Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similarto hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corperation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15#include <linux/time.h>
16#include <linux/hrtimer.h>
17#include <linux/timerqueue.h>
18#include <linux/rtc.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/alarmtimer.h>
22#include <linux/mutex.h>
23#include <linux/platform_device.h>
24#include <linux/posix-timers.h>
25#include <linux/workqueue.h>
26#include <linux/freezer.h>
27#include <linux/compat.h>
28#include <linux/module.h>
29
30#include "posix-timers.h"
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/alarmtimer.h>
34
35/**
36 * struct alarm_base - Alarm timer bases
37 * @lock: Lock for syncrhonized access to the base
38 * @timerqueue: Timerqueue head managing the list of events
39 * @gettime: Function to read the time correlating to the base
40 * @base_clockid: clockid for the base
41 */
42static struct alarm_base {
43 spinlock_t lock;
44 struct timerqueue_head timerqueue;
45 ktime_t (*gettime)(void);
46 clockid_t base_clockid;
47} alarm_bases[ALARM_NUMTYPE];
48
49#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50/* freezer information to handle clock_nanosleep triggered wakeups */
51static enum alarmtimer_type freezer_alarmtype;
52static ktime_t freezer_expires;
53static ktime_t freezer_delta;
54static DEFINE_SPINLOCK(freezer_delta_lock);
55#endif
56
57#ifdef CONFIG_RTC_CLASS
58static struct wakeup_source *ws;
59
60/* rtc timer and device for setting alarm wakeups at suspend */
61static struct rtc_timer rtctimer;
62static struct rtc_device *rtcdev;
63static DEFINE_SPINLOCK(rtcdev_lock);
64
65/**
66 * alarmtimer_get_rtcdev - Return selected rtcdevice
67 *
68 * This function returns the rtc device to use for wakealarms.
69 * If one has not already been chosen, it checks to see if a
70 * functional rtc device is available.
71 */
72struct rtc_device *alarmtimer_get_rtcdev(void)
73{
74 unsigned long flags;
75 struct rtc_device *ret;
76
77 spin_lock_irqsave(&rtcdev_lock, flags);
78 ret = rtcdev;
79 spin_unlock_irqrestore(&rtcdev_lock, flags);
80
81 return ret;
82}
83EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84
85static int alarmtimer_rtc_add_device(struct device *dev,
86 struct class_interface *class_intf)
87{
88 unsigned long flags;
89 struct rtc_device *rtc = to_rtc_device(dev);
90 struct wakeup_source *__ws;
91
92 if (rtcdev)
93 return -EBUSY;
94
95 if (!rtc->ops->set_alarm)
96 return -1;
97 if (!device_may_wakeup(rtc->dev.parent))
98 return -1;
99
100 __ws = wakeup_source_register(dev, "alarmtimer");
101
102 spin_lock_irqsave(&rtcdev_lock, flags);
103 if (!rtcdev) {
104 if (!try_module_get(rtc->owner)) {
105 spin_unlock_irqrestore(&rtcdev_lock, flags);
106 return -1;
107 }
108
109 rtcdev = rtc;
110 /* hold a reference so it doesn't go away */
111 get_device(dev);
112 ws = __ws;
113 __ws = NULL;
114 }
115 spin_unlock_irqrestore(&rtcdev_lock, flags);
116
117 wakeup_source_unregister(__ws);
118
119 return 0;
120}
121
122static inline void alarmtimer_rtc_timer_init(void)
123{
124 rtc_timer_init(&rtctimer, NULL, NULL);
125}
126
127static struct class_interface alarmtimer_rtc_interface = {
128 .add_dev = &alarmtimer_rtc_add_device,
129};
130
131static int alarmtimer_rtc_interface_setup(void)
132{
133 alarmtimer_rtc_interface.class = rtc_class;
134 return class_interface_register(&alarmtimer_rtc_interface);
135}
136static void alarmtimer_rtc_interface_remove(void)
137{
138 class_interface_unregister(&alarmtimer_rtc_interface);
139}
140#else
141struct rtc_device *alarmtimer_get_rtcdev(void)
142{
143 return NULL;
144}
145#define rtcdev (NULL)
146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147static inline void alarmtimer_rtc_interface_remove(void) { }
148static inline void alarmtimer_rtc_timer_init(void) { }
149#endif
150
151/**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161{
162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163 timerqueue_del(&base->timerqueue, &alarm->node);
164
165 timerqueue_add(&base->timerqueue, &alarm->node);
166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167}
168
169/**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179{
180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181 return;
182
183 timerqueue_del(&base->timerqueue, &alarm->node);
184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185}
186
187
188/**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * when the next future alarm timer expires.
196 */
197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198{
199 struct alarm *alarm = container_of(timer, struct alarm, timer);
200 struct alarm_base *base = &alarm_bases[alarm->type];
201 unsigned long flags;
202 int ret = HRTIMER_NORESTART;
203 int restart = ALARMTIMER_NORESTART;
204
205 spin_lock_irqsave(&base->lock, flags);
206 alarmtimer_dequeue(base, alarm);
207 spin_unlock_irqrestore(&base->lock, flags);
208
209 if (alarm->function)
210 restart = alarm->function(alarm, base->gettime());
211
212 spin_lock_irqsave(&base->lock, flags);
213 if (restart != ALARMTIMER_NORESTART) {
214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215 alarmtimer_enqueue(base, alarm);
216 ret = HRTIMER_RESTART;
217 }
218 spin_unlock_irqrestore(&base->lock, flags);
219
220 trace_alarmtimer_fired(alarm, base->gettime());
221 return ret;
222
223}
224
225ktime_t alarm_expires_remaining(const struct alarm *alarm)
226{
227 struct alarm_base *base = &alarm_bases[alarm->type];
228 return ktime_sub(alarm->node.expires, base->gettime());
229}
230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232#ifdef CONFIG_RTC_CLASS
233/**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
242static int alarmtimer_suspend(struct device *dev)
243{
244 ktime_t min, now, expires;
245 int i, ret, type;
246 struct rtc_device *rtc;
247 unsigned long flags;
248 struct rtc_time tm;
249
250 spin_lock_irqsave(&freezer_delta_lock, flags);
251 min = freezer_delta;
252 expires = freezer_expires;
253 type = freezer_alarmtype;
254 freezer_delta = 0;
255 spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257 rtc = alarmtimer_get_rtcdev();
258 /* If we have no rtcdev, just return */
259 if (!rtc)
260 return 0;
261
262 /* Find the soonest timer to expire*/
263 for (i = 0; i < ALARM_NUMTYPE; i++) {
264 struct alarm_base *base = &alarm_bases[i];
265 struct timerqueue_node *next;
266 ktime_t delta;
267
268 spin_lock_irqsave(&base->lock, flags);
269 next = timerqueue_getnext(&base->timerqueue);
270 spin_unlock_irqrestore(&base->lock, flags);
271 if (!next)
272 continue;
273 delta = ktime_sub(next->expires, base->gettime());
274 if (!min || (delta < min)) {
275 expires = next->expires;
276 min = delta;
277 type = i;
278 }
279 }
280 if (min == 0)
281 return 0;
282
283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
285 return -EBUSY;
286 }
287
288 trace_alarmtimer_suspend(expires, type);
289
290 /* Setup an rtc timer to fire that far in the future */
291 rtc_timer_cancel(rtc, &rtctimer);
292 rtc_read_time(rtc, &tm);
293 now = rtc_tm_to_ktime(tm);
294 now = ktime_add(now, min);
295
296 /* Set alarm, if in the past reject suspend briefly to handle */
297 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298 if (ret < 0)
299 __pm_wakeup_event(ws, MSEC_PER_SEC);
300 return ret;
301}
302
303static int alarmtimer_resume(struct device *dev)
304{
305 struct rtc_device *rtc;
306
307 rtc = alarmtimer_get_rtcdev();
308 if (rtc)
309 rtc_timer_cancel(rtc, &rtctimer);
310 return 0;
311}
312
313#else
314static int alarmtimer_suspend(struct device *dev)
315{
316 return 0;
317}
318
319static int alarmtimer_resume(struct device *dev)
320{
321 return 0;
322}
323#endif
324
325static void
326__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328{
329 timerqueue_init(&alarm->node);
330 alarm->timer.function = alarmtimer_fired;
331 alarm->function = function;
332 alarm->type = type;
333 alarm->state = ALARMTIMER_STATE_INACTIVE;
334}
335
336/**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
342void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344{
345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346 HRTIMER_MODE_ABS);
347 __alarm_init(alarm, type, function);
348}
349EXPORT_SYMBOL_GPL(alarm_init);
350
351/**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
356void alarm_start(struct alarm *alarm, ktime_t start)
357{
358 struct alarm_base *base = &alarm_bases[alarm->type];
359 unsigned long flags;
360
361 spin_lock_irqsave(&base->lock, flags);
362 alarm->node.expires = start;
363 alarmtimer_enqueue(base, alarm);
364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365 spin_unlock_irqrestore(&base->lock, flags);
366
367 trace_alarmtimer_start(alarm, base->gettime());
368}
369EXPORT_SYMBOL_GPL(alarm_start);
370
371/**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
376void alarm_start_relative(struct alarm *alarm, ktime_t start)
377{
378 struct alarm_base *base = &alarm_bases[alarm->type];
379
380 start = ktime_add_safe(start, base->gettime());
381 alarm_start(alarm, start);
382}
383EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385void alarm_restart(struct alarm *alarm)
386{
387 struct alarm_base *base = &alarm_bases[alarm->type];
388 unsigned long flags;
389
390 spin_lock_irqsave(&base->lock, flags);
391 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392 hrtimer_restart(&alarm->timer);
393 alarmtimer_enqueue(base, alarm);
394 spin_unlock_irqrestore(&base->lock, flags);
395}
396EXPORT_SYMBOL_GPL(alarm_restart);
397
398/**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
405int alarm_try_to_cancel(struct alarm *alarm)
406{
407 struct alarm_base *base = &alarm_bases[alarm->type];
408 unsigned long flags;
409 int ret;
410
411 spin_lock_irqsave(&base->lock, flags);
412 ret = hrtimer_try_to_cancel(&alarm->timer);
413 if (ret >= 0)
414 alarmtimer_dequeue(base, alarm);
415 spin_unlock_irqrestore(&base->lock, flags);
416
417 trace_alarmtimer_cancel(alarm, base->gettime());
418 return ret;
419}
420EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423/**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
429int alarm_cancel(struct alarm *alarm)
430{
431 for (;;) {
432 int ret = alarm_try_to_cancel(alarm);
433 if (ret >= 0)
434 return ret;
435 hrtimer_cancel_wait_running(&alarm->timer);
436 }
437}
438EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442{
443 u64 overrun = 1;
444 ktime_t delta;
445
446 delta = ktime_sub(now, alarm->node.expires);
447
448 if (delta < 0)
449 return 0;
450
451 if (unlikely(delta >= interval)) {
452 s64 incr = ktime_to_ns(interval);
453
454 overrun = ktime_divns(delta, incr);
455
456 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457 incr*overrun);
458
459 if (alarm->node.expires > now)
460 return overrun;
461 /*
462 * This (and the ktime_add() below) is the
463 * correction for exact:
464 */
465 overrun++;
466 }
467
468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469 return overrun;
470}
471EXPORT_SYMBOL_GPL(alarm_forward);
472
473u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474{
475 struct alarm_base *base = &alarm_bases[alarm->type];
476
477 return alarm_forward(alarm, base->gettime(), interval);
478}
479EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481#ifdef CONFIG_POSIX_TIMERS
482
483static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484{
485 struct alarm_base *base;
486 unsigned long flags;
487 ktime_t delta;
488
489 switch(type) {
490 case ALARM_REALTIME:
491 base = &alarm_bases[ALARM_REALTIME];
492 type = ALARM_REALTIME_FREEZER;
493 break;
494 case ALARM_BOOTTIME:
495 base = &alarm_bases[ALARM_BOOTTIME];
496 type = ALARM_BOOTTIME_FREEZER;
497 break;
498 default:
499 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500 return;
501 }
502
503 delta = ktime_sub(absexp, base->gettime());
504
505 spin_lock_irqsave(&freezer_delta_lock, flags);
506 if (!freezer_delta || (delta < freezer_delta)) {
507 freezer_delta = delta;
508 freezer_expires = absexp;
509 freezer_alarmtype = type;
510 }
511 spin_unlock_irqrestore(&freezer_delta_lock, flags);
512}
513
514/**
515 * clock2alarm - helper that converts from clockid to alarmtypes
516 * @clockid: clockid.
517 */
518static enum alarmtimer_type clock2alarm(clockid_t clockid)
519{
520 if (clockid == CLOCK_REALTIME_ALARM)
521 return ALARM_REALTIME;
522 if (clockid == CLOCK_BOOTTIME_ALARM)
523 return ALARM_BOOTTIME;
524 return -1;
525}
526
527/**
528 * alarm_handle_timer - Callback for posix timers
529 * @alarm: alarm that fired
530 *
531 * Posix timer callback for expired alarm timers.
532 */
533static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534 ktime_t now)
535{
536 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537 it.alarm.alarmtimer);
538 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539 unsigned long flags;
540 int si_private = 0;
541
542 spin_lock_irqsave(&ptr->it_lock, flags);
543
544 ptr->it_active = 0;
545 if (ptr->it_interval)
546 si_private = ++ptr->it_requeue_pending;
547
548 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549 /*
550 * Handle ignored signals and rearm the timer. This will go
551 * away once we handle ignored signals proper.
552 */
553 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554 ++ptr->it_requeue_pending;
555 ptr->it_active = 1;
556 result = ALARMTIMER_RESTART;
557 }
558 spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560 return result;
561}
562
563/**
564 * alarm_timer_rearm - Posix timer callback for rearming timer
565 * @timr: Pointer to the posixtimer data struct
566 */
567static void alarm_timer_rearm(struct k_itimer *timr)
568{
569 struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572 alarm_start(alarm, alarm->node.expires);
573}
574
575/**
576 * alarm_timer_forward - Posix timer callback for forwarding timer
577 * @timr: Pointer to the posixtimer data struct
578 * @now: Current time to forward the timer against
579 */
580static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581{
582 struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584 return alarm_forward(alarm, timr->it_interval, now);
585}
586
587/**
588 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589 * @timr: Pointer to the posixtimer data struct
590 * @now: Current time to calculate against
591 */
592static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593{
594 struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596 return ktime_sub(alarm->node.expires, now);
597}
598
599/**
600 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601 * @timr: Pointer to the posixtimer data struct
602 */
603static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604{
605 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606}
607
608/**
609 * alarm_timer_wait_running - Posix timer callback to wait for a timer
610 * @timr: Pointer to the posixtimer data struct
611 *
612 * Called from the core code when timer cancel detected that the callback
613 * is running. @timr is unlocked and rcu read lock is held to prevent it
614 * from being freed.
615 */
616static void alarm_timer_wait_running(struct k_itimer *timr)
617{
618 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619}
620
621/**
622 * alarm_timer_arm - Posix timer callback to arm a timer
623 * @timr: Pointer to the posixtimer data struct
624 * @expires: The new expiry time
625 * @absolute: Expiry value is absolute time
626 * @sigev_none: Posix timer does not deliver signals
627 */
628static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
629 bool absolute, bool sigev_none)
630{
631 struct alarm *alarm = &timr->it.alarm.alarmtimer;
632 struct alarm_base *base = &alarm_bases[alarm->type];
633
634 if (!absolute)
635 expires = ktime_add_safe(expires, base->gettime());
636 if (sigev_none)
637 alarm->node.expires = expires;
638 else
639 alarm_start(&timr->it.alarm.alarmtimer, expires);
640}
641
642/**
643 * alarm_clock_getres - posix getres interface
644 * @which_clock: clockid
645 * @tp: timespec to fill
646 *
647 * Returns the granularity of underlying alarm base clock
648 */
649static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
650{
651 if (!alarmtimer_get_rtcdev())
652 return -EINVAL;
653
654 tp->tv_sec = 0;
655 tp->tv_nsec = hrtimer_resolution;
656 return 0;
657}
658
659/**
660 * alarm_clock_get - posix clock_get interface
661 * @which_clock: clockid
662 * @tp: timespec to fill.
663 *
664 * Provides the underlying alarm base time.
665 */
666static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
667{
668 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
669
670 if (!alarmtimer_get_rtcdev())
671 return -EINVAL;
672
673 *tp = ktime_to_timespec64(base->gettime());
674 return 0;
675}
676
677/**
678 * alarm_timer_create - posix timer_create interface
679 * @new_timer: k_itimer pointer to manage
680 *
681 * Initializes the k_itimer structure.
682 */
683static int alarm_timer_create(struct k_itimer *new_timer)
684{
685 enum alarmtimer_type type;
686
687 if (!alarmtimer_get_rtcdev())
688 return -EOPNOTSUPP;
689
690 if (!capable(CAP_WAKE_ALARM))
691 return -EPERM;
692
693 type = clock2alarm(new_timer->it_clock);
694 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
695 return 0;
696}
697
698/**
699 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
700 * @alarm: ptr to alarm that fired
701 *
702 * Wakes up the task that set the alarmtimer
703 */
704static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
705 ktime_t now)
706{
707 struct task_struct *task = (struct task_struct *)alarm->data;
708
709 alarm->data = NULL;
710 if (task)
711 wake_up_process(task);
712 return ALARMTIMER_NORESTART;
713}
714
715/**
716 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
717 * @alarm: ptr to alarmtimer
718 * @absexp: absolute expiration time
719 *
720 * Sets the alarm timer and sleeps until it is fired or interrupted.
721 */
722static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
723 enum alarmtimer_type type)
724{
725 struct restart_block *restart;
726 alarm->data = (void *)current;
727 do {
728 set_current_state(TASK_INTERRUPTIBLE);
729 alarm_start(alarm, absexp);
730 if (likely(alarm->data))
731 schedule();
732
733 alarm_cancel(alarm);
734 } while (alarm->data && !signal_pending(current));
735
736 __set_current_state(TASK_RUNNING);
737
738 destroy_hrtimer_on_stack(&alarm->timer);
739
740 if (!alarm->data)
741 return 0;
742
743 if (freezing(current))
744 alarmtimer_freezerset(absexp, type);
745 restart = ¤t->restart_block;
746 if (restart->nanosleep.type != TT_NONE) {
747 struct timespec64 rmt;
748 ktime_t rem;
749
750 rem = ktime_sub(absexp, alarm_bases[type].gettime());
751
752 if (rem <= 0)
753 return 0;
754 rmt = ktime_to_timespec64(rem);
755
756 return nanosleep_copyout(restart, &rmt);
757 }
758 return -ERESTART_RESTARTBLOCK;
759}
760
761static void
762alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
763 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
764{
765 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
766 HRTIMER_MODE_ABS);
767 __alarm_init(alarm, type, function);
768}
769
770/**
771 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
772 * @restart: ptr to restart block
773 *
774 * Handles restarted clock_nanosleep calls
775 */
776static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
777{
778 enum alarmtimer_type type = restart->nanosleep.clockid;
779 ktime_t exp = restart->nanosleep.expires;
780 struct alarm alarm;
781
782 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
783
784 return alarmtimer_do_nsleep(&alarm, exp, type);
785}
786
787/**
788 * alarm_timer_nsleep - alarmtimer nanosleep
789 * @which_clock: clockid
790 * @flags: determins abstime or relative
791 * @tsreq: requested sleep time (abs or rel)
792 * @rmtp: remaining sleep time saved
793 *
794 * Handles clock_nanosleep calls against _ALARM clockids
795 */
796static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
797 const struct timespec64 *tsreq)
798{
799 enum alarmtimer_type type = clock2alarm(which_clock);
800 struct restart_block *restart = ¤t->restart_block;
801 struct alarm alarm;
802 ktime_t exp;
803 int ret = 0;
804
805 if (!alarmtimer_get_rtcdev())
806 return -EOPNOTSUPP;
807
808 if (flags & ~TIMER_ABSTIME)
809 return -EINVAL;
810
811 if (!capable(CAP_WAKE_ALARM))
812 return -EPERM;
813
814 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
815
816 exp = timespec64_to_ktime(*tsreq);
817 /* Convert (if necessary) to absolute time */
818 if (flags != TIMER_ABSTIME) {
819 ktime_t now = alarm_bases[type].gettime();
820
821 exp = ktime_add_safe(now, exp);
822 }
823
824 ret = alarmtimer_do_nsleep(&alarm, exp, type);
825 if (ret != -ERESTART_RESTARTBLOCK)
826 return ret;
827
828 /* abs timers don't set remaining time or restart */
829 if (flags == TIMER_ABSTIME)
830 return -ERESTARTNOHAND;
831
832 restart->fn = alarm_timer_nsleep_restart;
833 restart->nanosleep.clockid = type;
834 restart->nanosleep.expires = exp;
835 return ret;
836}
837
838const struct k_clock alarm_clock = {
839 .clock_getres = alarm_clock_getres,
840 .clock_get = alarm_clock_get,
841 .timer_create = alarm_timer_create,
842 .timer_set = common_timer_set,
843 .timer_del = common_timer_del,
844 .timer_get = common_timer_get,
845 .timer_arm = alarm_timer_arm,
846 .timer_rearm = alarm_timer_rearm,
847 .timer_forward = alarm_timer_forward,
848 .timer_remaining = alarm_timer_remaining,
849 .timer_try_to_cancel = alarm_timer_try_to_cancel,
850 .timer_wait_running = alarm_timer_wait_running,
851 .nsleep = alarm_timer_nsleep,
852};
853#endif /* CONFIG_POSIX_TIMERS */
854
855
856/* Suspend hook structures */
857static const struct dev_pm_ops alarmtimer_pm_ops = {
858 .suspend = alarmtimer_suspend,
859 .resume = alarmtimer_resume,
860};
861
862static struct platform_driver alarmtimer_driver = {
863 .driver = {
864 .name = "alarmtimer",
865 .pm = &alarmtimer_pm_ops,
866 }
867};
868
869/**
870 * alarmtimer_init - Initialize alarm timer code
871 *
872 * This function initializes the alarm bases and registers
873 * the posix clock ids.
874 */
875static int __init alarmtimer_init(void)
876{
877 struct platform_device *pdev;
878 int error = 0;
879 int i;
880
881 alarmtimer_rtc_timer_init();
882
883 /* Initialize alarm bases */
884 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
885 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
886 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
887 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
888 for (i = 0; i < ALARM_NUMTYPE; i++) {
889 timerqueue_init_head(&alarm_bases[i].timerqueue);
890 spin_lock_init(&alarm_bases[i].lock);
891 }
892
893 error = alarmtimer_rtc_interface_setup();
894 if (error)
895 return error;
896
897 error = platform_driver_register(&alarmtimer_driver);
898 if (error)
899 goto out_if;
900
901 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
902 if (IS_ERR(pdev)) {
903 error = PTR_ERR(pdev);
904 goto out_drv;
905 }
906 return 0;
907
908out_drv:
909 platform_driver_unregister(&alarmtimer_driver);
910out_if:
911 alarmtimer_rtc_interface_remove();
912 return error;
913}
914device_initcall(alarmtimer_init);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15#include <linux/time.h>
16#include <linux/hrtimer.h>
17#include <linux/timerqueue.h>
18#include <linux/rtc.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/alarmtimer.h>
22#include <linux/mutex.h>
23#include <linux/platform_device.h>
24#include <linux/posix-timers.h>
25#include <linux/workqueue.h>
26#include <linux/freezer.h>
27#include <linux/compat.h>
28#include <linux/module.h>
29#include <linux/time_namespace.h>
30
31#include "posix-timers.h"
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/alarmtimer.h>
35
36/**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50} alarm_bases[ALARM_NUMTYPE];
51
52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53/* freezer information to handle clock_nanosleep triggered wakeups */
54static enum alarmtimer_type freezer_alarmtype;
55static ktime_t freezer_expires;
56static ktime_t freezer_delta;
57static DEFINE_SPINLOCK(freezer_delta_lock);
58#endif
59
60#ifdef CONFIG_RTC_CLASS
61/* rtc timer and device for setting alarm wakeups at suspend */
62static struct rtc_timer rtctimer;
63static struct rtc_device *rtcdev;
64static DEFINE_SPINLOCK(rtcdev_lock);
65
66/**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
71struct rtc_device *alarmtimer_get_rtcdev(void)
72{
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81}
82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84static int alarmtimer_rtc_add_device(struct device *dev)
85{
86 unsigned long flags;
87 struct rtc_device *rtc = to_rtc_device(dev);
88 struct platform_device *pdev;
89 int ret = 0;
90
91 if (rtcdev)
92 return -EBUSY;
93
94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 return -1;
96 if (!device_may_wakeup(rtc->dev.parent))
97 return -1;
98
99 pdev = platform_device_register_data(dev, "alarmtimer",
100 PLATFORM_DEVID_AUTO, NULL, 0);
101 if (!IS_ERR(pdev))
102 device_init_wakeup(&pdev->dev, true);
103
104 spin_lock_irqsave(&rtcdev_lock, flags);
105 if (!IS_ERR(pdev) && !rtcdev) {
106 if (!try_module_get(rtc->owner)) {
107 ret = -1;
108 goto unlock;
109 }
110
111 rtcdev = rtc;
112 /* hold a reference so it doesn't go away */
113 get_device(dev);
114 pdev = NULL;
115 } else {
116 ret = -1;
117 }
118unlock:
119 spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121 platform_device_unregister(pdev);
122
123 return ret;
124}
125
126static inline void alarmtimer_rtc_timer_init(void)
127{
128 rtc_timer_init(&rtctimer, NULL, NULL);
129}
130
131static struct class_interface alarmtimer_rtc_interface = {
132 .add_dev = &alarmtimer_rtc_add_device,
133};
134
135static int alarmtimer_rtc_interface_setup(void)
136{
137 alarmtimer_rtc_interface.class = &rtc_class;
138 return class_interface_register(&alarmtimer_rtc_interface);
139}
140static void alarmtimer_rtc_interface_remove(void)
141{
142 class_interface_unregister(&alarmtimer_rtc_interface);
143}
144#else
145static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
146static inline void alarmtimer_rtc_interface_remove(void) { }
147static inline void alarmtimer_rtc_timer_init(void) { }
148#endif
149
150/**
151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152 * @base: pointer to the base where the timer is being run
153 * @alarm: pointer to alarm being enqueued.
154 *
155 * Adds alarm to a alarm_base timerqueue
156 *
157 * Must hold base->lock when calling.
158 */
159static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160{
161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 timerqueue_del(&base->timerqueue, &alarm->node);
163
164 timerqueue_add(&base->timerqueue, &alarm->node);
165 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166}
167
168/**
169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170 * @base: pointer to the base where the timer is running
171 * @alarm: pointer to alarm being removed
172 *
173 * Removes alarm to a alarm_base timerqueue
174 *
175 * Must hold base->lock when calling.
176 */
177static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178{
179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 return;
181
182 timerqueue_del(&base->timerqueue, &alarm->node);
183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184}
185
186
187/**
188 * alarmtimer_fired - Handles alarm hrtimer being fired.
189 * @timer: pointer to hrtimer being run
190 *
191 * When a alarm timer fires, this runs through the timerqueue to
192 * see which alarms expired, and runs those. If there are more alarm
193 * timers queued for the future, we set the hrtimer to fire when
194 * the next future alarm timer expires.
195 */
196static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197{
198 struct alarm *alarm = container_of(timer, struct alarm, timer);
199 struct alarm_base *base = &alarm_bases[alarm->type];
200
201 scoped_guard (spinlock_irqsave, &base->lock)
202 alarmtimer_dequeue(base, alarm);
203
204 if (alarm->function)
205 alarm->function(alarm, base->get_ktime());
206
207 trace_alarmtimer_fired(alarm, base->get_ktime());
208 return HRTIMER_NORESTART;
209}
210
211ktime_t alarm_expires_remaining(const struct alarm *alarm)
212{
213 struct alarm_base *base = &alarm_bases[alarm->type];
214 return ktime_sub(alarm->node.expires, base->get_ktime());
215}
216EXPORT_SYMBOL_GPL(alarm_expires_remaining);
217
218#ifdef CONFIG_RTC_CLASS
219/**
220 * alarmtimer_suspend - Suspend time callback
221 * @dev: unused
222 *
223 * When we are going into suspend, we look through the bases
224 * to see which is the soonest timer to expire. We then
225 * set an rtc timer to fire that far into the future, which
226 * will wake us from suspend.
227 */
228static int alarmtimer_suspend(struct device *dev)
229{
230 ktime_t min, now, expires;
231 int i, ret, type;
232 struct rtc_device *rtc;
233 unsigned long flags;
234 struct rtc_time tm;
235
236 spin_lock_irqsave(&freezer_delta_lock, flags);
237 min = freezer_delta;
238 expires = freezer_expires;
239 type = freezer_alarmtype;
240 freezer_delta = 0;
241 spin_unlock_irqrestore(&freezer_delta_lock, flags);
242
243 rtc = alarmtimer_get_rtcdev();
244 /* If we have no rtcdev, just return */
245 if (!rtc)
246 return 0;
247
248 /* Find the soonest timer to expire*/
249 for (i = 0; i < ALARM_NUMTYPE; i++) {
250 struct alarm_base *base = &alarm_bases[i];
251 struct timerqueue_node *next;
252 ktime_t delta;
253
254 spin_lock_irqsave(&base->lock, flags);
255 next = timerqueue_getnext(&base->timerqueue);
256 spin_unlock_irqrestore(&base->lock, flags);
257 if (!next)
258 continue;
259 delta = ktime_sub(next->expires, base->get_ktime());
260 if (!min || (delta < min)) {
261 expires = next->expires;
262 min = delta;
263 type = i;
264 }
265 }
266 if (min == 0)
267 return 0;
268
269 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
270 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
271 return -EBUSY;
272 }
273
274 trace_alarmtimer_suspend(expires, type);
275
276 /* Setup an rtc timer to fire that far in the future */
277 rtc_timer_cancel(rtc, &rtctimer);
278 rtc_read_time(rtc, &tm);
279 now = rtc_tm_to_ktime(tm);
280
281 /*
282 * If the RTC alarm timer only supports a limited time offset, set the
283 * alarm time to the maximum supported value.
284 * The system may wake up earlier (possibly much earlier) than expected
285 * when the alarmtimer runs. This is the best the kernel can do if
286 * the alarmtimer exceeds the time that the rtc device can be programmed
287 * for.
288 */
289 min = rtc_bound_alarmtime(rtc, min);
290
291 now = ktime_add(now, min);
292
293 /* Set alarm, if in the past reject suspend briefly to handle */
294 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
295 if (ret < 0)
296 pm_wakeup_event(dev, MSEC_PER_SEC);
297 return ret;
298}
299
300static int alarmtimer_resume(struct device *dev)
301{
302 struct rtc_device *rtc;
303
304 rtc = alarmtimer_get_rtcdev();
305 if (rtc)
306 rtc_timer_cancel(rtc, &rtctimer);
307 return 0;
308}
309
310#else
311static int alarmtimer_suspend(struct device *dev)
312{
313 return 0;
314}
315
316static int alarmtimer_resume(struct device *dev)
317{
318 return 0;
319}
320#endif
321
322static void
323__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 void (*function)(struct alarm *, ktime_t))
325{
326 timerqueue_init(&alarm->node);
327 alarm->function = function;
328 alarm->type = type;
329 alarm->state = ALARMTIMER_STATE_INACTIVE;
330}
331
332/**
333 * alarm_init - Initialize an alarm structure
334 * @alarm: ptr to alarm to be initialized
335 * @type: the type of the alarm
336 * @function: callback that is run when the alarm fires
337 */
338void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
339 void (*function)(struct alarm *, ktime_t))
340{
341 hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
342 HRTIMER_MODE_ABS);
343 __alarm_init(alarm, type, function);
344}
345EXPORT_SYMBOL_GPL(alarm_init);
346
347/**
348 * alarm_start - Sets an absolute alarm to fire
349 * @alarm: ptr to alarm to set
350 * @start: time to run the alarm
351 */
352void alarm_start(struct alarm *alarm, ktime_t start)
353{
354 struct alarm_base *base = &alarm_bases[alarm->type];
355 unsigned long flags;
356
357 spin_lock_irqsave(&base->lock, flags);
358 alarm->node.expires = start;
359 alarmtimer_enqueue(base, alarm);
360 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
361 spin_unlock_irqrestore(&base->lock, flags);
362
363 trace_alarmtimer_start(alarm, base->get_ktime());
364}
365EXPORT_SYMBOL_GPL(alarm_start);
366
367/**
368 * alarm_start_relative - Sets a relative alarm to fire
369 * @alarm: ptr to alarm to set
370 * @start: time relative to now to run the alarm
371 */
372void alarm_start_relative(struct alarm *alarm, ktime_t start)
373{
374 struct alarm_base *base = &alarm_bases[alarm->type];
375
376 start = ktime_add_safe(start, base->get_ktime());
377 alarm_start(alarm, start);
378}
379EXPORT_SYMBOL_GPL(alarm_start_relative);
380
381void alarm_restart(struct alarm *alarm)
382{
383 struct alarm_base *base = &alarm_bases[alarm->type];
384 unsigned long flags;
385
386 spin_lock_irqsave(&base->lock, flags);
387 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
388 hrtimer_restart(&alarm->timer);
389 alarmtimer_enqueue(base, alarm);
390 spin_unlock_irqrestore(&base->lock, flags);
391}
392EXPORT_SYMBOL_GPL(alarm_restart);
393
394/**
395 * alarm_try_to_cancel - Tries to cancel an alarm timer
396 * @alarm: ptr to alarm to be canceled
397 *
398 * Returns 1 if the timer was canceled, 0 if it was not running,
399 * and -1 if the callback was running
400 */
401int alarm_try_to_cancel(struct alarm *alarm)
402{
403 struct alarm_base *base = &alarm_bases[alarm->type];
404 unsigned long flags;
405 int ret;
406
407 spin_lock_irqsave(&base->lock, flags);
408 ret = hrtimer_try_to_cancel(&alarm->timer);
409 if (ret >= 0)
410 alarmtimer_dequeue(base, alarm);
411 spin_unlock_irqrestore(&base->lock, flags);
412
413 trace_alarmtimer_cancel(alarm, base->get_ktime());
414 return ret;
415}
416EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
417
418
419/**
420 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
421 * @alarm: ptr to alarm to be canceled
422 *
423 * Returns 1 if the timer was canceled, 0 if it was not active.
424 */
425int alarm_cancel(struct alarm *alarm)
426{
427 for (;;) {
428 int ret = alarm_try_to_cancel(alarm);
429 if (ret >= 0)
430 return ret;
431 hrtimer_cancel_wait_running(&alarm->timer);
432 }
433}
434EXPORT_SYMBOL_GPL(alarm_cancel);
435
436
437u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
438{
439 u64 overrun = 1;
440 ktime_t delta;
441
442 delta = ktime_sub(now, alarm->node.expires);
443
444 if (delta < 0)
445 return 0;
446
447 if (unlikely(delta >= interval)) {
448 s64 incr = ktime_to_ns(interval);
449
450 overrun = ktime_divns(delta, incr);
451
452 alarm->node.expires = ktime_add_ns(alarm->node.expires,
453 incr*overrun);
454
455 if (alarm->node.expires > now)
456 return overrun;
457 /*
458 * This (and the ktime_add() below) is the
459 * correction for exact:
460 */
461 overrun++;
462 }
463
464 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
465 return overrun;
466}
467EXPORT_SYMBOL_GPL(alarm_forward);
468
469u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
470{
471 struct alarm_base *base = &alarm_bases[alarm->type];
472
473 return alarm_forward(alarm, base->get_ktime(), interval);
474}
475EXPORT_SYMBOL_GPL(alarm_forward_now);
476
477#ifdef CONFIG_POSIX_TIMERS
478
479static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
480{
481 struct alarm_base *base;
482 unsigned long flags;
483 ktime_t delta;
484
485 switch(type) {
486 case ALARM_REALTIME:
487 base = &alarm_bases[ALARM_REALTIME];
488 type = ALARM_REALTIME_FREEZER;
489 break;
490 case ALARM_BOOTTIME:
491 base = &alarm_bases[ALARM_BOOTTIME];
492 type = ALARM_BOOTTIME_FREEZER;
493 break;
494 default:
495 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
496 return;
497 }
498
499 delta = ktime_sub(absexp, base->get_ktime());
500
501 spin_lock_irqsave(&freezer_delta_lock, flags);
502 if (!freezer_delta || (delta < freezer_delta)) {
503 freezer_delta = delta;
504 freezer_expires = absexp;
505 freezer_alarmtype = type;
506 }
507 spin_unlock_irqrestore(&freezer_delta_lock, flags);
508}
509
510/**
511 * clock2alarm - helper that converts from clockid to alarmtypes
512 * @clockid: clockid.
513 */
514static enum alarmtimer_type clock2alarm(clockid_t clockid)
515{
516 if (clockid == CLOCK_REALTIME_ALARM)
517 return ALARM_REALTIME;
518 if (clockid == CLOCK_BOOTTIME_ALARM)
519 return ALARM_BOOTTIME;
520 return -1;
521}
522
523/**
524 * alarm_handle_timer - Callback for posix timers
525 * @alarm: alarm that fired
526 * @now: time at the timer expiration
527 *
528 * Posix timer callback for expired alarm timers.
529 *
530 * Return: whether the timer is to be restarted
531 */
532static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
533{
534 struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
535
536 guard(spinlock_irqsave)(&ptr->it_lock);
537 posix_timer_queue_signal(ptr);
538}
539
540/**
541 * alarm_timer_rearm - Posix timer callback for rearming timer
542 * @timr: Pointer to the posixtimer data struct
543 */
544static void alarm_timer_rearm(struct k_itimer *timr)
545{
546 struct alarm *alarm = &timr->it.alarm.alarmtimer;
547
548 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
549 alarm_start(alarm, alarm->node.expires);
550}
551
552/**
553 * alarm_timer_forward - Posix timer callback for forwarding timer
554 * @timr: Pointer to the posixtimer data struct
555 * @now: Current time to forward the timer against
556 */
557static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
558{
559 struct alarm *alarm = &timr->it.alarm.alarmtimer;
560
561 return alarm_forward(alarm, timr->it_interval, now);
562}
563
564/**
565 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
566 * @timr: Pointer to the posixtimer data struct
567 * @now: Current time to calculate against
568 */
569static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
570{
571 struct alarm *alarm = &timr->it.alarm.alarmtimer;
572
573 return ktime_sub(alarm->node.expires, now);
574}
575
576/**
577 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
578 * @timr: Pointer to the posixtimer data struct
579 */
580static int alarm_timer_try_to_cancel(struct k_itimer *timr)
581{
582 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
583}
584
585/**
586 * alarm_timer_wait_running - Posix timer callback to wait for a timer
587 * @timr: Pointer to the posixtimer data struct
588 *
589 * Called from the core code when timer cancel detected that the callback
590 * is running. @timr is unlocked and rcu read lock is held to prevent it
591 * from being freed.
592 */
593static void alarm_timer_wait_running(struct k_itimer *timr)
594{
595 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
596}
597
598/**
599 * alarm_timer_arm - Posix timer callback to arm a timer
600 * @timr: Pointer to the posixtimer data struct
601 * @expires: The new expiry time
602 * @absolute: Expiry value is absolute time
603 * @sigev_none: Posix timer does not deliver signals
604 */
605static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
606 bool absolute, bool sigev_none)
607{
608 struct alarm *alarm = &timr->it.alarm.alarmtimer;
609 struct alarm_base *base = &alarm_bases[alarm->type];
610
611 if (!absolute)
612 expires = ktime_add_safe(expires, base->get_ktime());
613 if (sigev_none)
614 alarm->node.expires = expires;
615 else
616 alarm_start(&timr->it.alarm.alarmtimer, expires);
617}
618
619/**
620 * alarm_clock_getres - posix getres interface
621 * @which_clock: clockid
622 * @tp: timespec to fill
623 *
624 * Returns the granularity of underlying alarm base clock
625 */
626static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
627{
628 if (!alarmtimer_get_rtcdev())
629 return -EINVAL;
630
631 tp->tv_sec = 0;
632 tp->tv_nsec = hrtimer_resolution;
633 return 0;
634}
635
636/**
637 * alarm_clock_get_timespec - posix clock_get_timespec interface
638 * @which_clock: clockid
639 * @tp: timespec to fill.
640 *
641 * Provides the underlying alarm base time in a tasks time namespace.
642 */
643static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
644{
645 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
646
647 if (!alarmtimer_get_rtcdev())
648 return -EINVAL;
649
650 base->get_timespec(tp);
651
652 return 0;
653}
654
655/**
656 * alarm_clock_get_ktime - posix clock_get_ktime interface
657 * @which_clock: clockid
658 *
659 * Provides the underlying alarm base time in the root namespace.
660 */
661static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
662{
663 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
664
665 if (!alarmtimer_get_rtcdev())
666 return -EINVAL;
667
668 return base->get_ktime();
669}
670
671/**
672 * alarm_timer_create - posix timer_create interface
673 * @new_timer: k_itimer pointer to manage
674 *
675 * Initializes the k_itimer structure.
676 */
677static int alarm_timer_create(struct k_itimer *new_timer)
678{
679 enum alarmtimer_type type;
680
681 if (!alarmtimer_get_rtcdev())
682 return -EOPNOTSUPP;
683
684 if (!capable(CAP_WAKE_ALARM))
685 return -EPERM;
686
687 type = clock2alarm(new_timer->it_clock);
688 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
689 return 0;
690}
691
692/**
693 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
694 * @alarm: ptr to alarm that fired
695 * @now: time at the timer expiration
696 *
697 * Wakes up the task that set the alarmtimer
698 */
699static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
700{
701 struct task_struct *task = alarm->data;
702
703 alarm->data = NULL;
704 if (task)
705 wake_up_process(task);
706}
707
708/**
709 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710 * @alarm: ptr to alarmtimer
711 * @absexp: absolute expiration time
712 * @type: alarm type (BOOTTIME/REALTIME).
713 *
714 * Sets the alarm timer and sleeps until it is fired or interrupted.
715 */
716static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
717 enum alarmtimer_type type)
718{
719 struct restart_block *restart;
720 alarm->data = (void *)current;
721 do {
722 set_current_state(TASK_INTERRUPTIBLE);
723 alarm_start(alarm, absexp);
724 if (likely(alarm->data))
725 schedule();
726
727 alarm_cancel(alarm);
728 } while (alarm->data && !signal_pending(current));
729
730 __set_current_state(TASK_RUNNING);
731
732 destroy_hrtimer_on_stack(&alarm->timer);
733
734 if (!alarm->data)
735 return 0;
736
737 if (freezing(current))
738 alarmtimer_freezerset(absexp, type);
739 restart = ¤t->restart_block;
740 if (restart->nanosleep.type != TT_NONE) {
741 struct timespec64 rmt;
742 ktime_t rem;
743
744 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
745
746 if (rem <= 0)
747 return 0;
748 rmt = ktime_to_timespec64(rem);
749
750 return nanosleep_copyout(restart, &rmt);
751 }
752 return -ERESTART_RESTARTBLOCK;
753}
754
755static void
756alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
757 void (*function)(struct alarm *, ktime_t))
758{
759 hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
760 HRTIMER_MODE_ABS);
761 __alarm_init(alarm, type, function);
762}
763
764/**
765 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
766 * @restart: ptr to restart block
767 *
768 * Handles restarted clock_nanosleep calls
769 */
770static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
771{
772 enum alarmtimer_type type = restart->nanosleep.clockid;
773 ktime_t exp = restart->nanosleep.expires;
774 struct alarm alarm;
775
776 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
777
778 return alarmtimer_do_nsleep(&alarm, exp, type);
779}
780
781/**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determines abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
786 *
787 * Handles clock_nanosleep calls against _ALARM clockids
788 */
789static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790 const struct timespec64 *tsreq)
791{
792 enum alarmtimer_type type = clock2alarm(which_clock);
793 struct restart_block *restart = ¤t->restart_block;
794 struct alarm alarm;
795 ktime_t exp;
796 int ret;
797
798 if (!alarmtimer_get_rtcdev())
799 return -EOPNOTSUPP;
800
801 if (flags & ~TIMER_ABSTIME)
802 return -EINVAL;
803
804 if (!capable(CAP_WAKE_ALARM))
805 return -EPERM;
806
807 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808
809 exp = timespec64_to_ktime(*tsreq);
810 /* Convert (if necessary) to absolute time */
811 if (flags != TIMER_ABSTIME) {
812 ktime_t now = alarm_bases[type].get_ktime();
813
814 exp = ktime_add_safe(now, exp);
815 } else {
816 exp = timens_ktime_to_host(which_clock, exp);
817 }
818
819 ret = alarmtimer_do_nsleep(&alarm, exp, type);
820 if (ret != -ERESTART_RESTARTBLOCK)
821 return ret;
822
823 /* abs timers don't set remaining time or restart */
824 if (flags == TIMER_ABSTIME)
825 return -ERESTARTNOHAND;
826
827 restart->nanosleep.clockid = type;
828 restart->nanosleep.expires = exp;
829 set_restart_fn(restart, alarm_timer_nsleep_restart);
830 return ret;
831}
832
833const struct k_clock alarm_clock = {
834 .clock_getres = alarm_clock_getres,
835 .clock_get_ktime = alarm_clock_get_ktime,
836 .clock_get_timespec = alarm_clock_get_timespec,
837 .timer_create = alarm_timer_create,
838 .timer_set = common_timer_set,
839 .timer_del = common_timer_del,
840 .timer_get = common_timer_get,
841 .timer_arm = alarm_timer_arm,
842 .timer_rearm = alarm_timer_rearm,
843 .timer_forward = alarm_timer_forward,
844 .timer_remaining = alarm_timer_remaining,
845 .timer_try_to_cancel = alarm_timer_try_to_cancel,
846 .timer_wait_running = alarm_timer_wait_running,
847 .nsleep = alarm_timer_nsleep,
848};
849#endif /* CONFIG_POSIX_TIMERS */
850
851
852/* Suspend hook structures */
853static const struct dev_pm_ops alarmtimer_pm_ops = {
854 .suspend = alarmtimer_suspend,
855 .resume = alarmtimer_resume,
856};
857
858static struct platform_driver alarmtimer_driver = {
859 .driver = {
860 .name = "alarmtimer",
861 .pm = &alarmtimer_pm_ops,
862 }
863};
864
865static void get_boottime_timespec(struct timespec64 *tp)
866{
867 ktime_get_boottime_ts64(tp);
868 timens_add_boottime(tp);
869}
870
871/**
872 * alarmtimer_init - Initialize alarm timer code
873 *
874 * This function initializes the alarm bases and registers
875 * the posix clock ids.
876 */
877static int __init alarmtimer_init(void)
878{
879 int error;
880 int i;
881
882 alarmtimer_rtc_timer_init();
883
884 /* Initialize alarm bases */
885 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
886 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
887 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
888 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
889 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
890 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
891 for (i = 0; i < ALARM_NUMTYPE; i++) {
892 timerqueue_init_head(&alarm_bases[i].timerqueue);
893 spin_lock_init(&alarm_bases[i].lock);
894 }
895
896 error = alarmtimer_rtc_interface_setup();
897 if (error)
898 return error;
899
900 error = platform_driver_register(&alarmtimer_driver);
901 if (error)
902 goto out_if;
903
904 return 0;
905out_if:
906 alarmtimer_rtc_interface_remove();
907 return error;
908}
909device_initcall(alarmtimer_init);