Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *
   4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
   5 *
   6 * on-disk ntfs structs
   7 */
   8
   9// clang-format off
  10#ifndef _LINUX_NTFS3_NTFS_H
  11#define _LINUX_NTFS3_NTFS_H
  12
  13#include <linux/blkdev.h>
  14#include <linux/build_bug.h>
  15#include <linux/kernel.h>
  16#include <linux/stddef.h>
  17#include <linux/string.h>
  18#include <linux/types.h>
  19
  20#include "debug.h"
  21
  22/* TODO: Check 4K MFT record and 512 bytes cluster. */
  23
  24/* Check each run for marked clusters. */
  25#define NTFS3_CHECK_FREE_CLST
  26
  27#define NTFS_NAME_LEN 255
  28
  29/*
  30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
  31 * xfstest generic/041 creates 3003 hardlinks.
  32 */
  33#define NTFS_LINK_MAX 4000
  34
  35/*
  36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
  37 * Logical and virtual cluster number if needed, may be
  38 * redefined to use 64 bit value.
  39 */
  40//#define CONFIG_NTFS3_64BIT_CLUSTER
  41
  42#define NTFS_LZNT_MAX_CLUSTER	4096
  43#define NTFS_LZNT_CUNIT		4
  44#define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
  45
  46struct GUID {
  47	__le32 Data1;
  48	__le16 Data2;
  49	__le16 Data3;
  50	u8 Data4[8];
  51};
  52
  53/*
  54 * This struct repeats layout of ATTR_FILE_NAME
  55 * at offset 0x40.
  56 * It used to store global constants NAME_MFT/NAME_MIRROR...
  57 * most constant names are shorter than 10.
  58 */
  59struct cpu_str {
  60	u8 len;
  61	u8 unused;
  62	u16 name[10];
  63};
  64
  65struct le_str {
  66	u8 len;
  67	u8 unused;
  68	__le16 name[];
  69};
  70
  71static_assert(SECTOR_SHIFT == 9);
  72
  73#ifdef CONFIG_NTFS3_64BIT_CLUSTER
  74typedef u64 CLST;
  75static_assert(sizeof(size_t) == 8);
  76#else
  77typedef u32 CLST;
  78#endif
  79
  80#define SPARSE_LCN64   ((u64)-1)
  81#define SPARSE_LCN     ((CLST)-1)
  82#define RESIDENT_LCN   ((CLST)-2)
  83#define COMPRESSED_LCN ((CLST)-3)
  84
  85#define COMPRESSION_UNIT     4
  86#define COMPRESS_MAX_CLUSTER 0x1000
  87
  88enum RECORD_NUM {
  89	MFT_REC_MFT		= 0,
  90	MFT_REC_MIRR		= 1,
  91	MFT_REC_LOG		= 2,
  92	MFT_REC_VOL		= 3,
  93	MFT_REC_ATTR		= 4,
  94	MFT_REC_ROOT		= 5,
  95	MFT_REC_BITMAP		= 6,
  96	MFT_REC_BOOT		= 7,
  97	MFT_REC_BADCLUST	= 8,
  98	MFT_REC_SECURE		= 9,
  99	MFT_REC_UPCASE		= 10,
 100	MFT_REC_EXTEND		= 11,
 101	MFT_REC_RESERVED	= 12,
 102	MFT_REC_FREE		= 16,
 103	MFT_REC_USER		= 24,
 104};
 105
 106enum ATTR_TYPE {
 107	ATTR_ZERO		= cpu_to_le32(0x00),
 108	ATTR_STD		= cpu_to_le32(0x10),
 109	ATTR_LIST		= cpu_to_le32(0x20),
 110	ATTR_NAME		= cpu_to_le32(0x30),
 111	ATTR_ID			= cpu_to_le32(0x40),
 112	ATTR_SECURE		= cpu_to_le32(0x50),
 113	ATTR_LABEL		= cpu_to_le32(0x60),
 114	ATTR_VOL_INFO		= cpu_to_le32(0x70),
 115	ATTR_DATA		= cpu_to_le32(0x80),
 116	ATTR_ROOT		= cpu_to_le32(0x90),
 117	ATTR_ALLOC		= cpu_to_le32(0xA0),
 118	ATTR_BITMAP		= cpu_to_le32(0xB0),
 119	ATTR_REPARSE		= cpu_to_le32(0xC0),
 120	ATTR_EA_INFO		= cpu_to_le32(0xD0),
 121	ATTR_EA			= cpu_to_le32(0xE0),
 122	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
 123	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
 124	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
 125};
 126
 127static_assert(sizeof(enum ATTR_TYPE) == 4);
 128
 129enum FILE_ATTRIBUTE {
 130	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
 131	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
 132	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
 133	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
 134	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
 135	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
 136	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
 137	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
 138	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
 139	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
 140	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
 141	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
 142	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
 143	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
 144	FILE_ATTRIBUTE_INDEX		= cpu_to_le32(0x20000000)
 145};
 146
 147static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
 148
 149extern const struct cpu_str NAME_MFT;
 150extern const struct cpu_str NAME_MIRROR;
 151extern const struct cpu_str NAME_LOGFILE;
 152extern const struct cpu_str NAME_VOLUME;
 153extern const struct cpu_str NAME_ATTRDEF;
 154extern const struct cpu_str NAME_ROOT;
 155extern const struct cpu_str NAME_BITMAP;
 156extern const struct cpu_str NAME_BOOT;
 157extern const struct cpu_str NAME_BADCLUS;
 158extern const struct cpu_str NAME_QUOTA;
 159extern const struct cpu_str NAME_SECURE;
 160extern const struct cpu_str NAME_UPCASE;
 161extern const struct cpu_str NAME_EXTEND;
 162extern const struct cpu_str NAME_OBJID;
 163extern const struct cpu_str NAME_REPARSE;
 164extern const struct cpu_str NAME_USNJRNL;
 165
 166extern const __le16 I30_NAME[4];
 167extern const __le16 SII_NAME[4];
 168extern const __le16 SDH_NAME[4];
 169extern const __le16 SO_NAME[2];
 170extern const __le16 SQ_NAME[2];
 171extern const __le16 SR_NAME[2];
 172
 173extern const __le16 BAD_NAME[4];
 174extern const __le16 SDS_NAME[4];
 175extern const __le16 WOF_NAME[17];	/* WofCompressedData */
 176
 177/* MFT record number structure. */
 178struct MFT_REF {
 179	__le32 low;	// The low part of the number.
 180	__le16 high;	// The high part of the number.
 181	__le16 seq;	// The sequence number of MFT record.
 182};
 183
 184static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
 185
 186static inline CLST ino_get(const struct MFT_REF *ref)
 187{
 188#ifdef CONFIG_NTFS3_64BIT_CLUSTER
 189	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
 190#else
 191	return le32_to_cpu(ref->low);
 192#endif
 193}
 194
 195struct NTFS_BOOT {
 196	u8 jump_code[3];	// 0x00: Jump to boot code.
 197	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
 198
 199	// NOTE: This member is not aligned(!)
 200	// bytes_per_sector[0] must be 0.
 201	// bytes_per_sector[1] must be multiplied by 256.
 202	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
 203
 204	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
 205	u8 unused1[7];
 206	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
 207	u8 unused2[2];
 208	__le16 sct_per_track;	// 0x18: number of sectors per track.
 209	__le16 heads;		// 0x1A: number of heads per cylinder.
 210	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
 211	u8 unused3[4];
 212	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
 213	u8 unused4;
 214	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
 215	u8 unused5;
 216	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
 217	__le64 mft_clst;	// 0x30: First cluster of $MFT
 218	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
 219	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
 220	u8 unused6[3];
 221	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
 222	u8 unused7[3];
 223	__le64 serial_num;	// 0x48: Volume serial number
 224	__le32 check_sum;	// 0x50: Simple additive checksum of all
 225				// of the u32's which precede the 'check_sum'.
 226
 227	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
 228	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
 229};
 230
 231static_assert(sizeof(struct NTFS_BOOT) == 0x200);
 232
 233enum NTFS_SIGNATURE {
 234	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
 235	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
 236	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
 237	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
 238	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
 239	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
 240	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
 241	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
 242};
 243
 244static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
 245
 246/* MFT Record header structure. */
 247struct NTFS_RECORD_HEADER {
 248	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
 249	enum NTFS_SIGNATURE sign; // 0x00:
 250	__le16 fix_off;		// 0x04:
 251	__le16 fix_num;		// 0x06:
 252	__le64 lsn;		// 0x08: Log file sequence number,
 253};
 254
 255static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
 256
 257static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
 258{
 259	return hdr->sign == NTFS_BAAD_SIGNATURE;
 260}
 261
 262/* Possible bits in struct MFT_REC.flags. */
 263enum RECORD_FLAG {
 264	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
 265	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
 266	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
 267	RECORD_FLAG_INDEX	= cpu_to_le16(0x0008),
 268};
 269
 270/* MFT Record structure. */
 271struct MFT_REC {
 272	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
 273
 274	__le16 seq;		// 0x10: Sequence number for this record.
 275	__le16 hard_links;	// 0x12: The number of hard links to record.
 276	__le16 attr_off;	// 0x14: Offset to attributes.
 277	__le16 flags;		// 0x16: See RECORD_FLAG.
 278	__le32 used;		// 0x18: The size of used part.
 279	__le32 total;		// 0x1C: Total record size.
 280
 281	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
 282	__le16 next_attr_id;	// 0x28: The next attribute Id.
 283
 284	__le16 res;		// 0x2A: High part of MFT record?
 285	__le32 mft_record;	// 0x2C: Current MFT record number.
 286	__le16 fixups[];	// 0x30:
 287};
 288
 289#define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
 290#define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
 291/*
 292 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
 293 * to format new mft records with bigger header (as current ntfs.sys does)
 294 *
 295 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
 296 * to format new mft records with smaller header (as old ntfs.sys did)
 297 * Both variants are valid.
 298 */
 299#define MFTRECORD_FIXUP_OFFSET  MFTRECORD_FIXUP_OFFSET_1
 300
 301static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
 302static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
 303
 304static inline bool is_rec_base(const struct MFT_REC *rec)
 305{
 306	const struct MFT_REF *r = &rec->parent_ref;
 307
 308	return !r->low && !r->high && !r->seq;
 309}
 310
 311static inline bool is_mft_rec5(const struct MFT_REC *rec)
 312{
 313	return le16_to_cpu(rec->rhdr.fix_off) >=
 314	       offsetof(struct MFT_REC, fixups);
 315}
 316
 317static inline bool is_rec_inuse(const struct MFT_REC *rec)
 318{
 319	return rec->flags & RECORD_FLAG_IN_USE;
 320}
 321
 322static inline bool clear_rec_inuse(struct MFT_REC *rec)
 323{
 324	return rec->flags &= ~RECORD_FLAG_IN_USE;
 325}
 326
 327/* Possible values of ATTR_RESIDENT.flags */
 328#define RESIDENT_FLAG_INDEXED 0x01
 329
 330struct ATTR_RESIDENT {
 331	__le32 data_size;	// 0x10: The size of data.
 332	__le16 data_off;	// 0x14: Offset to data.
 333	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
 334	u8 res;			// 0x17:
 335}; // sizeof() = 0x18
 336
 337struct ATTR_NONRESIDENT {
 338	__le64 svcn;		// 0x10: Starting VCN of this segment.
 339	__le64 evcn;		// 0x18: End VCN of this segment.
 340	__le16 run_off;		// 0x20: Offset to packed runs.
 341	// Unit of Compression size for this stream, expressed
 342	// as a log of the cluster size.
 343	//
 344	// 0 means file is not compressed
 345	// 1, 2, 3, and 4 are potentially legal values if the
 346	// stream is compressed, however the implementation
 347	// may only choose to use 4, or possibly 3.
 348        // Note that 4 means cluster size time 16.
 349        // If convenient the implementation may wish to accept a
 350	// reasonable range of legal values here (1-5?),
 351	// even if the implementation only generates
 352	// a smaller set of values itself.
 353	u8 c_unit;		// 0x22:
 354	u8 res1[5];		// 0x23:
 355	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
 356				// (multiple of cluster size)
 357	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
 358	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
 359	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
 360				// (present only for the first segment (0 == vcn)
 361				// of compressed attribute)
 362
 363}; // sizeof()=0x40 or 0x48 (if compressed)
 364
 365/* Possible values of ATTRIB.flags: */
 366#define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
 367#define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
 368#define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
 369#define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
 370
 371struct ATTRIB {
 372	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
 373	__le32 size;		// 0x04: The size of this attribute.
 374	u8 non_res;		// 0x08: Is this attribute non-resident?
 375	u8 name_len;		// 0x09: This attribute name length.
 376	__le16 name_off;	// 0x0A: Offset to the attribute name.
 377	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
 378	__le16 id;		// 0x0E: Unique id (per record).
 379
 380	union {
 381		struct ATTR_RESIDENT res;     // 0x10
 382		struct ATTR_NONRESIDENT nres; // 0x10
 383	};
 384};
 385
 386/* Define attribute sizes. */
 387#define SIZEOF_RESIDENT			0x18
 388#define SIZEOF_NONRESIDENT_EX		0x48
 389#define SIZEOF_NONRESIDENT		0x40
 390
 391#define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
 392#define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
 393#define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
 394
 395static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
 396{
 397	return attr->non_res ? ((attr->flags &
 398				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
 399					le64_to_cpu(attr->nres.total_size) :
 400					le64_to_cpu(attr->nres.alloc_size))
 401			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
 402}
 403
 404static inline u64 attr_size(const struct ATTRIB *attr)
 405{
 406	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
 407			       le32_to_cpu(attr->res.data_size);
 408}
 409
 410static inline bool is_attr_encrypted(const struct ATTRIB *attr)
 411{
 412	return attr->flags & ATTR_FLAG_ENCRYPTED;
 413}
 414
 415static inline bool is_attr_sparsed(const struct ATTRIB *attr)
 416{
 417	return attr->flags & ATTR_FLAG_SPARSED;
 418}
 419
 420static inline bool is_attr_compressed(const struct ATTRIB *attr)
 421{
 422	return attr->flags & ATTR_FLAG_COMPRESSED;
 423}
 424
 425static inline bool is_attr_ext(const struct ATTRIB *attr)
 426{
 427	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
 428}
 429
 430static inline bool is_attr_indexed(const struct ATTRIB *attr)
 431{
 432	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
 433}
 434
 435static inline __le16 const *attr_name(const struct ATTRIB *attr)
 436{
 437	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
 438}
 439
 440static inline u64 attr_svcn(const struct ATTRIB *attr)
 441{
 442	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
 443}
 444
 445static_assert(sizeof(struct ATTRIB) == 0x48);
 446static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
 447static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
 448
 449static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
 450{
 451	u32 asize, rsize;
 452	u16 off;
 453
 454	if (attr->non_res)
 455		return NULL;
 456
 457	asize = le32_to_cpu(attr->size);
 458	off = le16_to_cpu(attr->res.data_off);
 459
 460	if (asize < datasize + off)
 461		return NULL;
 462
 463	rsize = le32_to_cpu(attr->res.data_size);
 464	if (rsize < datasize)
 465		return NULL;
 466
 467	return Add2Ptr(attr, off);
 468}
 469
 470static inline void *resident_data(const struct ATTRIB *attr)
 471{
 472	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
 473}
 474
 475static inline void *attr_run(const struct ATTRIB *attr)
 476{
 477	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
 478}
 479
 480/* Standard information attribute (0x10). */
 481struct ATTR_STD_INFO {
 482	__le64 cr_time;		// 0x00: File creation file.
 483	__le64 m_time;		// 0x08: File modification time.
 484	__le64 c_time;		// 0x10: Last time any attribute was modified.
 485	__le64 a_time;		// 0x18: File last access time.
 486	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
 487	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
 488	__le32 ver_num;		// 0x28: Version Number.
 489	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
 490};
 491
 492static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
 493
 494#define SECURITY_ID_INVALID 0x00000000
 495#define SECURITY_ID_FIRST 0x00000100
 496
 497struct ATTR_STD_INFO5 {
 498	__le64 cr_time;		// 0x00: File creation file.
 499	__le64 m_time;		// 0x08: File modification time.
 500	__le64 c_time;		// 0x10: Last time any attribute was modified.
 501	__le64 a_time;		// 0x18: File last access time.
 502	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
 503	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
 504	__le32 ver_num;		// 0x28: Version Number.
 505	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
 506
 507	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
 508	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
 509	__le64 quota_charge;	// 0x38:
 510	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
 511				// index into the file $UsnJrnl. If zero, the USN Journal is
 512				// disabled.
 513};
 514
 515static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
 516
 517/* Attribute list entry structure (0x20) */
 518struct ATTR_LIST_ENTRY {
 519	enum ATTR_TYPE type;	// 0x00: The type of attribute.
 520	__le16 size;		// 0x04: The size of this record.
 521	u8 name_len;		// 0x06: The length of attribute name.
 522	u8 name_off;		// 0x07: The offset to attribute name.
 523	__le64 vcn;		// 0x08: Starting VCN of this attribute.
 524	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
 525	__le16 id;		// 0x18: struct ATTRIB ID.
 526	__le16 name[];		// 0x1A: To get real name use name_off.
 527
 528}; // sizeof(0x20)
 529
 530static inline u32 le_size(u8 name_len)
 531{
 532	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
 533		     name_len * sizeof(short), 8);
 534}
 535
 536/* Returns 0 if 'attr' has the same type and name. */
 537static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
 538			 const struct ATTRIB *attr)
 539{
 540	return le->type != attr->type || le->name_len != attr->name_len ||
 541	       (!le->name_len &&
 542		memcmp(Add2Ptr(le, le->name_off),
 543		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
 544		       le->name_len * sizeof(short)));
 545}
 546
 547static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
 548{
 549	return Add2Ptr(le, le->name_off);
 550}
 551
 552/* File name types (the field type in struct ATTR_FILE_NAME). */
 553#define FILE_NAME_POSIX   0
 554#define FILE_NAME_UNICODE 1
 555#define FILE_NAME_DOS	  2
 556#define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
 557
 558/* Filename attribute structure (0x30). */
 559struct NTFS_DUP_INFO {
 560	__le64 cr_time;		// 0x00: File creation file.
 561	__le64 m_time;		// 0x08: File modification time.
 562	__le64 c_time;		// 0x10: Last time any attribute was modified.
 563	__le64 a_time;		// 0x18: File last access time.
 564	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
 565	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
 566	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
 567	__le16 ea_size;		// 0x34: Packed EAs.
 568	__le16 reparse;		// 0x36: Used by Reparse.
 569
 570}; // 0x38
 571
 572struct ATTR_FILE_NAME {
 573	struct MFT_REF home;	// 0x00: MFT record for directory.
 574	struct NTFS_DUP_INFO dup;// 0x08:
 575	u8 name_len;		// 0x40: File name length in words.
 576	u8 type;		// 0x41: File name type.
 577	__le16 name[];		// 0x42: File name.
 578};
 579
 580static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
 581static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
 582#define SIZEOF_ATTRIBUTE_FILENAME     0x44
 583#define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
 584
 585static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
 586{
 587	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
 588}
 589
 590static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
 591{
 592	/* Don't return struct_size(fname, name, fname->name_len); */
 593	return offsetof(struct ATTR_FILE_NAME, name) +
 594	       fname->name_len * sizeof(short);
 595}
 596
 597static inline u8 paired_name(u8 type)
 598{
 599	if (type == FILE_NAME_UNICODE)
 600		return FILE_NAME_DOS;
 601	if (type == FILE_NAME_DOS)
 602		return FILE_NAME_UNICODE;
 603	return FILE_NAME_POSIX;
 604}
 605
 606/* Index entry defines ( the field flags in NtfsDirEntry ). */
 607#define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
 608#define NTFS_IE_LAST		cpu_to_le16(2)
 609
 610/* Directory entry structure. */
 611struct NTFS_DE {
 612	union {
 613		struct MFT_REF ref; // 0x00: MFT record number with this file.
 614		struct {
 615			__le16 data_off;  // 0x00:
 616			__le16 data_size; // 0x02:
 617			__le32 res;	  // 0x04: Must be 0.
 618		} view;
 619	};
 620	__le16 size;		// 0x08: The size of this entry.
 621	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
 622	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
 623	__le16 res;		// 0x0E:
 624
 625	// Here any indexed attribute can be placed.
 626	// One of them is:
 627	// struct ATTR_FILE_NAME AttrFileName;
 628	//
 629
 630	// The last 8 bytes of this structure contains
 631	// the VBN of subnode.
 632	// !!! Note !!!
 633	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
 634	// __le64 vbn;
 635};
 636
 637static_assert(sizeof(struct NTFS_DE) == 0x10);
 638
 639static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
 640{
 641	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 642
 643	*v = vcn;
 644}
 645
 646static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
 647{
 648	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 649
 650	*v = cpu_to_le64(vcn);
 651}
 652
 653static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
 654{
 655	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 656}
 657
 658static inline CLST de_get_vbn(const struct NTFS_DE *e)
 659{
 660	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 661
 662	return le64_to_cpu(*v);
 663}
 664
 665static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
 666{
 667	return Add2Ptr(e, le16_to_cpu(e->size));
 668}
 669
 670static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
 671{
 672	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
 673		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
 674		       NULL;
 675}
 676
 677static inline bool de_is_last(const struct NTFS_DE *e)
 678{
 679	return e->flags & NTFS_IE_LAST;
 680}
 681
 682static inline bool de_has_vcn(const struct NTFS_DE *e)
 683{
 684	return e->flags & NTFS_IE_HAS_SUBNODES;
 685}
 686
 687static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
 688{
 689	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
 690	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
 691							sizeof(__le64)));
 692}
 693
 694#define MAX_BYTES_PER_NAME_ENTRY \
 695	ALIGN(sizeof(struct NTFS_DE) + \
 696	      offsetof(struct ATTR_FILE_NAME, name) + \
 697	      NTFS_NAME_LEN * sizeof(short), 8)
 698
 699struct INDEX_HDR {
 700	__le32 de_off;	// 0x00: The offset from the start of this structure
 701			// to the first NTFS_DE.
 702	__le32 used;	// 0x04: The size of this structure plus all
 703			// entries (quad-word aligned).
 704	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
 705	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
 706	u8 res[3];
 707
 708	//
 709	// de_off + used <= total
 710	//
 711};
 712
 713static_assert(sizeof(struct INDEX_HDR) == 0x10);
 714
 715static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
 716{
 717	u32 de_off = le32_to_cpu(hdr->de_off);
 718	u32 used = le32_to_cpu(hdr->used);
 719	struct NTFS_DE *e;
 720	u16 esize;
 721
 722	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
 723		return NULL;
 724
 725	e = Add2Ptr(hdr, de_off);
 726	esize = le16_to_cpu(e->size);
 727	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
 728		return NULL;
 729
 730	return e;
 731}
 732
 733static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
 734					  const struct NTFS_DE *e)
 735{
 736	size_t off = PtrOffset(hdr, e);
 737	u32 used = le32_to_cpu(hdr->used);
 738	u16 esize;
 739
 740	if (off >= used)
 741		return NULL;
 742
 743	esize = le16_to_cpu(e->size);
 744
 745	if (esize < sizeof(struct NTFS_DE) ||
 746	    off + esize + sizeof(struct NTFS_DE) > used)
 747		return NULL;
 748
 749	return Add2Ptr(e, esize);
 750}
 751
 752static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
 753{
 754	return hdr->flags & 1;
 755}
 756
 757struct INDEX_BUFFER {
 758	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
 759	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
 760	struct INDEX_HDR ihdr; // 0x18:
 761};
 762
 763static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
 764
 765static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
 766{
 767	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
 768
 769	return !first || de_is_last(first);
 770}
 771
 772static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
 773{
 774	return !(ib->ihdr.flags & 1);
 775}
 776
 777/* Index root structure ( 0x90 ). */
 778enum COLLATION_RULE {
 779	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
 780	// $I30
 781	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
 782	// $SII of $Secure and $Q of Quota
 783	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
 784	// $O of Quota
 785	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
 786	// $SDH of $Secure
 787	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
 788	// $O of ObjId and "$R" for Reparse
 789	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
 790};
 791
 792static_assert(sizeof(enum COLLATION_RULE) == 4);
 793
 794//
 795struct INDEX_ROOT {
 796	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
 797	enum COLLATION_RULE rule; // 0x04: The rule.
 798	__le32 index_block_size;// 0x08: The size of index record.
 799	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
 800	u8 res[3];
 801	struct INDEX_HDR ihdr;	// 0x10:
 802};
 803
 804static_assert(sizeof(struct INDEX_ROOT) == 0x20);
 805static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
 806
 807#define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
 808#define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
 809
 810struct VOLUME_INFO {
 811	__le64 res1;	// 0x00
 812	u8 major_ver;	// 0x08: NTFS major version number (before .)
 813	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
 814	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
 815
 816}; // sizeof=0xC
 817
 818#define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
 819
 820#define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
 821#define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
 822#define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
 823#define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
 824#define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
 825#define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
 826#define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
 827
 828/* $AttrDef file entry. */
 829struct ATTR_DEF_ENTRY {
 830	__le16 name[0x40];	// 0x00: Attr name.
 831	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
 832	__le32 res;		// 0x84:
 833	enum COLLATION_RULE rule; // 0x88:
 834	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
 835	__le64 min_sz;		// 0x90: Minimum attribute data size.
 836	__le64 max_sz;		// 0x98: Maximum attribute data size.
 837};
 838
 839static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
 840
 841/* Object ID (0x40) */
 842struct OBJECT_ID {
 843	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
 844
 845	// Birth Volume Id is the Object Id of the Volume on.
 846	// which the Object Id was allocated. It never changes.
 847	struct GUID BirthVolumeId; //0x10:
 848
 849	// Birth Object Id is the first Object Id that was
 850	// ever assigned to this MFT Record. I.e. If the Object Id
 851	// is changed for some reason, this field will reflect the
 852	// original value of the Object Id.
 853	struct GUID BirthObjectId; // 0x20:
 854
 855	// Domain Id is currently unused but it is intended to be
 856	// used in a network environment where the local machine is
 857	// part of a Windows 2000 Domain. This may be used in a Windows
 858	// 2000 Advanced Server managed domain.
 859	struct GUID DomainId;	// 0x30:
 860};
 861
 862static_assert(sizeof(struct OBJECT_ID) == 0x40);
 863
 864/* O Directory entry structure ( rule = 0x13 ) */
 865struct NTFS_DE_O {
 866	struct NTFS_DE de;
 867	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
 868	struct MFT_REF ref;	// 0x20: MFT record number with this file.
 869
 870	// Birth Volume Id is the Object Id of the Volume on
 871	// which the Object Id was allocated. It never changes.
 872	struct GUID BirthVolumeId; // 0x28:
 873
 874	// Birth Object Id is the first Object Id that was
 875	// ever assigned to this MFT Record. I.e. If the Object Id
 876	// is changed for some reason, this field will reflect the
 877	// original value of the Object Id.
 878	// This field is valid if data_size == 0x48.
 879	struct GUID BirthObjectId; // 0x38:
 880
 881	// Domain Id is currently unused but it is intended
 882	// to be used in a network environment where the local
 883	// machine is part of a Windows 2000 Domain. This may be
 884	// used in a Windows 2000 Advanced Server managed domain.
 885	struct GUID BirthDomainId; // 0x48:
 886};
 887
 888static_assert(sizeof(struct NTFS_DE_O) == 0x58);
 889
 890/* Q Directory entry structure ( rule = 0x11 ) */
 891struct NTFS_DE_Q {
 892	struct NTFS_DE de;
 893	__le32 owner_id;	// 0x10: Unique Id assigned to file
 894
 895	/* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
 896	__le32 Version;		// 0x14: 0x02
 897	__le32 Flags;		// 0x18: Quota flags, see above
 898	__le64 BytesUsed;	// 0x1C:
 899	__le64 ChangeTime;	// 0x24:
 900	__le64 WarningLimit;	// 0x28:
 901	__le64 HardLimit;	// 0x34:
 902	__le64 ExceededTime;	// 0x3C:
 903
 904	// SID is placed here
 905}__packed; // sizeof() = 0x44
 906
 907static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
 908
 909#define SecurityDescriptorsBlockSize 0x40000 // 256K
 910#define SecurityDescriptorMaxSize    0x20000 // 128K
 911#define Log2OfSecurityDescriptorsBlockSize 18
 912
 913struct SECURITY_KEY {
 914	__le32 hash; //  Hash value for descriptor
 915	__le32 sec_id; //  Security Id (guaranteed unique)
 916};
 917
 918/* Security descriptors (the content of $Secure::SDS data stream) */
 919struct SECURITY_HDR {
 920	struct SECURITY_KEY key;	// 0x00: Security Key.
 921	__le64 off;			// 0x08: Offset of this entry in the file.
 922	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
 923	/*
 924	 * Security descriptor itself is placed here.
 925	 * Total size is 16 byte aligned.
 926	 */
 927} __packed;
 928
 929static_assert(sizeof(struct SECURITY_HDR) == 0x14);
 930
 931/* SII Directory entry structure */
 932struct NTFS_DE_SII {
 933	struct NTFS_DE de;
 934	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
 935	struct SECURITY_HDR sec_hdr;	// 0x14:
 936} __packed;
 937
 938static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
 939static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
 940
 941/* SDH Directory entry structure */
 942struct NTFS_DE_SDH {
 943	struct NTFS_DE de;
 944	struct SECURITY_KEY key;	// 0x10: Key
 945	struct SECURITY_HDR sec_hdr;	// 0x18: Data
 946	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
 947};
 948
 949#define SIZEOF_SDH_DIRENTRY 0x30
 950
 951struct REPARSE_KEY {
 952	__le32 ReparseTag;		// 0x00: Reparse Tag
 953	struct MFT_REF ref;		// 0x04: MFT record number with this file
 954}; // sizeof() = 0x0C
 955
 956static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
 957#define SIZEOF_REPARSE_KEY 0x0C
 958
 959/* Reparse Directory entry structure */
 960struct NTFS_DE_R {
 961	struct NTFS_DE de;
 962	struct REPARSE_KEY key;		// 0x10: Reparse Key.
 963	u32 zero;			// 0x1c:
 964}; // sizeof() = 0x20
 965
 966static_assert(sizeof(struct NTFS_DE_R) == 0x20);
 967
 968/* CompressReparseBuffer.WofVersion */
 969#define WOF_CURRENT_VERSION		cpu_to_le32(1)
 970/* CompressReparseBuffer.WofProvider */
 971#define WOF_PROVIDER_WIM		cpu_to_le32(1)
 972/* CompressReparseBuffer.WofProvider */
 973#define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
 974/* CompressReparseBuffer.ProviderVer */
 975#define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
 976
 977#define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
 978#define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
 979#define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
 980#define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
 981
 982/*
 983 * ATTR_REPARSE (0xC0)
 984 *
 985 * The reparse struct GUID structure is used by all 3rd party layered drivers to
 986 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
 987 * cannot be GUID_NULL.
 988 * The constraints on reparse tags are defined below.
 989 * Microsoft tags can also be used with this format of the reparse point buffer.
 990 */
 991struct REPARSE_POINT {
 992	__le32 ReparseTag;	// 0x00:
 993	__le16 ReparseDataLength;// 0x04:
 994	__le16 Reserved;
 995
 996	struct GUID Guid;	// 0x08:
 997
 998	//
 999	// Here GenericReparseBuffer is placed
1000	//
1001};
1002
1003static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1004
1005/* Maximum allowed size of the reparse data. */
1006#define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
1007
1008/*
1009 * The value of the following constant needs to satisfy the following
1010 * conditions:
1011 *  (1) Be at least as large as the largest of the reserved tags.
1012 *  (2) Be strictly smaller than all the tags in use.
1013 */
1014#define IO_REPARSE_TAG_RESERVED_RANGE		1
1015
1016/*
1017 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1018 *
1019 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1020 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1021 *  +-+-+-+-+-----------------------+-------------------------------+
1022 *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1023 *  +-+-+-+-+-----------------------+-------------------------------+
1024 *
1025 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1026 *   All ISVs must use a tag with a 0 in this position.
1027 *   Note: If a Microsoft tag is used by non-Microsoft software, the
1028 *   behavior is not defined.
1029 *
1030 * R is reserved.  Must be zero for non-Microsoft tags.
1031 *
1032 * N is name surrogate. When set to 1, the file represents another named
1033 *   entity in the system.
1034 *
1035 * The M and N bits are OR-able.
1036 * The following macros check for the M and N bit values:
1037 */
1038
1039/*
1040 * Macro to determine whether a reparse point tag corresponds to a tag
1041 * owned by Microsoft.
1042 */
1043#define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1044
1045/* Macro to determine whether a reparse point tag is a name surrogate. */
1046#define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1047
1048/*
1049 * The following constant represents the bits that are valid to use in
1050 * reparse tags.
1051 */
1052#define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1053
1054/*
1055 * Macro to determine whether a reparse tag is a valid tag.
1056 */
1057#define IsReparseTagValid(_tag)						       \
1058	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1059	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1060
1061/* Microsoft tags for reparse points. */
1062
1063enum IO_REPARSE_TAG {
1064	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1065	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1066	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1067	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1068	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1069	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1070	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1071	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1072	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1073
1074	/*
1075	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1076	 * May be published in the future.
1077	 */
1078
1079	/* Microsoft reparse tag reserved for DFS */
1080	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1081
1082	/* Microsoft reparse tag reserved for the file system filter manager. */
1083	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1084
1085	/* Non-Microsoft tags for reparse points */
1086
1087	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1088	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1089
1090	/* Tag allocated to ARKIVIO. */
1091	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1092
1093	/* Tag allocated to SOLUTIONSOFT. */
1094	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1095
1096	/* Tag allocated to COMMVAULT. */
1097	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1098
1099	/* OneDrive?? */
1100	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1101	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1102	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1103	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1104	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1105	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1106	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1107	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1108	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1109	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1110	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1111	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1112	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1113	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1114	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1115	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1116
1117};
1118
1119#define SYMLINK_FLAG_RELATIVE		1
1120
1121/* Microsoft reparse buffer. (see DDK for details) */
1122struct REPARSE_DATA_BUFFER {
1123	__le32 ReparseTag;		// 0x00:
1124	__le16 ReparseDataLength;	// 0x04:
1125	__le16 Reserved;
1126
1127	union {
1128		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1129		struct {
1130			__le16 SubstituteNameOffset; // 0x08
1131			__le16 SubstituteNameLength; // 0x0A
1132			__le16 PrintNameOffset;      // 0x0C
1133			__le16 PrintNameLength;      // 0x0E
1134			__le16 PathBuffer[];	     // 0x10
1135		} MountPointReparseBuffer;
1136
1137		/*
1138		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1139		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1140		 */
1141		struct {
1142			__le16 SubstituteNameOffset; // 0x08
1143			__le16 SubstituteNameLength; // 0x0A
1144			__le16 PrintNameOffset;      // 0x0C
1145			__le16 PrintNameLength;      // 0x0E
1146			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1147			__le32 Flags;		     // 0x10
1148			__le16 PathBuffer[];	     // 0x14
1149		} SymbolicLinkReparseBuffer;
1150
1151		/* If ReparseTag == 0x80000017U */
1152		struct {
1153			__le32 WofVersion;  // 0x08 == 1
1154			/*
1155			 * 1 - WIM backing provider ("WIMBoot"),
1156			 * 2 - System compressed file provider
1157			 */
1158			__le32 WofProvider; // 0x0C:
1159			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1160			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1161		} CompressReparseBuffer;
1162
1163		struct {
1164			u8 DataBuffer[1];   // 0x08:
1165		} GenericReparseBuffer;
1166	};
1167};
1168
1169/* ATTR_EA_INFO (0xD0) */
1170
1171#define FILE_NEED_EA 0x80 // See ntifs.h
1172/*
1173 * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1174 * interpreted without understanding the associated extended attributes.
1175 */
1176struct EA_INFO {
1177	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1178	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1179	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1180};
1181
1182static_assert(sizeof(struct EA_INFO) == 8);
1183
1184/* ATTR_EA (0xE0) */
1185struct EA_FULL {
1186	__le32 size;		// 0x00: (not in packed)
1187	u8 flags;		// 0x04:
1188	u8 name_len;		// 0x05:
1189	__le16 elength;		// 0x06:
1190	u8 name[];		// 0x08:
1191};
1192
1193static_assert(offsetof(struct EA_FULL, name) == 8);
1194
1195#define ACL_REVISION	2
1196#define ACL_REVISION_DS 4
1197
1198#define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1199
1200struct SECURITY_DESCRIPTOR_RELATIVE {
1201	u8 Revision;
1202	u8 Sbz1;
1203	__le16 Control;
1204	__le32 Owner;
1205	__le32 Group;
1206	__le32 Sacl;
1207	__le32 Dacl;
1208};
1209static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1210
1211struct ACE_HEADER {
1212	u8 AceType;
1213	u8 AceFlags;
1214	__le16 AceSize;
1215};
1216static_assert(sizeof(struct ACE_HEADER) == 4);
1217
1218struct ACL {
1219	u8 AclRevision;
1220	u8 Sbz1;
1221	__le16 AclSize;
1222	__le16 AceCount;
1223	__le16 Sbz2;
1224};
1225static_assert(sizeof(struct ACL) == 8);
1226
1227struct SID {
1228	u8 Revision;
1229	u8 SubAuthorityCount;
1230	u8 IdentifierAuthority[6];
1231	__le32 SubAuthority[];
1232};
1233static_assert(offsetof(struct SID, SubAuthority) == 8);
1234
1235#endif /* _LINUX_NTFS3_NTFS_H */
1236// clang-format on