(skb1)->end_seq);
4682		__kfree_skb(skb1);
 
4683	}
 
 
 
4684
4685add_sack:
4686	if (tcp_is_sack(tp))
4687		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4688end:
4689	if (skb)
 
 
4690		skb_set_owner_r(skb, sk);
 
4691}
4692
4693static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4694		  bool *fragstolen)
4695{
4696	int eaten;
4697	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4698
4699	__skb_pull(skb, hdrlen);
4700	eaten = (tail &&
4701		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4702	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
4703	if (!eaten) {
4704		__skb_queue_tail(&sk->sk_receive_queue, skb);
4705		skb_set_owner_r(skb, sk);
4706	}
4707	return eaten;
4708}
4709
4710int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4711{
4712	struct sk_buff *skb;
4713	struct tcphdr *th;
 
4714	bool fragstolen;
4715
4716	if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4717		goto err;
 
 
 
4718
4719	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
 
 
 
 
 
4720	if (!skb)
4721		goto err;
4722
4723	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4724	skb_reset_transport_header(skb);
4725	memset(th, 0, sizeof(*th));
 
 
 
 
 
4726
4727	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
 
4728		goto err_free;
4729
4730	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4731	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4732	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4733
4734	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4735		WARN_ON_ONCE(fragstolen); /* should not happen */
4736		__kfree_skb(skb);
4737	}
4738	return size;
4739
4740err_free:
4741	kfree_skb(skb);
4742err:
4743	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
4744}
4745
4746static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4747{
4748	const struct tcphdr *th = tcp_hdr(skb);
4749	struct tcp_sock *tp = tcp_sk(sk);
4750	int eaten = -1;
4751	bool fragstolen = false;
4752
4753	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4754		goto drop;
4755
 
 
 
 
4756	skb_dst_drop(skb);
4757	__skb_pull(skb, th->doff * 4);
4758
4759	TCP_ECN_accept_cwr(tp, skb);
4760
4761	tp->rx_opt.dsack = 0;
4762
4763	/*  Queue data for delivery to the user.
4764	 *  Packets in sequence go to the receive queue.
4765	 *  Out of sequence packets to the out_of_order_queue.
4766	 */
4767	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4768		if (tcp_receive_window(tp) == 0)
 
4769			goto out_of_window;
 
4770
4771		/* Ok. In sequence. In window. */
4772		if (tp->ucopy.task == current &&
4773		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4774		    sock_owned_by_user(sk) && !tp->urg_data) {
4775			int chunk = min_t(unsigned int, skb->len,
4776					  tp->ucopy.len);
4777
4778			__set_current_state(TASK_RUNNING);
4779
4780			local_bh_enable();
4781			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4782				tp->ucopy.len -= chunk;
4783				tp->copied_seq += chunk;
4784				eaten = (chunk == skb->len);
4785				tcp_rcv_space_adjust(sk);
4786			}
4787			local_bh_disable();
4788		}
4789
4790		if (eaten <= 0) {
4791queue_and_out:
4792			if (eaten < 0 &&
4793			    tcp_try_rmem_schedule(sk, skb->truesize))
4794				goto drop;
4795
4796			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4797		}
4798		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4799		if (skb->len)
4800			tcp_event_data_recv(sk, skb);
4801		if (th->fin)
4802			tcp_fin(sk);
4803
4804		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4805			tcp_ofo_queue(sk);
4806
4807			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4808			 * gap in queue is filled.
4809			 */
4810			if (skb_queue_empty(&tp->out_of_order_queue))
4811				inet_csk(sk)->icsk_ack.pingpong = 0;
4812		}
4813
4814		if (tp->rx_opt.num_sacks)
4815			tcp_sack_remove(tp);
4816
4817		tcp_fast_path_check(sk);
4818
4819		if (eaten > 0)
4820			kfree_skb_partial(skb, fragstolen);
4821		else if (!sock_flag(sk, SOCK_DEAD))
4822			sk->sk_data_ready(sk, 0);
4823		return;
4824	}
4825
4826	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 
4827		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4829		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4830
4831out_of_window:
4832		tcp_enter_quickack_mode(sk);
4833		inet_csk_schedule_ack(sk);
4834drop:
4835		__kfree_skb(skb);
4836		return;
4837	}
4838
4839	/* Out of window. F.e. zero window probe. */
4840	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4841		goto out_of_window;
4842
4843	tcp_enter_quickack_mode(sk);
4844
4845	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4846		/* Partial packet, seq < rcv_next < end_seq */
4847		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4848			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4849			   TCP_SKB_CB(skb)->end_seq);
4850
4851		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4852
4853		/* If window is closed, drop tail of packet. But after
4854		 * remembering D-SACK for its head made in previous line.
4855		 */
4856		if (!tcp_receive_window(tp))
 
4857			goto out_of_window;
 
4858		goto queue_and_out;
4859	}
4860
4861	tcp_data_queue_ofo(sk, skb);
4862}
4863
 
 
 
 
 
 
 
 
4864static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4865					struct sk_buff_head *list)
 
4866{
4867	struct sk_buff *next = NULL;
4868
4869	if (!skb_queue_is_last(list, skb))
4870		next = skb_queue_next(list, skb);
 
 
4871
4872	__skb_unlink(skb, list);
4873	__kfree_skb(skb);
4874	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876	return next;
4877}
4878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4879/* Collapse contiguous sequence of skbs head..tail with
4880 * sequence numbers start..end.
4881 *
4882 * If tail is NULL, this means until the end of the list.
4883 *
4884 * Segments with FIN/SYN are not collapsed (only because this
4885 * simplifies code)
4886 */
4887static void
4888tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4889	     struct sk_buff *head, struct sk_buff *tail,
4890	     u32 start, u32 end)
4891{
4892	struct sk_buff *skb, *n;
 
4893	bool end_of_skbs;
4894
4895	/* First, check that queue is collapsible and find
4896	 * the point where collapsing can be useful. */
4897	skb = head;
4898restart:
4899	end_of_skbs = true;
4900	skb_queue_walk_from_safe(list, skb, n) {
4901		if (skb == tail)
4902			break;
4903		/* No new bits? It is possible on ofo queue. */
4904		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4905			skb = tcp_collapse_one(sk, skb, list);
4906			if (!skb)
4907				break;
4908			goto restart;
4909		}
4910
4911		/* The first skb to collapse is:
4912		 * - not SYN/FIN and
4913		 * - bloated or contains data before "start" or
4914		 *   overlaps to the next one.
4915		 */
4916		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4917		    (tcp_win_from_space(skb->truesize) > skb->len ||
4918		     before(TCP_SKB_CB(skb)->seq, start))) {
4919			end_of_skbs = false;
4920			break;
4921		}
4922
4923		if (!skb_queue_is_last(list, skb)) {
4924			struct sk_buff *next = skb_queue_next(list, skb);
4925			if (next != tail &&
4926			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4927				end_of_skbs = false;
4928				break;
4929			}
4930		}
4931
4932		/* Decided to skip this, advance start seq. */
4933		start = TCP_SKB_CB(skb)->end_seq;
4934	}
4935	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
 
4936		return;
4937
 
 
4938	while (before(start, end)) {
 
4939		struct sk_buff *nskb;
4940		unsigned int header = skb_headroom(skb);
4941		int copy = SKB_MAX_ORDER(header, 0);
4942
4943		/* Too big header? This can happen with IPv6. */
4944		if (copy < 0)
4945			return;
4946		if (end - start < copy)
4947			copy = end - start;
4948		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4949		if (!nskb)
4950			return;
4951
4952		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4953		skb_set_network_header(nskb, (skb_network_header(skb) -
4954					      skb->head));
4955		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4956						skb->head));
4957		skb_reserve(nskb, header);
4958		memcpy(nskb->head, skb->head, header);
4959		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
 
 
 
4960		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4961		__skb_queue_before(list, skb, nskb);
 
 
 
4962		skb_set_owner_r(nskb, sk);
4963
4964		/* Copy data, releasing collapsed skbs. */
4965		while (copy > 0) {
4966			int offset = start - TCP_SKB_CB(skb)->seq;
4967			int size = TCP_SKB_CB(skb)->end_seq - start;
4968
4969			BUG_ON(offset < 0);
4970			if (size > 0) {
4971				size = min(copy, size);
4972				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4973					BUG();
4974				TCP_SKB_CB(nskb)->end_seq += size;
4975				copy -= size;
4976				start += size;
4977			}
4978			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4979				skb = tcp_collapse_one(sk, skb, list);
4980				if (!skb ||
4981				    skb == tail ||
4982				    tcp_hdr(skb)->syn ||
4983				    tcp_hdr(skb)->fin)
4984					return;
 
 
 
4985			}
4986		}
4987	}
 
 
 
4988}
4989
4990/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4991 * and tcp_collapse() them until all the queue is collapsed.
4992 */
4993static void tcp_collapse_ofo_queue(struct sock *sk)
4994{
4995	struct tcp_sock *tp = tcp_sk(sk);
4996	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4997	struct sk_buff *head;
4998	u32 start, end;
4999
5000	if (skb == NULL)
 
 
 
5001		return;
5002
5003	start = TCP_SKB_CB(skb)->seq;
5004	end = TCP_SKB_CB(skb)->end_seq;
5005	head = skb;
5006
5007	for (;;) {
5008		struct sk_buff *next = NULL;
5009
5010		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5011			next = skb_queue_next(&tp->out_of_order_queue, skb);
5012		skb = next;
5013
5014		/* Segment is terminated when we see gap or when
5015		 * we are at the end of all the queue. */
5016		if (!skb ||
5017		    after(TCP_SKB_CB(skb)->seq, end) ||
5018		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5019			tcp_collapse(sk, &tp->out_of_order_queue,
5020				     head, skb, start, end);
5021			head = skb;
5022			if (!skb)
5023				break;
5024			/* Start new segment */
 
 
 
 
 
 
 
 
 
5025			start = TCP_SKB_CB(skb)->seq;
 
5026			end = TCP_SKB_CB(skb)->end_seq;
5027		} else {
5028			if (before(TCP_SKB_CB(skb)->seq, start))
5029				start = TCP_SKB_CB(skb)->seq;
5030			if (after(TCP_SKB_CB(skb)->end_seq, end))
5031				end = TCP_SKB_CB(skb)->end_seq;
5032		}
5033	}
5034}
5035
5036/*
5037 * Purge the out-of-order queue.
5038 * Return true if queue was pruned.
 
 
 
 
 
 
 
5039 */
5040static bool tcp_prune_ofo_queue(struct sock *sk)
5041{
5042	struct tcp_sock *tp = tcp_sk(sk);
5043	bool res = false;
 
 
 
 
5044
5045	if (!skb_queue_empty(&tp->out_of_order_queue)) {
5046		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5047		__skb_queue_purge(&tp->out_of_order_queue);
5048
5049		/* Reset SACK state.  A conforming SACK implementation will
5050		 * do the same at a timeout based retransmit.  When a connection
5051		 * is in a sad state like this, we care only about integrity
5052		 * of the connection not performance.
5053		 */
5054		if (tp->rx_opt.sack_ok)
5055			tcp_sack_reset(&tp->rx_opt);
5056		sk_mem_reclaim(sk);
5057		res = true;
5058	}
5059	return res;
 
 
 
 
 
 
 
 
 
 
 
 
5060}
5061
5062/* Reduce allocated memory if we can, trying to get
5063 * the socket within its memory limits again.
5064 *
5065 * Return less than zero if we should start dropping frames
5066 * until the socket owning process reads some of the data
5067 * to stabilize the situation.
5068 */
5069static int tcp_prune_queue(struct sock *sk)
5070{
5071	struct tcp_sock *tp = tcp_sk(sk);
5072
5073	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5074
5075	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5076
5077	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5078		tcp_clamp_window(sk);
5079	else if (sk_under_memory_pressure(sk))
5080		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5081
 
 
 
5082	tcp_collapse_ofo_queue(sk);
5083	if (!skb_queue_empty(&sk->sk_receive_queue))
5084		tcp_collapse(sk, &sk->sk_receive_queue,
5085			     skb_peek(&sk->sk_receive_queue),
5086			     NULL,
5087			     tp->copied_seq, tp->rcv_nxt);
5088	sk_mem_reclaim(sk);
5089
5090	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5091		return 0;
5092
5093	/* Collapsing did not help, destructive actions follow.
5094	 * This must not ever occur. */
5095
5096	tcp_prune_ofo_queue(sk);
5097
5098	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099		return 0;
5100
5101	/* If we are really being abused, tell the caller to silently
5102	 * drop receive data on the floor.  It will get retransmitted
5103	 * and hopefully then we'll have sufficient space.
5104	 */
5105	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5106
5107	/* Massive buffer overcommit. */
5108	tp->pred_flags = 0;
5109	return -1;
5110}
5111
5112/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5113 * As additional protections, we do not touch cwnd in retransmission phases,
5114 * and if application hit its sndbuf limit recently.
5115 */
5116void tcp_cwnd_application_limited(struct sock *sk)
5117{
5118	struct tcp_sock *tp = tcp_sk(sk);
5119
5120	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5121	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5122		/* Limited by application or receiver window. */
5123		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5124		u32 win_used = max(tp->snd_cwnd_used, init_win);
5125		if (win_used < tp->snd_cwnd) {
5126			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5127			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5128		}
5129		tp->snd_cwnd_used = 0;
5130	}
5131	tp->snd_cwnd_stamp = tcp_time_stamp;
5132}
5133
5134static bool tcp_should_expand_sndbuf(const struct sock *sk)
5135{
5136	const struct tcp_sock *tp = tcp_sk(sk);
5137
5138	/* If the user specified a specific send buffer setting, do
5139	 * not modify it.
5140	 */
5141	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5142		return false;
5143
5144	/* If we are under global TCP memory pressure, do not expand.  */
5145	if (sk_under_memory_pressure(sk))
5146		return false;
5147
5148	/* If we are under soft global TCP memory pressure, do not expand.  */
5149	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5150		return false;
5151
5152	/* If we filled the congestion window, do not expand.  */
5153	if (tp->packets_out >= tp->snd_cwnd)
5154		return false;
5155
5156	return true;
5157}
5158
5159/* When incoming ACK allowed to free some skb from write_queue,
5160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5161 * on the exit from tcp input handler.
5162 *
5163 * PROBLEM: sndbuf expansion does not work well with largesend.
5164 */
5165static void tcp_new_space(struct sock *sk)
5166{
5167	struct tcp_sock *tp = tcp_sk(sk);
5168
5169	if (tcp_should_expand_sndbuf(sk)) {
5170		int sndmem = SKB_TRUESIZE(max_t(u32,
5171						tp->rx_opt.mss_clamp,
5172						tp->mss_cache) +
5173					  MAX_TCP_HEADER);
5174		int demanded = max_t(unsigned int, tp->snd_cwnd,
5175				     tp->reordering + 1);
5176		sndmem *= 2 * demanded;
5177		if (sndmem > sk->sk_sndbuf)
5178			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5179		tp->snd_cwnd_stamp = tcp_time_stamp;
5180	}
5181
5182	sk->sk_write_space(sk);
5183}
5184
5185static void tcp_check_space(struct sock *sk)
5186{
5187	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5188		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
 
 
5189		if (sk->sk_socket &&
5190		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5191			tcp_new_space(sk);
 
 
 
5192	}
5193}
5194
5195static inline void tcp_data_snd_check(struct sock *sk)
5196{
5197	tcp_push_pending_frames(sk);
5198	tcp_check_space(sk);
5199}
5200
5201/*
5202 * Check if sending an ack is needed.
5203 */
5204static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5205{
5206	struct tcp_sock *tp = tcp_sk(sk);
 
5207
5208	    /* More than one full frame received... */
5209	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5210	     /* ... and right edge of window advances far enough.
5211	      * (tcp_recvmsg() will send ACK otherwise). Or...
 
 
5212	      */
5213	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
 
5214	    /* We ACK each frame or... */
5215	    tcp_in_quickack_mode(sk) ||
5216	    /* We have out of order data. */
5217	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5218		/* Then ack it now */
5219		tcp_send_ack(sk);
5220	} else {
5221		/* Else, send delayed ack. */
 
 
5222		tcp_send_delayed_ack(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
5223	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224}
5225
5226static inline void tcp_ack_snd_check(struct sock *sk)
5227{
5228	if (!inet_csk_ack_scheduled(sk)) {
5229		/* We sent a data segment already. */
5230		return;
5231	}
5232	__tcp_ack_snd_check(sk, 1);
5233}
5234
5235/*
5236 *	This routine is only called when we have urgent data
5237 *	signaled. Its the 'slow' part of tcp_urg. It could be
5238 *	moved inline now as tcp_urg is only called from one
5239 *	place. We handle URGent data wrong. We have to - as
5240 *	BSD still doesn't use the correction from RFC961.
5241 *	For 1003.1g we should support a new option TCP_STDURG to permit
5242 *	either form (or just set the sysctl tcp_stdurg).
5243 */
5244
5245static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5246{
5247	struct tcp_sock *tp = tcp_sk(sk);
5248	u32 ptr = ntohs(th->urg_ptr);
5249
5250	if (ptr && !sysctl_tcp_stdurg)
5251		ptr--;
5252	ptr += ntohl(th->seq);
5253
5254	/* Ignore urgent data that we've already seen and read. */
5255	if (after(tp->copied_seq, ptr))
5256		return;
5257
5258	/* Do not replay urg ptr.
5259	 *
5260	 * NOTE: interesting situation not covered by specs.
5261	 * Misbehaving sender may send urg ptr, pointing to segment,
5262	 * which we already have in ofo queue. We are not able to fetch
5263	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5264	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5265	 * situations. But it is worth to think about possibility of some
5266	 * DoSes using some hypothetical application level deadlock.
5267	 */
5268	if (before(ptr, tp->rcv_nxt))
5269		return;
5270
5271	/* Do we already have a newer (or duplicate) urgent pointer? */
5272	if (tp->urg_data && !after(ptr, tp->urg_seq))
5273		return;
5274
5275	/* Tell the world about our new urgent pointer. */
5276	sk_send_sigurg(sk);
5277
5278	/* We may be adding urgent data when the last byte read was
5279	 * urgent. To do this requires some care. We cannot just ignore
5280	 * tp->copied_seq since we would read the last urgent byte again
5281	 * as data, nor can we alter copied_seq until this data arrives
5282	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5283	 *
5284	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5285	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5286	 * and expect that both A and B disappear from stream. This is _wrong_.
5287	 * Though this happens in BSD with high probability, this is occasional.
5288	 * Any application relying on this is buggy. Note also, that fix "works"
5289	 * only in this artificial test. Insert some normal data between A and B and we will
5290	 * decline of BSD again. Verdict: it is better to remove to trap
5291	 * buggy users.
5292	 */
5293	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5294	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5295		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5296		tp->copied_seq++;
5297		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5298			__skb_unlink(skb, &sk->sk_receive_queue);
5299			__kfree_skb(skb);
5300		}
5301	}
5302
5303	tp->urg_data = TCP_URG_NOTYET;
5304	tp->urg_seq = ptr;
5305
5306	/* Disable header prediction. */
5307	tp->pred_flags = 0;
5308}
5309
5310/* This is the 'fast' part of urgent handling. */
5311static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5312{
5313	struct tcp_sock *tp = tcp_sk(sk);
5314
5315	/* Check if we get a new urgent pointer - normally not. */
5316	if (th->urg)
5317		tcp_check_urg(sk, th);
5318
5319	/* Do we wait for any urgent data? - normally not... */
5320	if (tp->urg_data == TCP_URG_NOTYET) {
5321		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5322			  th->syn;
5323
5324		/* Is the urgent pointer pointing into this packet? */
5325		if (ptr < skb->len) {
5326			u8 tmp;
5327			if (skb_copy_bits(skb, ptr, &tmp, 1))
5328				BUG();
5329			tp->urg_data = TCP_URG_VALID | tmp;
5330			if (!sock_flag(sk, SOCK_DEAD))
5331				sk->sk_data_ready(sk, 0);
5332		}
5333	}
5334}
5335
5336static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
 
 
 
 
 
 
 
 
5337{
5338	struct tcp_sock *tp = tcp_sk(sk);
5339	int chunk = skb->len - hlen;
5340	int err;
5341
5342	local_bh_enable();
5343	if (skb_csum_unnecessary(skb))
5344		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5345	else
5346		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5347						       tp->ucopy.iov);
5348
5349	if (!err) {
5350		tp->ucopy.len -= chunk;
5351		tp->copied_seq += chunk;
5352		tcp_rcv_space_adjust(sk);
5353	}
5354
5355	local_bh_disable();
5356	return err;
5357}
5358
5359static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5360					    struct sk_buff *skb)
5361{
5362	__sum16 result;
5363
5364	if (sock_owned_by_user(sk)) {
5365		local_bh_enable();
5366		result = __tcp_checksum_complete(skb);
5367		local_bh_disable();
5368	} else {
5369		result = __tcp_checksum_complete(skb);
5370	}
5371	return result;
5372}
5373
5374static inline int tcp_checksum_complete_user(struct sock *sk,
5375					     struct sk_buff *skb)
5376{
5377	return !skb_csum_unnecessary(skb) &&
5378	       __tcp_checksum_complete_user(sk, skb);
5379}
5380
5381#ifdef CONFIG_NET_DMA
5382static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5383				  int hlen)
5384{
5385	struct tcp_sock *tp = tcp_sk(sk);
5386	int chunk = skb->len - hlen;
5387	int dma_cookie;
5388	bool copied_early = false;
5389
5390	if (tp->ucopy.wakeup)
5391		return false;
5392
5393	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5394		tp->ucopy.dma_chan = net_dma_find_channel();
5395
5396	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5397
5398		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5399							 skb, hlen,
5400							 tp->ucopy.iov, chunk,
5401							 tp->ucopy.pinned_list);
5402
5403		if (dma_cookie < 0)
5404			goto out;
5405
5406		tp->ucopy.dma_cookie = dma_cookie;
5407		copied_early = true;
5408
5409		tp->ucopy.len -= chunk;
5410		tp->copied_seq += chunk;
5411		tcp_rcv_space_adjust(sk);
5412
5413		if ((tp->ucopy.len == 0) ||
5414		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5415		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5416			tp->ucopy.wakeup = 1;
5417			sk->sk_data_ready(sk, 0);
5418		}
5419	} else if (chunk > 0) {
5420		tp->ucopy.wakeup = 1;
5421		sk->sk_data_ready(sk, 0);
5422	}
5423out:
5424	return copied_early;
5425}
5426#endif /* CONFIG_NET_DMA */
5427
5428/* Does PAWS and seqno based validation of an incoming segment, flags will
5429 * play significant role here.
5430 */
5431static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5432			      const struct tcphdr *th, int syn_inerr)
5433{
5434	const u8 *hash_location;
5435	struct tcp_sock *tp = tcp_sk(sk);
 
5436
5437	/* RFC1323: H1. Apply PAWS check first. */
5438	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5439	    tp->rx_opt.saw_tstamp &&
5440	    tcp_paws_discard(sk, skb)) {
5441		if (!th->rst) {
5442			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5443			tcp_send_dupack(sk, skb);
 
 
 
5444			goto discard;
5445		}
5446		/* Reset is accepted even if it did not pass PAWS. */
5447	}
5448
5449	/* Step 1: check sequence number */
5450	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5451		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5452		 * (RST) segments are validated by checking their SEQ-fields."
5453		 * And page 69: "If an incoming segment is not acceptable,
5454		 * an acknowledgment should be sent in reply (unless the RST
5455		 * bit is set, if so drop the segment and return)".
5456		 */
5457		if (!th->rst)
5458			tcp_send_dupack(sk, skb);
 
 
 
 
 
 
 
 
5459		goto discard;
5460	}
5461
5462	/* Step 2: check RST bit */
5463	if (th->rst) {
5464		tcp_reset(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5465		goto discard;
5466	}
5467
5468	/* ts_recent update must be made after we are sure that the packet
5469	 * is in window.
5470	 */
5471	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5472
5473	/* step 3: check security and precedence [ignored] */
5474
5475	/* step 4: Check for a SYN in window. */
5476	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 
 
 
5477		if (syn_inerr)
5478			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5479		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5480		tcp_reset(sk);
5481		return -1;
5482	}
5483
5484	return 1;
5485
5486discard:
5487	__kfree_skb(skb);
5488	return 0;
5489}
5490
5491/*
5492 *	TCP receive function for the ESTABLISHED state.
5493 *
5494 *	It is split into a fast path and a slow path. The fast path is
5495 * 	disabled when:
5496 *	- A zero window was announced from us - zero window probing
5497 *        is only handled properly in the slow path.
5498 *	- Out of order segments arrived.
5499 *	- Urgent data is expected.
5500 *	- There is no buffer space left
5501 *	- Unexpected TCP flags/window values/header lengths are received
5502 *	  (detected by checking the TCP header against pred_flags)
5503 *	- Data is sent in both directions. Fast path only supports pure senders
5504 *	  or pure receivers (this means either the sequence number or the ack
5505 *	  value must stay constant)
5506 *	- Unexpected TCP option.
5507 *
5508 *	When these conditions are not satisfied it drops into a standard
5509 *	receive procedure patterned after RFC793 to handle all cases.
5510 *	The first three cases are guaranteed by proper pred_flags setting,
5511 *	the rest is checked inline. Fast processing is turned on in
5512 *	tcp_data_queue when everything is OK.
5513 */
5514int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5515			const struct tcphdr *th, unsigned int len)
5516{
 
5517	struct tcp_sock *tp = tcp_sk(sk);
5518	int res;
 
 
 
5519
 
 
 
5520	/*
5521	 *	Header prediction.
5522	 *	The code loosely follows the one in the famous
5523	 *	"30 instruction TCP receive" Van Jacobson mail.
5524	 *
5525	 *	Van's trick is to deposit buffers into socket queue
5526	 *	on a device interrupt, to call tcp_recv function
5527	 *	on the receive process context and checksum and copy
5528	 *	the buffer to user space. smart...
5529	 *
5530	 *	Our current scheme is not silly either but we take the
5531	 *	extra cost of the net_bh soft interrupt processing...
5532	 *	We do checksum and copy also but from device to kernel.
5533	 */
5534
5535	tp->rx_opt.saw_tstamp = 0;
5536
5537	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5538	 *	if header_prediction is to be made
5539	 *	'S' will always be tp->tcp_header_len >> 2
5540	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5541	 *  turn it off	(when there are holes in the receive
5542	 *	 space for instance)
5543	 *	PSH flag is ignored.
5544	 */
5545
5546	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5547	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5548	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5549		int tcp_header_len = tp->tcp_header_len;
5550
5551		/* Timestamp header prediction: tcp_header_len
5552		 * is automatically equal to th->doff*4 due to pred_flags
5553		 * match.
5554		 */
5555
5556		/* Check timestamp */
5557		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5558			/* No? Slow path! */
5559			if (!tcp_parse_aligned_timestamp(tp, th))
5560				goto slow_path;
5561
5562			/* If PAWS failed, check it more carefully in slow path */
5563			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5564				goto slow_path;
5565
5566			/* DO NOT update ts_recent here, if checksum fails
5567			 * and timestamp was corrupted part, it will result
5568			 * in a hung connection since we will drop all
5569			 * future packets due to the PAWS test.
5570			 */
5571		}
5572
5573		if (len <= tcp_header_len) {
5574			/* Bulk data transfer: sender */
5575			if (len == tcp_header_len) {
5576				/* Predicted packet is in window by definition.
5577				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5578				 * Hence, check seq<=rcv_wup reduces to:
5579				 */
5580				if (tcp_header_len ==
5581				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5582				    tp->rcv_nxt == tp->rcv_wup)
5583					tcp_store_ts_recent(tp);
5584
5585				/* We know that such packets are checksummed
5586				 * on entry.
5587				 */
5588				tcp_ack(sk, skb, 0);
5589				__kfree_skb(skb);
5590				tcp_data_snd_check(sk);
5591				return 0;
 
 
 
 
 
5592			} else { /* Header too small */
5593				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5594				goto discard;
5595			}
5596		} else {
5597			int eaten = 0;
5598			int copied_early = 0;
5599			bool fragstolen = false;
5600
5601			if (tp->copied_seq == tp->rcv_nxt &&
5602			    len - tcp_header_len <= tp->ucopy.len) {
5603#ifdef CONFIG_NET_DMA
5604				if (tp->ucopy.task == current &&
5605				    sock_owned_by_user(sk) &&
5606				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5607					copied_early = 1;
5608					eaten = 1;
5609				}
5610#endif
5611				if (tp->ucopy.task == current &&
5612				    sock_owned_by_user(sk) && !copied_early) {
5613					__set_current_state(TASK_RUNNING);
5614
5615					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5616						eaten = 1;
5617				}
5618				if (eaten) {
5619					/* Predicted packet is in window by definition.
5620					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5621					 * Hence, check seq<=rcv_wup reduces to:
5622					 */
5623					if (tcp_header_len ==
5624					    (sizeof(struct tcphdr) +
5625					     TCPOLEN_TSTAMP_ALIGNED) &&
5626					    tp->rcv_nxt == tp->rcv_wup)
5627						tcp_store_ts_recent(tp);
5628
5629					tcp_rcv_rtt_measure_ts(sk, skb);
5630
5631					__skb_pull(skb, tcp_header_len);
5632					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5633					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5634				}
5635				if (copied_early)
5636					tcp_cleanup_rbuf(sk, skb->len);
5637			}
5638			if (!eaten) {
5639				if (tcp_checksum_complete_user(sk, skb))
5640					goto csum_error;
5641
5642				/* Predicted packet is in window by definition.
5643				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5644				 * Hence, check seq<=rcv_wup reduces to:
5645				 */
5646				if (tcp_header_len ==
5647				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5648				    tp->rcv_nxt == tp->rcv_wup)
5649					tcp_store_ts_recent(tp);
5650
5651				tcp_rcv_rtt_measure_ts(sk, skb);
5652
5653				if ((int)skb->truesize > sk->sk_forward_alloc)
5654					goto step5;
5655
5656				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5657
5658				/* Bulk data transfer: receiver */
5659				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5660						      &fragstolen);
5661			}
5662
5663			tcp_event_data_recv(sk, skb);
5664
5665			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5666				/* Well, only one small jumplet in fast path... */
5667				tcp_ack(sk, skb, FLAG_DATA);
5668				tcp_data_snd_check(sk);
5669				if (!inet_csk_ack_scheduled(sk))
5670					goto no_ack;
5671			}
5672
5673			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5674				__tcp_ack_snd_check(sk, 0);
5675no_ack:
5676#ifdef CONFIG_NET_DMA
5677			if (copied_early)
5678				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5679			else
5680#endif
5681			if (eaten)
5682				kfree_skb_partial(skb, fragstolen);
5683			else
5684				sk->sk_data_ready(sk, 0);
5685			return 0;
5686		}
5687	}
5688
5689slow_path:
5690	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5691		goto csum_error;
5692
 
 
 
5693	/*
5694	 *	Standard slow path.
5695	 */
5696
5697	res = tcp_validate_incoming(sk, skb, th, 1);
5698	if (res <= 0)
5699		return -res;
5700
5701step5:
5702	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5703		goto discard;
5704
5705	tcp_rcv_rtt_measure_ts(sk, skb);
5706
5707	/* Process urgent data. */
5708	tcp_urg(sk, skb, th);
5709
5710	/* step 7: process the segment text */
5711	tcp_data_queue(sk, skb);
5712
5713	tcp_data_snd_check(sk);
5714	tcp_ack_snd_check(sk);
5715	return 0;
5716
5717csum_error:
5718	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
5719
5720discard:
5721	__kfree_skb(skb);
5722	return 0;
5723}
5724EXPORT_SYMBOL(tcp_rcv_established);
5725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5726void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5727{
5728	struct tcp_sock *tp = tcp_sk(sk);
5729	struct inet_connection_sock *icsk = inet_csk(sk);
5730
5731	tcp_set_state(sk, TCP_ESTABLISHED);
 
5732
5733	if (skb != NULL)
 
5734		security_inet_conn_established(sk, skb);
 
 
5735
5736	/* Make sure socket is routed, for correct metrics.  */
5737	icsk->icsk_af_ops->rebuild_header(sk);
5738
5739	tcp_init_metrics(sk);
5740
5741	tcp_init_congestion_control(sk);
5742
5743	/* Prevent spurious tcp_cwnd_restart() on first data
5744	 * packet.
5745	 */
5746	tp->lsndtime = tcp_time_stamp;
5747
5748	tcp_init_buffer_space(sk);
5749
5750	if (sock_flag(sk, SOCK_KEEPOPEN))
5751		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5752
5753	if (!tp->rx_opt.snd_wscale)
5754		__tcp_fast_path_on(tp, tp->snd_wnd);
5755	else
5756		tp->pred_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5757
5758	if (!sock_flag(sk, SOCK_DEAD)) {
5759		sk->sk_state_change(sk);
5760		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
 
 
 
5761	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5762}
5763
5764static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5765					 const struct tcphdr *th, unsigned int len)
5766{
5767	const u8 *hash_location;
5768	struct inet_connection_sock *icsk = inet_csk(sk);
5769	struct tcp_sock *tp = tcp_sk(sk);
5770	struct tcp_cookie_values *cvp = tp->cookie_values;
5771	int saved_clamp = tp->rx_opt.mss_clamp;
 
5772
5773	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
 
 
5774
5775	if (th->ack) {
5776		/* rfc793:
5777		 * "If the state is SYN-SENT then
5778		 *    first check the ACK bit
5779		 *      If the ACK bit is set
5780		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5781		 *        a reset (unless the RST bit is set, if so drop
5782		 *        the segment and return)"
5783		 *
5784		 *  We do not send data with SYN, so that RFC-correct
5785		 *  test reduces to:
5786		 */
5787		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
 
5788			goto reset_and_undo;
5789
5790		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5791		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5792			     tcp_time_stamp)) {
5793			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
 
5794			goto reset_and_undo;
5795		}
5796
5797		/* Now ACK is acceptable.
5798		 *
5799		 * "If the RST bit is set
5800		 *    If the ACK was acceptable then signal the user "error:
5801		 *    connection reset", drop the segment, enter CLOSED state,
5802		 *    delete TCB, and return."
5803		 */
5804
5805		if (th->rst) {
5806			tcp_reset(sk);
5807			goto discard;
5808		}
5809
5810		/* rfc793:
5811		 *   "fifth, if neither of the SYN or RST bits is set then
5812		 *    drop the segment and return."
5813		 *
5814		 *    See note below!
5815		 *                                        --ANK(990513)
5816		 */
5817		if (!th->syn)
5818			goto discard_and_undo;
5819
5820		/* rfc793:
5821		 *   "If the SYN bit is on ...
5822		 *    are acceptable then ...
5823		 *    (our SYN has been ACKed), change the connection
5824		 *    state to ESTABLISHED..."
5825		 */
5826
5827		TCP_ECN_rcv_synack(tp, th);
5828
5829		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
 
5830		tcp_ack(sk, skb, FLAG_SLOWPATH);
5831
5832		/* Ok.. it's good. Set up sequence numbers and
5833		 * move to established.
5834		 */
5835		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5836		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5837
5838		/* RFC1323: The window in SYN & SYN/ACK segments is
5839		 * never scaled.
5840		 */
5841		tp->snd_wnd = ntohs(th->window);
5842		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5843
5844		if (!tp->rx_opt.wscale_ok) {
5845			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5846			tp->window_clamp = min(tp->window_clamp, 65535U);
5847		}
5848
5849		if (tp->rx_opt.saw_tstamp) {
5850			tp->rx_opt.tstamp_ok	   = 1;
5851			tp->tcp_header_len =
5852				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5854			tcp_store_ts_recent(tp);
5855		} else {
5856			tp->tcp_header_len = sizeof(struct tcphdr);
5857		}
5858
5859		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5860			tcp_enable_fack(tp);
5861
5862		tcp_mtup_init(sk);
5863		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5864		tcp_initialize_rcv_mss(sk);
5865
5866		/* Remember, tcp_poll() does not lock socket!
5867		 * Change state from SYN-SENT only after copied_seq
5868		 * is initialized. */
5869		tp->copied_seq = tp->rcv_nxt;
5870
5871		if (cvp != NULL &&
5872		    cvp->cookie_pair_size > 0 &&
5873		    tp->rx_opt.cookie_plus > 0) {
5874			int cookie_size = tp->rx_opt.cookie_plus
5875					- TCPOLEN_COOKIE_BASE;
5876			int cookie_pair_size = cookie_size
5877					     + cvp->cookie_desired;
5878
5879			/* A cookie extension option was sent and returned.
5880			 * Note that each incoming SYNACK replaces the
5881			 * Responder cookie.  The initial exchange is most
5882			 * fragile, as protection against spoofing relies
5883			 * entirely upon the sequence and timestamp (above).
5884			 * This replacement strategy allows the correct pair to
5885			 * pass through, while any others will be filtered via
5886			 * Responder verification later.
5887			 */
5888			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5889				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5890				       hash_location, cookie_size);
5891				cvp->cookie_pair_size = cookie_pair_size;
5892			}
5893		}
5894
5895		smp_mb();
5896
5897		tcp_finish_connect(sk, skb);
5898
 
 
 
 
 
 
 
 
 
5899		if (sk->sk_write_pending ||
5900		    icsk->icsk_accept_queue.rskq_defer_accept ||
5901		    icsk->icsk_ack.pingpong) {
5902			/* Save one ACK. Data will be ready after
5903			 * several ticks, if write_pending is set.
5904			 *
5905			 * It may be deleted, but with this feature tcpdumps
5906			 * look so _wonderfully_ clever, that I was not able
5907			 * to stand against the temptation 8)     --ANK
5908			 */
5909			inet_csk_schedule_ack(sk);
5910			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5911			tcp_enter_quickack_mode(sk);
5912			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5913						  TCP_DELACK_MAX, TCP_RTO_MAX);
5914
5915discard:
5916			__kfree_skb(skb);
5917			return 0;
5918		} else {
5919			tcp_send_ack(sk);
5920		}
5921		return -1;
5922	}
5923
5924	/* No ACK in the segment */
5925
5926	if (th->rst) {
5927		/* rfc793:
5928		 * "If the RST bit is set
5929		 *
5930		 *      Otherwise (no ACK) drop the segment and return."
5931		 */
5932
5933		goto discard_and_undo;
5934	}
5935
5936	/* PAWS check. */
5937	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5938	    tcp_paws_reject(&tp->rx_opt, 0))
5939		goto discard_and_undo;
5940
5941	if (th->syn) {
5942		/* We see SYN without ACK. It is attempt of
5943		 * simultaneous connect with crossed SYNs.
5944		 * Particularly, it can be connect to self.
5945		 */
5946		tcp_set_state(sk, TCP_SYN_RECV);
5947
5948		if (tp->rx_opt.saw_tstamp) {
5949			tp->rx_opt.tstamp_ok = 1;
5950			tcp_store_ts_recent(tp);
5951			tp->tcp_header_len =
5952				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5953		} else {
5954			tp->tcp_header_len = sizeof(struct tcphdr);
5955		}
5956
5957		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
 
5958		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5959
5960		/* RFC1323: The window in SYN & SYN/ACK segments is
5961		 * never scaled.
5962		 */
5963		tp->snd_wnd    = ntohs(th->window);
5964		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5965		tp->max_window = tp->snd_wnd;
5966
5967		TCP_ECN_rcv_syn(tp, th);
5968
5969		tcp_mtup_init(sk);
5970		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5971		tcp_initialize_rcv_mss(sk);
5972
5973		tcp_send_synack(sk);
5974#if 0
5975		/* Note, we could accept data and URG from this segment.
5976		 * There are no obstacles to make this.
 
 
5977		 *
5978		 * However, if we ignore data in ACKless segments sometimes,
5979		 * we have no reasons to accept it sometimes.
5980		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5981		 * is not flawless. So, discard packet for sanity.
5982		 * Uncomment this return to process the data.
5983		 */
5984		return -1;
5985#else
5986		goto discard;
5987#endif
5988	}
5989	/* "fifth, if neither of the SYN or RST bits is set then
5990	 * drop the segment and return."
5991	 */
5992
5993discard_and_undo:
5994	tcp_clear_options(&tp->rx_opt);
5995	tp->rx_opt.mss_clamp = saved_clamp;
5996	goto discard;
5997
5998reset_and_undo:
5999	tcp_clear_options(&tp->rx_opt);
6000	tp->rx_opt.mss_clamp = saved_clamp;
6001	return 1;
6002}
6003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6004/*
6005 *	This function implements the receiving procedure of RFC 793 for
6006 *	all states except ESTABLISHED and TIME_WAIT.
6007 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6008 *	address independent.
6009 */
6010
6011int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6012			  const struct tcphdr *th, unsigned int len)
6013{
6014	struct tcp_sock *tp = tcp_sk(sk);
6015	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
6016	int queued = 0;
6017	int res;
6018
6019	tp->rx_opt.saw_tstamp = 0;
6020
6021	switch (sk->sk_state) {
6022	case TCP_CLOSE:
6023		goto discard;
6024
6025	case TCP_LISTEN:
6026		if (th->ack)
6027			return 1;
6028
6029		if (th->rst)
6030			goto discard;
6031
6032		if (th->syn) {
6033			if (th->fin)
6034				goto discard;
6035			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
 
 
 
 
 
 
 
 
 
6036				return 1;
6037
6038			/* Now we have several options: In theory there is
6039			 * nothing else in the frame. KA9Q has an option to
6040			 * send data with the syn, BSD accepts data with the
6041			 * syn up to the [to be] advertised window and
6042			 * Solaris 2.1 gives you a protocol error. For now
6043			 * we just ignore it, that fits the spec precisely
6044			 * and avoids incompatibilities. It would be nice in
6045			 * future to drop through and process the data.
6046			 *
6047			 * Now that TTCP is starting to be used we ought to
6048			 * queue this data.
6049			 * But, this leaves one open to an easy denial of
6050			 * service attack, and SYN cookies can't defend
6051			 * against this problem. So, we drop the data
6052			 * in the interest of security over speed unless
6053			 * it's still in use.
6054			 */
6055			kfree_skb(skb);
6056			return 0;
6057		}
6058		goto discard;
6059
6060	case TCP_SYN_SENT:
6061		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
 
 
6062		if (queued >= 0)
6063			return queued;
6064
6065		/* Do step6 onward by hand. */
6066		tcp_urg(sk, skb, th);
6067		__kfree_skb(skb);
6068		tcp_data_snd_check(sk);
6069		return 0;
6070	}
6071
6072	res = tcp_validate_incoming(sk, skb, th, 0);
6073	if (res <= 0)
6074		return -res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6075
6076	/* step 5: check the ACK field */
6077	if (th->ack) {
6078		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6079
6080		switch (sk->sk_state) {
6081		case TCP_SYN_RECV:
6082			if (acceptable) {
6083				tp->copied_seq = tp->rcv_nxt;
6084				smp_mb();
6085				tcp_set_state(sk, TCP_ESTABLISHED);
6086				sk->sk_state_change(sk);
6087
6088				/* Note, that this wakeup is only for marginal
6089				 * crossed SYN case. Passively open sockets
6090				 * are not waked up, because sk->sk_sleep ==
6091				 * NULL and sk->sk_socket == NULL.
6092				 */
6093				if (sk->sk_socket)
6094					sk_wake_async(sk,
6095						      SOCK_WAKE_IO, POLL_OUT);
6096
6097				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6098				tp->snd_wnd = ntohs(th->window) <<
6099					      tp->rx_opt.snd_wscale;
6100				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6101
6102				if (tp->rx_opt.tstamp_ok)
6103					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6104
6105				/* Make sure socket is routed, for
6106				 * correct metrics.
6107				 */
6108				icsk->icsk_af_ops->rebuild_header(sk);
6109
6110				tcp_init_metrics(sk);
 
 
6111
6112				tcp_init_congestion_control(sk);
 
6113
6114				/* Prevent spurious tcp_cwnd_restart() on
6115				 * first data packet.
6116				 */
6117				tp->lsndtime = tcp_time_stamp;
6118
6119				tcp_mtup_init(sk);
6120				tcp_initialize_rcv_mss(sk);
6121				tcp_init_buffer_space(sk);
6122				tcp_fast_path_on(tp);
6123			} else {
6124				return 1;
6125			}
6126			break;
6127
6128		case TCP_FIN_WAIT1:
6129			if (tp->snd_una == tp->write_seq) {
6130				tcp_set_state(sk, TCP_FIN_WAIT2);
6131				sk->sk_shutdown |= SEND_SHUTDOWN;
6132				dst_confirm(__sk_dst_get(sk));
6133
6134				if (!sock_flag(sk, SOCK_DEAD))
6135					/* Wake up lingering close() */
6136					sk->sk_state_change(sk);
6137				else {
6138					int tmo;
6139
6140					if (tp->linger2 < 0 ||
6141					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6142					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6143						tcp_done(sk);
6144						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6145						return 1;
6146					}
6147
6148					tmo = tcp_fin_time(sk);
6149					if (tmo > TCP_TIMEWAIT_LEN) {
6150						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6151					} else if (th->fin || sock_owned_by_user(sk)) {
6152						/* Bad case. We could lose such FIN otherwise.
6153						 * It is not a big problem, but it looks confusing
6154						 * and not so rare event. We still can lose it now,
6155						 * if it spins in bh_lock_sock(), but it is really
6156						 * marginal case.
6157						 */
6158						inet_csk_reset_keepalive_timer(sk, tmo);
6159					} else {
6160						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6161						goto discard;
6162					}
6163				}
6164			}
6165			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6166
6167		case TCP_CLOSING:
6168			if (tp->snd_una == tp->write_seq) {
6169				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6170				goto discard;
6171			}
6172			break;
6173
6174		case TCP_LAST_ACK:
6175			if (tp->snd_una == tp->write_seq) {
6176				tcp_update_metrics(sk);
6177				tcp_done(sk);
6178				goto discard;
6179			}
6180			break;
6181		}
6182	} else
6183		goto discard;
6184
6185	/* step 6: check the URG bit */
6186	tcp_urg(sk, skb, th);
6187
6188	/* step 7: process the segment text */
6189	switch (sk->sk_state) {
6190	case TCP_CLOSE_WAIT:
6191	case TCP_CLOSING:
6192	case TCP_LAST_ACK:
6193		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6194			break;
 
6195	case TCP_FIN_WAIT1:
6196	case TCP_FIN_WAIT2:
6197		/* RFC 793 says to queue data in these states,
6198		 * RFC 1122 says we MUST send a reset.
6199		 * BSD 4.4 also does reset.
6200		 */
6201		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6202			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6203			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6204				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6205				tcp_reset(sk);
6206				return 1;
6207			}
6208		}
6209		/* Fall through */
6210	case TCP_ESTABLISHED:
6211		tcp_data_queue(sk, skb);
6212		queued = 1;
6213		break;
6214	}
6215
6216	/* tcp_data could move socket to TIME-WAIT */
6217	if (sk->sk_state != TCP_CLOSE) {
6218		tcp_data_snd_check(sk);
6219		tcp_ack_snd_check(sk);
6220	}
6221
6222	if (!queued) {
6223discard:
6224		__kfree_skb(skb);
6225	}
6226	return 0;
6227}
6228EXPORT_SYMBOL(tcp_rcv_state_process);