Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *
   4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
   5 *
   6 * on-disk ntfs structs
   7 */
   8
   9// clang-format off
  10#ifndef _LINUX_NTFS3_NTFS_H
  11#define _LINUX_NTFS3_NTFS_H
  12
  13#include <linux/blkdev.h>
  14#include <linux/build_bug.h>
  15#include <linux/kernel.h>
  16#include <linux/stddef.h>
  17#include <linux/string.h>
  18#include <linux/types.h>
  19
  20#include "debug.h"
  21
  22/* TODO: Check 4K MFT record and 512 bytes cluster. */
  23
  24/* Check each run for marked clusters. */
  25#define NTFS3_CHECK_FREE_CLST
  26
  27#define NTFS_NAME_LEN 255
  28
  29/*
  30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
  31 * xfstest generic/041 creates 3003 hardlinks.
  32 */
  33#define NTFS_LINK_MAX 4000
  34
  35/*
  36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
  37 * Logical and virtual cluster number if needed, may be
  38 * redefined to use 64 bit value.
  39 */
  40//#define CONFIG_NTFS3_64BIT_CLUSTER
  41
  42#define NTFS_LZNT_MAX_CLUSTER	4096
  43#define NTFS_LZNT_CUNIT		4
  44#define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
  45
  46struct GUID {
  47	__le32 Data1;
  48	__le16 Data2;
  49	__le16 Data3;
  50	u8 Data4[8];
  51};
  52
  53/*
  54 * This struct repeats layout of ATTR_FILE_NAME
  55 * at offset 0x40.
  56 * It used to store global constants NAME_MFT/NAME_MIRROR...
  57 * most constant names are shorter than 10.
  58 */
  59struct cpu_str {
  60	u8 len;
  61	u8 unused;
  62	u16 name[10];
  63};
  64
  65struct le_str {
  66	u8 len;
  67	u8 unused;
  68	__le16 name[];
  69};
  70
  71static_assert(SECTOR_SHIFT == 9);
  72
  73#ifdef CONFIG_NTFS3_64BIT_CLUSTER
  74typedef u64 CLST;
  75static_assert(sizeof(size_t) == 8);
  76#else
  77typedef u32 CLST;
  78#endif
  79
  80#define SPARSE_LCN64   ((u64)-1)
  81#define SPARSE_LCN     ((CLST)-1)
  82#define RESIDENT_LCN   ((CLST)-2)
  83#define COMPRESSED_LCN ((CLST)-3)
  84
  85#define COMPRESSION_UNIT     4
  86#define COMPRESS_MAX_CLUSTER 0x1000
  87
  88enum RECORD_NUM {
  89	MFT_REC_MFT		= 0,
  90	MFT_REC_MIRR		= 1,
  91	MFT_REC_LOG		= 2,
  92	MFT_REC_VOL		= 3,
  93	MFT_REC_ATTR		= 4,
  94	MFT_REC_ROOT		= 5,
  95	MFT_REC_BITMAP		= 6,
  96	MFT_REC_BOOT		= 7,
  97	MFT_REC_BADCLUST	= 8,
  98	//MFT_REC_QUOTA		= 9,
  99	MFT_REC_SECURE		= 9, // NTFS 3.0
 100	MFT_REC_UPCASE		= 10,
 101	MFT_REC_EXTEND		= 11, // NTFS 3.0
 102	MFT_REC_RESERVED	= 11,
 103	MFT_REC_FREE		= 16,
 104	MFT_REC_USER		= 24,
 105};
 106
 107enum ATTR_TYPE {
 108	ATTR_ZERO		= cpu_to_le32(0x00),
 109	ATTR_STD		= cpu_to_le32(0x10),
 110	ATTR_LIST		= cpu_to_le32(0x20),
 111	ATTR_NAME		= cpu_to_le32(0x30),
 112	// ATTR_VOLUME_VERSION on Nt4
 113	ATTR_ID			= cpu_to_le32(0x40),
 114	ATTR_SECURE		= cpu_to_le32(0x50),
 115	ATTR_LABEL		= cpu_to_le32(0x60),
 116	ATTR_VOL_INFO		= cpu_to_le32(0x70),
 117	ATTR_DATA		= cpu_to_le32(0x80),
 118	ATTR_ROOT		= cpu_to_le32(0x90),
 119	ATTR_ALLOC		= cpu_to_le32(0xA0),
 120	ATTR_BITMAP		= cpu_to_le32(0xB0),
 121	// ATTR_SYMLINK on Nt4
 122	ATTR_REPARSE		= cpu_to_le32(0xC0),
 123	ATTR_EA_INFO		= cpu_to_le32(0xD0),
 124	ATTR_EA			= cpu_to_le32(0xE0),
 125	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
 126	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
 127	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
 128};
 129
 130static_assert(sizeof(enum ATTR_TYPE) == 4);
 131
 132enum FILE_ATTRIBUTE {
 133	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
 134	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
 135	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
 136	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
 137	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
 138	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
 139	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
 140	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
 141	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
 142	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
 143	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
 144	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
 145	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
 146	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
 147};
 148
 149static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
 150
 151extern const struct cpu_str NAME_MFT;
 152extern const struct cpu_str NAME_MIRROR;
 153extern const struct cpu_str NAME_LOGFILE;
 154extern const struct cpu_str NAME_VOLUME;
 155extern const struct cpu_str NAME_ATTRDEF;
 156extern const struct cpu_str NAME_ROOT;
 157extern const struct cpu_str NAME_BITMAP;
 158extern const struct cpu_str NAME_BOOT;
 159extern const struct cpu_str NAME_BADCLUS;
 160extern const struct cpu_str NAME_QUOTA;
 161extern const struct cpu_str NAME_SECURE;
 162extern const struct cpu_str NAME_UPCASE;
 163extern const struct cpu_str NAME_EXTEND;
 164extern const struct cpu_str NAME_OBJID;
 165extern const struct cpu_str NAME_REPARSE;
 166extern const struct cpu_str NAME_USNJRNL;
 167
 168extern const __le16 I30_NAME[4];
 169extern const __le16 SII_NAME[4];
 170extern const __le16 SDH_NAME[4];
 171extern const __le16 SO_NAME[2];
 172extern const __le16 SQ_NAME[2];
 173extern const __le16 SR_NAME[2];
 174
 175extern const __le16 BAD_NAME[4];
 176extern const __le16 SDS_NAME[4];
 177extern const __le16 WOF_NAME[17];	/* WofCompressedData */
 178
 179/* MFT record number structure. */
 180struct MFT_REF {
 181	__le32 low;	// The low part of the number.
 182	__le16 high;	// The high part of the number.
 183	__le16 seq;	// The sequence number of MFT record.
 184};
 185
 186static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
 187
 188static inline CLST ino_get(const struct MFT_REF *ref)
 189{
 190#ifdef CONFIG_NTFS3_64BIT_CLUSTER
 191	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
 192#else
 193	return le32_to_cpu(ref->low);
 194#endif
 195}
 196
 197struct NTFS_BOOT {
 198	u8 jump_code[3];	// 0x00: Jump to boot code.
 199	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
 200
 201	// NOTE: This member is not aligned(!)
 202	// bytes_per_sector[0] must be 0.
 203	// bytes_per_sector[1] must be multiplied by 256.
 204	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
 205
 206	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
 207	u8 unused1[7];
 208	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
 209	u8 unused2[2];
 210	__le16 sct_per_track;	// 0x18: number of sectors per track.
 211	__le16 heads;		// 0x1A: number of heads per cylinder.
 212	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
 213	u8 unused3[4];
 214	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
 215	u8 unused4;
 216	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
 217	u8 unused5;
 218	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
 219	__le64 mft_clst;	// 0x30: First cluster of $MFT
 220	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
 221	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
 222	u8 unused6[3];
 223	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
 224	u8 unused7[3];
 225	__le64 serial_num;	// 0x48: Volume serial number
 226	__le32 check_sum;	// 0x50: Simple additive checksum of all
 227				// of the u32's which precede the 'check_sum'.
 228
 229	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
 230	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
 231};
 232
 233static_assert(sizeof(struct NTFS_BOOT) == 0x200);
 234
 235enum NTFS_SIGNATURE {
 236	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
 237	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
 238	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
 239	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
 240	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
 241	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
 242	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
 243	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
 244};
 245
 246static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
 247
 248/* MFT Record header structure. */
 249struct NTFS_RECORD_HEADER {
 250	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
 251	enum NTFS_SIGNATURE sign; // 0x00:
 252	__le16 fix_off;		// 0x04:
 253	__le16 fix_num;		// 0x06:
 254	__le64 lsn;		// 0x08: Log file sequence number,
 255};
 256
 257static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
 258
 259static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
 260{
 261	return hdr->sign == NTFS_BAAD_SIGNATURE;
 262}
 263
 264/* Possible bits in struct MFT_REC.flags. */
 265enum RECORD_FLAG {
 266	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
 267	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
 268	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
 269	RECORD_FLAG_UNKNOWN	= cpu_to_le16(0x0008),
 270};
 271
 272/* MFT Record structure. */
 273struct MFT_REC {
 274	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
 275
 276	__le16 seq;		// 0x10: Sequence number for this record.
 277	__le16 hard_links;	// 0x12: The number of hard links to record.
 278	__le16 attr_off;	// 0x14: Offset to attributes.
 279	__le16 flags;		// 0x16: See RECORD_FLAG.
 280	__le32 used;		// 0x18: The size of used part.
 281	__le32 total;		// 0x1C: Total record size.
 282
 283	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
 284	__le16 next_attr_id;	// 0x28: The next attribute Id.
 285
 286	__le16 res;		// 0x2A: High part of MFT record?
 287	__le32 mft_record;	// 0x2C: Current MFT record number.
 288	__le16 fixups[];	// 0x30:
 289};
 290
 291#define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
 292#define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
 293
 294static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
 295static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
 296
 297static inline bool is_rec_base(const struct MFT_REC *rec)
 298{
 299	const struct MFT_REF *r = &rec->parent_ref;
 300
 301	return !r->low && !r->high && !r->seq;
 302}
 303
 304static inline bool is_mft_rec5(const struct MFT_REC *rec)
 305{
 306	return le16_to_cpu(rec->rhdr.fix_off) >=
 307	       offsetof(struct MFT_REC, fixups);
 308}
 309
 310static inline bool is_rec_inuse(const struct MFT_REC *rec)
 311{
 312	return rec->flags & RECORD_FLAG_IN_USE;
 313}
 314
 315static inline bool clear_rec_inuse(struct MFT_REC *rec)
 316{
 317	return rec->flags &= ~RECORD_FLAG_IN_USE;
 318}
 319
 320/* Possible values of ATTR_RESIDENT.flags */
 321#define RESIDENT_FLAG_INDEXED 0x01
 322
 323struct ATTR_RESIDENT {
 324	__le32 data_size;	// 0x10: The size of data.
 325	__le16 data_off;	// 0x14: Offset to data.
 326	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
 327	u8 res;			// 0x17:
 328}; // sizeof() = 0x18
 329
 330struct ATTR_NONRESIDENT {
 331	__le64 svcn;		// 0x10: Starting VCN of this segment.
 332	__le64 evcn;		// 0x18: End VCN of this segment.
 333	__le16 run_off;		// 0x20: Offset to packed runs.
 334	//  Unit of Compression size for this stream, expressed
 335	//  as a log of the cluster size.
 336	//
 337	//	0 means file is not compressed
 338	//	1, 2, 3, and 4 are potentially legal values if the
 339	//	    stream is compressed, however the implementation
 340	//	    may only choose to use 4, or possibly 3.  Note
 341	//	    that 4 means cluster size time 16.	If convenient
 342	//	    the implementation may wish to accept a
 343	//	    reasonable range of legal values here (1-5?),
 344	//	    even if the implementation only generates
 345	//	    a smaller set of values itself.
 346	u8 c_unit;		// 0x22:
 347	u8 res1[5];		// 0x23:
 348	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
 349				// (multiple of cluster size)
 350	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
 351	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
 352	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
 353				// (present only for the first segment (0 == vcn)
 354				// of compressed attribute)
 355
 356}; // sizeof()=0x40 or 0x48 (if compressed)
 357
 358/* Possible values of ATTRIB.flags: */
 359#define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
 360#define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
 361#define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
 362#define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
 363
 364struct ATTRIB {
 365	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
 366	__le32 size;		// 0x04: The size of this attribute.
 367	u8 non_res;		// 0x08: Is this attribute non-resident?
 368	u8 name_len;		// 0x09: This attribute name length.
 369	__le16 name_off;	// 0x0A: Offset to the attribute name.
 370	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
 371	__le16 id;		// 0x0E: Unique id (per record).
 372
 373	union {
 374		struct ATTR_RESIDENT res;     // 0x10
 375		struct ATTR_NONRESIDENT nres; // 0x10
 376	};
 377};
 378
 379/* Define attribute sizes. */
 380#define SIZEOF_RESIDENT			0x18
 381#define SIZEOF_NONRESIDENT_EX		0x48
 382#define SIZEOF_NONRESIDENT		0x40
 383
 384#define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
 385#define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
 386#define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
 387
 388static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
 389{
 390	return attr->non_res ? ((attr->flags &
 391				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
 392					le64_to_cpu(attr->nres.total_size) :
 393					le64_to_cpu(attr->nres.alloc_size))
 394			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
 395}
 396
 397static inline u64 attr_size(const struct ATTRIB *attr)
 398{
 399	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
 400			       le32_to_cpu(attr->res.data_size);
 401}
 402
 403static inline bool is_attr_encrypted(const struct ATTRIB *attr)
 404{
 405	return attr->flags & ATTR_FLAG_ENCRYPTED;
 406}
 407
 408static inline bool is_attr_sparsed(const struct ATTRIB *attr)
 409{
 410	return attr->flags & ATTR_FLAG_SPARSED;
 411}
 412
 413static inline bool is_attr_compressed(const struct ATTRIB *attr)
 414{
 415	return attr->flags & ATTR_FLAG_COMPRESSED;
 416}
 417
 418static inline bool is_attr_ext(const struct ATTRIB *attr)
 419{
 420	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
 421}
 422
 423static inline bool is_attr_indexed(const struct ATTRIB *attr)
 424{
 425	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
 426}
 427
 428static inline __le16 const *attr_name(const struct ATTRIB *attr)
 429{
 430	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
 431}
 432
 433static inline u64 attr_svcn(const struct ATTRIB *attr)
 434{
 435	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
 436}
 437
 438/* The size of resident attribute by its resident size. */
 439#define BYTES_PER_RESIDENT(b) (0x18 + (b))
 440
 441static_assert(sizeof(struct ATTRIB) == 0x48);
 442static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
 443static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
 444
 445static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
 446{
 447	u32 asize, rsize;
 448	u16 off;
 449
 450	if (attr->non_res)
 451		return NULL;
 452
 453	asize = le32_to_cpu(attr->size);
 454	off = le16_to_cpu(attr->res.data_off);
 455
 456	if (asize < datasize + off)
 457		return NULL;
 458
 459	rsize = le32_to_cpu(attr->res.data_size);
 460	if (rsize < datasize)
 461		return NULL;
 462
 463	return Add2Ptr(attr, off);
 464}
 465
 466static inline void *resident_data(const struct ATTRIB *attr)
 467{
 468	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
 469}
 470
 471static inline void *attr_run(const struct ATTRIB *attr)
 472{
 473	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
 474}
 475
 476/* Standard information attribute (0x10). */
 477struct ATTR_STD_INFO {
 478	__le64 cr_time;		// 0x00: File creation file.
 479	__le64 m_time;		// 0x08: File modification time.
 480	__le64 c_time;		// 0x10: Last time any attribute was modified.
 481	__le64 a_time;		// 0x18: File last access time.
 482	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
 483	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
 484	__le32 ver_num;		// 0x28: Version Number.
 485	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
 486};
 487
 488static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
 489
 490#define SECURITY_ID_INVALID 0x00000000
 491#define SECURITY_ID_FIRST 0x00000100
 492
 493struct ATTR_STD_INFO5 {
 494	__le64 cr_time;		// 0x00: File creation file.
 495	__le64 m_time;		// 0x08: File modification time.
 496	__le64 c_time;		// 0x10: Last time any attribute was modified.
 497	__le64 a_time;		// 0x18: File last access time.
 498	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
 499	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
 500	__le32 ver_num;		// 0x28: Version Number.
 501	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
 502
 503	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
 504	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
 505	__le64 quota_charge;	// 0x38:
 506	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
 507				// index into the file $UsnJrnl. If zero, the USN Journal is
 508				// disabled.
 509};
 510
 511static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
 512
 513/* Attribute list entry structure (0x20) */
 514struct ATTR_LIST_ENTRY {
 515	enum ATTR_TYPE type;	// 0x00: The type of attribute.
 516	__le16 size;		// 0x04: The size of this record.
 517	u8 name_len;		// 0x06: The length of attribute name.
 518	u8 name_off;		// 0x07: The offset to attribute name.
 519	__le64 vcn;		// 0x08: Starting VCN of this attribute.
 520	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
 521	__le16 id;		// 0x18: struct ATTRIB ID.
 522	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
 523
 524}; // sizeof(0x20)
 525
 526static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
 527
 528static inline u32 le_size(u8 name_len)
 529{
 530	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
 531		     name_len * sizeof(short), 8);
 532}
 533
 534/* Returns 0 if 'attr' has the same type and name. */
 535static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
 536			 const struct ATTRIB *attr)
 537{
 538	return le->type != attr->type || le->name_len != attr->name_len ||
 539	       (!le->name_len &&
 540		memcmp(Add2Ptr(le, le->name_off),
 541		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
 542		       le->name_len * sizeof(short)));
 543}
 544
 545static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
 546{
 547	return Add2Ptr(le, le->name_off);
 548}
 549
 550/* File name types (the field type in struct ATTR_FILE_NAME). */
 551#define FILE_NAME_POSIX   0
 552#define FILE_NAME_UNICODE 1
 553#define FILE_NAME_DOS	  2
 554#define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
 555
 556/* Filename attribute structure (0x30). */
 557struct NTFS_DUP_INFO {
 558	__le64 cr_time;		// 0x00: File creation file.
 559	__le64 m_time;		// 0x08: File modification time.
 560	__le64 c_time;		// 0x10: Last time any attribute was modified.
 561	__le64 a_time;		// 0x18: File last access time.
 562	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
 563	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
 564	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
 565	__le16 ea_size;		// 0x34: Packed EAs.
 566	__le16 reparse;		// 0x36: Used by Reparse.
 567
 568}; // 0x38
 569
 570struct ATTR_FILE_NAME {
 571	struct MFT_REF home;	// 0x00: MFT record for directory.
 572	struct NTFS_DUP_INFO dup;// 0x08:
 573	u8 name_len;		// 0x40: File name length in words.
 574	u8 type;		// 0x41: File name type.
 575	__le16 name[];		// 0x42: File name.
 576};
 577
 578static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
 579static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
 580#define SIZEOF_ATTRIBUTE_FILENAME     0x44
 581#define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
 582
 583static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
 584{
 585	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
 586}
 587
 588static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
 589{
 590	/* Don't return struct_size(fname, name, fname->name_len); */
 591	return offsetof(struct ATTR_FILE_NAME, name) +
 592	       fname->name_len * sizeof(short);
 593}
 594
 595static inline u8 paired_name(u8 type)
 596{
 597	if (type == FILE_NAME_UNICODE)
 598		return FILE_NAME_DOS;
 599	if (type == FILE_NAME_DOS)
 600		return FILE_NAME_UNICODE;
 601	return FILE_NAME_POSIX;
 602}
 603
 604/* Index entry defines ( the field flags in NtfsDirEntry ). */
 605#define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
 606#define NTFS_IE_LAST		cpu_to_le16(2)
 607
 608/* Directory entry structure. */
 609struct NTFS_DE {
 610	union {
 611		struct MFT_REF ref; // 0x00: MFT record number with this file.
 612		struct {
 613			__le16 data_off;  // 0x00:
 614			__le16 data_size; // 0x02:
 615			__le32 res;	  // 0x04: Must be 0.
 616		} view;
 617	};
 618	__le16 size;		// 0x08: The size of this entry.
 619	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
 620	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
 621	__le16 res;		// 0x0E:
 622
 623	// Here any indexed attribute can be placed.
 624	// One of them is:
 625	// struct ATTR_FILE_NAME AttrFileName;
 626	//
 627
 628	// The last 8 bytes of this structure contains
 629	// the VBN of subnode.
 630	// !!! Note !!!
 631	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
 632	// __le64 vbn;
 633};
 634
 635static_assert(sizeof(struct NTFS_DE) == 0x10);
 636
 637static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
 638{
 639	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 640
 641	*v = vcn;
 642}
 643
 644static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
 645{
 646	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 647
 648	*v = cpu_to_le64(vcn);
 649}
 650
 651static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
 652{
 653	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 654}
 655
 656static inline CLST de_get_vbn(const struct NTFS_DE *e)
 657{
 658	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
 659
 660	return le64_to_cpu(*v);
 661}
 662
 663static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
 664{
 665	return Add2Ptr(e, le16_to_cpu(e->size));
 666}
 667
 668static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
 669{
 670	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
 671		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
 672		       NULL;
 673}
 674
 675static inline bool de_is_last(const struct NTFS_DE *e)
 676{
 677	return e->flags & NTFS_IE_LAST;
 678}
 679
 680static inline bool de_has_vcn(const struct NTFS_DE *e)
 681{
 682	return e->flags & NTFS_IE_HAS_SUBNODES;
 683}
 684
 685static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
 686{
 687	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
 688	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
 689							sizeof(__le64)));
 690}
 691
 692#define MAX_BYTES_PER_NAME_ENTRY \
 693	ALIGN(sizeof(struct NTFS_DE) + \
 694	      offsetof(struct ATTR_FILE_NAME, name) + \
 695	      NTFS_NAME_LEN * sizeof(short), 8)
 696
 697struct INDEX_HDR {
 698	__le32 de_off;	// 0x00: The offset from the start of this structure
 699			// to the first NTFS_DE.
 700	__le32 used;	// 0x04: The size of this structure plus all
 701			// entries (quad-word aligned).
 702	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
 703	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
 704	u8 res[3];
 705
 706	//
 707	// de_off + used <= total
 708	//
 709};
 710
 711static_assert(sizeof(struct INDEX_HDR) == 0x10);
 712
 713static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
 714{
 715	u32 de_off = le32_to_cpu(hdr->de_off);
 716	u32 used = le32_to_cpu(hdr->used);
 717	struct NTFS_DE *e;
 718	u16 esize;
 719
 720	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
 721		return NULL;
 722
 723	e = Add2Ptr(hdr, de_off);
 724	esize = le16_to_cpu(e->size);
 725	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
 726		return NULL;
 727
 728	return e;
 729}
 730
 731static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
 732					  const struct NTFS_DE *e)
 733{
 734	size_t off = PtrOffset(hdr, e);
 735	u32 used = le32_to_cpu(hdr->used);
 736	u16 esize;
 737
 738	if (off >= used)
 739		return NULL;
 740
 741	esize = le16_to_cpu(e->size);
 742
 743	if (esize < sizeof(struct NTFS_DE) ||
 744	    off + esize + sizeof(struct NTFS_DE) > used)
 745		return NULL;
 746
 747	return Add2Ptr(e, esize);
 748}
 749
 750static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
 751{
 752	return hdr->flags & 1;
 753}
 754
 755struct INDEX_BUFFER {
 756	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
 757	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
 758	struct INDEX_HDR ihdr; // 0x18:
 759};
 760
 761static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
 762
 763static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
 764{
 765	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
 766
 767	return !first || de_is_last(first);
 768}
 769
 770static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
 771{
 772	return !(ib->ihdr.flags & 1);
 773}
 774
 775/* Index root structure ( 0x90 ). */
 776enum COLLATION_RULE {
 777	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
 778	// $I30
 779	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
 780	// $SII of $Secure and $Q of Quota
 781	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
 782	// $O of Quota
 783	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
 784	// $SDH of $Secure
 785	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
 786	// $O of ObjId and "$R" for Reparse
 787	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
 788};
 789
 790static_assert(sizeof(enum COLLATION_RULE) == 4);
 791
 792//
 793struct INDEX_ROOT {
 794	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
 795	enum COLLATION_RULE rule; // 0x04: The rule.
 796	__le32 index_block_size;// 0x08: The size of index record.
 797	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
 798	u8 res[3];
 799	struct INDEX_HDR ihdr;	// 0x10:
 800};
 801
 802static_assert(sizeof(struct INDEX_ROOT) == 0x20);
 803static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
 804
 805#define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
 806#define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
 807
 808struct VOLUME_INFO {
 809	__le64 res1;	// 0x00
 810	u8 major_ver;	// 0x08: NTFS major version number (before .)
 811	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
 812	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
 813
 814}; // sizeof=0xC
 815
 816#define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
 817
 818#define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
 819#define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
 820#define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
 821#define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
 822#define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
 823#define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
 824#define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
 825
 826/* $AttrDef file entry. */
 827struct ATTR_DEF_ENTRY {
 828	__le16 name[0x40];	// 0x00: Attr name.
 829	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
 830	__le32 res;		// 0x84:
 831	enum COLLATION_RULE rule; // 0x88:
 832	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
 833	__le64 min_sz;		// 0x90: Minimum attribute data size.
 834	__le64 max_sz;		// 0x98: Maximum attribute data size.
 835};
 836
 837static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
 838
 839/* Object ID (0x40) */
 840struct OBJECT_ID {
 841	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
 842	struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
 843				// which the Object Id was allocated. It never changes.
 844	struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
 845				// ever assigned to this MFT Record. I.e. If the Object Id
 846				// is changed for some reason, this field will reflect the
 847				// original value of the Object Id.
 848	struct GUID DomainId;	// 0x30: Domain Id is currently unused but it is intended to be
 849				// used in a network environment where the local machine is
 850				// part of a Windows 2000 Domain. This may be used in a Windows
 851				// 2000 Advanced Server managed domain.
 852};
 853
 854static_assert(sizeof(struct OBJECT_ID) == 0x40);
 855
 856/* O Directory entry structure ( rule = 0x13 ) */
 857struct NTFS_DE_O {
 858	struct NTFS_DE de;
 859	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
 860	struct MFT_REF ref;	// 0x20: MFT record number with this file.
 861	struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
 862				// which the Object Id was allocated. It never changes.
 863	struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
 864				// ever assigned to this MFT Record. I.e. If the Object Id
 865				// is changed for some reason, this field will reflect the
 866				// original value of the Object Id.
 867				// This field is valid if data_size == 0x48.
 868	struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
 869				// to be used in a network environment where the local
 870				// machine is part of a Windows 2000 Domain. This may be
 871				// used in a Windows 2000 Advanced Server managed domain.
 872};
 873
 874static_assert(sizeof(struct NTFS_DE_O) == 0x58);
 875
 876#define NTFS_OBJECT_ENTRY_DATA_SIZE1					       \
 877	0x38 // struct NTFS_DE_O.BirthDomainId is not used
 878#define NTFS_OBJECT_ENTRY_DATA_SIZE2					       \
 879	0x48 // struct NTFS_DE_O.BirthDomainId is used
 880
 881/* Q Directory entry structure ( rule = 0x11 ) */
 882struct NTFS_DE_Q {
 883	struct NTFS_DE de;
 884	__le32 owner_id;	// 0x10: Unique Id assigned to file
 885	__le32 Version;		// 0x14: 0x02
 886	__le32 flags2;		// 0x18: Quota flags, see above
 887	__le64 BytesUsed;	// 0x1C:
 888	__le64 ChangeTime;	// 0x24:
 889	__le64 WarningLimit;	// 0x28:
 890	__le64 HardLimit;	// 0x34:
 891	__le64 ExceededTime;	// 0x3C:
 892
 893	// SID is placed here
 894}; // sizeof() = 0x44
 895
 896#define SIZEOF_NTFS_DE_Q 0x44
 897
 898#define SecurityDescriptorsBlockSize 0x40000 // 256K
 899#define SecurityDescriptorMaxSize    0x20000 // 128K
 900#define Log2OfSecurityDescriptorsBlockSize 18
 901
 902struct SECURITY_KEY {
 903	__le32 hash; //  Hash value for descriptor
 904	__le32 sec_id; //  Security Id (guaranteed unique)
 905};
 906
 907/* Security descriptors (the content of $Secure::SDS data stream) */
 908struct SECURITY_HDR {
 909	struct SECURITY_KEY key;	// 0x00: Security Key.
 910	__le64 off;			// 0x08: Offset of this entry in the file.
 911	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
 912	/*
 913	 * Security descriptor itself is placed here.
 914	 * Total size is 16 byte aligned.
 915	 */
 916} __packed;
 917
 918#define SIZEOF_SECURITY_HDR 0x14
 919
 920/* SII Directory entry structure */
 921struct NTFS_DE_SII {
 922	struct NTFS_DE de;
 923	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
 924	struct SECURITY_HDR sec_hdr;	// 0x14:
 925} __packed;
 926
 927#define SIZEOF_SII_DIRENTRY 0x28
 928
 929/* SDH Directory entry structure */
 930struct NTFS_DE_SDH {
 931	struct NTFS_DE de;
 932	struct SECURITY_KEY key;	// 0x10: Key
 933	struct SECURITY_HDR sec_hdr;	// 0x18: Data
 934	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
 935};
 936
 937#define SIZEOF_SDH_DIRENTRY 0x30
 938
 939struct REPARSE_KEY {
 940	__le32 ReparseTag;		// 0x00: Reparse Tag
 941	struct MFT_REF ref;		// 0x04: MFT record number with this file
 942}; // sizeof() = 0x0C
 943
 944static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
 945#define SIZEOF_REPARSE_KEY 0x0C
 946
 947/* Reparse Directory entry structure */
 948struct NTFS_DE_R {
 949	struct NTFS_DE de;
 950	struct REPARSE_KEY key;		// 0x10: Reparse Key.
 951	u32 zero;			// 0x1c:
 952}; // sizeof() = 0x20
 953
 954static_assert(sizeof(struct NTFS_DE_R) == 0x20);
 955
 956/* CompressReparseBuffer.WofVersion */
 957#define WOF_CURRENT_VERSION		cpu_to_le32(1)
 958/* CompressReparseBuffer.WofProvider */
 959#define WOF_PROVIDER_WIM		cpu_to_le32(1)
 960/* CompressReparseBuffer.WofProvider */
 961#define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
 962/* CompressReparseBuffer.ProviderVer */
 963#define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
 964
 965#define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
 966#define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
 967#define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
 968#define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
 969
 970/*
 971 * ATTR_REPARSE (0xC0)
 972 *
 973 * The reparse struct GUID structure is used by all 3rd party layered drivers to
 974 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
 975 * cannot be GUID_NULL.
 976 * The constraints on reparse tags are defined below.
 977 * Microsoft tags can also be used with this format of the reparse point buffer.
 978 */
 979struct REPARSE_POINT {
 980	__le32 ReparseTag;	// 0x00:
 981	__le16 ReparseDataLength;// 0x04:
 982	__le16 Reserved;
 983
 984	struct GUID Guid;	// 0x08:
 985
 986	//
 987	// Here GenericReparseBuffer is placed
 988	//
 989};
 990
 991static_assert(sizeof(struct REPARSE_POINT) == 0x18);
 992
 993/* Maximum allowed size of the reparse data. */
 994#define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
 995
 996/*
 997 * The value of the following constant needs to satisfy the following
 998 * conditions:
 999 *  (1) Be at least as large as the largest of the reserved tags.
1000 *  (2) Be strictly smaller than all the tags in use.
1001 */
1002#define IO_REPARSE_TAG_RESERVED_RANGE		1
1003
1004/*
1005 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1006 *
1007 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1008 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1009 *  +-+-+-+-+-----------------------+-------------------------------+
1010 *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1011 *  +-+-+-+-+-----------------------+-------------------------------+
1012 *
1013 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1014 *   All ISVs must use a tag with a 0 in this position.
1015 *   Note: If a Microsoft tag is used by non-Microsoft software, the
1016 *   behavior is not defined.
1017 *
1018 * R is reserved.  Must be zero for non-Microsoft tags.
1019 *
1020 * N is name surrogate. When set to 1, the file represents another named
1021 *   entity in the system.
1022 *
1023 * The M and N bits are OR-able.
1024 * The following macros check for the M and N bit values:
1025 */
1026
1027/*
1028 * Macro to determine whether a reparse point tag corresponds to a tag
1029 * owned by Microsoft.
1030 */
1031#define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1032
1033/* Macro to determine whether a reparse point tag is a name surrogate. */
1034#define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1035
1036/*
1037 * The following constant represents the bits that are valid to use in
1038 * reparse tags.
1039 */
1040#define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1041
1042/*
1043 * Macro to determine whether a reparse tag is a valid tag.
1044 */
1045#define IsReparseTagValid(_tag)						       \
1046	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1047	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1048
1049/* Microsoft tags for reparse points. */
1050
1051enum IO_REPARSE_TAG {
1052	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1053	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1054	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1055	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1056	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1057	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1058	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1059	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1060	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1061
1062	/*
1063	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1064	 * May be published in the future.
1065	 */
1066
1067	/* Microsoft reparse tag reserved for DFS */
1068	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1069
1070	/* Microsoft reparse tag reserved for the file system filter manager. */
1071	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1072
1073	/* Non-Microsoft tags for reparse points */
1074
1075	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1076	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1077
1078	/* Tag allocated to ARKIVIO. */
1079	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1080
1081	/* Tag allocated to SOLUTIONSOFT. */
1082	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1083
1084	/* Tag allocated to COMMVAULT. */
1085	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1086
1087	/* OneDrive?? */
1088	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1089	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1090	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1091	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1092	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1093	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1094	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1095	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1096	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1097	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1098	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1099	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1100	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1101	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1102	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1103	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1104
1105};
1106
1107#define SYMLINK_FLAG_RELATIVE		1
1108
1109/* Microsoft reparse buffer. (see DDK for details) */
1110struct REPARSE_DATA_BUFFER {
1111	__le32 ReparseTag;		// 0x00:
1112	__le16 ReparseDataLength;	// 0x04:
1113	__le16 Reserved;
1114
1115	union {
1116		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1117		struct {
1118			__le16 SubstituteNameOffset; // 0x08
1119			__le16 SubstituteNameLength; // 0x0A
1120			__le16 PrintNameOffset;      // 0x0C
1121			__le16 PrintNameLength;      // 0x0E
1122			__le16 PathBuffer[];	     // 0x10
1123		} MountPointReparseBuffer;
1124
1125		/*
1126		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1127		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1128		 */
1129		struct {
1130			__le16 SubstituteNameOffset; // 0x08
1131			__le16 SubstituteNameLength; // 0x0A
1132			__le16 PrintNameOffset;      // 0x0C
1133			__le16 PrintNameLength;      // 0x0E
1134			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1135			__le32 Flags;		     // 0x10
1136			__le16 PathBuffer[];	     // 0x14
1137		} SymbolicLinkReparseBuffer;
1138
1139		/* If ReparseTag == 0x80000017U */
1140		struct {
1141			__le32 WofVersion;  // 0x08 == 1
1142			/*
1143			 * 1 - WIM backing provider ("WIMBoot"),
1144			 * 2 - System compressed file provider
1145			 */
1146			__le32 WofProvider; // 0x0C:
1147			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1148			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1149		} CompressReparseBuffer;
1150
1151		struct {
1152			u8 DataBuffer[1];   // 0x08:
1153		} GenericReparseBuffer;
1154	};
1155};
1156
1157/* ATTR_EA_INFO (0xD0) */
1158
1159#define FILE_NEED_EA 0x80 // See ntifs.h
1160/*
1161 *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1162 * interpreted without understanding the associated extended attributes.
1163 */
1164struct EA_INFO {
1165	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1166	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1167	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1168};
1169
1170static_assert(sizeof(struct EA_INFO) == 8);
1171
1172/* ATTR_EA (0xE0) */
1173struct EA_FULL {
1174	__le32 size;		// 0x00: (not in packed)
1175	u8 flags;		// 0x04:
1176	u8 name_len;		// 0x05:
1177	__le16 elength;		// 0x06:
1178	u8 name[];		// 0x08:
1179};
1180
1181static_assert(offsetof(struct EA_FULL, name) == 8);
1182
1183#define ACL_REVISION	2
1184#define ACL_REVISION_DS 4
1185
1186#define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1187
1188struct SECURITY_DESCRIPTOR_RELATIVE {
1189	u8 Revision;
1190	u8 Sbz1;
1191	__le16 Control;
1192	__le32 Owner;
1193	__le32 Group;
1194	__le32 Sacl;
1195	__le32 Dacl;
1196};
1197static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1198
1199struct ACE_HEADER {
1200	u8 AceType;
1201	u8 AceFlags;
1202	__le16 AceSize;
1203};
1204static_assert(sizeof(struct ACE_HEADER) == 4);
1205
1206struct ACL {
1207	u8 AclRevision;
1208	u8 Sbz1;
1209	__le16 AclSize;
1210	__le16 AceCount;
1211	__le16 Sbz2;
1212};
1213static_assert(sizeof(struct ACL) == 8);
1214
1215struct SID {
1216	u8 Revision;
1217	u8 SubAuthorityCount;
1218	u8 IdentifierAuthority[6];
1219	__le32 SubAuthority[];
1220};
1221static_assert(offsetof(struct SID, SubAuthority) == 8);
1222
1223#endif /* _LINUX_NTFS3_NTFS_H */
1224// clang-format on