Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
  33#include <linux/property.h>
  34#include <asm/unaligned.h>
 
 
  35
  36#include <net/bluetooth/bluetooth.h>
  37#include <net/bluetooth/hci_core.h>
  38#include <net/bluetooth/l2cap.h>
  39#include <net/bluetooth/mgmt.h>
  40
  41#include "hci_request.h"
  42#include "hci_debugfs.h"
  43#include "smp.h"
  44#include "leds.h"
 
 
 
  45
  46static void hci_rx_work(struct work_struct *work);
  47static void hci_cmd_work(struct work_struct *work);
  48static void hci_tx_work(struct work_struct *work);
  49
  50/* HCI device list */
  51LIST_HEAD(hci_dev_list);
  52DEFINE_RWLOCK(hci_dev_list_lock);
  53
  54/* HCI callback list */
  55LIST_HEAD(hci_cb_list);
  56DEFINE_MUTEX(hci_cb_list_lock);
  57
  58/* HCI ID Numbering */
  59static DEFINE_IDA(hci_index_ida);
  60
  61/* ---- HCI debugfs entries ---- */
  62
  63static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  64			     size_t count, loff_t *ppos)
  65{
  66	struct hci_dev *hdev = file->private_data;
  67	char buf[3];
  68
  69	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  70	buf[1] = '\n';
  71	buf[2] = '\0';
  72	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  73}
  74
  75static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  76			      size_t count, loff_t *ppos)
  77{
  78	struct hci_dev *hdev = file->private_data;
  79	struct sk_buff *skb;
  80	bool enable;
  81	int err;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	err = kstrtobool_from_user(user_buf, count, &enable);
  87	if (err)
  88		return err;
  89
  90	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  91		return -EALREADY;
  92
  93	hci_req_sync_lock(hdev);
  94	if (enable)
  95		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  96				     HCI_CMD_TIMEOUT);
  97	else
  98		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	hci_req_sync_unlock(hdev);
 101
 102	if (IS_ERR(skb))
 103		return PTR_ERR(skb);
 104
 105	kfree_skb(skb);
 106
 107	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 108
 109	return count;
 110}
 111
 112static const struct file_operations dut_mode_fops = {
 113	.open		= simple_open,
 114	.read		= dut_mode_read,
 115	.write		= dut_mode_write,
 116	.llseek		= default_llseek,
 117};
 118
 119static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 120				size_t count, loff_t *ppos)
 121{
 122	struct hci_dev *hdev = file->private_data;
 123	char buf[3];
 124
 125	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 126	buf[1] = '\n';
 127	buf[2] = '\0';
 128	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 129}
 130
 131static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 132				 size_t count, loff_t *ppos)
 133{
 134	struct hci_dev *hdev = file->private_data;
 135	bool enable;
 136	int err;
 137
 138	err = kstrtobool_from_user(user_buf, count, &enable);
 139	if (err)
 140		return err;
 141
 142	/* When the diagnostic flags are not persistent and the transport
 143	 * is not active or in user channel operation, then there is no need
 144	 * for the vendor callback. Instead just store the desired value and
 145	 * the setting will be programmed when the controller gets powered on.
 146	 */
 147	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 148	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 149	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 150		goto done;
 151
 152	hci_req_sync_lock(hdev);
 153	err = hdev->set_diag(hdev, enable);
 154	hci_req_sync_unlock(hdev);
 155
 156	if (err < 0)
 157		return err;
 158
 159done:
 160	if (enable)
 161		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 162	else
 163		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 164
 165	return count;
 166}
 167
 168static const struct file_operations vendor_diag_fops = {
 169	.open		= simple_open,
 170	.read		= vendor_diag_read,
 171	.write		= vendor_diag_write,
 172	.llseek		= default_llseek,
 173};
 174
 175static void hci_debugfs_create_basic(struct hci_dev *hdev)
 176{
 177	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 178			    &dut_mode_fops);
 179
 180	if (hdev->set_diag)
 181		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 182				    &vendor_diag_fops);
 183}
 184
 185static int hci_reset_req(struct hci_request *req, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", req->hdev->name, opt);
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &req->hdev->flags);
 191	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 192	return 0;
 193}
 194
 195static void bredr_init(struct hci_request *req)
 196{
 197	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 198
 199	/* Read Local Supported Features */
 200	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 201
 202	/* Read Local Version */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 204
 205	/* Read BD Address */
 206	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 207}
 208
 209static void amp_init1(struct hci_request *req)
 210{
 211	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 212
 213	/* Read Local Version */
 214	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 215
 216	/* Read Local Supported Commands */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 218
 219	/* Read Local AMP Info */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 221
 222	/* Read Data Blk size */
 223	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 224
 225	/* Read Flow Control Mode */
 226	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 227
 228	/* Read Location Data */
 229	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 230}
 231
 232static int amp_init2(struct hci_request *req)
 233{
 234	/* Read Local Supported Features. Not all AMP controllers
 235	 * support this so it's placed conditionally in the second
 236	 * stage init.
 237	 */
 238	if (req->hdev->commands[14] & 0x20)
 239		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 240
 241	return 0;
 242}
 243
 244static int hci_init1_req(struct hci_request *req, unsigned long opt)
 245{
 246	struct hci_dev *hdev = req->hdev;
 247
 248	BT_DBG("%s %ld", hdev->name, opt);
 249
 250	/* Reset */
 251	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 252		hci_reset_req(req, 0);
 253
 254	switch (hdev->dev_type) {
 255	case HCI_PRIMARY:
 256		bredr_init(req);
 257		break;
 258	case HCI_AMP:
 259		amp_init1(req);
 260		break;
 261	default:
 262		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 263		break;
 264	}
 265
 266	return 0;
 267}
 268
 269static void bredr_setup(struct hci_request *req)
 270{
 271	__le16 param;
 272	__u8 flt_type;
 273
 274	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 275	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 276
 277	/* Read Class of Device */
 278	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 279
 280	/* Read Local Name */
 281	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 282
 283	/* Read Voice Setting */
 284	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 285
 286	/* Read Number of Supported IAC */
 287	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 288
 289	/* Read Current IAC LAP */
 290	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 291
 292	/* Clear Event Filters */
 293	flt_type = HCI_FLT_CLEAR_ALL;
 294	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 295
 296	/* Connection accept timeout ~20 secs */
 297	param = cpu_to_le16(0x7d00);
 298	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 299}
 300
 301static void le_setup(struct hci_request *req)
 302{
 303	struct hci_dev *hdev = req->hdev;
 304
 305	/* Read LE Buffer Size */
 306	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 307
 308	/* Read LE Local Supported Features */
 309	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 310
 311	/* Read LE Supported States */
 312	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 313
 314	/* LE-only controllers have LE implicitly enabled */
 315	if (!lmp_bredr_capable(hdev))
 316		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 317}
 318
 319static void hci_setup_event_mask(struct hci_request *req)
 320{
 321	struct hci_dev *hdev = req->hdev;
 322
 323	/* The second byte is 0xff instead of 0x9f (two reserved bits
 324	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 325	 * command otherwise.
 326	 */
 327	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 328
 329	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 330	 * any event mask for pre 1.2 devices.
 331	 */
 332	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 333		return;
 334
 335	if (lmp_bredr_capable(hdev)) {
 336		events[4] |= 0x01; /* Flow Specification Complete */
 337	} else {
 338		/* Use a different default for LE-only devices */
 339		memset(events, 0, sizeof(events));
 340		events[1] |= 0x20; /* Command Complete */
 341		events[1] |= 0x40; /* Command Status */
 342		events[1] |= 0x80; /* Hardware Error */
 343
 344		/* If the controller supports the Disconnect command, enable
 345		 * the corresponding event. In addition enable packet flow
 346		 * control related events.
 347		 */
 348		if (hdev->commands[0] & 0x20) {
 349			events[0] |= 0x10; /* Disconnection Complete */
 350			events[2] |= 0x04; /* Number of Completed Packets */
 351			events[3] |= 0x02; /* Data Buffer Overflow */
 352		}
 353
 354		/* If the controller supports the Read Remote Version
 355		 * Information command, enable the corresponding event.
 356		 */
 357		if (hdev->commands[2] & 0x80)
 358			events[1] |= 0x08; /* Read Remote Version Information
 359					    * Complete
 360					    */
 361
 362		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 363			events[0] |= 0x80; /* Encryption Change */
 364			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 365		}
 366	}
 367
 368	if (lmp_inq_rssi_capable(hdev) ||
 369	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 370		events[4] |= 0x02; /* Inquiry Result with RSSI */
 371
 372	if (lmp_ext_feat_capable(hdev))
 373		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 374
 375	if (lmp_esco_capable(hdev)) {
 376		events[5] |= 0x08; /* Synchronous Connection Complete */
 377		events[5] |= 0x10; /* Synchronous Connection Changed */
 378	}
 379
 380	if (lmp_sniffsubr_capable(hdev))
 381		events[5] |= 0x20; /* Sniff Subrating */
 382
 383	if (lmp_pause_enc_capable(hdev))
 384		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 385
 386	if (lmp_ext_inq_capable(hdev))
 387		events[5] |= 0x40; /* Extended Inquiry Result */
 388
 389	if (lmp_no_flush_capable(hdev))
 390		events[7] |= 0x01; /* Enhanced Flush Complete */
 391
 392	if (lmp_lsto_capable(hdev))
 393		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 394
 395	if (lmp_ssp_capable(hdev)) {
 396		events[6] |= 0x01;	/* IO Capability Request */
 397		events[6] |= 0x02;	/* IO Capability Response */
 398		events[6] |= 0x04;	/* User Confirmation Request */
 399		events[6] |= 0x08;	/* User Passkey Request */
 400		events[6] |= 0x10;	/* Remote OOB Data Request */
 401		events[6] |= 0x20;	/* Simple Pairing Complete */
 402		events[7] |= 0x04;	/* User Passkey Notification */
 403		events[7] |= 0x08;	/* Keypress Notification */
 404		events[7] |= 0x10;	/* Remote Host Supported
 405					 * Features Notification
 406					 */
 407	}
 408
 409	if (lmp_le_capable(hdev))
 410		events[7] |= 0x20;	/* LE Meta-Event */
 411
 412	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 413}
 414
 415static int hci_init2_req(struct hci_request *req, unsigned long opt)
 416{
 417	struct hci_dev *hdev = req->hdev;
 418
 419	if (hdev->dev_type == HCI_AMP)
 420		return amp_init2(req);
 421
 422	if (lmp_bredr_capable(hdev))
 423		bredr_setup(req);
 424	else
 425		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 426
 427	if (lmp_le_capable(hdev))
 428		le_setup(req);
 429
 430	/* All Bluetooth 1.2 and later controllers should support the
 431	 * HCI command for reading the local supported commands.
 432	 *
 433	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 434	 * but do not have support for this command. If that is the case,
 435	 * the driver can quirk the behavior and skip reading the local
 436	 * supported commands.
 437	 */
 438	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 439	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 440		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 441
 442	if (lmp_ssp_capable(hdev)) {
 443		/* When SSP is available, then the host features page
 444		 * should also be available as well. However some
 445		 * controllers list the max_page as 0 as long as SSP
 446		 * has not been enabled. To achieve proper debugging
 447		 * output, force the minimum max_page to 1 at least.
 448		 */
 449		hdev->max_page = 0x01;
 450
 451		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 452			u8 mode = 0x01;
 453
 454			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 455				    sizeof(mode), &mode);
 456		} else {
 457			struct hci_cp_write_eir cp;
 458
 459			memset(hdev->eir, 0, sizeof(hdev->eir));
 460			memset(&cp, 0, sizeof(cp));
 461
 462			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 463		}
 464	}
 465
 466	if (lmp_inq_rssi_capable(hdev) ||
 467	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 468		u8 mode;
 469
 470		/* If Extended Inquiry Result events are supported, then
 471		 * they are clearly preferred over Inquiry Result with RSSI
 472		 * events.
 473		 */
 474		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 475
 476		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 477	}
 478
 479	if (lmp_inq_tx_pwr_capable(hdev))
 480		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 481
 482	if (lmp_ext_feat_capable(hdev)) {
 483		struct hci_cp_read_local_ext_features cp;
 484
 485		cp.page = 0x01;
 486		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 487			    sizeof(cp), &cp);
 488	}
 489
 490	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 491		u8 enable = 1;
 492		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 493			    &enable);
 494	}
 495
 496	return 0;
 497}
 498
 499static void hci_setup_link_policy(struct hci_request *req)
 500{
 501	struct hci_dev *hdev = req->hdev;
 502	struct hci_cp_write_def_link_policy cp;
 503	u16 link_policy = 0;
 504
 505	if (lmp_rswitch_capable(hdev))
 506		link_policy |= HCI_LP_RSWITCH;
 507	if (lmp_hold_capable(hdev))
 508		link_policy |= HCI_LP_HOLD;
 509	if (lmp_sniff_capable(hdev))
 510		link_policy |= HCI_LP_SNIFF;
 511	if (lmp_park_capable(hdev))
 512		link_policy |= HCI_LP_PARK;
 513
 514	cp.policy = cpu_to_le16(link_policy);
 515	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 516}
 517
 518static void hci_set_le_support(struct hci_request *req)
 519{
 520	struct hci_dev *hdev = req->hdev;
 521	struct hci_cp_write_le_host_supported cp;
 522
 523	/* LE-only devices do not support explicit enablement */
 524	if (!lmp_bredr_capable(hdev))
 525		return;
 526
 527	memset(&cp, 0, sizeof(cp));
 528
 529	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 530		cp.le = 0x01;
 531		cp.simul = 0x00;
 532	}
 533
 534	if (cp.le != lmp_host_le_capable(hdev))
 535		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 536			    &cp);
 537}
 538
 539static void hci_set_event_mask_page_2(struct hci_request *req)
 540{
 541	struct hci_dev *hdev = req->hdev;
 542	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 543	bool changed = false;
 544
 545	/* If Connectionless Slave Broadcast master role is supported
 546	 * enable all necessary events for it.
 547	 */
 548	if (lmp_csb_master_capable(hdev)) {
 549		events[1] |= 0x40;	/* Triggered Clock Capture */
 550		events[1] |= 0x80;	/* Synchronization Train Complete */
 551		events[2] |= 0x10;	/* Slave Page Response Timeout */
 552		events[2] |= 0x20;	/* CSB Channel Map Change */
 553		changed = true;
 554	}
 555
 556	/* If Connectionless Slave Broadcast slave role is supported
 557	 * enable all necessary events for it.
 558	 */
 559	if (lmp_csb_slave_capable(hdev)) {
 560		events[2] |= 0x01;	/* Synchronization Train Received */
 561		events[2] |= 0x02;	/* CSB Receive */
 562		events[2] |= 0x04;	/* CSB Timeout */
 563		events[2] |= 0x08;	/* Truncated Page Complete */
 564		changed = true;
 565	}
 566
 567	/* Enable Authenticated Payload Timeout Expired event if supported */
 568	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 569		events[2] |= 0x80;
 570		changed = true;
 571	}
 572
 573	/* Some Broadcom based controllers indicate support for Set Event
 574	 * Mask Page 2 command, but then actually do not support it. Since
 575	 * the default value is all bits set to zero, the command is only
 576	 * required if the event mask has to be changed. In case no change
 577	 * to the event mask is needed, skip this command.
 578	 */
 579	if (changed)
 580		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 581			    sizeof(events), events);
 582}
 583
 584static int hci_init3_req(struct hci_request *req, unsigned long opt)
 585{
 586	struct hci_dev *hdev = req->hdev;
 587	u8 p;
 588
 589	hci_setup_event_mask(req);
 590
 591	if (hdev->commands[6] & 0x20 &&
 592	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 593		struct hci_cp_read_stored_link_key cp;
 594
 595		bacpy(&cp.bdaddr, BDADDR_ANY);
 596		cp.read_all = 0x01;
 597		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 598	}
 599
 600	if (hdev->commands[5] & 0x10)
 601		hci_setup_link_policy(req);
 602
 603	if (hdev->commands[8] & 0x01)
 604		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 605
 606	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 607	 * support the Read Page Scan Type command. Check support for
 608	 * this command in the bit mask of supported commands.
 609	 */
 610	if (hdev->commands[13] & 0x01)
 611		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 612
 613	if (lmp_le_capable(hdev)) {
 614		u8 events[8];
 615
 616		memset(events, 0, sizeof(events));
 617
 618		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 619			events[0] |= 0x10;	/* LE Long Term Key Request */
 620
 621		/* If controller supports the Connection Parameters Request
 622		 * Link Layer Procedure, enable the corresponding event.
 623		 */
 624		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 625			events[0] |= 0x20;	/* LE Remote Connection
 626						 * Parameter Request
 627						 */
 628
 629		/* If the controller supports the Data Length Extension
 630		 * feature, enable the corresponding event.
 631		 */
 632		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 633			events[0] |= 0x40;	/* LE Data Length Change */
 634
 635		/* If the controller supports Extended Scanner Filter
 636		 * Policies, enable the correspondig event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 639			events[1] |= 0x04;	/* LE Direct Advertising
 640						 * Report
 641						 */
 642
 643		/* If the controller supports Channel Selection Algorithm #2
 644		 * feature, enable the corresponding event.
 645		 */
 646		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 647			events[2] |= 0x08;	/* LE Channel Selection
 648						 * Algorithm
 649						 */
 650
 651		/* If the controller supports the LE Set Scan Enable command,
 652		 * enable the corresponding advertising report event.
 653		 */
 654		if (hdev->commands[26] & 0x08)
 655			events[0] |= 0x02;	/* LE Advertising Report */
 656
 657		/* If the controller supports the LE Create Connection
 658		 * command, enable the corresponding event.
 659		 */
 660		if (hdev->commands[26] & 0x10)
 661			events[0] |= 0x01;	/* LE Connection Complete */
 662
 663		/* If the controller supports the LE Connection Update
 664		 * command, enable the corresponding event.
 665		 */
 666		if (hdev->commands[27] & 0x04)
 667			events[0] |= 0x04;	/* LE Connection Update
 668						 * Complete
 669						 */
 670
 671		/* If the controller supports the LE Read Remote Used Features
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[27] & 0x20)
 675			events[0] |= 0x08;	/* LE Read Remote Used
 676						 * Features Complete
 677						 */
 678
 679		/* If the controller supports the LE Read Local P-256
 680		 * Public Key command, enable the corresponding event.
 681		 */
 682		if (hdev->commands[34] & 0x02)
 683			events[0] |= 0x80;	/* LE Read Local P-256
 684						 * Public Key Complete
 685						 */
 686
 687		/* If the controller supports the LE Generate DHKey
 688		 * command, enable the corresponding event.
 689		 */
 690		if (hdev->commands[34] & 0x04)
 691			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 692
 693		/* If the controller supports the LE Set Default PHY or
 694		 * LE Set PHY commands, enable the corresponding event.
 695		 */
 696		if (hdev->commands[35] & (0x20 | 0x40))
 697			events[1] |= 0x08;        /* LE PHY Update Complete */
 698
 699		/* If the controller supports LE Set Extended Scan Parameters
 700		 * and LE Set Extended Scan Enable commands, enable the
 701		 * corresponding event.
 702		 */
 703		if (use_ext_scan(hdev))
 704			events[1] |= 0x10;	/* LE Extended Advertising
 705						 * Report
 706						 */
 707
 708		/* If the controller supports the LE Extended Create Connection
 709		 * command, enable the corresponding event.
 710		 */
 711		if (use_ext_conn(hdev))
 712			events[1] |= 0x02;      /* LE Enhanced Connection
 713						 * Complete
 714						 */
 715
 716		/* If the controller supports the LE Extended Advertising
 717		 * command, enable the corresponding event.
 718		 */
 719		if (ext_adv_capable(hdev))
 720			events[2] |= 0x02;	/* LE Advertising Set
 721						 * Terminated
 722						 */
 723
 724		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 725			    events);
 726
 727		/* Read LE Advertising Channel TX Power */
 728		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 729			/* HCI TS spec forbids mixing of legacy and extended
 730			 * advertising commands wherein READ_ADV_TX_POWER is
 731			 * also included. So do not call it if extended adv
 732			 * is supported otherwise controller will return
 733			 * COMMAND_DISALLOWED for extended commands.
 734			 */
 735			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 736		}
 737
 738		if (hdev->commands[26] & 0x40) {
 739			/* Read LE White List Size */
 740			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 741				    0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x80) {
 745			/* Clear LE White List */
 746			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 747		}
 748
 749		if (hdev->commands[34] & 0x40) {
 750			/* Read LE Resolving List Size */
 751			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 752				    0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x20) {
 756			/* Clear LE Resolving List */
 757			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 758		}
 759
 760		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 761			/* Read LE Maximum Data Length */
 762			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 763
 764			/* Read LE Suggested Default Data Length */
 765			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 766		}
 767
 768		if (ext_adv_capable(hdev)) {
 769			/* Read LE Number of Supported Advertising Sets */
 770			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 771				    0, NULL);
 772		}
 773
 774		hci_set_le_support(req);
 775	}
 776
 777	/* Read features beyond page 1 if available */
 778	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 779		struct hci_cp_read_local_ext_features cp;
 780
 781		cp.page = p;
 782		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 783			    sizeof(cp), &cp);
 784	}
 785
 786	return 0;
 787}
 788
 789static int hci_init4_req(struct hci_request *req, unsigned long opt)
 790{
 791	struct hci_dev *hdev = req->hdev;
 792
 793	/* Some Broadcom based Bluetooth controllers do not support the
 794	 * Delete Stored Link Key command. They are clearly indicating its
 795	 * absence in the bit mask of supported commands.
 796	 *
 797	 * Check the supported commands and only if the the command is marked
 798	 * as supported send it. If not supported assume that the controller
 799	 * does not have actual support for stored link keys which makes this
 800	 * command redundant anyway.
 801	 *
 802	 * Some controllers indicate that they support handling deleting
 803	 * stored link keys, but they don't. The quirk lets a driver
 804	 * just disable this command.
 805	 */
 806	if (hdev->commands[6] & 0x80 &&
 807	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 808		struct hci_cp_delete_stored_link_key cp;
 809
 810		bacpy(&cp.bdaddr, BDADDR_ANY);
 811		cp.delete_all = 0x01;
 812		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 813			    sizeof(cp), &cp);
 814	}
 815
 816	/* Set event mask page 2 if the HCI command for it is supported */
 817	if (hdev->commands[22] & 0x04)
 818		hci_set_event_mask_page_2(req);
 819
 820	/* Read local codec list if the HCI command is supported */
 821	if (hdev->commands[29] & 0x20)
 822		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 823
 824	/* Get MWS transport configuration if the HCI command is supported */
 825	if (hdev->commands[30] & 0x08)
 826		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 827
 828	/* Check for Synchronization Train support */
 829	if (lmp_sync_train_capable(hdev))
 830		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 831
 832	/* Enable Secure Connections if supported and configured */
 833	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 834	    bredr_sc_enabled(hdev)) {
 835		u8 support = 0x01;
 836
 837		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 838			    sizeof(support), &support);
 839	}
 840
 841	/* Set Suggested Default Data Length to maximum if supported */
 842	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 843		struct hci_cp_le_write_def_data_len cp;
 844
 845		cp.tx_len = hdev->le_max_tx_len;
 846		cp.tx_time = hdev->le_max_tx_time;
 847		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 848	}
 849
 850	/* Set Default PHY parameters if command is supported */
 851	if (hdev->commands[35] & 0x20) {
 852		struct hci_cp_le_set_default_phy cp;
 853
 854		cp.all_phys = 0x00;
 855		cp.tx_phys = hdev->le_tx_def_phys;
 856		cp.rx_phys = hdev->le_rx_def_phys;
 857
 858		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 859	}
 860
 861	return 0;
 862}
 863
 864static int __hci_init(struct hci_dev *hdev)
 865{
 866	int err;
 867
 868	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 869	if (err < 0)
 870		return err;
 871
 872	if (hci_dev_test_flag(hdev, HCI_SETUP))
 873		hci_debugfs_create_basic(hdev);
 874
 875	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 876	if (err < 0)
 877		return err;
 878
 879	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 880	 * BR/EDR/LE type controllers. AMP controllers only need the
 881	 * first two stages of init.
 882	 */
 883	if (hdev->dev_type != HCI_PRIMARY)
 884		return 0;
 885
 886	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 887	if (err < 0)
 888		return err;
 889
 890	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 891	if (err < 0)
 892		return err;
 893
 894	/* This function is only called when the controller is actually in
 895	 * configured state. When the controller is marked as unconfigured,
 896	 * this initialization procedure is not run.
 897	 *
 898	 * It means that it is possible that a controller runs through its
 899	 * setup phase and then discovers missing settings. If that is the
 900	 * case, then this function will not be called. It then will only
 901	 * be called during the config phase.
 902	 *
 903	 * So only when in setup phase or config phase, create the debugfs
 904	 * entries and register the SMP channels.
 905	 */
 906	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 907	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 908		return 0;
 909
 910	hci_debugfs_create_common(hdev);
 911
 912	if (lmp_bredr_capable(hdev))
 913		hci_debugfs_create_bredr(hdev);
 914
 915	if (lmp_le_capable(hdev))
 916		hci_debugfs_create_le(hdev);
 917
 918	return 0;
 919}
 920
 921static int hci_init0_req(struct hci_request *req, unsigned long opt)
 922{
 923	struct hci_dev *hdev = req->hdev;
 924
 925	BT_DBG("%s %ld", hdev->name, opt);
 926
 927	/* Reset */
 928	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 929		hci_reset_req(req, 0);
 930
 931	/* Read Local Version */
 932	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 933
 934	/* Read BD Address */
 935	if (hdev->set_bdaddr)
 936		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 937
 938	return 0;
 939}
 940
 941static int __hci_unconf_init(struct hci_dev *hdev)
 942{
 943	int err;
 944
 945	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 946		return 0;
 947
 948	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 949	if (err < 0)
 950		return err;
 951
 952	if (hci_dev_test_flag(hdev, HCI_SETUP))
 953		hci_debugfs_create_basic(hdev);
 954
 955	return 0;
 956}
 957
 958static int hci_scan_req(struct hci_request *req, unsigned long opt)
 959{
 960	__u8 scan = opt;
 961
 962	BT_DBG("%s %x", req->hdev->name, scan);
 963
 964	/* Inquiry and Page scans */
 965	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 966	return 0;
 967}
 968
 969static int hci_auth_req(struct hci_request *req, unsigned long opt)
 970{
 971	__u8 auth = opt;
 972
 973	BT_DBG("%s %x", req->hdev->name, auth);
 974
 975	/* Authentication */
 976	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 977	return 0;
 978}
 979
 980static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 981{
 982	__u8 encrypt = opt;
 983
 984	BT_DBG("%s %x", req->hdev->name, encrypt);
 985
 986	/* Encryption */
 987	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 988	return 0;
 989}
 990
 991static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 992{
 993	__le16 policy = cpu_to_le16(opt);
 994
 995	BT_DBG("%s %x", req->hdev->name, policy);
 996
 997	/* Default link policy */
 998	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 999	return 0;
1000}
1001
1002/* Get HCI device by index.
1003 * Device is held on return. */
1004struct hci_dev *hci_dev_get(int index)
1005{
1006	struct hci_dev *hdev = NULL, *d;
1007
1008	BT_DBG("%d", index);
1009
1010	if (index < 0)
1011		return NULL;
1012
1013	read_lock(&hci_dev_list_lock);
1014	list_for_each_entry(d, &hci_dev_list, list) {
1015		if (d->id == index) {
1016			hdev = hci_dev_hold(d);
1017			break;
1018		}
1019	}
1020	read_unlock(&hci_dev_list_lock);
1021	return hdev;
1022}
1023
1024/* ---- Inquiry support ---- */
1025
1026bool hci_discovery_active(struct hci_dev *hdev)
1027{
1028	struct discovery_state *discov = &hdev->discovery;
1029
1030	switch (discov->state) {
1031	case DISCOVERY_FINDING:
1032	case DISCOVERY_RESOLVING:
1033		return true;
1034
1035	default:
1036		return false;
1037	}
1038}
1039
1040void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041{
1042	int old_state = hdev->discovery.state;
1043
1044	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046	if (old_state == state)
1047		return;
1048
1049	hdev->discovery.state = state;
1050
1051	switch (state) {
1052	case DISCOVERY_STOPPED:
1053		hci_update_background_scan(hdev);
1054
1055		if (old_state != DISCOVERY_STARTING)
1056			mgmt_discovering(hdev, 0);
1057		break;
1058	case DISCOVERY_STARTING:
1059		break;
1060	case DISCOVERY_FINDING:
1061		mgmt_discovering(hdev, 1);
1062		break;
1063	case DISCOVERY_RESOLVING:
1064		break;
1065	case DISCOVERY_STOPPING:
1066		break;
1067	}
 
 
1068}
1069
1070void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *p, *n;
1074
1075	list_for_each_entry_safe(p, n, &cache->all, all) {
1076		list_del(&p->all);
1077		kfree(p);
1078	}
1079
1080	INIT_LIST_HEAD(&cache->unknown);
1081	INIT_LIST_HEAD(&cache->resolve);
1082}
1083
1084struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085					       bdaddr_t *bdaddr)
1086{
1087	struct discovery_state *cache = &hdev->discovery;
1088	struct inquiry_entry *e;
1089
1090	BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092	list_for_each_entry(e, &cache->all, all) {
1093		if (!bacmp(&e->data.bdaddr, bdaddr))
1094			return e;
1095	}
1096
1097	return NULL;
1098}
1099
1100struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101						       bdaddr_t *bdaddr)
1102{
1103	struct discovery_state *cache = &hdev->discovery;
1104	struct inquiry_entry *e;
1105
1106	BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108	list_for_each_entry(e, &cache->unknown, list) {
1109		if (!bacmp(&e->data.bdaddr, bdaddr))
1110			return e;
1111	}
1112
1113	return NULL;
1114}
1115
1116struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117						       bdaddr_t *bdaddr,
1118						       int state)
1119{
1120	struct discovery_state *cache = &hdev->discovery;
1121	struct inquiry_entry *e;
1122
1123	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125	list_for_each_entry(e, &cache->resolve, list) {
1126		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127			return e;
1128		if (!bacmp(&e->data.bdaddr, bdaddr))
1129			return e;
1130	}
1131
1132	return NULL;
1133}
1134
1135void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136				      struct inquiry_entry *ie)
1137{
1138	struct discovery_state *cache = &hdev->discovery;
1139	struct list_head *pos = &cache->resolve;
1140	struct inquiry_entry *p;
1141
1142	list_del(&ie->list);
1143
1144	list_for_each_entry(p, &cache->resolve, list) {
1145		if (p->name_state != NAME_PENDING &&
1146		    abs(p->data.rssi) >= abs(ie->data.rssi))
1147			break;
1148		pos = &p->list;
1149	}
1150
1151	list_add(&ie->list, pos);
1152}
1153
1154u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155			     bool name_known)
1156{
1157	struct discovery_state *cache = &hdev->discovery;
1158	struct inquiry_entry *ie;
1159	u32 flags = 0;
1160
1161	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165	if (!data->ssp_mode)
1166		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169	if (ie) {
1170		if (!ie->data.ssp_mode)
1171			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173		if (ie->name_state == NAME_NEEDED &&
1174		    data->rssi != ie->data.rssi) {
1175			ie->data.rssi = data->rssi;
1176			hci_inquiry_cache_update_resolve(hdev, ie);
1177		}
1178
1179		goto update;
1180	}
1181
1182	/* Entry not in the cache. Add new one. */
1183	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184	if (!ie) {
1185		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186		goto done;
1187	}
1188
1189	list_add(&ie->all, &cache->all);
1190
1191	if (name_known) {
1192		ie->name_state = NAME_KNOWN;
1193	} else {
1194		ie->name_state = NAME_NOT_KNOWN;
1195		list_add(&ie->list, &cache->unknown);
1196	}
1197
1198update:
1199	if (name_known && ie->name_state != NAME_KNOWN &&
1200	    ie->name_state != NAME_PENDING) {
1201		ie->name_state = NAME_KNOWN;
1202		list_del(&ie->list);
1203	}
1204
1205	memcpy(&ie->data, data, sizeof(*data));
1206	ie->timestamp = jiffies;
1207	cache->timestamp = jiffies;
1208
1209	if (ie->name_state == NAME_NOT_KNOWN)
1210		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212done:
1213	return flags;
1214}
1215
1216static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217{
1218	struct discovery_state *cache = &hdev->discovery;
1219	struct inquiry_info *info = (struct inquiry_info *) buf;
1220	struct inquiry_entry *e;
1221	int copied = 0;
1222
1223	list_for_each_entry(e, &cache->all, all) {
1224		struct inquiry_data *data = &e->data;
1225
1226		if (copied >= num)
1227			break;
1228
1229		bacpy(&info->bdaddr, &data->bdaddr);
1230		info->pscan_rep_mode	= data->pscan_rep_mode;
1231		info->pscan_period_mode	= data->pscan_period_mode;
1232		info->pscan_mode	= data->pscan_mode;
1233		memcpy(info->dev_class, data->dev_class, 3);
1234		info->clock_offset	= data->clock_offset;
1235
1236		info++;
1237		copied++;
1238	}
1239
1240	BT_DBG("cache %p, copied %d", cache, copied);
1241	return copied;
1242}
1243
1244static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245{
1246	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247	struct hci_dev *hdev = req->hdev;
1248	struct hci_cp_inquiry cp;
1249
1250	BT_DBG("%s", hdev->name);
1251
1252	if (test_bit(HCI_INQUIRY, &hdev->flags))
1253		return 0;
1254
1255	/* Start Inquiry */
1256	memcpy(&cp.lap, &ir->lap, 3);
1257	cp.length  = ir->length;
1258	cp.num_rsp = ir->num_rsp;
1259	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261	return 0;
1262}
1263
1264int hci_inquiry(void __user *arg)
1265{
1266	__u8 __user *ptr = arg;
1267	struct hci_inquiry_req ir;
1268	struct hci_dev *hdev;
1269	int err = 0, do_inquiry = 0, max_rsp;
1270	long timeo;
1271	__u8 *buf;
1272
1273	if (copy_from_user(&ir, ptr, sizeof(ir)))
1274		return -EFAULT;
1275
1276	hdev = hci_dev_get(ir.dev_id);
1277	if (!hdev)
1278		return -ENODEV;
1279
1280	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281		err = -EBUSY;
1282		goto done;
1283	}
1284
1285	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286		err = -EOPNOTSUPP;
1287		goto done;
1288	}
1289
1290	if (hdev->dev_type != HCI_PRIMARY) {
1291		err = -EOPNOTSUPP;
1292		goto done;
1293	}
1294
1295	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296		err = -EOPNOTSUPP;
 
1297		goto done;
1298	}
1299
1300	hci_dev_lock(hdev);
1301	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303		hci_inquiry_cache_flush(hdev);
1304		do_inquiry = 1;
1305	}
1306	hci_dev_unlock(hdev);
1307
1308	timeo = ir.length * msecs_to_jiffies(2000);
1309
1310	if (do_inquiry) {
1311		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312				   timeo, NULL);
 
 
1313		if (err < 0)
1314			goto done;
1315
1316		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317		 * cleared). If it is interrupted by a signal, return -EINTR.
1318		 */
1319		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320				TASK_INTERRUPTIBLE))
1321			return -EINTR;
 
 
1322	}
1323
1324	/* for unlimited number of responses we will use buffer with
1325	 * 255 entries
1326	 */
1327	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330	 * copy it to the user space.
1331	 */
1332	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333	if (!buf) {
1334		err = -ENOMEM;
1335		goto done;
1336	}
1337
1338	hci_dev_lock(hdev);
1339	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340	hci_dev_unlock(hdev);
1341
1342	BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345		ptr += sizeof(ir);
1346		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347				 ir.num_rsp))
1348			err = -EFAULT;
1349	} else
1350		err = -EFAULT;
1351
1352	kfree(buf);
1353
1354done:
1355	hci_dev_put(hdev);
1356	return err;
1357}
1358
1359/**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 *				       (BD_ADDR) for a HCI device from
1362 *				       a firmware node property.
1363 * @hdev:	The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372{
1373	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374	bdaddr_t ba;
1375	int ret;
1376
1377	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378					    (u8 *)&ba, sizeof(ba));
1379	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380		return;
1381
1382	bacpy(&hdev->public_addr, &ba);
1383}
1384
1385static int hci_dev_do_open(struct hci_dev *hdev)
1386{
1387	int ret = 0;
1388
1389	BT_DBG("%s %p", hdev->name, hdev);
1390
1391	hci_req_sync_lock(hdev);
1392
1393	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394		ret = -ENODEV;
1395		goto done;
1396	}
1397
1398	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400		/* Check for rfkill but allow the HCI setup stage to
1401		 * proceed (which in itself doesn't cause any RF activity).
1402		 */
1403		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404			ret = -ERFKILL;
1405			goto done;
1406		}
1407
1408		/* Check for valid public address or a configured static
1409		 * random adddress, but let the HCI setup proceed to
1410		 * be able to determine if there is a public address
1411		 * or not.
1412		 *
1413		 * In case of user channel usage, it is not important
1414		 * if a public address or static random address is
1415		 * available.
1416		 *
1417		 * This check is only valid for BR/EDR controllers
1418		 * since AMP controllers do not have an address.
1419		 */
1420		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421		    hdev->dev_type == HCI_PRIMARY &&
1422		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424			ret = -EADDRNOTAVAIL;
1425			goto done;
1426		}
1427	}
1428
1429	if (test_bit(HCI_UP, &hdev->flags)) {
1430		ret = -EALREADY;
1431		goto done;
1432	}
1433
1434	if (hdev->open(hdev)) {
1435		ret = -EIO;
1436		goto done;
1437	}
1438
1439	set_bit(HCI_RUNNING, &hdev->flags);
1440	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442	atomic_set(&hdev->cmd_cnt, 1);
1443	set_bit(HCI_INIT, &hdev->flags);
1444
1445	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449		if (hdev->setup)
1450			ret = hdev->setup(hdev);
1451
1452		if (ret)
1453			goto setup_failed;
1454
1455		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457				hci_dev_get_bd_addr_from_property(hdev);
1458
1459			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460			    hdev->set_bdaddr)
1461				ret = hdev->set_bdaddr(hdev,
1462						       &hdev->public_addr);
1463		}
1464
1465setup_failed:
1466		/* The transport driver can set these quirks before
1467		 * creating the HCI device or in its setup callback.
1468		 *
1469		 * In case any of them is set, the controller has to
1470		 * start up as unconfigured.
1471		 */
1472		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476		/* For an unconfigured controller it is required to
1477		 * read at least the version information provided by
1478		 * the Read Local Version Information command.
1479		 *
1480		 * If the set_bdaddr driver callback is provided, then
1481		 * also the original Bluetooth public device address
1482		 * will be read using the Read BD Address command.
1483		 */
1484		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485			ret = __hci_unconf_init(hdev);
1486	}
1487
1488	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489		/* If public address change is configured, ensure that
1490		 * the address gets programmed. If the driver does not
1491		 * support changing the public address, fail the power
1492		 * on procedure.
1493		 */
1494		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495		    hdev->set_bdaddr)
1496			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497		else
1498			ret = -EADDRNOTAVAIL;
1499	}
1500
1501	if (!ret) {
1502		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504			ret = __hci_init(hdev);
1505			if (!ret && hdev->post_init)
1506				ret = hdev->post_init(hdev);
1507		}
1508	}
1509
1510	/* If the HCI Reset command is clearing all diagnostic settings,
1511	 * then they need to be reprogrammed after the init procedure
1512	 * completed.
1513	 */
1514	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517		ret = hdev->set_diag(hdev, true);
1518
1519	clear_bit(HCI_INIT, &hdev->flags);
1520
1521	if (!ret) {
1522		hci_dev_hold(hdev);
1523		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524		hci_adv_instances_set_rpa_expired(hdev, true);
1525		set_bit(HCI_UP, &hdev->flags);
1526		hci_sock_dev_event(hdev, HCI_DEV_UP);
1527		hci_leds_update_powered(hdev, true);
1528		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1533		    hdev->dev_type == HCI_PRIMARY) {
1534			ret = __hci_req_hci_power_on(hdev);
1535			mgmt_power_on(hdev, ret);
1536		}
1537	} else {
1538		/* Init failed, cleanup */
1539		flush_work(&hdev->tx_work);
1540		flush_work(&hdev->cmd_work);
1541		flush_work(&hdev->rx_work);
1542
1543		skb_queue_purge(&hdev->cmd_q);
1544		skb_queue_purge(&hdev->rx_q);
1545
1546		if (hdev->flush)
1547			hdev->flush(hdev);
1548
1549		if (hdev->sent_cmd) {
1550			kfree_skb(hdev->sent_cmd);
1551			hdev->sent_cmd = NULL;
1552		}
1553
1554		clear_bit(HCI_RUNNING, &hdev->flags);
1555		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557		hdev->close(hdev);
1558		hdev->flags &= BIT(HCI_RAW);
1559	}
1560
1561done:
1562	hci_req_sync_unlock(hdev);
1563	return ret;
1564}
1565
1566/* ---- HCI ioctl helpers ---- */
1567
1568int hci_dev_open(__u16 dev)
1569{
1570	struct hci_dev *hdev;
1571	int err;
1572
1573	hdev = hci_dev_get(dev);
1574	if (!hdev)
1575		return -ENODEV;
1576
1577	/* Devices that are marked as unconfigured can only be powered
1578	 * up as user channel. Trying to bring them up as normal devices
1579	 * will result into a failure. Only user channel operation is
1580	 * possible.
1581	 *
1582	 * When this function is called for a user channel, the flag
1583	 * HCI_USER_CHANNEL will be set first before attempting to
1584	 * open the device.
1585	 */
1586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588		err = -EOPNOTSUPP;
1589		goto done;
1590	}
1591
1592	/* We need to ensure that no other power on/off work is pending
1593	 * before proceeding to call hci_dev_do_open. This is
1594	 * particularly important if the setup procedure has not yet
1595	 * completed.
1596	 */
1597	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598		cancel_delayed_work(&hdev->power_off);
1599
1600	/* After this call it is guaranteed that the setup procedure
1601	 * has finished. This means that error conditions like RFKILL
1602	 * or no valid public or static random address apply.
1603	 */
1604	flush_workqueue(hdev->req_workqueue);
1605
1606	/* For controllers not using the management interface and that
1607	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608	 * so that pairing works for them. Once the management interface
1609	 * is in use this bit will be cleared again and userspace has
1610	 * to explicitly enable it.
1611	 */
1612	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613	    !hci_dev_test_flag(hdev, HCI_MGMT))
1614		hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616	err = hci_dev_do_open(hdev);
1617
1618done:
1619	hci_dev_put(hdev);
1620	return err;
1621}
1622
1623/* This function requires the caller holds hdev->lock */
1624static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625{
1626	struct hci_conn_params *p;
1627
1628	list_for_each_entry(p, &hdev->le_conn_params, list) {
1629		if (p->conn) {
1630			hci_conn_drop(p->conn);
1631			hci_conn_put(p->conn);
1632			p->conn = NULL;
1633		}
1634		list_del_init(&p->action);
1635	}
1636
1637	BT_DBG("All LE pending actions cleared");
1638}
1639
1640int hci_dev_do_close(struct hci_dev *hdev)
1641{
1642	bool auto_off;
1643
1644	BT_DBG("%s %p", hdev->name, hdev);
1645
1646	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648	    test_bit(HCI_UP, &hdev->flags)) {
1649		/* Execute vendor specific shutdown routine */
1650		if (hdev->shutdown)
1651			hdev->shutdown(hdev);
1652	}
1653
1654	cancel_delayed_work(&hdev->power_off);
1655
1656	hci_request_cancel_all(hdev);
1657	hci_req_sync_lock(hdev);
1658
1659	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660		cancel_delayed_work_sync(&hdev->cmd_timer);
1661		hci_req_sync_unlock(hdev);
1662		return 0;
1663	}
1664
1665	hci_leds_update_powered(hdev, false);
1666
1667	/* Flush RX and TX works */
1668	flush_work(&hdev->tx_work);
1669	flush_work(&hdev->rx_work);
1670
1671	if (hdev->discov_timeout > 0) {
1672		hdev->discov_timeout = 0;
1673		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675	}
1676
1677	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678		cancel_delayed_work(&hdev->service_cache);
1679
1680	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681		struct adv_info *adv_instance;
1682
1683		cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687	}
1688
1689	/* Avoid potential lockdep warnings from the *_flush() calls by
1690	 * ensuring the workqueue is empty up front.
1691	 */
1692	drain_workqueue(hdev->workqueue);
1693
1694	hci_dev_lock(hdev);
1695
1696	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702	    hci_dev_test_flag(hdev, HCI_MGMT))
1703		__mgmt_power_off(hdev);
1704
1705	hci_inquiry_cache_flush(hdev);
1706	hci_pend_le_actions_clear(hdev);
1707	hci_conn_hash_flush(hdev);
1708	hci_dev_unlock(hdev);
1709
1710	smp_unregister(hdev);
1711
1712	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
1714	if (hdev->flush)
1715		hdev->flush(hdev);
1716
1717	/* Reset device */
1718	skb_queue_purge(&hdev->cmd_q);
1719	atomic_set(&hdev->cmd_cnt, 1);
1720	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722		set_bit(HCI_INIT, &hdev->flags);
1723		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1724		clear_bit(HCI_INIT, &hdev->flags);
1725	}
1726
1727	/* flush cmd  work */
1728	flush_work(&hdev->cmd_work);
1729
1730	/* Drop queues */
1731	skb_queue_purge(&hdev->rx_q);
1732	skb_queue_purge(&hdev->cmd_q);
1733	skb_queue_purge(&hdev->raw_q);
1734
1735	/* Drop last sent command */
1736	if (hdev->sent_cmd) {
1737		cancel_delayed_work_sync(&hdev->cmd_timer);
1738		kfree_skb(hdev->sent_cmd);
1739		hdev->sent_cmd = NULL;
1740	}
1741
1742	clear_bit(HCI_RUNNING, &hdev->flags);
1743	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
1745	/* After this point our queues are empty
1746	 * and no tasks are scheduled. */
1747	hdev->close(hdev);
1748
1749	/* Clear flags */
1750	hdev->flags &= BIT(HCI_RAW);
1751	hci_dev_clear_volatile_flags(hdev);
1752
1753	/* Controller radio is available but is currently powered down */
1754	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756	memset(hdev->eir, 0, sizeof(hdev->eir));
1757	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758	bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760	hci_req_sync_unlock(hdev);
1761
1762	hci_dev_put(hdev);
1763	return 0;
1764}
1765
1766int hci_dev_close(__u16 dev)
1767{
1768	struct hci_dev *hdev;
1769	int err;
1770
1771	hdev = hci_dev_get(dev);
1772	if (!hdev)
1773		return -ENODEV;
1774
1775	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776		err = -EBUSY;
1777		goto done;
1778	}
1779
 
1780	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781		cancel_delayed_work(&hdev->power_off);
1782
1783	err = hci_dev_do_close(hdev);
1784
1785done:
1786	hci_dev_put(hdev);
1787	return err;
1788}
1789
1790static int hci_dev_do_reset(struct hci_dev *hdev)
1791{
1792	int ret;
1793
1794	BT_DBG("%s %p", hdev->name, hdev);
1795
1796	hci_req_sync_lock(hdev);
1797
1798	/* Drop queues */
1799	skb_queue_purge(&hdev->rx_q);
1800	skb_queue_purge(&hdev->cmd_q);
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802	/* Avoid potential lockdep warnings from the *_flush() calls by
1803	 * ensuring the workqueue is empty up front.
1804	 */
1805	drain_workqueue(hdev->workqueue);
1806
1807	hci_dev_lock(hdev);
1808	hci_inquiry_cache_flush(hdev);
1809	hci_conn_hash_flush(hdev);
1810	hci_dev_unlock(hdev);
1811
1812	if (hdev->flush)
1813		hdev->flush(hdev);
1814
 
 
1815	atomic_set(&hdev->cmd_cnt, 1);
1816	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1817
1818	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820	hci_req_sync_unlock(hdev);
1821	return ret;
1822}
1823
1824int hci_dev_reset(__u16 dev)
1825{
1826	struct hci_dev *hdev;
1827	int err;
1828
1829	hdev = hci_dev_get(dev);
1830	if (!hdev)
1831		return -ENODEV;
1832
1833	if (!test_bit(HCI_UP, &hdev->flags)) {
1834		err = -ENETDOWN;
1835		goto done;
1836	}
1837
1838	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839		err = -EBUSY;
1840		goto done;
1841	}
1842
1843	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844		err = -EOPNOTSUPP;
1845		goto done;
1846	}
1847
1848	err = hci_dev_do_reset(hdev);
1849
1850done:
1851	hci_dev_put(hdev);
1852	return err;
1853}
1854
1855int hci_dev_reset_stat(__u16 dev)
1856{
1857	struct hci_dev *hdev;
1858	int ret = 0;
1859
1860	hdev = hci_dev_get(dev);
1861	if (!hdev)
1862		return -ENODEV;
1863
1864	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865		ret = -EBUSY;
1866		goto done;
1867	}
1868
1869	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870		ret = -EOPNOTSUPP;
1871		goto done;
1872	}
1873
1874	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876done:
1877	hci_dev_put(hdev);
1878	return ret;
1879}
1880
1881static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882{
1883	bool conn_changed, discov_changed;
1884
1885	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887	if ((scan & SCAN_PAGE))
1888		conn_changed = !hci_dev_test_and_set_flag(hdev,
1889							  HCI_CONNECTABLE);
1890	else
1891		conn_changed = hci_dev_test_and_clear_flag(hdev,
1892							   HCI_CONNECTABLE);
1893
1894	if ((scan & SCAN_INQUIRY)) {
1895		discov_changed = !hci_dev_test_and_set_flag(hdev,
1896							    HCI_DISCOVERABLE);
1897	} else {
1898		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899		discov_changed = hci_dev_test_and_clear_flag(hdev,
1900							     HCI_DISCOVERABLE);
1901	}
1902
1903	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904		return;
1905
1906	if (conn_changed || discov_changed) {
1907		/* In case this was disabled through mgmt */
1908		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913		mgmt_new_settings(hdev);
1914	}
1915}
1916
1917int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918{
1919	struct hci_dev *hdev;
1920	struct hci_dev_req dr;
 
1921	int err = 0;
1922
1923	if (copy_from_user(&dr, arg, sizeof(dr)))
1924		return -EFAULT;
1925
1926	hdev = hci_dev_get(dr.dev_id);
1927	if (!hdev)
1928		return -ENODEV;
1929
1930	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931		err = -EBUSY;
1932		goto done;
1933	}
1934
1935	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936		err = -EOPNOTSUPP;
1937		goto done;
1938	}
1939
1940	if (hdev->dev_type != HCI_PRIMARY) {
1941		err = -EOPNOTSUPP;
1942		goto done;
1943	}
1944
1945	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946		err = -EOPNOTSUPP;
1947		goto done;
1948	}
1949
1950	switch (cmd) {
1951	case HCISETAUTH:
1952		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953				   HCI_INIT_TIMEOUT, NULL);
1954		break;
1955
1956	case HCISETENCRYPT:
1957		if (!lmp_encrypt_capable(hdev)) {
1958			err = -EOPNOTSUPP;
1959			break;
1960		}
1961
1962		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963			/* Auth must be enabled first */
1964			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965					   HCI_INIT_TIMEOUT, NULL);
 
 
1966			if (err)
1967				break;
1968		}
1969
1970		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971				   HCI_INIT_TIMEOUT, NULL);
1972		break;
1973
1974	case HCISETSCAN:
1975		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976				   HCI_INIT_TIMEOUT, NULL);
1977
1978		/* Ensure that the connectable and discoverable states
1979		 * get correctly modified as this was a non-mgmt change.
1980		 */
1981		if (!err)
1982			hci_update_scan_state(hdev, dr.dev_opt);
1983		break;
1984
1985	case HCISETLINKPOL:
1986		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987				   HCI_INIT_TIMEOUT, NULL);
 
 
1988		break;
1989
1990	case HCISETLINKMODE:
1991		hdev->link_mode = ((__u16) dr.dev_opt) &
1992					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1993		break;
1994
1995	case HCISETPTYPE:
1996		if (hdev->pkt_type == (__u16) dr.dev_opt)
1997			break;
1998
1999		hdev->pkt_type = (__u16) dr.dev_opt;
2000		mgmt_phy_configuration_changed(hdev, NULL);
2001		break;
2002
2003	case HCISETACLMTU:
2004		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2005		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006		break;
2007
2008	case HCISETSCOMTU:
2009		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2010		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011		break;
2012
2013	default:
2014		err = -EINVAL;
2015		break;
2016	}
2017
2018done:
2019	hci_dev_put(hdev);
2020	return err;
2021}
2022
2023int hci_get_dev_list(void __user *arg)
2024{
2025	struct hci_dev *hdev;
2026	struct hci_dev_list_req *dl;
2027	struct hci_dev_req *dr;
2028	int n = 0, size, err;
2029	__u16 dev_num;
2030
2031	if (get_user(dev_num, (__u16 __user *) arg))
2032		return -EFAULT;
2033
2034	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035		return -EINVAL;
2036
2037	size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039	dl = kzalloc(size, GFP_KERNEL);
2040	if (!dl)
2041		return -ENOMEM;
2042
 
2043	dr = dl->dev_req;
2044
2045	read_lock(&hci_dev_list_lock);
2046	list_for_each_entry(hdev, &hci_dev_list, list) {
2047		unsigned long flags = hdev->flags;
2048
2049		/* When the auto-off is configured it means the transport
2050		 * is running, but in that case still indicate that the
2051		 * device is actually down.
2052		 */
2053		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054			flags &= ~BIT(HCI_UP);
2055
2056		(dr + n)->dev_id  = hdev->id;
2057		(dr + n)->dev_opt = flags;
2058
2059		if (++n >= dev_num)
2060			break;
2061	}
2062	read_unlock(&hci_dev_list_lock);
2063
2064	dl->dev_num = n;
2065	size = sizeof(*dl) + n * sizeof(*dr);
2066
2067	err = copy_to_user(arg, dl, size);
2068	kfree(dl);
2069
2070	return err ? -EFAULT : 0;
2071}
2072
2073int hci_get_dev_info(void __user *arg)
2074{
2075	struct hci_dev *hdev;
2076	struct hci_dev_info di;
2077	unsigned long flags;
2078	int err = 0;
2079
2080	if (copy_from_user(&di, arg, sizeof(di)))
2081		return -EFAULT;
2082
2083	hdev = hci_dev_get(di.dev_id);
2084	if (!hdev)
2085		return -ENODEV;
2086
2087	/* When the auto-off is configured it means the transport
2088	 * is running, but in that case still indicate that the
2089	 * device is actually down.
2090	 */
2091	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092		flags = hdev->flags & ~BIT(HCI_UP);
2093	else
2094		flags = hdev->flags;
2095
2096	strcpy(di.name, hdev->name);
2097	di.bdaddr   = hdev->bdaddr;
2098	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099	di.flags    = flags;
2100	di.pkt_type = hdev->pkt_type;
2101	if (lmp_bredr_capable(hdev)) {
2102		di.acl_mtu  = hdev->acl_mtu;
2103		di.acl_pkts = hdev->acl_pkts;
2104		di.sco_mtu  = hdev->sco_mtu;
2105		di.sco_pkts = hdev->sco_pkts;
2106	} else {
2107		di.acl_mtu  = hdev->le_mtu;
2108		di.acl_pkts = hdev->le_pkts;
2109		di.sco_mtu  = 0;
2110		di.sco_pkts = 0;
2111	}
2112	di.link_policy = hdev->link_policy;
2113	di.link_mode   = hdev->link_mode;
2114
2115	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116	memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118	if (copy_to_user(arg, &di, sizeof(di)))
2119		err = -EFAULT;
2120
2121	hci_dev_put(hdev);
2122
2123	return err;
2124}
2125
2126/* ---- Interface to HCI drivers ---- */
2127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128static int hci_rfkill_set_block(void *data, bool blocked)
2129{
2130	struct hci_dev *hdev = data;
 
2131
2132	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135		return -EBUSY;
2136
 
 
 
2137	if (blocked) {
2138		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
2139		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2141			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
2142	} else {
2143		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144	}
2145
2146	return 0;
2147}
2148
2149static const struct rfkill_ops hci_rfkill_ops = {
2150	.set_block = hci_rfkill_set_block,
2151};
2152
2153static void hci_power_on(struct work_struct *work)
2154{
2155	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156	int err;
2157
2158	BT_DBG("%s", hdev->name);
2159
2160	if (test_bit(HCI_UP, &hdev->flags) &&
2161	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2162	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163		cancel_delayed_work(&hdev->power_off);
2164		hci_req_sync_lock(hdev);
2165		err = __hci_req_hci_power_on(hdev);
2166		hci_req_sync_unlock(hdev);
2167		mgmt_power_on(hdev, err);
2168		return;
2169	}
2170
2171	err = hci_dev_do_open(hdev);
2172	if (err < 0) {
2173		hci_dev_lock(hdev);
2174		mgmt_set_powered_failed(hdev, err);
2175		hci_dev_unlock(hdev);
2176		return;
2177	}
2178
2179	/* During the HCI setup phase, a few error conditions are
2180	 * ignored and they need to be checked now. If they are still
2181	 * valid, it is important to turn the device back off.
2182	 */
2183	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185	    (hdev->dev_type == HCI_PRIMARY &&
2186	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189		hci_dev_do_close(hdev);
2190	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192				   HCI_AUTO_OFF_TIMEOUT);
2193	}
2194
2195	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196		/* For unconfigured devices, set the HCI_RAW flag
2197		 * so that userspace can easily identify them.
2198		 */
2199		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200			set_bit(HCI_RAW, &hdev->flags);
2201
2202		/* For fully configured devices, this will send
2203		 * the Index Added event. For unconfigured devices,
2204		 * it will send Unconfigued Index Added event.
2205		 *
2206		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207		 * and no event will be send.
2208		 */
2209		mgmt_index_added(hdev);
2210	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211		/* When the controller is now configured, then it
2212		 * is important to clear the HCI_RAW flag.
2213		 */
2214		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215			clear_bit(HCI_RAW, &hdev->flags);
2216
2217		/* Powering on the controller with HCI_CONFIG set only
2218		 * happens with the transition from unconfigured to
2219		 * configured. This will send the Index Added event.
2220		 */
2221		mgmt_index_added(hdev);
2222	}
2223}
2224
2225static void hci_power_off(struct work_struct *work)
2226{
2227	struct hci_dev *hdev = container_of(work, struct hci_dev,
2228					    power_off.work);
2229
2230	BT_DBG("%s", hdev->name);
2231
2232	hci_dev_do_close(hdev);
2233}
2234
2235static void hci_error_reset(struct work_struct *work)
2236{
2237	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2238
 
2239	BT_DBG("%s", hdev->name);
2240
2241	if (hdev->hw_error)
2242		hdev->hw_error(hdev, hdev->hw_error_code);
2243	else
2244		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246	if (hci_dev_do_close(hdev))
2247		return;
2248
2249	hci_dev_do_open(hdev);
2250}
2251
2252void hci_uuids_clear(struct hci_dev *hdev)
2253{
2254	struct bt_uuid *uuid, *tmp;
2255
2256	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257		list_del(&uuid->list);
2258		kfree(uuid);
2259	}
2260}
2261
2262void hci_link_keys_clear(struct hci_dev *hdev)
2263{
2264	struct link_key *key;
2265
2266	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267		list_del_rcu(&key->list);
2268		kfree_rcu(key, rcu);
2269	}
2270}
2271
2272void hci_smp_ltks_clear(struct hci_dev *hdev)
2273{
2274	struct smp_ltk *k;
2275
2276	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277		list_del_rcu(&k->list);
2278		kfree_rcu(k, rcu);
2279	}
2280}
2281
2282void hci_smp_irks_clear(struct hci_dev *hdev)
2283{
2284	struct smp_irk *k;
2285
2286	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287		list_del_rcu(&k->list);
2288		kfree_rcu(k, rcu);
2289	}
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293{
2294	struct link_key *k;
2295
2296	rcu_read_lock();
2297	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2300			return k;
2301		}
2302	}
2303	rcu_read_unlock();
2304
2305	return NULL;
2306}
2307
2308static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309			       u8 key_type, u8 old_key_type)
2310{
2311	/* Legacy key */
2312	if (key_type < 0x03)
2313		return true;
2314
2315	/* Debug keys are insecure so don't store them persistently */
2316	if (key_type == HCI_LK_DEBUG_COMBINATION)
2317		return false;
2318
2319	/* Changed combination key and there's no previous one */
2320	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321		return false;
2322
2323	/* Security mode 3 case */
2324	if (!conn)
2325		return true;
2326
2327	/* BR/EDR key derived using SC from an LE link */
2328	if (conn->type == LE_LINK)
2329		return true;
2330
2331	/* Neither local nor remote side had no-bonding as requirement */
2332	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333		return true;
2334
2335	/* Local side had dedicated bonding as requirement */
2336	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337		return true;
2338
2339	/* Remote side had dedicated bonding as requirement */
2340	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341		return true;
2342
2343	/* If none of the above criteria match, then don't store the key
2344	 * persistently */
2345	return false;
2346}
2347
2348static u8 ltk_role(u8 type)
2349{
2350	if (type == SMP_LTK)
2351		return HCI_ROLE_MASTER;
2352
2353	return HCI_ROLE_SLAVE;
2354}
2355
2356struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357			     u8 addr_type, u8 role)
2358{
2359	struct smp_ltk *k;
2360
2361	rcu_read_lock();
2362	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364			continue;
2365
2366		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2368			return k;
2369		}
2370	}
2371	rcu_read_unlock();
2372
2373	return NULL;
2374}
2375
2376struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377{
 
2378	struct smp_irk *irk;
2379
2380	rcu_read_lock();
2381	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382		if (!bacmp(&irk->rpa, rpa)) {
2383			rcu_read_unlock();
2384			return irk;
2385		}
2386	}
2387
2388	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389		if (smp_irk_matches(hdev, irk->val, rpa)) {
2390			bacpy(&irk->rpa, rpa);
2391			rcu_read_unlock();
2392			return irk;
2393		}
2394	}
 
 
 
 
 
 
 
 
 
2395	rcu_read_unlock();
2396
2397	return NULL;
2398}
2399
2400struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401				     u8 addr_type)
2402{
 
2403	struct smp_irk *irk;
2404
2405	/* Identity Address must be public or static random */
2406	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407		return NULL;
2408
2409	rcu_read_lock();
2410	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411		if (addr_type == irk->addr_type &&
2412		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2413			rcu_read_unlock();
2414			return irk;
2415		}
2416	}
 
 
 
 
 
 
 
 
 
 
2417	rcu_read_unlock();
2418
2419	return NULL;
2420}
2421
2422struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423				  bdaddr_t *bdaddr, u8 *val, u8 type,
2424				  u8 pin_len, bool *persistent)
2425{
2426	struct link_key *key, *old_key;
2427	u8 old_key_type;
2428
2429	old_key = hci_find_link_key(hdev, bdaddr);
2430	if (old_key) {
2431		old_key_type = old_key->type;
2432		key = old_key;
2433	} else {
2434		old_key_type = conn ? conn->key_type : 0xff;
2435		key = kzalloc(sizeof(*key), GFP_KERNEL);
2436		if (!key)
2437			return NULL;
2438		list_add_rcu(&key->list, &hdev->link_keys);
2439	}
2440
2441	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443	/* Some buggy controller combinations generate a changed
2444	 * combination key for legacy pairing even when there's no
2445	 * previous key */
2446	if (type == HCI_LK_CHANGED_COMBINATION &&
2447	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2448		type = HCI_LK_COMBINATION;
2449		if (conn)
2450			conn->key_type = type;
2451	}
2452
2453	bacpy(&key->bdaddr, bdaddr);
2454	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455	key->pin_len = pin_len;
2456
2457	if (type == HCI_LK_CHANGED_COMBINATION)
2458		key->type = old_key_type;
2459	else
2460		key->type = type;
2461
2462	if (persistent)
2463		*persistent = hci_persistent_key(hdev, conn, type,
2464						 old_key_type);
2465
2466	return key;
2467}
2468
2469struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470			    u8 addr_type, u8 type, u8 authenticated,
2471			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472{
2473	struct smp_ltk *key, *old_key;
2474	u8 role = ltk_role(type);
2475
2476	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2477	if (old_key)
2478		key = old_key;
2479	else {
2480		key = kzalloc(sizeof(*key), GFP_KERNEL);
2481		if (!key)
2482			return NULL;
2483		list_add_rcu(&key->list, &hdev->long_term_keys);
2484	}
2485
2486	bacpy(&key->bdaddr, bdaddr);
2487	key->bdaddr_type = addr_type;
2488	memcpy(key->val, tk, sizeof(key->val));
2489	key->authenticated = authenticated;
2490	key->ediv = ediv;
2491	key->rand = rand;
2492	key->enc_size = enc_size;
2493	key->type = type;
2494
2495	return key;
2496}
2497
2498struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500{
2501	struct smp_irk *irk;
2502
2503	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504	if (!irk) {
2505		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506		if (!irk)
2507			return NULL;
2508
2509		bacpy(&irk->bdaddr, bdaddr);
2510		irk->addr_type = addr_type;
2511
2512		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513	}
2514
2515	memcpy(irk->val, val, 16);
2516	bacpy(&irk->rpa, rpa);
2517
2518	return irk;
2519}
2520
2521int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522{
2523	struct link_key *key;
2524
2525	key = hci_find_link_key(hdev, bdaddr);
2526	if (!key)
2527		return -ENOENT;
2528
2529	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531	list_del_rcu(&key->list);
2532	kfree_rcu(key, rcu);
2533
2534	return 0;
2535}
2536
2537int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538{
2539	struct smp_ltk *k;
2540	int removed = 0;
2541
2542	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544			continue;
2545
2546		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548		list_del_rcu(&k->list);
2549		kfree_rcu(k, rcu);
2550		removed++;
2551	}
2552
2553	return removed ? 0 : -ENOENT;
2554}
2555
2556void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557{
2558	struct smp_irk *k;
2559
2560	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562			continue;
2563
2564		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566		list_del_rcu(&k->list);
2567		kfree_rcu(k, rcu);
2568	}
2569}
2570
2571bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572{
2573	struct smp_ltk *k;
2574	struct smp_irk *irk;
2575	u8 addr_type;
2576
2577	if (type == BDADDR_BREDR) {
2578		if (hci_find_link_key(hdev, bdaddr))
2579			return true;
2580		return false;
2581	}
2582
2583	/* Convert to HCI addr type which struct smp_ltk uses */
2584	if (type == BDADDR_LE_PUBLIC)
2585		addr_type = ADDR_LE_DEV_PUBLIC;
2586	else
2587		addr_type = ADDR_LE_DEV_RANDOM;
2588
2589	irk = hci_get_irk(hdev, bdaddr, addr_type);
2590	if (irk) {
2591		bdaddr = &irk->bdaddr;
2592		addr_type = irk->addr_type;
2593	}
2594
2595	rcu_read_lock();
2596	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598			rcu_read_unlock();
2599			return true;
2600		}
2601	}
2602	rcu_read_unlock();
2603
2604	return false;
2605}
2606
2607/* HCI command timer function */
2608static void hci_cmd_timeout(struct work_struct *work)
2609{
2610	struct hci_dev *hdev = container_of(work, struct hci_dev,
2611					    cmd_timer.work);
2612
2613	if (hdev->sent_cmd) {
2614		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615		u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
 
 
2618	} else {
2619		bt_dev_err(hdev, "command tx timeout");
2620	}
2621
2622	if (hdev->cmd_timeout)
2623		hdev->cmd_timeout(hdev);
2624
2625	atomic_set(&hdev->cmd_cnt, 1);
2626	queue_work(hdev->workqueue, &hdev->cmd_work);
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630					  bdaddr_t *bdaddr, u8 bdaddr_type)
2631{
2632	struct oob_data *data;
2633
2634	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635		if (bacmp(bdaddr, &data->bdaddr) != 0)
2636			continue;
2637		if (data->bdaddr_type != bdaddr_type)
2638			continue;
2639		return data;
2640	}
2641
2642	return NULL;
2643}
2644
2645int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646			       u8 bdaddr_type)
2647{
2648	struct oob_data *data;
2649
2650	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651	if (!data)
2652		return -ENOENT;
2653
2654	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656	list_del(&data->list);
2657	kfree(data);
2658
2659	return 0;
2660}
2661
2662void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663{
2664	struct oob_data *data, *n;
2665
2666	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667		list_del(&data->list);
2668		kfree(data);
2669	}
2670}
2671
2672int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674			    u8 *hash256, u8 *rand256)
2675{
2676	struct oob_data *data;
2677
2678	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2679	if (!data) {
2680		data = kmalloc(sizeof(*data), GFP_KERNEL);
2681		if (!data)
2682			return -ENOMEM;
2683
2684		bacpy(&data->bdaddr, bdaddr);
2685		data->bdaddr_type = bdaddr_type;
2686		list_add(&data->list, &hdev->remote_oob_data);
2687	}
2688
2689	if (hash192 && rand192) {
2690		memcpy(data->hash192, hash192, sizeof(data->hash192));
2691		memcpy(data->rand192, rand192, sizeof(data->rand192));
2692		if (hash256 && rand256)
2693			data->present = 0x03;
2694	} else {
2695		memset(data->hash192, 0, sizeof(data->hash192));
2696		memset(data->rand192, 0, sizeof(data->rand192));
2697		if (hash256 && rand256)
2698			data->present = 0x02;
2699		else
2700			data->present = 0x00;
2701	}
2702
2703	if (hash256 && rand256) {
2704		memcpy(data->hash256, hash256, sizeof(data->hash256));
2705		memcpy(data->rand256, rand256, sizeof(data->rand256));
2706	} else {
2707		memset(data->hash256, 0, sizeof(data->hash256));
2708		memset(data->rand256, 0, sizeof(data->rand256));
2709		if (hash192 && rand192)
2710			data->present = 0x01;
2711	}
2712
2713	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715	return 0;
2716}
2717
2718/* This function requires the caller holds hdev->lock */
2719struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720{
2721	struct adv_info *adv_instance;
2722
2723	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724		if (adv_instance->instance == instance)
2725			return adv_instance;
2726	}
2727
2728	return NULL;
2729}
2730
2731/* This function requires the caller holds hdev->lock */
2732struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733{
2734	struct adv_info *cur_instance;
2735
2736	cur_instance = hci_find_adv_instance(hdev, instance);
2737	if (!cur_instance)
2738		return NULL;
2739
2740	if (cur_instance == list_last_entry(&hdev->adv_instances,
2741					    struct adv_info, list))
2742		return list_first_entry(&hdev->adv_instances,
2743						 struct adv_info, list);
2744	else
2745		return list_next_entry(cur_instance, list);
2746}
2747
2748/* This function requires the caller holds hdev->lock */
2749int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750{
2751	struct adv_info *adv_instance;
2752
2753	adv_instance = hci_find_adv_instance(hdev, instance);
2754	if (!adv_instance)
2755		return -ENOENT;
2756
2757	BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759	if (hdev->cur_adv_instance == instance) {
2760		if (hdev->adv_instance_timeout) {
2761			cancel_delayed_work(&hdev->adv_instance_expire);
2762			hdev->adv_instance_timeout = 0;
2763		}
2764		hdev->cur_adv_instance = 0x00;
2765	}
2766
2767	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769	list_del(&adv_instance->list);
2770	kfree(adv_instance);
2771
2772	hdev->adv_instance_cnt--;
2773
2774	return 0;
2775}
2776
2777void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778{
2779	struct adv_info *adv_instance, *n;
2780
2781	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782		adv_instance->rpa_expired = rpa_expired;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786void hci_adv_instances_clear(struct hci_dev *hdev)
2787{
2788	struct adv_info *adv_instance, *n;
2789
2790	if (hdev->adv_instance_timeout) {
2791		cancel_delayed_work(&hdev->adv_instance_expire);
2792		hdev->adv_instance_timeout = 0;
2793	}
2794
2795	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797		list_del(&adv_instance->list);
2798		kfree(adv_instance);
2799	}
2800
2801	hdev->adv_instance_cnt = 0;
2802	hdev->cur_adv_instance = 0x00;
2803}
2804
2805static void adv_instance_rpa_expired(struct work_struct *work)
2806{
2807	struct adv_info *adv_instance = container_of(work, struct adv_info,
2808						     rpa_expired_cb.work);
2809
2810	BT_DBG("");
2811
2812	adv_instance->rpa_expired = true;
2813}
2814
2815/* This function requires the caller holds hdev->lock */
2816int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817			 u16 adv_data_len, u8 *adv_data,
2818			 u16 scan_rsp_len, u8 *scan_rsp_data,
2819			 u16 timeout, u16 duration)
2820{
2821	struct adv_info *adv_instance;
2822
2823	adv_instance = hci_find_adv_instance(hdev, instance);
2824	if (adv_instance) {
2825		memset(adv_instance->adv_data, 0,
2826		       sizeof(adv_instance->adv_data));
2827		memset(adv_instance->scan_rsp_data, 0,
2828		       sizeof(adv_instance->scan_rsp_data));
 
2829	} else {
2830		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2831		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832			return -EOVERFLOW;
2833
2834		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835		if (!adv_instance)
2836			return -ENOMEM;
2837
2838		adv_instance->pending = true;
2839		adv_instance->instance = instance;
2840		list_add(&adv_instance->list, &hdev->adv_instances);
 
 
 
 
 
 
 
 
 
2841		hdev->adv_instance_cnt++;
2842	}
2843
2844	adv_instance->flags = flags;
2845	adv_instance->adv_data_len = adv_data_len;
2846	adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848	if (adv_data_len)
2849		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851	if (scan_rsp_len)
2852		memcpy(adv_instance->scan_rsp_data,
2853		       scan_rsp_data, scan_rsp_len);
 
 
2854
2855	adv_instance->timeout = timeout;
2856	adv_instance->remaining_time = timeout;
2857
2858	if (duration == 0)
2859		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860	else
2861		adv_instance->duration = duration;
2862
2863	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866			  adv_instance_rpa_expired);
2867
2868	BT_DBG("%s for %dMR", hdev->name, instance);
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870	return 0;
2871}
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874					 bdaddr_t *bdaddr, u8 type)
2875{
2876	struct bdaddr_list *b;
2877
2878	list_for_each_entry(b, bdaddr_list, list) {
2879		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880			return b;
2881	}
2882
2883	return NULL;
2884}
2885
2886struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888				u8 type)
2889{
2890	struct bdaddr_list_with_irk *b;
2891
2892	list_for_each_entry(b, bdaddr_list, list) {
2893		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894			return b;
2895	}
2896
2897	return NULL;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901{
2902	struct bdaddr_list *b, *n;
2903
2904	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905		list_del(&b->list);
2906		kfree(b);
2907	}
2908}
2909
2910int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911{
2912	struct bdaddr_list *entry;
2913
2914	if (!bacmp(bdaddr, BDADDR_ANY))
2915		return -EBADF;
2916
2917	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918		return -EEXIST;
2919
2920	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921	if (!entry)
2922		return -ENOMEM;
2923
2924	bacpy(&entry->bdaddr, bdaddr);
2925	entry->bdaddr_type = type;
2926
2927	list_add(&entry->list, list);
2928
2929	return 0;
2930}
2931
2932int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933					u8 type, u8 *peer_irk, u8 *local_irk)
2934{
2935	struct bdaddr_list_with_irk *entry;
2936
2937	if (!bacmp(bdaddr, BDADDR_ANY))
2938		return -EBADF;
2939
2940	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941		return -EEXIST;
2942
2943	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944	if (!entry)
2945		return -ENOMEM;
2946
2947	bacpy(&entry->bdaddr, bdaddr);
2948	entry->bdaddr_type = type;
2949
2950	if (peer_irk)
2951		memcpy(entry->peer_irk, peer_irk, 16);
2952
2953	if (local_irk)
2954		memcpy(entry->local_irk, local_irk, 16);
2955
2956	list_add(&entry->list, list);
2957
2958	return 0;
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962{
2963	struct bdaddr_list *entry;
2964
2965	if (!bacmp(bdaddr, BDADDR_ANY)) {
2966		hci_bdaddr_list_clear(list);
2967		return 0;
2968	}
2969
2970	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971	if (!entry)
2972		return -ENOENT;
2973
2974	list_del(&entry->list);
2975	kfree(entry);
2976
2977	return 0;
2978}
2979
2980int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981							u8 type)
2982{
2983	struct bdaddr_list_with_irk *entry;
2984
2985	if (!bacmp(bdaddr, BDADDR_ANY)) {
2986		hci_bdaddr_list_clear(list);
2987		return 0;
2988	}
2989
2990	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991	if (!entry)
2992		return -ENOENT;
2993
2994	list_del(&entry->list);
2995	kfree(entry);
2996
2997	return 0;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000/* This function requires the caller holds hdev->lock */
3001struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002					       bdaddr_t *addr, u8 addr_type)
3003{
3004	struct hci_conn_params *params;
3005
3006	list_for_each_entry(params, &hdev->le_conn_params, list) {
3007		if (bacmp(&params->addr, addr) == 0 &&
3008		    params->addr_type == addr_type) {
3009			return params;
3010		}
3011	}
3012
3013	return NULL;
3014}
3015
3016/* This function requires the caller holds hdev->lock */
3017struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018						  bdaddr_t *addr, u8 addr_type)
3019{
3020	struct hci_conn_params *param;
3021
3022	list_for_each_entry(param, list, action) {
 
 
3023		if (bacmp(&param->addr, addr) == 0 &&
3024		    param->addr_type == addr_type)
 
3025			return param;
 
3026	}
3027
 
 
3028	return NULL;
3029}
3030
3031/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033					    bdaddr_t *addr, u8 addr_type)
3034{
3035	struct hci_conn_params *params;
3036
3037	params = hci_conn_params_lookup(hdev, addr, addr_type);
3038	if (params)
3039		return params;
3040
3041	params = kzalloc(sizeof(*params), GFP_KERNEL);
3042	if (!params) {
3043		bt_dev_err(hdev, "out of memory");
3044		return NULL;
3045	}
3046
3047	bacpy(&params->addr, addr);
3048	params->addr_type = addr_type;
3049
3050	list_add(&params->list, &hdev->le_conn_params);
3051	INIT_LIST_HEAD(&params->action);
3052
3053	params->conn_min_interval = hdev->le_conn_min_interval;
3054	params->conn_max_interval = hdev->le_conn_max_interval;
3055	params->conn_latency = hdev->le_conn_latency;
3056	params->supervision_timeout = hdev->le_supv_timeout;
3057	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3060
3061	return params;
3062}
3063
3064static void hci_conn_params_free(struct hci_conn_params *params)
3065{
 
 
3066	if (params->conn) {
3067		hci_conn_drop(params->conn);
3068		hci_conn_put(params->conn);
3069	}
3070
3071	list_del(&params->action);
3072	list_del(&params->list);
3073	kfree(params);
3074}
3075
3076/* This function requires the caller holds hdev->lock */
3077void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078{
3079	struct hci_conn_params *params;
3080
3081	params = hci_conn_params_lookup(hdev, addr, addr_type);
3082	if (!params)
3083		return;
3084
3085	hci_conn_params_free(params);
3086
3087	hci_update_background_scan(hdev);
3088
3089	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3090}
3091
3092/* This function requires the caller holds hdev->lock */
3093void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094{
3095	struct hci_conn_params *params, *tmp;
3096
3097	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099			continue;
3100
3101		/* If trying to estabilish one time connection to disabled
3102		 * device, leave the params, but mark them as just once.
3103		 */
3104		if (params->explicit_connect) {
3105			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106			continue;
3107		}
3108
3109		list_del(&params->list);
3110		kfree(params);
3111	}
3112
3113	BT_DBG("All LE disabled connection parameters were removed");
3114}
3115
3116/* This function requires the caller holds hdev->lock */
3117static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118{
3119	struct hci_conn_params *params, *tmp;
3120
3121	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122		hci_conn_params_free(params);
3123
3124	BT_DBG("All LE connection parameters were removed");
3125}
3126
3127/* Copy the Identity Address of the controller.
3128 *
3129 * If the controller has a public BD_ADDR, then by default use that one.
3130 * If this is a LE only controller without a public address, default to
3131 * the static random address.
3132 *
3133 * For debugging purposes it is possible to force controllers with a
3134 * public address to use the static random address instead.
3135 *
3136 * In case BR/EDR has been disabled on a dual-mode controller and
3137 * userspace has configured a static address, then that address
3138 * becomes the identity address instead of the public BR/EDR address.
3139 */
3140void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141			       u8 *bdaddr_type)
3142{
3143	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147		bacpy(bdaddr, &hdev->static_addr);
3148		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3149	} else {
3150		bacpy(bdaddr, &hdev->bdaddr);
3151		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152	}
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155/* Alloc HCI device */
3156struct hci_dev *hci_alloc_dev(void)
3157{
3158	struct hci_dev *hdev;
 
 
 
 
 
 
 
3159
3160	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161	if (!hdev)
3162		return NULL;
3163
3164	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165	hdev->esco_type = (ESCO_HV1);
3166	hdev->link_mode = (HCI_LM_ACCEPT);
3167	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3168	hdev->io_capability = 0x03;	/* No Input No Output */
3169	hdev->manufacturer = 0xffff;	/* Default to internal use */
3170	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172	hdev->adv_instance_cnt = 0;
3173	hdev->cur_adv_instance = 0x00;
3174	hdev->adv_instance_timeout = 0;
3175
 
 
 
 
3176	hdev->sniff_max_interval = 800;
3177	hdev->sniff_min_interval = 80;
3178
3179	hdev->le_adv_channel_map = 0x07;
3180	hdev->le_adv_min_interval = 0x0800;
3181	hdev->le_adv_max_interval = 0x0800;
3182	hdev->le_scan_interval = 0x0060;
3183	hdev->le_scan_window = 0x0030;
 
 
 
 
 
 
 
 
3184	hdev->le_conn_min_interval = 0x0018;
3185	hdev->le_conn_max_interval = 0x0028;
3186	hdev->le_conn_latency = 0x0000;
3187	hdev->le_supv_timeout = 0x002a;
3188	hdev->le_def_tx_len = 0x001b;
3189	hdev->le_def_tx_time = 0x0148;
3190	hdev->le_max_tx_len = 0x001b;
3191	hdev->le_max_tx_time = 0x0148;
3192	hdev->le_max_rx_len = 0x001b;
3193	hdev->le_max_rx_time = 0x0148;
3194	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
 
 
 
 
3199
3200	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3201	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3202	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3203	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3204	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3205	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3206
 
 
 
 
 
3207	mutex_init(&hdev->lock);
3208	mutex_init(&hdev->req_lock);
3209
 
 
 
3210	INIT_LIST_HEAD(&hdev->mgmt_pending);
3211	INIT_LIST_HEAD(&hdev->blacklist);
3212	INIT_LIST_HEAD(&hdev->whitelist);
3213	INIT_LIST_HEAD(&hdev->uuids);
3214	INIT_LIST_HEAD(&hdev->link_keys);
3215	INIT_LIST_HEAD(&hdev->long_term_keys);
3216	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3217	INIT_LIST_HEAD(&hdev->remote_oob_data);
3218	INIT_LIST_HEAD(&hdev->le_white_list);
3219	INIT_LIST_HEAD(&hdev->le_resolv_list);
3220	INIT_LIST_HEAD(&hdev->le_conn_params);
3221	INIT_LIST_HEAD(&hdev->pend_le_conns);
3222	INIT_LIST_HEAD(&hdev->pend_le_reports);
3223	INIT_LIST_HEAD(&hdev->conn_hash.list);
3224	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
3225
 
3226	INIT_WORK(&hdev->rx_work, hci_rx_work);
3227	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228	INIT_WORK(&hdev->tx_work, hci_tx_work);
3229	INIT_WORK(&hdev->power_on, hci_power_on);
3230	INIT_WORK(&hdev->error_reset, hci_error_reset);
3231
 
 
3232	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233
3234	skb_queue_head_init(&hdev->rx_q);
3235	skb_queue_head_init(&hdev->cmd_q);
3236	skb_queue_head_init(&hdev->raw_q);
3237
3238	init_waitqueue_head(&hdev->req_wait_q);
3239
3240	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3241
3242	hci_request_setup(hdev);
3243
3244	hci_init_sysfs(hdev);
3245	discovery_init(hdev);
3246
3247	return hdev;
3248}
3249EXPORT_SYMBOL(hci_alloc_dev);
3250
3251/* Free HCI device */
3252void hci_free_dev(struct hci_dev *hdev)
3253{
3254	/* will free via device release */
3255	put_device(&hdev->dev);
3256}
3257EXPORT_SYMBOL(hci_free_dev);
3258
3259/* Register HCI device */
3260int hci_register_dev(struct hci_dev *hdev)
3261{
3262	int id, error;
3263
3264	if (!hdev->open || !hdev->close || !hdev->send)
3265		return -EINVAL;
3266
3267	/* Do not allow HCI_AMP devices to register at index 0,
3268	 * so the index can be used as the AMP controller ID.
3269	 */
3270	switch (hdev->dev_type) {
3271	case HCI_PRIMARY:
3272		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3273		break;
3274	case HCI_AMP:
3275		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3276		break;
3277	default:
3278		return -EINVAL;
3279	}
3280
3281	if (id < 0)
3282		return id;
3283
3284	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3285	hdev->id = id;
3286
3287	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288
3289	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3290	if (!hdev->workqueue) {
3291		error = -ENOMEM;
3292		goto err;
3293	}
3294
3295	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296						      hdev->name);
3297	if (!hdev->req_workqueue) {
3298		destroy_workqueue(hdev->workqueue);
3299		error = -ENOMEM;
3300		goto err;
3301	}
3302
3303	if (!IS_ERR_OR_NULL(bt_debugfs))
3304		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305
3306	dev_set_name(&hdev->dev, "%s", hdev->name);
3307
3308	error = device_add(&hdev->dev);
3309	if (error < 0)
3310		goto err_wqueue;
3311
3312	hci_leds_init(hdev);
3313
3314	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3315				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3316				    hdev);
3317	if (hdev->rfkill) {
3318		if (rfkill_register(hdev->rfkill) < 0) {
3319			rfkill_destroy(hdev->rfkill);
3320			hdev->rfkill = NULL;
3321		}
3322	}
3323
3324	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3325		hci_dev_set_flag(hdev, HCI_RFKILLED);
3326
3327	hci_dev_set_flag(hdev, HCI_SETUP);
3328	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329
3330	if (hdev->dev_type == HCI_PRIMARY) {
3331		/* Assume BR/EDR support until proven otherwise (such as
3332		 * through reading supported features during init.
3333		 */
3334		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3335	}
3336
3337	write_lock(&hci_dev_list_lock);
3338	list_add(&hdev->list, &hci_dev_list);
3339	write_unlock(&hci_dev_list_lock);
3340
3341	/* Devices that are marked for raw-only usage are unconfigured
3342	 * and should not be included in normal operation.
3343	 */
3344	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3345		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346
 
 
 
 
 
 
3347	hci_sock_dev_event(hdev, HCI_DEV_REG);
3348	hci_dev_hold(hdev);
3349
 
 
 
 
3350	queue_work(hdev->req_workqueue, &hdev->power_on);
3351
 
 
 
3352	return id;
3353
3354err_wqueue:
 
3355	destroy_workqueue(hdev->workqueue);
3356	destroy_workqueue(hdev->req_workqueue);
3357err:
3358	ida_simple_remove(&hci_index_ida, hdev->id);
3359
3360	return error;
3361}
3362EXPORT_SYMBOL(hci_register_dev);
3363
3364/* Unregister HCI device */
3365void hci_unregister_dev(struct hci_dev *hdev)
3366{
3367	int id;
3368
3369	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370
 
3371	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3372
3373	id = hdev->id;
3374
3375	write_lock(&hci_dev_list_lock);
3376	list_del(&hdev->list);
3377	write_unlock(&hci_dev_list_lock);
3378
3379	cancel_work_sync(&hdev->power_on);
 
 
 
 
 
 
 
 
3380
3381	hci_dev_do_close(hdev);
3382
3383	if (!test_bit(HCI_INIT, &hdev->flags) &&
3384	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3385	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386		hci_dev_lock(hdev);
3387		mgmt_index_removed(hdev);
3388		hci_dev_unlock(hdev);
3389	}
3390
3391	/* mgmt_index_removed should take care of emptying the
3392	 * pending list */
3393	BUG_ON(!list_empty(&hdev->mgmt_pending));
3394
3395	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3396
3397	if (hdev->rfkill) {
3398		rfkill_unregister(hdev->rfkill);
3399		rfkill_destroy(hdev->rfkill);
3400	}
3401
3402	device_del(&hdev->dev);
 
 
 
 
3403
 
 
 
3404	debugfs_remove_recursive(hdev->debugfs);
3405	kfree_const(hdev->hw_info);
3406	kfree_const(hdev->fw_info);
3407
3408	destroy_workqueue(hdev->workqueue);
3409	destroy_workqueue(hdev->req_workqueue);
3410
3411	hci_dev_lock(hdev);
3412	hci_bdaddr_list_clear(&hdev->blacklist);
3413	hci_bdaddr_list_clear(&hdev->whitelist);
3414	hci_uuids_clear(hdev);
3415	hci_link_keys_clear(hdev);
3416	hci_smp_ltks_clear(hdev);
3417	hci_smp_irks_clear(hdev);
3418	hci_remote_oob_data_clear(hdev);
3419	hci_adv_instances_clear(hdev);
3420	hci_bdaddr_list_clear(&hdev->le_white_list);
 
3421	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3422	hci_conn_params_clear_all(hdev);
3423	hci_discovery_filter_clear(hdev);
 
 
 
3424	hci_dev_unlock(hdev);
3425
3426	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427
3428	ida_simple_remove(&hci_index_ida, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3429}
3430EXPORT_SYMBOL(hci_unregister_dev);
3431
3432/* Suspend HCI device */
3433int hci_suspend_dev(struct hci_dev *hdev)
3434{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3436	return 0;
3437}
3438EXPORT_SYMBOL(hci_suspend_dev);
3439
3440/* Resume HCI device */
3441int hci_resume_dev(struct hci_dev *hdev)
3442{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3443	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3444	return 0;
3445}
3446EXPORT_SYMBOL(hci_resume_dev);
3447
3448/* Reset HCI device */
3449int hci_reset_dev(struct hci_dev *hdev)
3450{
3451	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3452	struct sk_buff *skb;
3453
3454	skb = bt_skb_alloc(3, GFP_ATOMIC);
3455	if (!skb)
3456		return -ENOMEM;
3457
3458	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3459	skb_put_data(skb, hw_err, 3);
3460
 
 
3461	/* Send Hardware Error to upper stack */
3462	return hci_recv_frame(hdev, skb);
3463}
3464EXPORT_SYMBOL(hci_reset_dev);
3465
 
 
 
 
 
 
 
 
3466/* Receive frame from HCI drivers */
3467int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468{
 
 
3469	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3470		      && !test_bit(HCI_INIT, &hdev->flags))) {
3471		kfree_skb(skb);
3472		return -ENXIO;
3473	}
3474
3475	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3476	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3477	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3478		kfree_skb(skb);
3479		return -EINVAL;
3480	}
3481
3482	/* Incoming skb */
3483	bt_cb(skb)->incoming = 1;
3484
3485	/* Time stamp */
3486	__net_timestamp(skb);
3487
3488	skb_queue_tail(&hdev->rx_q, skb);
3489	queue_work(hdev->workqueue, &hdev->rx_work);
3490
3491	return 0;
3492}
3493EXPORT_SYMBOL(hci_recv_frame);
3494
3495/* Receive diagnostic message from HCI drivers */
3496int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497{
3498	/* Mark as diagnostic packet */
3499	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3500
3501	/* Time stamp */
3502	__net_timestamp(skb);
3503
3504	skb_queue_tail(&hdev->rx_q, skb);
3505	queue_work(hdev->workqueue, &hdev->rx_work);
3506
3507	return 0;
3508}
3509EXPORT_SYMBOL(hci_recv_diag);
3510
3511void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3512{
3513	va_list vargs;
3514
3515	va_start(vargs, fmt);
3516	kfree_const(hdev->hw_info);
3517	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3518	va_end(vargs);
3519}
3520EXPORT_SYMBOL(hci_set_hw_info);
3521
3522void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3523{
3524	va_list vargs;
3525
3526	va_start(vargs, fmt);
3527	kfree_const(hdev->fw_info);
3528	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3529	va_end(vargs);
3530}
3531EXPORT_SYMBOL(hci_set_fw_info);
3532
3533/* ---- Interface to upper protocols ---- */
3534
3535int hci_register_cb(struct hci_cb *cb)
3536{
3537	BT_DBG("%p name %s", cb, cb->name);
3538
3539	mutex_lock(&hci_cb_list_lock);
3540	list_add_tail(&cb->list, &hci_cb_list);
3541	mutex_unlock(&hci_cb_list_lock);
3542
3543	return 0;
3544}
3545EXPORT_SYMBOL(hci_register_cb);
3546
3547int hci_unregister_cb(struct hci_cb *cb)
3548{
3549	BT_DBG("%p name %s", cb, cb->name);
3550
3551	mutex_lock(&hci_cb_list_lock);
3552	list_del(&cb->list);
3553	mutex_unlock(&hci_cb_list_lock);
3554
3555	return 0;
3556}
3557EXPORT_SYMBOL(hci_unregister_cb);
3558
3559static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3560{
3561	int err;
3562
3563	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3564	       skb->len);
3565
3566	/* Time stamp */
3567	__net_timestamp(skb);
3568
3569	/* Send copy to monitor */
3570	hci_send_to_monitor(hdev, skb);
3571
3572	if (atomic_read(&hdev->promisc)) {
3573		/* Send copy to the sockets */
3574		hci_send_to_sock(hdev, skb);
3575	}
3576
3577	/* Get rid of skb owner, prior to sending to the driver. */
3578	skb_orphan(skb);
3579
3580	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3581		kfree_skb(skb);
3582		return;
3583	}
3584
3585	err = hdev->send(hdev, skb);
3586	if (err < 0) {
3587		bt_dev_err(hdev, "sending frame failed (%d)", err);
3588		kfree_skb(skb);
 
3589	}
 
 
3590}
3591
3592/* Send HCI command */
3593int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3594		 const void *param)
3595{
3596	struct sk_buff *skb;
3597
3598	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599
3600	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601	if (!skb) {
3602		bt_dev_err(hdev, "no memory for command");
3603		return -ENOMEM;
3604	}
3605
3606	/* Stand-alone HCI commands must be flagged as
3607	 * single-command requests.
3608	 */
3609	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610
3611	skb_queue_tail(&hdev->cmd_q, skb);
3612	queue_work(hdev->workqueue, &hdev->cmd_work);
3613
3614	return 0;
3615}
3616
3617int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3618		   const void *param)
3619{
3620	struct sk_buff *skb;
3621
3622	if (hci_opcode_ogf(opcode) != 0x3f) {
3623		/* A controller receiving a command shall respond with either
3624		 * a Command Status Event or a Command Complete Event.
3625		 * Therefore, all standard HCI commands must be sent via the
3626		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3627		 * Some vendors do not comply with this rule for vendor-specific
3628		 * commands and do not return any event. We want to support
3629		 * unresponded commands for such cases only.
3630		 */
3631		bt_dev_err(hdev, "unresponded command not supported");
3632		return -EINVAL;
3633	}
3634
3635	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636	if (!skb) {
3637		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3638			   opcode);
3639		return -ENOMEM;
3640	}
3641
3642	hci_send_frame(hdev, skb);
3643
3644	return 0;
3645}
3646EXPORT_SYMBOL(__hci_cmd_send);
3647
3648/* Get data from the previously sent command */
3649void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650{
3651	struct hci_command_hdr *hdr;
3652
3653	if (!hdev->sent_cmd)
3654		return NULL;
3655
3656	hdr = (void *) hdev->sent_cmd->data;
3657
3658	if (hdr->opcode != cpu_to_le16(opcode))
3659		return NULL;
3660
3661	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
3662
3663	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3664}
3665
3666/* Send HCI command and wait for command commplete event */
3667struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3668			     const void *param, u32 timeout)
3669{
3670	struct sk_buff *skb;
 
3671
3672	if (!test_bit(HCI_UP, &hdev->flags))
3673		return ERR_PTR(-ENETDOWN);
3674
3675	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
3676
3677	hci_req_sync_lock(hdev);
3678	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3679	hci_req_sync_unlock(hdev);
 
 
 
 
 
 
 
 
 
3680
3681	return skb;
 
 
 
3682}
3683EXPORT_SYMBOL(hci_cmd_sync);
3684
3685/* Send ACL data */
3686static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687{
3688	struct hci_acl_hdr *hdr;
3689	int len = skb->len;
3690
3691	skb_push(skb, HCI_ACL_HDR_SIZE);
3692	skb_reset_transport_header(skb);
3693	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3694	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3695	hdr->dlen   = cpu_to_le16(len);
3696}
3697
3698static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3699			  struct sk_buff *skb, __u16 flags)
3700{
3701	struct hci_conn *conn = chan->conn;
3702	struct hci_dev *hdev = conn->hdev;
3703	struct sk_buff *list;
3704
3705	skb->len = skb_headlen(skb);
3706	skb->data_len = 0;
3707
3708	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709
3710	switch (hdev->dev_type) {
3711	case HCI_PRIMARY:
3712		hci_add_acl_hdr(skb, conn->handle, flags);
3713		break;
3714	case HCI_AMP:
3715		hci_add_acl_hdr(skb, chan->handle, flags);
3716		break;
3717	default:
3718		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3719		return;
3720	}
3721
3722	list = skb_shinfo(skb)->frag_list;
3723	if (!list) {
3724		/* Non fragmented */
3725		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726
3727		skb_queue_tail(queue, skb);
3728	} else {
3729		/* Fragmented */
3730		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731
3732		skb_shinfo(skb)->frag_list = NULL;
3733
3734		/* Queue all fragments atomically. We need to use spin_lock_bh
3735		 * here because of 6LoWPAN links, as there this function is
3736		 * called from softirq and using normal spin lock could cause
3737		 * deadlocks.
3738		 */
3739		spin_lock_bh(&queue->lock);
3740
3741		__skb_queue_tail(queue, skb);
3742
3743		flags &= ~ACL_START;
3744		flags |= ACL_CONT;
3745		do {
3746			skb = list; list = list->next;
3747
3748			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3749			hci_add_acl_hdr(skb, conn->handle, flags);
3750
3751			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752
3753			__skb_queue_tail(queue, skb);
3754		} while (list);
3755
3756		spin_unlock_bh(&queue->lock);
3757	}
3758}
3759
3760void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761{
3762	struct hci_dev *hdev = chan->conn->hdev;
3763
3764	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765
3766	hci_queue_acl(chan, &chan->data_q, skb, flags);
3767
3768	queue_work(hdev->workqueue, &hdev->tx_work);
3769}
3770
3771/* Send SCO data */
3772void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773{
3774	struct hci_dev *hdev = conn->hdev;
3775	struct hci_sco_hdr hdr;
3776
3777	BT_DBG("%s len %d", hdev->name, skb->len);
3778
3779	hdr.handle = cpu_to_le16(conn->handle);
3780	hdr.dlen   = skb->len;
3781
3782	skb_push(skb, HCI_SCO_HDR_SIZE);
3783	skb_reset_transport_header(skb);
3784	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785
3786	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3787
3788	skb_queue_tail(&conn->data_q, skb);
3789	queue_work(hdev->workqueue, &hdev->tx_work);
3790}
3791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792/* ---- HCI TX task (outgoing data) ---- */
3793
3794/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3795static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3796				     int *quote)
3797{
3798	struct hci_conn_hash *h = &hdev->conn_hash;
3799	struct hci_conn *conn = NULL, *c;
3800	unsigned int num = 0, min = ~0;
3801
3802	/* We don't have to lock device here. Connections are always
3803	 * added and removed with TX task disabled. */
3804
3805	rcu_read_lock();
3806
3807	list_for_each_entry_rcu(c, &h->list, list) {
3808		if (c->type != type || skb_queue_empty(&c->data_q))
3809			continue;
3810
3811		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3812			continue;
3813
3814		num++;
3815
3816		if (c->sent < min) {
3817			min  = c->sent;
3818			conn = c;
3819		}
3820
3821		if (hci_conn_num(hdev, type) == num)
3822			break;
3823	}
3824
3825	rcu_read_unlock();
3826
3827	if (conn) {
3828		int cnt, q;
3829
3830		switch (conn->type) {
3831		case ACL_LINK:
3832			cnt = hdev->acl_cnt;
3833			break;
3834		case SCO_LINK:
3835		case ESCO_LINK:
3836			cnt = hdev->sco_cnt;
3837			break;
3838		case LE_LINK:
3839			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3840			break;
3841		default:
3842			cnt = 0;
3843			bt_dev_err(hdev, "unknown link type %d", conn->type);
3844		}
3845
3846		q = cnt / num;
3847		*quote = q ? q : 1;
3848	} else
3849		*quote = 0;
3850
3851	BT_DBG("conn %p quote %d", conn, *quote);
3852	return conn;
3853}
3854
3855static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856{
3857	struct hci_conn_hash *h = &hdev->conn_hash;
3858	struct hci_conn *c;
3859
3860	bt_dev_err(hdev, "link tx timeout");
3861
3862	rcu_read_lock();
3863
3864	/* Kill stalled connections */
3865	list_for_each_entry_rcu(c, &h->list, list) {
3866		if (c->type == type && c->sent) {
3867			bt_dev_err(hdev, "killing stalled connection %pMR",
3868				   &c->dst);
 
 
 
 
3869			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
3870		}
3871	}
3872
3873	rcu_read_unlock();
3874}
3875
3876static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3877				      int *quote)
3878{
3879	struct hci_conn_hash *h = &hdev->conn_hash;
3880	struct hci_chan *chan = NULL;
3881	unsigned int num = 0, min = ~0, cur_prio = 0;
3882	struct hci_conn *conn;
3883	int cnt, q, conn_num = 0;
3884
3885	BT_DBG("%s", hdev->name);
3886
3887	rcu_read_lock();
3888
3889	list_for_each_entry_rcu(conn, &h->list, list) {
3890		struct hci_chan *tmp;
3891
3892		if (conn->type != type)
3893			continue;
3894
3895		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3896			continue;
3897
3898		conn_num++;
3899
3900		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3901			struct sk_buff *skb;
3902
3903			if (skb_queue_empty(&tmp->data_q))
3904				continue;
3905
3906			skb = skb_peek(&tmp->data_q);
3907			if (skb->priority < cur_prio)
3908				continue;
3909
3910			if (skb->priority > cur_prio) {
3911				num = 0;
3912				min = ~0;
3913				cur_prio = skb->priority;
3914			}
3915
3916			num++;
3917
3918			if (conn->sent < min) {
3919				min  = conn->sent;
3920				chan = tmp;
3921			}
3922		}
3923
3924		if (hci_conn_num(hdev, type) == conn_num)
3925			break;
3926	}
3927
3928	rcu_read_unlock();
3929
3930	if (!chan)
3931		return NULL;
3932
3933	switch (chan->conn->type) {
3934	case ACL_LINK:
3935		cnt = hdev->acl_cnt;
3936		break;
3937	case AMP_LINK:
3938		cnt = hdev->block_cnt;
3939		break;
3940	case SCO_LINK:
3941	case ESCO_LINK:
3942		cnt = hdev->sco_cnt;
3943		break;
3944	case LE_LINK:
3945		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3946		break;
3947	default:
3948		cnt = 0;
3949		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3950	}
3951
3952	q = cnt / num;
3953	*quote = q ? q : 1;
3954	BT_DBG("chan %p quote %d", chan, *quote);
3955	return chan;
3956}
3957
3958static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959{
3960	struct hci_conn_hash *h = &hdev->conn_hash;
3961	struct hci_conn *conn;
3962	int num = 0;
3963
3964	BT_DBG("%s", hdev->name);
3965
3966	rcu_read_lock();
3967
3968	list_for_each_entry_rcu(conn, &h->list, list) {
3969		struct hci_chan *chan;
3970
3971		if (conn->type != type)
3972			continue;
3973
3974		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3975			continue;
3976
3977		num++;
3978
3979		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3980			struct sk_buff *skb;
3981
3982			if (chan->sent) {
3983				chan->sent = 0;
3984				continue;
3985			}
3986
3987			if (skb_queue_empty(&chan->data_q))
3988				continue;
3989
3990			skb = skb_peek(&chan->data_q);
3991			if (skb->priority >= HCI_PRIO_MAX - 1)
3992				continue;
3993
3994			skb->priority = HCI_PRIO_MAX - 1;
3995
3996			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3997			       skb->priority);
3998		}
3999
4000		if (hci_conn_num(hdev, type) == num)
4001			break;
4002	}
4003
4004	rcu_read_unlock();
4005
4006}
4007
4008static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009{
4010	/* Calculate count of blocks used by this packet */
4011	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4012}
4013
4014static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015{
4016	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4017		/* ACL tx timeout must be longer than maximum
4018		 * link supervision timeout (40.9 seconds) */
4019		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4020				       HCI_ACL_TX_TIMEOUT))
4021			hci_link_tx_to(hdev, ACL_LINK);
4022	}
4023}
4024
4025static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026{
4027	unsigned int cnt = hdev->acl_cnt;
4028	struct hci_chan *chan;
4029	struct sk_buff *skb;
4030	int quote;
4031
4032	__check_timeout(hdev, cnt);
4033
4034	while (hdev->acl_cnt &&
4035	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4036		u32 priority = (skb_peek(&chan->data_q))->priority;
4037		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4038			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4039			       skb->len, skb->priority);
4040
4041			/* Stop if priority has changed */
4042			if (skb->priority < priority)
4043				break;
4044
4045			skb = skb_dequeue(&chan->data_q);
4046
4047			hci_conn_enter_active_mode(chan->conn,
4048						   bt_cb(skb)->force_active);
4049
4050			hci_send_frame(hdev, skb);
4051			hdev->acl_last_tx = jiffies;
4052
4053			hdev->acl_cnt--;
4054			chan->sent++;
4055			chan->conn->sent++;
4056		}
4057	}
4058
4059	if (cnt != hdev->acl_cnt)
4060		hci_prio_recalculate(hdev, ACL_LINK);
4061}
4062
4063static void hci_sched_acl_blk(struct hci_dev *hdev)
4064{
4065	unsigned int cnt = hdev->block_cnt;
4066	struct hci_chan *chan;
4067	struct sk_buff *skb;
4068	int quote;
4069	u8 type;
4070
4071	__check_timeout(hdev, cnt);
4072
4073	BT_DBG("%s", hdev->name);
4074
4075	if (hdev->dev_type == HCI_AMP)
4076		type = AMP_LINK;
4077	else
4078		type = ACL_LINK;
4079
4080	while (hdev->block_cnt > 0 &&
4081	       (chan = hci_chan_sent(hdev, type, &quote))) {
4082		u32 priority = (skb_peek(&chan->data_q))->priority;
4083		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4084			int blocks;
4085
4086			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4087			       skb->len, skb->priority);
4088
4089			/* Stop if priority has changed */
4090			if (skb->priority < priority)
4091				break;
4092
4093			skb = skb_dequeue(&chan->data_q);
4094
4095			blocks = __get_blocks(hdev, skb);
4096			if (blocks > hdev->block_cnt)
4097				return;
4098
4099			hci_conn_enter_active_mode(chan->conn,
4100						   bt_cb(skb)->force_active);
4101
4102			hci_send_frame(hdev, skb);
4103			hdev->acl_last_tx = jiffies;
4104
4105			hdev->block_cnt -= blocks;
4106			quote -= blocks;
4107
4108			chan->sent += blocks;
4109			chan->conn->sent += blocks;
4110		}
4111	}
4112
4113	if (cnt != hdev->block_cnt)
4114		hci_prio_recalculate(hdev, type);
4115}
4116
4117static void hci_sched_acl(struct hci_dev *hdev)
4118{
4119	BT_DBG("%s", hdev->name);
4120
4121	/* No ACL link over BR/EDR controller */
4122	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4123		return;
4124
4125	/* No AMP link over AMP controller */
4126	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4127		return;
4128
4129	switch (hdev->flow_ctl_mode) {
4130	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4131		hci_sched_acl_pkt(hdev);
4132		break;
4133
4134	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4135		hci_sched_acl_blk(hdev);
4136		break;
4137	}
 
 
 
 
 
 
4138}
4139
4140/* Schedule SCO */
4141static void hci_sched_sco(struct hci_dev *hdev)
4142{
4143	struct hci_conn *conn;
4144	struct sk_buff *skb;
4145	int quote;
4146
4147	BT_DBG("%s", hdev->name);
4148
4149	if (!hci_conn_num(hdev, SCO_LINK))
4150		return;
4151
4152	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4153		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4154			BT_DBG("skb %p len %d", skb, skb->len);
4155			hci_send_frame(hdev, skb);
4156
4157			conn->sent++;
4158			if (conn->sent == ~0)
4159				conn->sent = 0;
4160		}
4161	}
4162}
4163
4164static void hci_sched_esco(struct hci_dev *hdev)
4165{
4166	struct hci_conn *conn;
4167	struct sk_buff *skb;
4168	int quote;
4169
4170	BT_DBG("%s", hdev->name);
4171
4172	if (!hci_conn_num(hdev, ESCO_LINK))
4173		return;
4174
4175	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176						     &quote))) {
4177		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4178			BT_DBG("skb %p len %d", skb, skb->len);
4179			hci_send_frame(hdev, skb);
4180
4181			conn->sent++;
4182			if (conn->sent == ~0)
4183				conn->sent = 0;
4184		}
4185	}
4186}
4187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4188static void hci_sched_le(struct hci_dev *hdev)
4189{
4190	struct hci_chan *chan;
4191	struct sk_buff *skb;
4192	int quote, cnt, tmp;
4193
4194	BT_DBG("%s", hdev->name);
4195
4196	if (!hci_conn_num(hdev, LE_LINK))
4197		return;
4198
4199	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4200		/* LE tx timeout must be longer than maximum
4201		 * link supervision timeout (40.9 seconds) */
4202		if (!hdev->le_cnt && hdev->le_pkts &&
4203		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4204			hci_link_tx_to(hdev, LE_LINK);
4205	}
4206
4207	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4208	tmp = cnt;
4209	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
 
4210		u32 priority = (skb_peek(&chan->data_q))->priority;
4211		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4212			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4213			       skb->len, skb->priority);
4214
4215			/* Stop if priority has changed */
4216			if (skb->priority < priority)
4217				break;
4218
4219			skb = skb_dequeue(&chan->data_q);
4220
4221			hci_send_frame(hdev, skb);
4222			hdev->le_last_tx = jiffies;
4223
4224			cnt--;
4225			chan->sent++;
4226			chan->conn->sent++;
 
 
 
 
4227		}
4228	}
4229
4230	if (hdev->le_pkts)
4231		hdev->le_cnt = cnt;
4232	else
4233		hdev->acl_cnt = cnt;
4234
4235	if (cnt != tmp)
4236		hci_prio_recalculate(hdev, LE_LINK);
4237}
4238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4239static void hci_tx_work(struct work_struct *work)
4240{
4241	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4242	struct sk_buff *skb;
4243
4244	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4245	       hdev->sco_cnt, hdev->le_cnt);
4246
4247	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4248		/* Schedule queues and send stuff to HCI driver */
4249		hci_sched_acl(hdev);
4250		hci_sched_sco(hdev);
4251		hci_sched_esco(hdev);
 
 
4252		hci_sched_le(hdev);
4253	}
4254
4255	/* Send next queued raw (unknown type) packet */
4256	while ((skb = skb_dequeue(&hdev->raw_q)))
4257		hci_send_frame(hdev, skb);
4258}
4259
4260/* ----- HCI RX task (incoming data processing) ----- */
4261
4262/* ACL data packet */
4263static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264{
4265	struct hci_acl_hdr *hdr = (void *) skb->data;
4266	struct hci_conn *conn;
4267	__u16 handle, flags;
4268
4269	skb_pull(skb, HCI_ACL_HDR_SIZE);
 
 
 
 
4270
4271	handle = __le16_to_cpu(hdr->handle);
4272	flags  = hci_flags(handle);
4273	handle = hci_handle(handle);
4274
4275	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4276	       handle, flags);
4277
4278	hdev->stat.acl_rx++;
4279
4280	hci_dev_lock(hdev);
4281	conn = hci_conn_hash_lookup_handle(hdev, handle);
4282	hci_dev_unlock(hdev);
4283
4284	if (conn) {
4285		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286
4287		/* Send to upper protocol */
4288		l2cap_recv_acldata(conn, skb, flags);
4289		return;
4290	} else {
4291		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4292			   handle);
4293	}
4294
 
4295	kfree_skb(skb);
4296}
4297
4298/* SCO data packet */
4299static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300{
4301	struct hci_sco_hdr *hdr = (void *) skb->data;
4302	struct hci_conn *conn;
4303	__u16 handle;
4304
4305	skb_pull(skb, HCI_SCO_HDR_SIZE);
 
 
 
 
4306
4307	handle = __le16_to_cpu(hdr->handle);
 
 
4308
4309	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4310
4311	hdev->stat.sco_rx++;
4312
4313	hci_dev_lock(hdev);
4314	conn = hci_conn_hash_lookup_handle(hdev, handle);
4315	hci_dev_unlock(hdev);
4316
4317	if (conn) {
4318		/* Send to upper protocol */
 
4319		sco_recv_scodata(conn, skb);
4320		return;
4321	} else {
4322		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323			   handle);
 
4324	}
4325
 
 
 
 
 
4326	kfree_skb(skb);
4327}
4328
4329static bool hci_req_is_complete(struct hci_dev *hdev)
4330{
4331	struct sk_buff *skb;
4332
4333	skb = skb_peek(&hdev->cmd_q);
4334	if (!skb)
4335		return true;
4336
4337	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4338}
4339
4340static void hci_resend_last(struct hci_dev *hdev)
4341{
4342	struct hci_command_hdr *sent;
4343	struct sk_buff *skb;
4344	u16 opcode;
4345
4346	if (!hdev->sent_cmd)
4347		return;
4348
4349	sent = (void *) hdev->sent_cmd->data;
4350	opcode = __le16_to_cpu(sent->opcode);
4351	if (opcode == HCI_OP_RESET)
4352		return;
4353
4354	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4355	if (!skb)
4356		return;
4357
4358	skb_queue_head(&hdev->cmd_q, skb);
4359	queue_work(hdev->workqueue, &hdev->cmd_work);
4360}
4361
4362void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4363			  hci_req_complete_t *req_complete,
4364			  hci_req_complete_skb_t *req_complete_skb)
4365{
4366	struct sk_buff *skb;
4367	unsigned long flags;
4368
4369	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370
4371	/* If the completed command doesn't match the last one that was
4372	 * sent we need to do special handling of it.
4373	 */
4374	if (!hci_sent_cmd_data(hdev, opcode)) {
4375		/* Some CSR based controllers generate a spontaneous
4376		 * reset complete event during init and any pending
4377		 * command will never be completed. In such a case we
4378		 * need to resend whatever was the last sent
4379		 * command.
4380		 */
4381		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4382			hci_resend_last(hdev);
4383
4384		return;
4385	}
4386
4387	/* If we reach this point this event matches the last command sent */
4388	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4389
4390	/* If the command succeeded and there's still more commands in
4391	 * this request the request is not yet complete.
4392	 */
4393	if (!status && !hci_req_is_complete(hdev))
4394		return;
4395
 
 
4396	/* If this was the last command in a request the complete
4397	 * callback would be found in hdev->sent_cmd instead of the
4398	 * command queue (hdev->cmd_q).
4399	 */
4400	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4401		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4402		return;
4403	}
4404
4405	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4406		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4407		return;
4408	}
4409
4410	/* Remove all pending commands belonging to this request */
4411	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4412	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4413		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4414			__skb_queue_head(&hdev->cmd_q, skb);
4415			break;
4416		}
4417
4418		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4419			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4420		else
4421			*req_complete = bt_cb(skb)->hci.req_complete;
4422		kfree_skb(skb);
4423	}
4424	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4425}
4426
4427static void hci_rx_work(struct work_struct *work)
4428{
4429	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4430	struct sk_buff *skb;
4431
4432	BT_DBG("%s", hdev->name);
4433
4434	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4435		/* Send copy to monitor */
4436		hci_send_to_monitor(hdev, skb);
4437
4438		if (atomic_read(&hdev->promisc)) {
4439			/* Send copy to the sockets */
4440			hci_send_to_sock(hdev, skb);
4441		}
4442
4443		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4444			kfree_skb(skb);
4445			continue;
4446		}
4447
4448		if (test_bit(HCI_INIT, &hdev->flags)) {
4449			/* Don't process data packets in this states. */
4450			switch (hci_skb_pkt_type(skb)) {
4451			case HCI_ACLDATA_PKT:
4452			case HCI_SCODATA_PKT:
 
4453				kfree_skb(skb);
4454				continue;
4455			}
4456		}
4457
4458		/* Process frame */
4459		switch (hci_skb_pkt_type(skb)) {
4460		case HCI_EVENT_PKT:
4461			BT_DBG("%s Event packet", hdev->name);
4462			hci_event_packet(hdev, skb);
4463			break;
4464
4465		case HCI_ACLDATA_PKT:
4466			BT_DBG("%s ACL data packet", hdev->name);
4467			hci_acldata_packet(hdev, skb);
4468			break;
4469
4470		case HCI_SCODATA_PKT:
4471			BT_DBG("%s SCO data packet", hdev->name);
4472			hci_scodata_packet(hdev, skb);
4473			break;
4474
 
 
 
 
 
4475		default:
4476			kfree_skb(skb);
4477			break;
4478		}
4479	}
4480}
4481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4482static void hci_cmd_work(struct work_struct *work)
4483{
4484	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4485	struct sk_buff *skb;
4486
4487	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4488	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4489
4490	/* Send queued commands */
4491	if (atomic_read(&hdev->cmd_cnt)) {
4492		skb = skb_dequeue(&hdev->cmd_q);
4493		if (!skb)
4494			return;
4495
4496		kfree_skb(hdev->sent_cmd);
4497
4498		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4499		if (hdev->sent_cmd) {
4500			if (hci_req_status_pend(hdev))
4501				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4502			atomic_dec(&hdev->cmd_cnt);
4503			hci_send_frame(hdev, skb);
4504			if (test_bit(HCI_RESET, &hdev->flags))
4505				cancel_delayed_work(&hdev->cmd_timer);
4506			else
4507				schedule_delayed_work(&hdev->cmd_timer,
4508						      HCI_CMD_TIMEOUT);
4509		} else {
4510			skb_queue_head(&hdev->cmd_q, skb);
4511			queue_work(hdev->workqueue, &hdev->cmd_work);
4512		}
4513	}
4514}
v6.13.7
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <linux/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
 
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
  48#include "hci_codec.h"
  49
  50static void hci_rx_work(struct work_struct *work);
  51static void hci_cmd_work(struct work_struct *work);
  52static void hci_tx_work(struct work_struct *work);
  53
  54/* HCI device list */
  55LIST_HEAD(hci_dev_list);
  56DEFINE_RWLOCK(hci_dev_list_lock);
  57
  58/* HCI callback list */
  59LIST_HEAD(hci_cb_list);
 
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* Get HCI device by index.
  65 * Device is held on return. */
  66struct hci_dev *hci_dev_get(int index)
  67{
  68	struct hci_dev *hdev = NULL, *d;
  69
  70	BT_DBG("%d", index);
  71
  72	if (index < 0)
  73		return NULL;
  74
  75	read_lock(&hci_dev_list_lock);
  76	list_for_each_entry(d, &hci_dev_list, list) {
  77		if (d->id == index) {
  78			hdev = hci_dev_hold(d);
  79			break;
  80		}
  81	}
  82	read_unlock(&hci_dev_list_lock);
  83	return hdev;
  84}
  85
  86/* ---- Inquiry support ---- */
  87
  88bool hci_discovery_active(struct hci_dev *hdev)
  89{
  90	struct discovery_state *discov = &hdev->discovery;
  91
  92	switch (discov->state) {
  93	case DISCOVERY_FINDING:
  94	case DISCOVERY_RESOLVING:
  95		return true;
  96
  97	default:
  98		return false;
  99	}
 100}
 101
 102void hci_discovery_set_state(struct hci_dev *hdev, int state)
 103{
 104	int old_state = hdev->discovery.state;
 105
 
 
 106	if (old_state == state)
 107		return;
 108
 109	hdev->discovery.state = state;
 110
 111	switch (state) {
 112	case DISCOVERY_STOPPED:
 113		hci_update_passive_scan(hdev);
 114
 115		if (old_state != DISCOVERY_STARTING)
 116			mgmt_discovering(hdev, 0);
 117		break;
 118	case DISCOVERY_STARTING:
 119		break;
 120	case DISCOVERY_FINDING:
 121		mgmt_discovering(hdev, 1);
 122		break;
 123	case DISCOVERY_RESOLVING:
 124		break;
 125	case DISCOVERY_STOPPING:
 126		break;
 127	}
 128
 129	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
 130}
 131
 132void hci_inquiry_cache_flush(struct hci_dev *hdev)
 133{
 134	struct discovery_state *cache = &hdev->discovery;
 135	struct inquiry_entry *p, *n;
 136
 137	list_for_each_entry_safe(p, n, &cache->all, all) {
 138		list_del(&p->all);
 139		kfree(p);
 140	}
 141
 142	INIT_LIST_HEAD(&cache->unknown);
 143	INIT_LIST_HEAD(&cache->resolve);
 144}
 145
 146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 147					       bdaddr_t *bdaddr)
 148{
 149	struct discovery_state *cache = &hdev->discovery;
 150	struct inquiry_entry *e;
 151
 152	BT_DBG("cache %p, %pMR", cache, bdaddr);
 153
 154	list_for_each_entry(e, &cache->all, all) {
 155		if (!bacmp(&e->data.bdaddr, bdaddr))
 156			return e;
 157	}
 158
 159	return NULL;
 160}
 161
 162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 163						       bdaddr_t *bdaddr)
 164{
 165	struct discovery_state *cache = &hdev->discovery;
 166	struct inquiry_entry *e;
 167
 168	BT_DBG("cache %p, %pMR", cache, bdaddr);
 169
 170	list_for_each_entry(e, &cache->unknown, list) {
 171		if (!bacmp(&e->data.bdaddr, bdaddr))
 172			return e;
 173	}
 174
 175	return NULL;
 176}
 177
 178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 179						       bdaddr_t *bdaddr,
 180						       int state)
 181{
 182	struct discovery_state *cache = &hdev->discovery;
 183	struct inquiry_entry *e;
 184
 185	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 186
 187	list_for_each_entry(e, &cache->resolve, list) {
 188		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 189			return e;
 190		if (!bacmp(&e->data.bdaddr, bdaddr))
 191			return e;
 192	}
 193
 194	return NULL;
 195}
 196
 197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 198				      struct inquiry_entry *ie)
 199{
 200	struct discovery_state *cache = &hdev->discovery;
 201	struct list_head *pos = &cache->resolve;
 202	struct inquiry_entry *p;
 203
 204	list_del(&ie->list);
 205
 206	list_for_each_entry(p, &cache->resolve, list) {
 207		if (p->name_state != NAME_PENDING &&
 208		    abs(p->data.rssi) >= abs(ie->data.rssi))
 209			break;
 210		pos = &p->list;
 211	}
 212
 213	list_add(&ie->list, pos);
 214}
 215
 216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 217			     bool name_known)
 218{
 219	struct discovery_state *cache = &hdev->discovery;
 220	struct inquiry_entry *ie;
 221	u32 flags = 0;
 222
 223	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 224
 225	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 226
 227	if (!data->ssp_mode)
 228		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 229
 230	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 231	if (ie) {
 232		if (!ie->data.ssp_mode)
 233			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 234
 235		if (ie->name_state == NAME_NEEDED &&
 236		    data->rssi != ie->data.rssi) {
 237			ie->data.rssi = data->rssi;
 238			hci_inquiry_cache_update_resolve(hdev, ie);
 239		}
 240
 241		goto update;
 242	}
 243
 244	/* Entry not in the cache. Add new one. */
 245	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 246	if (!ie) {
 247		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 248		goto done;
 249	}
 250
 251	list_add(&ie->all, &cache->all);
 252
 253	if (name_known) {
 254		ie->name_state = NAME_KNOWN;
 255	} else {
 256		ie->name_state = NAME_NOT_KNOWN;
 257		list_add(&ie->list, &cache->unknown);
 258	}
 259
 260update:
 261	if (name_known && ie->name_state != NAME_KNOWN &&
 262	    ie->name_state != NAME_PENDING) {
 263		ie->name_state = NAME_KNOWN;
 264		list_del(&ie->list);
 265	}
 266
 267	memcpy(&ie->data, data, sizeof(*data));
 268	ie->timestamp = jiffies;
 269	cache->timestamp = jiffies;
 270
 271	if (ie->name_state == NAME_NOT_KNOWN)
 272		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 273
 274done:
 275	return flags;
 276}
 277
 278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 279{
 280	struct discovery_state *cache = &hdev->discovery;
 281	struct inquiry_info *info = (struct inquiry_info *) buf;
 282	struct inquiry_entry *e;
 283	int copied = 0;
 284
 285	list_for_each_entry(e, &cache->all, all) {
 286		struct inquiry_data *data = &e->data;
 287
 288		if (copied >= num)
 289			break;
 290
 291		bacpy(&info->bdaddr, &data->bdaddr);
 292		info->pscan_rep_mode	= data->pscan_rep_mode;
 293		info->pscan_period_mode	= data->pscan_period_mode;
 294		info->pscan_mode	= data->pscan_mode;
 295		memcpy(info->dev_class, data->dev_class, 3);
 296		info->clock_offset	= data->clock_offset;
 297
 298		info++;
 299		copied++;
 300	}
 301
 302	BT_DBG("cache %p, copied %d", cache, copied);
 303	return copied;
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306int hci_inquiry(void __user *arg)
 307{
 308	__u8 __user *ptr = arg;
 309	struct hci_inquiry_req ir;
 310	struct hci_dev *hdev;
 311	int err = 0, do_inquiry = 0, max_rsp;
 
 312	__u8 *buf;
 313
 314	if (copy_from_user(&ir, ptr, sizeof(ir)))
 315		return -EFAULT;
 316
 317	hdev = hci_dev_get(ir.dev_id);
 318	if (!hdev)
 319		return -ENODEV;
 320
 321	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 322		err = -EBUSY;
 323		goto done;
 324	}
 325
 326	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 327		err = -EOPNOTSUPP;
 328		goto done;
 329	}
 330
 331	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 332		err = -EOPNOTSUPP;
 333		goto done;
 334	}
 335
 336	/* Restrict maximum inquiry length to 60 seconds */
 337	if (ir.length > 60) {
 338		err = -EINVAL;
 339		goto done;
 340	}
 341
 342	hci_dev_lock(hdev);
 343	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 344	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 345		hci_inquiry_cache_flush(hdev);
 346		do_inquiry = 1;
 347	}
 348	hci_dev_unlock(hdev);
 349
 
 
 350	if (do_inquiry) {
 351		hci_req_sync_lock(hdev);
 352		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
 353		hci_req_sync_unlock(hdev);
 354
 355		if (err < 0)
 356			goto done;
 357
 358		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 359		 * cleared). If it is interrupted by a signal, return -EINTR.
 360		 */
 361		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 362				TASK_INTERRUPTIBLE)) {
 363			err = -EINTR;
 364			goto done;
 365		}
 366	}
 367
 368	/* for unlimited number of responses we will use buffer with
 369	 * 255 entries
 370	 */
 371	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 372
 373	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 374	 * copy it to the user space.
 375	 */
 376	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 377	if (!buf) {
 378		err = -ENOMEM;
 379		goto done;
 380	}
 381
 382	hci_dev_lock(hdev);
 383	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 384	hci_dev_unlock(hdev);
 385
 386	BT_DBG("num_rsp %d", ir.num_rsp);
 387
 388	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 389		ptr += sizeof(ir);
 390		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 391				 ir.num_rsp))
 392			err = -EFAULT;
 393	} else
 394		err = -EFAULT;
 395
 396	kfree(buf);
 397
 398done:
 399	hci_dev_put(hdev);
 400	return err;
 401}
 402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403static int hci_dev_do_open(struct hci_dev *hdev)
 404{
 405	int ret = 0;
 406
 407	BT_DBG("%s %p", hdev->name, hdev);
 408
 409	hci_req_sync_lock(hdev);
 410
 411	ret = hci_dev_open_sync(hdev);
 
 
 
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413	hci_req_sync_unlock(hdev);
 414	return ret;
 415}
 416
 417/* ---- HCI ioctl helpers ---- */
 418
 419int hci_dev_open(__u16 dev)
 420{
 421	struct hci_dev *hdev;
 422	int err;
 423
 424	hdev = hci_dev_get(dev);
 425	if (!hdev)
 426		return -ENODEV;
 427
 428	/* Devices that are marked as unconfigured can only be powered
 429	 * up as user channel. Trying to bring them up as normal devices
 430	 * will result into a failure. Only user channel operation is
 431	 * possible.
 432	 *
 433	 * When this function is called for a user channel, the flag
 434	 * HCI_USER_CHANNEL will be set first before attempting to
 435	 * open the device.
 436	 */
 437	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 438	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 439		err = -EOPNOTSUPP;
 440		goto done;
 441	}
 442
 443	/* We need to ensure that no other power on/off work is pending
 444	 * before proceeding to call hci_dev_do_open. This is
 445	 * particularly important if the setup procedure has not yet
 446	 * completed.
 447	 */
 448	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 449		cancel_delayed_work(&hdev->power_off);
 450
 451	/* After this call it is guaranteed that the setup procedure
 452	 * has finished. This means that error conditions like RFKILL
 453	 * or no valid public or static random address apply.
 454	 */
 455	flush_workqueue(hdev->req_workqueue);
 456
 457	/* For controllers not using the management interface and that
 458	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 459	 * so that pairing works for them. Once the management interface
 460	 * is in use this bit will be cleared again and userspace has
 461	 * to explicitly enable it.
 462	 */
 463	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 464	    !hci_dev_test_flag(hdev, HCI_MGMT))
 465		hci_dev_set_flag(hdev, HCI_BONDABLE);
 466
 467	err = hci_dev_do_open(hdev);
 468
 469done:
 470	hci_dev_put(hdev);
 471	return err;
 472}
 473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474int hci_dev_do_close(struct hci_dev *hdev)
 475{
 476	int err;
 477
 478	BT_DBG("%s %p", hdev->name, hdev);
 479
 
 
 
 
 
 
 
 
 
 
 
 480	hci_req_sync_lock(hdev);
 481
 482	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483
 484	hci_req_sync_unlock(hdev);
 485
 486	return err;
 
 487}
 488
 489int hci_dev_close(__u16 dev)
 490{
 491	struct hci_dev *hdev;
 492	int err;
 493
 494	hdev = hci_dev_get(dev);
 495	if (!hdev)
 496		return -ENODEV;
 497
 498	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 499		err = -EBUSY;
 500		goto done;
 501	}
 502
 503	cancel_work_sync(&hdev->power_on);
 504	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 505		cancel_delayed_work(&hdev->power_off);
 506
 507	err = hci_dev_do_close(hdev);
 508
 509done:
 510	hci_dev_put(hdev);
 511	return err;
 512}
 513
 514static int hci_dev_do_reset(struct hci_dev *hdev)
 515{
 516	int ret;
 517
 518	BT_DBG("%s %p", hdev->name, hdev);
 519
 520	hci_req_sync_lock(hdev);
 521
 522	/* Drop queues */
 523	skb_queue_purge(&hdev->rx_q);
 524	skb_queue_purge(&hdev->cmd_q);
 525
 526	/* Cancel these to avoid queueing non-chained pending work */
 527	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 528	/* Wait for
 529	 *
 530	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 531	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 532	 *
 533	 * inside RCU section to see the flag or complete scheduling.
 534	 */
 535	synchronize_rcu();
 536	/* Explicitly cancel works in case scheduled after setting the flag. */
 537	cancel_delayed_work(&hdev->cmd_timer);
 538	cancel_delayed_work(&hdev->ncmd_timer);
 539
 540	/* Avoid potential lockdep warnings from the *_flush() calls by
 541	 * ensuring the workqueue is empty up front.
 542	 */
 543	drain_workqueue(hdev->workqueue);
 544
 545	hci_dev_lock(hdev);
 546	hci_inquiry_cache_flush(hdev);
 547	hci_conn_hash_flush(hdev);
 548	hci_dev_unlock(hdev);
 549
 550	if (hdev->flush)
 551		hdev->flush(hdev);
 552
 553	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 554
 555	atomic_set(&hdev->cmd_cnt, 1);
 556	hdev->acl_cnt = 0;
 557	hdev->sco_cnt = 0;
 558	hdev->le_cnt = 0;
 559	hdev->iso_cnt = 0;
 560
 561	ret = hci_reset_sync(hdev);
 562
 563	hci_req_sync_unlock(hdev);
 564	return ret;
 565}
 566
 567int hci_dev_reset(__u16 dev)
 568{
 569	struct hci_dev *hdev;
 570	int err;
 571
 572	hdev = hci_dev_get(dev);
 573	if (!hdev)
 574		return -ENODEV;
 575
 576	if (!test_bit(HCI_UP, &hdev->flags)) {
 577		err = -ENETDOWN;
 578		goto done;
 579	}
 580
 581	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 582		err = -EBUSY;
 583		goto done;
 584	}
 585
 586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 587		err = -EOPNOTSUPP;
 588		goto done;
 589	}
 590
 591	err = hci_dev_do_reset(hdev);
 592
 593done:
 594	hci_dev_put(hdev);
 595	return err;
 596}
 597
 598int hci_dev_reset_stat(__u16 dev)
 599{
 600	struct hci_dev *hdev;
 601	int ret = 0;
 602
 603	hdev = hci_dev_get(dev);
 604	if (!hdev)
 605		return -ENODEV;
 606
 607	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 608		ret = -EBUSY;
 609		goto done;
 610	}
 611
 612	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 613		ret = -EOPNOTSUPP;
 614		goto done;
 615	}
 616
 617	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 618
 619done:
 620	hci_dev_put(hdev);
 621	return ret;
 622}
 623
 624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 625{
 626	bool conn_changed, discov_changed;
 627
 628	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 629
 630	if ((scan & SCAN_PAGE))
 631		conn_changed = !hci_dev_test_and_set_flag(hdev,
 632							  HCI_CONNECTABLE);
 633	else
 634		conn_changed = hci_dev_test_and_clear_flag(hdev,
 635							   HCI_CONNECTABLE);
 636
 637	if ((scan & SCAN_INQUIRY)) {
 638		discov_changed = !hci_dev_test_and_set_flag(hdev,
 639							    HCI_DISCOVERABLE);
 640	} else {
 641		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 642		discov_changed = hci_dev_test_and_clear_flag(hdev,
 643							     HCI_DISCOVERABLE);
 644	}
 645
 646	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 647		return;
 648
 649	if (conn_changed || discov_changed) {
 650		/* In case this was disabled through mgmt */
 651		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 652
 653		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 654			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 655
 656		mgmt_new_settings(hdev);
 657	}
 658}
 659
 660int hci_dev_cmd(unsigned int cmd, void __user *arg)
 661{
 662	struct hci_dev *hdev;
 663	struct hci_dev_req dr;
 664	__le16 policy;
 665	int err = 0;
 666
 667	if (copy_from_user(&dr, arg, sizeof(dr)))
 668		return -EFAULT;
 669
 670	hdev = hci_dev_get(dr.dev_id);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		err = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		err = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 
 
 
 
 
 684	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 685		err = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	switch (cmd) {
 690	case HCISETAUTH:
 691		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
 692					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 693		break;
 694
 695	case HCISETENCRYPT:
 696		if (!lmp_encrypt_capable(hdev)) {
 697			err = -EOPNOTSUPP;
 698			break;
 699		}
 700
 701		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 702			/* Auth must be enabled first */
 703			err = hci_cmd_sync_status(hdev,
 704						  HCI_OP_WRITE_AUTH_ENABLE,
 705						  1, &dr.dev_opt,
 706						  HCI_CMD_TIMEOUT);
 707			if (err)
 708				break;
 709		}
 710
 711		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
 712					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 713		break;
 714
 715	case HCISETSCAN:
 716		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
 717					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 718
 719		/* Ensure that the connectable and discoverable states
 720		 * get correctly modified as this was a non-mgmt change.
 721		 */
 722		if (!err)
 723			hci_update_passive_scan_state(hdev, dr.dev_opt);
 724		break;
 725
 726	case HCISETLINKPOL:
 727		policy = cpu_to_le16(dr.dev_opt);
 728
 729		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
 730					  2, &policy, HCI_CMD_TIMEOUT);
 731		break;
 732
 733	case HCISETLINKMODE:
 734		hdev->link_mode = ((__u16) dr.dev_opt) &
 735					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 736		break;
 737
 738	case HCISETPTYPE:
 739		if (hdev->pkt_type == (__u16) dr.dev_opt)
 740			break;
 741
 742		hdev->pkt_type = (__u16) dr.dev_opt;
 743		mgmt_phy_configuration_changed(hdev, NULL);
 744		break;
 745
 746	case HCISETACLMTU:
 747		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 748		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 749		break;
 750
 751	case HCISETSCOMTU:
 752		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 753		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 754		break;
 755
 756	default:
 757		err = -EINVAL;
 758		break;
 759	}
 760
 761done:
 762	hci_dev_put(hdev);
 763	return err;
 764}
 765
 766int hci_get_dev_list(void __user *arg)
 767{
 768	struct hci_dev *hdev;
 769	struct hci_dev_list_req *dl;
 770	struct hci_dev_req *dr;
 771	int n = 0, err;
 772	__u16 dev_num;
 773
 774	if (get_user(dev_num, (__u16 __user *) arg))
 775		return -EFAULT;
 776
 777	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 778		return -EINVAL;
 779
 780	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
 
 
 781	if (!dl)
 782		return -ENOMEM;
 783
 784	dl->dev_num = dev_num;
 785	dr = dl->dev_req;
 786
 787	read_lock(&hci_dev_list_lock);
 788	list_for_each_entry(hdev, &hci_dev_list, list) {
 789		unsigned long flags = hdev->flags;
 790
 791		/* When the auto-off is configured it means the transport
 792		 * is running, but in that case still indicate that the
 793		 * device is actually down.
 794		 */
 795		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 796			flags &= ~BIT(HCI_UP);
 797
 798		dr[n].dev_id  = hdev->id;
 799		dr[n].dev_opt = flags;
 800
 801		if (++n >= dev_num)
 802			break;
 803	}
 804	read_unlock(&hci_dev_list_lock);
 805
 806	dl->dev_num = n;
 807	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
 
 
 808	kfree(dl);
 809
 810	return err ? -EFAULT : 0;
 811}
 812
 813int hci_get_dev_info(void __user *arg)
 814{
 815	struct hci_dev *hdev;
 816	struct hci_dev_info di;
 817	unsigned long flags;
 818	int err = 0;
 819
 820	if (copy_from_user(&di, arg, sizeof(di)))
 821		return -EFAULT;
 822
 823	hdev = hci_dev_get(di.dev_id);
 824	if (!hdev)
 825		return -ENODEV;
 826
 827	/* When the auto-off is configured it means the transport
 828	 * is running, but in that case still indicate that the
 829	 * device is actually down.
 830	 */
 831	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 832		flags = hdev->flags & ~BIT(HCI_UP);
 833	else
 834		flags = hdev->flags;
 835
 836	strscpy(di.name, hdev->name, sizeof(di.name));
 837	di.bdaddr   = hdev->bdaddr;
 838	di.type     = (hdev->bus & 0x0f);
 839	di.flags    = flags;
 840	di.pkt_type = hdev->pkt_type;
 841	if (lmp_bredr_capable(hdev)) {
 842		di.acl_mtu  = hdev->acl_mtu;
 843		di.acl_pkts = hdev->acl_pkts;
 844		di.sco_mtu  = hdev->sco_mtu;
 845		di.sco_pkts = hdev->sco_pkts;
 846	} else {
 847		di.acl_mtu  = hdev->le_mtu;
 848		di.acl_pkts = hdev->le_pkts;
 849		di.sco_mtu  = 0;
 850		di.sco_pkts = 0;
 851	}
 852	di.link_policy = hdev->link_policy;
 853	di.link_mode   = hdev->link_mode;
 854
 855	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 856	memcpy(&di.features, &hdev->features, sizeof(di.features));
 857
 858	if (copy_to_user(arg, &di, sizeof(di)))
 859		err = -EFAULT;
 860
 861	hci_dev_put(hdev);
 862
 863	return err;
 864}
 865
 866/* ---- Interface to HCI drivers ---- */
 867
 868static int hci_dev_do_poweroff(struct hci_dev *hdev)
 869{
 870	int err;
 871
 872	BT_DBG("%s %p", hdev->name, hdev);
 873
 874	hci_req_sync_lock(hdev);
 875
 876	err = hci_set_powered_sync(hdev, false);
 877
 878	hci_req_sync_unlock(hdev);
 879
 880	return err;
 881}
 882
 883static int hci_rfkill_set_block(void *data, bool blocked)
 884{
 885	struct hci_dev *hdev = data;
 886	int err;
 887
 888	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 889
 890	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 891		return -EBUSY;
 892
 893	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 894		return 0;
 895
 896	if (blocked) {
 897		hci_dev_set_flag(hdev, HCI_RFKILLED);
 898
 899		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 900		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 901			err = hci_dev_do_poweroff(hdev);
 902			if (err) {
 903				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 904					   err);
 905
 906				/* Make sure the device is still closed even if
 907				 * anything during power off sequence (eg.
 908				 * disconnecting devices) failed.
 909				 */
 910				hci_dev_do_close(hdev);
 911			}
 912		}
 913	} else {
 914		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 915	}
 916
 917	return 0;
 918}
 919
 920static const struct rfkill_ops hci_rfkill_ops = {
 921	.set_block = hci_rfkill_set_block,
 922};
 923
 924static void hci_power_on(struct work_struct *work)
 925{
 926	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 927	int err;
 928
 929	BT_DBG("%s", hdev->name);
 930
 931	if (test_bit(HCI_UP, &hdev->flags) &&
 932	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 933	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 934		cancel_delayed_work(&hdev->power_off);
 935		err = hci_powered_update_sync(hdev);
 
 
 936		mgmt_power_on(hdev, err);
 937		return;
 938	}
 939
 940	err = hci_dev_do_open(hdev);
 941	if (err < 0) {
 942		hci_dev_lock(hdev);
 943		mgmt_set_powered_failed(hdev, err);
 944		hci_dev_unlock(hdev);
 945		return;
 946	}
 947
 948	/* During the HCI setup phase, a few error conditions are
 949	 * ignored and they need to be checked now. If they are still
 950	 * valid, it is important to turn the device back off.
 951	 */
 952	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 953	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 954	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 
 955	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
 956		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
 957		hci_dev_do_close(hdev);
 958	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
 959		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
 960				   HCI_AUTO_OFF_TIMEOUT);
 961	}
 962
 963	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
 964		/* For unconfigured devices, set the HCI_RAW flag
 965		 * so that userspace can easily identify them.
 966		 */
 967		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 968			set_bit(HCI_RAW, &hdev->flags);
 969
 970		/* For fully configured devices, this will send
 971		 * the Index Added event. For unconfigured devices,
 972		 * it will send Unconfigued Index Added event.
 973		 *
 974		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
 975		 * and no event will be send.
 976		 */
 977		mgmt_index_added(hdev);
 978	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
 979		/* When the controller is now configured, then it
 980		 * is important to clear the HCI_RAW flag.
 981		 */
 982		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 983			clear_bit(HCI_RAW, &hdev->flags);
 984
 985		/* Powering on the controller with HCI_CONFIG set only
 986		 * happens with the transition from unconfigured to
 987		 * configured. This will send the Index Added event.
 988		 */
 989		mgmt_index_added(hdev);
 990	}
 991}
 992
 993static void hci_power_off(struct work_struct *work)
 994{
 995	struct hci_dev *hdev = container_of(work, struct hci_dev,
 996					    power_off.work);
 997
 998	BT_DBG("%s", hdev->name);
 999
1000	hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007	hci_dev_hold(hdev);
1008	BT_DBG("%s", hdev->name);
1009
1010	if (hdev->hw_error)
1011		hdev->hw_error(hdev, hdev->hw_error_code);
1012	else
1013		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014
1015	if (!hci_dev_do_close(hdev))
1016		hci_dev_do_open(hdev);
1017
1018	hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023	struct bt_uuid *uuid, *tmp;
1024
1025	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026		list_del(&uuid->list);
1027		kfree(uuid);
1028	}
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033	struct link_key *key, *tmp;
1034
1035	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036		list_del_rcu(&key->list);
1037		kfree_rcu(key, rcu);
1038	}
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043	struct smp_ltk *k, *tmp;
1044
1045	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046		list_del_rcu(&k->list);
1047		kfree_rcu(k, rcu);
1048	}
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053	struct smp_irk *k, *tmp;
1054
1055	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056		list_del_rcu(&k->list);
1057		kfree_rcu(k, rcu);
1058	}
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063	struct blocked_key *b, *tmp;
1064
1065	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066		list_del_rcu(&b->list);
1067		kfree_rcu(b, rcu);
1068	}
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073	bool blocked = false;
1074	struct blocked_key *b;
1075
1076	rcu_read_lock();
1077	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079			blocked = true;
1080			break;
1081		}
1082	}
1083
1084	rcu_read_unlock();
1085	return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090	struct link_key *k;
1091
1092	rcu_read_lock();
1093	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095			rcu_read_unlock();
1096
1097			if (hci_is_blocked_key(hdev,
1098					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099					       k->val)) {
1100				bt_dev_warn_ratelimited(hdev,
1101							"Link key blocked for %pMR",
1102							&k->bdaddr);
1103				return NULL;
1104			}
1105
1106			return k;
1107		}
1108	}
1109	rcu_read_unlock();
1110
1111	return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115			       u8 key_type, u8 old_key_type)
1116{
1117	/* Legacy key */
1118	if (key_type < 0x03)
1119		return true;
1120
1121	/* Debug keys are insecure so don't store them persistently */
1122	if (key_type == HCI_LK_DEBUG_COMBINATION)
1123		return false;
1124
1125	/* Changed combination key and there's no previous one */
1126	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127		return false;
1128
1129	/* Security mode 3 case */
1130	if (!conn)
1131		return true;
1132
1133	/* BR/EDR key derived using SC from an LE link */
1134	if (conn->type == LE_LINK)
1135		return true;
1136
1137	/* Neither local nor remote side had no-bonding as requirement */
1138	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139		return true;
1140
1141	/* Local side had dedicated bonding as requirement */
1142	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143		return true;
1144
1145	/* Remote side had dedicated bonding as requirement */
1146	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147		return true;
1148
1149	/* If none of the above criteria match, then don't store the key
1150	 * persistently */
1151	return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156	if (type == SMP_LTK)
1157		return HCI_ROLE_MASTER;
1158
1159	return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163			     u8 addr_type, u8 role)
1164{
1165	struct smp_ltk *k;
1166
1167	rcu_read_lock();
1168	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170			continue;
1171
1172		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173			rcu_read_unlock();
1174
1175			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176					       k->val)) {
1177				bt_dev_warn_ratelimited(hdev,
1178							"LTK blocked for %pMR",
1179							&k->bdaddr);
1180				return NULL;
1181			}
1182
1183			return k;
1184		}
1185	}
1186	rcu_read_unlock();
1187
1188	return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193	struct smp_irk *irk_to_return = NULL;
1194	struct smp_irk *irk;
1195
1196	rcu_read_lock();
1197	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198		if (!bacmp(&irk->rpa, rpa)) {
1199			irk_to_return = irk;
1200			goto done;
1201		}
1202	}
1203
1204	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205		if (smp_irk_matches(hdev, irk->val, rpa)) {
1206			bacpy(&irk->rpa, rpa);
1207			irk_to_return = irk;
1208			goto done;
1209		}
1210	}
1211
1212done:
1213	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214						irk_to_return->val)) {
1215		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216					&irk_to_return->bdaddr);
1217		irk_to_return = NULL;
1218	}
1219
1220	rcu_read_unlock();
1221
1222	return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226				     u8 addr_type)
1227{
1228	struct smp_irk *irk_to_return = NULL;
1229	struct smp_irk *irk;
1230
1231	/* Identity Address must be public or static random */
1232	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233		return NULL;
1234
1235	rcu_read_lock();
1236	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237		if (addr_type == irk->addr_type &&
1238		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1239			irk_to_return = irk;
1240			goto done;
1241		}
1242	}
1243
1244done:
1245
1246	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247						irk_to_return->val)) {
1248		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249					&irk_to_return->bdaddr);
1250		irk_to_return = NULL;
1251	}
1252
1253	rcu_read_unlock();
1254
1255	return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259				  bdaddr_t *bdaddr, u8 *val, u8 type,
1260				  u8 pin_len, bool *persistent)
1261{
1262	struct link_key *key, *old_key;
1263	u8 old_key_type;
1264
1265	old_key = hci_find_link_key(hdev, bdaddr);
1266	if (old_key) {
1267		old_key_type = old_key->type;
1268		key = old_key;
1269	} else {
1270		old_key_type = conn ? conn->key_type : 0xff;
1271		key = kzalloc(sizeof(*key), GFP_KERNEL);
1272		if (!key)
1273			return NULL;
1274		list_add_rcu(&key->list, &hdev->link_keys);
1275	}
1276
1277	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279	/* Some buggy controller combinations generate a changed
1280	 * combination key for legacy pairing even when there's no
1281	 * previous key */
1282	if (type == HCI_LK_CHANGED_COMBINATION &&
1283	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284		type = HCI_LK_COMBINATION;
1285		if (conn)
1286			conn->key_type = type;
1287	}
1288
1289	bacpy(&key->bdaddr, bdaddr);
1290	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291	key->pin_len = pin_len;
1292
1293	if (type == HCI_LK_CHANGED_COMBINATION)
1294		key->type = old_key_type;
1295	else
1296		key->type = type;
1297
1298	if (persistent)
1299		*persistent = hci_persistent_key(hdev, conn, type,
1300						 old_key_type);
1301
1302	return key;
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306			    u8 addr_type, u8 type, u8 authenticated,
1307			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309	struct smp_ltk *key, *old_key;
1310	u8 role = ltk_role(type);
1311
1312	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313	if (old_key)
1314		key = old_key;
1315	else {
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->long_term_keys);
1320	}
1321
1322	bacpy(&key->bdaddr, bdaddr);
1323	key->bdaddr_type = addr_type;
1324	memcpy(key->val, tk, sizeof(key->val));
1325	key->authenticated = authenticated;
1326	key->ediv = ediv;
1327	key->rand = rand;
1328	key->enc_size = enc_size;
1329	key->type = type;
1330
1331	return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337	struct smp_irk *irk;
1338
1339	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340	if (!irk) {
1341		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342		if (!irk)
1343			return NULL;
1344
1345		bacpy(&irk->bdaddr, bdaddr);
1346		irk->addr_type = addr_type;
1347
1348		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349	}
1350
1351	memcpy(irk->val, val, 16);
1352	bacpy(&irk->rpa, rpa);
1353
1354	return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359	struct link_key *key;
1360
1361	key = hci_find_link_key(hdev, bdaddr);
1362	if (!key)
1363		return -ENOENT;
1364
1365	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367	list_del_rcu(&key->list);
1368	kfree_rcu(key, rcu);
1369
1370	return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375	struct smp_ltk *k, *tmp;
1376	int removed = 0;
1377
1378	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380			continue;
1381
1382		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384		list_del_rcu(&k->list);
1385		kfree_rcu(k, rcu);
1386		removed++;
1387	}
1388
1389	return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394	struct smp_irk *k, *tmp;
1395
1396	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398			continue;
1399
1400		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402		list_del_rcu(&k->list);
1403		kfree_rcu(k, rcu);
1404	}
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409	struct smp_ltk *k;
1410	struct smp_irk *irk;
1411	u8 addr_type;
1412
1413	if (type == BDADDR_BREDR) {
1414		if (hci_find_link_key(hdev, bdaddr))
1415			return true;
1416		return false;
1417	}
1418
1419	/* Convert to HCI addr type which struct smp_ltk uses */
1420	if (type == BDADDR_LE_PUBLIC)
1421		addr_type = ADDR_LE_DEV_PUBLIC;
1422	else
1423		addr_type = ADDR_LE_DEV_RANDOM;
1424
1425	irk = hci_get_irk(hdev, bdaddr, addr_type);
1426	if (irk) {
1427		bdaddr = &irk->bdaddr;
1428		addr_type = irk->addr_type;
1429	}
1430
1431	rcu_read_lock();
1432	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434			rcu_read_unlock();
1435			return true;
1436		}
1437	}
1438	rcu_read_unlock();
1439
1440	return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446	struct hci_dev *hdev = container_of(work, struct hci_dev,
1447					    cmd_timer.work);
1448
1449	if (hdev->req_skb) {
1450		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1451
1452		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455	} else {
1456		bt_dev_err(hdev, "command tx timeout");
1457	}
1458
1459	if (hdev->cmd_timeout)
1460		hdev->cmd_timeout(hdev);
1461
1462	atomic_set(&hdev->cmd_cnt, 1);
1463	queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469	struct hci_dev *hdev = container_of(work, struct hci_dev,
1470					    ncmd_timer.work);
1471
1472	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474	/* During HCI_INIT phase no events can be injected if the ncmd timer
1475	 * triggers since the procedure has its own timeout handling.
1476	 */
1477	if (test_bit(HCI_INIT, &hdev->flags))
1478		return;
1479
1480	/* This is an irrecoverable state, inject hardware error event */
1481	hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485					  bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487	struct oob_data *data;
1488
1489	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490		if (bacmp(bdaddr, &data->bdaddr) != 0)
1491			continue;
1492		if (data->bdaddr_type != bdaddr_type)
1493			continue;
1494		return data;
1495	}
1496
1497	return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501			       u8 bdaddr_type)
1502{
1503	struct oob_data *data;
1504
1505	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506	if (!data)
1507		return -ENOENT;
1508
1509	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511	list_del(&data->list);
1512	kfree(data);
1513
1514	return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519	struct oob_data *data, *n;
1520
1521	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522		list_del(&data->list);
1523		kfree(data);
1524	}
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529			    u8 *hash256, u8 *rand256)
1530{
1531	struct oob_data *data;
1532
1533	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534	if (!data) {
1535		data = kmalloc(sizeof(*data), GFP_KERNEL);
1536		if (!data)
1537			return -ENOMEM;
1538
1539		bacpy(&data->bdaddr, bdaddr);
1540		data->bdaddr_type = bdaddr_type;
1541		list_add(&data->list, &hdev->remote_oob_data);
1542	}
1543
1544	if (hash192 && rand192) {
1545		memcpy(data->hash192, hash192, sizeof(data->hash192));
1546		memcpy(data->rand192, rand192, sizeof(data->rand192));
1547		if (hash256 && rand256)
1548			data->present = 0x03;
1549	} else {
1550		memset(data->hash192, 0, sizeof(data->hash192));
1551		memset(data->rand192, 0, sizeof(data->rand192));
1552		if (hash256 && rand256)
1553			data->present = 0x02;
1554		else
1555			data->present = 0x00;
1556	}
1557
1558	if (hash256 && rand256) {
1559		memcpy(data->hash256, hash256, sizeof(data->hash256));
1560		memcpy(data->rand256, rand256, sizeof(data->rand256));
1561	} else {
1562		memset(data->hash256, 0, sizeof(data->hash256));
1563		memset(data->rand256, 0, sizeof(data->rand256));
1564		if (hash192 && rand192)
1565			data->present = 0x01;
1566	}
1567
1568	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570	return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576	struct adv_info *adv_instance;
1577
1578	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579		if (adv_instance->instance == instance)
1580			return adv_instance;
1581	}
1582
1583	return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589	struct adv_info *cur_instance;
1590
1591	cur_instance = hci_find_adv_instance(hdev, instance);
1592	if (!cur_instance)
1593		return NULL;
1594
1595	if (cur_instance == list_last_entry(&hdev->adv_instances,
1596					    struct adv_info, list))
1597		return list_first_entry(&hdev->adv_instances,
1598						 struct adv_info, list);
1599	else
1600		return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606	struct adv_info *adv_instance;
1607
1608	adv_instance = hci_find_adv_instance(hdev, instance);
1609	if (!adv_instance)
1610		return -ENOENT;
1611
1612	BT_DBG("%s removing %dMR", hdev->name, instance);
1613
1614	if (hdev->cur_adv_instance == instance) {
1615		if (hdev->adv_instance_timeout) {
1616			cancel_delayed_work(&hdev->adv_instance_expire);
1617			hdev->adv_instance_timeout = 0;
1618		}
1619		hdev->cur_adv_instance = 0x00;
1620	}
1621
1622	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623
1624	list_del(&adv_instance->list);
1625	kfree(adv_instance);
1626
1627	hdev->adv_instance_cnt--;
1628
1629	return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633{
1634	struct adv_info *adv_instance, *n;
1635
1636	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637		adv_instance->rpa_expired = rpa_expired;
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643	struct adv_info *adv_instance, *n;
1644
1645	if (hdev->adv_instance_timeout) {
1646		disable_delayed_work(&hdev->adv_instance_expire);
1647		hdev->adv_instance_timeout = 0;
1648	}
1649
1650	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652		list_del(&adv_instance->list);
1653		kfree(adv_instance);
1654	}
1655
1656	hdev->adv_instance_cnt = 0;
1657	hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
1661{
1662	struct adv_info *adv_instance = container_of(work, struct adv_info,
1663						     rpa_expired_cb.work);
1664
1665	BT_DBG("");
1666
1667	adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672				      u32 flags, u16 adv_data_len, u8 *adv_data,
1673				      u16 scan_rsp_len, u8 *scan_rsp_data,
1674				      u16 timeout, u16 duration, s8 tx_power,
1675				      u32 min_interval, u32 max_interval,
1676				      u8 mesh_handle)
1677{
1678	struct adv_info *adv;
1679
1680	adv = hci_find_adv_instance(hdev, instance);
1681	if (adv) {
1682		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685	} else {
1686		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688			return ERR_PTR(-EOVERFLOW);
1689
1690		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691		if (!adv)
1692			return ERR_PTR(-ENOMEM);
1693
1694		adv->pending = true;
1695		adv->instance = instance;
1696
1697		/* If controller support only one set and the instance is set to
1698		 * 1 then there is no option other than using handle 0x00.
1699		 */
1700		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701			adv->handle = 0x00;
1702		else
1703			adv->handle = instance;
1704
1705		list_add(&adv->list, &hdev->adv_instances);
1706		hdev->adv_instance_cnt++;
1707	}
1708
1709	adv->flags = flags;
1710	adv->min_interval = min_interval;
1711	adv->max_interval = max_interval;
1712	adv->tx_power = tx_power;
1713	/* Defining a mesh_handle changes the timing units to ms,
1714	 * rather than seconds, and ties the instance to the requested
1715	 * mesh_tx queue.
1716	 */
1717	adv->mesh = mesh_handle;
1718
1719	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720				  scan_rsp_len, scan_rsp_data);
1721
1722	adv->timeout = timeout;
1723	adv->remaining_time = timeout;
1724
1725	if (duration == 0)
1726		adv->duration = hdev->def_multi_adv_rotation_duration;
1727	else
1728		adv->duration = duration;
 
 
1729
1730	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
 
1731
1732	BT_DBG("%s for %dMR", hdev->name, instance);
1733
1734	return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739				      u32 flags, u8 data_len, u8 *data,
1740				      u32 min_interval, u32 max_interval)
1741{
1742	struct adv_info *adv;
1743
1744	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746				   min_interval, max_interval, 0);
1747	if (IS_ERR(adv))
1748		return adv;
1749
1750	adv->periodic = true;
1751	adv->per_adv_data_len = data_len;
1752
1753	if (data)
1754		memcpy(adv->per_adv_data, data, data_len);
1755
1756	return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761			      u16 adv_data_len, u8 *adv_data,
1762			      u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764	struct adv_info *adv;
1765
1766	adv = hci_find_adv_instance(hdev, instance);
1767
1768	/* If advertisement doesn't exist, we can't modify its data */
1769	if (!adv)
1770		return -ENOENT;
1771
1772	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774		memcpy(adv->adv_data, adv_data, adv_data_len);
1775		adv->adv_data_len = adv_data_len;
1776		adv->adv_data_changed = true;
1777	}
1778
1779	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782		adv->scan_rsp_len = scan_rsp_len;
1783		adv->scan_rsp_changed = true;
1784	}
1785
1786	/* Mark as changed if there are flags which would affect it */
1787	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789		adv->scan_rsp_changed = true;
1790
1791	return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797	u32 flags;
1798	struct adv_info *adv;
1799
1800	if (instance == 0x00) {
1801		/* Instance 0 always manages the "Tx Power" and "Flags"
1802		 * fields
1803		 */
1804		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807		 * corresponds to the "connectable" instance flag.
1808		 */
1809		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815			flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817		return flags;
1818	}
1819
1820	adv = hci_find_adv_instance(hdev, instance);
1821
1822	/* Return 0 when we got an invalid instance identifier. */
1823	if (!adv)
1824		return 0;
1825
1826	return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831	struct adv_info *adv;
1832
1833	/* Instance 0x00 always set local name */
1834	if (instance == 0x00)
1835		return true;
1836
1837	adv = hci_find_adv_instance(hdev, instance);
1838	if (!adv)
1839		return false;
1840
1841	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843		return true;
1844
1845	return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851	struct adv_monitor *monitor;
1852	int handle;
1853
1854	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855		hci_free_adv_monitor(hdev, monitor);
1856
1857	idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865	struct adv_pattern *pattern;
1866	struct adv_pattern *tmp;
1867
1868	if (!monitor)
1869		return;
1870
1871	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872		list_del(&pattern->list);
1873		kfree(pattern);
1874	}
1875
1876	if (monitor->handle)
1877		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880		hdev->adv_monitors_cnt--;
1881		mgmt_adv_monitor_removed(hdev, monitor->handle);
1882	}
1883
1884	kfree(monitor);
1885}
1886
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892{
1893	int min, max, handle;
1894	int status = 0;
1895
1896	if (!monitor)
1897		return -EINVAL;
1898
1899	hci_dev_lock(hdev);
1900
1901	min = HCI_MIN_ADV_MONITOR_HANDLE;
1902	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904			   GFP_KERNEL);
1905
1906	hci_dev_unlock(hdev);
1907
1908	if (handle < 0)
1909		return handle;
1910
1911	monitor->handle = handle;
1912
1913	if (!hdev_is_powered(hdev))
1914		return status;
1915
1916	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917	case HCI_ADV_MONITOR_EXT_NONE:
1918		bt_dev_dbg(hdev, "add monitor %d status %d",
1919			   monitor->handle, status);
1920		/* Message was not forwarded to controller - not an error */
1921		break;
1922
1923	case HCI_ADV_MONITOR_EXT_MSFT:
1924		status = msft_add_monitor_pattern(hdev, monitor);
1925		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926			   handle, status);
1927		break;
1928	}
1929
1930	return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938				  struct adv_monitor *monitor)
1939{
1940	int status = 0;
1941	int handle;
1942
1943	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945		bt_dev_dbg(hdev, "remove monitor %d status %d",
1946			   monitor->handle, status);
1947		goto free_monitor;
1948
1949	case HCI_ADV_MONITOR_EXT_MSFT:
1950		handle = monitor->handle;
1951		status = msft_remove_monitor(hdev, monitor);
1952		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953			   handle, status);
1954		break;
1955	}
1956
1957	/* In case no matching handle registered, just free the monitor */
1958	if (status == -ENOENT)
1959		goto free_monitor;
1960
1961	return status;
1962
1963free_monitor:
1964	if (status == -ENOENT)
1965		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966			    monitor->handle);
1967	hci_free_adv_monitor(hdev, monitor);
1968
1969	return status;
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1974{
1975	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1976
1977	if (!monitor)
1978		return -EINVAL;
1979
1980	return hci_remove_adv_monitor(hdev, monitor);
1981}
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985{
1986	struct adv_monitor *monitor;
1987	int idr_next_id = 0;
1988	int status = 0;
1989
1990	while (1) {
1991		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992		if (!monitor)
1993			break;
1994
1995		status = hci_remove_adv_monitor(hdev, monitor);
1996		if (status)
1997			return status;
1998
1999		idr_next_id++;
2000	}
2001
2002	return status;
2003}
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008	return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012{
2013	if (msft_monitor_supported(hdev))
2014		return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016	return HCI_ADV_MONITOR_EXT_NONE;
2017}
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020					 bdaddr_t *bdaddr, u8 type)
2021{
2022	struct bdaddr_list *b;
2023
2024	list_for_each_entry(b, bdaddr_list, list) {
2025		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026			return b;
2027	}
2028
2029	return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034				u8 type)
2035{
2036	struct bdaddr_list_with_irk *b;
2037
2038	list_for_each_entry(b, bdaddr_list, list) {
2039		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040			return b;
2041	}
2042
2043	return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048				  bdaddr_t *bdaddr, u8 type)
2049{
2050	struct bdaddr_list_with_flags *b;
2051
2052	list_for_each_entry(b, bdaddr_list, list) {
2053		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054			return b;
2055	}
2056
2057	return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062	struct bdaddr_list *b, *n;
2063
2064	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065		list_del(&b->list);
2066		kfree(b);
2067	}
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072	struct bdaddr_list *entry;
2073
2074	if (!bacmp(bdaddr, BDADDR_ANY))
2075		return -EBADF;
2076
2077	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078		return -EEXIST;
2079
2080	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081	if (!entry)
2082		return -ENOMEM;
2083
2084	bacpy(&entry->bdaddr, bdaddr);
2085	entry->bdaddr_type = type;
2086
2087	list_add(&entry->list, list);
2088
2089	return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093					u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095	struct bdaddr_list_with_irk *entry;
2096
2097	if (!bacmp(bdaddr, BDADDR_ANY))
2098		return -EBADF;
2099
2100	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101		return -EEXIST;
2102
2103	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104	if (!entry)
2105		return -ENOMEM;
2106
2107	bacpy(&entry->bdaddr, bdaddr);
2108	entry->bdaddr_type = type;
2109
2110	if (peer_irk)
2111		memcpy(entry->peer_irk, peer_irk, 16);
2112
2113	if (local_irk)
2114		memcpy(entry->local_irk, local_irk, 16);
2115
2116	list_add(&entry->list, list);
2117
2118	return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122				   u8 type, u32 flags)
2123{
2124	struct bdaddr_list_with_flags *entry;
2125
2126	if (!bacmp(bdaddr, BDADDR_ANY))
2127		return -EBADF;
2128
2129	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130		return -EEXIST;
2131
2132	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133	if (!entry)
2134		return -ENOMEM;
2135
2136	bacpy(&entry->bdaddr, bdaddr);
2137	entry->bdaddr_type = type;
2138	entry->flags = flags;
2139
2140	list_add(&entry->list, list);
2141
2142	return 0;
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146{
2147	struct bdaddr_list *entry;
2148
2149	if (!bacmp(bdaddr, BDADDR_ANY)) {
2150		hci_bdaddr_list_clear(list);
2151		return 0;
2152	}
2153
2154	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155	if (!entry)
2156		return -ENOENT;
2157
2158	list_del(&entry->list);
2159	kfree(entry);
2160
2161	return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165							u8 type)
2166{
2167	struct bdaddr_list_with_irk *entry;
2168
2169	if (!bacmp(bdaddr, BDADDR_ANY)) {
2170		hci_bdaddr_list_clear(list);
2171		return 0;
2172	}
2173
2174	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175	if (!entry)
2176		return -ENOENT;
2177
2178	list_del(&entry->list);
2179	kfree(entry);
2180
2181	return 0;
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185				   u8 type)
2186{
2187	struct bdaddr_list_with_flags *entry;
2188
2189	if (!bacmp(bdaddr, BDADDR_ANY)) {
2190		hci_bdaddr_list_clear(list);
2191		return 0;
2192	}
2193
2194	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195	if (!entry)
2196		return -ENOENT;
2197
2198	list_del(&entry->list);
2199	kfree(entry);
2200
2201	return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206					       bdaddr_t *addr, u8 addr_type)
2207{
2208	struct hci_conn_params *params;
2209
2210	list_for_each_entry(params, &hdev->le_conn_params, list) {
2211		if (bacmp(&params->addr, addr) == 0 &&
2212		    params->addr_type == addr_type) {
2213			return params;
2214		}
2215	}
2216
2217	return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222						  bdaddr_t *addr, u8 addr_type)
2223{
2224	struct hci_conn_params *param;
2225
2226	rcu_read_lock();
2227
2228	list_for_each_entry_rcu(param, list, action) {
2229		if (bacmp(&param->addr, addr) == 0 &&
2230		    param->addr_type == addr_type) {
2231			rcu_read_unlock();
2232			return param;
2233		}
2234	}
2235
2236	rcu_read_unlock();
2237
2238	return NULL;
2239}
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244	if (list_empty(&param->action))
2245		return;
2246
2247	list_del_rcu(&param->action);
2248	synchronize_rcu();
2249	INIT_LIST_HEAD(&param->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254			  struct list_head *list)
2255{
2256	list_add_rcu(&param->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261					    bdaddr_t *addr, u8 addr_type)
2262{
2263	struct hci_conn_params *params;
2264
2265	params = hci_conn_params_lookup(hdev, addr, addr_type);
2266	if (params)
2267		return params;
2268
2269	params = kzalloc(sizeof(*params), GFP_KERNEL);
2270	if (!params) {
2271		bt_dev_err(hdev, "out of memory");
2272		return NULL;
2273	}
2274
2275	bacpy(&params->addr, addr);
2276	params->addr_type = addr_type;
2277
2278	list_add(&params->list, &hdev->le_conn_params);
2279	INIT_LIST_HEAD(&params->action);
2280
2281	params->conn_min_interval = hdev->le_conn_min_interval;
2282	params->conn_max_interval = hdev->le_conn_max_interval;
2283	params->conn_latency = hdev->le_conn_latency;
2284	params->supervision_timeout = hdev->le_supv_timeout;
2285	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289	return params;
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294	hci_pend_le_list_del_init(params);
2295
2296	if (params->conn) {
2297		hci_conn_drop(params->conn);
2298		hci_conn_put(params->conn);
2299	}
2300
 
2301	list_del(&params->list);
2302	kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308	struct hci_conn_params *params;
2309
2310	params = hci_conn_params_lookup(hdev, addr, addr_type);
2311	if (!params)
2312		return;
2313
2314	hci_conn_params_free(params);
2315
2316	hci_update_passive_scan(hdev);
2317
2318	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324	struct hci_conn_params *params, *tmp;
2325
2326	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328			continue;
2329
2330		/* If trying to establish one time connection to disabled
2331		 * device, leave the params, but mark them as just once.
2332		 */
2333		if (params->explicit_connect) {
2334			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335			continue;
2336		}
2337
2338		hci_conn_params_free(params);
 
2339	}
2340
2341	BT_DBG("All LE disabled connection parameters were removed");
2342}
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347	struct hci_conn_params *params, *tmp;
2348
2349	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350		hci_conn_params_free(params);
2351
2352	BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369			       u8 *bdaddr_type)
2370{
2371	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375		bacpy(bdaddr, &hdev->static_addr);
2376		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2377	} else {
2378		bacpy(bdaddr, &hdev->bdaddr);
2379		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380	}
2381}
2382
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385	hci_dev_lock(hdev);
2386
2387	hdev->wake_reason = 0;
2388	bacpy(&hdev->wake_addr, BDADDR_ANY);
2389	hdev->wake_addr_type = 0;
2390
2391	hci_dev_unlock(hdev);
2392}
2393
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395				void *data)
2396{
2397	struct hci_dev *hdev =
2398		container_of(nb, struct hci_dev, suspend_notifier);
2399	int ret = 0;
2400
2401	/* Userspace has full control of this device. Do nothing. */
2402	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403		return NOTIFY_DONE;
2404
2405	/* To avoid a potential race with hci_unregister_dev. */
2406	hci_dev_hold(hdev);
2407
2408	switch (action) {
2409	case PM_HIBERNATION_PREPARE:
2410	case PM_SUSPEND_PREPARE:
2411		ret = hci_suspend_dev(hdev);
2412		break;
2413	case PM_POST_HIBERNATION:
2414	case PM_POST_SUSPEND:
2415		ret = hci_resume_dev(hdev);
2416		break;
2417	}
2418
2419	if (ret)
2420		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421			   action, ret);
2422
2423	hci_dev_put(hdev);
2424	return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430	struct hci_dev *hdev;
2431	unsigned int alloc_size;
2432
2433	alloc_size = sizeof(*hdev);
2434	if (sizeof_priv) {
2435		/* Fixme: May need ALIGN-ment? */
2436		alloc_size += sizeof_priv;
2437	}
2438
2439	hdev = kzalloc(alloc_size, GFP_KERNEL);
2440	if (!hdev)
2441		return NULL;
2442
2443	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444	hdev->esco_type = (ESCO_HV1);
2445	hdev->link_mode = (HCI_LM_ACCEPT);
2446	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2447	hdev->io_capability = 0x03;	/* No Input No Output */
2448	hdev->manufacturer = 0xffff;	/* Default to internal use */
2449	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451	hdev->adv_instance_cnt = 0;
2452	hdev->cur_adv_instance = 0x00;
2453	hdev->adv_instance_timeout = 0;
2454
2455	hdev->advmon_allowlist_duration = 300;
2456	hdev->advmon_no_filter_duration = 500;
2457	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2458
2459	hdev->sniff_max_interval = 800;
2460	hdev->sniff_min_interval = 80;
2461
2462	hdev->le_adv_channel_map = 0x07;
2463	hdev->le_adv_min_interval = 0x0800;
2464	hdev->le_adv_max_interval = 0x0800;
2465	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475	hdev->le_conn_min_interval = 0x0018;
2476	hdev->le_conn_max_interval = 0x0028;
2477	hdev->le_conn_latency = 0x0000;
2478	hdev->le_supv_timeout = 0x002a;
2479	hdev->le_def_tx_len = 0x001b;
2480	hdev->le_def_tx_time = 0x0148;
2481	hdev->le_max_tx_len = 0x001b;
2482	hdev->le_max_tx_time = 0x0148;
2483	hdev->le_max_rx_len = 0x001b;
2484	hdev->le_max_rx_time = 0x0148;
2485	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502	/* default 1.28 sec page scan */
2503	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504	hdev->def_page_scan_int = 0x0800;
2505	hdev->def_page_scan_window = 0x0012;
2506
2507	mutex_init(&hdev->lock);
2508	mutex_init(&hdev->req_lock);
2509
2510	ida_init(&hdev->unset_handle_ida);
2511
2512	INIT_LIST_HEAD(&hdev->mesh_pending);
2513	INIT_LIST_HEAD(&hdev->mgmt_pending);
2514	INIT_LIST_HEAD(&hdev->reject_list);
2515	INIT_LIST_HEAD(&hdev->accept_list);
2516	INIT_LIST_HEAD(&hdev->uuids);
2517	INIT_LIST_HEAD(&hdev->link_keys);
2518	INIT_LIST_HEAD(&hdev->long_term_keys);
2519	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520	INIT_LIST_HEAD(&hdev->remote_oob_data);
2521	INIT_LIST_HEAD(&hdev->le_accept_list);
2522	INIT_LIST_HEAD(&hdev->le_resolv_list);
2523	INIT_LIST_HEAD(&hdev->le_conn_params);
2524	INIT_LIST_HEAD(&hdev->pend_le_conns);
2525	INIT_LIST_HEAD(&hdev->pend_le_reports);
2526	INIT_LIST_HEAD(&hdev->conn_hash.list);
2527	INIT_LIST_HEAD(&hdev->adv_instances);
2528	INIT_LIST_HEAD(&hdev->blocked_keys);
2529	INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531	INIT_LIST_HEAD(&hdev->local_codecs);
2532	INIT_WORK(&hdev->rx_work, hci_rx_work);
2533	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534	INIT_WORK(&hdev->tx_work, hci_tx_work);
2535	INIT_WORK(&hdev->power_on, hci_power_on);
2536	INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538	hci_cmd_sync_init(hdev);
2539
2540	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2541
2542	skb_queue_head_init(&hdev->rx_q);
2543	skb_queue_head_init(&hdev->cmd_q);
2544	skb_queue_head_init(&hdev->raw_q);
2545
2546	init_waitqueue_head(&hdev->req_wait_q);
2547
2548	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551	hci_devcd_setup(hdev);
2552
2553	hci_init_sysfs(hdev);
2554	discovery_init(hdev);
2555
2556	return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563	/* will free via device release */
2564	put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571	int id, error;
2572
2573	if (!hdev->open || !hdev->close || !hdev->send)
2574		return -EINVAL;
2575
2576	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	if (id < 0)
2578		return id;
2579
2580	error = dev_set_name(&hdev->dev, "hci%u", id);
2581	if (error)
2582		return error;
2583
2584	hdev->name = dev_name(&hdev->dev);
2585	hdev->id = id;
2586
2587	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2590	if (!hdev->workqueue) {
2591		error = -ENOMEM;
2592		goto err;
2593	}
2594
2595	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596						      hdev->name);
2597	if (!hdev->req_workqueue) {
2598		destroy_workqueue(hdev->workqueue);
2599		error = -ENOMEM;
2600		goto err;
2601	}
2602
2603	if (!IS_ERR_OR_NULL(bt_debugfs))
2604		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
 
 
2606	error = device_add(&hdev->dev);
2607	if (error < 0)
2608		goto err_wqueue;
2609
2610	hci_leds_init(hdev);
2611
2612	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614				    hdev);
2615	if (hdev->rfkill) {
2616		if (rfkill_register(hdev->rfkill) < 0) {
2617			rfkill_destroy(hdev->rfkill);
2618			hdev->rfkill = NULL;
2619		}
2620	}
2621
2622	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623		hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625	hci_dev_set_flag(hdev, HCI_SETUP);
2626	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628	/* Assume BR/EDR support until proven otherwise (such as
2629	 * through reading supported features during init.
2630	 */
2631	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2632
2633	write_lock(&hci_dev_list_lock);
2634	list_add(&hdev->list, &hci_dev_list);
2635	write_unlock(&hci_dev_list_lock);
2636
2637	/* Devices that are marked for raw-only usage are unconfigured
2638	 * and should not be included in normal operation.
2639	 */
2640	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644	 * callback.
2645	 */
2646	if (hdev->wakeup)
2647		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649	hci_sock_dev_event(hdev, HCI_DEV_REG);
2650	hci_dev_hold(hdev);
2651
2652	error = hci_register_suspend_notifier(hdev);
2653	if (error)
2654		BT_WARN("register suspend notifier failed error:%d\n", error);
2655
2656	queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658	idr_init(&hdev->adv_monitors_idr);
2659	msft_register(hdev);
2660
2661	return id;
2662
2663err_wqueue:
2664	debugfs_remove_recursive(hdev->debugfs);
2665	destroy_workqueue(hdev->workqueue);
2666	destroy_workqueue(hdev->req_workqueue);
2667err:
2668	ida_free(&hci_index_ida, hdev->id);
2669
2670	return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
 
 
2677	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679	mutex_lock(&hdev->unregister_lock);
2680	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681	mutex_unlock(&hdev->unregister_lock);
 
2682
2683	write_lock(&hci_dev_list_lock);
2684	list_del(&hdev->list);
2685	write_unlock(&hci_dev_list_lock);
2686
2687	disable_work_sync(&hdev->rx_work);
2688	disable_work_sync(&hdev->cmd_work);
2689	disable_work_sync(&hdev->tx_work);
2690	disable_work_sync(&hdev->power_on);
2691	disable_work_sync(&hdev->error_reset);
2692
2693	hci_cmd_sync_clear(hdev);
2694
2695	hci_unregister_suspend_notifier(hdev);
2696
2697	hci_dev_do_close(hdev);
2698
2699	if (!test_bit(HCI_INIT, &hdev->flags) &&
2700	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702		hci_dev_lock(hdev);
2703		mgmt_index_removed(hdev);
2704		hci_dev_unlock(hdev);
2705	}
2706
2707	/* mgmt_index_removed should take care of emptying the
2708	 * pending list */
2709	BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713	if (hdev->rfkill) {
2714		rfkill_unregister(hdev->rfkill);
2715		rfkill_destroy(hdev->rfkill);
2716	}
2717
2718	device_del(&hdev->dev);
2719	/* Actual cleanup is deferred until hci_release_dev(). */
2720	hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727	debugfs_remove_recursive(hdev->debugfs);
2728	kfree_const(hdev->hw_info);
2729	kfree_const(hdev->fw_info);
2730
2731	destroy_workqueue(hdev->workqueue);
2732	destroy_workqueue(hdev->req_workqueue);
2733
2734	hci_dev_lock(hdev);
2735	hci_bdaddr_list_clear(&hdev->reject_list);
2736	hci_bdaddr_list_clear(&hdev->accept_list);
2737	hci_uuids_clear(hdev);
2738	hci_link_keys_clear(hdev);
2739	hci_smp_ltks_clear(hdev);
2740	hci_smp_irks_clear(hdev);
2741	hci_remote_oob_data_clear(hdev);
2742	hci_adv_instances_clear(hdev);
2743	hci_adv_monitors_clear(hdev);
2744	hci_bdaddr_list_clear(&hdev->le_accept_list);
2745	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746	hci_conn_params_clear_all(hdev);
2747	hci_discovery_filter_clear(hdev);
2748	hci_blocked_keys_clear(hdev);
2749	hci_codec_list_clear(&hdev->local_codecs);
2750	msft_release(hdev);
2751	hci_dev_unlock(hdev);
2752
2753	ida_destroy(&hdev->unset_handle_ida);
2754	ida_free(&hci_index_ida, hdev->id);
2755	kfree_skb(hdev->sent_cmd);
2756	kfree_skb(hdev->req_skb);
2757	kfree_skb(hdev->recv_event);
2758	kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764	int ret = 0;
2765
2766	if (!hdev->suspend_notifier.notifier_call &&
2767	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769		ret = register_pm_notifier(&hdev->suspend_notifier);
2770	}
2771
2772	return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777	int ret = 0;
2778
2779	if (hdev->suspend_notifier.notifier_call) {
2780		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781		if (!ret)
2782			hdev->suspend_notifier.notifier_call = NULL;
2783	}
2784
2785	return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799		disable_delayed_work_sync(&hdev->cmd_timer);
2800		disable_delayed_work_sync(&hdev->ncmd_timer);
2801	} else  {
2802		cancel_delayed_work_sync(&hdev->cmd_timer);
2803		cancel_delayed_work_sync(&hdev->ncmd_timer);
2804	}
2805
2806	atomic_set(&hdev->cmd_cnt, 1);
2807
2808	hci_cmd_sync_cancel_sync(hdev, err);
2809}
 
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814	int ret;
2815
2816	bt_dev_dbg(hdev, "");
2817
2818	/* Suspend should only act on when powered. */
2819	if (!hdev_is_powered(hdev) ||
2820	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821		return 0;
2822
2823	/* If powering down don't attempt to suspend */
2824	if (mgmt_powering_down(hdev))
2825		return 0;
2826
2827	/* Cancel potentially blocking sync operation before suspend */
2828	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830	hci_req_sync_lock(hdev);
2831	ret = hci_suspend_sync(hdev);
2832	hci_req_sync_unlock(hdev);
2833
2834	hci_clear_wake_reason(hdev);
2835	mgmt_suspending(hdev, hdev->suspend_state);
2836
2837	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838	return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845	int ret;
2846
2847	bt_dev_dbg(hdev, "");
2848
2849	/* Resume should only act on when powered. */
2850	if (!hdev_is_powered(hdev) ||
2851	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852		return 0;
2853
2854	/* If powering down don't attempt to resume */
2855	if (mgmt_powering_down(hdev))
2856		return 0;
2857
2858	hci_req_sync_lock(hdev);
2859	ret = hci_resume_sync(hdev);
2860	hci_req_sync_unlock(hdev);
2861
2862	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863		      hdev->wake_addr_type);
2864
2865	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866	return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874	struct sk_buff *skb;
2875
2876	skb = bt_skb_alloc(3, GFP_ATOMIC);
2877	if (!skb)
2878		return -ENOMEM;
2879
2880	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881	skb_put_data(skb, hw_err, 3);
2882
2883	bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885	/* Send Hardware Error to upper stack */
2886	return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892	if (hdev->classify_pkt_type)
2893		return hdev->classify_pkt_type(hdev, skb);
2894
2895	return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901	u8 dev_pkt_type;
2902
2903	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904		      && !test_bit(HCI_INIT, &hdev->flags))) {
2905		kfree_skb(skb);
2906		return -ENXIO;
2907	}
2908
2909	/* Check if the driver agree with packet type classification */
2910	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912		hci_skb_pkt_type(skb) = dev_pkt_type;
2913	}
2914
2915	switch (hci_skb_pkt_type(skb)) {
2916	case HCI_EVENT_PKT:
2917		break;
2918	case HCI_ACLDATA_PKT:
2919		/* Detect if ISO packet has been sent as ACL */
2920		if (hci_conn_num(hdev, ISO_LINK)) {
2921			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922			__u8 type;
2923
2924			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925			if (type == ISO_LINK)
2926				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927		}
2928		break;
2929	case HCI_SCODATA_PKT:
2930		break;
2931	case HCI_ISODATA_PKT:
2932		break;
2933	default:
2934		kfree_skb(skb);
2935		return -EINVAL;
2936	}
2937
2938	/* Incoming skb */
2939	bt_cb(skb)->incoming = 1;
2940
2941	/* Time stamp */
2942	__net_timestamp(skb);
2943
2944	skb_queue_tail(&hdev->rx_q, skb);
2945	queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947	return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954	/* Mark as diagnostic packet */
2955	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2956
2957	/* Time stamp */
2958	__net_timestamp(skb);
2959
2960	skb_queue_tail(&hdev->rx_q, skb);
2961	queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963	return 0;
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969	va_list vargs;
2970
2971	va_start(vargs, fmt);
2972	kfree_const(hdev->hw_info);
2973	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974	va_end(vargs);
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980	va_list vargs;
2981
2982	va_start(vargs, fmt);
2983	kfree_const(hdev->fw_info);
2984	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985	va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993	BT_DBG("%p name %s", cb, cb->name);
2994
2995	list_add_tail_rcu(&cb->list, &hci_cb_list);
 
 
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003	BT_DBG("%p name %s", cb, cb->name);
3004
3005	list_del_rcu(&cb->list);
3006	synchronize_rcu();
 
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014	int err;
3015
3016	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017	       skb->len);
3018
3019	/* Time stamp */
3020	__net_timestamp(skb);
3021
3022	/* Send copy to monitor */
3023	hci_send_to_monitor(hdev, skb);
3024
3025	if (atomic_read(&hdev->promisc)) {
3026		/* Send copy to the sockets */
3027		hci_send_to_sock(hdev, skb);
3028	}
3029
3030	/* Get rid of skb owner, prior to sending to the driver. */
3031	skb_orphan(skb);
3032
3033	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034		kfree_skb(skb);
3035		return -EINVAL;
3036	}
3037
3038	err = hdev->send(hdev, skb);
3039	if (err < 0) {
3040		bt_dev_err(hdev, "sending frame failed (%d)", err);
3041		kfree_skb(skb);
3042		return err;
3043	}
3044
3045	return 0;
3046}
3047
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050		 const void *param)
3051{
3052	struct sk_buff *skb;
3053
3054	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057	if (!skb) {
3058		bt_dev_err(hdev, "no memory for command");
3059		return -ENOMEM;
3060	}
3061
3062	/* Stand-alone HCI commands must be flagged as
3063	 * single-command requests.
3064	 */
3065	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067	skb_queue_tail(&hdev->cmd_q, skb);
3068	queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070	return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074		   const void *param)
3075{
3076	struct sk_buff *skb;
3077
3078	if (hci_opcode_ogf(opcode) != 0x3f) {
3079		/* A controller receiving a command shall respond with either
3080		 * a Command Status Event or a Command Complete Event.
3081		 * Therefore, all standard HCI commands must be sent via the
3082		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083		 * Some vendors do not comply with this rule for vendor-specific
3084		 * commands and do not return any event. We want to support
3085		 * unresponded commands for such cases only.
3086		 */
3087		bt_dev_err(hdev, "unresponded command not supported");
3088		return -EINVAL;
3089	}
3090
3091	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3092	if (!skb) {
3093		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094			   opcode);
3095		return -ENOMEM;
3096	}
3097
3098	hci_send_frame(hdev, skb);
3099
3100	return 0;
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107	struct hci_command_hdr *hdr;
3108
3109	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110		return NULL;
3111
3112	hdr = (void *)skb->data;
3113
3114	if (hdr->opcode != cpu_to_le16(opcode))
3115		return NULL;
3116
3117	return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123	void *data;
3124
3125	/* Check if opcode matches last sent command */
3126	data = hci_cmd_data(hdev->sent_cmd, opcode);
3127	if (!data)
3128		/* Check if opcode matches last request */
3129		data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131	return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3136{
3137	struct hci_event_hdr *hdr;
3138	int offset;
3139
3140	if (!hdev->recv_event)
3141		return NULL;
3142
3143	hdr = (void *)hdev->recv_event->data;
3144	offset = sizeof(*hdr);
3145
3146	if (hdr->evt != event) {
3147		/* In case of LE metaevent check the subevent match */
3148		if (hdr->evt == HCI_EV_LE_META) {
3149			struct hci_ev_le_meta *ev;
3150
3151			ev = (void *)hdev->recv_event->data + offset;
3152			offset += sizeof(*ev);
3153			if (ev->subevent == event)
3154				goto found;
3155		}
3156		return NULL;
3157	}
3158
3159found:
3160	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3161
3162	return hdev->recv_event->data + offset;
3163}
 
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168	struct hci_acl_hdr *hdr;
3169	int len = skb->len;
3170
3171	skb_push(skb, HCI_ACL_HDR_SIZE);
3172	skb_reset_transport_header(skb);
3173	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175	hdr->dlen   = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179			  struct sk_buff *skb, __u16 flags)
3180{
3181	struct hci_conn *conn = chan->conn;
3182	struct hci_dev *hdev = conn->hdev;
3183	struct sk_buff *list;
3184
3185	skb->len = skb_headlen(skb);
3186	skb->data_len = 0;
3187
3188	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3191
3192	list = skb_shinfo(skb)->frag_list;
3193	if (!list) {
3194		/* Non fragmented */
3195		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197		skb_queue_tail(queue, skb);
3198	} else {
3199		/* Fragmented */
3200		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202		skb_shinfo(skb)->frag_list = NULL;
3203
3204		/* Queue all fragments atomically. We need to use spin_lock_bh
3205		 * here because of 6LoWPAN links, as there this function is
3206		 * called from softirq and using normal spin lock could cause
3207		 * deadlocks.
3208		 */
3209		spin_lock_bh(&queue->lock);
3210
3211		__skb_queue_tail(queue, skb);
3212
3213		flags &= ~ACL_START;
3214		flags |= ACL_CONT;
3215		do {
3216			skb = list; list = list->next;
3217
3218			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219			hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223			__skb_queue_tail(queue, skb);
3224		} while (list);
3225
3226		spin_unlock_bh(&queue->lock);
3227	}
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232	struct hci_dev *hdev = chan->conn->hdev;
3233
3234	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236	hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238	queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244	struct hci_dev *hdev = conn->hdev;
3245	struct hci_sco_hdr hdr;
3246
3247	BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249	hdr.handle = cpu_to_le16(conn->handle);
3250	hdr.dlen   = skb->len;
3251
3252	skb_push(skb, HCI_SCO_HDR_SIZE);
3253	skb_reset_transport_header(skb);
3254	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258	skb_queue_tail(&conn->data_q, skb);
3259	queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265	struct hci_iso_hdr *hdr;
3266	int len = skb->len;
3267
3268	skb_push(skb, HCI_ISO_HDR_SIZE);
3269	skb_reset_transport_header(skb);
3270	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272	hdr->dlen   = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276			  struct sk_buff *skb)
3277{
3278	struct hci_dev *hdev = conn->hdev;
3279	struct sk_buff *list;
3280	__u16 flags;
3281
3282	skb->len = skb_headlen(skb);
3283	skb->data_len = 0;
3284
3285	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287	list = skb_shinfo(skb)->frag_list;
3288
3289	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290	hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292	if (!list) {
3293		/* Non fragmented */
3294		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296		skb_queue_tail(queue, skb);
3297	} else {
3298		/* Fragmented */
3299		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301		skb_shinfo(skb)->frag_list = NULL;
3302
3303		__skb_queue_tail(queue, skb);
3304
3305		do {
3306			skb = list; list = list->next;
3307
3308			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310						   0x00);
3311			hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315			__skb_queue_tail(queue, skb);
3316		} while (list);
3317	}
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322	struct hci_dev *hdev = conn->hdev;
3323
3324	BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326	hci_queue_iso(conn, &conn->data_q, skb);
3327
3328	queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336	struct hci_dev *hdev;
3337	int cnt, q;
3338
3339	if (!conn) {
3340		*quote = 0;
3341		return;
3342	}
3343
3344	hdev = conn->hdev;
3345
3346	switch (conn->type) {
3347	case ACL_LINK:
3348		cnt = hdev->acl_cnt;
3349		break;
3350	case SCO_LINK:
3351	case ESCO_LINK:
3352		cnt = hdev->sco_cnt;
3353		break;
3354	case LE_LINK:
3355		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356		break;
3357	case ISO_LINK:
3358		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360		break;
3361	default:
3362		cnt = 0;
3363		bt_dev_err(hdev, "unknown link type %d", conn->type);
3364	}
3365
3366	q = cnt / num;
3367	*quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371				     int *quote)
3372{
3373	struct hci_conn_hash *h = &hdev->conn_hash;
3374	struct hci_conn *conn = NULL, *c;
3375	unsigned int num = 0, min = ~0;
3376
3377	/* We don't have to lock device here. Connections are always
3378	 * added and removed with TX task disabled. */
3379
3380	rcu_read_lock();
3381
3382	list_for_each_entry_rcu(c, &h->list, list) {
3383		if (c->type != type || skb_queue_empty(&c->data_q))
3384			continue;
3385
3386		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387			continue;
3388
3389		num++;
3390
3391		if (c->sent < min) {
3392			min  = c->sent;
3393			conn = c;
3394		}
3395
3396		if (hci_conn_num(hdev, type) == num)
3397			break;
3398	}
3399
3400	rcu_read_unlock();
3401
3402	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	BT_DBG("conn %p quote %d", conn, *quote);
3405	return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *c;
3412
3413	bt_dev_err(hdev, "link tx timeout");
3414
3415	rcu_read_lock();
3416
3417	/* Kill stalled connections */
3418	list_for_each_entry_rcu(c, &h->list, list) {
3419		if (c->type == type && c->sent) {
3420			bt_dev_err(hdev, "killing stalled connection %pMR",
3421				   &c->dst);
3422			/* hci_disconnect might sleep, so, we have to release
3423			 * the RCU read lock before calling it.
3424			 */
3425			rcu_read_unlock();
3426			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427			rcu_read_lock();
3428		}
3429	}
3430
3431	rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435				      int *quote)
3436{
3437	struct hci_conn_hash *h = &hdev->conn_hash;
3438	struct hci_chan *chan = NULL;
3439	unsigned int num = 0, min = ~0, cur_prio = 0;
3440	struct hci_conn *conn;
3441	int conn_num = 0;
3442
3443	BT_DBG("%s", hdev->name);
3444
3445	rcu_read_lock();
3446
3447	list_for_each_entry_rcu(conn, &h->list, list) {
3448		struct hci_chan *tmp;
3449
3450		if (conn->type != type)
3451			continue;
3452
3453		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454			continue;
3455
3456		conn_num++;
3457
3458		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459			struct sk_buff *skb;
3460
3461			if (skb_queue_empty(&tmp->data_q))
3462				continue;
3463
3464			skb = skb_peek(&tmp->data_q);
3465			if (skb->priority < cur_prio)
3466				continue;
3467
3468			if (skb->priority > cur_prio) {
3469				num = 0;
3470				min = ~0;
3471				cur_prio = skb->priority;
3472			}
3473
3474			num++;
3475
3476			if (conn->sent < min) {
3477				min  = conn->sent;
3478				chan = tmp;
3479			}
3480		}
3481
3482		if (hci_conn_num(hdev, type) == conn_num)
3483			break;
3484	}
3485
3486	rcu_read_unlock();
3487
3488	if (!chan)
3489		return NULL;
3490
3491	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492
 
 
3493	BT_DBG("chan %p quote %d", chan, *quote);
3494	return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499	struct hci_conn_hash *h = &hdev->conn_hash;
3500	struct hci_conn *conn;
3501	int num = 0;
3502
3503	BT_DBG("%s", hdev->name);
3504
3505	rcu_read_lock();
3506
3507	list_for_each_entry_rcu(conn, &h->list, list) {
3508		struct hci_chan *chan;
3509
3510		if (conn->type != type)
3511			continue;
3512
3513		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514			continue;
3515
3516		num++;
3517
3518		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519			struct sk_buff *skb;
3520
3521			if (chan->sent) {
3522				chan->sent = 0;
3523				continue;
3524			}
3525
3526			if (skb_queue_empty(&chan->data_q))
3527				continue;
3528
3529			skb = skb_peek(&chan->data_q);
3530			if (skb->priority >= HCI_PRIO_MAX - 1)
3531				continue;
3532
3533			skb->priority = HCI_PRIO_MAX - 1;
3534
3535			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536			       skb->priority);
3537		}
3538
3539		if (hci_conn_num(hdev, type) == num)
3540			break;
3541	}
3542
3543	rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3548{
3549	unsigned long last_tx;
 
 
 
 
3550
3551	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552		return;
3553
3554	switch (type) {
3555	case LE_LINK:
3556		last_tx = hdev->le_last_tx;
3557		break;
3558	default:
3559		last_tx = hdev->acl_last_tx;
 
3560		break;
3561	}
3562
3563	/* tx timeout must be longer than maximum link supervision timeout
3564	 * (40.9 seconds)
3565	 */
3566	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567		hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573	struct hci_conn *conn;
3574	struct sk_buff *skb;
3575	int quote;
3576
3577	BT_DBG("%s", hdev->name);
3578
3579	if (!hci_conn_num(hdev, SCO_LINK))
3580		return;
3581
3582	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3583		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584			BT_DBG("skb %p len %d", skb, skb->len);
3585			hci_send_frame(hdev, skb);
3586
3587			conn->sent++;
3588			if (conn->sent == ~0)
3589				conn->sent = 0;
3590		}
3591	}
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596	struct hci_conn *conn;
3597	struct sk_buff *skb;
3598	int quote;
3599
3600	BT_DBG("%s", hdev->name);
3601
3602	if (!hci_conn_num(hdev, ESCO_LINK))
3603		return;
3604
3605	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606						     &quote))) {
3607		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608			BT_DBG("skb %p len %d", skb, skb->len);
3609			hci_send_frame(hdev, skb);
3610
3611			conn->sent++;
3612			if (conn->sent == ~0)
3613				conn->sent = 0;
3614		}
3615	}
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620	unsigned int cnt = hdev->acl_cnt;
3621	struct hci_chan *chan;
3622	struct sk_buff *skb;
3623	int quote;
3624
3625	__check_timeout(hdev, cnt, ACL_LINK);
3626
3627	while (hdev->acl_cnt &&
3628	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3629		u32 priority = (skb_peek(&chan->data_q))->priority;
3630		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3631			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632			       skb->len, skb->priority);
3633
3634			/* Stop if priority has changed */
3635			if (skb->priority < priority)
3636				break;
3637
3638			skb = skb_dequeue(&chan->data_q);
3639
3640			hci_conn_enter_active_mode(chan->conn,
3641						   bt_cb(skb)->force_active);
3642
3643			hci_send_frame(hdev, skb);
3644			hdev->acl_last_tx = jiffies;
3645
3646			hdev->acl_cnt--;
3647			chan->sent++;
3648			chan->conn->sent++;
3649
3650			/* Send pending SCO packets right away */
3651			hci_sched_sco(hdev);
3652			hci_sched_esco(hdev);
3653		}
3654	}
3655
3656	if (cnt != hdev->acl_cnt)
3657		hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662	BT_DBG("%s", hdev->name);
3663
3664	/* No ACL link over BR/EDR controller */
3665	if (!hci_conn_num(hdev, ACL_LINK))
3666		return;
3667
3668	hci_sched_acl_pkt(hdev);
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673	struct hci_chan *chan;
3674	struct sk_buff *skb;
3675	int quote, *cnt, tmp;
3676
3677	BT_DBG("%s", hdev->name);
3678
3679	if (!hci_conn_num(hdev, LE_LINK))
3680		return;
3681
3682	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
 
 
 
 
 
 
3683
3684	__check_timeout(hdev, *cnt, LE_LINK);
3685
3686	tmp = *cnt;
3687	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3688		u32 priority = (skb_peek(&chan->data_q))->priority;
3689		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691			       skb->len, skb->priority);
3692
3693			/* Stop if priority has changed */
3694			if (skb->priority < priority)
3695				break;
3696
3697			skb = skb_dequeue(&chan->data_q);
3698
3699			hci_send_frame(hdev, skb);
3700			hdev->le_last_tx = jiffies;
3701
3702			(*cnt)--;
3703			chan->sent++;
3704			chan->conn->sent++;
3705
3706			/* Send pending SCO packets right away */
3707			hci_sched_sco(hdev);
3708			hci_sched_esco(hdev);
3709		}
3710	}
3711
3712	if (*cnt != tmp)
 
 
 
 
 
3713		hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719	struct hci_conn *conn;
3720	struct sk_buff *skb;
3721	int quote, *cnt;
3722
3723	BT_DBG("%s", hdev->name);
3724
3725	if (!hci_conn_num(hdev, ISO_LINK))
3726		return;
3727
3728	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3731		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732			BT_DBG("skb %p len %d", skb, skb->len);
3733			hci_send_frame(hdev, skb);
3734
3735			conn->sent++;
3736			if (conn->sent == ~0)
3737				conn->sent = 0;
3738			(*cnt)--;
3739		}
3740	}
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746	struct sk_buff *skb;
3747
3748	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752		/* Schedule queues and send stuff to HCI driver */
 
3753		hci_sched_sco(hdev);
3754		hci_sched_esco(hdev);
3755		hci_sched_iso(hdev);
3756		hci_sched_acl(hdev);
3757		hci_sched_le(hdev);
3758	}
3759
3760	/* Send next queued raw (unknown type) packet */
3761	while ((skb = skb_dequeue(&hdev->raw_q)))
3762		hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770	struct hci_acl_hdr *hdr;
3771	struct hci_conn *conn;
3772	__u16 handle, flags;
3773
3774	hdr = skb_pull_data(skb, sizeof(*hdr));
3775	if (!hdr) {
3776		bt_dev_err(hdev, "ACL packet too small");
3777		goto drop;
3778	}
3779
3780	handle = __le16_to_cpu(hdr->handle);
3781	flags  = hci_flags(handle);
3782	handle = hci_handle(handle);
3783
3784	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785		   handle, flags);
3786
3787	hdev->stat.acl_rx++;
3788
3789	hci_dev_lock(hdev);
3790	conn = hci_conn_hash_lookup_handle(hdev, handle);
3791	hci_dev_unlock(hdev);
3792
3793	if (conn) {
3794		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796		/* Send to upper protocol */
3797		l2cap_recv_acldata(conn, skb, flags);
3798		return;
3799	} else {
3800		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801			   handle);
3802	}
3803
3804drop:
3805	kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811	struct hci_sco_hdr *hdr;
3812	struct hci_conn *conn;
3813	__u16 handle, flags;
3814
3815	hdr = skb_pull_data(skb, sizeof(*hdr));
3816	if (!hdr) {
3817		bt_dev_err(hdev, "SCO packet too small");
3818		goto drop;
3819	}
3820
3821	handle = __le16_to_cpu(hdr->handle);
3822	flags  = hci_flags(handle);
3823	handle = hci_handle(handle);
3824
3825	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826		   handle, flags);
3827
3828	hdev->stat.sco_rx++;
3829
3830	hci_dev_lock(hdev);
3831	conn = hci_conn_hash_lookup_handle(hdev, handle);
3832	hci_dev_unlock(hdev);
3833
3834	if (conn) {
3835		/* Send to upper protocol */
3836		hci_skb_pkt_status(skb) = flags & 0x03;
3837		sco_recv_scodata(conn, skb);
3838		return;
3839	} else {
3840		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841				       handle);
3842	}
3843
3844drop:
3845	kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850	struct hci_iso_hdr *hdr;
3851	struct hci_conn *conn;
3852	__u16 handle, flags;
3853
3854	hdr = skb_pull_data(skb, sizeof(*hdr));
3855	if (!hdr) {
3856		bt_dev_err(hdev, "ISO packet too small");
3857		goto drop;
3858	}
3859
3860	handle = __le16_to_cpu(hdr->handle);
3861	flags  = hci_flags(handle);
3862	handle = hci_handle(handle);
3863
3864	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865		   handle, flags);
3866
3867	hci_dev_lock(hdev);
3868	conn = hci_conn_hash_lookup_handle(hdev, handle);
3869	hci_dev_unlock(hdev);
3870
3871	if (!conn) {
3872		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873			   handle);
3874		goto drop;
3875	}
3876
3877	/* Send to upper protocol */
3878	iso_recv(conn, skb, flags);
3879	return;
3880
3881drop:
3882	kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887	struct sk_buff *skb;
3888
3889	skb = skb_peek(&hdev->cmd_q);
3890	if (!skb)
3891		return true;
3892
3893	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898	struct hci_command_hdr *sent;
3899	struct sk_buff *skb;
3900	u16 opcode;
3901
3902	if (!hdev->sent_cmd)
3903		return;
3904
3905	sent = (void *) hdev->sent_cmd->data;
3906	opcode = __le16_to_cpu(sent->opcode);
3907	if (opcode == HCI_OP_RESET)
3908		return;
3909
3910	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911	if (!skb)
3912		return;
3913
3914	skb_queue_head(&hdev->cmd_q, skb);
3915	queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919			  hci_req_complete_t *req_complete,
3920			  hci_req_complete_skb_t *req_complete_skb)
3921{
3922	struct sk_buff *skb;
3923	unsigned long flags;
3924
3925	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927	/* If the completed command doesn't match the last one that was
3928	 * sent we need to do special handling of it.
3929	 */
3930	if (!hci_sent_cmd_data(hdev, opcode)) {
3931		/* Some CSR based controllers generate a spontaneous
3932		 * reset complete event during init and any pending
3933		 * command will never be completed. In such a case we
3934		 * need to resend whatever was the last sent
3935		 * command.
3936		 */
3937		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938			hci_resend_last(hdev);
3939
3940		return;
3941	}
3942
3943	/* If we reach this point this event matches the last command sent */
3944	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946	/* If the command succeeded and there's still more commands in
3947	 * this request the request is not yet complete.
3948	 */
3949	if (!status && !hci_req_is_complete(hdev))
3950		return;
3951
3952	skb = hdev->req_skb;
3953
3954	/* If this was the last command in a request the complete
3955	 * callback would be found in hdev->req_skb instead of the
3956	 * command queue (hdev->cmd_q).
3957	 */
3958	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960		return;
3961	}
3962
3963	if (skb && bt_cb(skb)->hci.req_complete) {
3964		*req_complete = bt_cb(skb)->hci.req_complete;
3965		return;
3966	}
3967
3968	/* Remove all pending commands belonging to this request */
3969	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972			__skb_queue_head(&hdev->cmd_q, skb);
3973			break;
3974		}
3975
3976		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978		else
3979			*req_complete = bt_cb(skb)->hci.req_complete;
3980		dev_kfree_skb_irq(skb);
3981	}
3982	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988	struct sk_buff *skb;
3989
3990	BT_DBG("%s", hdev->name);
3991
3992	/* The kcov_remote functions used for collecting packet parsing
3993	 * coverage information from this background thread and associate
3994	 * the coverage with the syscall's thread which originally injected
3995	 * the packet. This helps fuzzing the kernel.
3996	 */
3997	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998		kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000		/* Send copy to monitor */
4001		hci_send_to_monitor(hdev, skb);
4002
4003		if (atomic_read(&hdev->promisc)) {
4004			/* Send copy to the sockets */
4005			hci_send_to_sock(hdev, skb);
4006		}
4007
4008		/* If the device has been opened in HCI_USER_CHANNEL,
4009		 * the userspace has exclusive access to device.
4010		 * When device is HCI_INIT, we still need to process
4011		 * the data packets to the driver in order
4012		 * to complete its setup().
4013		 */
4014		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015		    !test_bit(HCI_INIT, &hdev->flags)) {
4016			kfree_skb(skb);
4017			continue;
4018		}
4019
4020		if (test_bit(HCI_INIT, &hdev->flags)) {
4021			/* Don't process data packets in this states. */
4022			switch (hci_skb_pkt_type(skb)) {
4023			case HCI_ACLDATA_PKT:
4024			case HCI_SCODATA_PKT:
4025			case HCI_ISODATA_PKT:
4026				kfree_skb(skb);
4027				continue;
4028			}
4029		}
4030
4031		/* Process frame */
4032		switch (hci_skb_pkt_type(skb)) {
4033		case HCI_EVENT_PKT:
4034			BT_DBG("%s Event packet", hdev->name);
4035			hci_event_packet(hdev, skb);
4036			break;
4037
4038		case HCI_ACLDATA_PKT:
4039			BT_DBG("%s ACL data packet", hdev->name);
4040			hci_acldata_packet(hdev, skb);
4041			break;
4042
4043		case HCI_SCODATA_PKT:
4044			BT_DBG("%s SCO data packet", hdev->name);
4045			hci_scodata_packet(hdev, skb);
4046			break;
4047
4048		case HCI_ISODATA_PKT:
4049			BT_DBG("%s ISO data packet", hdev->name);
4050			hci_isodata_packet(hdev, skb);
4051			break;
4052
4053		default:
4054			kfree_skb(skb);
4055			break;
4056		}
4057	}
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062	int err;
4063
4064	bt_dev_dbg(hdev, "skb %p", skb);
4065
4066	kfree_skb(hdev->sent_cmd);
4067
4068	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069	if (!hdev->sent_cmd) {
4070		skb_queue_head(&hdev->cmd_q, skb);
4071		queue_work(hdev->workqueue, &hdev->cmd_work);
4072		return;
4073	}
4074
4075	err = hci_send_frame(hdev, skb);
4076	if (err < 0) {
4077		hci_cmd_sync_cancel_sync(hdev, -err);
4078		return;
4079	}
4080
4081	if (hdev->req_status == HCI_REQ_PEND &&
4082	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083		kfree_skb(hdev->req_skb);
4084		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	}
4086
4087	atomic_dec(&hdev->cmd_cnt);
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093	struct sk_buff *skb;
4094
4095	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4097
4098	/* Send queued commands */
4099	if (atomic_read(&hdev->cmd_cnt)) {
4100		skb = skb_dequeue(&hdev->cmd_q);
4101		if (!skb)
4102			return;
4103
4104		hci_send_cmd_sync(hdev, skb);
4105
4106		rcu_read_lock();
4107		if (test_bit(HCI_RESET, &hdev->flags) ||
4108		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109			cancel_delayed_work(&hdev->cmd_timer);
4110		else
4111			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112					   HCI_CMD_TIMEOUT);
4113		rcu_read_unlock();
 
 
 
 
 
 
 
4114	}
4115}