Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
 
  82
  83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84
  85#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  86#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  87#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  88#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  89#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  90#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  91#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  92#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  93#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  94#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  95#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  96#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  97#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  98#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
  99#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 100#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 101#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 
 102
 103#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 104#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 105#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 106#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 107
 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 110
 111#define REXMIT_NONE	0 /* no loss recovery to do */
 112#define REXMIT_LOST	1 /* retransmit packets marked lost */
 113#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 114
 115#if IS_ENABLED(CONFIG_TLS_DEVICE)
 116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 117
 118void clean_acked_data_enable(struct inet_connection_sock *icsk,
 119			     void (*cad)(struct sock *sk, u32 ack_seq))
 120{
 121	icsk->icsk_clean_acked = cad;
 122	static_branch_deferred_inc(&clean_acked_data_enabled);
 123}
 124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 125
 126void clean_acked_data_disable(struct inet_connection_sock *icsk)
 127{
 128	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 129	icsk->icsk_clean_acked = NULL;
 130}
 131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 132
 133void clean_acked_data_flush(void)
 134{
 135	static_key_deferred_flush(&clean_acked_data_enabled);
 136}
 137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 138#endif
 139
 140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 141			     unsigned int len)
 142{
 143	static bool __once __read_mostly;
 
 
 
 
 
 144
 145	if (!__once) {
 146		struct net_device *dev;
 147
 148		__once = true;
 149
 150		rcu_read_lock();
 151		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 152		if (!dev || len >= dev->mtu)
 153			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 154				dev ? dev->name : "Unknown driver");
 155		rcu_read_unlock();
 
 156	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157}
 158
 159/* Adapt the MSS value used to make delayed ack decision to the
 160 * real world.
 161 */
 162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 163{
 164	struct inet_connection_sock *icsk = inet_csk(sk);
 165	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 166	unsigned int len;
 167
 168	icsk->icsk_ack.last_seg_size = 0;
 169
 170	/* skb->len may jitter because of SACKs, even if peer
 171	 * sends good full-sized frames.
 172	 */
 173	len = skb_shinfo(skb)->gso_size ? : skb->len;
 174	if (len >= icsk->icsk_ack.rcv_mss) {
 
 
 
 
 
 
 
 
 
 
 175		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 176					       tcp_sk(sk)->advmss);
 177		/* Account for possibly-removed options */
 178		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 179				   MAX_TCP_OPTION_SPACE))
 180			tcp_gro_dev_warn(sk, skb, len);
 
 
 
 
 
 
 
 
 
 
 
 
 181	} else {
 182		/* Otherwise, we make more careful check taking into account,
 183		 * that SACKs block is variable.
 184		 *
 185		 * "len" is invariant segment length, including TCP header.
 186		 */
 187		len += skb->data - skb_transport_header(skb);
 188		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 189		    /* If PSH is not set, packet should be
 190		     * full sized, provided peer TCP is not badly broken.
 191		     * This observation (if it is correct 8)) allows
 192		     * to handle super-low mtu links fairly.
 193		     */
 194		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 195		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 196			/* Subtract also invariant (if peer is RFC compliant),
 197			 * tcp header plus fixed timestamp option length.
 198			 * Resulting "len" is MSS free of SACK jitter.
 199			 */
 200			len -= tcp_sk(sk)->tcp_header_len;
 201			icsk->icsk_ack.last_seg_size = len;
 202			if (len == lss) {
 203				icsk->icsk_ack.rcv_mss = len;
 204				return;
 205			}
 206		}
 207		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 208			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 209		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 210	}
 211}
 212
 213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 214{
 215	struct inet_connection_sock *icsk = inet_csk(sk);
 216	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 217
 218	if (quickacks == 0)
 219		quickacks = 2;
 220	quickacks = min(quickacks, max_quickacks);
 221	if (quickacks > icsk->icsk_ack.quick)
 222		icsk->icsk_ack.quick = quickacks;
 223}
 224
 225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 226{
 227	struct inet_connection_sock *icsk = inet_csk(sk);
 228
 229	tcp_incr_quickack(sk, max_quickacks);
 230	inet_csk_exit_pingpong_mode(sk);
 231	icsk->icsk_ack.ato = TCP_ATO_MIN;
 232}
 233EXPORT_SYMBOL(tcp_enter_quickack_mode);
 234
 235/* Send ACKs quickly, if "quick" count is not exhausted
 236 * and the session is not interactive.
 237 */
 238
 239static bool tcp_in_quickack_mode(struct sock *sk)
 240{
 241	const struct inet_connection_sock *icsk = inet_csk(sk);
 242	const struct dst_entry *dst = __sk_dst_get(sk);
 243
 244	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 245		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 246}
 247
 248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 249{
 250	if (tp->ecn_flags & TCP_ECN_OK)
 251		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 252}
 253
 254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 255{
 256	if (tcp_hdr(skb)->cwr) {
 257		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 258
 259		/* If the sender is telling us it has entered CWR, then its
 260		 * cwnd may be very low (even just 1 packet), so we should ACK
 261		 * immediately.
 262		 */
 263		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 
 264	}
 265}
 266
 267static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 268{
 269	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 270}
 271
 272static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 273{
 274	struct tcp_sock *tp = tcp_sk(sk);
 275
 276	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 277	case INET_ECN_NOT_ECT:
 278		/* Funny extension: if ECT is not set on a segment,
 279		 * and we already seen ECT on a previous segment,
 280		 * it is probably a retransmit.
 281		 */
 282		if (tp->ecn_flags & TCP_ECN_SEEN)
 283			tcp_enter_quickack_mode(sk, 2);
 284		break;
 285	case INET_ECN_CE:
 286		if (tcp_ca_needs_ecn(sk))
 287			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 288
 289		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 290			/* Better not delay acks, sender can have a very low cwnd */
 291			tcp_enter_quickack_mode(sk, 2);
 292			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 293		}
 294		tp->ecn_flags |= TCP_ECN_SEEN;
 295		break;
 296	default:
 297		if (tcp_ca_needs_ecn(sk))
 298			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 299		tp->ecn_flags |= TCP_ECN_SEEN;
 300		break;
 301	}
 302}
 303
 304static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 305{
 306	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 307		__tcp_ecn_check_ce(sk, skb);
 308}
 309
 310static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 311{
 312	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 313		tp->ecn_flags &= ~TCP_ECN_OK;
 314}
 315
 316static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 317{
 318	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 319		tp->ecn_flags &= ~TCP_ECN_OK;
 320}
 321
 322static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 323{
 324	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 325		return true;
 326	return false;
 327}
 328
 329/* Buffer size and advertised window tuning.
 330 *
 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 332 */
 333
 334static void tcp_sndbuf_expand(struct sock *sk)
 335{
 336	const struct tcp_sock *tp = tcp_sk(sk);
 337	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 338	int sndmem, per_mss;
 339	u32 nr_segs;
 340
 341	/* Worst case is non GSO/TSO : each frame consumes one skb
 342	 * and skb->head is kmalloced using power of two area of memory
 343	 */
 344	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 345		  MAX_TCP_HEADER +
 346		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 347
 348	per_mss = roundup_pow_of_two(per_mss) +
 349		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 350
 351	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 352	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 353
 354	/* Fast Recovery (RFC 5681 3.2) :
 355	 * Cubic needs 1.7 factor, rounded to 2 to include
 356	 * extra cushion (application might react slowly to EPOLLOUT)
 357	 */
 358	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 359	sndmem *= nr_segs * per_mss;
 360
 361	if (sk->sk_sndbuf < sndmem)
 362		WRITE_ONCE(sk->sk_sndbuf,
 363			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
 364}
 365
 366/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 367 *
 368 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 369 * forward and advertised in receiver window (tp->rcv_wnd) and
 370 * "application buffer", required to isolate scheduling/application
 371 * latencies from network.
 372 * window_clamp is maximal advertised window. It can be less than
 373 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 374 * is reserved for "application" buffer. The less window_clamp is
 375 * the smoother our behaviour from viewpoint of network, but the lower
 376 * throughput and the higher sensitivity of the connection to losses. 8)
 377 *
 378 * rcv_ssthresh is more strict window_clamp used at "slow start"
 379 * phase to predict further behaviour of this connection.
 380 * It is used for two goals:
 381 * - to enforce header prediction at sender, even when application
 382 *   requires some significant "application buffer". It is check #1.
 383 * - to prevent pruning of receive queue because of misprediction
 384 *   of receiver window. Check #2.
 385 *
 386 * The scheme does not work when sender sends good segments opening
 387 * window and then starts to feed us spaghetti. But it should work
 388 * in common situations. Otherwise, we have to rely on queue collapsing.
 389 */
 390
 391/* Slow part of check#2. */
 392static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 
 393{
 394	struct tcp_sock *tp = tcp_sk(sk);
 395	/* Optimize this! */
 396	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 397	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 398
 399	while (tp->rcv_ssthresh <= window) {
 400		if (truesize <= skb->len)
 401			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 402
 403		truesize >>= 1;
 404		window >>= 1;
 405	}
 406	return 0;
 407}
 408
 409static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410{
 411	struct tcp_sock *tp = tcp_sk(sk);
 412	int room;
 413
 414	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 415
 
 
 
 416	/* Check #1 */
 417	if (room > 0 && !tcp_under_memory_pressure(sk)) {
 
 418		int incr;
 419
 420		/* Check #2. Increase window, if skb with such overhead
 421		 * will fit to rcvbuf in future.
 422		 */
 423		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 424			incr = 2 * tp->advmss;
 425		else
 426			incr = __tcp_grow_window(sk, skb);
 427
 428		if (incr) {
 429			incr = max_t(int, incr, 2 * skb->len);
 430			tp->rcv_ssthresh += min(room, incr);
 431			inet_csk(sk)->icsk_ack.quick |= 1;
 432		}
 
 
 
 
 
 433	}
 434}
 435
 436/* 3. Try to fixup all. It is made immediately after connection enters
 437 *    established state.
 438 */
 439void tcp_init_buffer_space(struct sock *sk)
 440{
 441	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 442	struct tcp_sock *tp = tcp_sk(sk);
 443	int maxwin;
 444
 445	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 446		tcp_sndbuf_expand(sk);
 447
 448	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
 449	tcp_mstamp_refresh(tp);
 450	tp->rcvq_space.time = tp->tcp_mstamp;
 451	tp->rcvq_space.seq = tp->copied_seq;
 452
 453	maxwin = tcp_full_space(sk);
 454
 455	if (tp->window_clamp >= maxwin) {
 456		tp->window_clamp = maxwin;
 457
 458		if (tcp_app_win && maxwin > 4 * tp->advmss)
 459			tp->window_clamp = max(maxwin -
 460					       (maxwin >> tcp_app_win),
 461					       4 * tp->advmss);
 462	}
 463
 464	/* Force reservation of one segment. */
 465	if (tcp_app_win &&
 466	    tp->window_clamp > 2 * tp->advmss &&
 467	    tp->window_clamp + tp->advmss > maxwin)
 468		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 469
 470	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 471	tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 472}
 473
 474/* 4. Recalculate window clamp after socket hit its memory bounds. */
 475static void tcp_clamp_window(struct sock *sk)
 476{
 477	struct tcp_sock *tp = tcp_sk(sk);
 478	struct inet_connection_sock *icsk = inet_csk(sk);
 479	struct net *net = sock_net(sk);
 
 480
 481	icsk->icsk_ack.quick = 0;
 
 482
 483	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 484	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 485	    !tcp_under_memory_pressure(sk) &&
 486	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 487		WRITE_ONCE(sk->sk_rcvbuf,
 488			   min(atomic_read(&sk->sk_rmem_alloc),
 489			       net->ipv4.sysctl_tcp_rmem[2]));
 490	}
 491	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 492		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 493}
 494
 495/* Initialize RCV_MSS value.
 496 * RCV_MSS is an our guess about MSS used by the peer.
 497 * We haven't any direct information about the MSS.
 498 * It's better to underestimate the RCV_MSS rather than overestimate.
 499 * Overestimations make us ACKing less frequently than needed.
 500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 501 */
 502void tcp_initialize_rcv_mss(struct sock *sk)
 503{
 504	const struct tcp_sock *tp = tcp_sk(sk);
 505	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 506
 507	hint = min(hint, tp->rcv_wnd / 2);
 508	hint = min(hint, TCP_MSS_DEFAULT);
 509	hint = max(hint, TCP_MIN_MSS);
 510
 511	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 512}
 513EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 514
 515/* Receiver "autotuning" code.
 516 *
 517 * The algorithm for RTT estimation w/o timestamps is based on
 518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 519 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 520 *
 521 * More detail on this code can be found at
 522 * <http://staff.psc.edu/jheffner/>,
 523 * though this reference is out of date.  A new paper
 524 * is pending.
 525 */
 526static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 527{
 528	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 529	long m = sample;
 530
 531	if (new_sample != 0) {
 532		/* If we sample in larger samples in the non-timestamp
 533		 * case, we could grossly overestimate the RTT especially
 534		 * with chatty applications or bulk transfer apps which
 535		 * are stalled on filesystem I/O.
 536		 *
 537		 * Also, since we are only going for a minimum in the
 538		 * non-timestamp case, we do not smooth things out
 539		 * else with timestamps disabled convergence takes too
 540		 * long.
 541		 */
 542		if (!win_dep) {
 543			m -= (new_sample >> 3);
 544			new_sample += m;
 545		} else {
 546			m <<= 3;
 547			if (m < new_sample)
 548				new_sample = m;
 549		}
 550	} else {
 551		/* No previous measure. */
 552		new_sample = m << 3;
 553	}
 554
 555	tp->rcv_rtt_est.rtt_us = new_sample;
 556}
 557
 558static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 559{
 560	u32 delta_us;
 561
 562	if (tp->rcv_rtt_est.time == 0)
 563		goto new_measure;
 564	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 565		return;
 566	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 567	if (!delta_us)
 568		delta_us = 1;
 569	tcp_rcv_rtt_update(tp, delta_us, 1);
 570
 571new_measure:
 572	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 573	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 574}
 575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 577					  const struct sk_buff *skb)
 578{
 579	struct tcp_sock *tp = tcp_sk(sk);
 580
 581	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 582		return;
 583	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 584
 585	if (TCP_SKB_CB(skb)->end_seq -
 586	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 587		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 588		u32 delta_us;
 589
 590		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 591			if (!delta)
 592				delta = 1;
 593			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 594			tcp_rcv_rtt_update(tp, delta_us, 0);
 595		}
 596	}
 597}
 598
 599/*
 600 * This function should be called every time data is copied to user space.
 601 * It calculates the appropriate TCP receive buffer space.
 602 */
 603void tcp_rcv_space_adjust(struct sock *sk)
 604{
 605	struct tcp_sock *tp = tcp_sk(sk);
 606	u32 copied;
 607	int time;
 608
 609	trace_tcp_rcv_space_adjust(sk);
 610
 611	tcp_mstamp_refresh(tp);
 612	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 613	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 614		return;
 615
 616	/* Number of bytes copied to user in last RTT */
 617	copied = tp->copied_seq - tp->rcvq_space.seq;
 618	if (copied <= tp->rcvq_space.space)
 619		goto new_measure;
 620
 621	/* A bit of theory :
 622	 * copied = bytes received in previous RTT, our base window
 623	 * To cope with packet losses, we need a 2x factor
 624	 * To cope with slow start, and sender growing its cwin by 100 %
 625	 * every RTT, we need a 4x factor, because the ACK we are sending
 626	 * now is for the next RTT, not the current one :
 627	 * <prev RTT . ><current RTT .. ><next RTT .... >
 628	 */
 629
 630	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 631	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 632		int rcvmem, rcvbuf;
 633		u64 rcvwin, grow;
 
 634
 635		/* minimal window to cope with packet losses, assuming
 636		 * steady state. Add some cushion because of small variations.
 637		 */
 638		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 639
 640		/* Accommodate for sender rate increase (eg. slow start) */
 641		grow = rcvwin * (copied - tp->rcvq_space.space);
 642		do_div(grow, tp->rcvq_space.space);
 643		rcvwin += (grow << 1);
 644
 645		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 646		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 647			rcvmem += 128;
 648
 649		do_div(rcvwin, tp->advmss);
 650		rcvbuf = min_t(u64, rcvwin * rcvmem,
 651			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 652		if (rcvbuf > sk->sk_rcvbuf) {
 653			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 654
 655			/* Make the window clamp follow along.  */
 656			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 657		}
 658	}
 659	tp->rcvq_space.space = copied;
 660
 661new_measure:
 662	tp->rcvq_space.seq = tp->copied_seq;
 663	tp->rcvq_space.time = tp->tcp_mstamp;
 664}
 665
 
 
 
 
 
 
 
 
 
 
 666/* There is something which you must keep in mind when you analyze the
 667 * behavior of the tp->ato delayed ack timeout interval.  When a
 668 * connection starts up, we want to ack as quickly as possible.  The
 669 * problem is that "good" TCP's do slow start at the beginning of data
 670 * transmission.  The means that until we send the first few ACK's the
 671 * sender will sit on his end and only queue most of his data, because
 672 * he can only send snd_cwnd unacked packets at any given time.  For
 673 * each ACK we send, he increments snd_cwnd and transmits more of his
 674 * queue.  -DaveM
 675 */
 676static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 677{
 678	struct tcp_sock *tp = tcp_sk(sk);
 679	struct inet_connection_sock *icsk = inet_csk(sk);
 680	u32 now;
 681
 682	inet_csk_schedule_ack(sk);
 683
 684	tcp_measure_rcv_mss(sk, skb);
 685
 686	tcp_rcv_rtt_measure(tp);
 687
 688	now = tcp_jiffies32;
 689
 690	if (!icsk->icsk_ack.ato) {
 691		/* The _first_ data packet received, initialize
 692		 * delayed ACK engine.
 693		 */
 694		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 695		icsk->icsk_ack.ato = TCP_ATO_MIN;
 696	} else {
 697		int m = now - icsk->icsk_ack.lrcvtime;
 698
 699		if (m <= TCP_ATO_MIN / 2) {
 700			/* The fastest case is the first. */
 701			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 702		} else if (m < icsk->icsk_ack.ato) {
 703			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 704			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 705				icsk->icsk_ack.ato = icsk->icsk_rto;
 706		} else if (m > icsk->icsk_rto) {
 707			/* Too long gap. Apparently sender failed to
 708			 * restart window, so that we send ACKs quickly.
 709			 */
 710			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 711			sk_mem_reclaim(sk);
 712		}
 713	}
 714	icsk->icsk_ack.lrcvtime = now;
 
 715
 716	tcp_ecn_check_ce(sk, skb);
 717
 718	if (skb->len >= 128)
 719		tcp_grow_window(sk, skb);
 720}
 721
 722/* Called to compute a smoothed rtt estimate. The data fed to this
 723 * routine either comes from timestamps, or from segments that were
 724 * known _not_ to have been retransmitted [see Karn/Partridge
 725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 726 * piece by Van Jacobson.
 727 * NOTE: the next three routines used to be one big routine.
 728 * To save cycles in the RFC 1323 implementation it was better to break
 729 * it up into three procedures. -- erics
 730 */
 731static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 732{
 733	struct tcp_sock *tp = tcp_sk(sk);
 734	long m = mrtt_us; /* RTT */
 735	u32 srtt = tp->srtt_us;
 736
 737	/*	The following amusing code comes from Jacobson's
 738	 *	article in SIGCOMM '88.  Note that rtt and mdev
 739	 *	are scaled versions of rtt and mean deviation.
 740	 *	This is designed to be as fast as possible
 741	 *	m stands for "measurement".
 742	 *
 743	 *	On a 1990 paper the rto value is changed to:
 744	 *	RTO = rtt + 4 * mdev
 745	 *
 746	 * Funny. This algorithm seems to be very broken.
 747	 * These formulae increase RTO, when it should be decreased, increase
 748	 * too slowly, when it should be increased quickly, decrease too quickly
 749	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 750	 * does not matter how to _calculate_ it. Seems, it was trap
 751	 * that VJ failed to avoid. 8)
 752	 */
 753	if (srtt != 0) {
 754		m -= (srtt >> 3);	/* m is now error in rtt est */
 755		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 756		if (m < 0) {
 757			m = -m;		/* m is now abs(error) */
 758			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 759			/* This is similar to one of Eifel findings.
 760			 * Eifel blocks mdev updates when rtt decreases.
 761			 * This solution is a bit different: we use finer gain
 762			 * for mdev in this case (alpha*beta).
 763			 * Like Eifel it also prevents growth of rto,
 764			 * but also it limits too fast rto decreases,
 765			 * happening in pure Eifel.
 766			 */
 767			if (m > 0)
 768				m >>= 3;
 769		} else {
 770			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 771		}
 772		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 773		if (tp->mdev_us > tp->mdev_max_us) {
 774			tp->mdev_max_us = tp->mdev_us;
 775			if (tp->mdev_max_us > tp->rttvar_us)
 776				tp->rttvar_us = tp->mdev_max_us;
 777		}
 778		if (after(tp->snd_una, tp->rtt_seq)) {
 779			if (tp->mdev_max_us < tp->rttvar_us)
 780				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 781			tp->rtt_seq = tp->snd_nxt;
 782			tp->mdev_max_us = tcp_rto_min_us(sk);
 783
 784			tcp_bpf_rtt(sk);
 785		}
 786	} else {
 787		/* no previous measure. */
 788		srtt = m << 3;		/* take the measured time to be rtt */
 789		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 790		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 791		tp->mdev_max_us = tp->rttvar_us;
 792		tp->rtt_seq = tp->snd_nxt;
 793
 794		tcp_bpf_rtt(sk);
 795	}
 796	tp->srtt_us = max(1U, srtt);
 797}
 798
 799static void tcp_update_pacing_rate(struct sock *sk)
 800{
 801	const struct tcp_sock *tp = tcp_sk(sk);
 802	u64 rate;
 803
 804	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 805	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 806
 807	/* current rate is (cwnd * mss) / srtt
 808	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 809	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 810	 *
 811	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 812	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 813	 *	 end of slow start and should slow down.
 814	 */
 815	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 816		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 817	else
 818		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 819
 820	rate *= max(tp->snd_cwnd, tp->packets_out);
 821
 822	if (likely(tp->srtt_us))
 823		do_div(rate, tp->srtt_us);
 824
 825	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 826	 * without any lock. We want to make sure compiler wont store
 827	 * intermediate values in this location.
 828	 */
 829	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 830					     sk->sk_max_pacing_rate));
 831}
 832
 833/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 834 * routine referred to above.
 835 */
 836static void tcp_set_rto(struct sock *sk)
 837{
 838	const struct tcp_sock *tp = tcp_sk(sk);
 839	/* Old crap is replaced with new one. 8)
 840	 *
 841	 * More seriously:
 842	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 843	 *    It cannot be less due to utterly erratic ACK generation made
 844	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 845	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 846	 *    is invisible. Actually, Linux-2.4 also generates erratic
 847	 *    ACKs in some circumstances.
 848	 */
 849	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 850
 851	/* 2. Fixups made earlier cannot be right.
 852	 *    If we do not estimate RTO correctly without them,
 853	 *    all the algo is pure shit and should be replaced
 854	 *    with correct one. It is exactly, which we pretend to do.
 855	 */
 856
 857	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 858	 * guarantees that rto is higher.
 859	 */
 860	tcp_bound_rto(sk);
 861}
 862
 863__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 864{
 865	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 866
 867	if (!cwnd)
 868		cwnd = TCP_INIT_CWND;
 869	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 870}
 871
 872/* Take a notice that peer is sending D-SACKs */
 873static void tcp_dsack_seen(struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 876	tp->rack.dsack_seen = 1;
 877	tp->dsack_dups++;
 
 
 
 
 
 
 
 
 
 
 
 
 878}
 879
 880/* It's reordering when higher sequence was delivered (i.e. sacked) before
 881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 882 * distance is approximated in full-mss packet distance ("reordering").
 883 */
 884static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 885				      const int ts)
 886{
 887	struct tcp_sock *tp = tcp_sk(sk);
 888	const u32 mss = tp->mss_cache;
 889	u32 fack, metric;
 890
 891	fack = tcp_highest_sack_seq(tp);
 892	if (!before(low_seq, fack))
 893		return;
 894
 895	metric = fack - low_seq;
 896	if ((metric > tp->reordering * mss) && mss) {
 897#if FASTRETRANS_DEBUG > 1
 898		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 899			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 900			 tp->reordering,
 901			 0,
 902			 tp->sacked_out,
 903			 tp->undo_marker ? tp->undo_retrans : 0);
 904#endif
 905		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 906				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 907	}
 908
 909	/* This exciting event is worth to be remembered. 8) */
 910	tp->reord_seen++;
 911	NET_INC_STATS(sock_net(sk),
 912		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 913}
 914
 915/* This must be called before lost_out is incremented */
 
 
 
 
 916static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 917{
 918	if (!tp->retransmit_skb_hint ||
 919	    before(TCP_SKB_CB(skb)->seq,
 920		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 
 921		tp->retransmit_skb_hint = skb;
 922}
 923
 924/* Sum the number of packets on the wire we have marked as lost.
 925 * There are two cases we care about here:
 926 * a) Packet hasn't been marked lost (nor retransmitted),
 927 *    and this is the first loss.
 928 * b) Packet has been marked both lost and retransmitted,
 929 *    and this means we think it was lost again.
 930 */
 931static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 932{
 933	__u8 sacked = TCP_SKB_CB(skb)->sacked;
 934
 935	if (!(sacked & TCPCB_LOST) ||
 936	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 937		tp->lost += tcp_skb_pcount(skb);
 938}
 939
 940static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 941{
 942	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 943		tcp_verify_retransmit_hint(tp, skb);
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945		tp->lost_out += tcp_skb_pcount(skb);
 946		tcp_sum_lost(tp, skb);
 947		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 
 948	}
 949}
 950
 951void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 
 
 952{
 953	tcp_verify_retransmit_hint(tp, skb);
 954
 955	tcp_sum_lost(tp, skb);
 956	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 957		tp->lost_out += tcp_skb_pcount(skb);
 958		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 959	}
 960}
 961
 962/* This procedure tags the retransmission queue when SACKs arrive.
 963 *
 964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 965 * Packets in queue with these bits set are counted in variables
 966 * sacked_out, retrans_out and lost_out, correspondingly.
 967 *
 968 * Valid combinations are:
 969 * Tag  InFlight	Description
 970 * 0	1		- orig segment is in flight.
 971 * S	0		- nothing flies, orig reached receiver.
 972 * L	0		- nothing flies, orig lost by net.
 973 * R	2		- both orig and retransmit are in flight.
 974 * L|R	1		- orig is lost, retransmit is in flight.
 975 * S|R  1		- orig reached receiver, retrans is still in flight.
 976 * (L|S|R is logically valid, it could occur when L|R is sacked,
 977 *  but it is equivalent to plain S and code short-curcuits it to S.
 978 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 979 *
 980 * These 6 states form finite state machine, controlled by the following events:
 981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 983 * 3. Loss detection event of two flavors:
 984 *	A. Scoreboard estimator decided the packet is lost.
 985 *	   A'. Reno "three dupacks" marks head of queue lost.
 986 *	B. SACK arrives sacking SND.NXT at the moment, when the
 987 *	   segment was retransmitted.
 988 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 989 *
 990 * It is pleasant to note, that state diagram turns out to be commutative,
 991 * so that we are allowed not to be bothered by order of our actions,
 992 * when multiple events arrive simultaneously. (see the function below).
 993 *
 994 * Reordering detection.
 995 * --------------------
 996 * Reordering metric is maximal distance, which a packet can be displaced
 997 * in packet stream. With SACKs we can estimate it:
 998 *
 999 * 1. SACK fills old hole and the corresponding segment was not
1000 *    ever retransmitted -> reordering. Alas, we cannot use it
1001 *    when segment was retransmitted.
1002 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1003 *    for retransmitted and already SACKed segment -> reordering..
1004 * Both of these heuristics are not used in Loss state, when we cannot
1005 * account for retransmits accurately.
1006 *
1007 * SACK block validation.
1008 * ----------------------
1009 *
1010 * SACK block range validation checks that the received SACK block fits to
1011 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1012 * Note that SND.UNA is not included to the range though being valid because
1013 * it means that the receiver is rather inconsistent with itself reporting
1014 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1015 * perfectly valid, however, in light of RFC2018 which explicitly states
1016 * that "SACK block MUST reflect the newest segment.  Even if the newest
1017 * segment is going to be discarded ...", not that it looks very clever
1018 * in case of head skb. Due to potentional receiver driven attacks, we
1019 * choose to avoid immediate execution of a walk in write queue due to
1020 * reneging and defer head skb's loss recovery to standard loss recovery
1021 * procedure that will eventually trigger (nothing forbids us doing this).
1022 *
1023 * Implements also blockage to start_seq wrap-around. Problem lies in the
1024 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1025 * there's no guarantee that it will be before snd_nxt (n). The problem
1026 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027 * wrap (s_w):
1028 *
1029 *         <- outs wnd ->                          <- wrapzone ->
1030 *         u     e      n                         u_w   e_w  s n_w
1031 *         |     |      |                          |     |   |  |
1032 * |<------------+------+----- TCP seqno space --------------+---------->|
1033 * ...-- <2^31 ->|                                           |<--------...
1034 * ...---- >2^31 ------>|                                    |<--------...
1035 *
1036 * Current code wouldn't be vulnerable but it's better still to discard such
1037 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1038 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1039 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1040 * equal to the ideal case (infinite seqno space without wrap caused issues).
1041 *
1042 * With D-SACK the lower bound is extended to cover sequence space below
1043 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1044 * again, D-SACK block must not to go across snd_una (for the same reason as
1045 * for the normal SACK blocks, explained above). But there all simplicity
1046 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1047 * fully below undo_marker they do not affect behavior in anyway and can
1048 * therefore be safely ignored. In rare cases (which are more or less
1049 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1050 * fragmentation and packet reordering past skb's retransmission. To consider
1051 * them correctly, the acceptable range must be extended even more though
1052 * the exact amount is rather hard to quantify. However, tp->max_window can
1053 * be used as an exaggerated estimate.
1054 */
1055static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1056				   u32 start_seq, u32 end_seq)
1057{
1058	/* Too far in future, or reversed (interpretation is ambiguous) */
1059	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1060		return false;
1061
1062	/* Nasty start_seq wrap-around check (see comments above) */
1063	if (!before(start_seq, tp->snd_nxt))
1064		return false;
1065
1066	/* In outstanding window? ...This is valid exit for D-SACKs too.
1067	 * start_seq == snd_una is non-sensical (see comments above)
1068	 */
1069	if (after(start_seq, tp->snd_una))
1070		return true;
1071
1072	if (!is_dsack || !tp->undo_marker)
1073		return false;
1074
1075	/* ...Then it's D-SACK, and must reside below snd_una completely */
1076	if (after(end_seq, tp->snd_una))
1077		return false;
1078
1079	if (!before(start_seq, tp->undo_marker))
1080		return true;
1081
1082	/* Too old */
1083	if (!after(end_seq, tp->undo_marker))
1084		return false;
1085
1086	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1087	 *   start_seq < undo_marker and end_seq >= undo_marker.
1088	 */
1089	return !before(start_seq, end_seq - tp->max_window);
1090}
1091
1092static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093			    struct tcp_sack_block_wire *sp, int num_sacks,
1094			    u32 prior_snd_una)
1095{
1096	struct tcp_sock *tp = tcp_sk(sk);
1097	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1099	bool dup_sack = false;
1100
1101	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1102		dup_sack = true;
1103		tcp_dsack_seen(tp);
1104		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1105	} else if (num_sacks > 1) {
1106		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1108
1109		if (!after(end_seq_0, end_seq_1) &&
1110		    !before(start_seq_0, start_seq_1)) {
1111			dup_sack = true;
1112			tcp_dsack_seen(tp);
1113			NET_INC_STATS(sock_net(sk),
1114					LINUX_MIB_TCPDSACKOFORECV);
1115		}
 
 
 
 
1116	}
1117
 
 
1118	/* D-SACK for already forgotten data... Do dumb counting. */
1119	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1120	    !after(end_seq_0, prior_snd_una) &&
1121	    after(end_seq_0, tp->undo_marker))
1122		tp->undo_retrans--;
1123
1124	return dup_sack;
1125}
1126
1127struct tcp_sacktag_state {
1128	u32	reord;
1129	/* Timestamps for earliest and latest never-retransmitted segment
1130	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1131	 * but congestion control should still get an accurate delay signal.
1132	 */
1133	u64	first_sackt;
1134	u64	last_sackt;
1135	struct rate_sample *rate;
1136	int	flag;
1137	unsigned int mss_now;
1138};
1139
1140/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1141 * the incoming SACK may not exactly match but we can find smaller MSS
1142 * aligned portion of it that matches. Therefore we might need to fragment
1143 * which may fail and creates some hassle (caller must handle error case
1144 * returns).
1145 *
1146 * FIXME: this could be merged to shift decision code
1147 */
1148static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1149				  u32 start_seq, u32 end_seq)
1150{
1151	int err;
1152	bool in_sack;
1153	unsigned int pkt_len;
1154	unsigned int mss;
1155
1156	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1157		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158
1159	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1160	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1161		mss = tcp_skb_mss(skb);
1162		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163
1164		if (!in_sack) {
1165			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1166			if (pkt_len < mss)
1167				pkt_len = mss;
1168		} else {
1169			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1170			if (pkt_len < mss)
1171				return -EINVAL;
1172		}
1173
1174		/* Round if necessary so that SACKs cover only full MSSes
1175		 * and/or the remaining small portion (if present)
1176		 */
1177		if (pkt_len > mss) {
1178			unsigned int new_len = (pkt_len / mss) * mss;
1179			if (!in_sack && new_len < pkt_len)
1180				new_len += mss;
1181			pkt_len = new_len;
1182		}
1183
1184		if (pkt_len >= skb->len && !in_sack)
1185			return 0;
1186
1187		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1188				   pkt_len, mss, GFP_ATOMIC);
1189		if (err < 0)
1190			return err;
1191	}
1192
1193	return in_sack;
1194}
1195
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198			  struct tcp_sacktag_state *state, u8 sacked,
1199			  u32 start_seq, u32 end_seq,
1200			  int dup_sack, int pcount,
1201			  u64 xmit_time)
1202{
1203	struct tcp_sock *tp = tcp_sk(sk);
1204
1205	/* Account D-SACK for retransmitted packet. */
1206	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1207		if (tp->undo_marker && tp->undo_retrans > 0 &&
1208		    after(end_seq, tp->undo_marker))
1209			tp->undo_retrans--;
1210		if ((sacked & TCPCB_SACKED_ACKED) &&
1211		    before(start_seq, state->reord))
1212				state->reord = start_seq;
1213	}
1214
1215	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216	if (!after(end_seq, tp->snd_una))
1217		return sacked;
1218
1219	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1221
1222		if (sacked & TCPCB_SACKED_RETRANS) {
1223			/* If the segment is not tagged as lost,
1224			 * we do not clear RETRANS, believing
1225			 * that retransmission is still in flight.
1226			 */
1227			if (sacked & TCPCB_LOST) {
1228				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229				tp->lost_out -= pcount;
1230				tp->retrans_out -= pcount;
1231			}
1232		} else {
1233			if (!(sacked & TCPCB_RETRANS)) {
1234				/* New sack for not retransmitted frame,
1235				 * which was in hole. It is reordering.
1236				 */
1237				if (before(start_seq,
1238					   tcp_highest_sack_seq(tp)) &&
1239				    before(start_seq, state->reord))
1240					state->reord = start_seq;
1241
1242				if (!after(end_seq, tp->high_seq))
1243					state->flag |= FLAG_ORIG_SACK_ACKED;
1244				if (state->first_sackt == 0)
1245					state->first_sackt = xmit_time;
1246				state->last_sackt = xmit_time;
1247			}
1248
1249			if (sacked & TCPCB_LOST) {
1250				sacked &= ~TCPCB_LOST;
1251				tp->lost_out -= pcount;
1252			}
1253		}
1254
1255		sacked |= TCPCB_SACKED_ACKED;
1256		state->flag |= FLAG_DATA_SACKED;
1257		tp->sacked_out += pcount;
1258		tp->delivered += pcount;  /* Out-of-order packets delivered */
 
1259
1260		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1261		if (tp->lost_skb_hint &&
1262		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1263			tp->lost_cnt_hint += pcount;
1264	}
1265
1266	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1267	 * frames and clear it. undo_retrans is decreased above, L|R frames
1268	 * are accounted above as well.
1269	 */
1270	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271		sacked &= ~TCPCB_SACKED_RETRANS;
1272		tp->retrans_out -= pcount;
1273	}
1274
1275	return sacked;
1276}
1277
1278/* Shift newly-SACKed bytes from this skb to the immediately previous
1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280 */
1281static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1282			    struct sk_buff *skb,
1283			    struct tcp_sacktag_state *state,
1284			    unsigned int pcount, int shifted, int mss,
1285			    bool dup_sack)
1286{
1287	struct tcp_sock *tp = tcp_sk(sk);
1288	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1289	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1290
1291	BUG_ON(!pcount);
1292
1293	/* Adjust counters and hints for the newly sacked sequence
1294	 * range but discard the return value since prev is already
1295	 * marked. We must tag the range first because the seq
1296	 * advancement below implicitly advances
1297	 * tcp_highest_sack_seq() when skb is highest_sack.
1298	 */
1299	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1300			start_seq, end_seq, dup_sack, pcount,
1301			tcp_skb_timestamp_us(skb));
1302	tcp_rate_skb_delivered(sk, skb, state->rate);
1303
1304	if (skb == tp->lost_skb_hint)
1305		tp->lost_cnt_hint += pcount;
1306
1307	TCP_SKB_CB(prev)->end_seq += shifted;
1308	TCP_SKB_CB(skb)->seq += shifted;
1309
1310	tcp_skb_pcount_add(prev, pcount);
1311	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1312	tcp_skb_pcount_add(skb, -pcount);
1313
1314	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315	 * in theory this shouldn't be necessary but as long as DSACK
1316	 * code can come after this skb later on it's better to keep
1317	 * setting gso_size to something.
1318	 */
1319	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321
1322	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323	if (tcp_skb_pcount(skb) <= 1)
1324		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325
1326	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328
1329	if (skb->len > 0) {
1330		BUG_ON(!tcp_skb_pcount(skb));
1331		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332		return false;
1333	}
1334
1335	/* Whole SKB was eaten :-) */
1336
1337	if (skb == tp->retransmit_skb_hint)
1338		tp->retransmit_skb_hint = prev;
1339	if (skb == tp->lost_skb_hint) {
1340		tp->lost_skb_hint = prev;
1341		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342	}
1343
1344	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1346	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347		TCP_SKB_CB(prev)->end_seq++;
1348
1349	if (skb == tcp_highest_sack(sk))
1350		tcp_advance_highest_sack(sk, skb);
1351
1352	tcp_skb_collapse_tstamp(prev, skb);
1353	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1354		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1355
1356	tcp_rtx_queue_unlink_and_free(skb, sk);
1357
1358	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360	return true;
1361}
1362
1363/* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
1366static int tcp_skb_seglen(const struct sk_buff *skb)
1367{
1368	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369}
1370
1371/* Shifting pages past head area doesn't work */
1372static int skb_can_shift(const struct sk_buff *skb)
1373{
1374	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375}
1376
1377int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1378		  int pcount, int shiftlen)
1379{
1380	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1381	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1382	 * to make sure not storing more than 65535 * 8 bytes per skb,
1383	 * even if current MSS is bigger.
1384	 */
1385	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1386		return 0;
1387	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1388		return 0;
1389	return skb_shift(to, from, shiftlen);
1390}
1391
1392/* Try collapsing SACK blocks spanning across multiple skbs to a single
1393 * skb.
1394 */
1395static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1396					  struct tcp_sacktag_state *state,
1397					  u32 start_seq, u32 end_seq,
1398					  bool dup_sack)
1399{
1400	struct tcp_sock *tp = tcp_sk(sk);
1401	struct sk_buff *prev;
1402	int mss;
1403	int pcount = 0;
1404	int len;
1405	int in_sack;
1406
1407	/* Normally R but no L won't result in plain S */
1408	if (!dup_sack &&
1409	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410		goto fallback;
1411	if (!skb_can_shift(skb))
1412		goto fallback;
1413	/* This frame is about to be dropped (was ACKed). */
1414	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415		goto fallback;
1416
1417	/* Can only happen with delayed DSACK + discard craziness */
1418	prev = skb_rb_prev(skb);
1419	if (!prev)
1420		goto fallback;
1421
1422	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423		goto fallback;
1424
1425	if (!tcp_skb_can_collapse_to(prev))
1426		goto fallback;
1427
1428	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430
1431	if (in_sack) {
1432		len = skb->len;
1433		pcount = tcp_skb_pcount(skb);
1434		mss = tcp_skb_seglen(skb);
1435
1436		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437		 * drop this restriction as unnecessary
1438		 */
1439		if (mss != tcp_skb_seglen(prev))
1440			goto fallback;
1441	} else {
1442		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443			goto noop;
1444		/* CHECKME: This is non-MSS split case only?, this will
1445		 * cause skipped skbs due to advancing loop btw, original
1446		 * has that feature too
1447		 */
1448		if (tcp_skb_pcount(skb) <= 1)
1449			goto noop;
1450
1451		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452		if (!in_sack) {
1453			/* TODO: head merge to next could be attempted here
1454			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455			 * though it might not be worth of the additional hassle
1456			 *
1457			 * ...we can probably just fallback to what was done
1458			 * previously. We could try merging non-SACKed ones
1459			 * as well but it probably isn't going to buy off
1460			 * because later SACKs might again split them, and
1461			 * it would make skb timestamp tracking considerably
1462			 * harder problem.
1463			 */
1464			goto fallback;
1465		}
1466
1467		len = end_seq - TCP_SKB_CB(skb)->seq;
1468		BUG_ON(len < 0);
1469		BUG_ON(len > skb->len);
1470
1471		/* MSS boundaries should be honoured or else pcount will
1472		 * severely break even though it makes things bit trickier.
1473		 * Optimize common case to avoid most of the divides
1474		 */
1475		mss = tcp_skb_mss(skb);
1476
1477		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478		 * drop this restriction as unnecessary
1479		 */
1480		if (mss != tcp_skb_seglen(prev))
1481			goto fallback;
1482
1483		if (len == mss) {
1484			pcount = 1;
1485		} else if (len < mss) {
1486			goto noop;
1487		} else {
1488			pcount = len / mss;
1489			len = pcount * mss;
1490		}
1491	}
1492
1493	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495		goto fallback;
1496
1497	if (!tcp_skb_shift(prev, skb, pcount, len))
1498		goto fallback;
1499	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1500		goto out;
1501
1502	/* Hole filled allows collapsing with the next as well, this is very
1503	 * useful when hole on every nth skb pattern happens
1504	 */
1505	skb = skb_rb_next(prev);
1506	if (!skb)
1507		goto out;
1508
1509	if (!skb_can_shift(skb) ||
1510	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511	    (mss != tcp_skb_seglen(skb)))
1512		goto out;
1513
 
 
1514	len = skb->len;
1515	pcount = tcp_skb_pcount(skb);
1516	if (tcp_skb_shift(prev, skb, pcount, len))
1517		tcp_shifted_skb(sk, prev, skb, state, pcount,
1518				len, mss, 0);
1519
1520out:
1521	return prev;
1522
1523noop:
1524	return skb;
1525
1526fallback:
1527	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1528	return NULL;
1529}
1530
1531static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532					struct tcp_sack_block *next_dup,
1533					struct tcp_sacktag_state *state,
1534					u32 start_seq, u32 end_seq,
1535					bool dup_sack_in)
1536{
1537	struct tcp_sock *tp = tcp_sk(sk);
1538	struct sk_buff *tmp;
1539
1540	skb_rbtree_walk_from(skb) {
1541		int in_sack = 0;
1542		bool dup_sack = dup_sack_in;
1543
1544		/* queue is in-order => we can short-circuit the walk early */
1545		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546			break;
1547
1548		if (next_dup  &&
1549		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550			in_sack = tcp_match_skb_to_sack(sk, skb,
1551							next_dup->start_seq,
1552							next_dup->end_seq);
1553			if (in_sack > 0)
1554				dup_sack = true;
1555		}
1556
1557		/* skb reference here is a bit tricky to get right, since
1558		 * shifting can eat and free both this skb and the next,
1559		 * so not even _safe variant of the loop is enough.
1560		 */
1561		if (in_sack <= 0) {
1562			tmp = tcp_shift_skb_data(sk, skb, state,
1563						 start_seq, end_seq, dup_sack);
1564			if (tmp) {
1565				if (tmp != skb) {
1566					skb = tmp;
1567					continue;
1568				}
1569
1570				in_sack = 0;
1571			} else {
1572				in_sack = tcp_match_skb_to_sack(sk, skb,
1573								start_seq,
1574								end_seq);
1575			}
1576		}
1577
1578		if (unlikely(in_sack < 0))
1579			break;
1580
1581		if (in_sack) {
1582			TCP_SKB_CB(skb)->sacked =
1583				tcp_sacktag_one(sk,
1584						state,
1585						TCP_SKB_CB(skb)->sacked,
1586						TCP_SKB_CB(skb)->seq,
1587						TCP_SKB_CB(skb)->end_seq,
1588						dup_sack,
1589						tcp_skb_pcount(skb),
1590						tcp_skb_timestamp_us(skb));
1591			tcp_rate_skb_delivered(sk, skb, state->rate);
1592			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1593				list_del_init(&skb->tcp_tsorted_anchor);
1594
1595			if (!before(TCP_SKB_CB(skb)->seq,
1596				    tcp_highest_sack_seq(tp)))
1597				tcp_advance_highest_sack(sk, skb);
1598		}
1599	}
1600	return skb;
1601}
1602
1603static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1604{
1605	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1606	struct sk_buff *skb;
1607
1608	while (*p) {
1609		parent = *p;
1610		skb = rb_to_skb(parent);
1611		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1612			p = &parent->rb_left;
1613			continue;
1614		}
1615		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1616			p = &parent->rb_right;
1617			continue;
1618		}
1619		return skb;
1620	}
1621	return NULL;
1622}
1623
1624static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1625					u32 skip_to_seq)
1626{
1627	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1628		return skb;
1629
1630	return tcp_sacktag_bsearch(sk, skip_to_seq);
1631}
1632
1633static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1634						struct sock *sk,
1635						struct tcp_sack_block *next_dup,
1636						struct tcp_sacktag_state *state,
1637						u32 skip_to_seq)
1638{
1639	if (!next_dup)
1640		return skb;
1641
1642	if (before(next_dup->start_seq, skip_to_seq)) {
1643		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1644		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1645				       next_dup->start_seq, next_dup->end_seq,
1646				       1);
1647	}
1648
1649	return skb;
1650}
1651
1652static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1653{
1654	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1655}
1656
1657static int
1658tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1659			u32 prior_snd_una, struct tcp_sacktag_state *state)
1660{
1661	struct tcp_sock *tp = tcp_sk(sk);
1662	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1663				    TCP_SKB_CB(ack_skb)->sacked);
1664	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1665	struct tcp_sack_block sp[TCP_NUM_SACKS];
1666	struct tcp_sack_block *cache;
1667	struct sk_buff *skb;
1668	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1669	int used_sacks;
1670	bool found_dup_sack = false;
1671	int i, j;
1672	int first_sack_index;
1673
1674	state->flag = 0;
1675	state->reord = tp->snd_nxt;
1676
1677	if (!tp->sacked_out)
1678		tcp_highest_sack_reset(sk);
1679
1680	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1681					 num_sacks, prior_snd_una);
1682	if (found_dup_sack) {
1683		state->flag |= FLAG_DSACKING_ACK;
1684		tp->delivered++; /* A spurious retransmission is delivered */
1685	}
1686
1687	/* Eliminate too old ACKs, but take into
1688	 * account more or less fresh ones, they can
1689	 * contain valid SACK info.
1690	 */
1691	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1692		return 0;
1693
1694	if (!tp->packets_out)
1695		goto out;
1696
1697	used_sacks = 0;
1698	first_sack_index = 0;
1699	for (i = 0; i < num_sacks; i++) {
1700		bool dup_sack = !i && found_dup_sack;
1701
1702		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1703		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1704
1705		if (!tcp_is_sackblock_valid(tp, dup_sack,
1706					    sp[used_sacks].start_seq,
1707					    sp[used_sacks].end_seq)) {
1708			int mib_idx;
1709
1710			if (dup_sack) {
1711				if (!tp->undo_marker)
1712					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1713				else
1714					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1715			} else {
1716				/* Don't count olds caused by ACK reordering */
1717				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1718				    !after(sp[used_sacks].end_seq, tp->snd_una))
1719					continue;
1720				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1721			}
1722
1723			NET_INC_STATS(sock_net(sk), mib_idx);
1724			if (i == 0)
1725				first_sack_index = -1;
1726			continue;
1727		}
1728
1729		/* Ignore very old stuff early */
1730		if (!after(sp[used_sacks].end_seq, prior_snd_una))
 
 
1731			continue;
 
1732
1733		used_sacks++;
1734	}
1735
1736	/* order SACK blocks to allow in order walk of the retrans queue */
1737	for (i = used_sacks - 1; i > 0; i--) {
1738		for (j = 0; j < i; j++) {
1739			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1740				swap(sp[j], sp[j + 1]);
1741
1742				/* Track where the first SACK block goes to */
1743				if (j == first_sack_index)
1744					first_sack_index = j + 1;
1745			}
1746		}
1747	}
1748
1749	state->mss_now = tcp_current_mss(sk);
1750	skb = NULL;
1751	i = 0;
1752
1753	if (!tp->sacked_out) {
1754		/* It's already past, so skip checking against it */
1755		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1756	} else {
1757		cache = tp->recv_sack_cache;
1758		/* Skip empty blocks in at head of the cache */
1759		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1760		       !cache->end_seq)
1761			cache++;
1762	}
1763
1764	while (i < used_sacks) {
1765		u32 start_seq = sp[i].start_seq;
1766		u32 end_seq = sp[i].end_seq;
1767		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1768		struct tcp_sack_block *next_dup = NULL;
1769
1770		if (found_dup_sack && ((i + 1) == first_sack_index))
1771			next_dup = &sp[i + 1];
1772
1773		/* Skip too early cached blocks */
1774		while (tcp_sack_cache_ok(tp, cache) &&
1775		       !before(start_seq, cache->end_seq))
1776			cache++;
1777
1778		/* Can skip some work by looking recv_sack_cache? */
1779		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1780		    after(end_seq, cache->start_seq)) {
1781
1782			/* Head todo? */
1783			if (before(start_seq, cache->start_seq)) {
1784				skb = tcp_sacktag_skip(skb, sk, start_seq);
1785				skb = tcp_sacktag_walk(skb, sk, next_dup,
1786						       state,
1787						       start_seq,
1788						       cache->start_seq,
1789						       dup_sack);
1790			}
1791
1792			/* Rest of the block already fully processed? */
1793			if (!after(end_seq, cache->end_seq))
1794				goto advance_sp;
1795
1796			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1797						       state,
1798						       cache->end_seq);
1799
1800			/* ...tail remains todo... */
1801			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1802				/* ...but better entrypoint exists! */
1803				skb = tcp_highest_sack(sk);
1804				if (!skb)
1805					break;
1806				cache++;
1807				goto walk;
1808			}
1809
1810			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1811			/* Check overlap against next cached too (past this one already) */
1812			cache++;
1813			continue;
1814		}
1815
1816		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1817			skb = tcp_highest_sack(sk);
1818			if (!skb)
1819				break;
1820		}
1821		skb = tcp_sacktag_skip(skb, sk, start_seq);
1822
1823walk:
1824		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825				       start_seq, end_seq, dup_sack);
1826
1827advance_sp:
1828		i++;
1829	}
1830
1831	/* Clear the head of the cache sack blocks so we can skip it next time */
1832	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833		tp->recv_sack_cache[i].start_seq = 0;
1834		tp->recv_sack_cache[i].end_seq = 0;
1835	}
1836	for (j = 0; j < used_sacks; j++)
1837		tp->recv_sack_cache[i++] = sp[j];
1838
1839	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1840		tcp_check_sack_reordering(sk, state->reord, 0);
1841
1842	tcp_verify_left_out(tp);
1843out:
1844
1845#if FASTRETRANS_DEBUG > 0
1846	WARN_ON((int)tp->sacked_out < 0);
1847	WARN_ON((int)tp->lost_out < 0);
1848	WARN_ON((int)tp->retrans_out < 0);
1849	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850#endif
1851	return state->flag;
1852}
1853
1854/* Limits sacked_out so that sum with lost_out isn't ever larger than
1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856 */
1857static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858{
1859	u32 holes;
1860
1861	holes = max(tp->lost_out, 1U);
1862	holes = min(holes, tp->packets_out);
1863
1864	if ((tp->sacked_out + holes) > tp->packets_out) {
1865		tp->sacked_out = tp->packets_out - holes;
1866		return true;
1867	}
1868	return false;
1869}
1870
1871/* If we receive more dupacks than we expected counting segments
1872 * in assumption of absent reordering, interpret this as reordering.
1873 * The only another reason could be bug in receiver TCP.
1874 */
1875static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876{
1877	struct tcp_sock *tp = tcp_sk(sk);
1878
1879	if (!tcp_limit_reno_sacked(tp))
1880		return;
1881
1882	tp->reordering = min_t(u32, tp->packets_out + addend,
1883			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1884	tp->reord_seen++;
1885	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1886}
1887
1888/* Emulate SACKs for SACKless connection: account for a new dupack. */
1889
1890static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1891{
1892	if (num_dupack) {
1893		struct tcp_sock *tp = tcp_sk(sk);
1894		u32 prior_sacked = tp->sacked_out;
1895		s32 delivered;
1896
1897		tp->sacked_out += num_dupack;
1898		tcp_check_reno_reordering(sk, 0);
1899		delivered = tp->sacked_out - prior_sacked;
1900		if (delivered > 0)
1901			tp->delivered += delivered;
1902		tcp_verify_left_out(tp);
1903	}
1904}
1905
1906/* Account for ACK, ACKing some data in Reno Recovery phase. */
1907
1908static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1909{
1910	struct tcp_sock *tp = tcp_sk(sk);
1911
1912	if (acked > 0) {
1913		/* One ACK acked hole. The rest eat duplicate ACKs. */
1914		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
 
1915		if (acked - 1 >= tp->sacked_out)
1916			tp->sacked_out = 0;
1917		else
1918			tp->sacked_out -= acked - 1;
1919	}
1920	tcp_check_reno_reordering(sk, acked);
1921	tcp_verify_left_out(tp);
1922}
1923
1924static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1925{
1926	tp->sacked_out = 0;
1927}
1928
1929void tcp_clear_retrans(struct tcp_sock *tp)
1930{
1931	tp->retrans_out = 0;
1932	tp->lost_out = 0;
1933	tp->undo_marker = 0;
1934	tp->undo_retrans = -1;
1935	tp->sacked_out = 0;
 
 
 
 
1936}
1937
1938static inline void tcp_init_undo(struct tcp_sock *tp)
1939{
1940	tp->undo_marker = tp->snd_una;
1941	/* Retransmission still in flight may cause DSACKs later. */
1942	tp->undo_retrans = tp->retrans_out ? : -1;
1943}
1944
1945static bool tcp_is_rack(const struct sock *sk)
1946{
1947	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
 
1948}
1949
1950/* If we detect SACK reneging, forget all SACK information
1951 * and reset tags completely, otherwise preserve SACKs. If receiver
1952 * dropped its ofo queue, we will know this due to reneging detection.
1953 */
1954static void tcp_timeout_mark_lost(struct sock *sk)
1955{
1956	struct tcp_sock *tp = tcp_sk(sk);
1957	struct sk_buff *skb, *head;
1958	bool is_reneg;			/* is receiver reneging on SACKs? */
1959
1960	head = tcp_rtx_queue_head(sk);
1961	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1962	if (is_reneg) {
1963		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1964		tp->sacked_out = 0;
1965		/* Mark SACK reneging until we recover from this loss event. */
1966		tp->is_sack_reneg = 1;
1967	} else if (tcp_is_reno(tp)) {
1968		tcp_reset_reno_sack(tp);
1969	}
1970
1971	skb = head;
1972	skb_rbtree_walk_from(skb) {
1973		if (is_reneg)
1974			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975		else if (tcp_is_rack(sk) && skb != head &&
1976			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1977			continue; /* Don't mark recently sent ones lost yet */
1978		tcp_mark_skb_lost(sk, skb);
1979	}
1980	tcp_verify_left_out(tp);
1981	tcp_clear_all_retrans_hints(tp);
1982}
1983
1984/* Enter Loss state. */
1985void tcp_enter_loss(struct sock *sk)
1986{
1987	const struct inet_connection_sock *icsk = inet_csk(sk);
1988	struct tcp_sock *tp = tcp_sk(sk);
1989	struct net *net = sock_net(sk);
1990	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
 
1991
1992	tcp_timeout_mark_lost(sk);
1993
1994	/* Reduce ssthresh if it has not yet been made inside this window. */
1995	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1996	    !after(tp->high_seq, tp->snd_una) ||
1997	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1998		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1999		tp->prior_cwnd = tp->snd_cwnd;
2000		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2001		tcp_ca_event(sk, CA_EVENT_LOSS);
2002		tcp_init_undo(tp);
2003	}
2004	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2005	tp->snd_cwnd_cnt   = 0;
2006	tp->snd_cwnd_stamp = tcp_jiffies32;
2007
2008	/* Timeout in disordered state after receiving substantial DUPACKs
2009	 * suggests that the degree of reordering is over-estimated.
2010	 */
 
2011	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2012	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2013		tp->reordering = min_t(unsigned int, tp->reordering,
2014				       net->ipv4.sysctl_tcp_reordering);
 
2015	tcp_set_ca_state(sk, TCP_CA_Loss);
2016	tp->high_seq = tp->snd_nxt;
2017	tcp_ecn_queue_cwr(tp);
2018
2019	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2020	 * loss recovery is underway except recurring timeout(s) on
2021	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2022	 */
2023	tp->frto = net->ipv4.sysctl_tcp_frto &&
2024		   (new_recovery || icsk->icsk_retransmits) &&
2025		   !inet_csk(sk)->icsk_mtup.probe_size;
2026}
2027
2028/* If ACK arrived pointing to a remembered SACK, it means that our
2029 * remembered SACKs do not reflect real state of receiver i.e.
2030 * receiver _host_ is heavily congested (or buggy).
2031 *
2032 * To avoid big spurious retransmission bursts due to transient SACK
2033 * scoreboard oddities that look like reneging, we give the receiver a
2034 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2035 * restore sanity to the SACK scoreboard. If the apparent reneging
2036 * persists until this RTO then we'll clear the SACK scoreboard.
2037 */
2038static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2039{
2040	if (flag & FLAG_SACK_RENEGING) {
 
2041		struct tcp_sock *tp = tcp_sk(sk);
2042		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2043					  msecs_to_jiffies(10));
2044
2045		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2046					  delay, TCP_RTO_MAX);
 
2047		return true;
2048	}
2049	return false;
2050}
2051
2052/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2053 * counter when SACK is enabled (without SACK, sacked_out is used for
2054 * that purpose).
2055 *
2056 * With reordering, holes may still be in flight, so RFC3517 recovery
2057 * uses pure sacked_out (total number of SACKed segments) even though
2058 * it violates the RFC that uses duplicate ACKs, often these are equal
2059 * but when e.g. out-of-window ACKs or packet duplication occurs,
2060 * they differ. Since neither occurs due to loss, TCP should really
2061 * ignore them.
2062 */
2063static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2064{
2065	return tp->sacked_out + 1;
2066}
2067
2068/* Linux NewReno/SACK/ECN state machine.
2069 * --------------------------------------
2070 *
2071 * "Open"	Normal state, no dubious events, fast path.
2072 * "Disorder"   In all the respects it is "Open",
2073 *		but requires a bit more attention. It is entered when
2074 *		we see some SACKs or dupacks. It is split of "Open"
2075 *		mainly to move some processing from fast path to slow one.
2076 * "CWR"	CWND was reduced due to some Congestion Notification event.
2077 *		It can be ECN, ICMP source quench, local device congestion.
2078 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2079 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2080 *
2081 * tcp_fastretrans_alert() is entered:
2082 * - each incoming ACK, if state is not "Open"
2083 * - when arrived ACK is unusual, namely:
2084 *	* SACK
2085 *	* Duplicate ACK.
2086 *	* ECN ECE.
2087 *
2088 * Counting packets in flight is pretty simple.
2089 *
2090 *	in_flight = packets_out - left_out + retrans_out
2091 *
2092 *	packets_out is SND.NXT-SND.UNA counted in packets.
2093 *
2094 *	retrans_out is number of retransmitted segments.
2095 *
2096 *	left_out is number of segments left network, but not ACKed yet.
2097 *
2098 *		left_out = sacked_out + lost_out
2099 *
2100 *     sacked_out: Packets, which arrived to receiver out of order
2101 *		   and hence not ACKed. With SACKs this number is simply
2102 *		   amount of SACKed data. Even without SACKs
2103 *		   it is easy to give pretty reliable estimate of this number,
2104 *		   counting duplicate ACKs.
2105 *
2106 *       lost_out: Packets lost by network. TCP has no explicit
2107 *		   "loss notification" feedback from network (for now).
2108 *		   It means that this number can be only _guessed_.
2109 *		   Actually, it is the heuristics to predict lossage that
2110 *		   distinguishes different algorithms.
2111 *
2112 *	F.e. after RTO, when all the queue is considered as lost,
2113 *	lost_out = packets_out and in_flight = retrans_out.
2114 *
2115 *		Essentially, we have now a few algorithms detecting
2116 *		lost packets.
2117 *
2118 *		If the receiver supports SACK:
2119 *
2120 *		RFC6675/3517: It is the conventional algorithm. A packet is
2121 *		considered lost if the number of higher sequence packets
2122 *		SACKed is greater than or equal the DUPACK thoreshold
2123 *		(reordering). This is implemented in tcp_mark_head_lost and
2124 *		tcp_update_scoreboard.
2125 *
2126 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2127 *		(2017-) that checks timing instead of counting DUPACKs.
2128 *		Essentially a packet is considered lost if it's not S/ACKed
2129 *		after RTT + reordering_window, where both metrics are
2130 *		dynamically measured and adjusted. This is implemented in
2131 *		tcp_rack_mark_lost.
2132 *
2133 *		If the receiver does not support SACK:
2134 *
2135 *		NewReno (RFC6582): in Recovery we assume that one segment
2136 *		is lost (classic Reno). While we are in Recovery and
2137 *		a partial ACK arrives, we assume that one more packet
2138 *		is lost (NewReno). This heuristics are the same in NewReno
2139 *		and SACK.
2140 *
2141 * Really tricky (and requiring careful tuning) part of algorithm
2142 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2143 * The first determines the moment _when_ we should reduce CWND and,
2144 * hence, slow down forward transmission. In fact, it determines the moment
2145 * when we decide that hole is caused by loss, rather than by a reorder.
2146 *
2147 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2148 * holes, caused by lost packets.
2149 *
2150 * And the most logically complicated part of algorithm is undo
2151 * heuristics. We detect false retransmits due to both too early
2152 * fast retransmit (reordering) and underestimated RTO, analyzing
2153 * timestamps and D-SACKs. When we detect that some segments were
2154 * retransmitted by mistake and CWND reduction was wrong, we undo
2155 * window reduction and abort recovery phase. This logic is hidden
2156 * inside several functions named tcp_try_undo_<something>.
2157 */
2158
2159/* This function decides, when we should leave Disordered state
2160 * and enter Recovery phase, reducing congestion window.
2161 *
2162 * Main question: may we further continue forward transmission
2163 * with the same cwnd?
2164 */
2165static bool tcp_time_to_recover(struct sock *sk, int flag)
2166{
2167	struct tcp_sock *tp = tcp_sk(sk);
2168
2169	/* Trick#1: The loss is proven. */
2170	if (tp->lost_out)
2171		return true;
2172
2173	/* Not-A-Trick#2 : Classic rule... */
2174	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2175		return true;
2176
2177	return false;
2178}
2179
2180/* Detect loss in event "A" above by marking head of queue up as lost.
2181 * For non-SACK(Reno) senders, the first "packets" number of segments
2182 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2183 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2184 * the maximum SACKed segments to pass before reaching this limit.
2185 */
2186static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2187{
2188	struct tcp_sock *tp = tcp_sk(sk);
2189	struct sk_buff *skb;
2190	int cnt, oldcnt, lost;
2191	unsigned int mss;
2192	/* Use SACK to deduce losses of new sequences sent during recovery */
2193	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2194
2195	WARN_ON(packets > tp->packets_out);
2196	skb = tp->lost_skb_hint;
2197	if (skb) {
2198		/* Head already handled? */
2199		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2200			return;
2201		cnt = tp->lost_cnt_hint;
2202	} else {
2203		skb = tcp_rtx_queue_head(sk);
2204		cnt = 0;
2205	}
2206
2207	skb_rbtree_walk_from(skb) {
2208		/* TODO: do this better */
2209		/* this is not the most efficient way to do this... */
2210		tp->lost_skb_hint = skb;
2211		tp->lost_cnt_hint = cnt;
2212
2213		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2214			break;
2215
2216		oldcnt = cnt;
2217		if (tcp_is_reno(tp) ||
2218		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2219			cnt += tcp_skb_pcount(skb);
2220
2221		if (cnt > packets) {
2222			if (tcp_is_sack(tp) ||
2223			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2224			    (oldcnt >= packets))
2225				break;
2226
2227			mss = tcp_skb_mss(skb);
2228			/* If needed, chop off the prefix to mark as lost. */
2229			lost = (packets - oldcnt) * mss;
2230			if (lost < skb->len &&
2231			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2232					 lost, mss, GFP_ATOMIC) < 0)
2233				break;
2234			cnt = packets;
2235		}
2236
2237		tcp_skb_mark_lost(tp, skb);
 
2238
2239		if (mark_head)
2240			break;
2241	}
2242	tcp_verify_left_out(tp);
2243}
2244
2245/* Account newly detected lost packet(s) */
2246
2247static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2248{
2249	struct tcp_sock *tp = tcp_sk(sk);
2250
2251	if (tcp_is_sack(tp)) {
2252		int sacked_upto = tp->sacked_out - tp->reordering;
2253		if (sacked_upto >= 0)
2254			tcp_mark_head_lost(sk, sacked_upto, 0);
2255		else if (fast_rexmit)
2256			tcp_mark_head_lost(sk, 1, 1);
2257	}
2258}
2259
2260static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261{
2262	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263	       before(tp->rx_opt.rcv_tsecr, when);
2264}
2265
2266/* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2268 */
2269static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270				     const struct sk_buff *skb)
2271{
2272	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274}
2275
2276/* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2278 */
2279static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280{
2281	return tp->retrans_stamp &&
2282	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283}
2284
2285/* Undo procedures. */
2286
2287/* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2295 *
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2300 */
2301static bool tcp_any_retrans_done(const struct sock *sk)
2302{
2303	const struct tcp_sock *tp = tcp_sk(sk);
2304	struct sk_buff *skb;
2305
2306	if (tp->retrans_out)
2307		return true;
2308
2309	skb = tcp_rtx_queue_head(sk);
2310	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311		return true;
2312
2313	return false;
2314}
2315
2316static void DBGUNDO(struct sock *sk, const char *msg)
2317{
2318#if FASTRETRANS_DEBUG > 1
2319	struct tcp_sock *tp = tcp_sk(sk);
2320	struct inet_sock *inet = inet_sk(sk);
2321
2322	if (sk->sk_family == AF_INET) {
2323		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324			 msg,
2325			 &inet->inet_daddr, ntohs(inet->inet_dport),
2326			 tp->snd_cwnd, tcp_left_out(tp),
2327			 tp->snd_ssthresh, tp->prior_ssthresh,
2328			 tp->packets_out);
2329	}
2330#if IS_ENABLED(CONFIG_IPV6)
2331	else if (sk->sk_family == AF_INET6) {
2332		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2333			 msg,
2334			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2335			 tp->snd_cwnd, tcp_left_out(tp),
2336			 tp->snd_ssthresh, tp->prior_ssthresh,
2337			 tp->packets_out);
2338	}
2339#endif
2340#endif
2341}
2342
2343static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2344{
2345	struct tcp_sock *tp = tcp_sk(sk);
2346
2347	if (unmark_loss) {
2348		struct sk_buff *skb;
2349
2350		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2351			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352		}
2353		tp->lost_out = 0;
2354		tcp_clear_all_retrans_hints(tp);
2355	}
2356
2357	if (tp->prior_ssthresh) {
2358		const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2361
2362		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2363			tp->snd_ssthresh = tp->prior_ssthresh;
2364			tcp_ecn_withdraw_cwr(tp);
2365		}
2366	}
2367	tp->snd_cwnd_stamp = tcp_jiffies32;
2368	tp->undo_marker = 0;
2369	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2370}
2371
2372static inline bool tcp_may_undo(const struct tcp_sock *tp)
2373{
2374	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2375}
2376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2377/* People celebrate: "We love our President!" */
2378static bool tcp_try_undo_recovery(struct sock *sk)
2379{
2380	struct tcp_sock *tp = tcp_sk(sk);
2381
2382	if (tcp_may_undo(tp)) {
2383		int mib_idx;
2384
2385		/* Happy end! We did not retransmit anything
2386		 * or our original transmission succeeded.
2387		 */
2388		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389		tcp_undo_cwnd_reduction(sk, false);
2390		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2392		else
2393			mib_idx = LINUX_MIB_TCPFULLUNDO;
2394
2395		NET_INC_STATS(sock_net(sk), mib_idx);
2396	} else if (tp->rack.reo_wnd_persist) {
2397		tp->rack.reo_wnd_persist--;
2398	}
2399	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2400		/* Hold old state until something *above* high_seq
2401		 * is ACKed. For Reno it is MUST to prevent false
2402		 * fast retransmits (RFC2582). SACK TCP is safe. */
2403		if (!tcp_any_retrans_done(sk))
2404			tp->retrans_stamp = 0;
2405		return true;
2406	}
2407	tcp_set_ca_state(sk, TCP_CA_Open);
2408	tp->is_sack_reneg = 0;
2409	return false;
2410}
2411
2412/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413static bool tcp_try_undo_dsack(struct sock *sk)
2414{
2415	struct tcp_sock *tp = tcp_sk(sk);
2416
2417	if (tp->undo_marker && !tp->undo_retrans) {
2418		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2419					       tp->rack.reo_wnd_persist + 1);
2420		DBGUNDO(sk, "D-SACK");
2421		tcp_undo_cwnd_reduction(sk, false);
2422		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423		return true;
2424	}
2425	return false;
2426}
2427
2428/* Undo during loss recovery after partial ACK or using F-RTO. */
2429static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430{
2431	struct tcp_sock *tp = tcp_sk(sk);
2432
2433	if (frto_undo || tcp_may_undo(tp)) {
2434		tcp_undo_cwnd_reduction(sk, true);
2435
2436		DBGUNDO(sk, "partial loss");
2437		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438		if (frto_undo)
2439			NET_INC_STATS(sock_net(sk),
2440					LINUX_MIB_TCPSPURIOUSRTOS);
2441		inet_csk(sk)->icsk_retransmits = 0;
 
 
2442		if (frto_undo || tcp_is_sack(tp)) {
2443			tcp_set_ca_state(sk, TCP_CA_Open);
2444			tp->is_sack_reneg = 0;
2445		}
2446		return true;
2447	}
2448	return false;
2449}
2450
2451/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452 * It computes the number of packets to send (sndcnt) based on packets newly
2453 * delivered:
2454 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2455 *	cwnd reductions across a full RTT.
2456 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2457 *      But when the retransmits are acked without further losses, PRR
2458 *      slow starts cwnd up to ssthresh to speed up the recovery.
2459 */
2460static void tcp_init_cwnd_reduction(struct sock *sk)
2461{
2462	struct tcp_sock *tp = tcp_sk(sk);
2463
2464	tp->high_seq = tp->snd_nxt;
2465	tp->tlp_high_seq = 0;
2466	tp->snd_cwnd_cnt = 0;
2467	tp->prior_cwnd = tp->snd_cwnd;
2468	tp->prr_delivered = 0;
2469	tp->prr_out = 0;
2470	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471	tcp_ecn_queue_cwr(tp);
2472}
2473
2474void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2475{
2476	struct tcp_sock *tp = tcp_sk(sk);
2477	int sndcnt = 0;
2478	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2479
2480	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481		return;
2482
2483	tp->prr_delivered += newly_acked_sacked;
2484	if (delta < 0) {
2485		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2486			       tp->prior_cwnd - 1;
2487		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2488	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2489		   FLAG_RETRANS_DATA_ACKED) {
2490		sndcnt = min_t(int, delta,
2491			       max_t(int, tp->prr_delivered - tp->prr_out,
2492				     newly_acked_sacked) + 1);
2493	} else {
2494		sndcnt = min(delta, newly_acked_sacked);
 
 
 
 
2495	}
2496	/* Force a fast retransmit upon entering fast recovery */
2497	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2498	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499}
2500
2501static inline void tcp_end_cwnd_reduction(struct sock *sk)
2502{
2503	struct tcp_sock *tp = tcp_sk(sk);
2504
2505	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2506		return;
2507
2508	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2509	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2510	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2511		tp->snd_cwnd = tp->snd_ssthresh;
2512		tp->snd_cwnd_stamp = tcp_jiffies32;
2513	}
2514	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2515}
2516
2517/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2518void tcp_enter_cwr(struct sock *sk)
2519{
2520	struct tcp_sock *tp = tcp_sk(sk);
2521
2522	tp->prior_ssthresh = 0;
2523	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2524		tp->undo_marker = 0;
2525		tcp_init_cwnd_reduction(sk);
2526		tcp_set_ca_state(sk, TCP_CA_CWR);
2527	}
2528}
2529EXPORT_SYMBOL(tcp_enter_cwr);
2530
2531static void tcp_try_keep_open(struct sock *sk)
2532{
2533	struct tcp_sock *tp = tcp_sk(sk);
2534	int state = TCP_CA_Open;
2535
2536	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2537		state = TCP_CA_Disorder;
2538
2539	if (inet_csk(sk)->icsk_ca_state != state) {
2540		tcp_set_ca_state(sk, state);
2541		tp->high_seq = tp->snd_nxt;
2542	}
2543}
2544
2545static void tcp_try_to_open(struct sock *sk, int flag)
2546{
2547	struct tcp_sock *tp = tcp_sk(sk);
2548
2549	tcp_verify_left_out(tp);
2550
2551	if (!tcp_any_retrans_done(sk))
2552		tp->retrans_stamp = 0;
2553
2554	if (flag & FLAG_ECE)
2555		tcp_enter_cwr(sk);
2556
2557	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2558		tcp_try_keep_open(sk);
2559	}
2560}
2561
2562static void tcp_mtup_probe_failed(struct sock *sk)
2563{
2564	struct inet_connection_sock *icsk = inet_csk(sk);
2565
2566	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2567	icsk->icsk_mtup.probe_size = 0;
2568	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2569}
2570
2571static void tcp_mtup_probe_success(struct sock *sk)
2572{
2573	struct tcp_sock *tp = tcp_sk(sk);
2574	struct inet_connection_sock *icsk = inet_csk(sk);
 
2575
2576	/* FIXME: breaks with very large cwnd */
2577	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2578	tp->snd_cwnd = tp->snd_cwnd *
2579		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2580		       icsk->icsk_mtup.probe_size;
 
 
 
2581	tp->snd_cwnd_cnt = 0;
2582	tp->snd_cwnd_stamp = tcp_jiffies32;
2583	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2584
2585	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2586	icsk->icsk_mtup.probe_size = 0;
2587	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2588	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2589}
2590
2591/* Do a simple retransmit without using the backoff mechanisms in
2592 * tcp_timer. This is used for path mtu discovery.
2593 * The socket is already locked here.
2594 */
2595void tcp_simple_retransmit(struct sock *sk)
2596{
2597	const struct inet_connection_sock *icsk = inet_csk(sk);
2598	struct tcp_sock *tp = tcp_sk(sk);
2599	struct sk_buff *skb;
2600	unsigned int mss = tcp_current_mss(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2601
2602	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2603		if (tcp_skb_seglen(skb) > mss &&
2604		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607				tp->retrans_out -= tcp_skb_pcount(skb);
2608			}
2609			tcp_skb_mark_lost_uncond_verify(tp, skb);
2610		}
2611	}
2612
2613	tcp_clear_retrans_hints_partial(tp);
2614
2615	if (!tp->lost_out)
2616		return;
2617
2618	if (tcp_is_reno(tp))
2619		tcp_limit_reno_sacked(tp);
2620
2621	tcp_verify_left_out(tp);
2622
2623	/* Don't muck with the congestion window here.
2624	 * Reason is that we do not increase amount of _data_
2625	 * in network, but units changed and effective
2626	 * cwnd/ssthresh really reduced now.
2627	 */
2628	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629		tp->high_seq = tp->snd_nxt;
2630		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631		tp->prior_ssthresh = 0;
2632		tp->undo_marker = 0;
2633		tcp_set_ca_state(sk, TCP_CA_Loss);
2634	}
2635	tcp_xmit_retransmit_queue(sk);
2636}
2637EXPORT_SYMBOL(tcp_simple_retransmit);
2638
2639void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640{
2641	struct tcp_sock *tp = tcp_sk(sk);
2642	int mib_idx;
2643
2644	if (tcp_is_reno(tp))
2645		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646	else
2647		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648
2649	NET_INC_STATS(sock_net(sk), mib_idx);
2650
2651	tp->prior_ssthresh = 0;
2652	tcp_init_undo(tp);
2653
2654	if (!tcp_in_cwnd_reduction(sk)) {
2655		if (!ece_ack)
2656			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657		tcp_init_cwnd_reduction(sk);
2658	}
2659	tcp_set_ca_state(sk, TCP_CA_Recovery);
2660}
2661
 
 
 
 
 
 
 
 
2662/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664 */
2665static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2666			     int *rexmit)
2667{
2668	struct tcp_sock *tp = tcp_sk(sk);
2669	bool recovered = !before(tp->snd_una, tp->high_seq);
2670
2671	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2672	    tcp_try_undo_loss(sk, false))
2673		return;
2674
2675	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2676		/* Step 3.b. A timeout is spurious if not all data are
2677		 * lost, i.e., never-retransmitted data are (s)acked.
2678		 */
2679		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2680		    tcp_try_undo_loss(sk, true))
2681			return;
2682
2683		if (after(tp->snd_nxt, tp->high_seq)) {
2684			if (flag & FLAG_DATA_SACKED || num_dupack)
2685				tp->frto = 0; /* Step 3.a. loss was real */
2686		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2687			tp->high_seq = tp->snd_nxt;
2688			/* Step 2.b. Try send new data (but deferred until cwnd
2689			 * is updated in tcp_ack()). Otherwise fall back to
2690			 * the conventional recovery.
2691			 */
2692			if (!tcp_write_queue_empty(sk) &&
2693			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2694				*rexmit = REXMIT_NEW;
2695				return;
2696			}
2697			tp->frto = 0;
2698		}
2699	}
2700
2701	if (recovered) {
2702		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2703		tcp_try_undo_recovery(sk);
2704		return;
2705	}
2706	if (tcp_is_reno(tp)) {
2707		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2708		 * delivered. Lower inflight to clock out (re)tranmissions.
2709		 */
2710		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2711			tcp_add_reno_sack(sk, num_dupack);
2712		else if (flag & FLAG_SND_UNA_ADVANCED)
2713			tcp_reset_reno_sack(tp);
2714	}
2715	*rexmit = REXMIT_LOST;
2716}
2717
 
 
 
 
 
 
 
 
2718/* Undo during fast recovery after partial ACK. */
2719static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
 
2720{
2721	struct tcp_sock *tp = tcp_sk(sk);
2722
2723	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2724		/* Plain luck! Hole if filled with delayed
2725		 * packet, rather than with a retransmit. Check reordering.
2726		 */
2727		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2728
2729		/* We are getting evidence that the reordering degree is higher
2730		 * than we realized. If there are no retransmits out then we
2731		 * can undo. Otherwise we clock out new packets but do not
2732		 * mark more packets lost or retransmit more.
2733		 */
2734		if (tp->retrans_out)
2735			return true;
2736
2737		if (!tcp_any_retrans_done(sk))
2738			tp->retrans_stamp = 0;
2739
2740		DBGUNDO(sk, "partial recovery");
2741		tcp_undo_cwnd_reduction(sk, true);
2742		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2743		tcp_try_keep_open(sk);
2744		return true;
 
 
2745	}
2746	return false;
2747}
2748
2749static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2750{
2751	struct tcp_sock *tp = tcp_sk(sk);
2752
2753	if (tcp_rtx_queue_empty(sk))
2754		return;
2755
2756	if (unlikely(tcp_is_reno(tp))) {
2757		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2758	} else if (tcp_is_rack(sk)) {
2759		u32 prior_retrans = tp->retrans_out;
2760
2761		tcp_rack_mark_lost(sk);
 
2762		if (prior_retrans > tp->retrans_out)
2763			*ack_flag |= FLAG_LOST_RETRANS;
2764	}
2765}
2766
2767static bool tcp_force_fast_retransmit(struct sock *sk)
2768{
2769	struct tcp_sock *tp = tcp_sk(sk);
2770
2771	return after(tcp_highest_sack_seq(tp),
2772		     tp->snd_una + tp->reordering * tp->mss_cache);
2773}
2774
2775/* Process an event, which can update packets-in-flight not trivially.
2776 * Main goal of this function is to calculate new estimate for left_out,
2777 * taking into account both packets sitting in receiver's buffer and
2778 * packets lost by network.
2779 *
2780 * Besides that it updates the congestion state when packet loss or ECN
2781 * is detected. But it does not reduce the cwnd, it is done by the
2782 * congestion control later.
2783 *
2784 * It does _not_ decide what to send, it is made in function
2785 * tcp_xmit_retransmit_queue().
2786 */
2787static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2788				  int num_dupack, int *ack_flag, int *rexmit)
2789{
2790	struct inet_connection_sock *icsk = inet_csk(sk);
2791	struct tcp_sock *tp = tcp_sk(sk);
2792	int fast_rexmit = 0, flag = *ack_flag;
 
2793	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2794				      tcp_force_fast_retransmit(sk));
2795
2796	if (!tp->packets_out && tp->sacked_out)
2797		tp->sacked_out = 0;
2798
2799	/* Now state machine starts.
2800	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2801	if (flag & FLAG_ECE)
2802		tp->prior_ssthresh = 0;
2803
2804	/* B. In all the states check for reneging SACKs. */
2805	if (tcp_check_sack_reneging(sk, flag))
2806		return;
2807
2808	/* C. Check consistency of the current state. */
2809	tcp_verify_left_out(tp);
2810
2811	/* D. Check state exit conditions. State can be terminated
2812	 *    when high_seq is ACKed. */
2813	if (icsk->icsk_ca_state == TCP_CA_Open) {
2814		WARN_ON(tp->retrans_out != 0);
2815		tp->retrans_stamp = 0;
2816	} else if (!before(tp->snd_una, tp->high_seq)) {
2817		switch (icsk->icsk_ca_state) {
2818		case TCP_CA_CWR:
2819			/* CWR is to be held something *above* high_seq
2820			 * is ACKed for CWR bit to reach receiver. */
2821			if (tp->snd_una != tp->high_seq) {
2822				tcp_end_cwnd_reduction(sk);
2823				tcp_set_ca_state(sk, TCP_CA_Open);
2824			}
2825			break;
2826
2827		case TCP_CA_Recovery:
2828			if (tcp_is_reno(tp))
2829				tcp_reset_reno_sack(tp);
2830			if (tcp_try_undo_recovery(sk))
2831				return;
2832			tcp_end_cwnd_reduction(sk);
2833			break;
2834		}
2835	}
2836
2837	/* E. Process state. */
2838	switch (icsk->icsk_ca_state) {
2839	case TCP_CA_Recovery:
2840		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2841			if (tcp_is_reno(tp))
2842				tcp_add_reno_sack(sk, num_dupack);
2843		} else {
2844			if (tcp_try_undo_partial(sk, prior_snd_una))
2845				return;
2846			/* Partial ACK arrived. Force fast retransmit. */
2847			do_lost = tcp_is_reno(tp) ||
2848				  tcp_force_fast_retransmit(sk);
2849		}
2850		if (tcp_try_undo_dsack(sk)) {
2851			tcp_try_keep_open(sk);
2852			return;
2853		}
 
 
 
2854		tcp_identify_packet_loss(sk, ack_flag);
 
 
 
 
 
 
 
 
2855		break;
2856	case TCP_CA_Loss:
2857		tcp_process_loss(sk, flag, num_dupack, rexmit);
 
 
2858		tcp_identify_packet_loss(sk, ack_flag);
2859		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2860		      (*ack_flag & FLAG_LOST_RETRANS)))
2861			return;
2862		/* Change state if cwnd is undone or retransmits are lost */
2863		/* fall through */
2864	default:
2865		if (tcp_is_reno(tp)) {
2866			if (flag & FLAG_SND_UNA_ADVANCED)
2867				tcp_reset_reno_sack(tp);
2868			tcp_add_reno_sack(sk, num_dupack);
2869		}
2870
2871		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2872			tcp_try_undo_dsack(sk);
2873
2874		tcp_identify_packet_loss(sk, ack_flag);
2875		if (!tcp_time_to_recover(sk, flag)) {
2876			tcp_try_to_open(sk, flag);
2877			return;
2878		}
2879
2880		/* MTU probe failure: don't reduce cwnd */
2881		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882		    icsk->icsk_mtup.probe_size &&
2883		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884			tcp_mtup_probe_failed(sk);
2885			/* Restores the reduction we did in tcp_mtup_probe() */
2886			tp->snd_cwnd++;
2887			tcp_simple_retransmit(sk);
2888			return;
2889		}
2890
2891		/* Otherwise enter Recovery state */
2892		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893		fast_rexmit = 1;
2894	}
2895
2896	if (!tcp_is_rack(sk) && do_lost)
2897		tcp_update_scoreboard(sk, fast_rexmit);
2898	*rexmit = REXMIT_LOST;
2899}
2900
2901static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2902{
2903	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2904	struct tcp_sock *tp = tcp_sk(sk);
2905
2906	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2907		/* If the remote keeps returning delayed ACKs, eventually
2908		 * the min filter would pick it up and overestimate the
2909		 * prop. delay when it expires. Skip suspected delayed ACKs.
2910		 */
2911		return;
2912	}
2913	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2914			   rtt_us ? : jiffies_to_usecs(1));
2915}
2916
2917static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2918			       long seq_rtt_us, long sack_rtt_us,
2919			       long ca_rtt_us, struct rate_sample *rs)
2920{
2921	const struct tcp_sock *tp = tcp_sk(sk);
2922
2923	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925	 * Karn's algorithm forbids taking RTT if some retransmitted data
2926	 * is acked (RFC6298).
2927	 */
2928	if (seq_rtt_us < 0)
2929		seq_rtt_us = sack_rtt_us;
2930
2931	/* RTTM Rule: A TSecr value received in a segment is used to
2932	 * update the averaged RTT measurement only if the segment
2933	 * acknowledges some new data, i.e., only if it advances the
2934	 * left edge of the send window.
2935	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2936	 */
2937	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2938	    flag & FLAG_ACKED) {
2939		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2940
2941		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2942			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2943			ca_rtt_us = seq_rtt_us;
2944		}
2945	}
2946	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2947	if (seq_rtt_us < 0)
2948		return false;
2949
2950	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2951	 * always taken together with ACK, SACK, or TS-opts. Any negative
2952	 * values will be skipped with the seq_rtt_us < 0 check above.
2953	 */
2954	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2955	tcp_rtt_estimator(sk, seq_rtt_us);
2956	tcp_set_rto(sk);
2957
2958	/* RFC6298: only reset backoff on valid RTT measurement. */
2959	inet_csk(sk)->icsk_backoff = 0;
2960	return true;
2961}
2962
2963/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2964void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2965{
2966	struct rate_sample rs;
2967	long rtt_us = -1L;
2968
2969	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2970		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2971
2972	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2973}
2974
2975
2976static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2977{
2978	const struct inet_connection_sock *icsk = inet_csk(sk);
2979
2980	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2981	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2982}
2983
2984/* Restart timer after forward progress on connection.
2985 * RFC2988 recommends to restart timer to now+rto.
2986 */
2987void tcp_rearm_rto(struct sock *sk)
2988{
2989	const struct inet_connection_sock *icsk = inet_csk(sk);
2990	struct tcp_sock *tp = tcp_sk(sk);
2991
2992	/* If the retrans timer is currently being used by Fast Open
2993	 * for SYN-ACK retrans purpose, stay put.
2994	 */
2995	if (rcu_access_pointer(tp->fastopen_rsk))
2996		return;
2997
2998	if (!tp->packets_out) {
2999		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3000	} else {
3001		u32 rto = inet_csk(sk)->icsk_rto;
3002		/* Offset the time elapsed after installing regular RTO */
3003		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3004		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3005			s64 delta_us = tcp_rto_delta_us(sk);
3006			/* delta_us may not be positive if the socket is locked
3007			 * when the retrans timer fires and is rescheduled.
3008			 */
3009			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3010		}
3011		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3012				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3013	}
3014}
3015
3016/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3017static void tcp_set_xmit_timer(struct sock *sk)
3018{
3019	if (!tcp_schedule_loss_probe(sk, true))
3020		tcp_rearm_rto(sk);
3021}
3022
3023/* If we get here, the whole TSO packet has not been acked. */
3024static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3025{
3026	struct tcp_sock *tp = tcp_sk(sk);
3027	u32 packets_acked;
3028
3029	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3030
3031	packets_acked = tcp_skb_pcount(skb);
3032	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3033		return 0;
3034	packets_acked -= tcp_skb_pcount(skb);
3035
3036	if (packets_acked) {
3037		BUG_ON(tcp_skb_pcount(skb) == 0);
3038		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3039	}
3040
3041	return packets_acked;
3042}
3043
3044static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3045			   u32 prior_snd_una)
3046{
3047	const struct skb_shared_info *shinfo;
3048
3049	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3050	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3051		return;
3052
3053	shinfo = skb_shinfo(skb);
3054	if (!before(shinfo->tskey, prior_snd_una) &&
3055	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3056		tcp_skb_tsorted_save(skb) {
3057			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3058		} tcp_skb_tsorted_restore(skb);
3059	}
3060}
3061
3062/* Remove acknowledged frames from the retransmission queue. If our packet
3063 * is before the ack sequence we can discard it as it's confirmed to have
3064 * arrived at the other end.
3065 */
3066static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3067			       u32 prior_snd_una,
3068			       struct tcp_sacktag_state *sack)
3069{
3070	const struct inet_connection_sock *icsk = inet_csk(sk);
3071	u64 first_ackt, last_ackt;
3072	struct tcp_sock *tp = tcp_sk(sk);
3073	u32 prior_sacked = tp->sacked_out;
3074	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3075	struct sk_buff *skb, *next;
3076	bool fully_acked = true;
3077	long sack_rtt_us = -1L;
3078	long seq_rtt_us = -1L;
3079	long ca_rtt_us = -1L;
3080	u32 pkts_acked = 0;
3081	u32 last_in_flight = 0;
3082	bool rtt_update;
3083	int flag = 0;
3084
3085	first_ackt = 0;
3086
3087	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3088		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3089		const u32 start_seq = scb->seq;
3090		u8 sacked = scb->sacked;
3091		u32 acked_pcount;
3092
3093		tcp_ack_tstamp(sk, skb, prior_snd_una);
3094
3095		/* Determine how many packets and what bytes were acked, tso and else */
3096		if (after(scb->end_seq, tp->snd_una)) {
3097			if (tcp_skb_pcount(skb) == 1 ||
3098			    !after(tp->snd_una, scb->seq))
3099				break;
3100
3101			acked_pcount = tcp_tso_acked(sk, skb);
3102			if (!acked_pcount)
3103				break;
3104			fully_acked = false;
3105		} else {
3106			acked_pcount = tcp_skb_pcount(skb);
3107		}
3108
3109		if (unlikely(sacked & TCPCB_RETRANS)) {
3110			if (sacked & TCPCB_SACKED_RETRANS)
3111				tp->retrans_out -= acked_pcount;
3112			flag |= FLAG_RETRANS_DATA_ACKED;
3113		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3114			last_ackt = tcp_skb_timestamp_us(skb);
3115			WARN_ON_ONCE(last_ackt == 0);
3116			if (!first_ackt)
3117				first_ackt = last_ackt;
3118
3119			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3120			if (before(start_seq, reord))
3121				reord = start_seq;
3122			if (!after(scb->end_seq, tp->high_seq))
3123				flag |= FLAG_ORIG_SACK_ACKED;
3124		}
3125
3126		if (sacked & TCPCB_SACKED_ACKED) {
3127			tp->sacked_out -= acked_pcount;
3128		} else if (tcp_is_sack(tp)) {
3129			tp->delivered += acked_pcount;
3130			if (!tcp_skb_spurious_retrans(tp, skb))
3131				tcp_rack_advance(tp, sacked, scb->end_seq,
3132						 tcp_skb_timestamp_us(skb));
3133		}
3134		if (sacked & TCPCB_LOST)
3135			tp->lost_out -= acked_pcount;
3136
3137		tp->packets_out -= acked_pcount;
3138		pkts_acked += acked_pcount;
3139		tcp_rate_skb_delivered(sk, skb, sack->rate);
3140
3141		/* Initial outgoing SYN's get put onto the write_queue
3142		 * just like anything else we transmit.  It is not
3143		 * true data, and if we misinform our callers that
3144		 * this ACK acks real data, we will erroneously exit
3145		 * connection startup slow start one packet too
3146		 * quickly.  This is severely frowned upon behavior.
3147		 */
3148		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3149			flag |= FLAG_DATA_ACKED;
3150		} else {
3151			flag |= FLAG_SYN_ACKED;
3152			tp->retrans_stamp = 0;
3153		}
3154
3155		if (!fully_acked)
3156			break;
3157
 
 
3158		next = skb_rb_next(skb);
3159		if (unlikely(skb == tp->retransmit_skb_hint))
3160			tp->retransmit_skb_hint = NULL;
3161		if (unlikely(skb == tp->lost_skb_hint))
3162			tp->lost_skb_hint = NULL;
 
3163		tcp_rtx_queue_unlink_and_free(skb, sk);
3164	}
3165
3166	if (!skb)
3167		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3168
3169	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3170		tp->snd_up = tp->snd_una;
3171
3172	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3173		flag |= FLAG_SACK_RENEGING;
 
 
 
3174
3175	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3176		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3177		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3178
3179		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3180		    last_in_flight && !prior_sacked && fully_acked &&
3181		    sack->rate->prior_delivered + 1 == tp->delivered &&
3182		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3183			/* Conservatively mark a delayed ACK. It's typically
3184			 * from a lone runt packet over the round trip to
3185			 * a receiver w/o out-of-order or CE events.
3186			 */
3187			flag |= FLAG_ACK_MAYBE_DELAYED;
3188		}
3189	}
3190	if (sack->first_sackt) {
3191		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3192		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3193	}
3194	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3195					ca_rtt_us, sack->rate);
3196
3197	if (flag & FLAG_ACKED) {
3198		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3199		if (unlikely(icsk->icsk_mtup.probe_size &&
3200			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3201			tcp_mtup_probe_success(sk);
3202		}
3203
3204		if (tcp_is_reno(tp)) {
3205			tcp_remove_reno_sacks(sk, pkts_acked);
3206
3207			/* If any of the cumulatively ACKed segments was
3208			 * retransmitted, non-SACK case cannot confirm that
3209			 * progress was due to original transmission due to
3210			 * lack of TCPCB_SACKED_ACKED bits even if some of
3211			 * the packets may have been never retransmitted.
3212			 */
3213			if (flag & FLAG_RETRANS_DATA_ACKED)
3214				flag &= ~FLAG_ORIG_SACK_ACKED;
3215		} else {
3216			int delta;
3217
3218			/* Non-retransmitted hole got filled? That's reordering */
3219			if (before(reord, prior_fack))
3220				tcp_check_sack_reordering(sk, reord, 0);
3221
3222			delta = prior_sacked - tp->sacked_out;
3223			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3224		}
3225	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3227						    tcp_skb_timestamp_us(skb))) {
3228		/* Do not re-arm RTO if the sack RTT is measured from data sent
3229		 * after when the head was last (re)transmitted. Otherwise the
3230		 * timeout may continue to extend in loss recovery.
3231		 */
3232		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3233	}
3234
3235	if (icsk->icsk_ca_ops->pkts_acked) {
3236		struct ack_sample sample = { .pkts_acked = pkts_acked,
3237					     .rtt_us = sack->rate->rtt_us,
3238					     .in_flight = last_in_flight };
3239
 
 
3240		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3241	}
3242
3243#if FASTRETRANS_DEBUG > 0
3244	WARN_ON((int)tp->sacked_out < 0);
3245	WARN_ON((int)tp->lost_out < 0);
3246	WARN_ON((int)tp->retrans_out < 0);
3247	if (!tp->packets_out && tcp_is_sack(tp)) {
3248		icsk = inet_csk(sk);
3249		if (tp->lost_out) {
3250			pr_debug("Leak l=%u %d\n",
3251				 tp->lost_out, icsk->icsk_ca_state);
3252			tp->lost_out = 0;
3253		}
3254		if (tp->sacked_out) {
3255			pr_debug("Leak s=%u %d\n",
3256				 tp->sacked_out, icsk->icsk_ca_state);
3257			tp->sacked_out = 0;
3258		}
3259		if (tp->retrans_out) {
3260			pr_debug("Leak r=%u %d\n",
3261				 tp->retrans_out, icsk->icsk_ca_state);
3262			tp->retrans_out = 0;
3263		}
3264	}
3265#endif
3266	return flag;
3267}
3268
3269static void tcp_ack_probe(struct sock *sk)
3270{
3271	struct inet_connection_sock *icsk = inet_csk(sk);
3272	struct sk_buff *head = tcp_send_head(sk);
3273	const struct tcp_sock *tp = tcp_sk(sk);
3274
3275	/* Was it a usable window open? */
3276	if (!head)
3277		return;
3278	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3279		icsk->icsk_backoff = 0;
 
3280		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3281		/* Socket must be waked up by subsequent tcp_data_snd_check().
3282		 * This function is not for random using!
3283		 */
3284	} else {
3285		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3286
3287		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288				     when, TCP_RTO_MAX, NULL);
3289	}
3290}
3291
3292static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3293{
3294	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3295		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3296}
3297
3298/* Decide wheather to run the increase function of congestion control. */
3299static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3300{
3301	/* If reordering is high then always grow cwnd whenever data is
3302	 * delivered regardless of its ordering. Otherwise stay conservative
3303	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3304	 * new SACK or ECE mark may first advance cwnd here and later reduce
3305	 * cwnd in tcp_fastretrans_alert() based on more states.
3306	 */
3307	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
 
3308		return flag & FLAG_FORWARD_PROGRESS;
3309
3310	return flag & FLAG_DATA_ACKED;
3311}
3312
3313/* The "ultimate" congestion control function that aims to replace the rigid
3314 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3315 * It's called toward the end of processing an ACK with precise rate
3316 * information. All transmission or retransmission are delayed afterwards.
3317 */
3318static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3319			     int flag, const struct rate_sample *rs)
3320{
3321	const struct inet_connection_sock *icsk = inet_csk(sk);
3322
3323	if (icsk->icsk_ca_ops->cong_control) {
3324		icsk->icsk_ca_ops->cong_control(sk, rs);
3325		return;
3326	}
3327
3328	if (tcp_in_cwnd_reduction(sk)) {
3329		/* Reduce cwnd if state mandates */
3330		tcp_cwnd_reduction(sk, acked_sacked, flag);
3331	} else if (tcp_may_raise_cwnd(sk, flag)) {
3332		/* Advance cwnd if state allows */
3333		tcp_cong_avoid(sk, ack, acked_sacked);
3334	}
3335	tcp_update_pacing_rate(sk);
3336}
3337
3338/* Check that window update is acceptable.
3339 * The function assumes that snd_una<=ack<=snd_next.
3340 */
3341static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3342					const u32 ack, const u32 ack_seq,
3343					const u32 nwin)
3344{
3345	return	after(ack, tp->snd_una) ||
3346		after(ack_seq, tp->snd_wl1) ||
3347		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348}
3349
3350/* If we update tp->snd_una, also update tp->bytes_acked */
3351static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3352{
3353	u32 delta = ack - tp->snd_una;
3354
3355	sock_owned_by_me((struct sock *)tp);
3356	tp->bytes_acked += delta;
 
3357	tp->snd_una = ack;
3358}
3359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3360/* If we update tp->rcv_nxt, also update tp->bytes_received */
3361static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3362{
3363	u32 delta = seq - tp->rcv_nxt;
3364
3365	sock_owned_by_me((struct sock *)tp);
3366	tp->bytes_received += delta;
 
3367	WRITE_ONCE(tp->rcv_nxt, seq);
3368}
3369
3370/* Update our send window.
3371 *
3372 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3373 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3374 */
3375static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3376				 u32 ack_seq)
3377{
3378	struct tcp_sock *tp = tcp_sk(sk);
3379	int flag = 0;
3380	u32 nwin = ntohs(tcp_hdr(skb)->window);
3381
3382	if (likely(!tcp_hdr(skb)->syn))
3383		nwin <<= tp->rx_opt.snd_wscale;
3384
3385	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3386		flag |= FLAG_WIN_UPDATE;
3387		tcp_update_wl(tp, ack_seq);
3388
3389		if (tp->snd_wnd != nwin) {
3390			tp->snd_wnd = nwin;
3391
3392			/* Note, it is the only place, where
3393			 * fast path is recovered for sending TCP.
3394			 */
3395			tp->pred_flags = 0;
3396			tcp_fast_path_check(sk);
3397
3398			if (!tcp_write_queue_empty(sk))
3399				tcp_slow_start_after_idle_check(sk);
3400
3401			if (nwin > tp->max_window) {
3402				tp->max_window = nwin;
3403				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3404			}
3405		}
3406	}
3407
3408	tcp_snd_una_update(tp, ack);
3409
3410	return flag;
3411}
3412
3413static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3414				   u32 *last_oow_ack_time)
3415{
3416	if (*last_oow_ack_time) {
3417		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
 
 
 
3418
3419		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
 
3420			NET_INC_STATS(net, mib_idx);
3421			return true;	/* rate-limited: don't send yet! */
3422		}
3423	}
3424
3425	*last_oow_ack_time = tcp_jiffies32;
 
 
 
3426
3427	return false;	/* not rate-limited: go ahead, send dupack now! */
3428}
3429
3430/* Return true if we're currently rate-limiting out-of-window ACKs and
3431 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3432 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3433 * attacks that send repeated SYNs or ACKs for the same connection. To
3434 * do this, we do not send a duplicate SYNACK or ACK if the remote
3435 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3436 */
3437bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3438			  int mib_idx, u32 *last_oow_ack_time)
3439{
3440	/* Data packets without SYNs are not likely part of an ACK loop. */
3441	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3442	    !tcp_hdr(skb)->syn)
3443		return false;
3444
3445	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3446}
3447
3448/* RFC 5961 7 [ACK Throttling] */
3449static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3450{
3451	/* unprotected vars, we dont care of overwrites */
3452	static u32 challenge_timestamp;
3453	static unsigned int challenge_count;
3454	struct tcp_sock *tp = tcp_sk(sk);
3455	struct net *net = sock_net(sk);
3456	u32 count, now;
3457
3458	/* First check our per-socket dupack rate limit. */
3459	if (__tcp_oow_rate_limited(net,
3460				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3461				   &tp->last_oow_ack_time))
3462		return;
3463
 
 
 
 
3464	/* Then check host-wide RFC 5961 rate limit. */
3465	now = jiffies / HZ;
3466	if (now != challenge_timestamp) {
3467		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3468		u32 half = (ack_limit + 1) >> 1;
3469
3470		challenge_timestamp = now;
3471		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
 
3472	}
3473	count = READ_ONCE(challenge_count);
3474	if (count > 0) {
3475		WRITE_ONCE(challenge_count, count - 1);
 
3476		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3477		tcp_send_ack(sk);
3478	}
3479}
3480
3481static void tcp_store_ts_recent(struct tcp_sock *tp)
3482{
3483	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3485}
3486
3487static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488{
3489	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491		 * extra check below makes sure this can only happen
3492		 * for pure ACK frames.  -DaveM
3493		 *
3494		 * Not only, also it occurs for expired timestamps.
3495		 */
3496
3497		if (tcp_paws_check(&tp->rx_opt, 0))
3498			tcp_store_ts_recent(tp);
3499	}
3500}
3501
3502/* This routine deals with acks during a TLP episode.
3503 * We mark the end of a TLP episode on receiving TLP dupack or when
3504 * ack is after tlp_high_seq.
3505 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3506 */
3507static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508{
3509	struct tcp_sock *tp = tcp_sk(sk);
3510
3511	if (before(ack, tp->tlp_high_seq))
3512		return;
3513
3514	if (flag & FLAG_DSACKING_ACK) {
 
 
 
3515		/* This DSACK means original and TLP probe arrived; no loss */
3516		tp->tlp_high_seq = 0;
3517	} else if (after(ack, tp->tlp_high_seq)) {
3518		/* ACK advances: there was a loss, so reduce cwnd. Reset
3519		 * tlp_high_seq in tcp_init_cwnd_reduction()
3520		 */
3521		tcp_init_cwnd_reduction(sk);
3522		tcp_set_ca_state(sk, TCP_CA_CWR);
3523		tcp_end_cwnd_reduction(sk);
3524		tcp_try_keep_open(sk);
3525		NET_INC_STATS(sock_net(sk),
3526				LINUX_MIB_TCPLOSSPROBERECOVERY);
3527	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529		/* Pure dupack: original and TLP probe arrived; no loss */
3530		tp->tlp_high_seq = 0;
3531	}
3532}
3533
3534static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535{
3536	const struct inet_connection_sock *icsk = inet_csk(sk);
3537
3538	if (icsk->icsk_ca_ops->in_ack_event)
3539		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540}
3541
3542/* Congestion control has updated the cwnd already. So if we're in
3543 * loss recovery then now we do any new sends (for FRTO) or
3544 * retransmits (for CA_Loss or CA_recovery) that make sense.
3545 */
3546static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547{
3548	struct tcp_sock *tp = tcp_sk(sk);
3549
3550	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3551		return;
3552
3553	if (unlikely(rexmit == 2)) {
3554		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555					  TCP_NAGLE_OFF);
3556		if (after(tp->snd_nxt, tp->high_seq))
3557			return;
3558		tp->frto = 0;
3559	}
3560	tcp_xmit_retransmit_queue(sk);
3561}
3562
3563/* Returns the number of packets newly acked or sacked by the current ACK */
3564static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3565{
3566	const struct net *net = sock_net(sk);
3567	struct tcp_sock *tp = tcp_sk(sk);
3568	u32 delivered;
3569
3570	delivered = tp->delivered - prior_delivered;
3571	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3572	if (flag & FLAG_ECE) {
3573		tp->delivered_ce += delivered;
3574		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3575	}
3576	return delivered;
3577}
3578
3579/* This routine deals with incoming acks, but not outgoing ones. */
3580static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3581{
3582	struct inet_connection_sock *icsk = inet_csk(sk);
3583	struct tcp_sock *tp = tcp_sk(sk);
3584	struct tcp_sacktag_state sack_state;
3585	struct rate_sample rs = { .prior_delivered = 0 };
3586	u32 prior_snd_una = tp->snd_una;
3587	bool is_sack_reneg = tp->is_sack_reneg;
3588	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3589	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3590	int num_dupack = 0;
3591	int prior_packets = tp->packets_out;
3592	u32 delivered = tp->delivered;
3593	u32 lost = tp->lost;
3594	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3595	u32 prior_fack;
3596
3597	sack_state.first_sackt = 0;
3598	sack_state.rate = &rs;
 
3599
3600	/* We very likely will need to access rtx queue. */
3601	prefetch(sk->tcp_rtx_queue.rb_node);
3602
3603	/* If the ack is older than previous acks
3604	 * then we can probably ignore it.
3605	 */
3606	if (before(ack, prior_snd_una)) {
 
 
 
 
3607		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3608		if (before(ack, prior_snd_una - tp->max_window)) {
3609			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3610				tcp_send_challenge_ack(sk, skb);
3611			return -1;
3612		}
3613		goto old_ack;
3614	}
3615
3616	/* If the ack includes data we haven't sent yet, discard
3617	 * this segment (RFC793 Section 3.9).
3618	 */
3619	if (after(ack, tp->snd_nxt))
3620		return -1;
3621
3622	if (after(ack, prior_snd_una)) {
3623		flag |= FLAG_SND_UNA_ADVANCED;
3624		icsk->icsk_retransmits = 0;
3625
3626#if IS_ENABLED(CONFIG_TLS_DEVICE)
3627		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3628			if (icsk->icsk_clean_acked)
3629				icsk->icsk_clean_acked(sk, ack);
3630#endif
3631	}
3632
3633	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3634	rs.prior_in_flight = tcp_packets_in_flight(tp);
3635
3636	/* ts_recent update must be made after we are sure that the packet
3637	 * is in window.
3638	 */
3639	if (flag & FLAG_UPDATE_TS_RECENT)
3640		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3641
3642	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3643	    FLAG_SND_UNA_ADVANCED) {
3644		/* Window is constant, pure forward advance.
3645		 * No more checks are required.
3646		 * Note, we use the fact that SND.UNA>=SND.WL2.
3647		 */
3648		tcp_update_wl(tp, ack_seq);
3649		tcp_snd_una_update(tp, ack);
3650		flag |= FLAG_WIN_UPDATE;
3651
3652		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3653
3654		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3655	} else {
3656		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3657
3658		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3659			flag |= FLAG_DATA;
3660		else
3661			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3662
3663		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3664
3665		if (TCP_SKB_CB(skb)->sacked)
3666			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3667							&sack_state);
3668
3669		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3670			flag |= FLAG_ECE;
3671			ack_ev_flags |= CA_ACK_ECE;
3672		}
3673
 
 
 
 
3674		if (flag & FLAG_WIN_UPDATE)
3675			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3676
3677		tcp_in_ack_event(sk, ack_ev_flags);
3678	}
3679
 
 
 
 
 
 
 
 
 
3680	/* We passed data and got it acked, remove any soft error
3681	 * log. Something worked...
3682	 */
3683	sk->sk_err_soft = 0;
3684	icsk->icsk_probes_out = 0;
3685	tp->rcv_tstamp = tcp_jiffies32;
3686	if (!prior_packets)
3687		goto no_queue;
3688
3689	/* See if we can take anything off of the retransmit queue. */
3690	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
 
3691
3692	tcp_rack_update_reo_wnd(sk, &rs);
3693
3694	if (tp->tlp_high_seq)
3695		tcp_process_tlp_ack(sk, ack, flag);
3696	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3697	if (flag & FLAG_SET_XMIT_TIMER)
3698		tcp_set_xmit_timer(sk);
3699
3700	if (tcp_ack_is_dubious(sk, flag)) {
3701		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
 
3702			num_dupack = 1;
3703			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3704			if (!(flag & FLAG_DATA))
3705				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3706		}
3707		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3708				      &rexmit);
3709	}
3710
 
 
 
 
3711	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712		sk_dst_confirm(sk);
3713
3714	delivered = tcp_newly_delivered(sk, delivered, flag);
3715	lost = tp->lost - lost;			/* freshly marked lost */
3716	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3717	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3718	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3719	tcp_xmit_recovery(sk, rexmit);
3720	return 1;
3721
3722no_queue:
3723	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3724	if (flag & FLAG_DSACKING_ACK) {
3725		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3726				      &rexmit);
3727		tcp_newly_delivered(sk, delivered, flag);
3728	}
3729	/* If this ack opens up a zero window, clear backoff.  It was
3730	 * being used to time the probes, and is probably far higher than
3731	 * it needs to be for normal retransmission.
3732	 */
3733	tcp_ack_probe(sk);
3734
3735	if (tp->tlp_high_seq)
3736		tcp_process_tlp_ack(sk, ack, flag);
3737	return 1;
3738
3739old_ack:
3740	/* If data was SACKed, tag it and see if we should send more data.
3741	 * If data was DSACKed, see if we can undo a cwnd reduction.
3742	 */
3743	if (TCP_SKB_CB(skb)->sacked) {
3744		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3745						&sack_state);
3746		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3747				      &rexmit);
3748		tcp_newly_delivered(sk, delivered, flag);
3749		tcp_xmit_recovery(sk, rexmit);
3750	}
3751
3752	return 0;
3753}
3754
3755static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3756				      bool syn, struct tcp_fastopen_cookie *foc,
3757				      bool exp_opt)
3758{
3759	/* Valid only in SYN or SYN-ACK with an even length.  */
3760	if (!foc || !syn || len < 0 || (len & 1))
3761		return;
3762
3763	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3764	    len <= TCP_FASTOPEN_COOKIE_MAX)
3765		memcpy(foc->val, cookie, len);
3766	else if (len != 0)
3767		len = -1;
3768	foc->len = len;
3769	foc->exp = exp_opt;
3770}
3771
3772static void smc_parse_options(const struct tcphdr *th,
3773			      struct tcp_options_received *opt_rx,
3774			      const unsigned char *ptr,
3775			      int opsize)
3776{
3777#if IS_ENABLED(CONFIG_SMC)
3778	if (static_branch_unlikely(&tcp_have_smc)) {
3779		if (th->syn && !(opsize & 1) &&
3780		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3781		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3782			opt_rx->smc_ok = 1;
 
 
3783	}
3784#endif
 
3785}
3786
3787/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3788 * value on success.
3789 */
3790static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3791{
3792	const unsigned char *ptr = (const unsigned char *)(th + 1);
3793	int length = (th->doff * 4) - sizeof(struct tcphdr);
3794	u16 mss = 0;
3795
3796	while (length > 0) {
3797		int opcode = *ptr++;
3798		int opsize;
3799
3800		switch (opcode) {
3801		case TCPOPT_EOL:
3802			return mss;
3803		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3804			length--;
3805			continue;
3806		default:
3807			if (length < 2)
3808				return mss;
3809			opsize = *ptr++;
3810			if (opsize < 2) /* "silly options" */
3811				return mss;
3812			if (opsize > length)
3813				return mss;	/* fail on partial options */
3814			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3815				u16 in_mss = get_unaligned_be16(ptr);
3816
3817				if (in_mss) {
3818					if (user_mss && user_mss < in_mss)
3819						in_mss = user_mss;
3820					mss = in_mss;
3821				}
3822			}
3823			ptr += opsize - 2;
3824			length -= opsize;
3825		}
3826	}
3827	return mss;
3828}
 
3829
3830/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3831 * But, this can also be called on packets in the established flow when
3832 * the fast version below fails.
3833 */
3834void tcp_parse_options(const struct net *net,
3835		       const struct sk_buff *skb,
3836		       struct tcp_options_received *opt_rx, int estab,
3837		       struct tcp_fastopen_cookie *foc)
3838{
3839	const unsigned char *ptr;
3840	const struct tcphdr *th = tcp_hdr(skb);
3841	int length = (th->doff * 4) - sizeof(struct tcphdr);
3842
3843	ptr = (const unsigned char *)(th + 1);
3844	opt_rx->saw_tstamp = 0;
 
3845
3846	while (length > 0) {
3847		int opcode = *ptr++;
3848		int opsize;
3849
3850		switch (opcode) {
3851		case TCPOPT_EOL:
3852			return;
3853		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3854			length--;
3855			continue;
3856		default:
3857			if (length < 2)
3858				return;
3859			opsize = *ptr++;
3860			if (opsize < 2) /* "silly options" */
3861				return;
3862			if (opsize > length)
3863				return;	/* don't parse partial options */
3864			switch (opcode) {
3865			case TCPOPT_MSS:
3866				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3867					u16 in_mss = get_unaligned_be16(ptr);
3868					if (in_mss) {
3869						if (opt_rx->user_mss &&
3870						    opt_rx->user_mss < in_mss)
3871							in_mss = opt_rx->user_mss;
3872						opt_rx->mss_clamp = in_mss;
3873					}
3874				}
3875				break;
3876			case TCPOPT_WINDOW:
3877				if (opsize == TCPOLEN_WINDOW && th->syn &&
3878				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3879					__u8 snd_wscale = *(__u8 *)ptr;
3880					opt_rx->wscale_ok = 1;
3881					if (snd_wscale > TCP_MAX_WSCALE) {
3882						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3883								     __func__,
3884								     snd_wscale,
3885								     TCP_MAX_WSCALE);
3886						snd_wscale = TCP_MAX_WSCALE;
3887					}
3888					opt_rx->snd_wscale = snd_wscale;
3889				}
3890				break;
3891			case TCPOPT_TIMESTAMP:
3892				if ((opsize == TCPOLEN_TIMESTAMP) &&
3893				    ((estab && opt_rx->tstamp_ok) ||
3894				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3895					opt_rx->saw_tstamp = 1;
3896					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3897					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3898				}
3899				break;
3900			case TCPOPT_SACK_PERM:
3901				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3902				    !estab && net->ipv4.sysctl_tcp_sack) {
3903					opt_rx->sack_ok = TCP_SACK_SEEN;
3904					tcp_sack_reset(opt_rx);
3905				}
3906				break;
3907
3908			case TCPOPT_SACK:
3909				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3910				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3911				   opt_rx->sack_ok) {
3912					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3913				}
3914				break;
3915#ifdef CONFIG_TCP_MD5SIG
3916			case TCPOPT_MD5SIG:
3917				/*
3918				 * The MD5 Hash has already been
3919				 * checked (see tcp_v{4,6}_do_rcv()).
3920				 */
3921				break;
3922#endif
3923			case TCPOPT_FASTOPEN:
3924				tcp_parse_fastopen_option(
3925					opsize - TCPOLEN_FASTOPEN_BASE,
3926					ptr, th->syn, foc, false);
3927				break;
3928
3929			case TCPOPT_EXP:
3930				/* Fast Open option shares code 254 using a
3931				 * 16 bits magic number.
3932				 */
3933				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3934				    get_unaligned_be16(ptr) ==
3935				    TCPOPT_FASTOPEN_MAGIC)
3936					tcp_parse_fastopen_option(opsize -
3937						TCPOLEN_EXP_FASTOPEN_BASE,
3938						ptr + 2, th->syn, foc, true);
3939				else
3940					smc_parse_options(th, opt_rx, ptr,
3941							  opsize);
 
 
 
 
3942				break;
3943
 
 
3944			}
3945			ptr += opsize-2;
3946			length -= opsize;
3947		}
3948	}
3949}
3950EXPORT_SYMBOL(tcp_parse_options);
3951
3952static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3953{
3954	const __be32 *ptr = (const __be32 *)(th + 1);
3955
3956	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3957			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3958		tp->rx_opt.saw_tstamp = 1;
3959		++ptr;
3960		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3961		++ptr;
3962		if (*ptr)
3963			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3964		else
3965			tp->rx_opt.rcv_tsecr = 0;
3966		return true;
3967	}
3968	return false;
3969}
3970
3971/* Fast parse options. This hopes to only see timestamps.
3972 * If it is wrong it falls back on tcp_parse_options().
3973 */
3974static bool tcp_fast_parse_options(const struct net *net,
3975				   const struct sk_buff *skb,
3976				   const struct tcphdr *th, struct tcp_sock *tp)
3977{
3978	/* In the spirit of fast parsing, compare doff directly to constant
3979	 * values.  Because equality is used, short doff can be ignored here.
3980	 */
3981	if (th->doff == (sizeof(*th) / 4)) {
3982		tp->rx_opt.saw_tstamp = 0;
3983		return false;
3984	} else if (tp->rx_opt.tstamp_ok &&
3985		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3986		if (tcp_parse_aligned_timestamp(tp, th))
3987			return true;
3988	}
3989
3990	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3991	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3992		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3993
3994	return true;
3995}
3996
3997#ifdef CONFIG_TCP_MD5SIG
3998/*
3999 * Parse MD5 Signature option
4000 */
4001const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
 
4002{
4003	int length = (th->doff << 2) - sizeof(*th);
4004	const u8 *ptr = (const u8 *)(th + 1);
 
 
 
 
 
 
 
4005
4006	/* If not enough data remaining, we can short cut */
4007	while (length >= TCPOLEN_MD5SIG) {
4008		int opcode = *ptr++;
4009		int opsize;
4010
4011		switch (opcode) {
4012		case TCPOPT_EOL:
4013			return NULL;
4014		case TCPOPT_NOP:
4015			length--;
4016			continue;
4017		default:
4018			opsize = *ptr++;
4019			if (opsize < 2 || opsize > length)
4020				return NULL;
4021			if (opcode == TCPOPT_MD5SIG)
4022				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
4023		}
4024		ptr += opsize - 2;
4025		length -= opsize;
4026	}
4027	return NULL;
4028}
4029EXPORT_SYMBOL(tcp_parse_md5sig_option);
4030#endif
4031
4032/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4033 *
4034 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4035 * it can pass through stack. So, the following predicate verifies that
4036 * this segment is not used for anything but congestion avoidance or
4037 * fast retransmit. Moreover, we even are able to eliminate most of such
4038 * second order effects, if we apply some small "replay" window (~RTO)
4039 * to timestamp space.
4040 *
4041 * All these measures still do not guarantee that we reject wrapped ACKs
4042 * on networks with high bandwidth, when sequence space is recycled fastly,
4043 * but it guarantees that such events will be very rare and do not affect
4044 * connection seriously. This doesn't look nice, but alas, PAWS is really
4045 * buggy extension.
4046 *
4047 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4048 * states that events when retransmit arrives after original data are rare.
4049 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4050 * the biggest problem on large power networks even with minor reordering.
4051 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4052 * up to bandwidth of 18Gigabit/sec. 8) ]
4053 */
4054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4056{
4057	const struct tcp_sock *tp = tcp_sk(sk);
4058	const struct tcphdr *th = tcp_hdr(skb);
4059	u32 seq = TCP_SKB_CB(skb)->seq;
4060	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4061
4062	return (/* 1. Pure ACK with correct sequence number. */
4063		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4064
4065		/* 2. ... and duplicate ACK. */
4066		ack == tp->snd_una &&
4067
4068		/* 3. ... and does not update window. */
4069		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4070
4071		/* 4. ... and sits in replay window. */
4072		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
 
4073}
4074
4075static inline bool tcp_paws_discard(const struct sock *sk,
4076				   const struct sk_buff *skb)
4077{
4078	const struct tcp_sock *tp = tcp_sk(sk);
4079
4080	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4081	       !tcp_disordered_ack(sk, skb);
4082}
4083
4084/* Check segment sequence number for validity.
4085 *
4086 * Segment controls are considered valid, if the segment
4087 * fits to the window after truncation to the window. Acceptability
4088 * of data (and SYN, FIN, of course) is checked separately.
4089 * See tcp_data_queue(), for example.
4090 *
4091 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4092 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4093 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4094 * (borrowed from freebsd)
4095 */
4096
4097static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
 
4098{
4099	return	!before(end_seq, tp->rcv_wup) &&
4100		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
 
 
 
 
 
4101}
4102
4103/* When we get a reset we do this. */
4104void tcp_reset(struct sock *sk)
4105{
4106	trace_tcp_receive_reset(sk);
4107
 
 
 
 
 
 
4108	/* We want the right error as BSD sees it (and indeed as we do). */
4109	switch (sk->sk_state) {
4110	case TCP_SYN_SENT:
4111		sk->sk_err = ECONNREFUSED;
4112		break;
4113	case TCP_CLOSE_WAIT:
4114		sk->sk_err = EPIPE;
4115		break;
4116	case TCP_CLOSE:
4117		return;
4118	default:
4119		sk->sk_err = ECONNRESET;
4120	}
4121	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4122	smp_wmb();
4123
4124	tcp_write_queue_purge(sk);
4125	tcp_done(sk);
4126
4127	if (!sock_flag(sk, SOCK_DEAD))
4128		sk->sk_error_report(sk);
4129}
4130
4131/*
4132 * 	Process the FIN bit. This now behaves as it is supposed to work
4133 *	and the FIN takes effect when it is validly part of sequence
4134 *	space. Not before when we get holes.
4135 *
4136 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4137 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4138 *	TIME-WAIT)
4139 *
4140 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4141 *	close and we go into CLOSING (and later onto TIME-WAIT)
4142 *
4143 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4144 */
4145void tcp_fin(struct sock *sk)
4146{
4147	struct tcp_sock *tp = tcp_sk(sk);
4148
4149	inet_csk_schedule_ack(sk);
4150
4151	sk->sk_shutdown |= RCV_SHUTDOWN;
4152	sock_set_flag(sk, SOCK_DONE);
4153
4154	switch (sk->sk_state) {
4155	case TCP_SYN_RECV:
4156	case TCP_ESTABLISHED:
4157		/* Move to CLOSE_WAIT */
4158		tcp_set_state(sk, TCP_CLOSE_WAIT);
4159		inet_csk_enter_pingpong_mode(sk);
4160		break;
4161
4162	case TCP_CLOSE_WAIT:
4163	case TCP_CLOSING:
4164		/* Received a retransmission of the FIN, do
4165		 * nothing.
4166		 */
4167		break;
4168	case TCP_LAST_ACK:
4169		/* RFC793: Remain in the LAST-ACK state. */
4170		break;
4171
4172	case TCP_FIN_WAIT1:
4173		/* This case occurs when a simultaneous close
4174		 * happens, we must ack the received FIN and
4175		 * enter the CLOSING state.
4176		 */
4177		tcp_send_ack(sk);
4178		tcp_set_state(sk, TCP_CLOSING);
4179		break;
4180	case TCP_FIN_WAIT2:
4181		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4182		tcp_send_ack(sk);
4183		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4184		break;
4185	default:
4186		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4187		 * cases we should never reach this piece of code.
4188		 */
4189		pr_err("%s: Impossible, sk->sk_state=%d\n",
4190		       __func__, sk->sk_state);
4191		break;
4192	}
4193
4194	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4195	 * Probably, we should reset in this case. For now drop them.
4196	 */
4197	skb_rbtree_purge(&tp->out_of_order_queue);
4198	if (tcp_is_sack(tp))
4199		tcp_sack_reset(&tp->rx_opt);
4200	sk_mem_reclaim(sk);
4201
4202	if (!sock_flag(sk, SOCK_DEAD)) {
4203		sk->sk_state_change(sk);
4204
4205		/* Do not send POLL_HUP for half duplex close. */
4206		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4207		    sk->sk_state == TCP_CLOSE)
4208			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4209		else
4210			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4211	}
4212}
4213
4214static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4215				  u32 end_seq)
4216{
4217	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4218		if (before(seq, sp->start_seq))
4219			sp->start_seq = seq;
4220		if (after(end_seq, sp->end_seq))
4221			sp->end_seq = end_seq;
4222		return true;
4223	}
4224	return false;
4225}
4226
4227static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4228{
4229	struct tcp_sock *tp = tcp_sk(sk);
4230
4231	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4232		int mib_idx;
4233
4234		if (before(seq, tp->rcv_nxt))
4235			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4236		else
4237			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4238
4239		NET_INC_STATS(sock_net(sk), mib_idx);
4240
4241		tp->rx_opt.dsack = 1;
4242		tp->duplicate_sack[0].start_seq = seq;
4243		tp->duplicate_sack[0].end_seq = end_seq;
4244	}
4245}
4246
4247static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4248{
4249	struct tcp_sock *tp = tcp_sk(sk);
4250
4251	if (!tp->rx_opt.dsack)
4252		tcp_dsack_set(sk, seq, end_seq);
4253	else
4254		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4255}
4256
4257static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4258{
4259	/* When the ACK path fails or drops most ACKs, the sender would
4260	 * timeout and spuriously retransmit the same segment repeatedly.
4261	 * The receiver remembers and reflects via DSACKs. Leverage the
4262	 * DSACK state and change the txhash to re-route speculatively.
 
 
 
4263	 */
4264	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4265		sk_rethink_txhash(sk);
 
 
 
 
 
 
 
 
 
4266}
4267
4268static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269{
4270	struct tcp_sock *tp = tcp_sk(sk);
4271
4272	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4276
4277		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4278			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279
4280			tcp_rcv_spurious_retrans(sk, skb);
4281			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4282				end_seq = tp->rcv_nxt;
4283			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4284		}
4285	}
4286
4287	tcp_send_ack(sk);
4288}
4289
4290/* These routines update the SACK block as out-of-order packets arrive or
4291 * in-order packets close up the sequence space.
4292 */
4293static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4294{
4295	int this_sack;
4296	struct tcp_sack_block *sp = &tp->selective_acks[0];
4297	struct tcp_sack_block *swalk = sp + 1;
4298
4299	/* See if the recent change to the first SACK eats into
4300	 * or hits the sequence space of other SACK blocks, if so coalesce.
4301	 */
4302	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4303		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4304			int i;
4305
4306			/* Zap SWALK, by moving every further SACK up by one slot.
4307			 * Decrease num_sacks.
4308			 */
4309			tp->rx_opt.num_sacks--;
4310			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4311				sp[i] = sp[i + 1];
4312			continue;
4313		}
4314		this_sack++, swalk++;
 
4315	}
4316}
4317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4318static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320	struct tcp_sock *tp = tcp_sk(sk);
4321	struct tcp_sack_block *sp = &tp->selective_acks[0];
4322	int cur_sacks = tp->rx_opt.num_sacks;
4323	int this_sack;
4324
4325	if (!cur_sacks)
4326		goto new_sack;
4327
4328	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4329		if (tcp_sack_extend(sp, seq, end_seq)) {
 
 
4330			/* Rotate this_sack to the first one. */
4331			for (; this_sack > 0; this_sack--, sp--)
4332				swap(*sp, *(sp - 1));
4333			if (cur_sacks > 1)
4334				tcp_sack_maybe_coalesce(tp);
4335			return;
4336		}
4337	}
4338
 
 
 
4339	/* Could not find an adjacent existing SACK, build a new one,
4340	 * put it at the front, and shift everyone else down.  We
4341	 * always know there is at least one SACK present already here.
4342	 *
4343	 * If the sack array is full, forget about the last one.
4344	 */
4345	if (this_sack >= TCP_NUM_SACKS) {
4346		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4347			tcp_send_ack(sk);
4348		this_sack--;
4349		tp->rx_opt.num_sacks--;
4350		sp--;
4351	}
4352	for (; this_sack > 0; this_sack--, sp--)
4353		*sp = *(sp - 1);
4354
4355new_sack:
4356	/* Build the new head SACK, and we're done. */
4357	sp->start_seq = seq;
4358	sp->end_seq = end_seq;
4359	tp->rx_opt.num_sacks++;
4360}
4361
4362/* RCV.NXT advances, some SACKs should be eaten. */
4363
4364static void tcp_sack_remove(struct tcp_sock *tp)
4365{
4366	struct tcp_sack_block *sp = &tp->selective_acks[0];
4367	int num_sacks = tp->rx_opt.num_sacks;
4368	int this_sack;
4369
4370	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4371	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4372		tp->rx_opt.num_sacks = 0;
4373		return;
4374	}
4375
4376	for (this_sack = 0; this_sack < num_sacks;) {
4377		/* Check if the start of the sack is covered by RCV.NXT. */
4378		if (!before(tp->rcv_nxt, sp->start_seq)) {
4379			int i;
4380
4381			/* RCV.NXT must cover all the block! */
4382			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4383
4384			/* Zap this SACK, by moving forward any other SACKS. */
4385			for (i = this_sack+1; i < num_sacks; i++)
4386				tp->selective_acks[i-1] = tp->selective_acks[i];
4387			num_sacks--;
4388			continue;
4389		}
4390		this_sack++;
4391		sp++;
4392	}
4393	tp->rx_opt.num_sacks = num_sacks;
4394}
4395
4396/**
4397 * tcp_try_coalesce - try to merge skb to prior one
4398 * @sk: socket
4399 * @dest: destination queue
4400 * @to: prior buffer
4401 * @from: buffer to add in queue
4402 * @fragstolen: pointer to boolean
4403 *
4404 * Before queueing skb @from after @to, try to merge them
4405 * to reduce overall memory use and queue lengths, if cost is small.
4406 * Packets in ofo or receive queues can stay a long time.
4407 * Better try to coalesce them right now to avoid future collapses.
4408 * Returns true if caller should free @from instead of queueing it
4409 */
4410static bool tcp_try_coalesce(struct sock *sk,
4411			     struct sk_buff *to,
4412			     struct sk_buff *from,
4413			     bool *fragstolen)
4414{
4415	int delta;
4416
4417	*fragstolen = false;
4418
4419	/* Its possible this segment overlaps with prior segment in queue */
4420	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4421		return false;
4422
 
 
 
4423#ifdef CONFIG_TLS_DEVICE
4424	if (from->decrypted != to->decrypted)
4425		return false;
4426#endif
4427
4428	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4429		return false;
4430
4431	atomic_add(delta, &sk->sk_rmem_alloc);
4432	sk_mem_charge(sk, delta);
4433	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4434	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4435	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4436	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4437
4438	if (TCP_SKB_CB(from)->has_rxtstamp) {
4439		TCP_SKB_CB(to)->has_rxtstamp = true;
4440		to->tstamp = from->tstamp;
4441		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4442	}
4443
4444	return true;
4445}
4446
4447static bool tcp_ooo_try_coalesce(struct sock *sk,
4448			     struct sk_buff *to,
4449			     struct sk_buff *from,
4450			     bool *fragstolen)
4451{
4452	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4453
4454	/* In case tcp_drop() is called later, update to->gso_segs */
4455	if (res) {
4456		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4457			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4458
4459		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4460	}
4461	return res;
4462}
4463
4464static void tcp_drop(struct sock *sk, struct sk_buff *skb)
 
4465{
4466	sk_drops_add(sk, skb);
4467	__kfree_skb(skb);
4468}
4469
4470/* This one checks to see if we can put data from the
4471 * out_of_order queue into the receive_queue.
4472 */
4473static void tcp_ofo_queue(struct sock *sk)
4474{
4475	struct tcp_sock *tp = tcp_sk(sk);
4476	__u32 dsack_high = tp->rcv_nxt;
4477	bool fin, fragstolen, eaten;
4478	struct sk_buff *skb, *tail;
4479	struct rb_node *p;
4480
4481	p = rb_first(&tp->out_of_order_queue);
4482	while (p) {
4483		skb = rb_to_skb(p);
4484		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4485			break;
4486
4487		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4488			__u32 dsack = dsack_high;
4489			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4490				dsack_high = TCP_SKB_CB(skb)->end_seq;
4491			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4492		}
4493		p = rb_next(p);
4494		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4495
4496		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4497			tcp_drop(sk, skb);
4498			continue;
4499		}
4500
4501		tail = skb_peek_tail(&sk->sk_receive_queue);
4502		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4503		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4504		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4505		if (!eaten)
4506			__skb_queue_tail(&sk->sk_receive_queue, skb);
4507		else
4508			kfree_skb_partial(skb, fragstolen);
4509
4510		if (unlikely(fin)) {
4511			tcp_fin(sk);
4512			/* tcp_fin() purges tp->out_of_order_queue,
4513			 * so we must end this loop right now.
4514			 */
4515			break;
4516		}
4517	}
4518}
4519
4520static bool tcp_prune_ofo_queue(struct sock *sk);
4521static int tcp_prune_queue(struct sock *sk);
4522
4523static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4524				 unsigned int size)
4525{
4526	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4527	    !sk_rmem_schedule(sk, skb, size)) {
4528
4529		if (tcp_prune_queue(sk) < 0)
4530			return -1;
4531
4532		while (!sk_rmem_schedule(sk, skb, size)) {
4533			if (!tcp_prune_ofo_queue(sk))
4534				return -1;
4535		}
4536	}
4537	return 0;
4538}
4539
4540static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4541{
4542	struct tcp_sock *tp = tcp_sk(sk);
4543	struct rb_node **p, *parent;
4544	struct sk_buff *skb1;
4545	u32 seq, end_seq;
4546	bool fragstolen;
4547
 
4548	tcp_ecn_check_ce(sk, skb);
4549
4550	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4551		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4552		tcp_drop(sk, skb);
 
4553		return;
4554	}
4555
4556	/* Disable header prediction. */
4557	tp->pred_flags = 0;
4558	inet_csk_schedule_ack(sk);
4559
4560	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4561	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4562	seq = TCP_SKB_CB(skb)->seq;
4563	end_seq = TCP_SKB_CB(skb)->end_seq;
4564
4565	p = &tp->out_of_order_queue.rb_node;
4566	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4567		/* Initial out of order segment, build 1 SACK. */
4568		if (tcp_is_sack(tp)) {
4569			tp->rx_opt.num_sacks = 1;
4570			tp->selective_acks[0].start_seq = seq;
4571			tp->selective_acks[0].end_seq = end_seq;
4572		}
4573		rb_link_node(&skb->rbnode, NULL, p);
4574		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4575		tp->ooo_last_skb = skb;
4576		goto end;
4577	}
4578
4579	/* In the typical case, we are adding an skb to the end of the list.
4580	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4581	 */
4582	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4583				 skb, &fragstolen)) {
4584coalesce_done:
4585		tcp_grow_window(sk, skb);
 
 
 
 
4586		kfree_skb_partial(skb, fragstolen);
4587		skb = NULL;
4588		goto add_sack;
4589	}
4590	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4591	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4592		parent = &tp->ooo_last_skb->rbnode;
4593		p = &parent->rb_right;
4594		goto insert;
4595	}
4596
4597	/* Find place to insert this segment. Handle overlaps on the way. */
4598	parent = NULL;
4599	while (*p) {
4600		parent = *p;
4601		skb1 = rb_to_skb(parent);
4602		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4603			p = &parent->rb_left;
4604			continue;
4605		}
4606		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4607			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4608				/* All the bits are present. Drop. */
4609				NET_INC_STATS(sock_net(sk),
4610					      LINUX_MIB_TCPOFOMERGE);
4611				tcp_drop(sk, skb);
 
4612				skb = NULL;
4613				tcp_dsack_set(sk, seq, end_seq);
4614				goto add_sack;
4615			}
4616			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4617				/* Partial overlap. */
4618				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4619			} else {
4620				/* skb's seq == skb1's seq and skb covers skb1.
4621				 * Replace skb1 with skb.
4622				 */
4623				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4624						&tp->out_of_order_queue);
4625				tcp_dsack_extend(sk,
4626						 TCP_SKB_CB(skb1)->seq,
4627						 TCP_SKB_CB(skb1)->end_seq);
4628				NET_INC_STATS(sock_net(sk),
4629					      LINUX_MIB_TCPOFOMERGE);
4630				tcp_drop(sk, skb1);
 
4631				goto merge_right;
4632			}
4633		} else if (tcp_ooo_try_coalesce(sk, skb1,
4634						skb, &fragstolen)) {
4635			goto coalesce_done;
4636		}
4637		p = &parent->rb_right;
4638	}
4639insert:
4640	/* Insert segment into RB tree. */
4641	rb_link_node(&skb->rbnode, parent, p);
4642	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4643
4644merge_right:
4645	/* Remove other segments covered by skb. */
4646	while ((skb1 = skb_rb_next(skb)) != NULL) {
4647		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4648			break;
4649		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4650			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4651					 end_seq);
4652			break;
4653		}
4654		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4655		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4656				 TCP_SKB_CB(skb1)->end_seq);
4657		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4658		tcp_drop(sk, skb1);
4659	}
4660	/* If there is no skb after us, we are the last_skb ! */
4661	if (!skb1)
4662		tp->ooo_last_skb = skb;
4663
4664add_sack:
4665	if (tcp_is_sack(tp))
4666		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4667end:
4668	if (skb) {
4669		tcp_grow_window(sk, skb);
 
 
 
 
4670		skb_condense(skb);
4671		skb_set_owner_r(skb, sk);
4672	}
4673}
4674
4675static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4676				      bool *fragstolen)
4677{
4678	int eaten;
4679	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4680
4681	eaten = (tail &&
4682		 tcp_try_coalesce(sk, tail,
4683				  skb, fragstolen)) ? 1 : 0;
4684	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4685	if (!eaten) {
4686		__skb_queue_tail(&sk->sk_receive_queue, skb);
4687		skb_set_owner_r(skb, sk);
4688	}
4689	return eaten;
4690}
4691
4692int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4693{
4694	struct sk_buff *skb;
4695	int err = -ENOMEM;
4696	int data_len = 0;
4697	bool fragstolen;
4698
4699	if (size == 0)
4700		return 0;
4701
4702	if (size > PAGE_SIZE) {
4703		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4704
4705		data_len = npages << PAGE_SHIFT;
4706		size = data_len + (size & ~PAGE_MASK);
4707	}
4708	skb = alloc_skb_with_frags(size - data_len, data_len,
4709				   PAGE_ALLOC_COSTLY_ORDER,
4710				   &err, sk->sk_allocation);
4711	if (!skb)
4712		goto err;
4713
4714	skb_put(skb, size - data_len);
4715	skb->data_len = data_len;
4716	skb->len = size;
4717
4718	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4719		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4720		goto err_free;
4721	}
4722
4723	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4724	if (err)
4725		goto err_free;
4726
4727	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4728	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4729	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4730
4731	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4732		WARN_ON_ONCE(fragstolen); /* should not happen */
4733		__kfree_skb(skb);
4734	}
4735	return size;
4736
4737err_free:
4738	kfree_skb(skb);
4739err:
4740	return err;
4741
4742}
4743
4744void tcp_data_ready(struct sock *sk)
4745{
4746	const struct tcp_sock *tp = tcp_sk(sk);
4747	int avail = tp->rcv_nxt - tp->copied_seq;
4748
4749	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4750		return;
4751
4752	sk->sk_data_ready(sk);
4753}
4754
4755static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4756{
4757	struct tcp_sock *tp = tcp_sk(sk);
 
4758	bool fragstolen;
4759	int eaten;
4760
 
 
 
 
 
 
 
 
4761	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4762		__kfree_skb(skb);
4763		return;
4764	}
4765	skb_dst_drop(skb);
4766	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4767
4768	tcp_ecn_accept_cwr(sk, skb);
4769
4770	tp->rx_opt.dsack = 0;
4771
4772	/*  Queue data for delivery to the user.
4773	 *  Packets in sequence go to the receive queue.
4774	 *  Out of sequence packets to the out_of_order_queue.
4775	 */
4776	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4777		if (tcp_receive_window(tp) == 0) {
 
4778			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4779			goto out_of_window;
4780		}
4781
4782		/* Ok. In sequence. In window. */
4783queue_and_out:
4784		if (skb_queue_len(&sk->sk_receive_queue) == 0)
 
 
 
 
 
 
 
 
 
 
 
4785			sk_forced_mem_schedule(sk, skb->truesize);
4786		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4787			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4788			goto drop;
4789		}
4790
4791		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4792		if (skb->len)
4793			tcp_event_data_recv(sk, skb);
4794		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4795			tcp_fin(sk);
4796
4797		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4798			tcp_ofo_queue(sk);
4799
4800			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4801			 * gap in queue is filled.
4802			 */
4803			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4804				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4805		}
4806
4807		if (tp->rx_opt.num_sacks)
4808			tcp_sack_remove(tp);
4809
4810		tcp_fast_path_check(sk);
4811
4812		if (eaten > 0)
4813			kfree_skb_partial(skb, fragstolen);
4814		if (!sock_flag(sk, SOCK_DEAD))
4815			tcp_data_ready(sk);
4816		return;
4817	}
4818
4819	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4820		tcp_rcv_spurious_retrans(sk, skb);
4821		/* A retransmit, 2nd most common case.  Force an immediate ack. */
 
4822		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4823		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4824
4825out_of_window:
4826		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4827		inet_csk_schedule_ack(sk);
4828drop:
4829		tcp_drop(sk, skb);
4830		return;
4831	}
4832
4833	/* Out of window. F.e. zero window probe. */
4834	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
 
 
4835		goto out_of_window;
 
4836
4837	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4838		/* Partial packet, seq < rcv_next < end_seq */
4839		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4840
4841		/* If window is closed, drop tail of packet. But after
4842		 * remembering D-SACK for its head made in previous line.
4843		 */
4844		if (!tcp_receive_window(tp)) {
 
4845			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4846			goto out_of_window;
4847		}
4848		goto queue_and_out;
4849	}
4850
4851	tcp_data_queue_ofo(sk, skb);
4852}
4853
4854static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4855{
4856	if (list)
4857		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4858
4859	return skb_rb_next(skb);
4860}
4861
4862static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4863					struct sk_buff_head *list,
4864					struct rb_root *root)
4865{
4866	struct sk_buff *next = tcp_skb_next(skb, list);
4867
4868	if (list)
4869		__skb_unlink(skb, list);
4870	else
4871		rb_erase(&skb->rbnode, root);
4872
4873	__kfree_skb(skb);
4874	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876	return next;
4877}
4878
4879/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4880void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4881{
4882	struct rb_node **p = &root->rb_node;
4883	struct rb_node *parent = NULL;
4884	struct sk_buff *skb1;
4885
4886	while (*p) {
4887		parent = *p;
4888		skb1 = rb_to_skb(parent);
4889		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4890			p = &parent->rb_left;
4891		else
4892			p = &parent->rb_right;
4893	}
4894	rb_link_node(&skb->rbnode, parent, p);
4895	rb_insert_color(&skb->rbnode, root);
4896}
4897
4898/* Collapse contiguous sequence of skbs head..tail with
4899 * sequence numbers start..end.
4900 *
4901 * If tail is NULL, this means until the end of the queue.
4902 *
4903 * Segments with FIN/SYN are not collapsed (only because this
4904 * simplifies code)
4905 */
4906static void
4907tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4908	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4909{
4910	struct sk_buff *skb = head, *n;
4911	struct sk_buff_head tmp;
4912	bool end_of_skbs;
4913
4914	/* First, check that queue is collapsible and find
4915	 * the point where collapsing can be useful.
4916	 */
4917restart:
4918	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4919		n = tcp_skb_next(skb, list);
4920
4921		/* No new bits? It is possible on ofo queue. */
4922		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4923			skb = tcp_collapse_one(sk, skb, list, root);
4924			if (!skb)
4925				break;
4926			goto restart;
4927		}
4928
4929		/* The first skb to collapse is:
4930		 * - not SYN/FIN and
4931		 * - bloated or contains data before "start" or
4932		 *   overlaps to the next one.
4933		 */
4934		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4935		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4936		     before(TCP_SKB_CB(skb)->seq, start))) {
4937			end_of_skbs = false;
4938			break;
4939		}
4940
4941		if (n && n != tail &&
4942		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4943			end_of_skbs = false;
4944			break;
4945		}
4946
4947		/* Decided to skip this, advance start seq. */
4948		start = TCP_SKB_CB(skb)->end_seq;
4949	}
4950	if (end_of_skbs ||
4951	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4952		return;
4953
4954	__skb_queue_head_init(&tmp);
4955
4956	while (before(start, end)) {
4957		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4958		struct sk_buff *nskb;
4959
4960		nskb = alloc_skb(copy, GFP_ATOMIC);
4961		if (!nskb)
4962			break;
4963
4964		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4965#ifdef CONFIG_TLS_DEVICE
4966		nskb->decrypted = skb->decrypted;
4967#endif
4968		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4969		if (list)
4970			__skb_queue_before(list, skb, nskb);
4971		else
4972			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4973		skb_set_owner_r(nskb, sk);
 
4974
4975		/* Copy data, releasing collapsed skbs. */
4976		while (copy > 0) {
4977			int offset = start - TCP_SKB_CB(skb)->seq;
4978			int size = TCP_SKB_CB(skb)->end_seq - start;
4979
4980			BUG_ON(offset < 0);
4981			if (size > 0) {
4982				size = min(copy, size);
4983				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4984					BUG();
4985				TCP_SKB_CB(nskb)->end_seq += size;
4986				copy -= size;
4987				start += size;
4988			}
4989			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4990				skb = tcp_collapse_one(sk, skb, list, root);
4991				if (!skb ||
4992				    skb == tail ||
 
4993				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4994					goto end;
4995#ifdef CONFIG_TLS_DEVICE
4996				if (skb->decrypted != nskb->decrypted)
4997					goto end;
4998#endif
4999			}
5000		}
5001	}
5002end:
5003	skb_queue_walk_safe(&tmp, skb, n)
5004		tcp_rbtree_insert(root, skb);
5005}
5006
5007/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5008 * and tcp_collapse() them until all the queue is collapsed.
5009 */
5010static void tcp_collapse_ofo_queue(struct sock *sk)
5011{
5012	struct tcp_sock *tp = tcp_sk(sk);
5013	u32 range_truesize, sum_tiny = 0;
5014	struct sk_buff *skb, *head;
5015	u32 start, end;
5016
5017	skb = skb_rb_first(&tp->out_of_order_queue);
5018new_range:
5019	if (!skb) {
5020		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5021		return;
5022	}
5023	start = TCP_SKB_CB(skb)->seq;
5024	end = TCP_SKB_CB(skb)->end_seq;
5025	range_truesize = skb->truesize;
5026
5027	for (head = skb;;) {
5028		skb = skb_rb_next(skb);
5029
5030		/* Range is terminated when we see a gap or when
5031		 * we are at the queue end.
5032		 */
5033		if (!skb ||
5034		    after(TCP_SKB_CB(skb)->seq, end) ||
5035		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5036			/* Do not attempt collapsing tiny skbs */
5037			if (range_truesize != head->truesize ||
5038			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5039				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5040					     head, skb, start, end);
5041			} else {
5042				sum_tiny += range_truesize;
5043				if (sum_tiny > sk->sk_rcvbuf >> 3)
5044					return;
5045			}
5046			goto new_range;
5047		}
5048
5049		range_truesize += skb->truesize;
5050		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5051			start = TCP_SKB_CB(skb)->seq;
5052		if (after(TCP_SKB_CB(skb)->end_seq, end))
5053			end = TCP_SKB_CB(skb)->end_seq;
5054	}
5055}
5056
5057/*
5058 * Clean the out-of-order queue to make room.
5059 * We drop high sequences packets to :
5060 * 1) Let a chance for holes to be filled.
 
 
5061 * 2) not add too big latencies if thousands of packets sit there.
5062 *    (But if application shrinks SO_RCVBUF, we could still end up
5063 *     freeing whole queue here)
5064 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5065 *
5066 * Return true if queue has shrunk.
5067 */
5068static bool tcp_prune_ofo_queue(struct sock *sk)
5069{
5070	struct tcp_sock *tp = tcp_sk(sk);
5071	struct rb_node *node, *prev;
 
5072	int goal;
5073
5074	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5075		return false;
5076
5077	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5078	goal = sk->sk_rcvbuf >> 3;
5079	node = &tp->ooo_last_skb->rbnode;
 
5080	do {
 
 
 
 
 
 
5081		prev = rb_prev(node);
5082		rb_erase(node, &tp->out_of_order_queue);
5083		goal -= rb_to_skb(node)->truesize;
5084		tcp_drop(sk, rb_to_skb(node));
 
5085		if (!prev || goal <= 0) {
5086			sk_mem_reclaim(sk);
5087			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5088			    !tcp_under_memory_pressure(sk))
5089				break;
5090			goal = sk->sk_rcvbuf >> 3;
5091		}
5092		node = prev;
5093	} while (node);
5094	tp->ooo_last_skb = rb_to_skb(prev);
5095
5096	/* Reset SACK state.  A conforming SACK implementation will
5097	 * do the same at a timeout based retransmit.  When a connection
5098	 * is in a sad state like this, we care only about integrity
5099	 * of the connection not performance.
5100	 */
5101	if (tp->rx_opt.sack_ok)
5102		tcp_sack_reset(&tp->rx_opt);
5103	return true;
 
 
 
5104}
5105
5106/* Reduce allocated memory if we can, trying to get
5107 * the socket within its memory limits again.
5108 *
5109 * Return less than zero if we should start dropping frames
5110 * until the socket owning process reads some of the data
5111 * to stabilize the situation.
5112 */
5113static int tcp_prune_queue(struct sock *sk)
5114{
5115	struct tcp_sock *tp = tcp_sk(sk);
5116
5117	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5118
5119	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5120		tcp_clamp_window(sk);
5121	else if (tcp_under_memory_pressure(sk))
5122		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5123
5124	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5125		return 0;
5126
5127	tcp_collapse_ofo_queue(sk);
5128	if (!skb_queue_empty(&sk->sk_receive_queue))
5129		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5130			     skb_peek(&sk->sk_receive_queue),
5131			     NULL,
5132			     tp->copied_seq, tp->rcv_nxt);
5133	sk_mem_reclaim(sk);
5134
5135	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5136		return 0;
5137
5138	/* Collapsing did not help, destructive actions follow.
5139	 * This must not ever occur. */
5140
5141	tcp_prune_ofo_queue(sk);
5142
5143	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5144		return 0;
5145
5146	/* If we are really being abused, tell the caller to silently
5147	 * drop receive data on the floor.  It will get retransmitted
5148	 * and hopefully then we'll have sufficient space.
5149	 */
5150	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5151
5152	/* Massive buffer overcommit. */
5153	tp->pred_flags = 0;
5154	return -1;
5155}
5156
5157static bool tcp_should_expand_sndbuf(const struct sock *sk)
5158{
5159	const struct tcp_sock *tp = tcp_sk(sk);
5160
5161	/* If the user specified a specific send buffer setting, do
5162	 * not modify it.
5163	 */
5164	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5165		return false;
5166
5167	/* If we are under global TCP memory pressure, do not expand.  */
5168	if (tcp_under_memory_pressure(sk))
 
 
 
 
 
 
 
 
 
5169		return false;
 
5170
5171	/* If we are under soft global TCP memory pressure, do not expand.  */
5172	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5173		return false;
5174
5175	/* If we filled the congestion window, do not expand.  */
5176	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5177		return false;
5178
5179	return true;
5180}
5181
5182/* When incoming ACK allowed to free some skb from write_queue,
5183 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5184 * on the exit from tcp input handler.
5185 *
5186 * PROBLEM: sndbuf expansion does not work well with largesend.
5187 */
5188static void tcp_new_space(struct sock *sk)
5189{
5190	struct tcp_sock *tp = tcp_sk(sk);
5191
5192	if (tcp_should_expand_sndbuf(sk)) {
5193		tcp_sndbuf_expand(sk);
5194		tp->snd_cwnd_stamp = tcp_jiffies32;
5195	}
5196
5197	sk->sk_write_space(sk);
5198}
5199
5200static void tcp_check_space(struct sock *sk)
5201{
5202	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5203		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5204		/* pairs with tcp_poll() */
5205		smp_mb();
5206		if (sk->sk_socket &&
5207		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5208			tcp_new_space(sk);
5209			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5210				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5211		}
 
 
 
 
 
 
 
5212	}
5213}
5214
5215static inline void tcp_data_snd_check(struct sock *sk)
5216{
5217	tcp_push_pending_frames(sk);
5218	tcp_check_space(sk);
5219}
5220
5221/*
5222 * Check if sending an ack is needed.
5223 */
5224static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5225{
5226	struct tcp_sock *tp = tcp_sk(sk);
5227	unsigned long rtt, delay;
5228
5229	    /* More than one full frame received... */
5230	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5231	     /* ... and right edge of window advances far enough.
5232	      * (tcp_recvmsg() will send ACK otherwise).
5233	      * If application uses SO_RCVLOWAT, we want send ack now if
5234	      * we have not received enough bytes to satisfy the condition.
5235	      */
5236	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5237	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5238	    /* We ACK each frame or... */
5239	    tcp_in_quickack_mode(sk) ||
5240	    /* Protocol state mandates a one-time immediate ACK */
5241	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
 
 
 
 
 
 
 
 
5242send_now:
5243		tcp_send_ack(sk);
5244		return;
5245	}
5246
5247	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5248		tcp_send_delayed_ack(sk);
5249		return;
5250	}
5251
5252	if (!tcp_is_sack(tp) ||
5253	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5254		goto send_now;
5255
5256	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5257		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5258		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5259			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5260				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5261		tp->compressed_ack = 0;
5262	}
5263
5264	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5265		goto send_now;
5266
 
5267	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5268		return;
5269
5270	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5271
5272	rtt = tp->rcv_rtt_est.rtt_us;
5273	if (tp->srtt_us && tp->srtt_us < rtt)
5274		rtt = tp->srtt_us;
5275
5276	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
 
5277		      rtt * (NSEC_PER_USEC >> 3)/20);
5278	sock_hold(sk);
5279	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5280		      HRTIMER_MODE_REL_PINNED_SOFT);
 
5281}
5282
5283static inline void tcp_ack_snd_check(struct sock *sk)
5284{
5285	if (!inet_csk_ack_scheduled(sk)) {
5286		/* We sent a data segment already. */
5287		return;
5288	}
5289	__tcp_ack_snd_check(sk, 1);
5290}
5291
5292/*
5293 *	This routine is only called when we have urgent data
5294 *	signaled. Its the 'slow' part of tcp_urg. It could be
5295 *	moved inline now as tcp_urg is only called from one
5296 *	place. We handle URGent data wrong. We have to - as
5297 *	BSD still doesn't use the correction from RFC961.
5298 *	For 1003.1g we should support a new option TCP_STDURG to permit
5299 *	either form (or just set the sysctl tcp_stdurg).
5300 */
5301
5302static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5303{
5304	struct tcp_sock *tp = tcp_sk(sk);
5305	u32 ptr = ntohs(th->urg_ptr);
5306
5307	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5308		ptr--;
5309	ptr += ntohl(th->seq);
5310
5311	/* Ignore urgent data that we've already seen and read. */
5312	if (after(tp->copied_seq, ptr))
5313		return;
5314
5315	/* Do not replay urg ptr.
5316	 *
5317	 * NOTE: interesting situation not covered by specs.
5318	 * Misbehaving sender may send urg ptr, pointing to segment,
5319	 * which we already have in ofo queue. We are not able to fetch
5320	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5321	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5322	 * situations. But it is worth to think about possibility of some
5323	 * DoSes using some hypothetical application level deadlock.
5324	 */
5325	if (before(ptr, tp->rcv_nxt))
5326		return;
5327
5328	/* Do we already have a newer (or duplicate) urgent pointer? */
5329	if (tp->urg_data && !after(ptr, tp->urg_seq))
5330		return;
5331
5332	/* Tell the world about our new urgent pointer. */
5333	sk_send_sigurg(sk);
5334
5335	/* We may be adding urgent data when the last byte read was
5336	 * urgent. To do this requires some care. We cannot just ignore
5337	 * tp->copied_seq since we would read the last urgent byte again
5338	 * as data, nor can we alter copied_seq until this data arrives
5339	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5340	 *
5341	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5342	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5343	 * and expect that both A and B disappear from stream. This is _wrong_.
5344	 * Though this happens in BSD with high probability, this is occasional.
5345	 * Any application relying on this is buggy. Note also, that fix "works"
5346	 * only in this artificial test. Insert some normal data between A and B and we will
5347	 * decline of BSD again. Verdict: it is better to remove to trap
5348	 * buggy users.
5349	 */
5350	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5351	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5352		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5353		tp->copied_seq++;
5354		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5355			__skb_unlink(skb, &sk->sk_receive_queue);
5356			__kfree_skb(skb);
5357		}
5358	}
5359
5360	tp->urg_data = TCP_URG_NOTYET;
5361	WRITE_ONCE(tp->urg_seq, ptr);
5362
5363	/* Disable header prediction. */
5364	tp->pred_flags = 0;
5365}
5366
5367/* This is the 'fast' part of urgent handling. */
5368static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5369{
5370	struct tcp_sock *tp = tcp_sk(sk);
5371
5372	/* Check if we get a new urgent pointer - normally not. */
5373	if (th->urg)
5374		tcp_check_urg(sk, th);
5375
5376	/* Do we wait for any urgent data? - normally not... */
5377	if (tp->urg_data == TCP_URG_NOTYET) {
5378		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5379			  th->syn;
5380
5381		/* Is the urgent pointer pointing into this packet? */
5382		if (ptr < skb->len) {
5383			u8 tmp;
5384			if (skb_copy_bits(skb, ptr, &tmp, 1))
5385				BUG();
5386			tp->urg_data = TCP_URG_VALID | tmp;
5387			if (!sock_flag(sk, SOCK_DEAD))
5388				sk->sk_data_ready(sk);
5389		}
5390	}
5391}
5392
5393/* Accept RST for rcv_nxt - 1 after a FIN.
5394 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5395 * FIN is sent followed by a RST packet. The RST is sent with the same
5396 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5397 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5398 * ACKs on the closed socket. In addition middleboxes can drop either the
5399 * challenge ACK or a subsequent RST.
5400 */
5401static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5402{
5403	struct tcp_sock *tp = tcp_sk(sk);
5404
5405	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5406			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5407					       TCPF_CLOSING));
5408}
5409
5410/* Does PAWS and seqno based validation of an incoming segment, flags will
5411 * play significant role here.
5412 */
5413static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5414				  const struct tcphdr *th, int syn_inerr)
5415{
5416	struct tcp_sock *tp = tcp_sk(sk);
5417	bool rst_seq_match = false;
5418
5419	/* RFC1323: H1. Apply PAWS check first. */
5420	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5421	    tp->rx_opt.saw_tstamp &&
5422	    tcp_paws_discard(sk, skb)) {
5423		if (!th->rst) {
 
 
5424			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5425			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5426						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5427						  &tp->last_oow_ack_time))
5428				tcp_send_dupack(sk, skb);
 
5429			goto discard;
5430		}
5431		/* Reset is accepted even if it did not pass PAWS. */
5432	}
5433
5434	/* Step 1: check sequence number */
5435	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
 
5436		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5437		 * (RST) segments are validated by checking their SEQ-fields."
5438		 * And page 69: "If an incoming segment is not acceptable,
5439		 * an acknowledgment should be sent in reply (unless the RST
5440		 * bit is set, if so drop the segment and return)".
5441		 */
5442		if (!th->rst) {
5443			if (th->syn)
5444				goto syn_challenge;
5445			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5446						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5447						  &tp->last_oow_ack_time))
5448				tcp_send_dupack(sk, skb);
5449		} else if (tcp_reset_check(sk, skb)) {
5450			tcp_reset(sk);
5451		}
5452		goto discard;
5453	}
5454
5455	/* Step 2: check RST bit */
5456	if (th->rst) {
5457		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5458		 * FIN and SACK too if available):
5459		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5460		 * the right-most SACK block,
5461		 * then
5462		 *     RESET the connection
5463		 * else
5464		 *     Send a challenge ACK
5465		 */
5466		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5467		    tcp_reset_check(sk, skb)) {
5468			rst_seq_match = true;
5469		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
 
5470			struct tcp_sack_block *sp = &tp->selective_acks[0];
5471			int max_sack = sp[0].end_seq;
5472			int this_sack;
5473
5474			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5475			     ++this_sack) {
5476				max_sack = after(sp[this_sack].end_seq,
5477						 max_sack) ?
5478					sp[this_sack].end_seq : max_sack;
5479			}
5480
5481			if (TCP_SKB_CB(skb)->seq == max_sack)
5482				rst_seq_match = true;
5483		}
5484
5485		if (rst_seq_match)
5486			tcp_reset(sk);
5487		else {
5488			/* Disable TFO if RST is out-of-order
5489			 * and no data has been received
5490			 * for current active TFO socket
5491			 */
5492			if (tp->syn_fastopen && !tp->data_segs_in &&
5493			    sk->sk_state == TCP_ESTABLISHED)
5494				tcp_fastopen_active_disable(sk);
5495			tcp_send_challenge_ack(sk, skb);
5496		}
5497		goto discard;
5498	}
5499
5500	/* step 3: check security and precedence [ignored] */
5501
5502	/* step 4: Check for a SYN
5503	 * RFC 5961 4.2 : Send a challenge ack
5504	 */
5505	if (th->syn) {
5506syn_challenge:
5507		if (syn_inerr)
5508			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5509		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5510		tcp_send_challenge_ack(sk, skb);
 
5511		goto discard;
5512	}
5513
 
 
5514	return true;
5515
5516discard:
5517	tcp_drop(sk, skb);
 
 
 
 
 
5518	return false;
5519}
5520
5521/*
5522 *	TCP receive function for the ESTABLISHED state.
5523 *
5524 *	It is split into a fast path and a slow path. The fast path is
5525 * 	disabled when:
5526 *	- A zero window was announced from us - zero window probing
5527 *        is only handled properly in the slow path.
5528 *	- Out of order segments arrived.
5529 *	- Urgent data is expected.
5530 *	- There is no buffer space left
5531 *	- Unexpected TCP flags/window values/header lengths are received
5532 *	  (detected by checking the TCP header against pred_flags)
5533 *	- Data is sent in both directions. Fast path only supports pure senders
5534 *	  or pure receivers (this means either the sequence number or the ack
5535 *	  value must stay constant)
5536 *	- Unexpected TCP option.
5537 *
5538 *	When these conditions are not satisfied it drops into a standard
5539 *	receive procedure patterned after RFC793 to handle all cases.
5540 *	The first three cases are guaranteed by proper pred_flags setting,
5541 *	the rest is checked inline. Fast processing is turned on in
5542 *	tcp_data_queue when everything is OK.
5543 */
5544void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5545{
 
5546	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5547	struct tcp_sock *tp = tcp_sk(sk);
5548	unsigned int len = skb->len;
5549
5550	/* TCP congestion window tracking */
5551	trace_tcp_probe(sk, skb);
5552
5553	tcp_mstamp_refresh(tp);
5554	if (unlikely(!sk->sk_rx_dst))
5555		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5556	/*
5557	 *	Header prediction.
5558	 *	The code loosely follows the one in the famous
5559	 *	"30 instruction TCP receive" Van Jacobson mail.
5560	 *
5561	 *	Van's trick is to deposit buffers into socket queue
5562	 *	on a device interrupt, to call tcp_recv function
5563	 *	on the receive process context and checksum and copy
5564	 *	the buffer to user space. smart...
5565	 *
5566	 *	Our current scheme is not silly either but we take the
5567	 *	extra cost of the net_bh soft interrupt processing...
5568	 *	We do checksum and copy also but from device to kernel.
5569	 */
5570
5571	tp->rx_opt.saw_tstamp = 0;
5572
5573	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5574	 *	if header_prediction is to be made
5575	 *	'S' will always be tp->tcp_header_len >> 2
5576	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5577	 *  turn it off	(when there are holes in the receive
5578	 *	 space for instance)
5579	 *	PSH flag is ignored.
5580	 */
5581
5582	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5583	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5584	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5585		int tcp_header_len = tp->tcp_header_len;
5586
5587		/* Timestamp header prediction: tcp_header_len
5588		 * is automatically equal to th->doff*4 due to pred_flags
5589		 * match.
5590		 */
5591
5592		/* Check timestamp */
5593		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5594			/* No? Slow path! */
5595			if (!tcp_parse_aligned_timestamp(tp, th))
5596				goto slow_path;
5597
5598			/* If PAWS failed, check it more carefully in slow path */
5599			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5600				goto slow_path;
5601
5602			/* DO NOT update ts_recent here, if checksum fails
5603			 * and timestamp was corrupted part, it will result
5604			 * in a hung connection since we will drop all
5605			 * future packets due to the PAWS test.
5606			 */
5607		}
5608
5609		if (len <= tcp_header_len) {
5610			/* Bulk data transfer: sender */
5611			if (len == tcp_header_len) {
5612				/* Predicted packet is in window by definition.
5613				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5614				 * Hence, check seq<=rcv_wup reduces to:
5615				 */
5616				if (tcp_header_len ==
5617				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5618				    tp->rcv_nxt == tp->rcv_wup)
5619					tcp_store_ts_recent(tp);
5620
5621				/* We know that such packets are checksummed
5622				 * on entry.
5623				 */
5624				tcp_ack(sk, skb, 0);
5625				__kfree_skb(skb);
5626				tcp_data_snd_check(sk);
5627				/* When receiving pure ack in fast path, update
5628				 * last ts ecr directly instead of calling
5629				 * tcp_rcv_rtt_measure_ts()
5630				 */
5631				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5632				return;
5633			} else { /* Header too small */
 
5634				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5635				goto discard;
5636			}
5637		} else {
5638			int eaten = 0;
5639			bool fragstolen = false;
5640
5641			if (tcp_checksum_complete(skb))
5642				goto csum_error;
5643
5644			if ((int)skb->truesize > sk->sk_forward_alloc)
5645				goto step5;
5646
5647			/* Predicted packet is in window by definition.
5648			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5649			 * Hence, check seq<=rcv_wup reduces to:
5650			 */
5651			if (tcp_header_len ==
5652			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5653			    tp->rcv_nxt == tp->rcv_wup)
5654				tcp_store_ts_recent(tp);
5655
5656			tcp_rcv_rtt_measure_ts(sk, skb);
5657
5658			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5659
5660			/* Bulk data transfer: receiver */
 
5661			__skb_pull(skb, tcp_header_len);
5662			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5663
5664			tcp_event_data_recv(sk, skb);
5665
5666			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5667				/* Well, only one small jumplet in fast path... */
5668				tcp_ack(sk, skb, FLAG_DATA);
5669				tcp_data_snd_check(sk);
5670				if (!inet_csk_ack_scheduled(sk))
5671					goto no_ack;
 
 
5672			}
5673
5674			__tcp_ack_snd_check(sk, 0);
5675no_ack:
5676			if (eaten)
5677				kfree_skb_partial(skb, fragstolen);
5678			tcp_data_ready(sk);
5679			return;
5680		}
5681	}
5682
5683slow_path:
5684	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5685		goto csum_error;
5686
5687	if (!th->ack && !th->rst && !th->syn)
 
5688		goto discard;
 
5689
5690	/*
5691	 *	Standard slow path.
5692	 */
5693
5694	if (!tcp_validate_incoming(sk, skb, th, 1))
5695		return;
5696
5697step5:
5698	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
 
 
5699		goto discard;
5700
5701	tcp_rcv_rtt_measure_ts(sk, skb);
5702
5703	/* Process urgent data. */
5704	tcp_urg(sk, skb, th);
5705
5706	/* step 7: process the segment text */
5707	tcp_data_queue(sk, skb);
5708
5709	tcp_data_snd_check(sk);
5710	tcp_ack_snd_check(sk);
5711	return;
5712
5713csum_error:
 
 
5714	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5715	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5716
5717discard:
5718	tcp_drop(sk, skb);
5719}
5720EXPORT_SYMBOL(tcp_rcv_established);
5721
5722void tcp_init_transfer(struct sock *sk, int bpf_op)
5723{
5724	struct inet_connection_sock *icsk = inet_csk(sk);
5725	struct tcp_sock *tp = tcp_sk(sk);
5726
5727	tcp_mtup_init(sk);
5728	icsk->icsk_af_ops->rebuild_header(sk);
5729	tcp_init_metrics(sk);
5730
5731	/* Initialize the congestion window to start the transfer.
5732	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5733	 * retransmitted. In light of RFC6298 more aggressive 1sec
5734	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5735	 * retransmission has occurred.
5736	 */
5737	if (tp->total_retrans > 1 && tp->undo_marker)
5738		tp->snd_cwnd = 1;
5739	else
5740		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5741	tp->snd_cwnd_stamp = tcp_jiffies32;
5742
5743	tcp_call_bpf(sk, bpf_op, 0, NULL);
5744	tcp_init_congestion_control(sk);
 
 
5745	tcp_init_buffer_space(sk);
5746}
5747
5748void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5749{
5750	struct tcp_sock *tp = tcp_sk(sk);
5751	struct inet_connection_sock *icsk = inet_csk(sk);
5752
 
5753	tcp_set_state(sk, TCP_ESTABLISHED);
5754	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5755
5756	if (skb) {
5757		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5758		security_inet_conn_established(sk, skb);
5759		sk_mark_napi_id(sk, skb);
5760	}
5761
5762	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5763
5764	/* Prevent spurious tcp_cwnd_restart() on first data
5765	 * packet.
5766	 */
5767	tp->lsndtime = tcp_jiffies32;
5768
5769	if (sock_flag(sk, SOCK_KEEPOPEN))
5770		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5771
5772	if (!tp->rx_opt.snd_wscale)
5773		__tcp_fast_path_on(tp, tp->snd_wnd);
5774	else
5775		tp->pred_flags = 0;
5776}
5777
5778static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5779				    struct tcp_fastopen_cookie *cookie)
5780{
5781	struct tcp_sock *tp = tcp_sk(sk);
5782	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5783	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5784	bool syn_drop = false;
5785
5786	if (mss == tp->rx_opt.user_mss) {
5787		struct tcp_options_received opt;
5788
5789		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5790		tcp_clear_options(&opt);
5791		opt.user_mss = opt.mss_clamp = 0;
5792		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5793		mss = opt.mss_clamp;
5794	}
5795
5796	if (!tp->syn_fastopen) {
5797		/* Ignore an unsolicited cookie */
5798		cookie->len = -1;
5799	} else if (tp->total_retrans) {
5800		/* SYN timed out and the SYN-ACK neither has a cookie nor
5801		 * acknowledges data. Presumably the remote received only
5802		 * the retransmitted (regular) SYNs: either the original
5803		 * SYN-data or the corresponding SYN-ACK was dropped.
5804		 */
5805		syn_drop = (cookie->len < 0 && data);
5806	} else if (cookie->len < 0 && !tp->syn_data) {
5807		/* We requested a cookie but didn't get it. If we did not use
5808		 * the (old) exp opt format then try so next time (try_exp=1).
5809		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5810		 */
5811		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5812	}
5813
5814	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5815
5816	if (data) { /* Retransmit unacked data in SYN */
5817		skb_rbtree_walk_from(data) {
5818			if (__tcp_retransmit_skb(sk, data, 1))
5819				break;
5820		}
5821		tcp_rearm_rto(sk);
 
 
5822		NET_INC_STATS(sock_net(sk),
5823				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5824		return true;
5825	}
5826	tp->syn_data_acked = tp->syn_data;
5827	if (tp->syn_data_acked) {
5828		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5829		/* SYN-data is counted as two separate packets in tcp_ack() */
5830		if (tp->delivered > 1)
5831			--tp->delivered;
5832	}
5833
5834	tcp_fastopen_add_skb(sk, synack);
5835
5836	return false;
5837}
5838
5839static void smc_check_reset_syn(struct tcp_sock *tp)
5840{
5841#if IS_ENABLED(CONFIG_SMC)
5842	if (static_branch_unlikely(&tcp_have_smc)) {
5843		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5844			tp->syn_smc = 0;
5845	}
5846#endif
5847}
5848
5849static void tcp_try_undo_spurious_syn(struct sock *sk)
5850{
5851	struct tcp_sock *tp = tcp_sk(sk);
5852	u32 syn_stamp;
5853
5854	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5855	 * spurious if the ACK's timestamp option echo value matches the
5856	 * original SYN timestamp.
5857	 */
5858	syn_stamp = tp->retrans_stamp;
5859	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5860	    syn_stamp == tp->rx_opt.rcv_tsecr)
5861		tp->undo_marker = 0;
5862}
5863
5864static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5865					 const struct tcphdr *th)
5866{
5867	struct inet_connection_sock *icsk = inet_csk(sk);
5868	struct tcp_sock *tp = tcp_sk(sk);
5869	struct tcp_fastopen_cookie foc = { .len = -1 };
5870	int saved_clamp = tp->rx_opt.mss_clamp;
5871	bool fastopen_fail;
 
5872
5873	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5874	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5875		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5876
5877	if (th->ack) {
5878		/* rfc793:
5879		 * "If the state is SYN-SENT then
5880		 *    first check the ACK bit
5881		 *      If the ACK bit is set
5882		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5883		 *        a reset (unless the RST bit is set, if so drop
5884		 *        the segment and return)"
5885		 */
5886		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5887		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
 
 
 
 
 
5888			goto reset_and_undo;
 
5889
5890		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5891		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5892			     tcp_time_stamp(tp))) {
5893			NET_INC_STATS(sock_net(sk),
5894					LINUX_MIB_PAWSACTIVEREJECTED);
5895			goto reset_and_undo;
5896		}
5897
5898		/* Now ACK is acceptable.
5899		 *
5900		 * "If the RST bit is set
5901		 *    If the ACK was acceptable then signal the user "error:
5902		 *    connection reset", drop the segment, enter CLOSED state,
5903		 *    delete TCB, and return."
5904		 */
5905
5906		if (th->rst) {
5907			tcp_reset(sk);
5908			goto discard;
 
 
5909		}
5910
5911		/* rfc793:
5912		 *   "fifth, if neither of the SYN or RST bits is set then
5913		 *    drop the segment and return."
5914		 *
5915		 *    See note below!
5916		 *                                        --ANK(990513)
5917		 */
5918		if (!th->syn)
 
5919			goto discard_and_undo;
5920
5921		/* rfc793:
5922		 *   "If the SYN bit is on ...
5923		 *    are acceptable then ...
5924		 *    (our SYN has been ACKed), change the connection
5925		 *    state to ESTABLISHED..."
5926		 */
5927
5928		tcp_ecn_rcv_synack(tp, th);
5929
5930		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5931		tcp_try_undo_spurious_syn(sk);
5932		tcp_ack(sk, skb, FLAG_SLOWPATH);
5933
5934		/* Ok.. it's good. Set up sequence numbers and
5935		 * move to established.
5936		 */
5937		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5938		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5939
5940		/* RFC1323: The window in SYN & SYN/ACK segments is
5941		 * never scaled.
5942		 */
5943		tp->snd_wnd = ntohs(th->window);
5944
5945		if (!tp->rx_opt.wscale_ok) {
5946			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5947			tp->window_clamp = min(tp->window_clamp, 65535U);
5948		}
5949
5950		if (tp->rx_opt.saw_tstamp) {
5951			tp->rx_opt.tstamp_ok	   = 1;
5952			tp->tcp_header_len =
5953				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5954			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5955			tcp_store_ts_recent(tp);
5956		} else {
5957			tp->tcp_header_len = sizeof(struct tcphdr);
5958		}
5959
5960		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5961		tcp_initialize_rcv_mss(sk);
5962
5963		/* Remember, tcp_poll() does not lock socket!
5964		 * Change state from SYN-SENT only after copied_seq
5965		 * is initialized. */
5966		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5967
5968		smc_check_reset_syn(tp);
5969
5970		smp_mb();
5971
5972		tcp_finish_connect(sk, skb);
5973
5974		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5975				tcp_rcv_fastopen_synack(sk, skb, &foc);
5976
5977		if (!sock_flag(sk, SOCK_DEAD)) {
5978			sk->sk_state_change(sk);
5979			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5980		}
5981		if (fastopen_fail)
5982			return -1;
5983		if (sk->sk_write_pending ||
5984		    icsk->icsk_accept_queue.rskq_defer_accept ||
5985		    inet_csk_in_pingpong_mode(sk)) {
5986			/* Save one ACK. Data will be ready after
5987			 * several ticks, if write_pending is set.
5988			 *
5989			 * It may be deleted, but with this feature tcpdumps
5990			 * look so _wonderfully_ clever, that I was not able
5991			 * to stand against the temptation 8)     --ANK
5992			 */
5993			inet_csk_schedule_ack(sk);
5994			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5995			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5996						  TCP_DELACK_MAX, TCP_RTO_MAX);
5997
5998discard:
5999			tcp_drop(sk, skb);
6000			return 0;
6001		} else {
6002			tcp_send_ack(sk);
6003		}
 
6004		return -1;
6005	}
6006
6007	/* No ACK in the segment */
6008
6009	if (th->rst) {
6010		/* rfc793:
6011		 * "If the RST bit is set
6012		 *
6013		 *      Otherwise (no ACK) drop the segment and return."
6014		 */
6015
6016		goto discard_and_undo;
6017	}
6018
6019	/* PAWS check. */
6020	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6021	    tcp_paws_reject(&tp->rx_opt, 0))
 
6022		goto discard_and_undo;
6023
6024	if (th->syn) {
6025		/* We see SYN without ACK. It is attempt of
6026		 * simultaneous connect with crossed SYNs.
6027		 * Particularly, it can be connect to self.
6028		 */
 
 
 
 
 
 
 
 
 
 
6029		tcp_set_state(sk, TCP_SYN_RECV);
6030
6031		if (tp->rx_opt.saw_tstamp) {
6032			tp->rx_opt.tstamp_ok = 1;
6033			tcp_store_ts_recent(tp);
6034			tp->tcp_header_len =
6035				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6036		} else {
6037			tp->tcp_header_len = sizeof(struct tcphdr);
6038		}
6039
6040		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6041		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6042		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6043
6044		/* RFC1323: The window in SYN & SYN/ACK segments is
6045		 * never scaled.
6046		 */
6047		tp->snd_wnd    = ntohs(th->window);
6048		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6049		tp->max_window = tp->snd_wnd;
6050
6051		tcp_ecn_rcv_syn(tp, th);
6052
6053		tcp_mtup_init(sk);
6054		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6055		tcp_initialize_rcv_mss(sk);
6056
6057		tcp_send_synack(sk);
6058#if 0
6059		/* Note, we could accept data and URG from this segment.
6060		 * There are no obstacles to make this (except that we must
6061		 * either change tcp_recvmsg() to prevent it from returning data
6062		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6063		 *
6064		 * However, if we ignore data in ACKless segments sometimes,
6065		 * we have no reasons to accept it sometimes.
6066		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6067		 * is not flawless. So, discard packet for sanity.
6068		 * Uncomment this return to process the data.
6069		 */
6070		return -1;
6071#else
6072		goto discard;
6073#endif
6074	}
6075	/* "fifth, if neither of the SYN or RST bits is set then
6076	 * drop the segment and return."
6077	 */
6078
6079discard_and_undo:
6080	tcp_clear_options(&tp->rx_opt);
6081	tp->rx_opt.mss_clamp = saved_clamp;
6082	goto discard;
 
6083
6084reset_and_undo:
6085	tcp_clear_options(&tp->rx_opt);
6086	tp->rx_opt.mss_clamp = saved_clamp;
6087	return 1;
6088}
6089
6090static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6091{
 
6092	struct request_sock *req;
6093
6094	tcp_try_undo_loss(sk, false);
 
 
 
 
6095
6096	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6097	tcp_sk(sk)->retrans_stamp = 0;
 
6098	inet_csk(sk)->icsk_retransmits = 0;
6099
6100	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6101	 * we no longer need req so release it.
6102	 */
6103	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6104					lockdep_sock_is_held(sk));
6105	reqsk_fastopen_remove(sk, req, false);
6106
6107	/* Re-arm the timer because data may have been sent out.
6108	 * This is similar to the regular data transmission case
6109	 * when new data has just been ack'ed.
6110	 *
6111	 * (TFO) - we could try to be more aggressive and
6112	 * retransmitting any data sooner based on when they
6113	 * are sent out.
6114	 */
6115	tcp_rearm_rto(sk);
6116}
6117
6118/*
6119 *	This function implements the receiving procedure of RFC 793 for
6120 *	all states except ESTABLISHED and TIME_WAIT.
6121 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6122 *	address independent.
6123 */
6124
6125int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6126{
6127	struct tcp_sock *tp = tcp_sk(sk);
6128	struct inet_connection_sock *icsk = inet_csk(sk);
6129	const struct tcphdr *th = tcp_hdr(skb);
6130	struct request_sock *req;
6131	int queued = 0;
6132	bool acceptable;
 
6133
6134	switch (sk->sk_state) {
6135	case TCP_CLOSE:
 
6136		goto discard;
6137
6138	case TCP_LISTEN:
6139		if (th->ack)
6140			return 1;
6141
6142		if (th->rst)
 
6143			goto discard;
6144
6145		if (th->syn) {
6146			if (th->fin)
 
6147				goto discard;
 
6148			/* It is possible that we process SYN packets from backlog,
6149			 * so we need to make sure to disable BH and RCU right there.
6150			 */
6151			rcu_read_lock();
6152			local_bh_disable();
6153			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6154			local_bh_enable();
6155			rcu_read_unlock();
6156
6157			if (!acceptable)
6158				return 1;
6159			consume_skb(skb);
6160			return 0;
6161		}
 
6162		goto discard;
6163
6164	case TCP_SYN_SENT:
6165		tp->rx_opt.saw_tstamp = 0;
6166		tcp_mstamp_refresh(tp);
6167		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6168		if (queued >= 0)
6169			return queued;
6170
6171		/* Do step6 onward by hand. */
6172		tcp_urg(sk, skb, th);
6173		__kfree_skb(skb);
6174		tcp_data_snd_check(sk);
6175		return 0;
6176	}
6177
6178	tcp_mstamp_refresh(tp);
6179	tp->rx_opt.saw_tstamp = 0;
6180	req = rcu_dereference_protected(tp->fastopen_rsk,
6181					lockdep_sock_is_held(sk));
6182	if (req) {
6183		bool req_stolen;
6184
6185		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6186		    sk->sk_state != TCP_FIN_WAIT1);
6187
6188		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
 
6189			goto discard;
 
6190	}
6191
6192	if (!th->ack && !th->rst && !th->syn)
 
6193		goto discard;
6194
6195	if (!tcp_validate_incoming(sk, skb, th, 0))
6196		return 0;
6197
6198	/* step 5: check the ACK field */
6199	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6200				      FLAG_UPDATE_TS_RECENT |
6201				      FLAG_NO_CHALLENGE_ACK) > 0;
6202
6203	if (!acceptable) {
6204		if (sk->sk_state == TCP_SYN_RECV)
6205			return 1;	/* send one RST */
6206		tcp_send_challenge_ack(sk, skb);
 
6207		goto discard;
6208	}
6209	switch (sk->sk_state) {
6210	case TCP_SYN_RECV:
6211		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6212		if (!tp->srtt_us)
6213			tcp_synack_rtt_meas(sk, req);
6214
6215		if (req) {
6216			tcp_rcv_synrecv_state_fastopen(sk);
6217		} else {
6218			tcp_try_undo_spurious_syn(sk);
6219			tp->retrans_stamp = 0;
6220			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
 
6221			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6222		}
 
6223		smp_mb();
6224		tcp_set_state(sk, TCP_ESTABLISHED);
6225		sk->sk_state_change(sk);
6226
6227		/* Note, that this wakeup is only for marginal crossed SYN case.
6228		 * Passively open sockets are not waked up, because
6229		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6230		 */
6231		if (sk->sk_socket)
6232			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6233
6234		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6235		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6236		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6237
6238		if (tp->rx_opt.tstamp_ok)
6239			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6240
6241		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6242			tcp_update_pacing_rate(sk);
6243
6244		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6245		tp->lsndtime = tcp_jiffies32;
6246
6247		tcp_initialize_rcv_mss(sk);
6248		tcp_fast_path_on(tp);
6249		break;
6250
6251	case TCP_FIN_WAIT1: {
6252		int tmo;
6253
6254		if (req)
6255			tcp_rcv_synrecv_state_fastopen(sk);
6256
6257		if (tp->snd_una != tp->write_seq)
6258			break;
6259
6260		tcp_set_state(sk, TCP_FIN_WAIT2);
6261		sk->sk_shutdown |= SEND_SHUTDOWN;
6262
6263		sk_dst_confirm(sk);
6264
6265		if (!sock_flag(sk, SOCK_DEAD)) {
6266			/* Wake up lingering close() */
6267			sk->sk_state_change(sk);
6268			break;
6269		}
6270
6271		if (tp->linger2 < 0) {
6272			tcp_done(sk);
6273			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6274			return 1;
6275		}
6276		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6277		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6278			/* Receive out of order FIN after close() */
6279			if (tp->syn_fastopen && th->fin)
6280				tcp_fastopen_active_disable(sk);
6281			tcp_done(sk);
6282			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6283			return 1;
6284		}
6285
6286		tmo = tcp_fin_time(sk);
6287		if (tmo > TCP_TIMEWAIT_LEN) {
6288			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6289		} else if (th->fin || sock_owned_by_user(sk)) {
6290			/* Bad case. We could lose such FIN otherwise.
6291			 * It is not a big problem, but it looks confusing
6292			 * and not so rare event. We still can lose it now,
6293			 * if it spins in bh_lock_sock(), but it is really
6294			 * marginal case.
6295			 */
6296			inet_csk_reset_keepalive_timer(sk, tmo);
6297		} else {
6298			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6299			goto discard;
6300		}
6301		break;
6302	}
6303
6304	case TCP_CLOSING:
6305		if (tp->snd_una == tp->write_seq) {
6306			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6307			goto discard;
6308		}
6309		break;
6310
6311	case TCP_LAST_ACK:
6312		if (tp->snd_una == tp->write_seq) {
6313			tcp_update_metrics(sk);
6314			tcp_done(sk);
6315			goto discard;
6316		}
6317		break;
6318	}
6319
6320	/* step 6: check the URG bit */
6321	tcp_urg(sk, skb, th);
6322
6323	/* step 7: process the segment text */
6324	switch (sk->sk_state) {
6325	case TCP_CLOSE_WAIT:
6326	case TCP_CLOSING:
6327	case TCP_LAST_ACK:
6328		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 
 
 
 
 
6329			break;
6330		/* fall through */
 
6331	case TCP_FIN_WAIT1:
6332	case TCP_FIN_WAIT2:
6333		/* RFC 793 says to queue data in these states,
6334		 * RFC 1122 says we MUST send a reset.
6335		 * BSD 4.4 also does reset.
6336		 */
6337		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6338			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6339			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6340				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6341				tcp_reset(sk);
6342				return 1;
6343			}
6344		}
6345		/* Fall through */
6346	case TCP_ESTABLISHED:
6347		tcp_data_queue(sk, skb);
6348		queued = 1;
6349		break;
6350	}
6351
6352	/* tcp_data could move socket to TIME-WAIT */
6353	if (sk->sk_state != TCP_CLOSE) {
6354		tcp_data_snd_check(sk);
6355		tcp_ack_snd_check(sk);
6356	}
6357
6358	if (!queued) {
6359discard:
6360		tcp_drop(sk, skb);
6361	}
6362	return 0;
 
 
 
 
6363}
6364EXPORT_SYMBOL(tcp_rcv_state_process);
6365
6366static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6367{
6368	struct inet_request_sock *ireq = inet_rsk(req);
6369
6370	if (family == AF_INET)
6371		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6372				    &ireq->ir_rmt_addr, port);
6373#if IS_ENABLED(CONFIG_IPV6)
6374	else if (family == AF_INET6)
6375		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6376				    &ireq->ir_v6_rmt_addr, port);
6377#endif
6378}
6379
6380/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6381 *
6382 * If we receive a SYN packet with these bits set, it means a
6383 * network is playing bad games with TOS bits. In order to
6384 * avoid possible false congestion notifications, we disable
6385 * TCP ECN negotiation.
6386 *
6387 * Exception: tcp_ca wants ECN. This is required for DCTCP
6388 * congestion control: Linux DCTCP asserts ECT on all packets,
6389 * including SYN, which is most optimal solution; however,
6390 * others, such as FreeBSD do not.
6391 *
6392 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6393 * set, indicating the use of a future TCP extension (such as AccECN). See
6394 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6395 * extensions.
6396 */
6397static void tcp_ecn_create_request(struct request_sock *req,
6398				   const struct sk_buff *skb,
6399				   const struct sock *listen_sk,
6400				   const struct dst_entry *dst)
6401{
6402	const struct tcphdr *th = tcp_hdr(skb);
6403	const struct net *net = sock_net(listen_sk);
6404	bool th_ecn = th->ece && th->cwr;
6405	bool ect, ecn_ok;
6406	u32 ecn_ok_dst;
6407
6408	if (!th_ecn)
6409		return;
6410
6411	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6412	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6413	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6414
6415	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6416	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6417	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6418		inet_rsk(req)->ecn_ok = 1;
6419}
6420
6421static void tcp_openreq_init(struct request_sock *req,
6422			     const struct tcp_options_received *rx_opt,
6423			     struct sk_buff *skb, const struct sock *sk)
6424{
6425	struct inet_request_sock *ireq = inet_rsk(req);
6426
6427	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6428	req->cookie_ts = 0;
6429	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6430	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6431	tcp_rsk(req)->snt_synack = 0;
6432	tcp_rsk(req)->last_oow_ack_time = 0;
6433	req->mss = rx_opt->mss_clamp;
6434	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6435	ireq->tstamp_ok = rx_opt->tstamp_ok;
6436	ireq->sack_ok = rx_opt->sack_ok;
6437	ireq->snd_wscale = rx_opt->snd_wscale;
6438	ireq->wscale_ok = rx_opt->wscale_ok;
6439	ireq->acked = 0;
6440	ireq->ecn_ok = 0;
6441	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6442	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6443	ireq->ir_mark = inet_request_mark(sk, skb);
6444#if IS_ENABLED(CONFIG_SMC)
6445	ireq->smc_ok = rx_opt->smc_ok;
 
6446#endif
6447}
6448
6449struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6450				      struct sock *sk_listener,
6451				      bool attach_listener)
6452{
6453	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6454					       attach_listener);
6455
6456	if (req) {
6457		struct inet_request_sock *ireq = inet_rsk(req);
6458
6459		ireq->ireq_opt = NULL;
6460#if IS_ENABLED(CONFIG_IPV6)
6461		ireq->pktopts = NULL;
6462#endif
6463		atomic64_set(&ireq->ir_cookie, 0);
6464		ireq->ireq_state = TCP_NEW_SYN_RECV;
6465		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6466		ireq->ireq_family = sk_listener->sk_family;
 
6467	}
6468
6469	return req;
6470}
6471EXPORT_SYMBOL(inet_reqsk_alloc);
6472
6473/*
6474 * Return true if a syncookie should be sent
6475 */
6476static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6477{
6478	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6479	const char *msg = "Dropping request";
6480	bool want_cookie = false;
6481	struct net *net = sock_net(sk);
 
 
 
 
6482
6483#ifdef CONFIG_SYN_COOKIES
6484	if (net->ipv4.sysctl_tcp_syncookies) {
6485		msg = "Sending cookies";
6486		want_cookie = true;
6487		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6488	} else
6489#endif
6490		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6491
6492	if (!queue->synflood_warned &&
6493	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6494	    xchg(&queue->synflood_warned, 1) == 0)
6495		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6496				     proto, sk->sk_num, msg);
 
 
 
 
 
 
 
6497
6498	return want_cookie;
6499}
6500
6501static void tcp_reqsk_record_syn(const struct sock *sk,
6502				 struct request_sock *req,
6503				 const struct sk_buff *skb)
6504{
6505	if (tcp_sk(sk)->save_syn) {
6506		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6507		u32 *copy;
 
 
 
 
 
 
 
 
 
 
 
6508
6509		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6510		if (copy) {
6511			copy[0] = len;
6512			memcpy(&copy[1], skb_network_header(skb), len);
6513			req->saved_syn = copy;
 
 
 
6514		}
6515	}
6516}
6517
6518/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6519 * used for SYN cookie generation.
6520 */
6521u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6522			  const struct tcp_request_sock_ops *af_ops,
6523			  struct sock *sk, struct tcphdr *th)
6524{
6525	struct tcp_sock *tp = tcp_sk(sk);
6526	u16 mss;
6527
6528	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6529	    !inet_csk_reqsk_queue_is_full(sk))
6530		return 0;
6531
6532	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6533		return 0;
6534
6535	if (sk_acceptq_is_full(sk)) {
6536		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6537		return 0;
6538	}
6539
6540	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6541	if (!mss)
6542		mss = af_ops->mss_clamp;
6543
6544	return mss;
6545}
6546EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6547
6548int tcp_conn_request(struct request_sock_ops *rsk_ops,
6549		     const struct tcp_request_sock_ops *af_ops,
6550		     struct sock *sk, struct sk_buff *skb)
6551{
6552	struct tcp_fastopen_cookie foc = { .len = -1 };
6553	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6554	struct tcp_options_received tmp_opt;
6555	struct tcp_sock *tp = tcp_sk(sk);
6556	struct net *net = sock_net(sk);
6557	struct sock *fastopen_sk = NULL;
6558	struct request_sock *req;
6559	bool want_cookie = false;
6560	struct dst_entry *dst;
6561	struct flowi fl;
 
 
 
 
 
 
 
6562
6563	/* TW buckets are converted to open requests without
6564	 * limitations, they conserve resources and peer is
6565	 * evidently real one.
6566	 */
6567	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6568	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6569		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6570		if (!want_cookie)
6571			goto drop;
6572	}
6573
6574	if (sk_acceptq_is_full(sk)) {
6575		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6576		goto drop;
6577	}
6578
6579	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6580	if (!req)
6581		goto drop;
6582
 
6583	tcp_rsk(req)->af_specific = af_ops;
6584	tcp_rsk(req)->ts_off = 0;
 
 
 
 
6585
6586	tcp_clear_options(&tmp_opt);
6587	tmp_opt.mss_clamp = af_ops->mss_clamp;
6588	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6589	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6590			  want_cookie ? NULL : &foc);
6591
6592	if (want_cookie && !tmp_opt.saw_tstamp)
6593		tcp_clear_options(&tmp_opt);
6594
6595	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6596		tmp_opt.smc_ok = 0;
6597
6598	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6599	tcp_openreq_init(req, &tmp_opt, skb, sk);
6600	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6601
6602	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6603	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6604
6605	af_ops->init_req(req, sk, skb);
6606
6607	if (security_inet_conn_request(sk, skb, req))
6608		goto drop_and_free;
6609
6610	if (tmp_opt.tstamp_ok)
6611		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6612
6613	dst = af_ops->route_req(sk, &fl, req);
6614	if (!dst)
6615		goto drop_and_free;
6616
 
 
 
 
6617	if (!want_cookie && !isn) {
 
 
6618		/* Kill the following clause, if you dislike this way. */
6619		if (!net->ipv4.sysctl_tcp_syncookies &&
6620		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6621		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6622		    !tcp_peer_is_proven(req, dst)) {
6623			/* Without syncookies last quarter of
6624			 * backlog is filled with destinations,
6625			 * proven to be alive.
6626			 * It means that we continue to communicate
6627			 * to destinations, already remembered
6628			 * to the moment of synflood.
6629			 */
6630			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6631				    rsk_ops->family);
6632			goto drop_and_release;
6633		}
6634
6635		isn = af_ops->init_seq(skb);
6636	}
6637
6638	tcp_ecn_create_request(req, skb, sk, dst);
6639
6640	if (want_cookie) {
6641		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6642		req->cookie_ts = tmp_opt.tstamp_ok;
6643		if (!tmp_opt.tstamp_ok)
6644			inet_rsk(req)->ecn_ok = 0;
6645	}
6646
 
 
 
 
 
 
 
 
 
 
 
 
6647	tcp_rsk(req)->snt_isn = isn;
6648	tcp_rsk(req)->txhash = net_tx_rndhash();
 
6649	tcp_openreq_init_rwin(req, sk, dst);
6650	sk_rx_queue_set(req_to_sk(req), skb);
6651	if (!want_cookie) {
6652		tcp_reqsk_record_syn(sk, req, skb);
6653		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6654	}
6655	if (fastopen_sk) {
6656		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6657				    &foc, TCP_SYNACK_FASTOPEN);
6658		/* Add the child socket directly into the accept queue */
6659		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6660			reqsk_fastopen_remove(fastopen_sk, req, false);
6661			bh_unlock_sock(fastopen_sk);
6662			sock_put(fastopen_sk);
6663			goto drop_and_free;
6664		}
6665		sk->sk_data_ready(sk);
6666		bh_unlock_sock(fastopen_sk);
6667		sock_put(fastopen_sk);
6668	} else {
6669		tcp_rsk(req)->tfo_listener = false;
6670		if (!want_cookie)
6671			inet_csk_reqsk_queue_hash_add(sk, req,
6672				tcp_timeout_init((struct sock *)req));
 
6673		af_ops->send_synack(sk, dst, &fl, req, &foc,
6674				    !want_cookie ? TCP_SYNACK_NORMAL :
6675						   TCP_SYNACK_COOKIE);
 
6676		if (want_cookie) {
6677			reqsk_free(req);
6678			return 0;
6679		}
6680	}
6681	reqsk_put(req);
6682	return 0;
6683
6684drop_and_release:
6685	dst_release(dst);
6686drop_and_free:
6687	__reqsk_free(req);
6688drop:
6689	tcp_listendrop(sk);
6690	return 0;
6691}
6692EXPORT_SYMBOL(tcp_conn_request);
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
 104
 105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 109
 110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 112
 113#define REXMIT_NONE	0 /* no loss recovery to do */
 114#define REXMIT_LOST	1 /* retransmit packets marked lost */
 115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 116
 117#if IS_ENABLED(CONFIG_TLS_DEVICE)
 118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 119
 120void clean_acked_data_enable(struct inet_connection_sock *icsk,
 121			     void (*cad)(struct sock *sk, u32 ack_seq))
 122{
 123	icsk->icsk_clean_acked = cad;
 124	static_branch_deferred_inc(&clean_acked_data_enabled);
 125}
 126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 127
 128void clean_acked_data_disable(struct inet_connection_sock *icsk)
 129{
 130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 131	icsk->icsk_clean_acked = NULL;
 132}
 133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 134
 135void clean_acked_data_flush(void)
 136{
 137	static_key_deferred_flush(&clean_acked_data_enabled);
 138}
 139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 140#endif
 141
 142#ifdef CONFIG_CGROUP_BPF
 143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 144{
 145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 150	struct bpf_sock_ops_kern sock_ops;
 151
 152	if (likely(!unknown_opt && !parse_all_opt))
 153		return;
 154
 155	/* The skb will be handled in the
 156	 * bpf_skops_established() or
 157	 * bpf_skops_write_hdr_opt().
 158	 */
 159	switch (sk->sk_state) {
 160	case TCP_SYN_RECV:
 161	case TCP_SYN_SENT:
 162	case TCP_LISTEN:
 163		return;
 164	}
 165
 166	sock_owned_by_me(sk);
 167
 168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 170	sock_ops.is_fullsock = 1;
 171	sock_ops.sk = sk;
 172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 173
 174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 175}
 176
 177static void bpf_skops_established(struct sock *sk, int bpf_op,
 178				  struct sk_buff *skb)
 179{
 180	struct bpf_sock_ops_kern sock_ops;
 181
 182	sock_owned_by_me(sk);
 183
 184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 185	sock_ops.op = bpf_op;
 186	sock_ops.is_fullsock = 1;
 187	sock_ops.sk = sk;
 188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 189	if (skb)
 190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 191
 192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 193}
 194#else
 195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 196{
 197}
 198
 199static void bpf_skops_established(struct sock *sk, int bpf_op,
 200				  struct sk_buff *skb)
 201{
 202}
 203#endif
 204
 205static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
 206				    unsigned int len)
 207{
 208	struct net_device *dev;
 209
 210	rcu_read_lock();
 211	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 212	if (!dev || len >= READ_ONCE(dev->mtu))
 213		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 214			dev ? dev->name : "Unknown driver");
 215	rcu_read_unlock();
 216}
 217
 218/* Adapt the MSS value used to make delayed ack decision to the
 219 * real world.
 220 */
 221static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 222{
 223	struct inet_connection_sock *icsk = inet_csk(sk);
 224	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 225	unsigned int len;
 226
 227	icsk->icsk_ack.last_seg_size = 0;
 228
 229	/* skb->len may jitter because of SACKs, even if peer
 230	 * sends good full-sized frames.
 231	 */
 232	len = skb_shinfo(skb)->gso_size ? : skb->len;
 233	if (len >= icsk->icsk_ack.rcv_mss) {
 234		/* Note: divides are still a bit expensive.
 235		 * For the moment, only adjust scaling_ratio
 236		 * when we update icsk_ack.rcv_mss.
 237		 */
 238		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
 239			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
 240
 241			do_div(val, skb->truesize);
 242			tcp_sk(sk)->scaling_ratio = val ? val : 1;
 243		}
 244		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 245					       tcp_sk(sk)->advmss);
 246		/* Account for possibly-removed options */
 247		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
 248				tcp_gro_dev_warn, sk, skb, len);
 249		/* If the skb has a len of exactly 1*MSS and has the PSH bit
 250		 * set then it is likely the end of an application write. So
 251		 * more data may not be arriving soon, and yet the data sender
 252		 * may be waiting for an ACK if cwnd-bound or using TX zero
 253		 * copy. So we set ICSK_ACK_PUSHED here so that
 254		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
 255		 * reads all of the data and is not ping-pong. If len > MSS
 256		 * then this logic does not matter (and does not hurt) because
 257		 * tcp_cleanup_rbuf() will always ACK immediately if the app
 258		 * reads data and there is more than an MSS of unACKed data.
 259		 */
 260		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
 261			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 262	} else {
 263		/* Otherwise, we make more careful check taking into account,
 264		 * that SACKs block is variable.
 265		 *
 266		 * "len" is invariant segment length, including TCP header.
 267		 */
 268		len += skb->data - skb_transport_header(skb);
 269		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 270		    /* If PSH is not set, packet should be
 271		     * full sized, provided peer TCP is not badly broken.
 272		     * This observation (if it is correct 8)) allows
 273		     * to handle super-low mtu links fairly.
 274		     */
 275		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 276		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 277			/* Subtract also invariant (if peer is RFC compliant),
 278			 * tcp header plus fixed timestamp option length.
 279			 * Resulting "len" is MSS free of SACK jitter.
 280			 */
 281			len -= tcp_sk(sk)->tcp_header_len;
 282			icsk->icsk_ack.last_seg_size = len;
 283			if (len == lss) {
 284				icsk->icsk_ack.rcv_mss = len;
 285				return;
 286			}
 287		}
 288		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 289			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 290		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 291	}
 292}
 293
 294static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 295{
 296	struct inet_connection_sock *icsk = inet_csk(sk);
 297	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 298
 299	if (quickacks == 0)
 300		quickacks = 2;
 301	quickacks = min(quickacks, max_quickacks);
 302	if (quickacks > icsk->icsk_ack.quick)
 303		icsk->icsk_ack.quick = quickacks;
 304}
 305
 306static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 307{
 308	struct inet_connection_sock *icsk = inet_csk(sk);
 309
 310	tcp_incr_quickack(sk, max_quickacks);
 311	inet_csk_exit_pingpong_mode(sk);
 312	icsk->icsk_ack.ato = TCP_ATO_MIN;
 313}
 
 314
 315/* Send ACKs quickly, if "quick" count is not exhausted
 316 * and the session is not interactive.
 317 */
 318
 319static bool tcp_in_quickack_mode(struct sock *sk)
 320{
 321	const struct inet_connection_sock *icsk = inet_csk(sk);
 322	const struct dst_entry *dst = __sk_dst_get(sk);
 323
 324	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 325		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 326}
 327
 328static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 329{
 330	if (tp->ecn_flags & TCP_ECN_OK)
 331		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 332}
 333
 334static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 335{
 336	if (tcp_hdr(skb)->cwr) {
 337		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 338
 339		/* If the sender is telling us it has entered CWR, then its
 340		 * cwnd may be very low (even just 1 packet), so we should ACK
 341		 * immediately.
 342		 */
 343		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 344			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 345	}
 346}
 347
 348static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 349{
 350	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 351}
 352
 353static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 354{
 355	struct tcp_sock *tp = tcp_sk(sk);
 356
 357	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 358	case INET_ECN_NOT_ECT:
 359		/* Funny extension: if ECT is not set on a segment,
 360		 * and we already seen ECT on a previous segment,
 361		 * it is probably a retransmit.
 362		 */
 363		if (tp->ecn_flags & TCP_ECN_SEEN)
 364			tcp_enter_quickack_mode(sk, 2);
 365		break;
 366	case INET_ECN_CE:
 367		if (tcp_ca_needs_ecn(sk))
 368			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 369
 370		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 371			/* Better not delay acks, sender can have a very low cwnd */
 372			tcp_enter_quickack_mode(sk, 2);
 373			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 374		}
 375		tp->ecn_flags |= TCP_ECN_SEEN;
 376		break;
 377	default:
 378		if (tcp_ca_needs_ecn(sk))
 379			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 380		tp->ecn_flags |= TCP_ECN_SEEN;
 381		break;
 382	}
 383}
 384
 385static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 386{
 387	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 388		__tcp_ecn_check_ce(sk, skb);
 389}
 390
 391static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 392{
 393	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 394		tp->ecn_flags &= ~TCP_ECN_OK;
 395}
 396
 397static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 398{
 399	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 400		tp->ecn_flags &= ~TCP_ECN_OK;
 401}
 402
 403static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 404{
 405	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 406		return true;
 407	return false;
 408}
 409
 410/* Buffer size and advertised window tuning.
 411 *
 412 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 413 */
 414
 415static void tcp_sndbuf_expand(struct sock *sk)
 416{
 417	const struct tcp_sock *tp = tcp_sk(sk);
 418	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 419	int sndmem, per_mss;
 420	u32 nr_segs;
 421
 422	/* Worst case is non GSO/TSO : each frame consumes one skb
 423	 * and skb->head is kmalloced using power of two area of memory
 424	 */
 425	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 426		  MAX_TCP_HEADER +
 427		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 428
 429	per_mss = roundup_pow_of_two(per_mss) +
 430		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 431
 432	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
 433	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 434
 435	/* Fast Recovery (RFC 5681 3.2) :
 436	 * Cubic needs 1.7 factor, rounded to 2 to include
 437	 * extra cushion (application might react slowly to EPOLLOUT)
 438	 */
 439	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 440	sndmem *= nr_segs * per_mss;
 441
 442	if (sk->sk_sndbuf < sndmem)
 443		WRITE_ONCE(sk->sk_sndbuf,
 444			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
 445}
 446
 447/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 448 *
 449 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 450 * forward and advertised in receiver window (tp->rcv_wnd) and
 451 * "application buffer", required to isolate scheduling/application
 452 * latencies from network.
 453 * window_clamp is maximal advertised window. It can be less than
 454 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 455 * is reserved for "application" buffer. The less window_clamp is
 456 * the smoother our behaviour from viewpoint of network, but the lower
 457 * throughput and the higher sensitivity of the connection to losses. 8)
 458 *
 459 * rcv_ssthresh is more strict window_clamp used at "slow start"
 460 * phase to predict further behaviour of this connection.
 461 * It is used for two goals:
 462 * - to enforce header prediction at sender, even when application
 463 *   requires some significant "application buffer". It is check #1.
 464 * - to prevent pruning of receive queue because of misprediction
 465 *   of receiver window. Check #2.
 466 *
 467 * The scheme does not work when sender sends good segments opening
 468 * window and then starts to feed us spaghetti. But it should work
 469 * in common situations. Otherwise, we have to rely on queue collapsing.
 470 */
 471
 472/* Slow part of check#2. */
 473static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
 474			     unsigned int skbtruesize)
 475{
 476	const struct tcp_sock *tp = tcp_sk(sk);
 477	/* Optimize this! */
 478	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
 479	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
 480
 481	while (tp->rcv_ssthresh <= window) {
 482		if (truesize <= skb->len)
 483			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 484
 485		truesize >>= 1;
 486		window >>= 1;
 487	}
 488	return 0;
 489}
 490
 491/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
 492 * can play nice with us, as sk_buff and skb->head might be either
 493 * freed or shared with up to MAX_SKB_FRAGS segments.
 494 * Only give a boost to drivers using page frag(s) to hold the frame(s),
 495 * and if no payload was pulled in skb->head before reaching us.
 496 */
 497static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
 498{
 499	u32 truesize = skb->truesize;
 500
 501	if (adjust && !skb_headlen(skb)) {
 502		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
 503		/* paranoid check, some drivers might be buggy */
 504		if (unlikely((int)truesize < (int)skb->len))
 505			truesize = skb->truesize;
 506	}
 507	return truesize;
 508}
 509
 510static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
 511			    bool adjust)
 512{
 513	struct tcp_sock *tp = tcp_sk(sk);
 514	int room;
 515
 516	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 517
 518	if (room <= 0)
 519		return;
 520
 521	/* Check #1 */
 522	if (!tcp_under_memory_pressure(sk)) {
 523		unsigned int truesize = truesize_adjust(adjust, skb);
 524		int incr;
 525
 526		/* Check #2. Increase window, if skb with such overhead
 527		 * will fit to rcvbuf in future.
 528		 */
 529		if (tcp_win_from_space(sk, truesize) <= skb->len)
 530			incr = 2 * tp->advmss;
 531		else
 532			incr = __tcp_grow_window(sk, skb, truesize);
 533
 534		if (incr) {
 535			incr = max_t(int, incr, 2 * skb->len);
 536			tp->rcv_ssthresh += min(room, incr);
 537			inet_csk(sk)->icsk_ack.quick |= 1;
 538		}
 539	} else {
 540		/* Under pressure:
 541		 * Adjust rcv_ssthresh according to reserved mem
 542		 */
 543		tcp_adjust_rcv_ssthresh(sk);
 544	}
 545}
 546
 547/* 3. Try to fixup all. It is made immediately after connection enters
 548 *    established state.
 549 */
 550static void tcp_init_buffer_space(struct sock *sk)
 551{
 552	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
 553	struct tcp_sock *tp = tcp_sk(sk);
 554	int maxwin;
 555
 556	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 557		tcp_sndbuf_expand(sk);
 558
 
 559	tcp_mstamp_refresh(tp);
 560	tp->rcvq_space.time = tp->tcp_mstamp;
 561	tp->rcvq_space.seq = tp->copied_seq;
 562
 563	maxwin = tcp_full_space(sk);
 564
 565	if (tp->window_clamp >= maxwin) {
 566		tp->window_clamp = maxwin;
 567
 568		if (tcp_app_win && maxwin > 4 * tp->advmss)
 569			tp->window_clamp = max(maxwin -
 570					       (maxwin >> tcp_app_win),
 571					       4 * tp->advmss);
 572	}
 573
 574	/* Force reservation of one segment. */
 575	if (tcp_app_win &&
 576	    tp->window_clamp > 2 * tp->advmss &&
 577	    tp->window_clamp + tp->advmss > maxwin)
 578		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 579
 580	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 581	tp->snd_cwnd_stamp = tcp_jiffies32;
 582	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 583				    (u32)TCP_INIT_CWND * tp->advmss);
 584}
 585
 586/* 4. Recalculate window clamp after socket hit its memory bounds. */
 587static void tcp_clamp_window(struct sock *sk)
 588{
 589	struct tcp_sock *tp = tcp_sk(sk);
 590	struct inet_connection_sock *icsk = inet_csk(sk);
 591	struct net *net = sock_net(sk);
 592	int rmem2;
 593
 594	icsk->icsk_ack.quick = 0;
 595	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
 596
 597	if (sk->sk_rcvbuf < rmem2 &&
 598	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 599	    !tcp_under_memory_pressure(sk) &&
 600	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 601		WRITE_ONCE(sk->sk_rcvbuf,
 602			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
 
 603	}
 604	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 605		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 606}
 607
 608/* Initialize RCV_MSS value.
 609 * RCV_MSS is an our guess about MSS used by the peer.
 610 * We haven't any direct information about the MSS.
 611 * It's better to underestimate the RCV_MSS rather than overestimate.
 612 * Overestimations make us ACKing less frequently than needed.
 613 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 614 */
 615void tcp_initialize_rcv_mss(struct sock *sk)
 616{
 617	const struct tcp_sock *tp = tcp_sk(sk);
 618	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 619
 620	hint = min(hint, tp->rcv_wnd / 2);
 621	hint = min(hint, TCP_MSS_DEFAULT);
 622	hint = max(hint, TCP_MIN_MSS);
 623
 624	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 625}
 626EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 627
 628/* Receiver "autotuning" code.
 629 *
 630 * The algorithm for RTT estimation w/o timestamps is based on
 631 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 632 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 633 *
 634 * More detail on this code can be found at
 635 * <http://staff.psc.edu/jheffner/>,
 636 * though this reference is out of date.  A new paper
 637 * is pending.
 638 */
 639static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 640{
 641	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 642	long m = sample;
 643
 644	if (new_sample != 0) {
 645		/* If we sample in larger samples in the non-timestamp
 646		 * case, we could grossly overestimate the RTT especially
 647		 * with chatty applications or bulk transfer apps which
 648		 * are stalled on filesystem I/O.
 649		 *
 650		 * Also, since we are only going for a minimum in the
 651		 * non-timestamp case, we do not smooth things out
 652		 * else with timestamps disabled convergence takes too
 653		 * long.
 654		 */
 655		if (!win_dep) {
 656			m -= (new_sample >> 3);
 657			new_sample += m;
 658		} else {
 659			m <<= 3;
 660			if (m < new_sample)
 661				new_sample = m;
 662		}
 663	} else {
 664		/* No previous measure. */
 665		new_sample = m << 3;
 666	}
 667
 668	tp->rcv_rtt_est.rtt_us = new_sample;
 669}
 670
 671static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 672{
 673	u32 delta_us;
 674
 675	if (tp->rcv_rtt_est.time == 0)
 676		goto new_measure;
 677	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 678		return;
 679	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 680	if (!delta_us)
 681		delta_us = 1;
 682	tcp_rcv_rtt_update(tp, delta_us, 1);
 683
 684new_measure:
 685	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 686	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 687}
 688
 689static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
 690{
 691	u32 delta, delta_us;
 692
 693	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
 694	if (tp->tcp_usec_ts)
 695		return delta;
 696
 697	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 698		if (!delta)
 699			delta = 1;
 700		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 701		return delta_us;
 702	}
 703	return -1;
 704}
 705
 706static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 707					  const struct sk_buff *skb)
 708{
 709	struct tcp_sock *tp = tcp_sk(sk);
 710
 711	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 712		return;
 713	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 714
 715	if (TCP_SKB_CB(skb)->end_seq -
 716	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 717		s32 delta = tcp_rtt_tsopt_us(tp);
 
 718
 719		if (delta >= 0)
 720			tcp_rcv_rtt_update(tp, delta, 0);
 
 
 
 
 721	}
 722}
 723
 724/*
 725 * This function should be called every time data is copied to user space.
 726 * It calculates the appropriate TCP receive buffer space.
 727 */
 728void tcp_rcv_space_adjust(struct sock *sk)
 729{
 730	struct tcp_sock *tp = tcp_sk(sk);
 731	u32 copied;
 732	int time;
 733
 734	trace_tcp_rcv_space_adjust(sk);
 735
 736	tcp_mstamp_refresh(tp);
 737	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 738	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 739		return;
 740
 741	/* Number of bytes copied to user in last RTT */
 742	copied = tp->copied_seq - tp->rcvq_space.seq;
 743	if (copied <= tp->rcvq_space.space)
 744		goto new_measure;
 745
 746	/* A bit of theory :
 747	 * copied = bytes received in previous RTT, our base window
 748	 * To cope with packet losses, we need a 2x factor
 749	 * To cope with slow start, and sender growing its cwin by 100 %
 750	 * every RTT, we need a 4x factor, because the ACK we are sending
 751	 * now is for the next RTT, not the current one :
 752	 * <prev RTT . ><current RTT .. ><next RTT .... >
 753	 */
 754
 755	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
 756	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 
 757		u64 rcvwin, grow;
 758		int rcvbuf;
 759
 760		/* minimal window to cope with packet losses, assuming
 761		 * steady state. Add some cushion because of small variations.
 762		 */
 763		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 764
 765		/* Accommodate for sender rate increase (eg. slow start) */
 766		grow = rcvwin * (copied - tp->rcvq_space.space);
 767		do_div(grow, tp->rcvq_space.space);
 768		rcvwin += (grow << 1);
 769
 770		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
 771			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 
 
 
 
 
 772		if (rcvbuf > sk->sk_rcvbuf) {
 773			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 774
 775			/* Make the window clamp follow along.  */
 776			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 777		}
 778	}
 779	tp->rcvq_space.space = copied;
 780
 781new_measure:
 782	tp->rcvq_space.seq = tp->copied_seq;
 783	tp->rcvq_space.time = tp->tcp_mstamp;
 784}
 785
 786static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
 787{
 788#if IS_ENABLED(CONFIG_IPV6)
 789	struct inet_connection_sock *icsk = inet_csk(sk);
 790
 791	if (skb->protocol == htons(ETH_P_IPV6))
 792		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
 793#endif
 794}
 795
 796/* There is something which you must keep in mind when you analyze the
 797 * behavior of the tp->ato delayed ack timeout interval.  When a
 798 * connection starts up, we want to ack as quickly as possible.  The
 799 * problem is that "good" TCP's do slow start at the beginning of data
 800 * transmission.  The means that until we send the first few ACK's the
 801 * sender will sit on his end and only queue most of his data, because
 802 * he can only send snd_cwnd unacked packets at any given time.  For
 803 * each ACK we send, he increments snd_cwnd and transmits more of his
 804 * queue.  -DaveM
 805 */
 806static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 807{
 808	struct tcp_sock *tp = tcp_sk(sk);
 809	struct inet_connection_sock *icsk = inet_csk(sk);
 810	u32 now;
 811
 812	inet_csk_schedule_ack(sk);
 813
 814	tcp_measure_rcv_mss(sk, skb);
 815
 816	tcp_rcv_rtt_measure(tp);
 817
 818	now = tcp_jiffies32;
 819
 820	if (!icsk->icsk_ack.ato) {
 821		/* The _first_ data packet received, initialize
 822		 * delayed ACK engine.
 823		 */
 824		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 825		icsk->icsk_ack.ato = TCP_ATO_MIN;
 826	} else {
 827		int m = now - icsk->icsk_ack.lrcvtime;
 828
 829		if (m <= TCP_ATO_MIN / 2) {
 830			/* The fastest case is the first. */
 831			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 832		} else if (m < icsk->icsk_ack.ato) {
 833			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 834			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 835				icsk->icsk_ack.ato = icsk->icsk_rto;
 836		} else if (m > icsk->icsk_rto) {
 837			/* Too long gap. Apparently sender failed to
 838			 * restart window, so that we send ACKs quickly.
 839			 */
 840			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 
 841		}
 842	}
 843	icsk->icsk_ack.lrcvtime = now;
 844	tcp_save_lrcv_flowlabel(sk, skb);
 845
 846	tcp_ecn_check_ce(sk, skb);
 847
 848	if (skb->len >= 128)
 849		tcp_grow_window(sk, skb, true);
 850}
 851
 852/* Called to compute a smoothed rtt estimate. The data fed to this
 853 * routine either comes from timestamps, or from segments that were
 854 * known _not_ to have been retransmitted [see Karn/Partridge
 855 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 856 * piece by Van Jacobson.
 857 * NOTE: the next three routines used to be one big routine.
 858 * To save cycles in the RFC 1323 implementation it was better to break
 859 * it up into three procedures. -- erics
 860 */
 861static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 862{
 863	struct tcp_sock *tp = tcp_sk(sk);
 864	long m = mrtt_us; /* RTT */
 865	u32 srtt = tp->srtt_us;
 866
 867	/*	The following amusing code comes from Jacobson's
 868	 *	article in SIGCOMM '88.  Note that rtt and mdev
 869	 *	are scaled versions of rtt and mean deviation.
 870	 *	This is designed to be as fast as possible
 871	 *	m stands for "measurement".
 872	 *
 873	 *	On a 1990 paper the rto value is changed to:
 874	 *	RTO = rtt + 4 * mdev
 875	 *
 876	 * Funny. This algorithm seems to be very broken.
 877	 * These formulae increase RTO, when it should be decreased, increase
 878	 * too slowly, when it should be increased quickly, decrease too quickly
 879	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 880	 * does not matter how to _calculate_ it. Seems, it was trap
 881	 * that VJ failed to avoid. 8)
 882	 */
 883	if (srtt != 0) {
 884		m -= (srtt >> 3);	/* m is now error in rtt est */
 885		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 886		if (m < 0) {
 887			m = -m;		/* m is now abs(error) */
 888			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 889			/* This is similar to one of Eifel findings.
 890			 * Eifel blocks mdev updates when rtt decreases.
 891			 * This solution is a bit different: we use finer gain
 892			 * for mdev in this case (alpha*beta).
 893			 * Like Eifel it also prevents growth of rto,
 894			 * but also it limits too fast rto decreases,
 895			 * happening in pure Eifel.
 896			 */
 897			if (m > 0)
 898				m >>= 3;
 899		} else {
 900			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 901		}
 902		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 903		if (tp->mdev_us > tp->mdev_max_us) {
 904			tp->mdev_max_us = tp->mdev_us;
 905			if (tp->mdev_max_us > tp->rttvar_us)
 906				tp->rttvar_us = tp->mdev_max_us;
 907		}
 908		if (after(tp->snd_una, tp->rtt_seq)) {
 909			if (tp->mdev_max_us < tp->rttvar_us)
 910				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 911			tp->rtt_seq = tp->snd_nxt;
 912			tp->mdev_max_us = tcp_rto_min_us(sk);
 913
 914			tcp_bpf_rtt(sk);
 915		}
 916	} else {
 917		/* no previous measure. */
 918		srtt = m << 3;		/* take the measured time to be rtt */
 919		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 920		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 921		tp->mdev_max_us = tp->rttvar_us;
 922		tp->rtt_seq = tp->snd_nxt;
 923
 924		tcp_bpf_rtt(sk);
 925	}
 926	tp->srtt_us = max(1U, srtt);
 927}
 928
 929static void tcp_update_pacing_rate(struct sock *sk)
 930{
 931	const struct tcp_sock *tp = tcp_sk(sk);
 932	u64 rate;
 933
 934	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 935	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 936
 937	/* current rate is (cwnd * mss) / srtt
 938	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 939	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 940	 *
 941	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 942	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 943	 *	 end of slow start and should slow down.
 944	 */
 945	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
 946		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
 947	else
 948		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
 949
 950	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
 951
 952	if (likely(tp->srtt_us))
 953		do_div(rate, tp->srtt_us);
 954
 955	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 956	 * without any lock. We want to make sure compiler wont store
 957	 * intermediate values in this location.
 958	 */
 959	WRITE_ONCE(sk->sk_pacing_rate,
 960		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
 961}
 962
 963/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 964 * routine referred to above.
 965 */
 966static void tcp_set_rto(struct sock *sk)
 967{
 968	const struct tcp_sock *tp = tcp_sk(sk);
 969	/* Old crap is replaced with new one. 8)
 970	 *
 971	 * More seriously:
 972	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 973	 *    It cannot be less due to utterly erratic ACK generation made
 974	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 975	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 976	 *    is invisible. Actually, Linux-2.4 also generates erratic
 977	 *    ACKs in some circumstances.
 978	 */
 979	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 980
 981	/* 2. Fixups made earlier cannot be right.
 982	 *    If we do not estimate RTO correctly without them,
 983	 *    all the algo is pure shit and should be replaced
 984	 *    with correct one. It is exactly, which we pretend to do.
 985	 */
 986
 987	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 988	 * guarantees that rto is higher.
 989	 */
 990	tcp_bound_rto(sk);
 991}
 992
 993__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 994{
 995	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 996
 997	if (!cwnd)
 998		cwnd = TCP_INIT_CWND;
 999	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1000}
1001
1002struct tcp_sacktag_state {
1003	/* Timestamps for earliest and latest never-retransmitted segment
1004	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1005	 * but congestion control should still get an accurate delay signal.
1006	 */
1007	u64	first_sackt;
1008	u64	last_sackt;
1009	u32	reord;
1010	u32	sack_delivered;
1011	int	flag;
1012	unsigned int mss_now;
1013	struct rate_sample *rate;
1014};
1015
1016/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1017 * and spurious retransmission information if this DSACK is unlikely caused by
1018 * sender's action:
1019 * - DSACKed sequence range is larger than maximum receiver's window.
1020 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1021 */
1022static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1023			  u32 end_seq, struct tcp_sacktag_state *state)
1024{
1025	u32 seq_len, dup_segs = 1;
1026
1027	if (!before(start_seq, end_seq))
1028		return 0;
1029
1030	seq_len = end_seq - start_seq;
1031	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1032	if (seq_len > tp->max_window)
1033		return 0;
1034	if (seq_len > tp->mss_cache)
1035		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1036	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1037		state->flag |= FLAG_DSACK_TLP;
1038
1039	tp->dsack_dups += dup_segs;
1040	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1041	if (tp->dsack_dups > tp->total_retrans)
1042		return 0;
1043
1044	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1045	/* We increase the RACK ordering window in rounds where we receive
1046	 * DSACKs that may have been due to reordering causing RACK to trigger
1047	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1048	 * without having seen reordering, or that match TLP probes (TLP
1049	 * is timer-driven, not triggered by RACK).
1050	 */
1051	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1052		tp->rack.dsack_seen = 1;
1053
1054	state->flag |= FLAG_DSACKING_ACK;
1055	/* A spurious retransmission is delivered */
1056	state->sack_delivered += dup_segs;
1057
1058	return dup_segs;
1059}
1060
1061/* It's reordering when higher sequence was delivered (i.e. sacked) before
1062 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1063 * distance is approximated in full-mss packet distance ("reordering").
1064 */
1065static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1066				      const int ts)
1067{
1068	struct tcp_sock *tp = tcp_sk(sk);
1069	const u32 mss = tp->mss_cache;
1070	u32 fack, metric;
1071
1072	fack = tcp_highest_sack_seq(tp);
1073	if (!before(low_seq, fack))
1074		return;
1075
1076	metric = fack - low_seq;
1077	if ((metric > tp->reordering * mss) && mss) {
1078#if FASTRETRANS_DEBUG > 1
1079		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1080			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1081			 tp->reordering,
1082			 0,
1083			 tp->sacked_out,
1084			 tp->undo_marker ? tp->undo_retrans : 0);
1085#endif
1086		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1087				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1088	}
1089
1090	/* This exciting event is worth to be remembered. 8) */
1091	tp->reord_seen++;
1092	NET_INC_STATS(sock_net(sk),
1093		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1094}
1095
1096 /* This must be called before lost_out or retrans_out are updated
1097  * on a new loss, because we want to know if all skbs previously
1098  * known to be lost have already been retransmitted, indicating
1099  * that this newly lost skb is our next skb to retransmit.
1100  */
1101static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1102{
1103	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1104	    (tp->retransmit_skb_hint &&
1105	     before(TCP_SKB_CB(skb)->seq,
1106		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1107		tp->retransmit_skb_hint = skb;
1108}
1109
1110/* Sum the number of packets on the wire we have marked as lost, and
1111 * notify the congestion control module that the given skb was marked lost.
 
 
 
 
1112 */
1113static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1114{
1115	tp->lost += tcp_skb_pcount(skb);
 
 
 
 
1116}
1117
1118void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1119{
1120	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1121	struct tcp_sock *tp = tcp_sk(sk);
1122
1123	if (sacked & TCPCB_SACKED_ACKED)
1124		return;
1125
1126	tcp_verify_retransmit_hint(tp, skb);
1127	if (sacked & TCPCB_LOST) {
1128		if (sacked & TCPCB_SACKED_RETRANS) {
1129			/* Account for retransmits that are lost again */
1130			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1131			tp->retrans_out -= tcp_skb_pcount(skb);
1132			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1133				      tcp_skb_pcount(skb));
1134			tcp_notify_skb_loss_event(tp, skb);
1135		}
1136	} else {
1137		tp->lost_out += tcp_skb_pcount(skb);
 
1138		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1139		tcp_notify_skb_loss_event(tp, skb);
1140	}
1141}
1142
1143/* Updates the delivered and delivered_ce counts */
1144static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1145				bool ece_ack)
1146{
1147	tp->delivered += delivered;
1148	if (ece_ack)
1149		tp->delivered_ce += delivered;
 
 
 
 
1150}
1151
1152/* This procedure tags the retransmission queue when SACKs arrive.
1153 *
1154 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1155 * Packets in queue with these bits set are counted in variables
1156 * sacked_out, retrans_out and lost_out, correspondingly.
1157 *
1158 * Valid combinations are:
1159 * Tag  InFlight	Description
1160 * 0	1		- orig segment is in flight.
1161 * S	0		- nothing flies, orig reached receiver.
1162 * L	0		- nothing flies, orig lost by net.
1163 * R	2		- both orig and retransmit are in flight.
1164 * L|R	1		- orig is lost, retransmit is in flight.
1165 * S|R  1		- orig reached receiver, retrans is still in flight.
1166 * (L|S|R is logically valid, it could occur when L|R is sacked,
1167 *  but it is equivalent to plain S and code short-curcuits it to S.
1168 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1169 *
1170 * These 6 states form finite state machine, controlled by the following events:
1171 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1172 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1173 * 3. Loss detection event of two flavors:
1174 *	A. Scoreboard estimator decided the packet is lost.
1175 *	   A'. Reno "three dupacks" marks head of queue lost.
1176 *	B. SACK arrives sacking SND.NXT at the moment, when the
1177 *	   segment was retransmitted.
1178 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1179 *
1180 * It is pleasant to note, that state diagram turns out to be commutative,
1181 * so that we are allowed not to be bothered by order of our actions,
1182 * when multiple events arrive simultaneously. (see the function below).
1183 *
1184 * Reordering detection.
1185 * --------------------
1186 * Reordering metric is maximal distance, which a packet can be displaced
1187 * in packet stream. With SACKs we can estimate it:
1188 *
1189 * 1. SACK fills old hole and the corresponding segment was not
1190 *    ever retransmitted -> reordering. Alas, we cannot use it
1191 *    when segment was retransmitted.
1192 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1193 *    for retransmitted and already SACKed segment -> reordering..
1194 * Both of these heuristics are not used in Loss state, when we cannot
1195 * account for retransmits accurately.
1196 *
1197 * SACK block validation.
1198 * ----------------------
1199 *
1200 * SACK block range validation checks that the received SACK block fits to
1201 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1202 * Note that SND.UNA is not included to the range though being valid because
1203 * it means that the receiver is rather inconsistent with itself reporting
1204 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1205 * perfectly valid, however, in light of RFC2018 which explicitly states
1206 * that "SACK block MUST reflect the newest segment.  Even if the newest
1207 * segment is going to be discarded ...", not that it looks very clever
1208 * in case of head skb. Due to potentional receiver driven attacks, we
1209 * choose to avoid immediate execution of a walk in write queue due to
1210 * reneging and defer head skb's loss recovery to standard loss recovery
1211 * procedure that will eventually trigger (nothing forbids us doing this).
1212 *
1213 * Implements also blockage to start_seq wrap-around. Problem lies in the
1214 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1215 * there's no guarantee that it will be before snd_nxt (n). The problem
1216 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1217 * wrap (s_w):
1218 *
1219 *         <- outs wnd ->                          <- wrapzone ->
1220 *         u     e      n                         u_w   e_w  s n_w
1221 *         |     |      |                          |     |   |  |
1222 * |<------------+------+----- TCP seqno space --------------+---------->|
1223 * ...-- <2^31 ->|                                           |<--------...
1224 * ...---- >2^31 ------>|                                    |<--------...
1225 *
1226 * Current code wouldn't be vulnerable but it's better still to discard such
1227 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1228 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1229 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1230 * equal to the ideal case (infinite seqno space without wrap caused issues).
1231 *
1232 * With D-SACK the lower bound is extended to cover sequence space below
1233 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1234 * again, D-SACK block must not to go across snd_una (for the same reason as
1235 * for the normal SACK blocks, explained above). But there all simplicity
1236 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1237 * fully below undo_marker they do not affect behavior in anyway and can
1238 * therefore be safely ignored. In rare cases (which are more or less
1239 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1240 * fragmentation and packet reordering past skb's retransmission. To consider
1241 * them correctly, the acceptable range must be extended even more though
1242 * the exact amount is rather hard to quantify. However, tp->max_window can
1243 * be used as an exaggerated estimate.
1244 */
1245static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1246				   u32 start_seq, u32 end_seq)
1247{
1248	/* Too far in future, or reversed (interpretation is ambiguous) */
1249	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1250		return false;
1251
1252	/* Nasty start_seq wrap-around check (see comments above) */
1253	if (!before(start_seq, tp->snd_nxt))
1254		return false;
1255
1256	/* In outstanding window? ...This is valid exit for D-SACKs too.
1257	 * start_seq == snd_una is non-sensical (see comments above)
1258	 */
1259	if (after(start_seq, tp->snd_una))
1260		return true;
1261
1262	if (!is_dsack || !tp->undo_marker)
1263		return false;
1264
1265	/* ...Then it's D-SACK, and must reside below snd_una completely */
1266	if (after(end_seq, tp->snd_una))
1267		return false;
1268
1269	if (!before(start_seq, tp->undo_marker))
1270		return true;
1271
1272	/* Too old */
1273	if (!after(end_seq, tp->undo_marker))
1274		return false;
1275
1276	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1277	 *   start_seq < undo_marker and end_seq >= undo_marker.
1278	 */
1279	return !before(start_seq, end_seq - tp->max_window);
1280}
1281
1282static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1283			    struct tcp_sack_block_wire *sp, int num_sacks,
1284			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1285{
1286	struct tcp_sock *tp = tcp_sk(sk);
1287	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1288	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1289	u32 dup_segs;
1290
1291	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
 
 
1292		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1293	} else if (num_sacks > 1) {
1294		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1295		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1296
1297		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1298			return false;
1299		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1300	} else {
1301		return false;
1302	}
1303
1304	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1305	if (!dup_segs) {	/* Skip dubious DSACK */
1306		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1307		return false;
1308	}
1309
1310	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1311
1312	/* D-SACK for already forgotten data... Do dumb counting. */
1313	if (tp->undo_marker && tp->undo_retrans > 0 &&
1314	    !after(end_seq_0, prior_snd_una) &&
1315	    after(end_seq_0, tp->undo_marker))
1316		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1317
1318	return true;
1319}
1320
 
 
 
 
 
 
 
 
 
 
 
 
 
1321/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1322 * the incoming SACK may not exactly match but we can find smaller MSS
1323 * aligned portion of it that matches. Therefore we might need to fragment
1324 * which may fail and creates some hassle (caller must handle error case
1325 * returns).
1326 *
1327 * FIXME: this could be merged to shift decision code
1328 */
1329static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1330				  u32 start_seq, u32 end_seq)
1331{
1332	int err;
1333	bool in_sack;
1334	unsigned int pkt_len;
1335	unsigned int mss;
1336
1337	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1338		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1339
1340	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1341	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1342		mss = tcp_skb_mss(skb);
1343		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1344
1345		if (!in_sack) {
1346			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1347			if (pkt_len < mss)
1348				pkt_len = mss;
1349		} else {
1350			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1351			if (pkt_len < mss)
1352				return -EINVAL;
1353		}
1354
1355		/* Round if necessary so that SACKs cover only full MSSes
1356		 * and/or the remaining small portion (if present)
1357		 */
1358		if (pkt_len > mss) {
1359			unsigned int new_len = (pkt_len / mss) * mss;
1360			if (!in_sack && new_len < pkt_len)
1361				new_len += mss;
1362			pkt_len = new_len;
1363		}
1364
1365		if (pkt_len >= skb->len && !in_sack)
1366			return 0;
1367
1368		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1369				   pkt_len, mss, GFP_ATOMIC);
1370		if (err < 0)
1371			return err;
1372	}
1373
1374	return in_sack;
1375}
1376
1377/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1378static u8 tcp_sacktag_one(struct sock *sk,
1379			  struct tcp_sacktag_state *state, u8 sacked,
1380			  u32 start_seq, u32 end_seq,
1381			  int dup_sack, int pcount,
1382			  u64 xmit_time)
1383{
1384	struct tcp_sock *tp = tcp_sk(sk);
1385
1386	/* Account D-SACK for retransmitted packet. */
1387	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1388		if (tp->undo_marker && tp->undo_retrans > 0 &&
1389		    after(end_seq, tp->undo_marker))
1390			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1391		if ((sacked & TCPCB_SACKED_ACKED) &&
1392		    before(start_seq, state->reord))
1393				state->reord = start_seq;
1394	}
1395
1396	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1397	if (!after(end_seq, tp->snd_una))
1398		return sacked;
1399
1400	if (!(sacked & TCPCB_SACKED_ACKED)) {
1401		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1402
1403		if (sacked & TCPCB_SACKED_RETRANS) {
1404			/* If the segment is not tagged as lost,
1405			 * we do not clear RETRANS, believing
1406			 * that retransmission is still in flight.
1407			 */
1408			if (sacked & TCPCB_LOST) {
1409				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1410				tp->lost_out -= pcount;
1411				tp->retrans_out -= pcount;
1412			}
1413		} else {
1414			if (!(sacked & TCPCB_RETRANS)) {
1415				/* New sack for not retransmitted frame,
1416				 * which was in hole. It is reordering.
1417				 */
1418				if (before(start_seq,
1419					   tcp_highest_sack_seq(tp)) &&
1420				    before(start_seq, state->reord))
1421					state->reord = start_seq;
1422
1423				if (!after(end_seq, tp->high_seq))
1424					state->flag |= FLAG_ORIG_SACK_ACKED;
1425				if (state->first_sackt == 0)
1426					state->first_sackt = xmit_time;
1427				state->last_sackt = xmit_time;
1428			}
1429
1430			if (sacked & TCPCB_LOST) {
1431				sacked &= ~TCPCB_LOST;
1432				tp->lost_out -= pcount;
1433			}
1434		}
1435
1436		sacked |= TCPCB_SACKED_ACKED;
1437		state->flag |= FLAG_DATA_SACKED;
1438		tp->sacked_out += pcount;
1439		/* Out-of-order packets delivered */
1440		state->sack_delivered += pcount;
1441
1442		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1443		if (tp->lost_skb_hint &&
1444		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1445			tp->lost_cnt_hint += pcount;
1446	}
1447
1448	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1449	 * frames and clear it. undo_retrans is decreased above, L|R frames
1450	 * are accounted above as well.
1451	 */
1452	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1453		sacked &= ~TCPCB_SACKED_RETRANS;
1454		tp->retrans_out -= pcount;
1455	}
1456
1457	return sacked;
1458}
1459
1460/* Shift newly-SACKed bytes from this skb to the immediately previous
1461 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1462 */
1463static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1464			    struct sk_buff *skb,
1465			    struct tcp_sacktag_state *state,
1466			    unsigned int pcount, int shifted, int mss,
1467			    bool dup_sack)
1468{
1469	struct tcp_sock *tp = tcp_sk(sk);
1470	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1471	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1472
1473	BUG_ON(!pcount);
1474
1475	/* Adjust counters and hints for the newly sacked sequence
1476	 * range but discard the return value since prev is already
1477	 * marked. We must tag the range first because the seq
1478	 * advancement below implicitly advances
1479	 * tcp_highest_sack_seq() when skb is highest_sack.
1480	 */
1481	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1482			start_seq, end_seq, dup_sack, pcount,
1483			tcp_skb_timestamp_us(skb));
1484	tcp_rate_skb_delivered(sk, skb, state->rate);
1485
1486	if (skb == tp->lost_skb_hint)
1487		tp->lost_cnt_hint += pcount;
1488
1489	TCP_SKB_CB(prev)->end_seq += shifted;
1490	TCP_SKB_CB(skb)->seq += shifted;
1491
1492	tcp_skb_pcount_add(prev, pcount);
1493	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1494	tcp_skb_pcount_add(skb, -pcount);
1495
1496	/* When we're adding to gso_segs == 1, gso_size will be zero,
1497	 * in theory this shouldn't be necessary but as long as DSACK
1498	 * code can come after this skb later on it's better to keep
1499	 * setting gso_size to something.
1500	 */
1501	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1502		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1503
1504	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1505	if (tcp_skb_pcount(skb) <= 1)
1506		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1507
1508	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1509	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1510
1511	if (skb->len > 0) {
1512		BUG_ON(!tcp_skb_pcount(skb));
1513		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1514		return false;
1515	}
1516
1517	/* Whole SKB was eaten :-) */
1518
1519	if (skb == tp->retransmit_skb_hint)
1520		tp->retransmit_skb_hint = prev;
1521	if (skb == tp->lost_skb_hint) {
1522		tp->lost_skb_hint = prev;
1523		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1524	}
1525
1526	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1527	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1528	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1529		TCP_SKB_CB(prev)->end_seq++;
1530
1531	if (skb == tcp_highest_sack(sk))
1532		tcp_advance_highest_sack(sk, skb);
1533
1534	tcp_skb_collapse_tstamp(prev, skb);
1535	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1536		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1537
1538	tcp_rtx_queue_unlink_and_free(skb, sk);
1539
1540	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1541
1542	return true;
1543}
1544
1545/* I wish gso_size would have a bit more sane initialization than
1546 * something-or-zero which complicates things
1547 */
1548static int tcp_skb_seglen(const struct sk_buff *skb)
1549{
1550	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1551}
1552
1553/* Shifting pages past head area doesn't work */
1554static int skb_can_shift(const struct sk_buff *skb)
1555{
1556	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1557}
1558
1559int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1560		  int pcount, int shiftlen)
1561{
1562	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1563	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1564	 * to make sure not storing more than 65535 * 8 bytes per skb,
1565	 * even if current MSS is bigger.
1566	 */
1567	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1568		return 0;
1569	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1570		return 0;
1571	return skb_shift(to, from, shiftlen);
1572}
1573
1574/* Try collapsing SACK blocks spanning across multiple skbs to a single
1575 * skb.
1576 */
1577static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1578					  struct tcp_sacktag_state *state,
1579					  u32 start_seq, u32 end_seq,
1580					  bool dup_sack)
1581{
1582	struct tcp_sock *tp = tcp_sk(sk);
1583	struct sk_buff *prev;
1584	int mss;
1585	int pcount = 0;
1586	int len;
1587	int in_sack;
1588
1589	/* Normally R but no L won't result in plain S */
1590	if (!dup_sack &&
1591	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1592		goto fallback;
1593	if (!skb_can_shift(skb))
1594		goto fallback;
1595	/* This frame is about to be dropped (was ACKed). */
1596	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1597		goto fallback;
1598
1599	/* Can only happen with delayed DSACK + discard craziness */
1600	prev = skb_rb_prev(skb);
1601	if (!prev)
1602		goto fallback;
1603
1604	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1605		goto fallback;
1606
1607	if (!tcp_skb_can_collapse(prev, skb))
1608		goto fallback;
1609
1610	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1611		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1612
1613	if (in_sack) {
1614		len = skb->len;
1615		pcount = tcp_skb_pcount(skb);
1616		mss = tcp_skb_seglen(skb);
1617
1618		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1619		 * drop this restriction as unnecessary
1620		 */
1621		if (mss != tcp_skb_seglen(prev))
1622			goto fallback;
1623	} else {
1624		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1625			goto noop;
1626		/* CHECKME: This is non-MSS split case only?, this will
1627		 * cause skipped skbs due to advancing loop btw, original
1628		 * has that feature too
1629		 */
1630		if (tcp_skb_pcount(skb) <= 1)
1631			goto noop;
1632
1633		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1634		if (!in_sack) {
1635			/* TODO: head merge to next could be attempted here
1636			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1637			 * though it might not be worth of the additional hassle
1638			 *
1639			 * ...we can probably just fallback to what was done
1640			 * previously. We could try merging non-SACKed ones
1641			 * as well but it probably isn't going to buy off
1642			 * because later SACKs might again split them, and
1643			 * it would make skb timestamp tracking considerably
1644			 * harder problem.
1645			 */
1646			goto fallback;
1647		}
1648
1649		len = end_seq - TCP_SKB_CB(skb)->seq;
1650		BUG_ON(len < 0);
1651		BUG_ON(len > skb->len);
1652
1653		/* MSS boundaries should be honoured or else pcount will
1654		 * severely break even though it makes things bit trickier.
1655		 * Optimize common case to avoid most of the divides
1656		 */
1657		mss = tcp_skb_mss(skb);
1658
1659		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1660		 * drop this restriction as unnecessary
1661		 */
1662		if (mss != tcp_skb_seglen(prev))
1663			goto fallback;
1664
1665		if (len == mss) {
1666			pcount = 1;
1667		} else if (len < mss) {
1668			goto noop;
1669		} else {
1670			pcount = len / mss;
1671			len = pcount * mss;
1672		}
1673	}
1674
1675	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1676	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1677		goto fallback;
1678
1679	if (!tcp_skb_shift(prev, skb, pcount, len))
1680		goto fallback;
1681	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1682		goto out;
1683
1684	/* Hole filled allows collapsing with the next as well, this is very
1685	 * useful when hole on every nth skb pattern happens
1686	 */
1687	skb = skb_rb_next(prev);
1688	if (!skb)
1689		goto out;
1690
1691	if (!skb_can_shift(skb) ||
1692	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1693	    (mss != tcp_skb_seglen(skb)))
1694		goto out;
1695
1696	if (!tcp_skb_can_collapse(prev, skb))
1697		goto out;
1698	len = skb->len;
1699	pcount = tcp_skb_pcount(skb);
1700	if (tcp_skb_shift(prev, skb, pcount, len))
1701		tcp_shifted_skb(sk, prev, skb, state, pcount,
1702				len, mss, 0);
1703
1704out:
1705	return prev;
1706
1707noop:
1708	return skb;
1709
1710fallback:
1711	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1712	return NULL;
1713}
1714
1715static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1716					struct tcp_sack_block *next_dup,
1717					struct tcp_sacktag_state *state,
1718					u32 start_seq, u32 end_seq,
1719					bool dup_sack_in)
1720{
1721	struct tcp_sock *tp = tcp_sk(sk);
1722	struct sk_buff *tmp;
1723
1724	skb_rbtree_walk_from(skb) {
1725		int in_sack = 0;
1726		bool dup_sack = dup_sack_in;
1727
1728		/* queue is in-order => we can short-circuit the walk early */
1729		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1730			break;
1731
1732		if (next_dup  &&
1733		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1734			in_sack = tcp_match_skb_to_sack(sk, skb,
1735							next_dup->start_seq,
1736							next_dup->end_seq);
1737			if (in_sack > 0)
1738				dup_sack = true;
1739		}
1740
1741		/* skb reference here is a bit tricky to get right, since
1742		 * shifting can eat and free both this skb and the next,
1743		 * so not even _safe variant of the loop is enough.
1744		 */
1745		if (in_sack <= 0) {
1746			tmp = tcp_shift_skb_data(sk, skb, state,
1747						 start_seq, end_seq, dup_sack);
1748			if (tmp) {
1749				if (tmp != skb) {
1750					skb = tmp;
1751					continue;
1752				}
1753
1754				in_sack = 0;
1755			} else {
1756				in_sack = tcp_match_skb_to_sack(sk, skb,
1757								start_seq,
1758								end_seq);
1759			}
1760		}
1761
1762		if (unlikely(in_sack < 0))
1763			break;
1764
1765		if (in_sack) {
1766			TCP_SKB_CB(skb)->sacked =
1767				tcp_sacktag_one(sk,
1768						state,
1769						TCP_SKB_CB(skb)->sacked,
1770						TCP_SKB_CB(skb)->seq,
1771						TCP_SKB_CB(skb)->end_seq,
1772						dup_sack,
1773						tcp_skb_pcount(skb),
1774						tcp_skb_timestamp_us(skb));
1775			tcp_rate_skb_delivered(sk, skb, state->rate);
1776			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1777				list_del_init(&skb->tcp_tsorted_anchor);
1778
1779			if (!before(TCP_SKB_CB(skb)->seq,
1780				    tcp_highest_sack_seq(tp)))
1781				tcp_advance_highest_sack(sk, skb);
1782		}
1783	}
1784	return skb;
1785}
1786
1787static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1788{
1789	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1790	struct sk_buff *skb;
1791
1792	while (*p) {
1793		parent = *p;
1794		skb = rb_to_skb(parent);
1795		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1796			p = &parent->rb_left;
1797			continue;
1798		}
1799		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1800			p = &parent->rb_right;
1801			continue;
1802		}
1803		return skb;
1804	}
1805	return NULL;
1806}
1807
1808static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1809					u32 skip_to_seq)
1810{
1811	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1812		return skb;
1813
1814	return tcp_sacktag_bsearch(sk, skip_to_seq);
1815}
1816
1817static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1818						struct sock *sk,
1819						struct tcp_sack_block *next_dup,
1820						struct tcp_sacktag_state *state,
1821						u32 skip_to_seq)
1822{
1823	if (!next_dup)
1824		return skb;
1825
1826	if (before(next_dup->start_seq, skip_to_seq)) {
1827		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1828		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1829				       next_dup->start_seq, next_dup->end_seq,
1830				       1);
1831	}
1832
1833	return skb;
1834}
1835
1836static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1837{
1838	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1839}
1840
1841static int
1842tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1843			u32 prior_snd_una, struct tcp_sacktag_state *state)
1844{
1845	struct tcp_sock *tp = tcp_sk(sk);
1846	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1847				    TCP_SKB_CB(ack_skb)->sacked);
1848	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1849	struct tcp_sack_block sp[TCP_NUM_SACKS];
1850	struct tcp_sack_block *cache;
1851	struct sk_buff *skb;
1852	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1853	int used_sacks;
1854	bool found_dup_sack = false;
1855	int i, j;
1856	int first_sack_index;
1857
1858	state->flag = 0;
1859	state->reord = tp->snd_nxt;
1860
1861	if (!tp->sacked_out)
1862		tcp_highest_sack_reset(sk);
1863
1864	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1865					 num_sacks, prior_snd_una, state);
 
 
 
 
1866
1867	/* Eliminate too old ACKs, but take into
1868	 * account more or less fresh ones, they can
1869	 * contain valid SACK info.
1870	 */
1871	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1872		return 0;
1873
1874	if (!tp->packets_out)
1875		goto out;
1876
1877	used_sacks = 0;
1878	first_sack_index = 0;
1879	for (i = 0; i < num_sacks; i++) {
1880		bool dup_sack = !i && found_dup_sack;
1881
1882		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1883		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1884
1885		if (!tcp_is_sackblock_valid(tp, dup_sack,
1886					    sp[used_sacks].start_seq,
1887					    sp[used_sacks].end_seq)) {
1888			int mib_idx;
1889
1890			if (dup_sack) {
1891				if (!tp->undo_marker)
1892					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1893				else
1894					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1895			} else {
1896				/* Don't count olds caused by ACK reordering */
1897				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1898				    !after(sp[used_sacks].end_seq, tp->snd_una))
1899					continue;
1900				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1901			}
1902
1903			NET_INC_STATS(sock_net(sk), mib_idx);
1904			if (i == 0)
1905				first_sack_index = -1;
1906			continue;
1907		}
1908
1909		/* Ignore very old stuff early */
1910		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1911			if (i == 0)
1912				first_sack_index = -1;
1913			continue;
1914		}
1915
1916		used_sacks++;
1917	}
1918
1919	/* order SACK blocks to allow in order walk of the retrans queue */
1920	for (i = used_sacks - 1; i > 0; i--) {
1921		for (j = 0; j < i; j++) {
1922			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1923				swap(sp[j], sp[j + 1]);
1924
1925				/* Track where the first SACK block goes to */
1926				if (j == first_sack_index)
1927					first_sack_index = j + 1;
1928			}
1929		}
1930	}
1931
1932	state->mss_now = tcp_current_mss(sk);
1933	skb = NULL;
1934	i = 0;
1935
1936	if (!tp->sacked_out) {
1937		/* It's already past, so skip checking against it */
1938		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1939	} else {
1940		cache = tp->recv_sack_cache;
1941		/* Skip empty blocks in at head of the cache */
1942		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1943		       !cache->end_seq)
1944			cache++;
1945	}
1946
1947	while (i < used_sacks) {
1948		u32 start_seq = sp[i].start_seq;
1949		u32 end_seq = sp[i].end_seq;
1950		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1951		struct tcp_sack_block *next_dup = NULL;
1952
1953		if (found_dup_sack && ((i + 1) == first_sack_index))
1954			next_dup = &sp[i + 1];
1955
1956		/* Skip too early cached blocks */
1957		while (tcp_sack_cache_ok(tp, cache) &&
1958		       !before(start_seq, cache->end_seq))
1959			cache++;
1960
1961		/* Can skip some work by looking recv_sack_cache? */
1962		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1963		    after(end_seq, cache->start_seq)) {
1964
1965			/* Head todo? */
1966			if (before(start_seq, cache->start_seq)) {
1967				skb = tcp_sacktag_skip(skb, sk, start_seq);
1968				skb = tcp_sacktag_walk(skb, sk, next_dup,
1969						       state,
1970						       start_seq,
1971						       cache->start_seq,
1972						       dup_sack);
1973			}
1974
1975			/* Rest of the block already fully processed? */
1976			if (!after(end_seq, cache->end_seq))
1977				goto advance_sp;
1978
1979			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1980						       state,
1981						       cache->end_seq);
1982
1983			/* ...tail remains todo... */
1984			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1985				/* ...but better entrypoint exists! */
1986				skb = tcp_highest_sack(sk);
1987				if (!skb)
1988					break;
1989				cache++;
1990				goto walk;
1991			}
1992
1993			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1994			/* Check overlap against next cached too (past this one already) */
1995			cache++;
1996			continue;
1997		}
1998
1999		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2000			skb = tcp_highest_sack(sk);
2001			if (!skb)
2002				break;
2003		}
2004		skb = tcp_sacktag_skip(skb, sk, start_seq);
2005
2006walk:
2007		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2008				       start_seq, end_seq, dup_sack);
2009
2010advance_sp:
2011		i++;
2012	}
2013
2014	/* Clear the head of the cache sack blocks so we can skip it next time */
2015	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2016		tp->recv_sack_cache[i].start_seq = 0;
2017		tp->recv_sack_cache[i].end_seq = 0;
2018	}
2019	for (j = 0; j < used_sacks; j++)
2020		tp->recv_sack_cache[i++] = sp[j];
2021
2022	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2023		tcp_check_sack_reordering(sk, state->reord, 0);
2024
2025	tcp_verify_left_out(tp);
2026out:
2027
2028#if FASTRETRANS_DEBUG > 0
2029	WARN_ON((int)tp->sacked_out < 0);
2030	WARN_ON((int)tp->lost_out < 0);
2031	WARN_ON((int)tp->retrans_out < 0);
2032	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2033#endif
2034	return state->flag;
2035}
2036
2037/* Limits sacked_out so that sum with lost_out isn't ever larger than
2038 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2039 */
2040static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2041{
2042	u32 holes;
2043
2044	holes = max(tp->lost_out, 1U);
2045	holes = min(holes, tp->packets_out);
2046
2047	if ((tp->sacked_out + holes) > tp->packets_out) {
2048		tp->sacked_out = tp->packets_out - holes;
2049		return true;
2050	}
2051	return false;
2052}
2053
2054/* If we receive more dupacks than we expected counting segments
2055 * in assumption of absent reordering, interpret this as reordering.
2056 * The only another reason could be bug in receiver TCP.
2057 */
2058static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2059{
2060	struct tcp_sock *tp = tcp_sk(sk);
2061
2062	if (!tcp_limit_reno_sacked(tp))
2063		return;
2064
2065	tp->reordering = min_t(u32, tp->packets_out + addend,
2066			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2067	tp->reord_seen++;
2068	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2069}
2070
2071/* Emulate SACKs for SACKless connection: account for a new dupack. */
2072
2073static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2074{
2075	if (num_dupack) {
2076		struct tcp_sock *tp = tcp_sk(sk);
2077		u32 prior_sacked = tp->sacked_out;
2078		s32 delivered;
2079
2080		tp->sacked_out += num_dupack;
2081		tcp_check_reno_reordering(sk, 0);
2082		delivered = tp->sacked_out - prior_sacked;
2083		if (delivered > 0)
2084			tcp_count_delivered(tp, delivered, ece_ack);
2085		tcp_verify_left_out(tp);
2086	}
2087}
2088
2089/* Account for ACK, ACKing some data in Reno Recovery phase. */
2090
2091static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2092{
2093	struct tcp_sock *tp = tcp_sk(sk);
2094
2095	if (acked > 0) {
2096		/* One ACK acked hole. The rest eat duplicate ACKs. */
2097		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2098				    ece_ack);
2099		if (acked - 1 >= tp->sacked_out)
2100			tp->sacked_out = 0;
2101		else
2102			tp->sacked_out -= acked - 1;
2103	}
2104	tcp_check_reno_reordering(sk, acked);
2105	tcp_verify_left_out(tp);
2106}
2107
2108static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2109{
2110	tp->sacked_out = 0;
2111}
2112
2113void tcp_clear_retrans(struct tcp_sock *tp)
2114{
2115	tp->retrans_out = 0;
2116	tp->lost_out = 0;
2117	tp->undo_marker = 0;
2118	tp->undo_retrans = -1;
2119	tp->sacked_out = 0;
2120	tp->rto_stamp = 0;
2121	tp->total_rto = 0;
2122	tp->total_rto_recoveries = 0;
2123	tp->total_rto_time = 0;
2124}
2125
2126static inline void tcp_init_undo(struct tcp_sock *tp)
2127{
2128	tp->undo_marker = tp->snd_una;
2129	/* Retransmission still in flight may cause DSACKs later. */
2130	tp->undo_retrans = tp->retrans_out ? : -1;
2131}
2132
2133static bool tcp_is_rack(const struct sock *sk)
2134{
2135	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2136		TCP_RACK_LOSS_DETECTION;
2137}
2138
2139/* If we detect SACK reneging, forget all SACK information
2140 * and reset tags completely, otherwise preserve SACKs. If receiver
2141 * dropped its ofo queue, we will know this due to reneging detection.
2142 */
2143static void tcp_timeout_mark_lost(struct sock *sk)
2144{
2145	struct tcp_sock *tp = tcp_sk(sk);
2146	struct sk_buff *skb, *head;
2147	bool is_reneg;			/* is receiver reneging on SACKs? */
2148
2149	head = tcp_rtx_queue_head(sk);
2150	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2151	if (is_reneg) {
2152		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2153		tp->sacked_out = 0;
2154		/* Mark SACK reneging until we recover from this loss event. */
2155		tp->is_sack_reneg = 1;
2156	} else if (tcp_is_reno(tp)) {
2157		tcp_reset_reno_sack(tp);
2158	}
2159
2160	skb = head;
2161	skb_rbtree_walk_from(skb) {
2162		if (is_reneg)
2163			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2164		else if (tcp_is_rack(sk) && skb != head &&
2165			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2166			continue; /* Don't mark recently sent ones lost yet */
2167		tcp_mark_skb_lost(sk, skb);
2168	}
2169	tcp_verify_left_out(tp);
2170	tcp_clear_all_retrans_hints(tp);
2171}
2172
2173/* Enter Loss state. */
2174void tcp_enter_loss(struct sock *sk)
2175{
2176	const struct inet_connection_sock *icsk = inet_csk(sk);
2177	struct tcp_sock *tp = tcp_sk(sk);
2178	struct net *net = sock_net(sk);
2179	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2180	u8 reordering;
2181
2182	tcp_timeout_mark_lost(sk);
2183
2184	/* Reduce ssthresh if it has not yet been made inside this window. */
2185	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2186	    !after(tp->high_seq, tp->snd_una) ||
2187	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2188		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2189		tp->prior_cwnd = tcp_snd_cwnd(tp);
2190		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2191		tcp_ca_event(sk, CA_EVENT_LOSS);
2192		tcp_init_undo(tp);
2193	}
2194	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2195	tp->snd_cwnd_cnt   = 0;
2196	tp->snd_cwnd_stamp = tcp_jiffies32;
2197
2198	/* Timeout in disordered state after receiving substantial DUPACKs
2199	 * suggests that the degree of reordering is over-estimated.
2200	 */
2201	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2202	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2203	    tp->sacked_out >= reordering)
2204		tp->reordering = min_t(unsigned int, tp->reordering,
2205				       reordering);
2206
2207	tcp_set_ca_state(sk, TCP_CA_Loss);
2208	tp->high_seq = tp->snd_nxt;
2209	tcp_ecn_queue_cwr(tp);
2210
2211	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2212	 * loss recovery is underway except recurring timeout(s) on
2213	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2214	 */
2215	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2216		   (new_recovery || icsk->icsk_retransmits) &&
2217		   !inet_csk(sk)->icsk_mtup.probe_size;
2218}
2219
2220/* If ACK arrived pointing to a remembered SACK, it means that our
2221 * remembered SACKs do not reflect real state of receiver i.e.
2222 * receiver _host_ is heavily congested (or buggy).
2223 *
2224 * To avoid big spurious retransmission bursts due to transient SACK
2225 * scoreboard oddities that look like reneging, we give the receiver a
2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2227 * restore sanity to the SACK scoreboard. If the apparent reneging
2228 * persists until this RTO then we'll clear the SACK scoreboard.
2229 */
2230static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2231{
2232	if (*ack_flag & FLAG_SACK_RENEGING &&
2233	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2234		struct tcp_sock *tp = tcp_sk(sk);
2235		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2236					  msecs_to_jiffies(10));
2237
2238		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2239					  delay, TCP_RTO_MAX);
2240		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2241		return true;
2242	}
2243	return false;
2244}
2245
2246/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2247 * counter when SACK is enabled (without SACK, sacked_out is used for
2248 * that purpose).
2249 *
2250 * With reordering, holes may still be in flight, so RFC3517 recovery
2251 * uses pure sacked_out (total number of SACKed segments) even though
2252 * it violates the RFC that uses duplicate ACKs, often these are equal
2253 * but when e.g. out-of-window ACKs or packet duplication occurs,
2254 * they differ. Since neither occurs due to loss, TCP should really
2255 * ignore them.
2256 */
2257static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2258{
2259	return tp->sacked_out + 1;
2260}
2261
2262/* Linux NewReno/SACK/ECN state machine.
2263 * --------------------------------------
2264 *
2265 * "Open"	Normal state, no dubious events, fast path.
2266 * "Disorder"   In all the respects it is "Open",
2267 *		but requires a bit more attention. It is entered when
2268 *		we see some SACKs or dupacks. It is split of "Open"
2269 *		mainly to move some processing from fast path to slow one.
2270 * "CWR"	CWND was reduced due to some Congestion Notification event.
2271 *		It can be ECN, ICMP source quench, local device congestion.
2272 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2273 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2274 *
2275 * tcp_fastretrans_alert() is entered:
2276 * - each incoming ACK, if state is not "Open"
2277 * - when arrived ACK is unusual, namely:
2278 *	* SACK
2279 *	* Duplicate ACK.
2280 *	* ECN ECE.
2281 *
2282 * Counting packets in flight is pretty simple.
2283 *
2284 *	in_flight = packets_out - left_out + retrans_out
2285 *
2286 *	packets_out is SND.NXT-SND.UNA counted in packets.
2287 *
2288 *	retrans_out is number of retransmitted segments.
2289 *
2290 *	left_out is number of segments left network, but not ACKed yet.
2291 *
2292 *		left_out = sacked_out + lost_out
2293 *
2294 *     sacked_out: Packets, which arrived to receiver out of order
2295 *		   and hence not ACKed. With SACKs this number is simply
2296 *		   amount of SACKed data. Even without SACKs
2297 *		   it is easy to give pretty reliable estimate of this number,
2298 *		   counting duplicate ACKs.
2299 *
2300 *       lost_out: Packets lost by network. TCP has no explicit
2301 *		   "loss notification" feedback from network (for now).
2302 *		   It means that this number can be only _guessed_.
2303 *		   Actually, it is the heuristics to predict lossage that
2304 *		   distinguishes different algorithms.
2305 *
2306 *	F.e. after RTO, when all the queue is considered as lost,
2307 *	lost_out = packets_out and in_flight = retrans_out.
2308 *
2309 *		Essentially, we have now a few algorithms detecting
2310 *		lost packets.
2311 *
2312 *		If the receiver supports SACK:
2313 *
2314 *		RFC6675/3517: It is the conventional algorithm. A packet is
2315 *		considered lost if the number of higher sequence packets
2316 *		SACKed is greater than or equal the DUPACK thoreshold
2317 *		(reordering). This is implemented in tcp_mark_head_lost and
2318 *		tcp_update_scoreboard.
2319 *
2320 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2321 *		(2017-) that checks timing instead of counting DUPACKs.
2322 *		Essentially a packet is considered lost if it's not S/ACKed
2323 *		after RTT + reordering_window, where both metrics are
2324 *		dynamically measured and adjusted. This is implemented in
2325 *		tcp_rack_mark_lost.
2326 *
2327 *		If the receiver does not support SACK:
2328 *
2329 *		NewReno (RFC6582): in Recovery we assume that one segment
2330 *		is lost (classic Reno). While we are in Recovery and
2331 *		a partial ACK arrives, we assume that one more packet
2332 *		is lost (NewReno). This heuristics are the same in NewReno
2333 *		and SACK.
2334 *
2335 * Really tricky (and requiring careful tuning) part of algorithm
2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2337 * The first determines the moment _when_ we should reduce CWND and,
2338 * hence, slow down forward transmission. In fact, it determines the moment
2339 * when we decide that hole is caused by loss, rather than by a reorder.
2340 *
2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2342 * holes, caused by lost packets.
2343 *
2344 * And the most logically complicated part of algorithm is undo
2345 * heuristics. We detect false retransmits due to both too early
2346 * fast retransmit (reordering) and underestimated RTO, analyzing
2347 * timestamps and D-SACKs. When we detect that some segments were
2348 * retransmitted by mistake and CWND reduction was wrong, we undo
2349 * window reduction and abort recovery phase. This logic is hidden
2350 * inside several functions named tcp_try_undo_<something>.
2351 */
2352
2353/* This function decides, when we should leave Disordered state
2354 * and enter Recovery phase, reducing congestion window.
2355 *
2356 * Main question: may we further continue forward transmission
2357 * with the same cwnd?
2358 */
2359static bool tcp_time_to_recover(struct sock *sk, int flag)
2360{
2361	struct tcp_sock *tp = tcp_sk(sk);
2362
2363	/* Trick#1: The loss is proven. */
2364	if (tp->lost_out)
2365		return true;
2366
2367	/* Not-A-Trick#2 : Classic rule... */
2368	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2369		return true;
2370
2371	return false;
2372}
2373
2374/* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For RFC3517 SACK, a segment is considered lost if it
 
2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2377 * the maximum SACKed segments to pass before reaching this limit.
2378 */
2379static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2380{
2381	struct tcp_sock *tp = tcp_sk(sk);
2382	struct sk_buff *skb;
2383	int cnt;
 
2384	/* Use SACK to deduce losses of new sequences sent during recovery */
2385	const u32 loss_high = tp->snd_nxt;
2386
2387	WARN_ON(packets > tp->packets_out);
2388	skb = tp->lost_skb_hint;
2389	if (skb) {
2390		/* Head already handled? */
2391		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2392			return;
2393		cnt = tp->lost_cnt_hint;
2394	} else {
2395		skb = tcp_rtx_queue_head(sk);
2396		cnt = 0;
2397	}
2398
2399	skb_rbtree_walk_from(skb) {
2400		/* TODO: do this better */
2401		/* this is not the most efficient way to do this... */
2402		tp->lost_skb_hint = skb;
2403		tp->lost_cnt_hint = cnt;
2404
2405		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406			break;
2407
2408		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 
 
2409			cnt += tcp_skb_pcount(skb);
2410
2411		if (cnt > packets)
2412			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2413
2414		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2415			tcp_mark_skb_lost(sk, skb);
2416
2417		if (mark_head)
2418			break;
2419	}
2420	tcp_verify_left_out(tp);
2421}
2422
2423/* Account newly detected lost packet(s) */
2424
2425static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2426{
2427	struct tcp_sock *tp = tcp_sk(sk);
2428
2429	if (tcp_is_sack(tp)) {
2430		int sacked_upto = tp->sacked_out - tp->reordering;
2431		if (sacked_upto >= 0)
2432			tcp_mark_head_lost(sk, sacked_upto, 0);
2433		else if (fast_rexmit)
2434			tcp_mark_head_lost(sk, 1, 1);
2435	}
2436}
2437
2438static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2439{
2440	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2441	       before(tp->rx_opt.rcv_tsecr, when);
2442}
2443
2444/* skb is spurious retransmitted if the returned timestamp echo
2445 * reply is prior to the skb transmission time
2446 */
2447static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2448				     const struct sk_buff *skb)
2449{
2450	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2451	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2452}
2453
2454/* Nothing was retransmitted or returned timestamp is less
2455 * than timestamp of the first retransmission.
2456 */
2457static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2458{
2459	return tp->retrans_stamp &&
2460	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2461}
2462
2463/* Undo procedures. */
2464
2465/* We can clear retrans_stamp when there are no retransmissions in the
2466 * window. It would seem that it is trivially available for us in
2467 * tp->retrans_out, however, that kind of assumptions doesn't consider
2468 * what will happen if errors occur when sending retransmission for the
2469 * second time. ...It could the that such segment has only
2470 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2471 * the head skb is enough except for some reneging corner cases that
2472 * are not worth the effort.
2473 *
2474 * Main reason for all this complexity is the fact that connection dying
2475 * time now depends on the validity of the retrans_stamp, in particular,
2476 * that successive retransmissions of a segment must not advance
2477 * retrans_stamp under any conditions.
2478 */
2479static bool tcp_any_retrans_done(const struct sock *sk)
2480{
2481	const struct tcp_sock *tp = tcp_sk(sk);
2482	struct sk_buff *skb;
2483
2484	if (tp->retrans_out)
2485		return true;
2486
2487	skb = tcp_rtx_queue_head(sk);
2488	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2489		return true;
2490
2491	return false;
2492}
2493
2494static void DBGUNDO(struct sock *sk, const char *msg)
2495{
2496#if FASTRETRANS_DEBUG > 1
2497	struct tcp_sock *tp = tcp_sk(sk);
2498	struct inet_sock *inet = inet_sk(sk);
2499
2500	if (sk->sk_family == AF_INET) {
2501		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2502			 msg,
2503			 &inet->inet_daddr, ntohs(inet->inet_dport),
2504			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2505			 tp->snd_ssthresh, tp->prior_ssthresh,
2506			 tp->packets_out);
2507	}
2508#if IS_ENABLED(CONFIG_IPV6)
2509	else if (sk->sk_family == AF_INET6) {
2510		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2511			 msg,
2512			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2513			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2514			 tp->snd_ssthresh, tp->prior_ssthresh,
2515			 tp->packets_out);
2516	}
2517#endif
2518#endif
2519}
2520
2521static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2522{
2523	struct tcp_sock *tp = tcp_sk(sk);
2524
2525	if (unmark_loss) {
2526		struct sk_buff *skb;
2527
2528		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2529			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2530		}
2531		tp->lost_out = 0;
2532		tcp_clear_all_retrans_hints(tp);
2533	}
2534
2535	if (tp->prior_ssthresh) {
2536		const struct inet_connection_sock *icsk = inet_csk(sk);
2537
2538		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2539
2540		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2541			tp->snd_ssthresh = tp->prior_ssthresh;
2542			tcp_ecn_withdraw_cwr(tp);
2543		}
2544	}
2545	tp->snd_cwnd_stamp = tcp_jiffies32;
2546	tp->undo_marker = 0;
2547	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2548}
2549
2550static inline bool tcp_may_undo(const struct tcp_sock *tp)
2551{
2552	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2553}
2554
2555static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2560		/* Hold old state until something *above* high_seq
2561		 * is ACKed. For Reno it is MUST to prevent false
2562		 * fast retransmits (RFC2582). SACK TCP is safe. */
2563		if (!tcp_any_retrans_done(sk))
2564			tp->retrans_stamp = 0;
2565		return true;
2566	}
2567	return false;
2568}
2569
2570/* People celebrate: "We love our President!" */
2571static bool tcp_try_undo_recovery(struct sock *sk)
2572{
2573	struct tcp_sock *tp = tcp_sk(sk);
2574
2575	if (tcp_may_undo(tp)) {
2576		int mib_idx;
2577
2578		/* Happy end! We did not retransmit anything
2579		 * or our original transmission succeeded.
2580		 */
2581		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2582		tcp_undo_cwnd_reduction(sk, false);
2583		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2584			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2585		else
2586			mib_idx = LINUX_MIB_TCPFULLUNDO;
2587
2588		NET_INC_STATS(sock_net(sk), mib_idx);
2589	} else if (tp->rack.reo_wnd_persist) {
2590		tp->rack.reo_wnd_persist--;
2591	}
2592	if (tcp_is_non_sack_preventing_reopen(sk))
 
 
 
 
 
2593		return true;
 
2594	tcp_set_ca_state(sk, TCP_CA_Open);
2595	tp->is_sack_reneg = 0;
2596	return false;
2597}
2598
2599/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2600static bool tcp_try_undo_dsack(struct sock *sk)
2601{
2602	struct tcp_sock *tp = tcp_sk(sk);
2603
2604	if (tp->undo_marker && !tp->undo_retrans) {
2605		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2606					       tp->rack.reo_wnd_persist + 1);
2607		DBGUNDO(sk, "D-SACK");
2608		tcp_undo_cwnd_reduction(sk, false);
2609		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2610		return true;
2611	}
2612	return false;
2613}
2614
2615/* Undo during loss recovery after partial ACK or using F-RTO. */
2616static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2617{
2618	struct tcp_sock *tp = tcp_sk(sk);
2619
2620	if (frto_undo || tcp_may_undo(tp)) {
2621		tcp_undo_cwnd_reduction(sk, true);
2622
2623		DBGUNDO(sk, "partial loss");
2624		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2625		if (frto_undo)
2626			NET_INC_STATS(sock_net(sk),
2627					LINUX_MIB_TCPSPURIOUSRTOS);
2628		inet_csk(sk)->icsk_retransmits = 0;
2629		if (tcp_is_non_sack_preventing_reopen(sk))
2630			return true;
2631		if (frto_undo || tcp_is_sack(tp)) {
2632			tcp_set_ca_state(sk, TCP_CA_Open);
2633			tp->is_sack_reneg = 0;
2634		}
2635		return true;
2636	}
2637	return false;
2638}
2639
2640/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2641 * It computes the number of packets to send (sndcnt) based on packets newly
2642 * delivered:
2643 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2644 *	cwnd reductions across a full RTT.
2645 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2646 *      But when SND_UNA is acked without further losses,
2647 *      slow starts cwnd up to ssthresh to speed up the recovery.
2648 */
2649static void tcp_init_cwnd_reduction(struct sock *sk)
2650{
2651	struct tcp_sock *tp = tcp_sk(sk);
2652
2653	tp->high_seq = tp->snd_nxt;
2654	tp->tlp_high_seq = 0;
2655	tp->snd_cwnd_cnt = 0;
2656	tp->prior_cwnd = tcp_snd_cwnd(tp);
2657	tp->prr_delivered = 0;
2658	tp->prr_out = 0;
2659	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2660	tcp_ecn_queue_cwr(tp);
2661}
2662
2663void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2664{
2665	struct tcp_sock *tp = tcp_sk(sk);
2666	int sndcnt = 0;
2667	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2668
2669	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2670		return;
2671
2672	tp->prr_delivered += newly_acked_sacked;
2673	if (delta < 0) {
2674		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2675			       tp->prior_cwnd - 1;
2676		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
 
 
 
 
 
2677	} else {
2678		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2679			       newly_acked_sacked);
2680		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2681			sndcnt++;
2682		sndcnt = min(delta, sndcnt);
2683	}
2684	/* Force a fast retransmit upon entering fast recovery */
2685	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2686	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2687}
2688
2689static inline void tcp_end_cwnd_reduction(struct sock *sk)
2690{
2691	struct tcp_sock *tp = tcp_sk(sk);
2692
2693	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2694		return;
2695
2696	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2697	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2698	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2699		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2700		tp->snd_cwnd_stamp = tcp_jiffies32;
2701	}
2702	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2703}
2704
2705/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2706void tcp_enter_cwr(struct sock *sk)
2707{
2708	struct tcp_sock *tp = tcp_sk(sk);
2709
2710	tp->prior_ssthresh = 0;
2711	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2712		tp->undo_marker = 0;
2713		tcp_init_cwnd_reduction(sk);
2714		tcp_set_ca_state(sk, TCP_CA_CWR);
2715	}
2716}
2717EXPORT_SYMBOL(tcp_enter_cwr);
2718
2719static void tcp_try_keep_open(struct sock *sk)
2720{
2721	struct tcp_sock *tp = tcp_sk(sk);
2722	int state = TCP_CA_Open;
2723
2724	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2725		state = TCP_CA_Disorder;
2726
2727	if (inet_csk(sk)->icsk_ca_state != state) {
2728		tcp_set_ca_state(sk, state);
2729		tp->high_seq = tp->snd_nxt;
2730	}
2731}
2732
2733static void tcp_try_to_open(struct sock *sk, int flag)
2734{
2735	struct tcp_sock *tp = tcp_sk(sk);
2736
2737	tcp_verify_left_out(tp);
2738
2739	if (!tcp_any_retrans_done(sk))
2740		tp->retrans_stamp = 0;
2741
2742	if (flag & FLAG_ECE)
2743		tcp_enter_cwr(sk);
2744
2745	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2746		tcp_try_keep_open(sk);
2747	}
2748}
2749
2750static void tcp_mtup_probe_failed(struct sock *sk)
2751{
2752	struct inet_connection_sock *icsk = inet_csk(sk);
2753
2754	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2755	icsk->icsk_mtup.probe_size = 0;
2756	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2757}
2758
2759static void tcp_mtup_probe_success(struct sock *sk)
2760{
2761	struct tcp_sock *tp = tcp_sk(sk);
2762	struct inet_connection_sock *icsk = inet_csk(sk);
2763	u64 val;
2764
 
2765	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2766
2767	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2768	do_div(val, icsk->icsk_mtup.probe_size);
2769	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2770	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2771
2772	tp->snd_cwnd_cnt = 0;
2773	tp->snd_cwnd_stamp = tcp_jiffies32;
2774	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2775
2776	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2777	icsk->icsk_mtup.probe_size = 0;
2778	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2779	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2780}
2781
2782/* Do a simple retransmit without using the backoff mechanisms in
2783 * tcp_timer. This is used for path mtu discovery.
2784 * The socket is already locked here.
2785 */
2786void tcp_simple_retransmit(struct sock *sk)
2787{
2788	const struct inet_connection_sock *icsk = inet_csk(sk);
2789	struct tcp_sock *tp = tcp_sk(sk);
2790	struct sk_buff *skb;
2791	int mss;
2792
2793	/* A fastopen SYN request is stored as two separate packets within
2794	 * the retransmit queue, this is done by tcp_send_syn_data().
2795	 * As a result simply checking the MSS of the frames in the queue
2796	 * will not work for the SYN packet.
2797	 *
2798	 * Us being here is an indication of a path MTU issue so we can
2799	 * assume that the fastopen SYN was lost and just mark all the
2800	 * frames in the retransmit queue as lost. We will use an MSS of
2801	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2802	 */
2803	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2804		mss = -1;
2805	else
2806		mss = tcp_current_mss(sk);
2807
2808	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2809		if (tcp_skb_seglen(skb) > mss)
2810			tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
2811	}
2812
2813	tcp_clear_retrans_hints_partial(tp);
2814
2815	if (!tp->lost_out)
2816		return;
2817
2818	if (tcp_is_reno(tp))
2819		tcp_limit_reno_sacked(tp);
2820
2821	tcp_verify_left_out(tp);
2822
2823	/* Don't muck with the congestion window here.
2824	 * Reason is that we do not increase amount of _data_
2825	 * in network, but units changed and effective
2826	 * cwnd/ssthresh really reduced now.
2827	 */
2828	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2829		tp->high_seq = tp->snd_nxt;
2830		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2831		tp->prior_ssthresh = 0;
2832		tp->undo_marker = 0;
2833		tcp_set_ca_state(sk, TCP_CA_Loss);
2834	}
2835	tcp_xmit_retransmit_queue(sk);
2836}
2837EXPORT_SYMBOL(tcp_simple_retransmit);
2838
2839void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2840{
2841	struct tcp_sock *tp = tcp_sk(sk);
2842	int mib_idx;
2843
2844	if (tcp_is_reno(tp))
2845		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2846	else
2847		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2848
2849	NET_INC_STATS(sock_net(sk), mib_idx);
2850
2851	tp->prior_ssthresh = 0;
2852	tcp_init_undo(tp);
2853
2854	if (!tcp_in_cwnd_reduction(sk)) {
2855		if (!ece_ack)
2856			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2857		tcp_init_cwnd_reduction(sk);
2858	}
2859	tcp_set_ca_state(sk, TCP_CA_Recovery);
2860}
2861
2862static void tcp_update_rto_time(struct tcp_sock *tp)
2863{
2864	if (tp->rto_stamp) {
2865		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2866		tp->rto_stamp = 0;
2867	}
2868}
2869
2870/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2871 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2872 */
2873static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2874			     int *rexmit)
2875{
2876	struct tcp_sock *tp = tcp_sk(sk);
2877	bool recovered = !before(tp->snd_una, tp->high_seq);
2878
2879	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2880	    tcp_try_undo_loss(sk, false))
2881		return;
2882
2883	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2884		/* Step 3.b. A timeout is spurious if not all data are
2885		 * lost, i.e., never-retransmitted data are (s)acked.
2886		 */
2887		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2888		    tcp_try_undo_loss(sk, true))
2889			return;
2890
2891		if (after(tp->snd_nxt, tp->high_seq)) {
2892			if (flag & FLAG_DATA_SACKED || num_dupack)
2893				tp->frto = 0; /* Step 3.a. loss was real */
2894		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2895			tp->high_seq = tp->snd_nxt;
2896			/* Step 2.b. Try send new data (but deferred until cwnd
2897			 * is updated in tcp_ack()). Otherwise fall back to
2898			 * the conventional recovery.
2899			 */
2900			if (!tcp_write_queue_empty(sk) &&
2901			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2902				*rexmit = REXMIT_NEW;
2903				return;
2904			}
2905			tp->frto = 0;
2906		}
2907	}
2908
2909	if (recovered) {
2910		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2911		tcp_try_undo_recovery(sk);
2912		return;
2913	}
2914	if (tcp_is_reno(tp)) {
2915		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2916		 * delivered. Lower inflight to clock out (re)transmissions.
2917		 */
2918		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2919			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2920		else if (flag & FLAG_SND_UNA_ADVANCED)
2921			tcp_reset_reno_sack(tp);
2922	}
2923	*rexmit = REXMIT_LOST;
2924}
2925
2926static bool tcp_force_fast_retransmit(struct sock *sk)
2927{
2928	struct tcp_sock *tp = tcp_sk(sk);
2929
2930	return after(tcp_highest_sack_seq(tp),
2931		     tp->snd_una + tp->reordering * tp->mss_cache);
2932}
2933
2934/* Undo during fast recovery after partial ACK. */
2935static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2936				 bool *do_lost)
2937{
2938	struct tcp_sock *tp = tcp_sk(sk);
2939
2940	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2941		/* Plain luck! Hole if filled with delayed
2942		 * packet, rather than with a retransmit. Check reordering.
2943		 */
2944		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2945
2946		/* We are getting evidence that the reordering degree is higher
2947		 * than we realized. If there are no retransmits out then we
2948		 * can undo. Otherwise we clock out new packets but do not
2949		 * mark more packets lost or retransmit more.
2950		 */
2951		if (tp->retrans_out)
2952			return true;
2953
2954		if (!tcp_any_retrans_done(sk))
2955			tp->retrans_stamp = 0;
2956
2957		DBGUNDO(sk, "partial recovery");
2958		tcp_undo_cwnd_reduction(sk, true);
2959		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2960		tcp_try_keep_open(sk);
2961	} else {
2962		/* Partial ACK arrived. Force fast retransmit. */
2963		*do_lost = tcp_force_fast_retransmit(sk);
2964	}
2965	return false;
2966}
2967
2968static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2969{
2970	struct tcp_sock *tp = tcp_sk(sk);
2971
2972	if (tcp_rtx_queue_empty(sk))
2973		return;
2974
2975	if (unlikely(tcp_is_reno(tp))) {
2976		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2977	} else if (tcp_is_rack(sk)) {
2978		u32 prior_retrans = tp->retrans_out;
2979
2980		if (tcp_rack_mark_lost(sk))
2981			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2982		if (prior_retrans > tp->retrans_out)
2983			*ack_flag |= FLAG_LOST_RETRANS;
2984	}
2985}
2986
 
 
 
 
 
 
 
 
2987/* Process an event, which can update packets-in-flight not trivially.
2988 * Main goal of this function is to calculate new estimate for left_out,
2989 * taking into account both packets sitting in receiver's buffer and
2990 * packets lost by network.
2991 *
2992 * Besides that it updates the congestion state when packet loss or ECN
2993 * is detected. But it does not reduce the cwnd, it is done by the
2994 * congestion control later.
2995 *
2996 * It does _not_ decide what to send, it is made in function
2997 * tcp_xmit_retransmit_queue().
2998 */
2999static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3000				  int num_dupack, int *ack_flag, int *rexmit)
3001{
3002	struct inet_connection_sock *icsk = inet_csk(sk);
3003	struct tcp_sock *tp = tcp_sk(sk);
3004	int fast_rexmit = 0, flag = *ack_flag;
3005	bool ece_ack = flag & FLAG_ECE;
3006	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3007				      tcp_force_fast_retransmit(sk));
3008
3009	if (!tp->packets_out && tp->sacked_out)
3010		tp->sacked_out = 0;
3011
3012	/* Now state machine starts.
3013	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3014	if (ece_ack)
3015		tp->prior_ssthresh = 0;
3016
3017	/* B. In all the states check for reneging SACKs. */
3018	if (tcp_check_sack_reneging(sk, ack_flag))
3019		return;
3020
3021	/* C. Check consistency of the current state. */
3022	tcp_verify_left_out(tp);
3023
3024	/* D. Check state exit conditions. State can be terminated
3025	 *    when high_seq is ACKed. */
3026	if (icsk->icsk_ca_state == TCP_CA_Open) {
3027		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3028		tp->retrans_stamp = 0;
3029	} else if (!before(tp->snd_una, tp->high_seq)) {
3030		switch (icsk->icsk_ca_state) {
3031		case TCP_CA_CWR:
3032			/* CWR is to be held something *above* high_seq
3033			 * is ACKed for CWR bit to reach receiver. */
3034			if (tp->snd_una != tp->high_seq) {
3035				tcp_end_cwnd_reduction(sk);
3036				tcp_set_ca_state(sk, TCP_CA_Open);
3037			}
3038			break;
3039
3040		case TCP_CA_Recovery:
3041			if (tcp_is_reno(tp))
3042				tcp_reset_reno_sack(tp);
3043			if (tcp_try_undo_recovery(sk))
3044				return;
3045			tcp_end_cwnd_reduction(sk);
3046			break;
3047		}
3048	}
3049
3050	/* E. Process state. */
3051	switch (icsk->icsk_ca_state) {
3052	case TCP_CA_Recovery:
3053		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3054			if (tcp_is_reno(tp))
3055				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3056		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
 
 
 
 
 
 
 
 
3057			return;
3058
3059		if (tcp_try_undo_dsack(sk))
3060			tcp_try_keep_open(sk);
3061
3062		tcp_identify_packet_loss(sk, ack_flag);
3063		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3064			if (!tcp_time_to_recover(sk, flag))
3065				return;
3066			/* Undo reverts the recovery state. If loss is evident,
3067			 * starts a new recovery (e.g. reordering then loss);
3068			 */
3069			tcp_enter_recovery(sk, ece_ack);
3070		}
3071		break;
3072	case TCP_CA_Loss:
3073		tcp_process_loss(sk, flag, num_dupack, rexmit);
3074		if (icsk->icsk_ca_state != TCP_CA_Loss)
3075			tcp_update_rto_time(tp);
3076		tcp_identify_packet_loss(sk, ack_flag);
3077		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3078		      (*ack_flag & FLAG_LOST_RETRANS)))
3079			return;
3080		/* Change state if cwnd is undone or retransmits are lost */
3081		fallthrough;
3082	default:
3083		if (tcp_is_reno(tp)) {
3084			if (flag & FLAG_SND_UNA_ADVANCED)
3085				tcp_reset_reno_sack(tp);
3086			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3087		}
3088
3089		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3090			tcp_try_undo_dsack(sk);
3091
3092		tcp_identify_packet_loss(sk, ack_flag);
3093		if (!tcp_time_to_recover(sk, flag)) {
3094			tcp_try_to_open(sk, flag);
3095			return;
3096		}
3097
3098		/* MTU probe failure: don't reduce cwnd */
3099		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3100		    icsk->icsk_mtup.probe_size &&
3101		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3102			tcp_mtup_probe_failed(sk);
3103			/* Restores the reduction we did in tcp_mtup_probe() */
3104			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3105			tcp_simple_retransmit(sk);
3106			return;
3107		}
3108
3109		/* Otherwise enter Recovery state */
3110		tcp_enter_recovery(sk, ece_ack);
3111		fast_rexmit = 1;
3112	}
3113
3114	if (!tcp_is_rack(sk) && do_lost)
3115		tcp_update_scoreboard(sk, fast_rexmit);
3116	*rexmit = REXMIT_LOST;
3117}
3118
3119static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3120{
3121	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3122	struct tcp_sock *tp = tcp_sk(sk);
3123
3124	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3125		/* If the remote keeps returning delayed ACKs, eventually
3126		 * the min filter would pick it up and overestimate the
3127		 * prop. delay when it expires. Skip suspected delayed ACKs.
3128		 */
3129		return;
3130	}
3131	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3132			   rtt_us ? : jiffies_to_usecs(1));
3133}
3134
3135static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3136			       long seq_rtt_us, long sack_rtt_us,
3137			       long ca_rtt_us, struct rate_sample *rs)
3138{
3139	const struct tcp_sock *tp = tcp_sk(sk);
3140
3141	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3142	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3143	 * Karn's algorithm forbids taking RTT if some retransmitted data
3144	 * is acked (RFC6298).
3145	 */
3146	if (seq_rtt_us < 0)
3147		seq_rtt_us = sack_rtt_us;
3148
3149	/* RTTM Rule: A TSecr value received in a segment is used to
3150	 * update the averaged RTT measurement only if the segment
3151	 * acknowledges some new data, i.e., only if it advances the
3152	 * left edge of the send window.
3153	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3154	 */
3155	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3156	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3157		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3158
 
 
 
 
 
3159	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3160	if (seq_rtt_us < 0)
3161		return false;
3162
3163	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3164	 * always taken together with ACK, SACK, or TS-opts. Any negative
3165	 * values will be skipped with the seq_rtt_us < 0 check above.
3166	 */
3167	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3168	tcp_rtt_estimator(sk, seq_rtt_us);
3169	tcp_set_rto(sk);
3170
3171	/* RFC6298: only reset backoff on valid RTT measurement. */
3172	inet_csk(sk)->icsk_backoff = 0;
3173	return true;
3174}
3175
3176/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3177void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3178{
3179	struct rate_sample rs;
3180	long rtt_us = -1L;
3181
3182	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3183		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3184
3185	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3186}
3187
3188
3189static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3190{
3191	const struct inet_connection_sock *icsk = inet_csk(sk);
3192
3193	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3194	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3195}
3196
3197/* Restart timer after forward progress on connection.
3198 * RFC2988 recommends to restart timer to now+rto.
3199 */
3200void tcp_rearm_rto(struct sock *sk)
3201{
3202	const struct inet_connection_sock *icsk = inet_csk(sk);
3203	struct tcp_sock *tp = tcp_sk(sk);
3204
3205	/* If the retrans timer is currently being used by Fast Open
3206	 * for SYN-ACK retrans purpose, stay put.
3207	 */
3208	if (rcu_access_pointer(tp->fastopen_rsk))
3209		return;
3210
3211	if (!tp->packets_out) {
3212		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213	} else {
3214		u32 rto = inet_csk(sk)->icsk_rto;
3215		/* Offset the time elapsed after installing regular RTO */
3216		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3217		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3218			s64 delta_us = tcp_rto_delta_us(sk);
3219			/* delta_us may not be positive if the socket is locked
3220			 * when the retrans timer fires and is rescheduled.
3221			 */
3222			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3223		}
3224		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3225				     TCP_RTO_MAX);
3226	}
3227}
3228
3229/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3230static void tcp_set_xmit_timer(struct sock *sk)
3231{
3232	if (!tcp_schedule_loss_probe(sk, true))
3233		tcp_rearm_rto(sk);
3234}
3235
3236/* If we get here, the whole TSO packet has not been acked. */
3237static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3238{
3239	struct tcp_sock *tp = tcp_sk(sk);
3240	u32 packets_acked;
3241
3242	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3243
3244	packets_acked = tcp_skb_pcount(skb);
3245	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3246		return 0;
3247	packets_acked -= tcp_skb_pcount(skb);
3248
3249	if (packets_acked) {
3250		BUG_ON(tcp_skb_pcount(skb) == 0);
3251		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3252	}
3253
3254	return packets_acked;
3255}
3256
3257static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3258			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3259{
3260	const struct skb_shared_info *shinfo;
3261
3262	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3263	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3264		return;
3265
3266	shinfo = skb_shinfo(skb);
3267	if (!before(shinfo->tskey, prior_snd_una) &&
3268	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3269		tcp_skb_tsorted_save(skb) {
3270			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3271		} tcp_skb_tsorted_restore(skb);
3272	}
3273}
3274
3275/* Remove acknowledged frames from the retransmission queue. If our packet
3276 * is before the ack sequence we can discard it as it's confirmed to have
3277 * arrived at the other end.
3278 */
3279static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3280			       u32 prior_fack, u32 prior_snd_una,
3281			       struct tcp_sacktag_state *sack, bool ece_ack)
3282{
3283	const struct inet_connection_sock *icsk = inet_csk(sk);
3284	u64 first_ackt, last_ackt;
3285	struct tcp_sock *tp = tcp_sk(sk);
3286	u32 prior_sacked = tp->sacked_out;
3287	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3288	struct sk_buff *skb, *next;
3289	bool fully_acked = true;
3290	long sack_rtt_us = -1L;
3291	long seq_rtt_us = -1L;
3292	long ca_rtt_us = -1L;
3293	u32 pkts_acked = 0;
 
3294	bool rtt_update;
3295	int flag = 0;
3296
3297	first_ackt = 0;
3298
3299	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3300		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301		const u32 start_seq = scb->seq;
3302		u8 sacked = scb->sacked;
3303		u32 acked_pcount;
3304
 
 
3305		/* Determine how many packets and what bytes were acked, tso and else */
3306		if (after(scb->end_seq, tp->snd_una)) {
3307			if (tcp_skb_pcount(skb) == 1 ||
3308			    !after(tp->snd_una, scb->seq))
3309				break;
3310
3311			acked_pcount = tcp_tso_acked(sk, skb);
3312			if (!acked_pcount)
3313				break;
3314			fully_acked = false;
3315		} else {
3316			acked_pcount = tcp_skb_pcount(skb);
3317		}
3318
3319		if (unlikely(sacked & TCPCB_RETRANS)) {
3320			if (sacked & TCPCB_SACKED_RETRANS)
3321				tp->retrans_out -= acked_pcount;
3322			flag |= FLAG_RETRANS_DATA_ACKED;
3323		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3324			last_ackt = tcp_skb_timestamp_us(skb);
3325			WARN_ON_ONCE(last_ackt == 0);
3326			if (!first_ackt)
3327				first_ackt = last_ackt;
3328
 
3329			if (before(start_seq, reord))
3330				reord = start_seq;
3331			if (!after(scb->end_seq, tp->high_seq))
3332				flag |= FLAG_ORIG_SACK_ACKED;
3333		}
3334
3335		if (sacked & TCPCB_SACKED_ACKED) {
3336			tp->sacked_out -= acked_pcount;
3337		} else if (tcp_is_sack(tp)) {
3338			tcp_count_delivered(tp, acked_pcount, ece_ack);
3339			if (!tcp_skb_spurious_retrans(tp, skb))
3340				tcp_rack_advance(tp, sacked, scb->end_seq,
3341						 tcp_skb_timestamp_us(skb));
3342		}
3343		if (sacked & TCPCB_LOST)
3344			tp->lost_out -= acked_pcount;
3345
3346		tp->packets_out -= acked_pcount;
3347		pkts_acked += acked_pcount;
3348		tcp_rate_skb_delivered(sk, skb, sack->rate);
3349
3350		/* Initial outgoing SYN's get put onto the write_queue
3351		 * just like anything else we transmit.  It is not
3352		 * true data, and if we misinform our callers that
3353		 * this ACK acks real data, we will erroneously exit
3354		 * connection startup slow start one packet too
3355		 * quickly.  This is severely frowned upon behavior.
3356		 */
3357		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3358			flag |= FLAG_DATA_ACKED;
3359		} else {
3360			flag |= FLAG_SYN_ACKED;
3361			tp->retrans_stamp = 0;
3362		}
3363
3364		if (!fully_acked)
3365			break;
3366
3367		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3368
3369		next = skb_rb_next(skb);
3370		if (unlikely(skb == tp->retransmit_skb_hint))
3371			tp->retransmit_skb_hint = NULL;
3372		if (unlikely(skb == tp->lost_skb_hint))
3373			tp->lost_skb_hint = NULL;
3374		tcp_highest_sack_replace(sk, skb, next);
3375		tcp_rtx_queue_unlink_and_free(skb, sk);
3376	}
3377
3378	if (!skb)
3379		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3380
3381	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3382		tp->snd_up = tp->snd_una;
3383
3384	if (skb) {
3385		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3386		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3387			flag |= FLAG_SACK_RENEGING;
3388	}
3389
3390	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3391		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3392		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3393
3394		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3395		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3396		    sack->rate->prior_delivered + 1 == tp->delivered &&
3397		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3398			/* Conservatively mark a delayed ACK. It's typically
3399			 * from a lone runt packet over the round trip to
3400			 * a receiver w/o out-of-order or CE events.
3401			 */
3402			flag |= FLAG_ACK_MAYBE_DELAYED;
3403		}
3404	}
3405	if (sack->first_sackt) {
3406		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3407		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3408	}
3409	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3410					ca_rtt_us, sack->rate);
3411
3412	if (flag & FLAG_ACKED) {
3413		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3414		if (unlikely(icsk->icsk_mtup.probe_size &&
3415			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3416			tcp_mtup_probe_success(sk);
3417		}
3418
3419		if (tcp_is_reno(tp)) {
3420			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3421
3422			/* If any of the cumulatively ACKed segments was
3423			 * retransmitted, non-SACK case cannot confirm that
3424			 * progress was due to original transmission due to
3425			 * lack of TCPCB_SACKED_ACKED bits even if some of
3426			 * the packets may have been never retransmitted.
3427			 */
3428			if (flag & FLAG_RETRANS_DATA_ACKED)
3429				flag &= ~FLAG_ORIG_SACK_ACKED;
3430		} else {
3431			int delta;
3432
3433			/* Non-retransmitted hole got filled? That's reordering */
3434			if (before(reord, prior_fack))
3435				tcp_check_sack_reordering(sk, reord, 0);
3436
3437			delta = prior_sacked - tp->sacked_out;
3438			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3439		}
3440	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3441		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3442						    tcp_skb_timestamp_us(skb))) {
3443		/* Do not re-arm RTO if the sack RTT is measured from data sent
3444		 * after when the head was last (re)transmitted. Otherwise the
3445		 * timeout may continue to extend in loss recovery.
3446		 */
3447		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3448	}
3449
3450	if (icsk->icsk_ca_ops->pkts_acked) {
3451		struct ack_sample sample = { .pkts_acked = pkts_acked,
3452					     .rtt_us = sack->rate->rtt_us };
 
3453
3454		sample.in_flight = tp->mss_cache *
3455			(tp->delivered - sack->rate->prior_delivered);
3456		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3457	}
3458
3459#if FASTRETRANS_DEBUG > 0
3460	WARN_ON((int)tp->sacked_out < 0);
3461	WARN_ON((int)tp->lost_out < 0);
3462	WARN_ON((int)tp->retrans_out < 0);
3463	if (!tp->packets_out && tcp_is_sack(tp)) {
3464		icsk = inet_csk(sk);
3465		if (tp->lost_out) {
3466			pr_debug("Leak l=%u %d\n",
3467				 tp->lost_out, icsk->icsk_ca_state);
3468			tp->lost_out = 0;
3469		}
3470		if (tp->sacked_out) {
3471			pr_debug("Leak s=%u %d\n",
3472				 tp->sacked_out, icsk->icsk_ca_state);
3473			tp->sacked_out = 0;
3474		}
3475		if (tp->retrans_out) {
3476			pr_debug("Leak r=%u %d\n",
3477				 tp->retrans_out, icsk->icsk_ca_state);
3478			tp->retrans_out = 0;
3479		}
3480	}
3481#endif
3482	return flag;
3483}
3484
3485static void tcp_ack_probe(struct sock *sk)
3486{
3487	struct inet_connection_sock *icsk = inet_csk(sk);
3488	struct sk_buff *head = tcp_send_head(sk);
3489	const struct tcp_sock *tp = tcp_sk(sk);
3490
3491	/* Was it a usable window open? */
3492	if (!head)
3493		return;
3494	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3495		icsk->icsk_backoff = 0;
3496		icsk->icsk_probes_tstamp = 0;
3497		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3498		/* Socket must be waked up by subsequent tcp_data_snd_check().
3499		 * This function is not for random using!
3500		 */
3501	} else {
3502		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3503
3504		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3505		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3506	}
3507}
3508
3509static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3510{
3511	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3512		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3513}
3514
3515/* Decide wheather to run the increase function of congestion control. */
3516static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3517{
3518	/* If reordering is high then always grow cwnd whenever data is
3519	 * delivered regardless of its ordering. Otherwise stay conservative
3520	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3521	 * new SACK or ECE mark may first advance cwnd here and later reduce
3522	 * cwnd in tcp_fastretrans_alert() based on more states.
3523	 */
3524	if (tcp_sk(sk)->reordering >
3525	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3526		return flag & FLAG_FORWARD_PROGRESS;
3527
3528	return flag & FLAG_DATA_ACKED;
3529}
3530
3531/* The "ultimate" congestion control function that aims to replace the rigid
3532 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3533 * It's called toward the end of processing an ACK with precise rate
3534 * information. All transmission or retransmission are delayed afterwards.
3535 */
3536static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3537			     int flag, const struct rate_sample *rs)
3538{
3539	const struct inet_connection_sock *icsk = inet_csk(sk);
3540
3541	if (icsk->icsk_ca_ops->cong_control) {
3542		icsk->icsk_ca_ops->cong_control(sk, rs);
3543		return;
3544	}
3545
3546	if (tcp_in_cwnd_reduction(sk)) {
3547		/* Reduce cwnd if state mandates */
3548		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3549	} else if (tcp_may_raise_cwnd(sk, flag)) {
3550		/* Advance cwnd if state allows */
3551		tcp_cong_avoid(sk, ack, acked_sacked);
3552	}
3553	tcp_update_pacing_rate(sk);
3554}
3555
3556/* Check that window update is acceptable.
3557 * The function assumes that snd_una<=ack<=snd_next.
3558 */
3559static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3560					const u32 ack, const u32 ack_seq,
3561					const u32 nwin)
3562{
3563	return	after(ack, tp->snd_una) ||
3564		after(ack_seq, tp->snd_wl1) ||
3565		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3566}
3567
3568static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3569{
3570#ifdef CONFIG_TCP_AO
3571	struct tcp_ao_info *ao;
3572
3573	if (!static_branch_unlikely(&tcp_ao_needed.key))
3574		return;
3575
3576	ao = rcu_dereference_protected(tp->ao_info,
3577				       lockdep_sock_is_held((struct sock *)tp));
3578	if (ao && ack < tp->snd_una)
3579		ao->snd_sne++;
3580#endif
3581}
3582
3583/* If we update tp->snd_una, also update tp->bytes_acked */
3584static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3585{
3586	u32 delta = ack - tp->snd_una;
3587
3588	sock_owned_by_me((struct sock *)tp);
3589	tp->bytes_acked += delta;
3590	tcp_snd_sne_update(tp, ack);
3591	tp->snd_una = ack;
3592}
3593
3594static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3595{
3596#ifdef CONFIG_TCP_AO
3597	struct tcp_ao_info *ao;
3598
3599	if (!static_branch_unlikely(&tcp_ao_needed.key))
3600		return;
3601
3602	ao = rcu_dereference_protected(tp->ao_info,
3603				       lockdep_sock_is_held((struct sock *)tp));
3604	if (ao && seq < tp->rcv_nxt)
3605		ao->rcv_sne++;
3606#endif
3607}
3608
3609/* If we update tp->rcv_nxt, also update tp->bytes_received */
3610static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3611{
3612	u32 delta = seq - tp->rcv_nxt;
3613
3614	sock_owned_by_me((struct sock *)tp);
3615	tp->bytes_received += delta;
3616	tcp_rcv_sne_update(tp, seq);
3617	WRITE_ONCE(tp->rcv_nxt, seq);
3618}
3619
3620/* Update our send window.
3621 *
3622 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3623 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3624 */
3625static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3626				 u32 ack_seq)
3627{
3628	struct tcp_sock *tp = tcp_sk(sk);
3629	int flag = 0;
3630	u32 nwin = ntohs(tcp_hdr(skb)->window);
3631
3632	if (likely(!tcp_hdr(skb)->syn))
3633		nwin <<= tp->rx_opt.snd_wscale;
3634
3635	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3636		flag |= FLAG_WIN_UPDATE;
3637		tcp_update_wl(tp, ack_seq);
3638
3639		if (tp->snd_wnd != nwin) {
3640			tp->snd_wnd = nwin;
3641
3642			/* Note, it is the only place, where
3643			 * fast path is recovered for sending TCP.
3644			 */
3645			tp->pred_flags = 0;
3646			tcp_fast_path_check(sk);
3647
3648			if (!tcp_write_queue_empty(sk))
3649				tcp_slow_start_after_idle_check(sk);
3650
3651			if (nwin > tp->max_window) {
3652				tp->max_window = nwin;
3653				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3654			}
3655		}
3656	}
3657
3658	tcp_snd_una_update(tp, ack);
3659
3660	return flag;
3661}
3662
3663static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3664				   u32 *last_oow_ack_time)
3665{
3666	/* Paired with the WRITE_ONCE() in this function. */
3667	u32 val = READ_ONCE(*last_oow_ack_time);
3668
3669	if (val) {
3670		s32 elapsed = (s32)(tcp_jiffies32 - val);
3671
3672		if (0 <= elapsed &&
3673		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3674			NET_INC_STATS(net, mib_idx);
3675			return true;	/* rate-limited: don't send yet! */
3676		}
3677	}
3678
3679	/* Paired with the prior READ_ONCE() and with itself,
3680	 * as we might be lockless.
3681	 */
3682	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3683
3684	return false;	/* not rate-limited: go ahead, send dupack now! */
3685}
3686
3687/* Return true if we're currently rate-limiting out-of-window ACKs and
3688 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3689 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3690 * attacks that send repeated SYNs or ACKs for the same connection. To
3691 * do this, we do not send a duplicate SYNACK or ACK if the remote
3692 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3693 */
3694bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3695			  int mib_idx, u32 *last_oow_ack_time)
3696{
3697	/* Data packets without SYNs are not likely part of an ACK loop. */
3698	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3699	    !tcp_hdr(skb)->syn)
3700		return false;
3701
3702	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3703}
3704
3705/* RFC 5961 7 [ACK Throttling] */
3706static void tcp_send_challenge_ack(struct sock *sk)
3707{
 
 
 
3708	struct tcp_sock *tp = tcp_sk(sk);
3709	struct net *net = sock_net(sk);
3710	u32 count, now, ack_limit;
3711
3712	/* First check our per-socket dupack rate limit. */
3713	if (__tcp_oow_rate_limited(net,
3714				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3715				   &tp->last_oow_ack_time))
3716		return;
3717
3718	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3719	if (ack_limit == INT_MAX)
3720		goto send_ack;
3721
3722	/* Then check host-wide RFC 5961 rate limit. */
3723	now = jiffies / HZ;
3724	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
 
3725		u32 half = (ack_limit + 1) >> 1;
3726
3727		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3728		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3729			   get_random_u32_inclusive(half, ack_limit + half - 1));
3730	}
3731	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3732	if (count > 0) {
3733		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3734send_ack:
3735		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3736		tcp_send_ack(sk);
3737	}
3738}
3739
3740static void tcp_store_ts_recent(struct tcp_sock *tp)
3741{
3742	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3743	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3744}
3745
3746static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3747{
3748	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3749		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3750		 * extra check below makes sure this can only happen
3751		 * for pure ACK frames.  -DaveM
3752		 *
3753		 * Not only, also it occurs for expired timestamps.
3754		 */
3755
3756		if (tcp_paws_check(&tp->rx_opt, 0))
3757			tcp_store_ts_recent(tp);
3758	}
3759}
3760
3761/* This routine deals with acks during a TLP episode and ends an episode by
3762 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
 
 
3763 */
3764static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3765{
3766	struct tcp_sock *tp = tcp_sk(sk);
3767
3768	if (before(ack, tp->tlp_high_seq))
3769		return;
3770
3771	if (!tp->tlp_retrans) {
3772		/* TLP of new data has been acknowledged */
3773		tp->tlp_high_seq = 0;
3774	} else if (flag & FLAG_DSACK_TLP) {
3775		/* This DSACK means original and TLP probe arrived; no loss */
3776		tp->tlp_high_seq = 0;
3777	} else if (after(ack, tp->tlp_high_seq)) {
3778		/* ACK advances: there was a loss, so reduce cwnd. Reset
3779		 * tlp_high_seq in tcp_init_cwnd_reduction()
3780		 */
3781		tcp_init_cwnd_reduction(sk);
3782		tcp_set_ca_state(sk, TCP_CA_CWR);
3783		tcp_end_cwnd_reduction(sk);
3784		tcp_try_keep_open(sk);
3785		NET_INC_STATS(sock_net(sk),
3786				LINUX_MIB_TCPLOSSPROBERECOVERY);
3787	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3788			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3789		/* Pure dupack: original and TLP probe arrived; no loss */
3790		tp->tlp_high_seq = 0;
3791	}
3792}
3793
3794static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3795{
3796	const struct inet_connection_sock *icsk = inet_csk(sk);
3797
3798	if (icsk->icsk_ca_ops->in_ack_event)
3799		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3800}
3801
3802/* Congestion control has updated the cwnd already. So if we're in
3803 * loss recovery then now we do any new sends (for FRTO) or
3804 * retransmits (for CA_Loss or CA_recovery) that make sense.
3805 */
3806static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3807{
3808	struct tcp_sock *tp = tcp_sk(sk);
3809
3810	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3811		return;
3812
3813	if (unlikely(rexmit == REXMIT_NEW)) {
3814		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3815					  TCP_NAGLE_OFF);
3816		if (after(tp->snd_nxt, tp->high_seq))
3817			return;
3818		tp->frto = 0;
3819	}
3820	tcp_xmit_retransmit_queue(sk);
3821}
3822
3823/* Returns the number of packets newly acked or sacked by the current ACK */
3824static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3825{
3826	const struct net *net = sock_net(sk);
3827	struct tcp_sock *tp = tcp_sk(sk);
3828	u32 delivered;
3829
3830	delivered = tp->delivered - prior_delivered;
3831	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3832	if (flag & FLAG_ECE)
 
3833		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3834
3835	return delivered;
3836}
3837
3838/* This routine deals with incoming acks, but not outgoing ones. */
3839static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3840{
3841	struct inet_connection_sock *icsk = inet_csk(sk);
3842	struct tcp_sock *tp = tcp_sk(sk);
3843	struct tcp_sacktag_state sack_state;
3844	struct rate_sample rs = { .prior_delivered = 0 };
3845	u32 prior_snd_una = tp->snd_una;
3846	bool is_sack_reneg = tp->is_sack_reneg;
3847	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3848	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3849	int num_dupack = 0;
3850	int prior_packets = tp->packets_out;
3851	u32 delivered = tp->delivered;
3852	u32 lost = tp->lost;
3853	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3854	u32 prior_fack;
3855
3856	sack_state.first_sackt = 0;
3857	sack_state.rate = &rs;
3858	sack_state.sack_delivered = 0;
3859
3860	/* We very likely will need to access rtx queue. */
3861	prefetch(sk->tcp_rtx_queue.rb_node);
3862
3863	/* If the ack is older than previous acks
3864	 * then we can probably ignore it.
3865	 */
3866	if (before(ack, prior_snd_una)) {
3867		u32 max_window;
3868
3869		/* do not accept ACK for bytes we never sent. */
3870		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3871		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3872		if (before(ack, prior_snd_una - max_window)) {
3873			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3874				tcp_send_challenge_ack(sk);
3875			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3876		}
3877		goto old_ack;
3878	}
3879
3880	/* If the ack includes data we haven't sent yet, discard
3881	 * this segment (RFC793 Section 3.9).
3882	 */
3883	if (after(ack, tp->snd_nxt))
3884		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3885
3886	if (after(ack, prior_snd_una)) {
3887		flag |= FLAG_SND_UNA_ADVANCED;
3888		icsk->icsk_retransmits = 0;
3889
3890#if IS_ENABLED(CONFIG_TLS_DEVICE)
3891		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3892			if (icsk->icsk_clean_acked)
3893				icsk->icsk_clean_acked(sk, ack);
3894#endif
3895	}
3896
3897	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3898	rs.prior_in_flight = tcp_packets_in_flight(tp);
3899
3900	/* ts_recent update must be made after we are sure that the packet
3901	 * is in window.
3902	 */
3903	if (flag & FLAG_UPDATE_TS_RECENT)
3904		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3905
3906	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3907	    FLAG_SND_UNA_ADVANCED) {
3908		/* Window is constant, pure forward advance.
3909		 * No more checks are required.
3910		 * Note, we use the fact that SND.UNA>=SND.WL2.
3911		 */
3912		tcp_update_wl(tp, ack_seq);
3913		tcp_snd_una_update(tp, ack);
3914		flag |= FLAG_WIN_UPDATE;
3915
3916		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3917
3918		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3919	} else {
3920		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3921
3922		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3923			flag |= FLAG_DATA;
3924		else
3925			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3926
3927		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3928
3929		if (TCP_SKB_CB(skb)->sacked)
3930			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3931							&sack_state);
3932
3933		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3934			flag |= FLAG_ECE;
3935			ack_ev_flags |= CA_ACK_ECE;
3936		}
3937
3938		if (sack_state.sack_delivered)
3939			tcp_count_delivered(tp, sack_state.sack_delivered,
3940					    flag & FLAG_ECE);
3941
3942		if (flag & FLAG_WIN_UPDATE)
3943			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3944
3945		tcp_in_ack_event(sk, ack_ev_flags);
3946	}
3947
3948	/* This is a deviation from RFC3168 since it states that:
3949	 * "When the TCP data sender is ready to set the CWR bit after reducing
3950	 * the congestion window, it SHOULD set the CWR bit only on the first
3951	 * new data packet that it transmits."
3952	 * We accept CWR on pure ACKs to be more robust
3953	 * with widely-deployed TCP implementations that do this.
3954	 */
3955	tcp_ecn_accept_cwr(sk, skb);
3956
3957	/* We passed data and got it acked, remove any soft error
3958	 * log. Something worked...
3959	 */
3960	WRITE_ONCE(sk->sk_err_soft, 0);
3961	icsk->icsk_probes_out = 0;
3962	tp->rcv_tstamp = tcp_jiffies32;
3963	if (!prior_packets)
3964		goto no_queue;
3965
3966	/* See if we can take anything off of the retransmit queue. */
3967	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3968				    &sack_state, flag & FLAG_ECE);
3969
3970	tcp_rack_update_reo_wnd(sk, &rs);
3971
3972	if (tp->tlp_high_seq)
3973		tcp_process_tlp_ack(sk, ack, flag);
 
 
 
3974
3975	if (tcp_ack_is_dubious(sk, flag)) {
3976		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3977			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3978			num_dupack = 1;
3979			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3980			if (!(flag & FLAG_DATA))
3981				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3982		}
3983		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3984				      &rexmit);
3985	}
3986
3987	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3988	if (flag & FLAG_SET_XMIT_TIMER)
3989		tcp_set_xmit_timer(sk);
3990
3991	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3992		sk_dst_confirm(sk);
3993
3994	delivered = tcp_newly_delivered(sk, delivered, flag);
3995	lost = tp->lost - lost;			/* freshly marked lost */
3996	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3997	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3998	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3999	tcp_xmit_recovery(sk, rexmit);
4000	return 1;
4001
4002no_queue:
4003	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4004	if (flag & FLAG_DSACKING_ACK) {
4005		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4006				      &rexmit);
4007		tcp_newly_delivered(sk, delivered, flag);
4008	}
4009	/* If this ack opens up a zero window, clear backoff.  It was
4010	 * being used to time the probes, and is probably far higher than
4011	 * it needs to be for normal retransmission.
4012	 */
4013	tcp_ack_probe(sk);
4014
4015	if (tp->tlp_high_seq)
4016		tcp_process_tlp_ack(sk, ack, flag);
4017	return 1;
4018
4019old_ack:
4020	/* If data was SACKed, tag it and see if we should send more data.
4021	 * If data was DSACKed, see if we can undo a cwnd reduction.
4022	 */
4023	if (TCP_SKB_CB(skb)->sacked) {
4024		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4025						&sack_state);
4026		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4027				      &rexmit);
4028		tcp_newly_delivered(sk, delivered, flag);
4029		tcp_xmit_recovery(sk, rexmit);
4030	}
4031
4032	return 0;
4033}
4034
4035static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4036				      bool syn, struct tcp_fastopen_cookie *foc,
4037				      bool exp_opt)
4038{
4039	/* Valid only in SYN or SYN-ACK with an even length.  */
4040	if (!foc || !syn || len < 0 || (len & 1))
4041		return;
4042
4043	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4044	    len <= TCP_FASTOPEN_COOKIE_MAX)
4045		memcpy(foc->val, cookie, len);
4046	else if (len != 0)
4047		len = -1;
4048	foc->len = len;
4049	foc->exp = exp_opt;
4050}
4051
4052static bool smc_parse_options(const struct tcphdr *th,
4053			      struct tcp_options_received *opt_rx,
4054			      const unsigned char *ptr,
4055			      int opsize)
4056{
4057#if IS_ENABLED(CONFIG_SMC)
4058	if (static_branch_unlikely(&tcp_have_smc)) {
4059		if (th->syn && !(opsize & 1) &&
4060		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4061		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4062			opt_rx->smc_ok = 1;
4063			return true;
4064		}
4065	}
4066#endif
4067	return false;
4068}
4069
4070/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4071 * value on success.
4072 */
4073u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4074{
4075	const unsigned char *ptr = (const unsigned char *)(th + 1);
4076	int length = (th->doff * 4) - sizeof(struct tcphdr);
4077	u16 mss = 0;
4078
4079	while (length > 0) {
4080		int opcode = *ptr++;
4081		int opsize;
4082
4083		switch (opcode) {
4084		case TCPOPT_EOL:
4085			return mss;
4086		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4087			length--;
4088			continue;
4089		default:
4090			if (length < 2)
4091				return mss;
4092			opsize = *ptr++;
4093			if (opsize < 2) /* "silly options" */
4094				return mss;
4095			if (opsize > length)
4096				return mss;	/* fail on partial options */
4097			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4098				u16 in_mss = get_unaligned_be16(ptr);
4099
4100				if (in_mss) {
4101					if (user_mss && user_mss < in_mss)
4102						in_mss = user_mss;
4103					mss = in_mss;
4104				}
4105			}
4106			ptr += opsize - 2;
4107			length -= opsize;
4108		}
4109	}
4110	return mss;
4111}
4112EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4113
4114/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4115 * But, this can also be called on packets in the established flow when
4116 * the fast version below fails.
4117 */
4118void tcp_parse_options(const struct net *net,
4119		       const struct sk_buff *skb,
4120		       struct tcp_options_received *opt_rx, int estab,
4121		       struct tcp_fastopen_cookie *foc)
4122{
4123	const unsigned char *ptr;
4124	const struct tcphdr *th = tcp_hdr(skb);
4125	int length = (th->doff * 4) - sizeof(struct tcphdr);
4126
4127	ptr = (const unsigned char *)(th + 1);
4128	opt_rx->saw_tstamp = 0;
4129	opt_rx->saw_unknown = 0;
4130
4131	while (length > 0) {
4132		int opcode = *ptr++;
4133		int opsize;
4134
4135		switch (opcode) {
4136		case TCPOPT_EOL:
4137			return;
4138		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4139			length--;
4140			continue;
4141		default:
4142			if (length < 2)
4143				return;
4144			opsize = *ptr++;
4145			if (opsize < 2) /* "silly options" */
4146				return;
4147			if (opsize > length)
4148				return;	/* don't parse partial options */
4149			switch (opcode) {
4150			case TCPOPT_MSS:
4151				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4152					u16 in_mss = get_unaligned_be16(ptr);
4153					if (in_mss) {
4154						if (opt_rx->user_mss &&
4155						    opt_rx->user_mss < in_mss)
4156							in_mss = opt_rx->user_mss;
4157						opt_rx->mss_clamp = in_mss;
4158					}
4159				}
4160				break;
4161			case TCPOPT_WINDOW:
4162				if (opsize == TCPOLEN_WINDOW && th->syn &&
4163				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4164					__u8 snd_wscale = *(__u8 *)ptr;
4165					opt_rx->wscale_ok = 1;
4166					if (snd_wscale > TCP_MAX_WSCALE) {
4167						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4168								     __func__,
4169								     snd_wscale,
4170								     TCP_MAX_WSCALE);
4171						snd_wscale = TCP_MAX_WSCALE;
4172					}
4173					opt_rx->snd_wscale = snd_wscale;
4174				}
4175				break;
4176			case TCPOPT_TIMESTAMP:
4177				if ((opsize == TCPOLEN_TIMESTAMP) &&
4178				    ((estab && opt_rx->tstamp_ok) ||
4179				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4180					opt_rx->saw_tstamp = 1;
4181					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4182					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4183				}
4184				break;
4185			case TCPOPT_SACK_PERM:
4186				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4187				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4188					opt_rx->sack_ok = TCP_SACK_SEEN;
4189					tcp_sack_reset(opt_rx);
4190				}
4191				break;
4192
4193			case TCPOPT_SACK:
4194				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4195				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4196				   opt_rx->sack_ok) {
4197					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4198				}
4199				break;
4200#ifdef CONFIG_TCP_MD5SIG
4201			case TCPOPT_MD5SIG:
4202				/* The MD5 Hash has already been
4203				 * checked (see tcp_v{4,6}_rcv()).
 
4204				 */
4205				break;
4206#endif
4207			case TCPOPT_FASTOPEN:
4208				tcp_parse_fastopen_option(
4209					opsize - TCPOLEN_FASTOPEN_BASE,
4210					ptr, th->syn, foc, false);
4211				break;
4212
4213			case TCPOPT_EXP:
4214				/* Fast Open option shares code 254 using a
4215				 * 16 bits magic number.
4216				 */
4217				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4218				    get_unaligned_be16(ptr) ==
4219				    TCPOPT_FASTOPEN_MAGIC) {
4220					tcp_parse_fastopen_option(opsize -
4221						TCPOLEN_EXP_FASTOPEN_BASE,
4222						ptr + 2, th->syn, foc, true);
4223					break;
4224				}
4225
4226				if (smc_parse_options(th, opt_rx, ptr, opsize))
4227					break;
4228
4229				opt_rx->saw_unknown = 1;
4230				break;
4231
4232			default:
4233				opt_rx->saw_unknown = 1;
4234			}
4235			ptr += opsize-2;
4236			length -= opsize;
4237		}
4238	}
4239}
4240EXPORT_SYMBOL(tcp_parse_options);
4241
4242static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4243{
4244	const __be32 *ptr = (const __be32 *)(th + 1);
4245
4246	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4247			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4248		tp->rx_opt.saw_tstamp = 1;
4249		++ptr;
4250		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4251		++ptr;
4252		if (*ptr)
4253			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4254		else
4255			tp->rx_opt.rcv_tsecr = 0;
4256		return true;
4257	}
4258	return false;
4259}
4260
4261/* Fast parse options. This hopes to only see timestamps.
4262 * If it is wrong it falls back on tcp_parse_options().
4263 */
4264static bool tcp_fast_parse_options(const struct net *net,
4265				   const struct sk_buff *skb,
4266				   const struct tcphdr *th, struct tcp_sock *tp)
4267{
4268	/* In the spirit of fast parsing, compare doff directly to constant
4269	 * values.  Because equality is used, short doff can be ignored here.
4270	 */
4271	if (th->doff == (sizeof(*th) / 4)) {
4272		tp->rx_opt.saw_tstamp = 0;
4273		return false;
4274	} else if (tp->rx_opt.tstamp_ok &&
4275		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4276		if (tcp_parse_aligned_timestamp(tp, th))
4277			return true;
4278	}
4279
4280	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4281	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4282		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4283
4284	return true;
4285}
4286
4287#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4288/*
4289 * Parse Signature options
4290 */
4291int tcp_do_parse_auth_options(const struct tcphdr *th,
4292			      const u8 **md5_hash, const u8 **ao_hash)
4293{
4294	int length = (th->doff << 2) - sizeof(*th);
4295	const u8 *ptr = (const u8 *)(th + 1);
4296	unsigned int minlen = TCPOLEN_MD5SIG;
4297
4298	if (IS_ENABLED(CONFIG_TCP_AO))
4299		minlen = sizeof(struct tcp_ao_hdr) + 1;
4300
4301	*md5_hash = NULL;
4302	*ao_hash = NULL;
4303
4304	/* If not enough data remaining, we can short cut */
4305	while (length >= minlen) {
4306		int opcode = *ptr++;
4307		int opsize;
4308
4309		switch (opcode) {
4310		case TCPOPT_EOL:
4311			return 0;
4312		case TCPOPT_NOP:
4313			length--;
4314			continue;
4315		default:
4316			opsize = *ptr++;
4317			if (opsize < 2 || opsize > length)
4318				return -EINVAL;
4319			if (opcode == TCPOPT_MD5SIG) {
4320				if (opsize != TCPOLEN_MD5SIG)
4321					return -EINVAL;
4322				if (unlikely(*md5_hash || *ao_hash))
4323					return -EEXIST;
4324				*md5_hash = ptr;
4325			} else if (opcode == TCPOPT_AO) {
4326				if (opsize <= sizeof(struct tcp_ao_hdr))
4327					return -EINVAL;
4328				if (unlikely(*md5_hash || *ao_hash))
4329					return -EEXIST;
4330				*ao_hash = ptr;
4331			}
4332		}
4333		ptr += opsize - 2;
4334		length -= opsize;
4335	}
4336	return 0;
4337}
4338EXPORT_SYMBOL(tcp_do_parse_auth_options);
4339#endif
4340
4341/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4342 *
4343 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4344 * it can pass through stack. So, the following predicate verifies that
4345 * this segment is not used for anything but congestion avoidance or
4346 * fast retransmit. Moreover, we even are able to eliminate most of such
4347 * second order effects, if we apply some small "replay" window (~RTO)
4348 * to timestamp space.
4349 *
4350 * All these measures still do not guarantee that we reject wrapped ACKs
4351 * on networks with high bandwidth, when sequence space is recycled fastly,
4352 * but it guarantees that such events will be very rare and do not affect
4353 * connection seriously. This doesn't look nice, but alas, PAWS is really
4354 * buggy extension.
4355 *
4356 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4357 * states that events when retransmit arrives after original data are rare.
4358 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4359 * the biggest problem on large power networks even with minor reordering.
4360 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4361 * up to bandwidth of 18Gigabit/sec. 8) ]
4362 */
4363
4364/* Estimates max number of increments of remote peer TSval in
4365 * a replay window (based on our current RTO estimation).
4366 */
4367static u32 tcp_tsval_replay(const struct sock *sk)
4368{
4369	/* If we use usec TS resolution,
4370	 * then expect the remote peer to use the same resolution.
4371	 */
4372	if (tcp_sk(sk)->tcp_usec_ts)
4373		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4374
4375	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4376	 * We know that some OS (including old linux) can use 1200 Hz.
4377	 */
4378	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4379}
4380
4381static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4382{
4383	const struct tcp_sock *tp = tcp_sk(sk);
4384	const struct tcphdr *th = tcp_hdr(skb);
4385	u32 seq = TCP_SKB_CB(skb)->seq;
4386	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4387
4388	return	/* 1. Pure ACK with correct sequence number. */
4389		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4390
4391		/* 2. ... and duplicate ACK. */
4392		ack == tp->snd_una &&
4393
4394		/* 3. ... and does not update window. */
4395		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4396
4397		/* 4. ... and sits in replay window. */
4398		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4399		tcp_tsval_replay(sk);
4400}
4401
4402static inline bool tcp_paws_discard(const struct sock *sk,
4403				   const struct sk_buff *skb)
4404{
4405	const struct tcp_sock *tp = tcp_sk(sk);
4406
4407	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4408	       !tcp_disordered_ack(sk, skb);
4409}
4410
4411/* Check segment sequence number for validity.
4412 *
4413 * Segment controls are considered valid, if the segment
4414 * fits to the window after truncation to the window. Acceptability
4415 * of data (and SYN, FIN, of course) is checked separately.
4416 * See tcp_data_queue(), for example.
4417 *
4418 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4419 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4420 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4421 * (borrowed from freebsd)
4422 */
4423
4424static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4425					 u32 seq, u32 end_seq)
4426{
4427	if (before(end_seq, tp->rcv_wup))
4428		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4429
4430	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4431		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4432
4433	return SKB_NOT_DROPPED_YET;
4434}
4435
4436/* When we get a reset we do this. */
4437void tcp_reset(struct sock *sk, struct sk_buff *skb)
4438{
4439	trace_tcp_receive_reset(sk);
4440
4441	/* mptcp can't tell us to ignore reset pkts,
4442	 * so just ignore the return value of mptcp_incoming_options().
4443	 */
4444	if (sk_is_mptcp(sk))
4445		mptcp_incoming_options(sk, skb);
4446
4447	/* We want the right error as BSD sees it (and indeed as we do). */
4448	switch (sk->sk_state) {
4449	case TCP_SYN_SENT:
4450		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4451		break;
4452	case TCP_CLOSE_WAIT:
4453		WRITE_ONCE(sk->sk_err, EPIPE);
4454		break;
4455	case TCP_CLOSE:
4456		return;
4457	default:
4458		WRITE_ONCE(sk->sk_err, ECONNRESET);
4459	}
4460	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4461	smp_wmb();
4462
4463	tcp_write_queue_purge(sk);
4464	tcp_done(sk);
4465
4466	if (!sock_flag(sk, SOCK_DEAD))
4467		sk_error_report(sk);
4468}
4469
4470/*
4471 * 	Process the FIN bit. This now behaves as it is supposed to work
4472 *	and the FIN takes effect when it is validly part of sequence
4473 *	space. Not before when we get holes.
4474 *
4475 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4476 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4477 *	TIME-WAIT)
4478 *
4479 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4480 *	close and we go into CLOSING (and later onto TIME-WAIT)
4481 *
4482 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4483 */
4484void tcp_fin(struct sock *sk)
4485{
4486	struct tcp_sock *tp = tcp_sk(sk);
4487
4488	inet_csk_schedule_ack(sk);
4489
4490	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4491	sock_set_flag(sk, SOCK_DONE);
4492
4493	switch (sk->sk_state) {
4494	case TCP_SYN_RECV:
4495	case TCP_ESTABLISHED:
4496		/* Move to CLOSE_WAIT */
4497		tcp_set_state(sk, TCP_CLOSE_WAIT);
4498		inet_csk_enter_pingpong_mode(sk);
4499		break;
4500
4501	case TCP_CLOSE_WAIT:
4502	case TCP_CLOSING:
4503		/* Received a retransmission of the FIN, do
4504		 * nothing.
4505		 */
4506		break;
4507	case TCP_LAST_ACK:
4508		/* RFC793: Remain in the LAST-ACK state. */
4509		break;
4510
4511	case TCP_FIN_WAIT1:
4512		/* This case occurs when a simultaneous close
4513		 * happens, we must ack the received FIN and
4514		 * enter the CLOSING state.
4515		 */
4516		tcp_send_ack(sk);
4517		tcp_set_state(sk, TCP_CLOSING);
4518		break;
4519	case TCP_FIN_WAIT2:
4520		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4521		tcp_send_ack(sk);
4522		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4523		break;
4524	default:
4525		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4526		 * cases we should never reach this piece of code.
4527		 */
4528		pr_err("%s: Impossible, sk->sk_state=%d\n",
4529		       __func__, sk->sk_state);
4530		break;
4531	}
4532
4533	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4534	 * Probably, we should reset in this case. For now drop them.
4535	 */
4536	skb_rbtree_purge(&tp->out_of_order_queue);
4537	if (tcp_is_sack(tp))
4538		tcp_sack_reset(&tp->rx_opt);
 
4539
4540	if (!sock_flag(sk, SOCK_DEAD)) {
4541		sk->sk_state_change(sk);
4542
4543		/* Do not send POLL_HUP for half duplex close. */
4544		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4545		    sk->sk_state == TCP_CLOSE)
4546			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4547		else
4548			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4549	}
4550}
4551
4552static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4553				  u32 end_seq)
4554{
4555	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4556		if (before(seq, sp->start_seq))
4557			sp->start_seq = seq;
4558		if (after(end_seq, sp->end_seq))
4559			sp->end_seq = end_seq;
4560		return true;
4561	}
4562	return false;
4563}
4564
4565static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4566{
4567	struct tcp_sock *tp = tcp_sk(sk);
4568
4569	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4570		int mib_idx;
4571
4572		if (before(seq, tp->rcv_nxt))
4573			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4574		else
4575			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4576
4577		NET_INC_STATS(sock_net(sk), mib_idx);
4578
4579		tp->rx_opt.dsack = 1;
4580		tp->duplicate_sack[0].start_seq = seq;
4581		tp->duplicate_sack[0].end_seq = end_seq;
4582	}
4583}
4584
4585static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4586{
4587	struct tcp_sock *tp = tcp_sk(sk);
4588
4589	if (!tp->rx_opt.dsack)
4590		tcp_dsack_set(sk, seq, end_seq);
4591	else
4592		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4593}
4594
4595static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4596{
4597	/* When the ACK path fails or drops most ACKs, the sender would
4598	 * timeout and spuriously retransmit the same segment repeatedly.
4599	 * If it seems our ACKs are not reaching the other side,
4600	 * based on receiving a duplicate data segment with new flowlabel
4601	 * (suggesting the sender suffered an RTO), and we are not already
4602	 * repathing due to our own RTO, then rehash the socket to repath our
4603	 * packets.
4604	 */
4605#if IS_ENABLED(CONFIG_IPV6)
4606	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4607	    skb->protocol == htons(ETH_P_IPV6) &&
4608	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4609	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4610	    sk_rethink_txhash(sk))
4611		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4612
4613	/* Save last flowlabel after a spurious retrans. */
4614	tcp_save_lrcv_flowlabel(sk, skb);
4615#endif
4616}
4617
4618static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4619{
4620	struct tcp_sock *tp = tcp_sk(sk);
4621
4622	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4623	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4624		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4625		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4626
4627		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4628			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4629
4630			tcp_rcv_spurious_retrans(sk, skb);
4631			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4632				end_seq = tp->rcv_nxt;
4633			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4634		}
4635	}
4636
4637	tcp_send_ack(sk);
4638}
4639
4640/* These routines update the SACK block as out-of-order packets arrive or
4641 * in-order packets close up the sequence space.
4642 */
4643static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4644{
4645	int this_sack;
4646	struct tcp_sack_block *sp = &tp->selective_acks[0];
4647	struct tcp_sack_block *swalk = sp + 1;
4648
4649	/* See if the recent change to the first SACK eats into
4650	 * or hits the sequence space of other SACK blocks, if so coalesce.
4651	 */
4652	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4653		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4654			int i;
4655
4656			/* Zap SWALK, by moving every further SACK up by one slot.
4657			 * Decrease num_sacks.
4658			 */
4659			tp->rx_opt.num_sacks--;
4660			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4661				sp[i] = sp[i + 1];
4662			continue;
4663		}
4664		this_sack++;
4665		swalk++;
4666	}
4667}
4668
4669void tcp_sack_compress_send_ack(struct sock *sk)
4670{
4671	struct tcp_sock *tp = tcp_sk(sk);
4672
4673	if (!tp->compressed_ack)
4674		return;
4675
4676	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4677		__sock_put(sk);
4678
4679	/* Since we have to send one ack finally,
4680	 * substract one from tp->compressed_ack to keep
4681	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4682	 */
4683	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4684		      tp->compressed_ack - 1);
4685
4686	tp->compressed_ack = 0;
4687	tcp_send_ack(sk);
4688}
4689
4690/* Reasonable amount of sack blocks included in TCP SACK option
4691 * The max is 4, but this becomes 3 if TCP timestamps are there.
4692 * Given that SACK packets might be lost, be conservative and use 2.
4693 */
4694#define TCP_SACK_BLOCKS_EXPECTED 2
4695
4696static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4697{
4698	struct tcp_sock *tp = tcp_sk(sk);
4699	struct tcp_sack_block *sp = &tp->selective_acks[0];
4700	int cur_sacks = tp->rx_opt.num_sacks;
4701	int this_sack;
4702
4703	if (!cur_sacks)
4704		goto new_sack;
4705
4706	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4707		if (tcp_sack_extend(sp, seq, end_seq)) {
4708			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4709				tcp_sack_compress_send_ack(sk);
4710			/* Rotate this_sack to the first one. */
4711			for (; this_sack > 0; this_sack--, sp--)
4712				swap(*sp, *(sp - 1));
4713			if (cur_sacks > 1)
4714				tcp_sack_maybe_coalesce(tp);
4715			return;
4716		}
4717	}
4718
4719	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4720		tcp_sack_compress_send_ack(sk);
4721
4722	/* Could not find an adjacent existing SACK, build a new one,
4723	 * put it at the front, and shift everyone else down.  We
4724	 * always know there is at least one SACK present already here.
4725	 *
4726	 * If the sack array is full, forget about the last one.
4727	 */
4728	if (this_sack >= TCP_NUM_SACKS) {
 
 
4729		this_sack--;
4730		tp->rx_opt.num_sacks--;
4731		sp--;
4732	}
4733	for (; this_sack > 0; this_sack--, sp--)
4734		*sp = *(sp - 1);
4735
4736new_sack:
4737	/* Build the new head SACK, and we're done. */
4738	sp->start_seq = seq;
4739	sp->end_seq = end_seq;
4740	tp->rx_opt.num_sacks++;
4741}
4742
4743/* RCV.NXT advances, some SACKs should be eaten. */
4744
4745static void tcp_sack_remove(struct tcp_sock *tp)
4746{
4747	struct tcp_sack_block *sp = &tp->selective_acks[0];
4748	int num_sacks = tp->rx_opt.num_sacks;
4749	int this_sack;
4750
4751	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4752	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4753		tp->rx_opt.num_sacks = 0;
4754		return;
4755	}
4756
4757	for (this_sack = 0; this_sack < num_sacks;) {
4758		/* Check if the start of the sack is covered by RCV.NXT. */
4759		if (!before(tp->rcv_nxt, sp->start_seq)) {
4760			int i;
4761
4762			/* RCV.NXT must cover all the block! */
4763			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4764
4765			/* Zap this SACK, by moving forward any other SACKS. */
4766			for (i = this_sack+1; i < num_sacks; i++)
4767				tp->selective_acks[i-1] = tp->selective_acks[i];
4768			num_sacks--;
4769			continue;
4770		}
4771		this_sack++;
4772		sp++;
4773	}
4774	tp->rx_opt.num_sacks = num_sacks;
4775}
4776
4777/**
4778 * tcp_try_coalesce - try to merge skb to prior one
4779 * @sk: socket
 
4780 * @to: prior buffer
4781 * @from: buffer to add in queue
4782 * @fragstolen: pointer to boolean
4783 *
4784 * Before queueing skb @from after @to, try to merge them
4785 * to reduce overall memory use and queue lengths, if cost is small.
4786 * Packets in ofo or receive queues can stay a long time.
4787 * Better try to coalesce them right now to avoid future collapses.
4788 * Returns true if caller should free @from instead of queueing it
4789 */
4790static bool tcp_try_coalesce(struct sock *sk,
4791			     struct sk_buff *to,
4792			     struct sk_buff *from,
4793			     bool *fragstolen)
4794{
4795	int delta;
4796
4797	*fragstolen = false;
4798
4799	/* Its possible this segment overlaps with prior segment in queue */
4800	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4801		return false;
4802
4803	if (!mptcp_skb_can_collapse(to, from))
4804		return false;
4805
4806#ifdef CONFIG_TLS_DEVICE
4807	if (from->decrypted != to->decrypted)
4808		return false;
4809#endif
4810
4811	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4812		return false;
4813
4814	atomic_add(delta, &sk->sk_rmem_alloc);
4815	sk_mem_charge(sk, delta);
4816	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4817	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4818	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4819	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4820
4821	if (TCP_SKB_CB(from)->has_rxtstamp) {
4822		TCP_SKB_CB(to)->has_rxtstamp = true;
4823		to->tstamp = from->tstamp;
4824		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4825	}
4826
4827	return true;
4828}
4829
4830static bool tcp_ooo_try_coalesce(struct sock *sk,
4831			     struct sk_buff *to,
4832			     struct sk_buff *from,
4833			     bool *fragstolen)
4834{
4835	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4836
4837	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4838	if (res) {
4839		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4840			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4841
4842		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4843	}
4844	return res;
4845}
4846
4847static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4848			    enum skb_drop_reason reason)
4849{
4850	sk_drops_add(sk, skb);
4851	kfree_skb_reason(skb, reason);
4852}
4853
4854/* This one checks to see if we can put data from the
4855 * out_of_order queue into the receive_queue.
4856 */
4857static void tcp_ofo_queue(struct sock *sk)
4858{
4859	struct tcp_sock *tp = tcp_sk(sk);
4860	__u32 dsack_high = tp->rcv_nxt;
4861	bool fin, fragstolen, eaten;
4862	struct sk_buff *skb, *tail;
4863	struct rb_node *p;
4864
4865	p = rb_first(&tp->out_of_order_queue);
4866	while (p) {
4867		skb = rb_to_skb(p);
4868		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4869			break;
4870
4871		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4872			__u32 dsack = dsack_high;
4873			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4874				dsack_high = TCP_SKB_CB(skb)->end_seq;
4875			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4876		}
4877		p = rb_next(p);
4878		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4879
4880		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4881			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4882			continue;
4883		}
4884
4885		tail = skb_peek_tail(&sk->sk_receive_queue);
4886		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4887		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4888		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4889		if (!eaten)
4890			__skb_queue_tail(&sk->sk_receive_queue, skb);
4891		else
4892			kfree_skb_partial(skb, fragstolen);
4893
4894		if (unlikely(fin)) {
4895			tcp_fin(sk);
4896			/* tcp_fin() purges tp->out_of_order_queue,
4897			 * so we must end this loop right now.
4898			 */
4899			break;
4900		}
4901	}
4902}
4903
4904static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4905static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4906
4907static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4908				 unsigned int size)
4909{
4910	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4911	    !sk_rmem_schedule(sk, skb, size)) {
4912
4913		if (tcp_prune_queue(sk, skb) < 0)
4914			return -1;
4915
4916		while (!sk_rmem_schedule(sk, skb, size)) {
4917			if (!tcp_prune_ofo_queue(sk, skb))
4918				return -1;
4919		}
4920	}
4921	return 0;
4922}
4923
4924static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4925{
4926	struct tcp_sock *tp = tcp_sk(sk);
4927	struct rb_node **p, *parent;
4928	struct sk_buff *skb1;
4929	u32 seq, end_seq;
4930	bool fragstolen;
4931
4932	tcp_save_lrcv_flowlabel(sk, skb);
4933	tcp_ecn_check_ce(sk, skb);
4934
4935	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4936		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4937		sk->sk_data_ready(sk);
4938		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4939		return;
4940	}
4941
4942	/* Disable header prediction. */
4943	tp->pred_flags = 0;
4944	inet_csk_schedule_ack(sk);
4945
4946	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4947	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4948	seq = TCP_SKB_CB(skb)->seq;
4949	end_seq = TCP_SKB_CB(skb)->end_seq;
4950
4951	p = &tp->out_of_order_queue.rb_node;
4952	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4953		/* Initial out of order segment, build 1 SACK. */
4954		if (tcp_is_sack(tp)) {
4955			tp->rx_opt.num_sacks = 1;
4956			tp->selective_acks[0].start_seq = seq;
4957			tp->selective_acks[0].end_seq = end_seq;
4958		}
4959		rb_link_node(&skb->rbnode, NULL, p);
4960		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4961		tp->ooo_last_skb = skb;
4962		goto end;
4963	}
4964
4965	/* In the typical case, we are adding an skb to the end of the list.
4966	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4967	 */
4968	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4969				 skb, &fragstolen)) {
4970coalesce_done:
4971		/* For non sack flows, do not grow window to force DUPACK
4972		 * and trigger fast retransmit.
4973		 */
4974		if (tcp_is_sack(tp))
4975			tcp_grow_window(sk, skb, true);
4976		kfree_skb_partial(skb, fragstolen);
4977		skb = NULL;
4978		goto add_sack;
4979	}
4980	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4981	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4982		parent = &tp->ooo_last_skb->rbnode;
4983		p = &parent->rb_right;
4984		goto insert;
4985	}
4986
4987	/* Find place to insert this segment. Handle overlaps on the way. */
4988	parent = NULL;
4989	while (*p) {
4990		parent = *p;
4991		skb1 = rb_to_skb(parent);
4992		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4993			p = &parent->rb_left;
4994			continue;
4995		}
4996		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4997			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4998				/* All the bits are present. Drop. */
4999				NET_INC_STATS(sock_net(sk),
5000					      LINUX_MIB_TCPOFOMERGE);
5001				tcp_drop_reason(sk, skb,
5002						SKB_DROP_REASON_TCP_OFOMERGE);
5003				skb = NULL;
5004				tcp_dsack_set(sk, seq, end_seq);
5005				goto add_sack;
5006			}
5007			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5008				/* Partial overlap. */
5009				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5010			} else {
5011				/* skb's seq == skb1's seq and skb covers skb1.
5012				 * Replace skb1 with skb.
5013				 */
5014				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5015						&tp->out_of_order_queue);
5016				tcp_dsack_extend(sk,
5017						 TCP_SKB_CB(skb1)->seq,
5018						 TCP_SKB_CB(skb1)->end_seq);
5019				NET_INC_STATS(sock_net(sk),
5020					      LINUX_MIB_TCPOFOMERGE);
5021				tcp_drop_reason(sk, skb1,
5022						SKB_DROP_REASON_TCP_OFOMERGE);
5023				goto merge_right;
5024			}
5025		} else if (tcp_ooo_try_coalesce(sk, skb1,
5026						skb, &fragstolen)) {
5027			goto coalesce_done;
5028		}
5029		p = &parent->rb_right;
5030	}
5031insert:
5032	/* Insert segment into RB tree. */
5033	rb_link_node(&skb->rbnode, parent, p);
5034	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5035
5036merge_right:
5037	/* Remove other segments covered by skb. */
5038	while ((skb1 = skb_rb_next(skb)) != NULL) {
5039		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5040			break;
5041		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5042			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5043					 end_seq);
5044			break;
5045		}
5046		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5047		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5048				 TCP_SKB_CB(skb1)->end_seq);
5049		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5050		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5051	}
5052	/* If there is no skb after us, we are the last_skb ! */
5053	if (!skb1)
5054		tp->ooo_last_skb = skb;
5055
5056add_sack:
5057	if (tcp_is_sack(tp))
5058		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5059end:
5060	if (skb) {
5061		/* For non sack flows, do not grow window to force DUPACK
5062		 * and trigger fast retransmit.
5063		 */
5064		if (tcp_is_sack(tp))
5065			tcp_grow_window(sk, skb, false);
5066		skb_condense(skb);
5067		skb_set_owner_r(skb, sk);
5068	}
5069}
5070
5071static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5072				      bool *fragstolen)
5073{
5074	int eaten;
5075	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5076
5077	eaten = (tail &&
5078		 tcp_try_coalesce(sk, tail,
5079				  skb, fragstolen)) ? 1 : 0;
5080	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5081	if (!eaten) {
5082		__skb_queue_tail(&sk->sk_receive_queue, skb);
5083		skb_set_owner_r(skb, sk);
5084	}
5085	return eaten;
5086}
5087
5088int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5089{
5090	struct sk_buff *skb;
5091	int err = -ENOMEM;
5092	int data_len = 0;
5093	bool fragstolen;
5094
5095	if (size == 0)
5096		return 0;
5097
5098	if (size > PAGE_SIZE) {
5099		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5100
5101		data_len = npages << PAGE_SHIFT;
5102		size = data_len + (size & ~PAGE_MASK);
5103	}
5104	skb = alloc_skb_with_frags(size - data_len, data_len,
5105				   PAGE_ALLOC_COSTLY_ORDER,
5106				   &err, sk->sk_allocation);
5107	if (!skb)
5108		goto err;
5109
5110	skb_put(skb, size - data_len);
5111	skb->data_len = data_len;
5112	skb->len = size;
5113
5114	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5115		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5116		goto err_free;
5117	}
5118
5119	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5120	if (err)
5121		goto err_free;
5122
5123	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5124	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5125	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5126
5127	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5128		WARN_ON_ONCE(fragstolen); /* should not happen */
5129		__kfree_skb(skb);
5130	}
5131	return size;
5132
5133err_free:
5134	kfree_skb(skb);
5135err:
5136	return err;
5137
5138}
5139
5140void tcp_data_ready(struct sock *sk)
5141{
5142	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5143		sk->sk_data_ready(sk);
 
 
 
 
 
5144}
5145
5146static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5147{
5148	struct tcp_sock *tp = tcp_sk(sk);
5149	enum skb_drop_reason reason;
5150	bool fragstolen;
5151	int eaten;
5152
5153	/* If a subflow has been reset, the packet should not continue
5154	 * to be processed, drop the packet.
5155	 */
5156	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5157		__kfree_skb(skb);
5158		return;
5159	}
5160
5161	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5162		__kfree_skb(skb);
5163		return;
5164	}
5165	skb_dst_drop(skb);
5166	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5167
5168	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 
5169	tp->rx_opt.dsack = 0;
5170
5171	/*  Queue data for delivery to the user.
5172	 *  Packets in sequence go to the receive queue.
5173	 *  Out of sequence packets to the out_of_order_queue.
5174	 */
5175	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5176		if (tcp_receive_window(tp) == 0) {
5177			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5178			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5179			goto out_of_window;
5180		}
5181
5182		/* Ok. In sequence. In window. */
5183queue_and_out:
5184		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5185			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5186			inet_csk(sk)->icsk_ack.pending |=
5187					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5188			inet_csk_schedule_ack(sk);
5189			sk->sk_data_ready(sk);
5190
5191			if (skb_queue_len(&sk->sk_receive_queue)) {
5192				reason = SKB_DROP_REASON_PROTO_MEM;
5193				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5194				goto drop;
5195			}
5196			sk_forced_mem_schedule(sk, skb->truesize);
 
 
 
5197		}
5198
5199		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5200		if (skb->len)
5201			tcp_event_data_recv(sk, skb);
5202		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5203			tcp_fin(sk);
5204
5205		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5206			tcp_ofo_queue(sk);
5207
5208			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5209			 * gap in queue is filled.
5210			 */
5211			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5212				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5213		}
5214
5215		if (tp->rx_opt.num_sacks)
5216			tcp_sack_remove(tp);
5217
5218		tcp_fast_path_check(sk);
5219
5220		if (eaten > 0)
5221			kfree_skb_partial(skb, fragstolen);
5222		if (!sock_flag(sk, SOCK_DEAD))
5223			tcp_data_ready(sk);
5224		return;
5225	}
5226
5227	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5228		tcp_rcv_spurious_retrans(sk, skb);
5229		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5230		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5231		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5232		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5233
5234out_of_window:
5235		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5236		inet_csk_schedule_ack(sk);
5237drop:
5238		tcp_drop_reason(sk, skb, reason);
5239		return;
5240	}
5241
5242	/* Out of window. F.e. zero window probe. */
5243	if (!before(TCP_SKB_CB(skb)->seq,
5244		    tp->rcv_nxt + tcp_receive_window(tp))) {
5245		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5246		goto out_of_window;
5247	}
5248
5249	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5250		/* Partial packet, seq < rcv_next < end_seq */
5251		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5252
5253		/* If window is closed, drop tail of packet. But after
5254		 * remembering D-SACK for its head made in previous line.
5255		 */
5256		if (!tcp_receive_window(tp)) {
5257			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5258			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5259			goto out_of_window;
5260		}
5261		goto queue_and_out;
5262	}
5263
5264	tcp_data_queue_ofo(sk, skb);
5265}
5266
5267static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5268{
5269	if (list)
5270		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5271
5272	return skb_rb_next(skb);
5273}
5274
5275static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5276					struct sk_buff_head *list,
5277					struct rb_root *root)
5278{
5279	struct sk_buff *next = tcp_skb_next(skb, list);
5280
5281	if (list)
5282		__skb_unlink(skb, list);
5283	else
5284		rb_erase(&skb->rbnode, root);
5285
5286	__kfree_skb(skb);
5287	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5288
5289	return next;
5290}
5291
5292/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5293void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5294{
5295	struct rb_node **p = &root->rb_node;
5296	struct rb_node *parent = NULL;
5297	struct sk_buff *skb1;
5298
5299	while (*p) {
5300		parent = *p;
5301		skb1 = rb_to_skb(parent);
5302		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5303			p = &parent->rb_left;
5304		else
5305			p = &parent->rb_right;
5306	}
5307	rb_link_node(&skb->rbnode, parent, p);
5308	rb_insert_color(&skb->rbnode, root);
5309}
5310
5311/* Collapse contiguous sequence of skbs head..tail with
5312 * sequence numbers start..end.
5313 *
5314 * If tail is NULL, this means until the end of the queue.
5315 *
5316 * Segments with FIN/SYN are not collapsed (only because this
5317 * simplifies code)
5318 */
5319static void
5320tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5321	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5322{
5323	struct sk_buff *skb = head, *n;
5324	struct sk_buff_head tmp;
5325	bool end_of_skbs;
5326
5327	/* First, check that queue is collapsible and find
5328	 * the point where collapsing can be useful.
5329	 */
5330restart:
5331	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5332		n = tcp_skb_next(skb, list);
5333
5334		/* No new bits? It is possible on ofo queue. */
5335		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5336			skb = tcp_collapse_one(sk, skb, list, root);
5337			if (!skb)
5338				break;
5339			goto restart;
5340		}
5341
5342		/* The first skb to collapse is:
5343		 * - not SYN/FIN and
5344		 * - bloated or contains data before "start" or
5345		 *   overlaps to the next one and mptcp allow collapsing.
5346		 */
5347		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5348		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5349		     before(TCP_SKB_CB(skb)->seq, start))) {
5350			end_of_skbs = false;
5351			break;
5352		}
5353
5354		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5355		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5356			end_of_skbs = false;
5357			break;
5358		}
5359
5360		/* Decided to skip this, advance start seq. */
5361		start = TCP_SKB_CB(skb)->end_seq;
5362	}
5363	if (end_of_skbs ||
5364	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5365		return;
5366
5367	__skb_queue_head_init(&tmp);
5368
5369	while (before(start, end)) {
5370		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5371		struct sk_buff *nskb;
5372
5373		nskb = alloc_skb(copy, GFP_ATOMIC);
5374		if (!nskb)
5375			break;
5376
5377		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5378#ifdef CONFIG_TLS_DEVICE
5379		nskb->decrypted = skb->decrypted;
5380#endif
5381		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5382		if (list)
5383			__skb_queue_before(list, skb, nskb);
5384		else
5385			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5386		skb_set_owner_r(nskb, sk);
5387		mptcp_skb_ext_move(nskb, skb);
5388
5389		/* Copy data, releasing collapsed skbs. */
5390		while (copy > 0) {
5391			int offset = start - TCP_SKB_CB(skb)->seq;
5392			int size = TCP_SKB_CB(skb)->end_seq - start;
5393
5394			BUG_ON(offset < 0);
5395			if (size > 0) {
5396				size = min(copy, size);
5397				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5398					BUG();
5399				TCP_SKB_CB(nskb)->end_seq += size;
5400				copy -= size;
5401				start += size;
5402			}
5403			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5404				skb = tcp_collapse_one(sk, skb, list, root);
5405				if (!skb ||
5406				    skb == tail ||
5407				    !mptcp_skb_can_collapse(nskb, skb) ||
5408				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5409					goto end;
5410#ifdef CONFIG_TLS_DEVICE
5411				if (skb->decrypted != nskb->decrypted)
5412					goto end;
5413#endif
5414			}
5415		}
5416	}
5417end:
5418	skb_queue_walk_safe(&tmp, skb, n)
5419		tcp_rbtree_insert(root, skb);
5420}
5421
5422/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5423 * and tcp_collapse() them until all the queue is collapsed.
5424 */
5425static void tcp_collapse_ofo_queue(struct sock *sk)
5426{
5427	struct tcp_sock *tp = tcp_sk(sk);
5428	u32 range_truesize, sum_tiny = 0;
5429	struct sk_buff *skb, *head;
5430	u32 start, end;
5431
5432	skb = skb_rb_first(&tp->out_of_order_queue);
5433new_range:
5434	if (!skb) {
5435		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5436		return;
5437	}
5438	start = TCP_SKB_CB(skb)->seq;
5439	end = TCP_SKB_CB(skb)->end_seq;
5440	range_truesize = skb->truesize;
5441
5442	for (head = skb;;) {
5443		skb = skb_rb_next(skb);
5444
5445		/* Range is terminated when we see a gap or when
5446		 * we are at the queue end.
5447		 */
5448		if (!skb ||
5449		    after(TCP_SKB_CB(skb)->seq, end) ||
5450		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5451			/* Do not attempt collapsing tiny skbs */
5452			if (range_truesize != head->truesize ||
5453			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5454				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5455					     head, skb, start, end);
5456			} else {
5457				sum_tiny += range_truesize;
5458				if (sum_tiny > sk->sk_rcvbuf >> 3)
5459					return;
5460			}
5461			goto new_range;
5462		}
5463
5464		range_truesize += skb->truesize;
5465		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5466			start = TCP_SKB_CB(skb)->seq;
5467		if (after(TCP_SKB_CB(skb)->end_seq, end))
5468			end = TCP_SKB_CB(skb)->end_seq;
5469	}
5470}
5471
5472/*
5473 * Clean the out-of-order queue to make room.
5474 * We drop high sequences packets to :
5475 * 1) Let a chance for holes to be filled.
5476 *    This means we do not drop packets from ooo queue if their sequence
5477 *    is before incoming packet sequence.
5478 * 2) not add too big latencies if thousands of packets sit there.
5479 *    (But if application shrinks SO_RCVBUF, we could still end up
5480 *     freeing whole queue here)
5481 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5482 *
5483 * Return true if queue has shrunk.
5484 */
5485static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5486{
5487	struct tcp_sock *tp = tcp_sk(sk);
5488	struct rb_node *node, *prev;
5489	bool pruned = false;
5490	int goal;
5491
5492	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5493		return false;
5494
 
5495	goal = sk->sk_rcvbuf >> 3;
5496	node = &tp->ooo_last_skb->rbnode;
5497
5498	do {
5499		struct sk_buff *skb = rb_to_skb(node);
5500
5501		/* If incoming skb would land last in ofo queue, stop pruning. */
5502		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5503			break;
5504		pruned = true;
5505		prev = rb_prev(node);
5506		rb_erase(node, &tp->out_of_order_queue);
5507		goal -= skb->truesize;
5508		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5509		tp->ooo_last_skb = rb_to_skb(prev);
5510		if (!prev || goal <= 0) {
 
5511			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5512			    !tcp_under_memory_pressure(sk))
5513				break;
5514			goal = sk->sk_rcvbuf >> 3;
5515		}
5516		node = prev;
5517	} while (node);
 
5518
5519	if (pruned) {
5520		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5521		/* Reset SACK state.  A conforming SACK implementation will
5522		 * do the same at a timeout based retransmit.  When a connection
5523		 * is in a sad state like this, we care only about integrity
5524		 * of the connection not performance.
5525		 */
5526		if (tp->rx_opt.sack_ok)
5527			tcp_sack_reset(&tp->rx_opt);
5528	}
5529	return pruned;
5530}
5531
5532/* Reduce allocated memory if we can, trying to get
5533 * the socket within its memory limits again.
5534 *
5535 * Return less than zero if we should start dropping frames
5536 * until the socket owning process reads some of the data
5537 * to stabilize the situation.
5538 */
5539static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5540{
5541	struct tcp_sock *tp = tcp_sk(sk);
5542
5543	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5544
5545	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5546		tcp_clamp_window(sk);
5547	else if (tcp_under_memory_pressure(sk))
5548		tcp_adjust_rcv_ssthresh(sk);
5549
5550	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5551		return 0;
5552
5553	tcp_collapse_ofo_queue(sk);
5554	if (!skb_queue_empty(&sk->sk_receive_queue))
5555		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5556			     skb_peek(&sk->sk_receive_queue),
5557			     NULL,
5558			     tp->copied_seq, tp->rcv_nxt);
 
5559
5560	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5561		return 0;
5562
5563	/* Collapsing did not help, destructive actions follow.
5564	 * This must not ever occur. */
5565
5566	tcp_prune_ofo_queue(sk, in_skb);
5567
5568	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5569		return 0;
5570
5571	/* If we are really being abused, tell the caller to silently
5572	 * drop receive data on the floor.  It will get retransmitted
5573	 * and hopefully then we'll have sufficient space.
5574	 */
5575	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5576
5577	/* Massive buffer overcommit. */
5578	tp->pred_flags = 0;
5579	return -1;
5580}
5581
5582static bool tcp_should_expand_sndbuf(struct sock *sk)
5583{
5584	const struct tcp_sock *tp = tcp_sk(sk);
5585
5586	/* If the user specified a specific send buffer setting, do
5587	 * not modify it.
5588	 */
5589	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5590		return false;
5591
5592	/* If we are under global TCP memory pressure, do not expand.  */
5593	if (tcp_under_memory_pressure(sk)) {
5594		int unused_mem = sk_unused_reserved_mem(sk);
5595
5596		/* Adjust sndbuf according to reserved mem. But make sure
5597		 * it never goes below SOCK_MIN_SNDBUF.
5598		 * See sk_stream_moderate_sndbuf() for more details.
5599		 */
5600		if (unused_mem > SOCK_MIN_SNDBUF)
5601			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5602
5603		return false;
5604	}
5605
5606	/* If we are under soft global TCP memory pressure, do not expand.  */
5607	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5608		return false;
5609
5610	/* If we filled the congestion window, do not expand.  */
5611	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5612		return false;
5613
5614	return true;
5615}
5616
 
 
 
 
 
 
5617static void tcp_new_space(struct sock *sk)
5618{
5619	struct tcp_sock *tp = tcp_sk(sk);
5620
5621	if (tcp_should_expand_sndbuf(sk)) {
5622		tcp_sndbuf_expand(sk);
5623		tp->snd_cwnd_stamp = tcp_jiffies32;
5624	}
5625
5626	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5627}
5628
5629/* Caller made space either from:
5630 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5631 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5632 *
5633 * We might be able to generate EPOLLOUT to the application if:
5634 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5635 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5636 *    small enough that tcp_stream_memory_free() decides it
5637 *    is time to generate EPOLLOUT.
5638 */
5639void tcp_check_space(struct sock *sk)
5640{
5641	/* pairs with tcp_poll() */
5642	smp_mb();
5643	if (sk->sk_socket &&
5644	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5645		tcp_new_space(sk);
5646		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5647			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5648	}
5649}
5650
5651static inline void tcp_data_snd_check(struct sock *sk)
5652{
5653	tcp_push_pending_frames(sk);
5654	tcp_check_space(sk);
5655}
5656
5657/*
5658 * Check if sending an ack is needed.
5659 */
5660static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5661{
5662	struct tcp_sock *tp = tcp_sk(sk);
5663	unsigned long rtt, delay;
5664
5665	    /* More than one full frame received... */
5666	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5667	     /* ... and right edge of window advances far enough.
5668	      * (tcp_recvmsg() will send ACK otherwise).
5669	      * If application uses SO_RCVLOWAT, we want send ack now if
5670	      * we have not received enough bytes to satisfy the condition.
5671	      */
5672	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5673	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5674	    /* We ACK each frame or... */
5675	    tcp_in_quickack_mode(sk) ||
5676	    /* Protocol state mandates a one-time immediate ACK */
5677	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5678		/* If we are running from __release_sock() in user context,
5679		 * Defer the ack until tcp_release_cb().
5680		 */
5681		if (sock_owned_by_user_nocheck(sk) &&
5682		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5683			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5684			return;
5685		}
5686send_now:
5687		tcp_send_ack(sk);
5688		return;
5689	}
5690
5691	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5692		tcp_send_delayed_ack(sk);
5693		return;
5694	}
5695
5696	if (!tcp_is_sack(tp) ||
5697	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5698		goto send_now;
5699
5700	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5701		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5702		tp->dup_ack_counter = 0;
 
 
 
5703	}
5704	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5705		tp->dup_ack_counter++;
5706		goto send_now;
5707	}
5708	tp->compressed_ack++;
5709	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5710		return;
5711
5712	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5713
5714	rtt = tp->rcv_rtt_est.rtt_us;
5715	if (tp->srtt_us && tp->srtt_us < rtt)
5716		rtt = tp->srtt_us;
5717
5718	delay = min_t(unsigned long,
5719		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5720		      rtt * (NSEC_PER_USEC >> 3)/20);
5721	sock_hold(sk);
5722	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5723			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5724			       HRTIMER_MODE_REL_PINNED_SOFT);
5725}
5726
5727static inline void tcp_ack_snd_check(struct sock *sk)
5728{
5729	if (!inet_csk_ack_scheduled(sk)) {
5730		/* We sent a data segment already. */
5731		return;
5732	}
5733	__tcp_ack_snd_check(sk, 1);
5734}
5735
5736/*
5737 *	This routine is only called when we have urgent data
5738 *	signaled. Its the 'slow' part of tcp_urg. It could be
5739 *	moved inline now as tcp_urg is only called from one
5740 *	place. We handle URGent data wrong. We have to - as
5741 *	BSD still doesn't use the correction from RFC961.
5742 *	For 1003.1g we should support a new option TCP_STDURG to permit
5743 *	either form (or just set the sysctl tcp_stdurg).
5744 */
5745
5746static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5747{
5748	struct tcp_sock *tp = tcp_sk(sk);
5749	u32 ptr = ntohs(th->urg_ptr);
5750
5751	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5752		ptr--;
5753	ptr += ntohl(th->seq);
5754
5755	/* Ignore urgent data that we've already seen and read. */
5756	if (after(tp->copied_seq, ptr))
5757		return;
5758
5759	/* Do not replay urg ptr.
5760	 *
5761	 * NOTE: interesting situation not covered by specs.
5762	 * Misbehaving sender may send urg ptr, pointing to segment,
5763	 * which we already have in ofo queue. We are not able to fetch
5764	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5765	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5766	 * situations. But it is worth to think about possibility of some
5767	 * DoSes using some hypothetical application level deadlock.
5768	 */
5769	if (before(ptr, tp->rcv_nxt))
5770		return;
5771
5772	/* Do we already have a newer (or duplicate) urgent pointer? */
5773	if (tp->urg_data && !after(ptr, tp->urg_seq))
5774		return;
5775
5776	/* Tell the world about our new urgent pointer. */
5777	sk_send_sigurg(sk);
5778
5779	/* We may be adding urgent data when the last byte read was
5780	 * urgent. To do this requires some care. We cannot just ignore
5781	 * tp->copied_seq since we would read the last urgent byte again
5782	 * as data, nor can we alter copied_seq until this data arrives
5783	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5784	 *
5785	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5786	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5787	 * and expect that both A and B disappear from stream. This is _wrong_.
5788	 * Though this happens in BSD with high probability, this is occasional.
5789	 * Any application relying on this is buggy. Note also, that fix "works"
5790	 * only in this artificial test. Insert some normal data between A and B and we will
5791	 * decline of BSD again. Verdict: it is better to remove to trap
5792	 * buggy users.
5793	 */
5794	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5795	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5796		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5797		tp->copied_seq++;
5798		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5799			__skb_unlink(skb, &sk->sk_receive_queue);
5800			__kfree_skb(skb);
5801		}
5802	}
5803
5804	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5805	WRITE_ONCE(tp->urg_seq, ptr);
5806
5807	/* Disable header prediction. */
5808	tp->pred_flags = 0;
5809}
5810
5811/* This is the 'fast' part of urgent handling. */
5812static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5813{
5814	struct tcp_sock *tp = tcp_sk(sk);
5815
5816	/* Check if we get a new urgent pointer - normally not. */
5817	if (unlikely(th->urg))
5818		tcp_check_urg(sk, th);
5819
5820	/* Do we wait for any urgent data? - normally not... */
5821	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5822		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5823			  th->syn;
5824
5825		/* Is the urgent pointer pointing into this packet? */
5826		if (ptr < skb->len) {
5827			u8 tmp;
5828			if (skb_copy_bits(skb, ptr, &tmp, 1))
5829				BUG();
5830			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5831			if (!sock_flag(sk, SOCK_DEAD))
5832				sk->sk_data_ready(sk);
5833		}
5834	}
5835}
5836
5837/* Accept RST for rcv_nxt - 1 after a FIN.
5838 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5839 * FIN is sent followed by a RST packet. The RST is sent with the same
5840 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5841 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5842 * ACKs on the closed socket. In addition middleboxes can drop either the
5843 * challenge ACK or a subsequent RST.
5844 */
5845static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5846{
5847	const struct tcp_sock *tp = tcp_sk(sk);
5848
5849	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5850			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5851					       TCPF_CLOSING));
5852}
5853
5854/* Does PAWS and seqno based validation of an incoming segment, flags will
5855 * play significant role here.
5856 */
5857static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5858				  const struct tcphdr *th, int syn_inerr)
5859{
5860	struct tcp_sock *tp = tcp_sk(sk);
5861	SKB_DR(reason);
5862
5863	/* RFC1323: H1. Apply PAWS check first. */
5864	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5865	    tp->rx_opt.saw_tstamp &&
5866	    tcp_paws_discard(sk, skb)) {
5867		if (!th->rst) {
5868			if (unlikely(th->syn))
5869				goto syn_challenge;
5870			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5871			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5872						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5873						  &tp->last_oow_ack_time))
5874				tcp_send_dupack(sk, skb);
5875			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5876			goto discard;
5877		}
5878		/* Reset is accepted even if it did not pass PAWS. */
5879	}
5880
5881	/* Step 1: check sequence number */
5882	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5883	if (reason) {
5884		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5885		 * (RST) segments are validated by checking their SEQ-fields."
5886		 * And page 69: "If an incoming segment is not acceptable,
5887		 * an acknowledgment should be sent in reply (unless the RST
5888		 * bit is set, if so drop the segment and return)".
5889		 */
5890		if (!th->rst) {
5891			if (th->syn)
5892				goto syn_challenge;
5893			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5894						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5895						  &tp->last_oow_ack_time))
5896				tcp_send_dupack(sk, skb);
5897		} else if (tcp_reset_check(sk, skb)) {
5898			goto reset;
5899		}
5900		goto discard;
5901	}
5902
5903	/* Step 2: check RST bit */
5904	if (th->rst) {
5905		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5906		 * FIN and SACK too if available):
5907		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5908		 * the right-most SACK block,
5909		 * then
5910		 *     RESET the connection
5911		 * else
5912		 *     Send a challenge ACK
5913		 */
5914		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5915		    tcp_reset_check(sk, skb))
5916			goto reset;
5917
5918		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5919			struct tcp_sack_block *sp = &tp->selective_acks[0];
5920			int max_sack = sp[0].end_seq;
5921			int this_sack;
5922
5923			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5924			     ++this_sack) {
5925				max_sack = after(sp[this_sack].end_seq,
5926						 max_sack) ?
5927					sp[this_sack].end_seq : max_sack;
5928			}
5929
5930			if (TCP_SKB_CB(skb)->seq == max_sack)
5931				goto reset;
5932		}
5933
5934		/* Disable TFO if RST is out-of-order
5935		 * and no data has been received
5936		 * for current active TFO socket
5937		 */
5938		if (tp->syn_fastopen && !tp->data_segs_in &&
5939		    sk->sk_state == TCP_ESTABLISHED)
5940			tcp_fastopen_active_disable(sk);
5941		tcp_send_challenge_ack(sk);
5942		SKB_DR_SET(reason, TCP_RESET);
 
 
 
5943		goto discard;
5944	}
5945
5946	/* step 3: check security and precedence [ignored] */
5947
5948	/* step 4: Check for a SYN
5949	 * RFC 5961 4.2 : Send a challenge ack
5950	 */
5951	if (th->syn) {
5952syn_challenge:
5953		if (syn_inerr)
5954			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5955		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5956		tcp_send_challenge_ack(sk);
5957		SKB_DR_SET(reason, TCP_INVALID_SYN);
5958		goto discard;
5959	}
5960
5961	bpf_skops_parse_hdr(sk, skb);
5962
5963	return true;
5964
5965discard:
5966	tcp_drop_reason(sk, skb, reason);
5967	return false;
5968
5969reset:
5970	tcp_reset(sk, skb);
5971	__kfree_skb(skb);
5972	return false;
5973}
5974
5975/*
5976 *	TCP receive function for the ESTABLISHED state.
5977 *
5978 *	It is split into a fast path and a slow path. The fast path is
5979 * 	disabled when:
5980 *	- A zero window was announced from us - zero window probing
5981 *        is only handled properly in the slow path.
5982 *	- Out of order segments arrived.
5983 *	- Urgent data is expected.
5984 *	- There is no buffer space left
5985 *	- Unexpected TCP flags/window values/header lengths are received
5986 *	  (detected by checking the TCP header against pred_flags)
5987 *	- Data is sent in both directions. Fast path only supports pure senders
5988 *	  or pure receivers (this means either the sequence number or the ack
5989 *	  value must stay constant)
5990 *	- Unexpected TCP option.
5991 *
5992 *	When these conditions are not satisfied it drops into a standard
5993 *	receive procedure patterned after RFC793 to handle all cases.
5994 *	The first three cases are guaranteed by proper pred_flags setting,
5995 *	the rest is checked inline. Fast processing is turned on in
5996 *	tcp_data_queue when everything is OK.
5997 */
5998void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5999{
6000	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6001	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6002	struct tcp_sock *tp = tcp_sk(sk);
6003	unsigned int len = skb->len;
6004
6005	/* TCP congestion window tracking */
6006	trace_tcp_probe(sk, skb);
6007
6008	tcp_mstamp_refresh(tp);
6009	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6010		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6011	/*
6012	 *	Header prediction.
6013	 *	The code loosely follows the one in the famous
6014	 *	"30 instruction TCP receive" Van Jacobson mail.
6015	 *
6016	 *	Van's trick is to deposit buffers into socket queue
6017	 *	on a device interrupt, to call tcp_recv function
6018	 *	on the receive process context and checksum and copy
6019	 *	the buffer to user space. smart...
6020	 *
6021	 *	Our current scheme is not silly either but we take the
6022	 *	extra cost of the net_bh soft interrupt processing...
6023	 *	We do checksum and copy also but from device to kernel.
6024	 */
6025
6026	tp->rx_opt.saw_tstamp = 0;
6027
6028	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6029	 *	if header_prediction is to be made
6030	 *	'S' will always be tp->tcp_header_len >> 2
6031	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6032	 *  turn it off	(when there are holes in the receive
6033	 *	 space for instance)
6034	 *	PSH flag is ignored.
6035	 */
6036
6037	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6038	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6039	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6040		int tcp_header_len = tp->tcp_header_len;
6041
6042		/* Timestamp header prediction: tcp_header_len
6043		 * is automatically equal to th->doff*4 due to pred_flags
6044		 * match.
6045		 */
6046
6047		/* Check timestamp */
6048		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6049			/* No? Slow path! */
6050			if (!tcp_parse_aligned_timestamp(tp, th))
6051				goto slow_path;
6052
6053			/* If PAWS failed, check it more carefully in slow path */
6054			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6055				goto slow_path;
6056
6057			/* DO NOT update ts_recent here, if checksum fails
6058			 * and timestamp was corrupted part, it will result
6059			 * in a hung connection since we will drop all
6060			 * future packets due to the PAWS test.
6061			 */
6062		}
6063
6064		if (len <= tcp_header_len) {
6065			/* Bulk data transfer: sender */
6066			if (len == tcp_header_len) {
6067				/* Predicted packet is in window by definition.
6068				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6069				 * Hence, check seq<=rcv_wup reduces to:
6070				 */
6071				if (tcp_header_len ==
6072				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6073				    tp->rcv_nxt == tp->rcv_wup)
6074					tcp_store_ts_recent(tp);
6075
6076				/* We know that such packets are checksummed
6077				 * on entry.
6078				 */
6079				tcp_ack(sk, skb, 0);
6080				__kfree_skb(skb);
6081				tcp_data_snd_check(sk);
6082				/* When receiving pure ack in fast path, update
6083				 * last ts ecr directly instead of calling
6084				 * tcp_rcv_rtt_measure_ts()
6085				 */
6086				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6087				return;
6088			} else { /* Header too small */
6089				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6090				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6091				goto discard;
6092			}
6093		} else {
6094			int eaten = 0;
6095			bool fragstolen = false;
6096
6097			if (tcp_checksum_complete(skb))
6098				goto csum_error;
6099
6100			if ((int)skb->truesize > sk->sk_forward_alloc)
6101				goto step5;
6102
6103			/* Predicted packet is in window by definition.
6104			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6105			 * Hence, check seq<=rcv_wup reduces to:
6106			 */
6107			if (tcp_header_len ==
6108			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6109			    tp->rcv_nxt == tp->rcv_wup)
6110				tcp_store_ts_recent(tp);
6111
6112			tcp_rcv_rtt_measure_ts(sk, skb);
6113
6114			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6115
6116			/* Bulk data transfer: receiver */
6117			skb_dst_drop(skb);
6118			__skb_pull(skb, tcp_header_len);
6119			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6120
6121			tcp_event_data_recv(sk, skb);
6122
6123			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6124				/* Well, only one small jumplet in fast path... */
6125				tcp_ack(sk, skb, FLAG_DATA);
6126				tcp_data_snd_check(sk);
6127				if (!inet_csk_ack_scheduled(sk))
6128					goto no_ack;
6129			} else {
6130				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6131			}
6132
6133			__tcp_ack_snd_check(sk, 0);
6134no_ack:
6135			if (eaten)
6136				kfree_skb_partial(skb, fragstolen);
6137			tcp_data_ready(sk);
6138			return;
6139		}
6140	}
6141
6142slow_path:
6143	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6144		goto csum_error;
6145
6146	if (!th->ack && !th->rst && !th->syn) {
6147		reason = SKB_DROP_REASON_TCP_FLAGS;
6148		goto discard;
6149	}
6150
6151	/*
6152	 *	Standard slow path.
6153	 */
6154
6155	if (!tcp_validate_incoming(sk, skb, th, 1))
6156		return;
6157
6158step5:
6159	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6160	if ((int)reason < 0) {
6161		reason = -reason;
6162		goto discard;
6163	}
6164	tcp_rcv_rtt_measure_ts(sk, skb);
6165
6166	/* Process urgent data. */
6167	tcp_urg(sk, skb, th);
6168
6169	/* step 7: process the segment text */
6170	tcp_data_queue(sk, skb);
6171
6172	tcp_data_snd_check(sk);
6173	tcp_ack_snd_check(sk);
6174	return;
6175
6176csum_error:
6177	reason = SKB_DROP_REASON_TCP_CSUM;
6178	trace_tcp_bad_csum(skb);
6179	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6180	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6181
6182discard:
6183	tcp_drop_reason(sk, skb, reason);
6184}
6185EXPORT_SYMBOL(tcp_rcv_established);
6186
6187void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6188{
6189	struct inet_connection_sock *icsk = inet_csk(sk);
6190	struct tcp_sock *tp = tcp_sk(sk);
6191
6192	tcp_mtup_init(sk);
6193	icsk->icsk_af_ops->rebuild_header(sk);
6194	tcp_init_metrics(sk);
6195
6196	/* Initialize the congestion window to start the transfer.
6197	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6198	 * retransmitted. In light of RFC6298 more aggressive 1sec
6199	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6200	 * retransmission has occurred.
6201	 */
6202	if (tp->total_retrans > 1 && tp->undo_marker)
6203		tcp_snd_cwnd_set(tp, 1);
6204	else
6205		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6206	tp->snd_cwnd_stamp = tcp_jiffies32;
6207
6208	bpf_skops_established(sk, bpf_op, skb);
6209	/* Initialize congestion control unless BPF initialized it already: */
6210	if (!icsk->icsk_ca_initialized)
6211		tcp_init_congestion_control(sk);
6212	tcp_init_buffer_space(sk);
6213}
6214
6215void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6216{
6217	struct tcp_sock *tp = tcp_sk(sk);
6218	struct inet_connection_sock *icsk = inet_csk(sk);
6219
6220	tcp_ao_finish_connect(sk, skb);
6221	tcp_set_state(sk, TCP_ESTABLISHED);
6222	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6223
6224	if (skb) {
6225		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6226		security_inet_conn_established(sk, skb);
6227		sk_mark_napi_id(sk, skb);
6228	}
6229
6230	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6231
6232	/* Prevent spurious tcp_cwnd_restart() on first data
6233	 * packet.
6234	 */
6235	tp->lsndtime = tcp_jiffies32;
6236
6237	if (sock_flag(sk, SOCK_KEEPOPEN))
6238		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6239
6240	if (!tp->rx_opt.snd_wscale)
6241		__tcp_fast_path_on(tp, tp->snd_wnd);
6242	else
6243		tp->pred_flags = 0;
6244}
6245
6246static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6247				    struct tcp_fastopen_cookie *cookie)
6248{
6249	struct tcp_sock *tp = tcp_sk(sk);
6250	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6251	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6252	bool syn_drop = false;
6253
6254	if (mss == tp->rx_opt.user_mss) {
6255		struct tcp_options_received opt;
6256
6257		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6258		tcp_clear_options(&opt);
6259		opt.user_mss = opt.mss_clamp = 0;
6260		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6261		mss = opt.mss_clamp;
6262	}
6263
6264	if (!tp->syn_fastopen) {
6265		/* Ignore an unsolicited cookie */
6266		cookie->len = -1;
6267	} else if (tp->total_retrans) {
6268		/* SYN timed out and the SYN-ACK neither has a cookie nor
6269		 * acknowledges data. Presumably the remote received only
6270		 * the retransmitted (regular) SYNs: either the original
6271		 * SYN-data or the corresponding SYN-ACK was dropped.
6272		 */
6273		syn_drop = (cookie->len < 0 && data);
6274	} else if (cookie->len < 0 && !tp->syn_data) {
6275		/* We requested a cookie but didn't get it. If we did not use
6276		 * the (old) exp opt format then try so next time (try_exp=1).
6277		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6278		 */
6279		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6280	}
6281
6282	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6283
6284	if (data) { /* Retransmit unacked data in SYN */
6285		if (tp->total_retrans)
6286			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6287		else
6288			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6289		skb_rbtree_walk_from(data)
6290			 tcp_mark_skb_lost(sk, data);
6291		tcp_xmit_retransmit_queue(sk);
6292		NET_INC_STATS(sock_net(sk),
6293				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6294		return true;
6295	}
6296	tp->syn_data_acked = tp->syn_data;
6297	if (tp->syn_data_acked) {
6298		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6299		/* SYN-data is counted as two separate packets in tcp_ack() */
6300		if (tp->delivered > 1)
6301			--tp->delivered;
6302	}
6303
6304	tcp_fastopen_add_skb(sk, synack);
6305
6306	return false;
6307}
6308
6309static void smc_check_reset_syn(struct tcp_sock *tp)
6310{
6311#if IS_ENABLED(CONFIG_SMC)
6312	if (static_branch_unlikely(&tcp_have_smc)) {
6313		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6314			tp->syn_smc = 0;
6315	}
6316#endif
6317}
6318
6319static void tcp_try_undo_spurious_syn(struct sock *sk)
6320{
6321	struct tcp_sock *tp = tcp_sk(sk);
6322	u32 syn_stamp;
6323
6324	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6325	 * spurious if the ACK's timestamp option echo value matches the
6326	 * original SYN timestamp.
6327	 */
6328	syn_stamp = tp->retrans_stamp;
6329	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6330	    syn_stamp == tp->rx_opt.rcv_tsecr)
6331		tp->undo_marker = 0;
6332}
6333
6334static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6335					 const struct tcphdr *th)
6336{
6337	struct inet_connection_sock *icsk = inet_csk(sk);
6338	struct tcp_sock *tp = tcp_sk(sk);
6339	struct tcp_fastopen_cookie foc = { .len = -1 };
6340	int saved_clamp = tp->rx_opt.mss_clamp;
6341	bool fastopen_fail;
6342	SKB_DR(reason);
6343
6344	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6345	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6346		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6347
6348	if (th->ack) {
6349		/* rfc793:
6350		 * "If the state is SYN-SENT then
6351		 *    first check the ACK bit
6352		 *      If the ACK bit is set
6353		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6354		 *        a reset (unless the RST bit is set, if so drop
6355		 *        the segment and return)"
6356		 */
6357		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6358		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6359			/* Previous FIN/ACK or RST/ACK might be ignored. */
6360			if (icsk->icsk_retransmits == 0)
6361				inet_csk_reset_xmit_timer(sk,
6362						ICSK_TIME_RETRANS,
6363						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6364			goto reset_and_undo;
6365		}
6366
6367		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6368		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6369			     tcp_time_stamp_ts(tp))) {
6370			NET_INC_STATS(sock_net(sk),
6371					LINUX_MIB_PAWSACTIVEREJECTED);
6372			goto reset_and_undo;
6373		}
6374
6375		/* Now ACK is acceptable.
6376		 *
6377		 * "If the RST bit is set
6378		 *    If the ACK was acceptable then signal the user "error:
6379		 *    connection reset", drop the segment, enter CLOSED state,
6380		 *    delete TCB, and return."
6381		 */
6382
6383		if (th->rst) {
6384			tcp_reset(sk, skb);
6385consume:
6386			__kfree_skb(skb);
6387			return 0;
6388		}
6389
6390		/* rfc793:
6391		 *   "fifth, if neither of the SYN or RST bits is set then
6392		 *    drop the segment and return."
6393		 *
6394		 *    See note below!
6395		 *                                        --ANK(990513)
6396		 */
6397		if (!th->syn) {
6398			SKB_DR_SET(reason, TCP_FLAGS);
6399			goto discard_and_undo;
6400		}
6401		/* rfc793:
6402		 *   "If the SYN bit is on ...
6403		 *    are acceptable then ...
6404		 *    (our SYN has been ACKed), change the connection
6405		 *    state to ESTABLISHED..."
6406		 */
6407
6408		tcp_ecn_rcv_synack(tp, th);
6409
6410		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6411		tcp_try_undo_spurious_syn(sk);
6412		tcp_ack(sk, skb, FLAG_SLOWPATH);
6413
6414		/* Ok.. it's good. Set up sequence numbers and
6415		 * move to established.
6416		 */
6417		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6418		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6419
6420		/* RFC1323: The window in SYN & SYN/ACK segments is
6421		 * never scaled.
6422		 */
6423		tp->snd_wnd = ntohs(th->window);
6424
6425		if (!tp->rx_opt.wscale_ok) {
6426			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6427			tp->window_clamp = min(tp->window_clamp, 65535U);
6428		}
6429
6430		if (tp->rx_opt.saw_tstamp) {
6431			tp->rx_opt.tstamp_ok	   = 1;
6432			tp->tcp_header_len =
6433				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6434			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6435			tcp_store_ts_recent(tp);
6436		} else {
6437			tp->tcp_header_len = sizeof(struct tcphdr);
6438		}
6439
6440		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6441		tcp_initialize_rcv_mss(sk);
6442
6443		/* Remember, tcp_poll() does not lock socket!
6444		 * Change state from SYN-SENT only after copied_seq
6445		 * is initialized. */
6446		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6447
6448		smc_check_reset_syn(tp);
6449
6450		smp_mb();
6451
6452		tcp_finish_connect(sk, skb);
6453
6454		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6455				tcp_rcv_fastopen_synack(sk, skb, &foc);
6456
6457		if (!sock_flag(sk, SOCK_DEAD)) {
6458			sk->sk_state_change(sk);
6459			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6460		}
6461		if (fastopen_fail)
6462			return -1;
6463		if (sk->sk_write_pending ||
6464		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6465		    inet_csk_in_pingpong_mode(sk)) {
6466			/* Save one ACK. Data will be ready after
6467			 * several ticks, if write_pending is set.
6468			 *
6469			 * It may be deleted, but with this feature tcpdumps
6470			 * look so _wonderfully_ clever, that I was not able
6471			 * to stand against the temptation 8)     --ANK
6472			 */
6473			inet_csk_schedule_ack(sk);
6474			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6475			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6476						  TCP_DELACK_MAX, TCP_RTO_MAX);
6477			goto consume;
 
 
 
 
 
6478		}
6479		tcp_send_ack(sk);
6480		return -1;
6481	}
6482
6483	/* No ACK in the segment */
6484
6485	if (th->rst) {
6486		/* rfc793:
6487		 * "If the RST bit is set
6488		 *
6489		 *      Otherwise (no ACK) drop the segment and return."
6490		 */
6491		SKB_DR_SET(reason, TCP_RESET);
6492		goto discard_and_undo;
6493	}
6494
6495	/* PAWS check. */
6496	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6497	    tcp_paws_reject(&tp->rx_opt, 0)) {
6498		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6499		goto discard_and_undo;
6500	}
6501	if (th->syn) {
6502		/* We see SYN without ACK. It is attempt of
6503		 * simultaneous connect with crossed SYNs.
6504		 * Particularly, it can be connect to self.
6505		 */
6506#ifdef CONFIG_TCP_AO
6507		struct tcp_ao_info *ao;
6508
6509		ao = rcu_dereference_protected(tp->ao_info,
6510					       lockdep_sock_is_held(sk));
6511		if (ao) {
6512			WRITE_ONCE(ao->risn, th->seq);
6513			ao->rcv_sne = 0;
6514		}
6515#endif
6516		tcp_set_state(sk, TCP_SYN_RECV);
6517
6518		if (tp->rx_opt.saw_tstamp) {
6519			tp->rx_opt.tstamp_ok = 1;
6520			tcp_store_ts_recent(tp);
6521			tp->tcp_header_len =
6522				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6523		} else {
6524			tp->tcp_header_len = sizeof(struct tcphdr);
6525		}
6526
6527		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6528		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6529		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6530
6531		/* RFC1323: The window in SYN & SYN/ACK segments is
6532		 * never scaled.
6533		 */
6534		tp->snd_wnd    = ntohs(th->window);
6535		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6536		tp->max_window = tp->snd_wnd;
6537
6538		tcp_ecn_rcv_syn(tp, th);
6539
6540		tcp_mtup_init(sk);
6541		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6542		tcp_initialize_rcv_mss(sk);
6543
6544		tcp_send_synack(sk);
6545#if 0
6546		/* Note, we could accept data and URG from this segment.
6547		 * There are no obstacles to make this (except that we must
6548		 * either change tcp_recvmsg() to prevent it from returning data
6549		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6550		 *
6551		 * However, if we ignore data in ACKless segments sometimes,
6552		 * we have no reasons to accept it sometimes.
6553		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6554		 * is not flawless. So, discard packet for sanity.
6555		 * Uncomment this return to process the data.
6556		 */
6557		return -1;
6558#else
6559		goto consume;
6560#endif
6561	}
6562	/* "fifth, if neither of the SYN or RST bits is set then
6563	 * drop the segment and return."
6564	 */
6565
6566discard_and_undo:
6567	tcp_clear_options(&tp->rx_opt);
6568	tp->rx_opt.mss_clamp = saved_clamp;
6569	tcp_drop_reason(sk, skb, reason);
6570	return 0;
6571
6572reset_and_undo:
6573	tcp_clear_options(&tp->rx_opt);
6574	tp->rx_opt.mss_clamp = saved_clamp;
6575	return 1;
6576}
6577
6578static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6579{
6580	struct tcp_sock *tp = tcp_sk(sk);
6581	struct request_sock *req;
6582
6583	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6584	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6585	 */
6586	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6587		tcp_try_undo_recovery(sk);
6588
6589	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6590	tcp_update_rto_time(tp);
6591	tp->retrans_stamp = 0;
6592	inet_csk(sk)->icsk_retransmits = 0;
6593
6594	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6595	 * we no longer need req so release it.
6596	 */
6597	req = rcu_dereference_protected(tp->fastopen_rsk,
6598					lockdep_sock_is_held(sk));
6599	reqsk_fastopen_remove(sk, req, false);
6600
6601	/* Re-arm the timer because data may have been sent out.
6602	 * This is similar to the regular data transmission case
6603	 * when new data has just been ack'ed.
6604	 *
6605	 * (TFO) - we could try to be more aggressive and
6606	 * retransmitting any data sooner based on when they
6607	 * are sent out.
6608	 */
6609	tcp_rearm_rto(sk);
6610}
6611
6612/*
6613 *	This function implements the receiving procedure of RFC 793 for
6614 *	all states except ESTABLISHED and TIME_WAIT.
6615 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6616 *	address independent.
6617 */
6618
6619int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6620{
6621	struct tcp_sock *tp = tcp_sk(sk);
6622	struct inet_connection_sock *icsk = inet_csk(sk);
6623	const struct tcphdr *th = tcp_hdr(skb);
6624	struct request_sock *req;
6625	int queued = 0;
6626	bool acceptable;
6627	SKB_DR(reason);
6628
6629	switch (sk->sk_state) {
6630	case TCP_CLOSE:
6631		SKB_DR_SET(reason, TCP_CLOSE);
6632		goto discard;
6633
6634	case TCP_LISTEN:
6635		if (th->ack)
6636			return 1;
6637
6638		if (th->rst) {
6639			SKB_DR_SET(reason, TCP_RESET);
6640			goto discard;
6641		}
6642		if (th->syn) {
6643			if (th->fin) {
6644				SKB_DR_SET(reason, TCP_FLAGS);
6645				goto discard;
6646			}
6647			/* It is possible that we process SYN packets from backlog,
6648			 * so we need to make sure to disable BH and RCU right there.
6649			 */
6650			rcu_read_lock();
6651			local_bh_disable();
6652			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6653			local_bh_enable();
6654			rcu_read_unlock();
6655
6656			if (!acceptable)
6657				return 1;
6658			consume_skb(skb);
6659			return 0;
6660		}
6661		SKB_DR_SET(reason, TCP_FLAGS);
6662		goto discard;
6663
6664	case TCP_SYN_SENT:
6665		tp->rx_opt.saw_tstamp = 0;
6666		tcp_mstamp_refresh(tp);
6667		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6668		if (queued >= 0)
6669			return queued;
6670
6671		/* Do step6 onward by hand. */
6672		tcp_urg(sk, skb, th);
6673		__kfree_skb(skb);
6674		tcp_data_snd_check(sk);
6675		return 0;
6676	}
6677
6678	tcp_mstamp_refresh(tp);
6679	tp->rx_opt.saw_tstamp = 0;
6680	req = rcu_dereference_protected(tp->fastopen_rsk,
6681					lockdep_sock_is_held(sk));
6682	if (req) {
6683		bool req_stolen;
6684
6685		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6686		    sk->sk_state != TCP_FIN_WAIT1);
6687
6688		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6689			SKB_DR_SET(reason, TCP_FASTOPEN);
6690			goto discard;
6691		}
6692	}
6693
6694	if (!th->ack && !th->rst && !th->syn) {
6695		SKB_DR_SET(reason, TCP_FLAGS);
6696		goto discard;
6697	}
6698	if (!tcp_validate_incoming(sk, skb, th, 0))
6699		return 0;
6700
6701	/* step 5: check the ACK field */
6702	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6703				      FLAG_UPDATE_TS_RECENT |
6704				      FLAG_NO_CHALLENGE_ACK) > 0;
6705
6706	if (!acceptable) {
6707		if (sk->sk_state == TCP_SYN_RECV)
6708			return 1;	/* send one RST */
6709		tcp_send_challenge_ack(sk);
6710		SKB_DR_SET(reason, TCP_OLD_ACK);
6711		goto discard;
6712	}
6713	switch (sk->sk_state) {
6714	case TCP_SYN_RECV:
6715		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6716		if (!tp->srtt_us)
6717			tcp_synack_rtt_meas(sk, req);
6718
6719		if (req) {
6720			tcp_rcv_synrecv_state_fastopen(sk);
6721		} else {
6722			tcp_try_undo_spurious_syn(sk);
6723			tp->retrans_stamp = 0;
6724			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6725					  skb);
6726			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6727		}
6728		tcp_ao_established(sk);
6729		smp_mb();
6730		tcp_set_state(sk, TCP_ESTABLISHED);
6731		sk->sk_state_change(sk);
6732
6733		/* Note, that this wakeup is only for marginal crossed SYN case.
6734		 * Passively open sockets are not waked up, because
6735		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6736		 */
6737		if (sk->sk_socket)
6738			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6739
6740		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6741		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6742		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6743
6744		if (tp->rx_opt.tstamp_ok)
6745			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6746
6747		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6748			tcp_update_pacing_rate(sk);
6749
6750		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6751		tp->lsndtime = tcp_jiffies32;
6752
6753		tcp_initialize_rcv_mss(sk);
6754		tcp_fast_path_on(tp);
6755		break;
6756
6757	case TCP_FIN_WAIT1: {
6758		int tmo;
6759
6760		if (req)
6761			tcp_rcv_synrecv_state_fastopen(sk);
6762
6763		if (tp->snd_una != tp->write_seq)
6764			break;
6765
6766		tcp_set_state(sk, TCP_FIN_WAIT2);
6767		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6768
6769		sk_dst_confirm(sk);
6770
6771		if (!sock_flag(sk, SOCK_DEAD)) {
6772			/* Wake up lingering close() */
6773			sk->sk_state_change(sk);
6774			break;
6775		}
6776
6777		if (READ_ONCE(tp->linger2) < 0) {
6778			tcp_done(sk);
6779			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6780			return 1;
6781		}
6782		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6783		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6784			/* Receive out of order FIN after close() */
6785			if (tp->syn_fastopen && th->fin)
6786				tcp_fastopen_active_disable(sk);
6787			tcp_done(sk);
6788			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6789			return 1;
6790		}
6791
6792		tmo = tcp_fin_time(sk);
6793		if (tmo > TCP_TIMEWAIT_LEN) {
6794			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6795		} else if (th->fin || sock_owned_by_user(sk)) {
6796			/* Bad case. We could lose such FIN otherwise.
6797			 * It is not a big problem, but it looks confusing
6798			 * and not so rare event. We still can lose it now,
6799			 * if it spins in bh_lock_sock(), but it is really
6800			 * marginal case.
6801			 */
6802			inet_csk_reset_keepalive_timer(sk, tmo);
6803		} else {
6804			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6805			goto consume;
6806		}
6807		break;
6808	}
6809
6810	case TCP_CLOSING:
6811		if (tp->snd_una == tp->write_seq) {
6812			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6813			goto consume;
6814		}
6815		break;
6816
6817	case TCP_LAST_ACK:
6818		if (tp->snd_una == tp->write_seq) {
6819			tcp_update_metrics(sk);
6820			tcp_done(sk);
6821			goto consume;
6822		}
6823		break;
6824	}
6825
6826	/* step 6: check the URG bit */
6827	tcp_urg(sk, skb, th);
6828
6829	/* step 7: process the segment text */
6830	switch (sk->sk_state) {
6831	case TCP_CLOSE_WAIT:
6832	case TCP_CLOSING:
6833	case TCP_LAST_ACK:
6834		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6835			/* If a subflow has been reset, the packet should not
6836			 * continue to be processed, drop the packet.
6837			 */
6838			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6839				goto discard;
6840			break;
6841		}
6842		fallthrough;
6843	case TCP_FIN_WAIT1:
6844	case TCP_FIN_WAIT2:
6845		/* RFC 793 says to queue data in these states,
6846		 * RFC 1122 says we MUST send a reset.
6847		 * BSD 4.4 also does reset.
6848		 */
6849		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6850			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6851			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6852				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6853				tcp_reset(sk, skb);
6854				return 1;
6855			}
6856		}
6857		fallthrough;
6858	case TCP_ESTABLISHED:
6859		tcp_data_queue(sk, skb);
6860		queued = 1;
6861		break;
6862	}
6863
6864	/* tcp_data could move socket to TIME-WAIT */
6865	if (sk->sk_state != TCP_CLOSE) {
6866		tcp_data_snd_check(sk);
6867		tcp_ack_snd_check(sk);
6868	}
6869
6870	if (!queued) {
6871discard:
6872		tcp_drop_reason(sk, skb, reason);
6873	}
6874	return 0;
6875
6876consume:
6877	__kfree_skb(skb);
6878	return 0;
6879}
6880EXPORT_SYMBOL(tcp_rcv_state_process);
6881
6882static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6883{
6884	struct inet_request_sock *ireq = inet_rsk(req);
6885
6886	if (family == AF_INET)
6887		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6888				    &ireq->ir_rmt_addr, port);
6889#if IS_ENABLED(CONFIG_IPV6)
6890	else if (family == AF_INET6)
6891		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6892				    &ireq->ir_v6_rmt_addr, port);
6893#endif
6894}
6895
6896/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6897 *
6898 * If we receive a SYN packet with these bits set, it means a
6899 * network is playing bad games with TOS bits. In order to
6900 * avoid possible false congestion notifications, we disable
6901 * TCP ECN negotiation.
6902 *
6903 * Exception: tcp_ca wants ECN. This is required for DCTCP
6904 * congestion control: Linux DCTCP asserts ECT on all packets,
6905 * including SYN, which is most optimal solution; however,
6906 * others, such as FreeBSD do not.
6907 *
6908 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6909 * set, indicating the use of a future TCP extension (such as AccECN). See
6910 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6911 * extensions.
6912 */
6913static void tcp_ecn_create_request(struct request_sock *req,
6914				   const struct sk_buff *skb,
6915				   const struct sock *listen_sk,
6916				   const struct dst_entry *dst)
6917{
6918	const struct tcphdr *th = tcp_hdr(skb);
6919	const struct net *net = sock_net(listen_sk);
6920	bool th_ecn = th->ece && th->cwr;
6921	bool ect, ecn_ok;
6922	u32 ecn_ok_dst;
6923
6924	if (!th_ecn)
6925		return;
6926
6927	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6928	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6929	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6930
6931	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6932	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6933	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6934		inet_rsk(req)->ecn_ok = 1;
6935}
6936
6937static void tcp_openreq_init(struct request_sock *req,
6938			     const struct tcp_options_received *rx_opt,
6939			     struct sk_buff *skb, const struct sock *sk)
6940{
6941	struct inet_request_sock *ireq = inet_rsk(req);
6942
6943	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
 
6944	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6945	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6946	tcp_rsk(req)->snt_synack = 0;
6947	tcp_rsk(req)->last_oow_ack_time = 0;
6948	req->mss = rx_opt->mss_clamp;
6949	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6950	ireq->tstamp_ok = rx_opt->tstamp_ok;
6951	ireq->sack_ok = rx_opt->sack_ok;
6952	ireq->snd_wscale = rx_opt->snd_wscale;
6953	ireq->wscale_ok = rx_opt->wscale_ok;
6954	ireq->acked = 0;
6955	ireq->ecn_ok = 0;
6956	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6957	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6958	ireq->ir_mark = inet_request_mark(sk, skb);
6959#if IS_ENABLED(CONFIG_SMC)
6960	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6961			tcp_sk(sk)->smc_hs_congested(sk));
6962#endif
6963}
6964
6965struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6966				      struct sock *sk_listener,
6967				      bool attach_listener)
6968{
6969	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6970					       attach_listener);
6971
6972	if (req) {
6973		struct inet_request_sock *ireq = inet_rsk(req);
6974
6975		ireq->ireq_opt = NULL;
6976#if IS_ENABLED(CONFIG_IPV6)
6977		ireq->pktopts = NULL;
6978#endif
6979		atomic64_set(&ireq->ir_cookie, 0);
6980		ireq->ireq_state = TCP_NEW_SYN_RECV;
6981		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6982		ireq->ireq_family = sk_listener->sk_family;
6983		req->timeout = TCP_TIMEOUT_INIT;
6984	}
6985
6986	return req;
6987}
6988EXPORT_SYMBOL(inet_reqsk_alloc);
6989
6990/*
6991 * Return true if a syncookie should be sent
6992 */
6993static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6994{
6995	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6996	const char *msg = "Dropping request";
 
6997	struct net *net = sock_net(sk);
6998	bool want_cookie = false;
6999	u8 syncookies;
7000
7001	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7002
7003#ifdef CONFIG_SYN_COOKIES
7004	if (syncookies) {
7005		msg = "Sending cookies";
7006		want_cookie = true;
7007		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7008	} else
7009#endif
7010		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7011
7012	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7013	    xchg(&queue->synflood_warned, 1) == 0) {
7014		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7015			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7016					proto, inet6_rcv_saddr(sk),
7017					sk->sk_num, msg);
7018		} else {
7019			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7020					proto, &sk->sk_rcv_saddr,
7021					sk->sk_num, msg);
7022		}
7023	}
7024
7025	return want_cookie;
7026}
7027
7028static void tcp_reqsk_record_syn(const struct sock *sk,
7029				 struct request_sock *req,
7030				 const struct sk_buff *skb)
7031{
7032	if (tcp_sk(sk)->save_syn) {
7033		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7034		struct saved_syn *saved_syn;
7035		u32 mac_hdrlen;
7036		void *base;
7037
7038		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7039			base = skb_mac_header(skb);
7040			mac_hdrlen = skb_mac_header_len(skb);
7041			len += mac_hdrlen;
7042		} else {
7043			base = skb_network_header(skb);
7044			mac_hdrlen = 0;
7045		}
7046
7047		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7048				    GFP_ATOMIC);
7049		if (saved_syn) {
7050			saved_syn->mac_hdrlen = mac_hdrlen;
7051			saved_syn->network_hdrlen = skb_network_header_len(skb);
7052			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7053			memcpy(saved_syn->data, base, len);
7054			req->saved_syn = saved_syn;
7055		}
7056	}
7057}
7058
7059/* If a SYN cookie is required and supported, returns a clamped MSS value to be
7060 * used for SYN cookie generation.
7061 */
7062u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7063			  const struct tcp_request_sock_ops *af_ops,
7064			  struct sock *sk, struct tcphdr *th)
7065{
7066	struct tcp_sock *tp = tcp_sk(sk);
7067	u16 mss;
7068
7069	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7070	    !inet_csk_reqsk_queue_is_full(sk))
7071		return 0;
7072
7073	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7074		return 0;
7075
7076	if (sk_acceptq_is_full(sk)) {
7077		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7078		return 0;
7079	}
7080
7081	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7082	if (!mss)
7083		mss = af_ops->mss_clamp;
7084
7085	return mss;
7086}
7087EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7088
7089int tcp_conn_request(struct request_sock_ops *rsk_ops,
7090		     const struct tcp_request_sock_ops *af_ops,
7091		     struct sock *sk, struct sk_buff *skb)
7092{
7093	struct tcp_fastopen_cookie foc = { .len = -1 };
7094	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7095	struct tcp_options_received tmp_opt;
7096	struct tcp_sock *tp = tcp_sk(sk);
7097	struct net *net = sock_net(sk);
7098	struct sock *fastopen_sk = NULL;
7099	struct request_sock *req;
7100	bool want_cookie = false;
7101	struct dst_entry *dst;
7102	struct flowi fl;
7103	u8 syncookies;
7104
7105#ifdef CONFIG_TCP_AO
7106	const struct tcp_ao_hdr *aoh;
7107#endif
7108
7109	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7110
7111	/* TW buckets are converted to open requests without
7112	 * limitations, they conserve resources and peer is
7113	 * evidently real one.
7114	 */
7115	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
 
7116		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7117		if (!want_cookie)
7118			goto drop;
7119	}
7120
7121	if (sk_acceptq_is_full(sk)) {
7122		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7123		goto drop;
7124	}
7125
7126	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7127	if (!req)
7128		goto drop;
7129
7130	req->syncookie = want_cookie;
7131	tcp_rsk(req)->af_specific = af_ops;
7132	tcp_rsk(req)->ts_off = 0;
7133	tcp_rsk(req)->req_usec_ts = false;
7134#if IS_ENABLED(CONFIG_MPTCP)
7135	tcp_rsk(req)->is_mptcp = 0;
7136#endif
7137
7138	tcp_clear_options(&tmp_opt);
7139	tmp_opt.mss_clamp = af_ops->mss_clamp;
7140	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7141	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7142			  want_cookie ? NULL : &foc);
7143
7144	if (want_cookie && !tmp_opt.saw_tstamp)
7145		tcp_clear_options(&tmp_opt);
7146
7147	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7148		tmp_opt.smc_ok = 0;
7149
7150	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7151	tcp_openreq_init(req, &tmp_opt, skb, sk);
7152	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7153
7154	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7155	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7156
7157	dst = af_ops->route_req(sk, skb, &fl, req);
 
 
 
 
 
 
 
 
7158	if (!dst)
7159		goto drop_and_free;
7160
7161	if (tmp_opt.tstamp_ok) {
7162		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7163		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7164	}
7165	if (!want_cookie && !isn) {
7166		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7167
7168		/* Kill the following clause, if you dislike this way. */
7169		if (!syncookies &&
7170		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7171		     (max_syn_backlog >> 2)) &&
7172		    !tcp_peer_is_proven(req, dst)) {
7173			/* Without syncookies last quarter of
7174			 * backlog is filled with destinations,
7175			 * proven to be alive.
7176			 * It means that we continue to communicate
7177			 * to destinations, already remembered
7178			 * to the moment of synflood.
7179			 */
7180			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7181				    rsk_ops->family);
7182			goto drop_and_release;
7183		}
7184
7185		isn = af_ops->init_seq(skb);
7186	}
7187
7188	tcp_ecn_create_request(req, skb, sk, dst);
7189
7190	if (want_cookie) {
7191		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
 
7192		if (!tmp_opt.tstamp_ok)
7193			inet_rsk(req)->ecn_ok = 0;
7194	}
7195
7196#ifdef CONFIG_TCP_AO
7197	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7198		goto drop_and_release; /* Invalid TCP options */
7199	if (aoh) {
7200		tcp_rsk(req)->used_tcp_ao = true;
7201		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7202		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7203
7204	} else {
7205		tcp_rsk(req)->used_tcp_ao = false;
7206	}
7207#endif
7208	tcp_rsk(req)->snt_isn = isn;
7209	tcp_rsk(req)->txhash = net_tx_rndhash();
7210	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7211	tcp_openreq_init_rwin(req, sk, dst);
7212	sk_rx_queue_set(req_to_sk(req), skb);
7213	if (!want_cookie) {
7214		tcp_reqsk_record_syn(sk, req, skb);
7215		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7216	}
7217	if (fastopen_sk) {
7218		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7219				    &foc, TCP_SYNACK_FASTOPEN, skb);
7220		/* Add the child socket directly into the accept queue */
7221		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7222			reqsk_fastopen_remove(fastopen_sk, req, false);
7223			bh_unlock_sock(fastopen_sk);
7224			sock_put(fastopen_sk);
7225			goto drop_and_free;
7226		}
7227		sk->sk_data_ready(sk);
7228		bh_unlock_sock(fastopen_sk);
7229		sock_put(fastopen_sk);
7230	} else {
7231		tcp_rsk(req)->tfo_listener = false;
7232		if (!want_cookie) {
7233			req->timeout = tcp_timeout_init((struct sock *)req);
7234			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7235		}
7236		af_ops->send_synack(sk, dst, &fl, req, &foc,
7237				    !want_cookie ? TCP_SYNACK_NORMAL :
7238						   TCP_SYNACK_COOKIE,
7239				    skb);
7240		if (want_cookie) {
7241			reqsk_free(req);
7242			return 0;
7243		}
7244	}
7245	reqsk_put(req);
7246	return 0;
7247
7248drop_and_release:
7249	dst_release(dst);
7250drop_and_free:
7251	__reqsk_free(req);
7252drop:
7253	tcp_listendrop(sk);
7254	return 0;
7255}
7256EXPORT_SYMBOL(tcp_conn_request);