Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similarto hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corperation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15#include <linux/time.h>
16#include <linux/hrtimer.h>
17#include <linux/timerqueue.h>
18#include <linux/rtc.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/alarmtimer.h>
22#include <linux/mutex.h>
23#include <linux/platform_device.h>
24#include <linux/posix-timers.h>
25#include <linux/workqueue.h>
26#include <linux/freezer.h>
27#include <linux/compat.h>
28#include <linux/module.h>
29
30#include "posix-timers.h"
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/alarmtimer.h>
34
35/**
36 * struct alarm_base - Alarm timer bases
37 * @lock: Lock for syncrhonized access to the base
38 * @timerqueue: Timerqueue head managing the list of events
39 * @gettime: Function to read the time correlating to the base
40 * @base_clockid: clockid for the base
41 */
42static struct alarm_base {
43 spinlock_t lock;
44 struct timerqueue_head timerqueue;
45 ktime_t (*gettime)(void);
46 clockid_t base_clockid;
47} alarm_bases[ALARM_NUMTYPE];
48
49#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50/* freezer information to handle clock_nanosleep triggered wakeups */
51static enum alarmtimer_type freezer_alarmtype;
52static ktime_t freezer_expires;
53static ktime_t freezer_delta;
54static DEFINE_SPINLOCK(freezer_delta_lock);
55#endif
56
57#ifdef CONFIG_RTC_CLASS
58static struct wakeup_source *ws;
59
60/* rtc timer and device for setting alarm wakeups at suspend */
61static struct rtc_timer rtctimer;
62static struct rtc_device *rtcdev;
63static DEFINE_SPINLOCK(rtcdev_lock);
64
65/**
66 * alarmtimer_get_rtcdev - Return selected rtcdevice
67 *
68 * This function returns the rtc device to use for wakealarms.
69 * If one has not already been chosen, it checks to see if a
70 * functional rtc device is available.
71 */
72struct rtc_device *alarmtimer_get_rtcdev(void)
73{
74 unsigned long flags;
75 struct rtc_device *ret;
76
77 spin_lock_irqsave(&rtcdev_lock, flags);
78 ret = rtcdev;
79 spin_unlock_irqrestore(&rtcdev_lock, flags);
80
81 return ret;
82}
83EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84
85static int alarmtimer_rtc_add_device(struct device *dev,
86 struct class_interface *class_intf)
87{
88 unsigned long flags;
89 struct rtc_device *rtc = to_rtc_device(dev);
90 struct wakeup_source *__ws;
91
92 if (rtcdev)
93 return -EBUSY;
94
95 if (!rtc->ops->set_alarm)
96 return -1;
97 if (!device_may_wakeup(rtc->dev.parent))
98 return -1;
99
100 __ws = wakeup_source_register(dev, "alarmtimer");
101
102 spin_lock_irqsave(&rtcdev_lock, flags);
103 if (!rtcdev) {
104 if (!try_module_get(rtc->owner)) {
105 spin_unlock_irqrestore(&rtcdev_lock, flags);
106 return -1;
107 }
108
109 rtcdev = rtc;
110 /* hold a reference so it doesn't go away */
111 get_device(dev);
112 ws = __ws;
113 __ws = NULL;
114 }
115 spin_unlock_irqrestore(&rtcdev_lock, flags);
116
117 wakeup_source_unregister(__ws);
118
119 return 0;
120}
121
122static inline void alarmtimer_rtc_timer_init(void)
123{
124 rtc_timer_init(&rtctimer, NULL, NULL);
125}
126
127static struct class_interface alarmtimer_rtc_interface = {
128 .add_dev = &alarmtimer_rtc_add_device,
129};
130
131static int alarmtimer_rtc_interface_setup(void)
132{
133 alarmtimer_rtc_interface.class = rtc_class;
134 return class_interface_register(&alarmtimer_rtc_interface);
135}
136static void alarmtimer_rtc_interface_remove(void)
137{
138 class_interface_unregister(&alarmtimer_rtc_interface);
139}
140#else
141struct rtc_device *alarmtimer_get_rtcdev(void)
142{
143 return NULL;
144}
145#define rtcdev (NULL)
146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147static inline void alarmtimer_rtc_interface_remove(void) { }
148static inline void alarmtimer_rtc_timer_init(void) { }
149#endif
150
151/**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161{
162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163 timerqueue_del(&base->timerqueue, &alarm->node);
164
165 timerqueue_add(&base->timerqueue, &alarm->node);
166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167}
168
169/**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179{
180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181 return;
182
183 timerqueue_del(&base->timerqueue, &alarm->node);
184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185}
186
187
188/**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * when the next future alarm timer expires.
196 */
197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198{
199 struct alarm *alarm = container_of(timer, struct alarm, timer);
200 struct alarm_base *base = &alarm_bases[alarm->type];
201 unsigned long flags;
202 int ret = HRTIMER_NORESTART;
203 int restart = ALARMTIMER_NORESTART;
204
205 spin_lock_irqsave(&base->lock, flags);
206 alarmtimer_dequeue(base, alarm);
207 spin_unlock_irqrestore(&base->lock, flags);
208
209 if (alarm->function)
210 restart = alarm->function(alarm, base->gettime());
211
212 spin_lock_irqsave(&base->lock, flags);
213 if (restart != ALARMTIMER_NORESTART) {
214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215 alarmtimer_enqueue(base, alarm);
216 ret = HRTIMER_RESTART;
217 }
218 spin_unlock_irqrestore(&base->lock, flags);
219
220 trace_alarmtimer_fired(alarm, base->gettime());
221 return ret;
222
223}
224
225ktime_t alarm_expires_remaining(const struct alarm *alarm)
226{
227 struct alarm_base *base = &alarm_bases[alarm->type];
228 return ktime_sub(alarm->node.expires, base->gettime());
229}
230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232#ifdef CONFIG_RTC_CLASS
233/**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
242static int alarmtimer_suspend(struct device *dev)
243{
244 ktime_t min, now, expires;
245 int i, ret, type;
246 struct rtc_device *rtc;
247 unsigned long flags;
248 struct rtc_time tm;
249
250 spin_lock_irqsave(&freezer_delta_lock, flags);
251 min = freezer_delta;
252 expires = freezer_expires;
253 type = freezer_alarmtype;
254 freezer_delta = 0;
255 spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257 rtc = alarmtimer_get_rtcdev();
258 /* If we have no rtcdev, just return */
259 if (!rtc)
260 return 0;
261
262 /* Find the soonest timer to expire*/
263 for (i = 0; i < ALARM_NUMTYPE; i++) {
264 struct alarm_base *base = &alarm_bases[i];
265 struct timerqueue_node *next;
266 ktime_t delta;
267
268 spin_lock_irqsave(&base->lock, flags);
269 next = timerqueue_getnext(&base->timerqueue);
270 spin_unlock_irqrestore(&base->lock, flags);
271 if (!next)
272 continue;
273 delta = ktime_sub(next->expires, base->gettime());
274 if (!min || (delta < min)) {
275 expires = next->expires;
276 min = delta;
277 type = i;
278 }
279 }
280 if (min == 0)
281 return 0;
282
283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
285 return -EBUSY;
286 }
287
288 trace_alarmtimer_suspend(expires, type);
289
290 /* Setup an rtc timer to fire that far in the future */
291 rtc_timer_cancel(rtc, &rtctimer);
292 rtc_read_time(rtc, &tm);
293 now = rtc_tm_to_ktime(tm);
294 now = ktime_add(now, min);
295
296 /* Set alarm, if in the past reject suspend briefly to handle */
297 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298 if (ret < 0)
299 __pm_wakeup_event(ws, MSEC_PER_SEC);
300 return ret;
301}
302
303static int alarmtimer_resume(struct device *dev)
304{
305 struct rtc_device *rtc;
306
307 rtc = alarmtimer_get_rtcdev();
308 if (rtc)
309 rtc_timer_cancel(rtc, &rtctimer);
310 return 0;
311}
312
313#else
314static int alarmtimer_suspend(struct device *dev)
315{
316 return 0;
317}
318
319static int alarmtimer_resume(struct device *dev)
320{
321 return 0;
322}
323#endif
324
325static void
326__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328{
329 timerqueue_init(&alarm->node);
330 alarm->timer.function = alarmtimer_fired;
331 alarm->function = function;
332 alarm->type = type;
333 alarm->state = ALARMTIMER_STATE_INACTIVE;
334}
335
336/**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
342void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344{
345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346 HRTIMER_MODE_ABS);
347 __alarm_init(alarm, type, function);
348}
349EXPORT_SYMBOL_GPL(alarm_init);
350
351/**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
356void alarm_start(struct alarm *alarm, ktime_t start)
357{
358 struct alarm_base *base = &alarm_bases[alarm->type];
359 unsigned long flags;
360
361 spin_lock_irqsave(&base->lock, flags);
362 alarm->node.expires = start;
363 alarmtimer_enqueue(base, alarm);
364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365 spin_unlock_irqrestore(&base->lock, flags);
366
367 trace_alarmtimer_start(alarm, base->gettime());
368}
369EXPORT_SYMBOL_GPL(alarm_start);
370
371/**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
376void alarm_start_relative(struct alarm *alarm, ktime_t start)
377{
378 struct alarm_base *base = &alarm_bases[alarm->type];
379
380 start = ktime_add_safe(start, base->gettime());
381 alarm_start(alarm, start);
382}
383EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385void alarm_restart(struct alarm *alarm)
386{
387 struct alarm_base *base = &alarm_bases[alarm->type];
388 unsigned long flags;
389
390 spin_lock_irqsave(&base->lock, flags);
391 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392 hrtimer_restart(&alarm->timer);
393 alarmtimer_enqueue(base, alarm);
394 spin_unlock_irqrestore(&base->lock, flags);
395}
396EXPORT_SYMBOL_GPL(alarm_restart);
397
398/**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
405int alarm_try_to_cancel(struct alarm *alarm)
406{
407 struct alarm_base *base = &alarm_bases[alarm->type];
408 unsigned long flags;
409 int ret;
410
411 spin_lock_irqsave(&base->lock, flags);
412 ret = hrtimer_try_to_cancel(&alarm->timer);
413 if (ret >= 0)
414 alarmtimer_dequeue(base, alarm);
415 spin_unlock_irqrestore(&base->lock, flags);
416
417 trace_alarmtimer_cancel(alarm, base->gettime());
418 return ret;
419}
420EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423/**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
429int alarm_cancel(struct alarm *alarm)
430{
431 for (;;) {
432 int ret = alarm_try_to_cancel(alarm);
433 if (ret >= 0)
434 return ret;
435 hrtimer_cancel_wait_running(&alarm->timer);
436 }
437}
438EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442{
443 u64 overrun = 1;
444 ktime_t delta;
445
446 delta = ktime_sub(now, alarm->node.expires);
447
448 if (delta < 0)
449 return 0;
450
451 if (unlikely(delta >= interval)) {
452 s64 incr = ktime_to_ns(interval);
453
454 overrun = ktime_divns(delta, incr);
455
456 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457 incr*overrun);
458
459 if (alarm->node.expires > now)
460 return overrun;
461 /*
462 * This (and the ktime_add() below) is the
463 * correction for exact:
464 */
465 overrun++;
466 }
467
468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469 return overrun;
470}
471EXPORT_SYMBOL_GPL(alarm_forward);
472
473u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474{
475 struct alarm_base *base = &alarm_bases[alarm->type];
476
477 return alarm_forward(alarm, base->gettime(), interval);
478}
479EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481#ifdef CONFIG_POSIX_TIMERS
482
483static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484{
485 struct alarm_base *base;
486 unsigned long flags;
487 ktime_t delta;
488
489 switch(type) {
490 case ALARM_REALTIME:
491 base = &alarm_bases[ALARM_REALTIME];
492 type = ALARM_REALTIME_FREEZER;
493 break;
494 case ALARM_BOOTTIME:
495 base = &alarm_bases[ALARM_BOOTTIME];
496 type = ALARM_BOOTTIME_FREEZER;
497 break;
498 default:
499 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500 return;
501 }
502
503 delta = ktime_sub(absexp, base->gettime());
504
505 spin_lock_irqsave(&freezer_delta_lock, flags);
506 if (!freezer_delta || (delta < freezer_delta)) {
507 freezer_delta = delta;
508 freezer_expires = absexp;
509 freezer_alarmtype = type;
510 }
511 spin_unlock_irqrestore(&freezer_delta_lock, flags);
512}
513
514/**
515 * clock2alarm - helper that converts from clockid to alarmtypes
516 * @clockid: clockid.
517 */
518static enum alarmtimer_type clock2alarm(clockid_t clockid)
519{
520 if (clockid == CLOCK_REALTIME_ALARM)
521 return ALARM_REALTIME;
522 if (clockid == CLOCK_BOOTTIME_ALARM)
523 return ALARM_BOOTTIME;
524 return -1;
525}
526
527/**
528 * alarm_handle_timer - Callback for posix timers
529 * @alarm: alarm that fired
530 *
531 * Posix timer callback for expired alarm timers.
532 */
533static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534 ktime_t now)
535{
536 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537 it.alarm.alarmtimer);
538 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539 unsigned long flags;
540 int si_private = 0;
541
542 spin_lock_irqsave(&ptr->it_lock, flags);
543
544 ptr->it_active = 0;
545 if (ptr->it_interval)
546 si_private = ++ptr->it_requeue_pending;
547
548 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549 /*
550 * Handle ignored signals and rearm the timer. This will go
551 * away once we handle ignored signals proper.
552 */
553 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554 ++ptr->it_requeue_pending;
555 ptr->it_active = 1;
556 result = ALARMTIMER_RESTART;
557 }
558 spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560 return result;
561}
562
563/**
564 * alarm_timer_rearm - Posix timer callback for rearming timer
565 * @timr: Pointer to the posixtimer data struct
566 */
567static void alarm_timer_rearm(struct k_itimer *timr)
568{
569 struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572 alarm_start(alarm, alarm->node.expires);
573}
574
575/**
576 * alarm_timer_forward - Posix timer callback for forwarding timer
577 * @timr: Pointer to the posixtimer data struct
578 * @now: Current time to forward the timer against
579 */
580static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581{
582 struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584 return alarm_forward(alarm, timr->it_interval, now);
585}
586
587/**
588 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589 * @timr: Pointer to the posixtimer data struct
590 * @now: Current time to calculate against
591 */
592static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593{
594 struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596 return ktime_sub(alarm->node.expires, now);
597}
598
599/**
600 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601 * @timr: Pointer to the posixtimer data struct
602 */
603static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604{
605 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606}
607
608/**
609 * alarm_timer_wait_running - Posix timer callback to wait for a timer
610 * @timr: Pointer to the posixtimer data struct
611 *
612 * Called from the core code when timer cancel detected that the callback
613 * is running. @timr is unlocked and rcu read lock is held to prevent it
614 * from being freed.
615 */
616static void alarm_timer_wait_running(struct k_itimer *timr)
617{
618 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619}
620
621/**
622 * alarm_timer_arm - Posix timer callback to arm a timer
623 * @timr: Pointer to the posixtimer data struct
624 * @expires: The new expiry time
625 * @absolute: Expiry value is absolute time
626 * @sigev_none: Posix timer does not deliver signals
627 */
628static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
629 bool absolute, bool sigev_none)
630{
631 struct alarm *alarm = &timr->it.alarm.alarmtimer;
632 struct alarm_base *base = &alarm_bases[alarm->type];
633
634 if (!absolute)
635 expires = ktime_add_safe(expires, base->gettime());
636 if (sigev_none)
637 alarm->node.expires = expires;
638 else
639 alarm_start(&timr->it.alarm.alarmtimer, expires);
640}
641
642/**
643 * alarm_clock_getres - posix getres interface
644 * @which_clock: clockid
645 * @tp: timespec to fill
646 *
647 * Returns the granularity of underlying alarm base clock
648 */
649static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
650{
651 if (!alarmtimer_get_rtcdev())
652 return -EINVAL;
653
654 tp->tv_sec = 0;
655 tp->tv_nsec = hrtimer_resolution;
656 return 0;
657}
658
659/**
660 * alarm_clock_get - posix clock_get interface
661 * @which_clock: clockid
662 * @tp: timespec to fill.
663 *
664 * Provides the underlying alarm base time.
665 */
666static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
667{
668 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
669
670 if (!alarmtimer_get_rtcdev())
671 return -EINVAL;
672
673 *tp = ktime_to_timespec64(base->gettime());
674 return 0;
675}
676
677/**
678 * alarm_timer_create - posix timer_create interface
679 * @new_timer: k_itimer pointer to manage
680 *
681 * Initializes the k_itimer structure.
682 */
683static int alarm_timer_create(struct k_itimer *new_timer)
684{
685 enum alarmtimer_type type;
686
687 if (!alarmtimer_get_rtcdev())
688 return -EOPNOTSUPP;
689
690 if (!capable(CAP_WAKE_ALARM))
691 return -EPERM;
692
693 type = clock2alarm(new_timer->it_clock);
694 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
695 return 0;
696}
697
698/**
699 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
700 * @alarm: ptr to alarm that fired
701 *
702 * Wakes up the task that set the alarmtimer
703 */
704static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
705 ktime_t now)
706{
707 struct task_struct *task = (struct task_struct *)alarm->data;
708
709 alarm->data = NULL;
710 if (task)
711 wake_up_process(task);
712 return ALARMTIMER_NORESTART;
713}
714
715/**
716 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
717 * @alarm: ptr to alarmtimer
718 * @absexp: absolute expiration time
719 *
720 * Sets the alarm timer and sleeps until it is fired or interrupted.
721 */
722static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
723 enum alarmtimer_type type)
724{
725 struct restart_block *restart;
726 alarm->data = (void *)current;
727 do {
728 set_current_state(TASK_INTERRUPTIBLE);
729 alarm_start(alarm, absexp);
730 if (likely(alarm->data))
731 schedule();
732
733 alarm_cancel(alarm);
734 } while (alarm->data && !signal_pending(current));
735
736 __set_current_state(TASK_RUNNING);
737
738 destroy_hrtimer_on_stack(&alarm->timer);
739
740 if (!alarm->data)
741 return 0;
742
743 if (freezing(current))
744 alarmtimer_freezerset(absexp, type);
745 restart = ¤t->restart_block;
746 if (restart->nanosleep.type != TT_NONE) {
747 struct timespec64 rmt;
748 ktime_t rem;
749
750 rem = ktime_sub(absexp, alarm_bases[type].gettime());
751
752 if (rem <= 0)
753 return 0;
754 rmt = ktime_to_timespec64(rem);
755
756 return nanosleep_copyout(restart, &rmt);
757 }
758 return -ERESTART_RESTARTBLOCK;
759}
760
761static void
762alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
763 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
764{
765 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
766 HRTIMER_MODE_ABS);
767 __alarm_init(alarm, type, function);
768}
769
770/**
771 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
772 * @restart: ptr to restart block
773 *
774 * Handles restarted clock_nanosleep calls
775 */
776static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
777{
778 enum alarmtimer_type type = restart->nanosleep.clockid;
779 ktime_t exp = restart->nanosleep.expires;
780 struct alarm alarm;
781
782 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
783
784 return alarmtimer_do_nsleep(&alarm, exp, type);
785}
786
787/**
788 * alarm_timer_nsleep - alarmtimer nanosleep
789 * @which_clock: clockid
790 * @flags: determins abstime or relative
791 * @tsreq: requested sleep time (abs or rel)
792 * @rmtp: remaining sleep time saved
793 *
794 * Handles clock_nanosleep calls against _ALARM clockids
795 */
796static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
797 const struct timespec64 *tsreq)
798{
799 enum alarmtimer_type type = clock2alarm(which_clock);
800 struct restart_block *restart = ¤t->restart_block;
801 struct alarm alarm;
802 ktime_t exp;
803 int ret = 0;
804
805 if (!alarmtimer_get_rtcdev())
806 return -EOPNOTSUPP;
807
808 if (flags & ~TIMER_ABSTIME)
809 return -EINVAL;
810
811 if (!capable(CAP_WAKE_ALARM))
812 return -EPERM;
813
814 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
815
816 exp = timespec64_to_ktime(*tsreq);
817 /* Convert (if necessary) to absolute time */
818 if (flags != TIMER_ABSTIME) {
819 ktime_t now = alarm_bases[type].gettime();
820
821 exp = ktime_add_safe(now, exp);
822 }
823
824 ret = alarmtimer_do_nsleep(&alarm, exp, type);
825 if (ret != -ERESTART_RESTARTBLOCK)
826 return ret;
827
828 /* abs timers don't set remaining time or restart */
829 if (flags == TIMER_ABSTIME)
830 return -ERESTARTNOHAND;
831
832 restart->fn = alarm_timer_nsleep_restart;
833 restart->nanosleep.clockid = type;
834 restart->nanosleep.expires = exp;
835 return ret;
836}
837
838const struct k_clock alarm_clock = {
839 .clock_getres = alarm_clock_getres,
840 .clock_get = alarm_clock_get,
841 .timer_create = alarm_timer_create,
842 .timer_set = common_timer_set,
843 .timer_del = common_timer_del,
844 .timer_get = common_timer_get,
845 .timer_arm = alarm_timer_arm,
846 .timer_rearm = alarm_timer_rearm,
847 .timer_forward = alarm_timer_forward,
848 .timer_remaining = alarm_timer_remaining,
849 .timer_try_to_cancel = alarm_timer_try_to_cancel,
850 .timer_wait_running = alarm_timer_wait_running,
851 .nsleep = alarm_timer_nsleep,
852};
853#endif /* CONFIG_POSIX_TIMERS */
854
855
856/* Suspend hook structures */
857static const struct dev_pm_ops alarmtimer_pm_ops = {
858 .suspend = alarmtimer_suspend,
859 .resume = alarmtimer_resume,
860};
861
862static struct platform_driver alarmtimer_driver = {
863 .driver = {
864 .name = "alarmtimer",
865 .pm = &alarmtimer_pm_ops,
866 }
867};
868
869/**
870 * alarmtimer_init - Initialize alarm timer code
871 *
872 * This function initializes the alarm bases and registers
873 * the posix clock ids.
874 */
875static int __init alarmtimer_init(void)
876{
877 struct platform_device *pdev;
878 int error = 0;
879 int i;
880
881 alarmtimer_rtc_timer_init();
882
883 /* Initialize alarm bases */
884 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
885 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
886 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
887 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
888 for (i = 0; i < ALARM_NUMTYPE; i++) {
889 timerqueue_init_head(&alarm_bases[i].timerqueue);
890 spin_lock_init(&alarm_bases[i].lock);
891 }
892
893 error = alarmtimer_rtc_interface_setup();
894 if (error)
895 return error;
896
897 error = platform_driver_register(&alarmtimer_driver);
898 if (error)
899 goto out_if;
900
901 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
902 if (IS_ERR(pdev)) {
903 error = PTR_ERR(pdev);
904 goto out_drv;
905 }
906 return 0;
907
908out_drv:
909 platform_driver_unregister(&alarmtimer_driver);
910out_if:
911 alarmtimer_rtc_interface_remove();
912 return error;
913}
914device_initcall(alarmtimer_init);
1/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/debug.h>
24#include <linux/alarmtimer.h>
25#include <linux/mutex.h>
26#include <linux/platform_device.h>
27#include <linux/posix-timers.h>
28#include <linux/workqueue.h>
29#include <linux/freezer.h>
30#include <linux/compat.h>
31#include <linux/module.h>
32
33#include "posix-timers.h"
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/alarmtimer.h>
37
38/**
39 * struct alarm_base - Alarm timer bases
40 * @lock: Lock for syncrhonized access to the base
41 * @timerqueue: Timerqueue head managing the list of events
42 * @gettime: Function to read the time correlating to the base
43 * @base_clockid: clockid for the base
44 */
45static struct alarm_base {
46 spinlock_t lock;
47 struct timerqueue_head timerqueue;
48 ktime_t (*gettime)(void);
49 clockid_t base_clockid;
50} alarm_bases[ALARM_NUMTYPE];
51
52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53/* freezer information to handle clock_nanosleep triggered wakeups */
54static enum alarmtimer_type freezer_alarmtype;
55static ktime_t freezer_expires;
56static ktime_t freezer_delta;
57static DEFINE_SPINLOCK(freezer_delta_lock);
58#endif
59
60#ifdef CONFIG_RTC_CLASS
61static struct wakeup_source *ws;
62
63/* rtc timer and device for setting alarm wakeups at suspend */
64static struct rtc_timer rtctimer;
65static struct rtc_device *rtcdev;
66static DEFINE_SPINLOCK(rtcdev_lock);
67
68/**
69 * alarmtimer_get_rtcdev - Return selected rtcdevice
70 *
71 * This function returns the rtc device to use for wakealarms.
72 * If one has not already been chosen, it checks to see if a
73 * functional rtc device is available.
74 */
75struct rtc_device *alarmtimer_get_rtcdev(void)
76{
77 unsigned long flags;
78 struct rtc_device *ret;
79
80 spin_lock_irqsave(&rtcdev_lock, flags);
81 ret = rtcdev;
82 spin_unlock_irqrestore(&rtcdev_lock, flags);
83
84 return ret;
85}
86EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87
88static int alarmtimer_rtc_add_device(struct device *dev,
89 struct class_interface *class_intf)
90{
91 unsigned long flags;
92 struct rtc_device *rtc = to_rtc_device(dev);
93 struct wakeup_source *__ws;
94
95 if (rtcdev)
96 return -EBUSY;
97
98 if (!rtc->ops->set_alarm)
99 return -1;
100 if (!device_may_wakeup(rtc->dev.parent))
101 return -1;
102
103 __ws = wakeup_source_register("alarmtimer");
104
105 spin_lock_irqsave(&rtcdev_lock, flags);
106 if (!rtcdev) {
107 if (!try_module_get(rtc->owner)) {
108 spin_unlock_irqrestore(&rtcdev_lock, flags);
109 return -1;
110 }
111
112 rtcdev = rtc;
113 /* hold a reference so it doesn't go away */
114 get_device(dev);
115 ws = __ws;
116 __ws = NULL;
117 }
118 spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120 wakeup_source_unregister(__ws);
121
122 return 0;
123}
124
125static inline void alarmtimer_rtc_timer_init(void)
126{
127 rtc_timer_init(&rtctimer, NULL, NULL);
128}
129
130static struct class_interface alarmtimer_rtc_interface = {
131 .add_dev = &alarmtimer_rtc_add_device,
132};
133
134static int alarmtimer_rtc_interface_setup(void)
135{
136 alarmtimer_rtc_interface.class = rtc_class;
137 return class_interface_register(&alarmtimer_rtc_interface);
138}
139static void alarmtimer_rtc_interface_remove(void)
140{
141 class_interface_unregister(&alarmtimer_rtc_interface);
142}
143#else
144struct rtc_device *alarmtimer_get_rtcdev(void)
145{
146 return NULL;
147}
148#define rtcdev (NULL)
149static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150static inline void alarmtimer_rtc_interface_remove(void) { }
151static inline void alarmtimer_rtc_timer_init(void) { }
152#endif
153
154/**
155 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156 * @base: pointer to the base where the timer is being run
157 * @alarm: pointer to alarm being enqueued.
158 *
159 * Adds alarm to a alarm_base timerqueue
160 *
161 * Must hold base->lock when calling.
162 */
163static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164{
165 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166 timerqueue_del(&base->timerqueue, &alarm->node);
167
168 timerqueue_add(&base->timerqueue, &alarm->node);
169 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170}
171
172/**
173 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174 * @base: pointer to the base where the timer is running
175 * @alarm: pointer to alarm being removed
176 *
177 * Removes alarm to a alarm_base timerqueue
178 *
179 * Must hold base->lock when calling.
180 */
181static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182{
183 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184 return;
185
186 timerqueue_del(&base->timerqueue, &alarm->node);
187 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188}
189
190
191/**
192 * alarmtimer_fired - Handles alarm hrtimer being fired.
193 * @timer: pointer to hrtimer being run
194 *
195 * When a alarm timer fires, this runs through the timerqueue to
196 * see which alarms expired, and runs those. If there are more alarm
197 * timers queued for the future, we set the hrtimer to fire when
198 * when the next future alarm timer expires.
199 */
200static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201{
202 struct alarm *alarm = container_of(timer, struct alarm, timer);
203 struct alarm_base *base = &alarm_bases[alarm->type];
204 unsigned long flags;
205 int ret = HRTIMER_NORESTART;
206 int restart = ALARMTIMER_NORESTART;
207
208 spin_lock_irqsave(&base->lock, flags);
209 alarmtimer_dequeue(base, alarm);
210 spin_unlock_irqrestore(&base->lock, flags);
211
212 if (alarm->function)
213 restart = alarm->function(alarm, base->gettime());
214
215 spin_lock_irqsave(&base->lock, flags);
216 if (restart != ALARMTIMER_NORESTART) {
217 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218 alarmtimer_enqueue(base, alarm);
219 ret = HRTIMER_RESTART;
220 }
221 spin_unlock_irqrestore(&base->lock, flags);
222
223 trace_alarmtimer_fired(alarm, base->gettime());
224 return ret;
225
226}
227
228ktime_t alarm_expires_remaining(const struct alarm *alarm)
229{
230 struct alarm_base *base = &alarm_bases[alarm->type];
231 return ktime_sub(alarm->node.expires, base->gettime());
232}
233EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
248 ktime_t min, now, expires;
249 int i, ret, type;
250 struct rtc_device *rtc;
251 unsigned long flags;
252 struct rtc_time tm;
253
254 spin_lock_irqsave(&freezer_delta_lock, flags);
255 min = freezer_delta;
256 expires = freezer_expires;
257 type = freezer_alarmtype;
258 freezer_delta = 0;
259 spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261 rtc = alarmtimer_get_rtcdev();
262 /* If we have no rtcdev, just return */
263 if (!rtc)
264 return 0;
265
266 /* Find the soonest timer to expire*/
267 for (i = 0; i < ALARM_NUMTYPE; i++) {
268 struct alarm_base *base = &alarm_bases[i];
269 struct timerqueue_node *next;
270 ktime_t delta;
271
272 spin_lock_irqsave(&base->lock, flags);
273 next = timerqueue_getnext(&base->timerqueue);
274 spin_unlock_irqrestore(&base->lock, flags);
275 if (!next)
276 continue;
277 delta = ktime_sub(next->expires, base->gettime());
278 if (!min || (delta < min)) {
279 expires = next->expires;
280 min = delta;
281 type = i;
282 }
283 }
284 if (min == 0)
285 return 0;
286
287 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289 return -EBUSY;
290 }
291
292 trace_alarmtimer_suspend(expires, type);
293
294 /* Setup an rtc timer to fire that far in the future */
295 rtc_timer_cancel(rtc, &rtctimer);
296 rtc_read_time(rtc, &tm);
297 now = rtc_tm_to_ktime(tm);
298 now = ktime_add(now, min);
299
300 /* Set alarm, if in the past reject suspend briefly to handle */
301 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302 if (ret < 0)
303 __pm_wakeup_event(ws, MSEC_PER_SEC);
304 return ret;
305}
306
307static int alarmtimer_resume(struct device *dev)
308{
309 struct rtc_device *rtc;
310
311 rtc = alarmtimer_get_rtcdev();
312 if (rtc)
313 rtc_timer_cancel(rtc, &rtctimer);
314 return 0;
315}
316
317#else
318static int alarmtimer_suspend(struct device *dev)
319{
320 return 0;
321}
322
323static int alarmtimer_resume(struct device *dev)
324{
325 return 0;
326}
327#endif
328
329static void
330__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332{
333 timerqueue_init(&alarm->node);
334 alarm->timer.function = alarmtimer_fired;
335 alarm->function = function;
336 alarm->type = type;
337 alarm->state = ALARMTIMER_STATE_INACTIVE;
338}
339
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
349 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350 HRTIMER_MODE_ABS);
351 __alarm_init(alarm, type, function);
352}
353EXPORT_SYMBOL_GPL(alarm_init);
354
355/**
356 * alarm_start - Sets an absolute alarm to fire
357 * @alarm: ptr to alarm to set
358 * @start: time to run the alarm
359 */
360void alarm_start(struct alarm *alarm, ktime_t start)
361{
362 struct alarm_base *base = &alarm_bases[alarm->type];
363 unsigned long flags;
364
365 spin_lock_irqsave(&base->lock, flags);
366 alarm->node.expires = start;
367 alarmtimer_enqueue(base, alarm);
368 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
369 spin_unlock_irqrestore(&base->lock, flags);
370
371 trace_alarmtimer_start(alarm, base->gettime());
372}
373EXPORT_SYMBOL_GPL(alarm_start);
374
375/**
376 * alarm_start_relative - Sets a relative alarm to fire
377 * @alarm: ptr to alarm to set
378 * @start: time relative to now to run the alarm
379 */
380void alarm_start_relative(struct alarm *alarm, ktime_t start)
381{
382 struct alarm_base *base = &alarm_bases[alarm->type];
383
384 start = ktime_add_safe(start, base->gettime());
385 alarm_start(alarm, start);
386}
387EXPORT_SYMBOL_GPL(alarm_start_relative);
388
389void alarm_restart(struct alarm *alarm)
390{
391 struct alarm_base *base = &alarm_bases[alarm->type];
392 unsigned long flags;
393
394 spin_lock_irqsave(&base->lock, flags);
395 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396 hrtimer_restart(&alarm->timer);
397 alarmtimer_enqueue(base, alarm);
398 spin_unlock_irqrestore(&base->lock, flags);
399}
400EXPORT_SYMBOL_GPL(alarm_restart);
401
402/**
403 * alarm_try_to_cancel - Tries to cancel an alarm timer
404 * @alarm: ptr to alarm to be canceled
405 *
406 * Returns 1 if the timer was canceled, 0 if it was not running,
407 * and -1 if the callback was running
408 */
409int alarm_try_to_cancel(struct alarm *alarm)
410{
411 struct alarm_base *base = &alarm_bases[alarm->type];
412 unsigned long flags;
413 int ret;
414
415 spin_lock_irqsave(&base->lock, flags);
416 ret = hrtimer_try_to_cancel(&alarm->timer);
417 if (ret >= 0)
418 alarmtimer_dequeue(base, alarm);
419 spin_unlock_irqrestore(&base->lock, flags);
420
421 trace_alarmtimer_cancel(alarm, base->gettime());
422 return ret;
423}
424EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425
426
427/**
428 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429 * @alarm: ptr to alarm to be canceled
430 *
431 * Returns 1 if the timer was canceled, 0 if it was not active.
432 */
433int alarm_cancel(struct alarm *alarm)
434{
435 for (;;) {
436 int ret = alarm_try_to_cancel(alarm);
437 if (ret >= 0)
438 return ret;
439 cpu_relax();
440 }
441}
442EXPORT_SYMBOL_GPL(alarm_cancel);
443
444
445u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446{
447 u64 overrun = 1;
448 ktime_t delta;
449
450 delta = ktime_sub(now, alarm->node.expires);
451
452 if (delta < 0)
453 return 0;
454
455 if (unlikely(delta >= interval)) {
456 s64 incr = ktime_to_ns(interval);
457
458 overrun = ktime_divns(delta, incr);
459
460 alarm->node.expires = ktime_add_ns(alarm->node.expires,
461 incr*overrun);
462
463 if (alarm->node.expires > now)
464 return overrun;
465 /*
466 * This (and the ktime_add() below) is the
467 * correction for exact:
468 */
469 overrun++;
470 }
471
472 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473 return overrun;
474}
475EXPORT_SYMBOL_GPL(alarm_forward);
476
477u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478{
479 struct alarm_base *base = &alarm_bases[alarm->type];
480
481 return alarm_forward(alarm, base->gettime(), interval);
482}
483EXPORT_SYMBOL_GPL(alarm_forward_now);
484
485#ifdef CONFIG_POSIX_TIMERS
486
487static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488{
489 struct alarm_base *base;
490 unsigned long flags;
491 ktime_t delta;
492
493 switch(type) {
494 case ALARM_REALTIME:
495 base = &alarm_bases[ALARM_REALTIME];
496 type = ALARM_REALTIME_FREEZER;
497 break;
498 case ALARM_BOOTTIME:
499 base = &alarm_bases[ALARM_BOOTTIME];
500 type = ALARM_BOOTTIME_FREEZER;
501 break;
502 default:
503 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504 return;
505 }
506
507 delta = ktime_sub(absexp, base->gettime());
508
509 spin_lock_irqsave(&freezer_delta_lock, flags);
510 if (!freezer_delta || (delta < freezer_delta)) {
511 freezer_delta = delta;
512 freezer_expires = absexp;
513 freezer_alarmtype = type;
514 }
515 spin_unlock_irqrestore(&freezer_delta_lock, flags);
516}
517
518/**
519 * clock2alarm - helper that converts from clockid to alarmtypes
520 * @clockid: clockid.
521 */
522static enum alarmtimer_type clock2alarm(clockid_t clockid)
523{
524 if (clockid == CLOCK_REALTIME_ALARM)
525 return ALARM_REALTIME;
526 if (clockid == CLOCK_BOOTTIME_ALARM)
527 return ALARM_BOOTTIME;
528 return -1;
529}
530
531/**
532 * alarm_handle_timer - Callback for posix timers
533 * @alarm: alarm that fired
534 *
535 * Posix timer callback for expired alarm timers.
536 */
537static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538 ktime_t now)
539{
540 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541 it.alarm.alarmtimer);
542 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543 unsigned long flags;
544 int si_private = 0;
545
546 spin_lock_irqsave(&ptr->it_lock, flags);
547
548 ptr->it_active = 0;
549 if (ptr->it_interval)
550 si_private = ++ptr->it_requeue_pending;
551
552 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553 /*
554 * Handle ignored signals and rearm the timer. This will go
555 * away once we handle ignored signals proper.
556 */
557 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558 ++ptr->it_requeue_pending;
559 ptr->it_active = 1;
560 result = ALARMTIMER_RESTART;
561 }
562 spin_unlock_irqrestore(&ptr->it_lock, flags);
563
564 return result;
565}
566
567/**
568 * alarm_timer_rearm - Posix timer callback for rearming timer
569 * @timr: Pointer to the posixtimer data struct
570 */
571static void alarm_timer_rearm(struct k_itimer *timr)
572{
573 struct alarm *alarm = &timr->it.alarm.alarmtimer;
574
575 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576 alarm_start(alarm, alarm->node.expires);
577}
578
579/**
580 * alarm_timer_forward - Posix timer callback for forwarding timer
581 * @timr: Pointer to the posixtimer data struct
582 * @now: Current time to forward the timer against
583 */
584static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585{
586 struct alarm *alarm = &timr->it.alarm.alarmtimer;
587
588 return (int) alarm_forward(alarm, timr->it_interval, now);
589}
590
591/**
592 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593 * @timr: Pointer to the posixtimer data struct
594 * @now: Current time to calculate against
595 */
596static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597{
598 struct alarm *alarm = &timr->it.alarm.alarmtimer;
599
600 return ktime_sub(now, alarm->node.expires);
601}
602
603/**
604 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605 * @timr: Pointer to the posixtimer data struct
606 */
607static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608{
609 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610}
611
612/**
613 * alarm_timer_arm - Posix timer callback to arm a timer
614 * @timr: Pointer to the posixtimer data struct
615 * @expires: The new expiry time
616 * @absolute: Expiry value is absolute time
617 * @sigev_none: Posix timer does not deliver signals
618 */
619static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620 bool absolute, bool sigev_none)
621{
622 struct alarm *alarm = &timr->it.alarm.alarmtimer;
623 struct alarm_base *base = &alarm_bases[alarm->type];
624
625 if (!absolute)
626 expires = ktime_add_safe(expires, base->gettime());
627 if (sigev_none)
628 alarm->node.expires = expires;
629 else
630 alarm_start(&timr->it.alarm.alarmtimer, expires);
631}
632
633/**
634 * alarm_clock_getres - posix getres interface
635 * @which_clock: clockid
636 * @tp: timespec to fill
637 *
638 * Returns the granularity of underlying alarm base clock
639 */
640static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641{
642 if (!alarmtimer_get_rtcdev())
643 return -EINVAL;
644
645 tp->tv_sec = 0;
646 tp->tv_nsec = hrtimer_resolution;
647 return 0;
648}
649
650/**
651 * alarm_clock_get - posix clock_get interface
652 * @which_clock: clockid
653 * @tp: timespec to fill.
654 *
655 * Provides the underlying alarm base time.
656 */
657static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658{
659 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660
661 if (!alarmtimer_get_rtcdev())
662 return -EINVAL;
663
664 *tp = ktime_to_timespec64(base->gettime());
665 return 0;
666}
667
668/**
669 * alarm_timer_create - posix timer_create interface
670 * @new_timer: k_itimer pointer to manage
671 *
672 * Initializes the k_itimer structure.
673 */
674static int alarm_timer_create(struct k_itimer *new_timer)
675{
676 enum alarmtimer_type type;
677
678 if (!alarmtimer_get_rtcdev())
679 return -ENOTSUPP;
680
681 if (!capable(CAP_WAKE_ALARM))
682 return -EPERM;
683
684 type = clock2alarm(new_timer->it_clock);
685 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686 return 0;
687}
688
689/**
690 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691 * @alarm: ptr to alarm that fired
692 *
693 * Wakes up the task that set the alarmtimer
694 */
695static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696 ktime_t now)
697{
698 struct task_struct *task = (struct task_struct *)alarm->data;
699
700 alarm->data = NULL;
701 if (task)
702 wake_up_process(task);
703 return ALARMTIMER_NORESTART;
704}
705
706/**
707 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708 * @alarm: ptr to alarmtimer
709 * @absexp: absolute expiration time
710 *
711 * Sets the alarm timer and sleeps until it is fired or interrupted.
712 */
713static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714 enum alarmtimer_type type)
715{
716 struct restart_block *restart;
717 alarm->data = (void *)current;
718 do {
719 set_current_state(TASK_INTERRUPTIBLE);
720 alarm_start(alarm, absexp);
721 if (likely(alarm->data))
722 schedule();
723
724 alarm_cancel(alarm);
725 } while (alarm->data && !signal_pending(current));
726
727 __set_current_state(TASK_RUNNING);
728
729 destroy_hrtimer_on_stack(&alarm->timer);
730
731 if (!alarm->data)
732 return 0;
733
734 if (freezing(current))
735 alarmtimer_freezerset(absexp, type);
736 restart = ¤t->restart_block;
737 if (restart->nanosleep.type != TT_NONE) {
738 struct timespec64 rmt;
739 ktime_t rem;
740
741 rem = ktime_sub(absexp, alarm_bases[type].gettime());
742
743 if (rem <= 0)
744 return 0;
745 rmt = ktime_to_timespec64(rem);
746
747 return nanosleep_copyout(restart, &rmt);
748 }
749 return -ERESTART_RESTARTBLOCK;
750}
751
752static void
753alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755{
756 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757 HRTIMER_MODE_ABS);
758 __alarm_init(alarm, type, function);
759}
760
761/**
762 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763 * @restart: ptr to restart block
764 *
765 * Handles restarted clock_nanosleep calls
766 */
767static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768{
769 enum alarmtimer_type type = restart->nanosleep.clockid;
770 ktime_t exp = restart->nanosleep.expires;
771 struct alarm alarm;
772
773 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
774
775 return alarmtimer_do_nsleep(&alarm, exp, type);
776}
777
778/**
779 * alarm_timer_nsleep - alarmtimer nanosleep
780 * @which_clock: clockid
781 * @flags: determins abstime or relative
782 * @tsreq: requested sleep time (abs or rel)
783 * @rmtp: remaining sleep time saved
784 *
785 * Handles clock_nanosleep calls against _ALARM clockids
786 */
787static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788 const struct timespec64 *tsreq)
789{
790 enum alarmtimer_type type = clock2alarm(which_clock);
791 struct restart_block *restart = ¤t->restart_block;
792 struct alarm alarm;
793 ktime_t exp;
794 int ret = 0;
795
796 if (!alarmtimer_get_rtcdev())
797 return -ENOTSUPP;
798
799 if (flags & ~TIMER_ABSTIME)
800 return -EINVAL;
801
802 if (!capable(CAP_WAKE_ALARM))
803 return -EPERM;
804
805 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806
807 exp = timespec64_to_ktime(*tsreq);
808 /* Convert (if necessary) to absolute time */
809 if (flags != TIMER_ABSTIME) {
810 ktime_t now = alarm_bases[type].gettime();
811 exp = ktime_add(now, exp);
812 }
813
814 ret = alarmtimer_do_nsleep(&alarm, exp, type);
815 if (ret != -ERESTART_RESTARTBLOCK)
816 return ret;
817
818 /* abs timers don't set remaining time or restart */
819 if (flags == TIMER_ABSTIME)
820 return -ERESTARTNOHAND;
821
822 restart->fn = alarm_timer_nsleep_restart;
823 restart->nanosleep.clockid = type;
824 restart->nanosleep.expires = exp;
825 return ret;
826}
827
828const struct k_clock alarm_clock = {
829 .clock_getres = alarm_clock_getres,
830 .clock_get = alarm_clock_get,
831 .timer_create = alarm_timer_create,
832 .timer_set = common_timer_set,
833 .timer_del = common_timer_del,
834 .timer_get = common_timer_get,
835 .timer_arm = alarm_timer_arm,
836 .timer_rearm = alarm_timer_rearm,
837 .timer_forward = alarm_timer_forward,
838 .timer_remaining = alarm_timer_remaining,
839 .timer_try_to_cancel = alarm_timer_try_to_cancel,
840 .nsleep = alarm_timer_nsleep,
841};
842#endif /* CONFIG_POSIX_TIMERS */
843
844
845/* Suspend hook structures */
846static const struct dev_pm_ops alarmtimer_pm_ops = {
847 .suspend = alarmtimer_suspend,
848 .resume = alarmtimer_resume,
849};
850
851static struct platform_driver alarmtimer_driver = {
852 .driver = {
853 .name = "alarmtimer",
854 .pm = &alarmtimer_pm_ops,
855 }
856};
857
858/**
859 * alarmtimer_init - Initialize alarm timer code
860 *
861 * This function initializes the alarm bases and registers
862 * the posix clock ids.
863 */
864static int __init alarmtimer_init(void)
865{
866 struct platform_device *pdev;
867 int error = 0;
868 int i;
869
870 alarmtimer_rtc_timer_init();
871
872 /* Initialize alarm bases */
873 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
874 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
875 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
876 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
877 for (i = 0; i < ALARM_NUMTYPE; i++) {
878 timerqueue_init_head(&alarm_bases[i].timerqueue);
879 spin_lock_init(&alarm_bases[i].lock);
880 }
881
882 error = alarmtimer_rtc_interface_setup();
883 if (error)
884 return error;
885
886 error = platform_driver_register(&alarmtimer_driver);
887 if (error)
888 goto out_if;
889
890 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
891 if (IS_ERR(pdev)) {
892 error = PTR_ERR(pdev);
893 goto out_drv;
894 }
895 return 0;
896
897out_drv:
898 platform_driver_unregister(&alarmtimer_driver);
899out_if:
900 alarmtimer_rtc_interface_remove();
901 return error;
902}
903device_initcall(alarmtimer_init);