Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *
   4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
   5 *
   6 * on-disk ntfs structs
   7 */
   8
   9// clang-format off
  10#ifndef _LINUX_NTFS3_NTFS_H
  11#define _LINUX_NTFS3_NTFS_H
  12
  13#include <linux/blkdev.h>
  14#include <linux/build_bug.h>
  15#include <linux/kernel.h>
  16#include <linux/stddef.h>
  17#include <linux/string.h>
  18#include <linux/types.h>
  19
  20#include "debug.h"
  21
  22/* TODO: Check 4K MFT record and 512 bytes cluster. */
  23
  24/* Check each run for marked clusters. */
  25#define NTFS3_CHECK_FREE_CLST
  26
  27#define NTFS_NAME_LEN 255
  28
  29/*
  30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
  31 * xfstest generic/041 creates 3003 hardlinks.
  32 */
  33#define NTFS_LINK_MAX 4000
  34
  35/*
  36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
  37 * Logical and virtual cluster number if needed, may be
  38 * redefined to use 64 bit value.
  39 */
  40//#define CONFIG_NTFS3_64BIT_CLUSTER
  41
  42#define NTFS_LZNT_MAX_CLUSTER	4096
  43#define NTFS_LZNT_CUNIT		4
  44#define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
  45
  46struct GUID {
  47	__le32 Data1;
  48	__le16 Data2;
  49	__le16 Data3;
  50	u8 Data4[8];
  51};
  52
  53/*
  54 * This struct repeats layout of ATTR_FILE_NAME
  55 * at offset 0x40.
  56 * It used to store global constants NAME_MFT/NAME_MIRROR...
  57 * most constant names are shorter than 10.
  58 */
  59struct cpu_str {
  60	u8 len;
  61	u8 unused;
  62	u16 name[];
  63};
  64
  65struct le_str {
  66	u8 len;
  67	u8 unused;
  68	__le16 name[];
  69};
  70
  71static_assert(SECTOR_SHIFT == 9);
  72
  73#ifdef CONFIG_NTFS3_64BIT_CLUSTER
  74typedef u64 CLST;
  75static_assert(sizeof(size_t) == 8);
  76#else
  77typedef u32 CLST;
  78#endif
  79
  80#define SPARSE_LCN64   ((u64)-1)
  81#define SPARSE_LCN     ((CLST)-1)
  82#define RESIDENT_LCN   ((CLST)-2)
  83#define COMPRESSED_LCN ((CLST)-3)
  84
  85enum RECORD_NUM {
  86	MFT_REC_MFT		= 0,
  87	MFT_REC_MIRR		= 1,
  88	MFT_REC_LOG		= 2,
  89	MFT_REC_VOL		= 3,
  90	MFT_REC_ATTR		= 4,
  91	MFT_REC_ROOT		= 5,
  92	MFT_REC_BITMAP		= 6,
  93	MFT_REC_BOOT		= 7,
  94	MFT_REC_BADCLUST	= 8,
  95	MFT_REC_SECURE		= 9,
  96	MFT_REC_UPCASE		= 10,
  97	MFT_REC_EXTEND		= 11,
  98	MFT_REC_RESERVED	= 12,
  99	MFT_REC_FREE		= 16,
 100	MFT_REC_USER		= 24,
 101};
 102
 103enum ATTR_TYPE {
 104	ATTR_ZERO		= cpu_to_le32(0x00),
 105	ATTR_STD		= cpu_to_le32(0x10),
 106	ATTR_LIST		= cpu_to_le32(0x20),
 107	ATTR_NAME		= cpu_to_le32(0x30),
 108	ATTR_ID			= cpu_to_le32(0x40),
 109	ATTR_SECURE		= cpu_to_le32(0x50),
 110	ATTR_LABEL		= cpu_to_le32(0x60),
 111	ATTR_VOL_INFO		= cpu_to_le32(0x70),
 112	ATTR_DATA		= cpu_to_le32(0x80),
 113	ATTR_ROOT		= cpu_to_le32(0x90),
 114	ATTR_ALLOC		= cpu_to_le32(0xA0),
 115	ATTR_BITMAP		= cpu_to_le32(0xB0),
 116	ATTR_REPARSE		= cpu_to_le32(0xC0),
 117	ATTR_EA_INFO		= cpu_to_le32(0xD0),
 118	ATTR_EA			= cpu_to_le32(0xE0),
 119	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
 120	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
 121	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
 122};
 123
 124static_assert(sizeof(enum ATTR_TYPE) == 4);
 125
 126enum FILE_ATTRIBUTE {
 127	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
 128	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
 129	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
 130	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
 131	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
 132	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
 133	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
 134	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
 135	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
 136	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
 137	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
 138	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
 139	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
 140	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
 141	FILE_ATTRIBUTE_INDEX		= cpu_to_le32(0x20000000)
 142};
 143
 144static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
 145
 146extern const struct cpu_str NAME_MFT;
 147extern const struct cpu_str NAME_MIRROR;
 148extern const struct cpu_str NAME_LOGFILE;
 149extern const struct cpu_str NAME_VOLUME;
 150extern const struct cpu_str NAME_ATTRDEF;
 151extern const struct cpu_str NAME_ROOT;
 152extern const struct cpu_str NAME_BITMAP;
 153extern const struct cpu_str NAME_BOOT;
 154extern const struct cpu_str NAME_BADCLUS;
 155extern const struct cpu_str NAME_QUOTA;
 156extern const struct cpu_str NAME_SECURE;
 157extern const struct cpu_str NAME_UPCASE;
 158extern const struct cpu_str NAME_EXTEND;
 159extern const struct cpu_str NAME_OBJID;
 160extern const struct cpu_str NAME_REPARSE;
 161extern const struct cpu_str NAME_USNJRNL;
 162
 163extern const __le16 I30_NAME[4];
 164extern const __le16 SII_NAME[4];
 165extern const __le16 SDH_NAME[4];
 166extern const __le16 SO_NAME[2];
 167extern const __le16 SQ_NAME[2];
 168extern const __le16 SR_NAME[2];
 169
 170extern const __le16 BAD_NAME[4];
 171extern const __le16 SDS_NAME[4];
 172extern const __le16 WOF_NAME[17];	/* WofCompressedData */
 173
 174/* MFT record number structure. */
 175struct MFT_REF {
 176	__le32 low;	// The low part of the number.
 177	__le16 high;	// The high part of the number.
 178	__le16 seq;	// The sequence number of MFT record.
 179};
 180
 181static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
 182
 183static inline CLST ino_get(const struct MFT_REF *ref)
 184{
 185#ifdef CONFIG_NTFS3_64BIT_CLUSTER
 186	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
 187#else
 188	return le32_to_cpu(ref->low);
 189#endif
 190}
 191
 192struct NTFS_BOOT {
 193	u8 jump_code[3];	// 0x00: Jump to boot code.
 194	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
 195
 196	// NOTE: This member is not aligned(!)
 197	// bytes_per_sector[0] must be 0.
 198	// bytes_per_sector[1] must be multiplied by 256.
 199	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
 200
 201	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
 202	u8 unused1[7];
 203	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
 204	u8 unused2[2];
 205	__le16 sct_per_track;	// 0x18: number of sectors per track.
 206	__le16 heads;		// 0x1A: number of heads per cylinder.
 207	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
 208	u8 unused3[4];
 209	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
 210	u8 unused4;
 211	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
 212	u8 unused5;
 213	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
 214	__le64 mft_clst;	// 0x30: First cluster of $MFT
 215	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
 216	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
 217	u8 unused6[3];
 218	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
 219	u8 unused7[3];
 220	__le64 serial_num;	// 0x48: Volume serial number
 221	__le32 check_sum;	// 0x50: Simple additive checksum of all
 222				// of the u32's which precede the 'check_sum'.
 223
 224	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
 225	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
 226};
 227
 228static_assert(sizeof(struct NTFS_BOOT) == 0x200);
 229
 230enum NTFS_SIGNATURE {
 231	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
 232	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
 233	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
 234	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
 235	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
 236	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
 237	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
 238	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
 239};
 240
 241static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
 242
 243/* MFT Record header structure. */
 244struct NTFS_RECORD_HEADER {
 245	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
 246	enum NTFS_SIGNATURE sign; // 0x00:
 247	__le16 fix_off;		// 0x04:
 248	__le16 fix_num;		// 0x06:
 249	__le64 lsn;		// 0x08: Log file sequence number,
 250};
 251
 252static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
 253
 254static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
 255{
 256	return hdr->sign == NTFS_BAAD_SIGNATURE;
 257}
 258
 259/* Possible bits in struct MFT_REC.flags. */
 260enum RECORD_FLAG {
 261	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
 262	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
 263	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
 264	RECORD_FLAG_INDEX	= cpu_to_le16(0x0008),
 265};
 266
 267/* MFT Record structure. */
 268struct MFT_REC {
 269	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
 270
 271	__le16 seq;		// 0x10: Sequence number for this record.
 272	__le16 hard_links;	// 0x12: The number of hard links to record.
 273	__le16 attr_off;	// 0x14: Offset to attributes.
 274	__le16 flags;		// 0x16: See RECORD_FLAG.
 275	__le32 used;		// 0x18: The size of used part.
 276	__le32 total;		// 0x1C: Total record size.
 277
 278	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
 279	__le16 next_attr_id;	// 0x28: The next attribute Id.
 280
 281	__le16 res;		// 0x2A: High part of MFT record?
 282	__le32 mft_record;	// 0x2C: Current MFT record number.
 283	__le16 fixups[];	// 0x30:
 284};
 285
 286#define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
 287#define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
 288/*
 289 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
 290 * to format new mft records with bigger header (as current ntfs.sys does)
 291 *
 292 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
 293 * to format new mft records with smaller header (as old ntfs.sys did)
 294 * Both variants are valid.
 295 */
 296#define MFTRECORD_FIXUP_OFFSET  MFTRECORD_FIXUP_OFFSET_1
 297
 298static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
 299static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
 300
 301static inline bool is_rec_base(const struct MFT_REC *rec)
 302{
 303	const struct MFT_REF *r = &rec->parent_ref;
 304
 305	return !r->low && !r->high && !r->seq;
 306}
 307
 308static inline bool is_mft_rec5(const struct MFT_REC *rec)
 309{
 310	return le16_to_cpu(rec->rhdr.fix_off) >=
 311	       offsetof(struct MFT_REC, fixups);
 312}
 313
 314static inline bool is_rec_inuse(const struct MFT_REC *rec)
 315{
 316	return rec->flags & RECORD_FLAG_IN_USE;
 317}
 318
 319static inline bool clear_rec_inuse(struct MFT_REC *rec)
 320{
 321	return rec->flags &= ~RECORD_FLAG_IN_USE;
 322}
 323
 324/* Possible values of ATTR_RESIDENT.flags */
 325#define RESIDENT_FLAG_INDEXED 0x01
 326
 327struct ATTR_RESIDENT {
 328	__le32 data_size;	// 0x10: The size of data.
 329	__le16 data_off;	// 0x14: Offset to data.
 330	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
 331	u8 res;			// 0x17:
 332}; // sizeof() = 0x18
 333
 334struct ATTR_NONRESIDENT {
 335	__le64 svcn;		// 0x10: Starting VCN of this segment.
 336	__le64 evcn;		// 0x18: End VCN of this segment.
 337	__le16 run_off;		// 0x20: Offset to packed runs.
 338	// Unit of Compression size for this stream, expressed
 339	// as a log of the cluster size.
 340	//
 341	// 0 means file is not compressed
 342	// 1, 2, 3, and 4 are potentially legal values if the
 343	// stream is compressed, however the implementation
 344	// may only choose to use 4, or possibly 3.
 345        // Note that 4 means cluster size time 16.
 346        // If convenient the implementation may wish to accept a
 347	// reasonable range of legal values here (1-5?),
 348	// even if the implementation only generates
 349	// a smaller set of values itself.
 350	u8 c_unit;		// 0x22:
 351	u8 res1[5];		// 0x23:
 352	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
 353				// (multiple of cluster size)
 354	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
 355	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
 356	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
 357				// (present only for the first segment (0 == vcn)
 358				// of compressed attribute)
 359
 360}; // sizeof()=0x40 or 0x48 (if compressed)
 361
 362/* Possible values of ATTRIB.flags: */
 363#define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
 364#define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
 365#define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
 366#define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
 367
 368struct ATTRIB {
 369	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
 370	__le32 size;		// 0x04: The size of this attribute.
 371	u8 non_res;		// 0x08: Is this attribute non-resident?
 372	u8 name_len;		// 0x09: This attribute name length.
 373	__le16 name_off;	// 0x0A: Offset to the attribute name.
 374	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
 375	__le16 id;		// 0x0E: Unique id (per record).
 376
 377	union {
 378		struct ATTR_RESIDENT res;     // 0x10
 379		struct ATTR_NONRESIDENT nres; // 0x10
 380	};
 381};
 382
 383/* Define attribute sizes. */
 384#define SIZEOF_RESIDENT			0x18
 385#define SIZEOF_NONRESIDENT_EX		0x48
 386#define SIZEOF_NONRESIDENT		0x40
 387
 388#define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
 389#define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
 390#define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
 391
 392static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
 393{
 394	return attr->non_res ? ((attr->flags &
 395				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
 396					le64_to_cpu(attr->nres.total_size) :
 397					le64_to_cpu(attr->nres.alloc_size))
 398			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
 399}
 400
 401static inline u64 attr_size(const struct ATTRIB *attr)
 402{
 403	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
 404			       le32_to_cpu(attr->res.data_size);
 405}
 406
 407static inline bool is_attr_encrypted(const struct ATTRIB *attr)
 408{
 409	return attr->flags & ATTR_FLAG_ENCRYPTED;
 410}
 411
 412static inline bool is_attr_sparsed(const struct ATTRIB *attr)
 413{
 414	return attr->flags & ATTR_FLAG_SPARSED;
 415}
 416
 417static inline bool is_attr_compressed(const struct ATTRIB *attr)
 418{
 419	return attr->flags & ATTR_FLAG_COMPRESSED;
 420}
 421
 422static inline bool is_attr_ext(const struct ATTRIB *attr)
 423{
 424	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
 425}
 426
 427static inline bool is_attr_indexed(const struct ATTRIB *attr)
 428{
 429	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
 430}
 431
 432static inline __le16 const *attr_name(const struct ATTRIB *attr)
 433{
 434	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
 435}
 436
 437static inline u64 attr_svcn(const struct ATTRIB *attr)
 438{
 439	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
 440}
 441
 442static_assert(sizeof(struct ATTRIB) == 0x48);
 443static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
 444static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
 445
 446static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
 447{
 448	u32 asize, rsize;
 449	u16 off;
 450
 451	if (attr->non_res)
 452		return NULL;
 453
 454	asize = le32_to_cpu(attr->size);
 455	off = le16_to_cpu(attr->res.data_off);
 456
 457	if (asize < datasize + off)
 458		return NULL;
 459
 460	rsize = le32_to_cpu(attr->res.data_size);
 461	if (rsize < datasize)
 462		return NULL;
 463
 464	return Add2Ptr(attr, off);
 465}
 466
 467static inline void *resident_data(const struct ATTRIB *attr)
 468{
 469	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
 470}
 471
 472static inline void *attr_run(const struct ATTRIB *attr)
 473{
 474	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
 475}
 476
 477/* Standard information attribute (0x10). */
 478struct ATTR_STD_INFO {
 479	__le64 cr_time;		// 0x00: File creation file.
 480	__le64 m_time;		// 0x08: File modification time.
 481	__le64 c_time;		// 0x10: Last time any attribute was modified.
 482	__le64 a_time;		// 0x18: File last access time.
 483	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
 484	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
 485	__le32 ver_num;		// 0x28: Version Number.
 486	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
 487};
 488
 489static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
 490
 491#define SECURITY_ID_INVALID 0x00000000
 492#define SECURITY_ID_FIRST 0x00000100
 493
 494struct ATTR_STD_INFO5 {
 495	__le64 cr_time;		// 0x00: File creation file.
 496	__le64 m_time;		// 0x08: File modification time.
 497	__le64 c_time;		// 0x10: Last time any attribute was modified.
 498	__le64 a_time;		// 0x18: File last access time.
 499	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
 500	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
 501	__le32 ver_num;		// 0x28: Version Number.
 502	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
 503
 504	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
 505	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
 506	__le64 quota_charge;	// 0x38:
 507	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
 508				// index into the file $UsnJrnl. If zero, the USN Journal is
 509				// disabled.
 510};
 511
 512static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
 513
 514/* Attribute list entry structure (0x20) */
 515struct ATTR_LIST_ENTRY {
 516	enum ATTR_TYPE type;	// 0x00: The type of attribute.
 517	__le16 size;		// 0x04: The size of this record.
 518	u8 name_len;		// 0x06: The length of attribute name.
 519	u8 name_off;		// 0x07: The offset to attribute name.
 520	__le64 vcn;		// 0x08: Starting VCN of this attribute.
 521	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
 522	__le16 id;		// 0x18: struct ATTRIB ID.
 523	__le16 name[];		// 0x1A: To get real name use name_off.
 524
 525}; // sizeof(0x20)
 526
 527static inline u32 le_size(u8 name_len)
 528{
 529	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
 530		     name_len * sizeof(short), 8);
 531}
 532
 533/* Returns 0 if 'attr' has the same type and name. */
 534static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
 535			 const struct ATTRIB *attr)
 536{
 537	return le->type != attr->type || le->name_len != attr->name_len ||
 538	       (!le->name_len &&
 539		memcmp(Add2Ptr(le, le->name_off),
 540		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
 541		       le->name_len * sizeof(short)));
 542}
 543
 544static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
 545{
 546	return Add2Ptr(le, le->name_off);
 547}
 548
 549/* File name types (the field type in struct ATTR_FILE_NAME). */
 550#define FILE_NAME_POSIX   0
 551#define FILE_NAME_UNICODE 1
 552#define FILE_NAME_DOS	  2
 553#define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
 554
 555/* Filename attribute structure (0x30). */
 556struct NTFS_DUP_INFO {
 557	__le64 cr_time;		// 0x00: File creation file.
 558	__le64 m_time;		// 0x08: File modification time.
 559	__le64 c_time;		// 0x10: Last time any attribute was modified.
 560	__le64 a_time;		// 0x18: File last access time.
 561	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
 562	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
 563	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
 564	__le16 ea_size;		// 0x34: Packed EAs.
 565	__le16 reparse;		// 0x36: Used by Reparse.
 566
 567}; // 0x38
 568
 569struct ATTR_FILE_NAME {
 570	struct MFT_REF home;	// 0x00: MFT record for directory.
 571	struct NTFS_DUP_INFO dup;// 0x08:
 572	u8 name_len;		// 0x40: File name length in words.
 573	u8 type;		// 0x41: File name type.
 574	__le16 name[];		// 0x42: File name.
 575};
 576
 577static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
 578static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
 579#define SIZEOF_ATTRIBUTE_FILENAME     0x44
 580#define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
 581
 582static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
 583{
 584	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
 585}
 586
 587static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
 588{
 589	/* Don't return struct_size(fname, name, fname->name_len); */
 590	return offsetof(struct ATTR_FILE_NAME, name) +
 591	       fname->name_len * sizeof(short);
 592}
 593
 594static inline u8 paired_name(u8 type)
 595{
 596	if (type == FILE_NAME_UNICODE)
 597		return FILE_NAME_DOS;
 598	if (type == FILE_NAME_DOS)
 599		return FILE_NAME_UNICODE;
 600	return FILE_NAME_POSIX;
 601}
 602
 603/* Index entry defines ( the field flags in NtfsDirEntry ). */
 604#define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
 605#define NTFS_IE_LAST		cpu_to_le16(2)
 606
 607/* Directory entry structure. */
 608struct NTFS_DE {
 609	union {
 610		struct MFT_REF ref; // 0x00: MFT record number with this file.
 611		struct {
 612			__le16 data_off;  // 0x00:
 613			__le16 data_size; // 0x02:
 614			__le32 res;	  // 0x04: Must be 0.
 615		} view;
 616	};
 617	__le16 size;		// 0x08: The size of this entry.
 618	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
 619	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
 620	__le16 res;		// 0x0E:
 621
 622	// Here any indexed attribute can be placed.
 623	// One of them is:
 624	// struct ATTR_FILE_NAME AttrFileName;
 625	//
 626
 627	// The last 8 bytes of this structure contains
 628	// the VBN of subnode.
 629	// !!! Note !!!
 630	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
 631	// __le64 vbn;
 632};
 633
 634static_assert(sizeof(struct NTFS_DE) == 0x10);
 635
 636static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
 637{
 638	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 639
 640	*v = vcn;
 641}
 642
 643static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
 644{
 645	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 646
 647	*v = cpu_to_le64(vcn);
 648}
 649
 650static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
 651{
 652	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 653}
 654
 655static inline CLST de_get_vbn(const struct NTFS_DE *e)
 656{
 657	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 658
 659	return le64_to_cpu(*v);
 660}
 661
 662static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
 663{
 664	return Add2Ptr(e, le16_to_cpu(e->size));
 665}
 666
 667static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
 668{
 669	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
 670		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
 671		       NULL;
 672}
 673
 674static inline bool de_is_last(const struct NTFS_DE *e)
 675{
 676	return e->flags & NTFS_IE_LAST;
 677}
 678
 679static inline bool de_has_vcn(const struct NTFS_DE *e)
 680{
 681	return e->flags & NTFS_IE_HAS_SUBNODES;
 682}
 683
 684static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
 685{
 686	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
 687	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
 688							sizeof(__le64)));
 689}
 690
 691#define MAX_BYTES_PER_NAME_ENTRY \
 692	ALIGN(sizeof(struct NTFS_DE) + \
 693	      offsetof(struct ATTR_FILE_NAME, name) + \
 694	      NTFS_NAME_LEN * sizeof(short), 8)
 695
 696#define NTFS_INDEX_HDR_HAS_SUBNODES cpu_to_le32(1)
 697
 698struct INDEX_HDR {
 699	__le32 de_off;	// 0x00: The offset from the start of this structure
 700			// to the first NTFS_DE.
 701	__le32 used;	// 0x04: The size of this structure plus all
 702			// entries (quad-word aligned).
 703	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
 704	__le32 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
 705
 706	//
 707	// de_off + used <= total
 708	//
 709};
 710
 711static_assert(sizeof(struct INDEX_HDR) == 0x10);
 712
 713static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
 714{
 715	u32 de_off = le32_to_cpu(hdr->de_off);
 716	u32 used = le32_to_cpu(hdr->used);
 717	struct NTFS_DE *e;
 718	u16 esize;
 719
 720	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
 721		return NULL;
 722
 723	e = Add2Ptr(hdr, de_off);
 724	esize = le16_to_cpu(e->size);
 725	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
 726		return NULL;
 727
 728	return e;
 729}
 730
 731static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
 732					  const struct NTFS_DE *e)
 733{
 734	size_t off = PtrOffset(hdr, e);
 735	u32 used = le32_to_cpu(hdr->used);
 736	u16 esize;
 737
 738	if (off >= used)
 739		return NULL;
 740
 741	esize = le16_to_cpu(e->size);
 742
 743	if (esize < sizeof(struct NTFS_DE) ||
 744	    off + esize + sizeof(struct NTFS_DE) > used)
 745		return NULL;
 746
 747	return Add2Ptr(e, esize);
 748}
 749
 750static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
 751{
 752	return hdr->flags & NTFS_INDEX_HDR_HAS_SUBNODES;
 753}
 754
 755struct INDEX_BUFFER {
 756	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
 757	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
 758	struct INDEX_HDR ihdr; // 0x18:
 759};
 760
 761static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
 762
 763static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
 764{
 765	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
 766
 767	return !first || de_is_last(first);
 768}
 769
 770static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
 771{
 772	return !(ib->ihdr.flags & NTFS_INDEX_HDR_HAS_SUBNODES);
 773}
 774
 775/* Index root structure ( 0x90 ). */
 776enum COLLATION_RULE {
 777	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
 778	// $I30
 779	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
 780	// $SII of $Secure and $Q of Quota
 781	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
 782	// $O of Quota
 783	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
 784	// $SDH of $Secure
 785	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
 786	// $O of ObjId and "$R" for Reparse
 787	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
 788};
 789
 790static_assert(sizeof(enum COLLATION_RULE) == 4);
 791
 792//
 793struct INDEX_ROOT {
 794	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
 795	enum COLLATION_RULE rule; // 0x04: The rule.
 796	__le32 index_block_size;// 0x08: The size of index record.
 797	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
 798	u8 res[3];
 799	struct INDEX_HDR ihdr;	// 0x10:
 800};
 801
 802static_assert(sizeof(struct INDEX_ROOT) == 0x20);
 803static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
 804
 805#define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
 806#define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
 807
 808struct VOLUME_INFO {
 809	__le64 res1;	// 0x00
 810	u8 major_ver;	// 0x08: NTFS major version number (before .)
 811	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
 812	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
 813
 814}; // sizeof=0xC
 815
 816#define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
 817
 818#define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
 819#define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
 820#define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
 821#define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
 822#define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
 823#define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
 824#define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
 825
 826/* $AttrDef file entry. */
 827struct ATTR_DEF_ENTRY {
 828	__le16 name[0x40];	// 0x00: Attr name.
 829	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
 830	__le32 res;		// 0x84:
 831	enum COLLATION_RULE rule; // 0x88:
 832	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
 833	__le64 min_sz;		// 0x90: Minimum attribute data size.
 834	__le64 max_sz;		// 0x98: Maximum attribute data size.
 835};
 836
 837static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
 838
 839/* Object ID (0x40) */
 840struct OBJECT_ID {
 841	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
 842
 843	// Birth Volume Id is the Object Id of the Volume on.
 844	// which the Object Id was allocated. It never changes.
 845	struct GUID BirthVolumeId; //0x10:
 846
 847	// Birth Object Id is the first Object Id that was
 848	// ever assigned to this MFT Record. I.e. If the Object Id
 849	// is changed for some reason, this field will reflect the
 850	// original value of the Object Id.
 851	struct GUID BirthObjectId; // 0x20:
 852
 853	// Domain Id is currently unused but it is intended to be
 854	// used in a network environment where the local machine is
 855	// part of a Windows 2000 Domain. This may be used in a Windows
 856	// 2000 Advanced Server managed domain.
 857	struct GUID DomainId;	// 0x30:
 858};
 859
 860static_assert(sizeof(struct OBJECT_ID) == 0x40);
 861
 862/* O Directory entry structure ( rule = 0x13 ) */
 863struct NTFS_DE_O {
 864	struct NTFS_DE de;
 865	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
 866	struct MFT_REF ref;	// 0x20: MFT record number with this file.
 867
 868	// Birth Volume Id is the Object Id of the Volume on
 869	// which the Object Id was allocated. It never changes.
 870	struct GUID BirthVolumeId; // 0x28:
 871
 872	// Birth Object Id is the first Object Id that was
 873	// ever assigned to this MFT Record. I.e. If the Object Id
 874	// is changed for some reason, this field will reflect the
 875	// original value of the Object Id.
 876	// This field is valid if data_size == 0x48.
 877	struct GUID BirthObjectId; // 0x38:
 878
 879	// Domain Id is currently unused but it is intended
 880	// to be used in a network environment where the local
 881	// machine is part of a Windows 2000 Domain. This may be
 882	// used in a Windows 2000 Advanced Server managed domain.
 883	struct GUID BirthDomainId; // 0x48:
 884};
 885
 886static_assert(sizeof(struct NTFS_DE_O) == 0x58);
 887
 888/* Q Directory entry structure ( rule = 0x11 ) */
 889struct NTFS_DE_Q {
 890	struct NTFS_DE de;
 891	__le32 owner_id;	// 0x10: Unique Id assigned to file
 892
 893	/* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
 894	__le32 Version;		// 0x14: 0x02
 895	__le32 Flags;		// 0x18: Quota flags, see above
 896	__le64 BytesUsed;	// 0x1C:
 897	__le64 ChangeTime;	// 0x24:
 898	__le64 WarningLimit;	// 0x28:
 899	__le64 HardLimit;	// 0x34:
 900	__le64 ExceededTime;	// 0x3C:
 901
 902	// SID is placed here
 903}__packed; // sizeof() = 0x44
 904
 905static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
 906
 907#define SecurityDescriptorsBlockSize 0x40000 // 256K
 908#define SecurityDescriptorMaxSize    0x20000 // 128K
 909#define Log2OfSecurityDescriptorsBlockSize 18
 910
 911struct SECURITY_KEY {
 912	__le32 hash; //  Hash value for descriptor
 913	__le32 sec_id; //  Security Id (guaranteed unique)
 914};
 915
 916/* Security descriptors (the content of $Secure::SDS data stream) */
 917struct SECURITY_HDR {
 918	struct SECURITY_KEY key;	// 0x00: Security Key.
 919	__le64 off;			// 0x08: Offset of this entry in the file.
 920	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
 921	/*
 922	 * Security descriptor itself is placed here.
 923	 * Total size is 16 byte aligned.
 924	 */
 925} __packed;
 926
 927static_assert(sizeof(struct SECURITY_HDR) == 0x14);
 928
 929/* SII Directory entry structure */
 930struct NTFS_DE_SII {
 931	struct NTFS_DE de;
 932	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
 933	struct SECURITY_HDR sec_hdr;	// 0x14:
 934} __packed;
 935
 936static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
 937static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
 938
 939/* SDH Directory entry structure */
 940struct NTFS_DE_SDH {
 941	struct NTFS_DE de;
 942	struct SECURITY_KEY key;	// 0x10: Key
 943	struct SECURITY_HDR sec_hdr;	// 0x18: Data
 944	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
 945};
 946
 947#define SIZEOF_SDH_DIRENTRY 0x30
 948
 949struct REPARSE_KEY {
 950	__le32 ReparseTag;		// 0x00: Reparse Tag
 951	struct MFT_REF ref;		// 0x04: MFT record number with this file
 952}; // sizeof() = 0x0C
 953
 954static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
 955#define SIZEOF_REPARSE_KEY 0x0C
 956
 957/* Reparse Directory entry structure */
 958struct NTFS_DE_R {
 959	struct NTFS_DE de;
 960	struct REPARSE_KEY key;		// 0x10: Reparse Key.
 961	u32 zero;			// 0x1c:
 962}; // sizeof() = 0x20
 963
 964static_assert(sizeof(struct NTFS_DE_R) == 0x20);
 965
 966/* CompressReparseBuffer.WofVersion */
 967#define WOF_CURRENT_VERSION		cpu_to_le32(1)
 968/* CompressReparseBuffer.WofProvider */
 969#define WOF_PROVIDER_WIM		cpu_to_le32(1)
 970/* CompressReparseBuffer.WofProvider */
 971#define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
 972/* CompressReparseBuffer.ProviderVer */
 973#define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
 974
 975#define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
 976#define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
 977#define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
 978#define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
 979
 980/*
 981 * ATTR_REPARSE (0xC0)
 982 *
 983 * The reparse struct GUID structure is used by all 3rd party layered drivers to
 984 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
 985 * cannot be GUID_NULL.
 986 * The constraints on reparse tags are defined below.
 987 * Microsoft tags can also be used with this format of the reparse point buffer.
 988 */
 989struct REPARSE_POINT {
 990	__le32 ReparseTag;	// 0x00:
 991	__le16 ReparseDataLength;// 0x04:
 992	__le16 Reserved;
 993
 994	struct GUID Guid;	// 0x08:
 995
 996	//
 997	// Here GenericReparseBuffer is placed
 998	//
 999};
1000
1001static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1002
1003/*
1004 * The value of the following constant needs to satisfy the following
1005 * conditions:
1006 *  (1) Be at least as large as the largest of the reserved tags.
1007 *  (2) Be strictly smaller than all the tags in use.
1008 */
1009#define IO_REPARSE_TAG_RESERVED_RANGE		1
1010
1011/*
1012 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1013 *
1014 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1015 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1016 *  +-+-+-+-+-----------------------+-------------------------------+
1017 *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1018 *  +-+-+-+-+-----------------------+-------------------------------+
1019 *
1020 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1021 *   All ISVs must use a tag with a 0 in this position.
1022 *   Note: If a Microsoft tag is used by non-Microsoft software, the
1023 *   behavior is not defined.
1024 *
1025 * R is reserved.  Must be zero for non-Microsoft tags.
1026 *
1027 * N is name surrogate. When set to 1, the file represents another named
1028 *   entity in the system.
1029 *
1030 * The M and N bits are OR-able.
1031 * The following macros check for the M and N bit values:
1032 */
1033
1034/*
1035 * Macro to determine whether a reparse point tag corresponds to a tag
1036 * owned by Microsoft.
1037 */
1038#define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1039
1040/* Macro to determine whether a reparse point tag is a name surrogate. */
1041#define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1042
1043/*
1044 * The following constant represents the bits that are valid to use in
1045 * reparse tags.
1046 */
1047#define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1048
1049/*
1050 * Macro to determine whether a reparse tag is a valid tag.
1051 */
1052#define IsReparseTagValid(_tag)						       \
1053	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1054	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1055
1056/* Microsoft tags for reparse points. */
1057
1058enum IO_REPARSE_TAG {
1059	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1060	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1061	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1062	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1063	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1064	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1065	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1066	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1067	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1068
1069	/*
1070	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1071	 * May be published in the future.
1072	 */
1073
1074	/* Microsoft reparse tag reserved for DFS */
1075	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1076
1077	/* Microsoft reparse tag reserved for the file system filter manager. */
1078	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1079
1080	/* Non-Microsoft tags for reparse points */
1081
1082	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1083	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1084
1085	/* Tag allocated to ARKIVIO. */
1086	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1087
1088	/* Tag allocated to SOLUTIONSOFT. */
1089	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1090
1091	/* Tag allocated to COMMVAULT. */
1092	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1093
1094	/* OneDrive?? */
1095	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1096	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1097	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1098	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1099	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1100	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1101	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1102	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1103	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1104	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1105	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1106	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1107	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1108	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1109	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1110	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1111
1112};
1113
1114#define SYMLINK_FLAG_RELATIVE		1
1115
1116/* Microsoft reparse buffer. (see DDK for details) */
1117struct REPARSE_DATA_BUFFER {
1118	__le32 ReparseTag;		// 0x00:
1119	__le16 ReparseDataLength;	// 0x04:
1120	__le16 Reserved;
1121
1122	union {
1123		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1124		struct {
1125			__le16 SubstituteNameOffset; // 0x08
1126			__le16 SubstituteNameLength; // 0x0A
1127			__le16 PrintNameOffset;      // 0x0C
1128			__le16 PrintNameLength;      // 0x0E
1129			__le16 PathBuffer[];	     // 0x10
1130		} MountPointReparseBuffer;
1131
1132		/*
1133		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1134		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1135		 */
1136		struct {
1137			__le16 SubstituteNameOffset; // 0x08
1138			__le16 SubstituteNameLength; // 0x0A
1139			__le16 PrintNameOffset;      // 0x0C
1140			__le16 PrintNameLength;      // 0x0E
1141			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1142			__le32 Flags;		     // 0x10
1143			__le16 PathBuffer[];	     // 0x14
1144		} SymbolicLinkReparseBuffer;
1145
1146		/* If ReparseTag == 0x80000017U */
1147		struct {
1148			__le32 WofVersion;  // 0x08 == 1
1149			/*
1150			 * 1 - WIM backing provider ("WIMBoot"),
1151			 * 2 - System compressed file provider
1152			 */
1153			__le32 WofProvider; // 0x0C:
1154			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1155			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1156		} CompressReparseBuffer;
1157
1158		struct {
1159			u8 DataBuffer[1];   // 0x08:
1160		} GenericReparseBuffer;
1161	};
1162};
1163
1164/* ATTR_EA_INFO (0xD0) */
1165
1166#define FILE_NEED_EA 0x80 // See ntifs.h
1167/*
1168 * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1169 * interpreted without understanding the associated extended attributes.
1170 */
1171struct EA_INFO {
1172	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1173	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1174	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1175};
1176
1177static_assert(sizeof(struct EA_INFO) == 8);
1178
1179/* ATTR_EA (0xE0) */
1180struct EA_FULL {
1181	__le32 size;		// 0x00: (not in packed)
1182	u8 flags;		// 0x04:
1183	u8 name_len;		// 0x05:
1184	__le16 elength;		// 0x06:
1185	u8 name[];		// 0x08:
1186};
1187
1188static_assert(offsetof(struct EA_FULL, name) == 8);
1189
1190#define ACL_REVISION	2
1191#define ACL_REVISION_DS 4
1192
1193#define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1194
1195struct SECURITY_DESCRIPTOR_RELATIVE {
1196	u8 Revision;
1197	u8 Sbz1;
1198	__le16 Control;
1199	__le32 Owner;
1200	__le32 Group;
1201	__le32 Sacl;
1202	__le32 Dacl;
1203};
1204static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1205
1206struct ACE_HEADER {
1207	u8 AceType;
1208	u8 AceFlags;
1209	__le16 AceSize;
1210};
1211static_assert(sizeof(struct ACE_HEADER) == 4);
1212
1213struct ACL {
1214	u8 AclRevision;
1215	u8 Sbz1;
1216	__le16 AclSize;
1217	__le16 AceCount;
1218	__le16 Sbz2;
1219};
1220static_assert(sizeof(struct ACL) == 8);
1221
1222struct SID {
1223	u8 Revision;
1224	u8 SubAuthorityCount;
1225	u8 IdentifierAuthority[6];
1226	__le32 SubAuthority[];
1227};
1228static_assert(offsetof(struct SID, SubAuthority) == 8);
1229
1230#endif /* _LINUX_NTFS3_NTFS_H */
1231// clang-format on