Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Alarmtimer interface
  4 *
  5 * This interface provides a timer which is similarto hrtimers,
  6 * but triggers a RTC alarm if the box is suspend.
  7 *
  8 * This interface is influenced by the Android RTC Alarm timer
  9 * interface.
 10 *
 11 * Copyright (C) 2010 IBM Corperation
 12 *
 13 * Author: John Stultz <john.stultz@linaro.org>
 
 
 
 
 14 */
 15#include <linux/time.h>
 16#include <linux/hrtimer.h>
 17#include <linux/timerqueue.h>
 18#include <linux/rtc.h>
 19#include <linux/sched/signal.h>
 20#include <linux/sched/debug.h>
 21#include <linux/alarmtimer.h>
 22#include <linux/mutex.h>
 23#include <linux/platform_device.h>
 24#include <linux/posix-timers.h>
 25#include <linux/workqueue.h>
 26#include <linux/freezer.h>
 27#include <linux/compat.h>
 28#include <linux/module.h>
 29
 30#include "posix-timers.h"
 31
 32#define CREATE_TRACE_POINTS
 33#include <trace/events/alarmtimer.h>
 34
 35/**
 36 * struct alarm_base - Alarm timer bases
 37 * @lock:		Lock for syncrhonized access to the base
 38 * @timerqueue:		Timerqueue head managing the list of events
 
 39 * @gettime:		Function to read the time correlating to the base
 40 * @base_clockid:	clockid for the base
 41 */
 42static struct alarm_base {
 43	spinlock_t		lock;
 44	struct timerqueue_head	timerqueue;
 
 45	ktime_t			(*gettime)(void);
 46	clockid_t		base_clockid;
 47} alarm_bases[ALARM_NUMTYPE];
 48
 49#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 50/* freezer information to handle clock_nanosleep triggered wakeups */
 51static enum alarmtimer_type freezer_alarmtype;
 52static ktime_t freezer_expires;
 53static ktime_t freezer_delta;
 54static DEFINE_SPINLOCK(freezer_delta_lock);
 55#endif
 56
 57#ifdef CONFIG_RTC_CLASS
 58static struct wakeup_source *ws;
 59
 60/* rtc timer and device for setting alarm wakeups at suspend */
 61static struct rtc_timer		rtctimer;
 62static struct rtc_device	*rtcdev;
 63static DEFINE_SPINLOCK(rtcdev_lock);
 64
 65/**
 66 * alarmtimer_get_rtcdev - Return selected rtcdevice
 67 *
 68 * This function returns the rtc device to use for wakealarms.
 69 * If one has not already been chosen, it checks to see if a
 70 * functional rtc device is available.
 71 */
 72struct rtc_device *alarmtimer_get_rtcdev(void)
 73{
 74	unsigned long flags;
 75	struct rtc_device *ret;
 76
 77	spin_lock_irqsave(&rtcdev_lock, flags);
 78	ret = rtcdev;
 79	spin_unlock_irqrestore(&rtcdev_lock, flags);
 80
 81	return ret;
 82}
 83EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 84
 85static int alarmtimer_rtc_add_device(struct device *dev,
 86				struct class_interface *class_intf)
 87{
 88	unsigned long flags;
 89	struct rtc_device *rtc = to_rtc_device(dev);
 90	struct wakeup_source *__ws;
 91
 92	if (rtcdev)
 93		return -EBUSY;
 94
 95	if (!rtc->ops->set_alarm)
 96		return -1;
 97	if (!device_may_wakeup(rtc->dev.parent))
 98		return -1;
 99
100	__ws = wakeup_source_register(dev, "alarmtimer");
101
102	spin_lock_irqsave(&rtcdev_lock, flags);
103	if (!rtcdev) {
104		if (!try_module_get(rtc->owner)) {
105			spin_unlock_irqrestore(&rtcdev_lock, flags);
106			return -1;
107		}
108
109		rtcdev = rtc;
110		/* hold a reference so it doesn't go away */
111		get_device(dev);
112		ws = __ws;
113		__ws = NULL;
114	}
115	spin_unlock_irqrestore(&rtcdev_lock, flags);
116
117	wakeup_source_unregister(__ws);
118
119	return 0;
120}
121
122static inline void alarmtimer_rtc_timer_init(void)
123{
124	rtc_timer_init(&rtctimer, NULL, NULL);
125}
126
127static struct class_interface alarmtimer_rtc_interface = {
128	.add_dev = &alarmtimer_rtc_add_device,
129};
130
131static int alarmtimer_rtc_interface_setup(void)
132{
133	alarmtimer_rtc_interface.class = rtc_class;
134	return class_interface_register(&alarmtimer_rtc_interface);
135}
136static void alarmtimer_rtc_interface_remove(void)
137{
138	class_interface_unregister(&alarmtimer_rtc_interface);
139}
140#else
141struct rtc_device *alarmtimer_get_rtcdev(void)
142{
143	return NULL;
144}
145#define rtcdev (NULL)
146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147static inline void alarmtimer_rtc_interface_remove(void) { }
148static inline void alarmtimer_rtc_timer_init(void) { }
149#endif
150
151/**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
 
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161{
162	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163		timerqueue_del(&base->timerqueue, &alarm->node);
164
165	timerqueue_add(&base->timerqueue, &alarm->node);
166	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
 
 
 
 
 
 
167}
168
169/**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
 
175 *
176 * Must hold base->lock when calling.
177 */
178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179{
 
 
180	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181		return;
182
183	timerqueue_del(&base->timerqueue, &alarm->node);
184	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
 
 
 
 
 
 
 
 
185}
186
187
188/**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * when the next future alarm timer expires.
196 */
197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198{
199	struct alarm *alarm = container_of(timer, struct alarm, timer);
200	struct alarm_base *base = &alarm_bases[alarm->type];
201	unsigned long flags;
 
202	int ret = HRTIMER_NORESTART;
203	int restart = ALARMTIMER_NORESTART;
204
205	spin_lock_irqsave(&base->lock, flags);
206	alarmtimer_dequeue(base, alarm);
207	spin_unlock_irqrestore(&base->lock, flags);
 
 
208
209	if (alarm->function)
210		restart = alarm->function(alarm, base->gettime());
211
212	spin_lock_irqsave(&base->lock, flags);
213	if (restart != ALARMTIMER_NORESTART) {
214		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215		alarmtimer_enqueue(base, alarm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216		ret = HRTIMER_RESTART;
217	}
218	spin_unlock_irqrestore(&base->lock, flags);
219
220	trace_alarmtimer_fired(alarm, base->gettime());
221	return ret;
222
223}
224
225ktime_t alarm_expires_remaining(const struct alarm *alarm)
226{
227	struct alarm_base *base = &alarm_bases[alarm->type];
228	return ktime_sub(alarm->node.expires, base->gettime());
229}
230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232#ifdef CONFIG_RTC_CLASS
233/**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
 
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
242static int alarmtimer_suspend(struct device *dev)
243{
244	ktime_t min, now, expires;
245	int i, ret, type;
246	struct rtc_device *rtc;
247	unsigned long flags;
248	struct rtc_time tm;
 
 
 
 
249
250	spin_lock_irqsave(&freezer_delta_lock, flags);
251	min = freezer_delta;
252	expires = freezer_expires;
253	type = freezer_alarmtype;
254	freezer_delta = 0;
255	spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257	rtc = alarmtimer_get_rtcdev();
258	/* If we have no rtcdev, just return */
259	if (!rtc)
260		return 0;
261
262	/* Find the soonest timer to expire*/
263	for (i = 0; i < ALARM_NUMTYPE; i++) {
264		struct alarm_base *base = &alarm_bases[i];
265		struct timerqueue_node *next;
266		ktime_t delta;
267
268		spin_lock_irqsave(&base->lock, flags);
269		next = timerqueue_getnext(&base->timerqueue);
270		spin_unlock_irqrestore(&base->lock, flags);
271		if (!next)
272			continue;
273		delta = ktime_sub(next->expires, base->gettime());
274		if (!min || (delta < min)) {
275			expires = next->expires;
276			min = delta;
277			type = i;
278		}
279	}
280	if (min == 0)
281		return 0;
282
283	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
285		return -EBUSY;
286	}
287
288	trace_alarmtimer_suspend(expires, type);
289
290	/* Setup an rtc timer to fire that far in the future */
291	rtc_timer_cancel(rtc, &rtctimer);
292	rtc_read_time(rtc, &tm);
293	now = rtc_tm_to_ktime(tm);
294	now = ktime_add(now, min);
295
296	/* Set alarm, if in the past reject suspend briefly to handle */
297	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298	if (ret < 0)
299		__pm_wakeup_event(ws, MSEC_PER_SEC);
300	return ret;
301}
302
303static int alarmtimer_resume(struct device *dev)
304{
305	struct rtc_device *rtc;
306
307	rtc = alarmtimer_get_rtcdev();
308	if (rtc)
309		rtc_timer_cancel(rtc, &rtctimer);
310	return 0;
311}
312
313#else
314static int alarmtimer_suspend(struct device *dev)
315{
316	return 0;
317}
318
319static int alarmtimer_resume(struct device *dev)
320{
321	return 0;
322}
323#endif
324
325static void
326__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328{
329	timerqueue_init(&alarm->node);
330	alarm->timer.function = alarmtimer_fired;
331	alarm->function = function;
332	alarm->type = type;
333	alarm->state = ALARMTIMER_STATE_INACTIVE;
 
 
 
 
 
334}
335
 
336/**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
342void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344{
345	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346		     HRTIMER_MODE_ABS);
347	__alarm_init(alarm, type, function);
 
348}
349EXPORT_SYMBOL_GPL(alarm_init);
350
351/**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
356void alarm_start(struct alarm *alarm, ktime_t start)
357{
358	struct alarm_base *base = &alarm_bases[alarm->type];
359	unsigned long flags;
360
361	spin_lock_irqsave(&base->lock, flags);
 
 
362	alarm->node.expires = start;
363	alarmtimer_enqueue(base, alarm);
364	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365	spin_unlock_irqrestore(&base->lock, flags);
366
367	trace_alarmtimer_start(alarm, base->gettime());
368}
369EXPORT_SYMBOL_GPL(alarm_start);
370
371/**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
376void alarm_start_relative(struct alarm *alarm, ktime_t start)
377{
378	struct alarm_base *base = &alarm_bases[alarm->type];
379
380	start = ktime_add_safe(start, base->gettime());
381	alarm_start(alarm, start);
382}
383EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385void alarm_restart(struct alarm *alarm)
386{
387	struct alarm_base *base = &alarm_bases[alarm->type];
388	unsigned long flags;
389
390	spin_lock_irqsave(&base->lock, flags);
391	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392	hrtimer_restart(&alarm->timer);
393	alarmtimer_enqueue(base, alarm);
394	spin_unlock_irqrestore(&base->lock, flags);
395}
396EXPORT_SYMBOL_GPL(alarm_restart);
397
398/**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
405int alarm_try_to_cancel(struct alarm *alarm)
406{
407	struct alarm_base *base = &alarm_bases[alarm->type];
408	unsigned long flags;
409	int ret;
410
411	spin_lock_irqsave(&base->lock, flags);
412	ret = hrtimer_try_to_cancel(&alarm->timer);
413	if (ret >= 0)
414		alarmtimer_dequeue(base, alarm);
415	spin_unlock_irqrestore(&base->lock, flags);
416
417	trace_alarmtimer_cancel(alarm, base->gettime());
 
 
 
 
 
 
 
 
 
418	return ret;
419}
420EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423/**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
429int alarm_cancel(struct alarm *alarm)
430{
431	for (;;) {
432		int ret = alarm_try_to_cancel(alarm);
433		if (ret >= 0)
434			return ret;
435		hrtimer_cancel_wait_running(&alarm->timer);
436	}
437}
438EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442{
443	u64 overrun = 1;
444	ktime_t delta;
445
446	delta = ktime_sub(now, alarm->node.expires);
447
448	if (delta < 0)
449		return 0;
450
451	if (unlikely(delta >= interval)) {
452		s64 incr = ktime_to_ns(interval);
453
454		overrun = ktime_divns(delta, incr);
455
456		alarm->node.expires = ktime_add_ns(alarm->node.expires,
457							incr*overrun);
458
459		if (alarm->node.expires > now)
460			return overrun;
461		/*
462		 * This (and the ktime_add() below) is the
463		 * correction for exact:
464		 */
465		overrun++;
466	}
467
468	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469	return overrun;
470}
471EXPORT_SYMBOL_GPL(alarm_forward);
472
473u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474{
475	struct alarm_base *base = &alarm_bases[alarm->type];
476
477	return alarm_forward(alarm, base->gettime(), interval);
478}
479EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481#ifdef CONFIG_POSIX_TIMERS
482
483static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484{
485	struct alarm_base *base;
486	unsigned long flags;
487	ktime_t delta;
488
489	switch(type) {
490	case ALARM_REALTIME:
491		base = &alarm_bases[ALARM_REALTIME];
492		type = ALARM_REALTIME_FREEZER;
493		break;
494	case ALARM_BOOTTIME:
495		base = &alarm_bases[ALARM_BOOTTIME];
496		type = ALARM_BOOTTIME_FREEZER;
497		break;
498	default:
499		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500		return;
501	}
502
503	delta = ktime_sub(absexp, base->gettime());
504
505	spin_lock_irqsave(&freezer_delta_lock, flags);
506	if (!freezer_delta || (delta < freezer_delta)) {
507		freezer_delta = delta;
508		freezer_expires = absexp;
509		freezer_alarmtype = type;
510	}
511	spin_unlock_irqrestore(&freezer_delta_lock, flags);
512}
513
514/**
515 * clock2alarm - helper that converts from clockid to alarmtypes
516 * @clockid: clockid.
517 */
518static enum alarmtimer_type clock2alarm(clockid_t clockid)
519{
520	if (clockid == CLOCK_REALTIME_ALARM)
521		return ALARM_REALTIME;
522	if (clockid == CLOCK_BOOTTIME_ALARM)
523		return ALARM_BOOTTIME;
524	return -1;
525}
526
527/**
528 * alarm_handle_timer - Callback for posix timers
529 * @alarm: alarm that fired
530 *
531 * Posix timer callback for expired alarm timers.
532 */
533static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534							ktime_t now)
535{
536	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537					    it.alarm.alarmtimer);
538	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539	unsigned long flags;
540	int si_private = 0;
541
542	spin_lock_irqsave(&ptr->it_lock, flags);
543
544	ptr->it_active = 0;
545	if (ptr->it_interval)
546		si_private = ++ptr->it_requeue_pending;
547
548	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549		/*
550		 * Handle ignored signals and rearm the timer. This will go
551		 * away once we handle ignored signals proper.
552		 */
553		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554		++ptr->it_requeue_pending;
555		ptr->it_active = 1;
556		result = ALARMTIMER_RESTART;
557	}
558	spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560	return result;
561}
562
563/**
564 * alarm_timer_rearm - Posix timer callback for rearming timer
565 * @timr:	Pointer to the posixtimer data struct
566 */
567static void alarm_timer_rearm(struct k_itimer *timr)
568{
569	struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572	alarm_start(alarm, alarm->node.expires);
573}
574
575/**
576 * alarm_timer_forward - Posix timer callback for forwarding timer
577 * @timr:	Pointer to the posixtimer data struct
578 * @now:	Current time to forward the timer against
579 */
580static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581{
582	struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584	return alarm_forward(alarm, timr->it_interval, now);
585}
586
587/**
588 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589 * @timr:	Pointer to the posixtimer data struct
590 * @now:	Current time to calculate against
591 */
592static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593{
594	struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596	return ktime_sub(alarm->node.expires, now);
597}
598
599/**
600 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601 * @timr:	Pointer to the posixtimer data struct
602 */
603static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604{
605	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606}
607
608/**
609 * alarm_timer_wait_running - Posix timer callback to wait for a timer
610 * @timr:	Pointer to the posixtimer data struct
611 *
612 * Called from the core code when timer cancel detected that the callback
613 * is running. @timr is unlocked and rcu read lock is held to prevent it
614 * from being freed.
615 */
616static void alarm_timer_wait_running(struct k_itimer *timr)
617{
618	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619}
620
621/**
622 * alarm_timer_arm - Posix timer callback to arm a timer
623 * @timr:	Pointer to the posixtimer data struct
624 * @expires:	The new expiry time
625 * @absolute:	Expiry value is absolute time
626 * @sigev_none:	Posix timer does not deliver signals
627 */
628static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
629			    bool absolute, bool sigev_none)
630{
631	struct alarm *alarm = &timr->it.alarm.alarmtimer;
632	struct alarm_base *base = &alarm_bases[alarm->type];
633
634	if (!absolute)
635		expires = ktime_add_safe(expires, base->gettime());
636	if (sigev_none)
637		alarm->node.expires = expires;
638	else
639		alarm_start(&timr->it.alarm.alarmtimer, expires);
640}
641
642/**
643 * alarm_clock_getres - posix getres interface
644 * @which_clock: clockid
645 * @tp: timespec to fill
646 *
647 * Returns the granularity of underlying alarm base clock
648 */
649static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
650{
 
 
651	if (!alarmtimer_get_rtcdev())
652		return -EINVAL;
653
654	tp->tv_sec = 0;
655	tp->tv_nsec = hrtimer_resolution;
656	return 0;
657}
658
659/**
660 * alarm_clock_get - posix clock_get interface
661 * @which_clock: clockid
662 * @tp: timespec to fill.
663 *
664 * Provides the underlying alarm base time.
665 */
666static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
667{
668	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
669
670	if (!alarmtimer_get_rtcdev())
671		return -EINVAL;
672
673	*tp = ktime_to_timespec64(base->gettime());
674	return 0;
675}
676
677/**
678 * alarm_timer_create - posix timer_create interface
679 * @new_timer: k_itimer pointer to manage
680 *
681 * Initializes the k_itimer structure.
682 */
683static int alarm_timer_create(struct k_itimer *new_timer)
684{
685	enum  alarmtimer_type type;
 
686
687	if (!alarmtimer_get_rtcdev())
688		return -EOPNOTSUPP;
689
690	if (!capable(CAP_WAKE_ALARM))
691		return -EPERM;
692
693	type = clock2alarm(new_timer->it_clock);
 
694	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
695	return 0;
696}
697
698/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
700 * @alarm: ptr to alarm that fired
701 *
702 * Wakes up the task that set the alarmtimer
703 */
704static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
705								ktime_t now)
706{
707	struct task_struct *task = (struct task_struct *)alarm->data;
708
709	alarm->data = NULL;
710	if (task)
711		wake_up_process(task);
712	return ALARMTIMER_NORESTART;
713}
714
715/**
716 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
717 * @alarm: ptr to alarmtimer
718 * @absexp: absolute expiration time
719 *
720 * Sets the alarm timer and sleeps until it is fired or interrupted.
721 */
722static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
723				enum alarmtimer_type type)
724{
725	struct restart_block *restart;
726	alarm->data = (void *)current;
727	do {
728		set_current_state(TASK_INTERRUPTIBLE);
729		alarm_start(alarm, absexp);
730		if (likely(alarm->data))
731			schedule();
732
733		alarm_cancel(alarm);
734	} while (alarm->data && !signal_pending(current));
735
736	__set_current_state(TASK_RUNNING);
737
738	destroy_hrtimer_on_stack(&alarm->timer);
 
739
740	if (!alarm->data)
741		return 0;
742
743	if (freezing(current))
744		alarmtimer_freezerset(absexp, type);
745	restart = &current->restart_block;
746	if (restart->nanosleep.type != TT_NONE) {
747		struct timespec64 rmt;
748		ktime_t rem;
 
 
 
 
 
 
 
 
749
750		rem = ktime_sub(absexp, alarm_bases[type].gettime());
751
752		if (rem <= 0)
753			return 0;
754		rmt = ktime_to_timespec64(rem);
755
756		return nanosleep_copyout(restart, &rmt);
757	}
758	return -ERESTART_RESTARTBLOCK;
759}
760
761static void
762alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
763		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
764{
765	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
766			      HRTIMER_MODE_ABS);
767	__alarm_init(alarm, type, function);
768}
769
770/**
771 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
772 * @restart: ptr to restart block
773 *
774 * Handles restarted clock_nanosleep calls
775 */
776static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
777{
778	enum  alarmtimer_type type = restart->nanosleep.clockid;
779	ktime_t exp = restart->nanosleep.expires;
 
780	struct alarm alarm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781
782	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
783
784	return alarmtimer_do_nsleep(&alarm, exp, type);
 
 
 
785}
786
787/**
788 * alarm_timer_nsleep - alarmtimer nanosleep
789 * @which_clock: clockid
790 * @flags: determins abstime or relative
791 * @tsreq: requested sleep time (abs or rel)
792 * @rmtp: remaining sleep time saved
793 *
794 * Handles clock_nanosleep calls against _ALARM clockids
795 */
796static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
797			      const struct timespec64 *tsreq)
798{
799	enum  alarmtimer_type type = clock2alarm(which_clock);
800	struct restart_block *restart = &current->restart_block;
801	struct alarm alarm;
802	ktime_t exp;
803	int ret = 0;
 
804
805	if (!alarmtimer_get_rtcdev())
806		return -EOPNOTSUPP;
807
808	if (flags & ~TIMER_ABSTIME)
809		return -EINVAL;
810
811	if (!capable(CAP_WAKE_ALARM))
812		return -EPERM;
813
814	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
815
816	exp = timespec64_to_ktime(*tsreq);
817	/* Convert (if necessary) to absolute time */
818	if (flags != TIMER_ABSTIME) {
819		ktime_t now = alarm_bases[type].gettime();
820
821		exp = ktime_add_safe(now, exp);
822	}
823
824	ret = alarmtimer_do_nsleep(&alarm, exp, type);
825	if (ret != -ERESTART_RESTARTBLOCK)
826		return ret;
 
 
827
828	/* abs timers don't set remaining time or restart */
829	if (flags == TIMER_ABSTIME)
830		return -ERESTARTNOHAND;
 
 
831
 
 
 
 
 
 
 
832	restart->fn = alarm_timer_nsleep_restart;
833	restart->nanosleep.clockid = type;
834	restart->nanosleep.expires = exp;
 
 
 
 
835	return ret;
836}
837
838const struct k_clock alarm_clock = {
839	.clock_getres		= alarm_clock_getres,
840	.clock_get		= alarm_clock_get,
841	.timer_create		= alarm_timer_create,
842	.timer_set		= common_timer_set,
843	.timer_del		= common_timer_del,
844	.timer_get		= common_timer_get,
845	.timer_arm		= alarm_timer_arm,
846	.timer_rearm		= alarm_timer_rearm,
847	.timer_forward		= alarm_timer_forward,
848	.timer_remaining	= alarm_timer_remaining,
849	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
850	.timer_wait_running	= alarm_timer_wait_running,
851	.nsleep			= alarm_timer_nsleep,
852};
853#endif /* CONFIG_POSIX_TIMERS */
854
855
856/* Suspend hook structures */
857static const struct dev_pm_ops alarmtimer_pm_ops = {
858	.suspend = alarmtimer_suspend,
859	.resume = alarmtimer_resume,
860};
861
862static struct platform_driver alarmtimer_driver = {
863	.driver = {
864		.name = "alarmtimer",
865		.pm = &alarmtimer_pm_ops,
866	}
867};
868
869/**
870 * alarmtimer_init - Initialize alarm timer code
871 *
872 * This function initializes the alarm bases and registers
873 * the posix clock ids.
874 */
875static int __init alarmtimer_init(void)
876{
877	struct platform_device *pdev;
878	int error = 0;
879	int i;
 
 
 
 
 
 
 
 
 
880
881	alarmtimer_rtc_timer_init();
882
 
 
 
883	/* Initialize alarm bases */
884	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
885	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
886	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
887	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
888	for (i = 0; i < ALARM_NUMTYPE; i++) {
889		timerqueue_init_head(&alarm_bases[i].timerqueue);
890		spin_lock_init(&alarm_bases[i].lock);
 
 
 
 
891	}
892
893	error = alarmtimer_rtc_interface_setup();
894	if (error)
895		return error;
896
897	error = platform_driver_register(&alarmtimer_driver);
898	if (error)
899		goto out_if;
900
901	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
902	if (IS_ERR(pdev)) {
903		error = PTR_ERR(pdev);
904		goto out_drv;
905	}
906	return 0;
907
908out_drv:
909	platform_driver_unregister(&alarmtimer_driver);
910out_if:
911	alarmtimer_rtc_interface_remove();
912	return error;
913}
914device_initcall(alarmtimer_init);
v3.5.6
 
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 
 
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 
 
 
 
 
 
 
 28
 29/**
 30 * struct alarm_base - Alarm timer bases
 31 * @lock:		Lock for syncrhonized access to the base
 32 * @timerqueue:		Timerqueue head managing the list of events
 33 * @timer: 		hrtimer used to schedule events while running
 34 * @gettime:		Function to read the time correlating to the base
 35 * @base_clockid:	clockid for the base
 36 */
 37static struct alarm_base {
 38	spinlock_t		lock;
 39	struct timerqueue_head	timerqueue;
 40	struct hrtimer		timer;
 41	ktime_t			(*gettime)(void);
 42	clockid_t		base_clockid;
 43} alarm_bases[ALARM_NUMTYPE];
 44
 45/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
 
 
 
 46static ktime_t freezer_delta;
 47static DEFINE_SPINLOCK(freezer_delta_lock);
 
 48
 49#ifdef CONFIG_RTC_CLASS
 
 
 50/* rtc timer and device for setting alarm wakeups at suspend */
 51static struct rtc_timer		rtctimer;
 52static struct rtc_device	*rtcdev;
 53static DEFINE_SPINLOCK(rtcdev_lock);
 54
 55/**
 56 * alarmtimer_get_rtcdev - Return selected rtcdevice
 57 *
 58 * This function returns the rtc device to use for wakealarms.
 59 * If one has not already been chosen, it checks to see if a
 60 * functional rtc device is available.
 61 */
 62struct rtc_device *alarmtimer_get_rtcdev(void)
 63{
 64	unsigned long flags;
 65	struct rtc_device *ret;
 66
 67	spin_lock_irqsave(&rtcdev_lock, flags);
 68	ret = rtcdev;
 69	spin_unlock_irqrestore(&rtcdev_lock, flags);
 70
 71	return ret;
 72}
 73
 74
 75static int alarmtimer_rtc_add_device(struct device *dev,
 76				struct class_interface *class_intf)
 77{
 78	unsigned long flags;
 79	struct rtc_device *rtc = to_rtc_device(dev);
 
 80
 81	if (rtcdev)
 82		return -EBUSY;
 83
 84	if (!rtc->ops->set_alarm)
 85		return -1;
 86	if (!device_may_wakeup(rtc->dev.parent))
 87		return -1;
 88
 
 
 89	spin_lock_irqsave(&rtcdev_lock, flags);
 90	if (!rtcdev) {
 
 
 
 
 
 91		rtcdev = rtc;
 92		/* hold a reference so it doesn't go away */
 93		get_device(dev);
 
 
 94	}
 95	spin_unlock_irqrestore(&rtcdev_lock, flags);
 
 
 
 96	return 0;
 97}
 98
 99static inline void alarmtimer_rtc_timer_init(void)
100{
101	rtc_timer_init(&rtctimer, NULL, NULL);
102}
103
104static struct class_interface alarmtimer_rtc_interface = {
105	.add_dev = &alarmtimer_rtc_add_device,
106};
107
108static int alarmtimer_rtc_interface_setup(void)
109{
110	alarmtimer_rtc_interface.class = rtc_class;
111	return class_interface_register(&alarmtimer_rtc_interface);
112}
113static void alarmtimer_rtc_interface_remove(void)
114{
115	class_interface_unregister(&alarmtimer_rtc_interface);
116}
117#else
118struct rtc_device *alarmtimer_get_rtcdev(void)
119{
120	return NULL;
121}
122#define rtcdev (NULL)
123static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124static inline void alarmtimer_rtc_interface_remove(void) { }
125static inline void alarmtimer_rtc_timer_init(void) { }
126#endif
127
128/**
129 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130 * @base: pointer to the base where the timer is being run
131 * @alarm: pointer to alarm being enqueued.
132 *
133 * Adds alarm to a alarm_base timerqueue and if necessary sets
134 * an hrtimer to run.
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
 
 
 
140	timerqueue_add(&base->timerqueue, &alarm->node);
141	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
142
143	if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
144		hrtimer_try_to_cancel(&base->timer);
145		hrtimer_start(&base->timer, alarm->node.expires,
146				HRTIMER_MODE_ABS);
147	}
148}
149
150/**
151 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
152 * @base: pointer to the base where the timer is running
153 * @alarm: pointer to alarm being removed
154 *
155 * Removes alarm to a alarm_base timerqueue and if necessary sets
156 * a new timer to run.
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
161{
162	struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
163
164	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
165		return;
166
167	timerqueue_del(&base->timerqueue, &alarm->node);
168	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
169
170	if (next == &alarm->node) {
171		hrtimer_try_to_cancel(&base->timer);
172		next = timerqueue_getnext(&base->timerqueue);
173		if (!next)
174			return;
175		hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
176	}
177}
178
179
180/**
181 * alarmtimer_fired - Handles alarm hrtimer being fired.
182 * @timer: pointer to hrtimer being run
183 *
184 * When a alarm timer fires, this runs through the timerqueue to
185 * see which alarms expired, and runs those. If there are more alarm
186 * timers queued for the future, we set the hrtimer to fire when
187 * when the next future alarm timer expires.
188 */
189static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
190{
191	struct alarm_base *base = container_of(timer, struct alarm_base, timer);
192	struct timerqueue_node *next;
193	unsigned long flags;
194	ktime_t now;
195	int ret = HRTIMER_NORESTART;
196	int restart = ALARMTIMER_NORESTART;
197
198	spin_lock_irqsave(&base->lock, flags);
199	now = base->gettime();
200	while ((next = timerqueue_getnext(&base->timerqueue))) {
201		struct alarm *alarm;
202		ktime_t expired = next->expires;
203
204		if (expired.tv64 > now.tv64)
205			break;
206
207		alarm = container_of(next, struct alarm, node);
208
209		timerqueue_del(&base->timerqueue, &alarm->node);
210		alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
211
212		alarm->state |= ALARMTIMER_STATE_CALLBACK;
213		spin_unlock_irqrestore(&base->lock, flags);
214		if (alarm->function)
215			restart = alarm->function(alarm, now);
216		spin_lock_irqsave(&base->lock, flags);
217		alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
218
219		if (restart != ALARMTIMER_NORESTART) {
220			timerqueue_add(&base->timerqueue, &alarm->node);
221			alarm->state |= ALARMTIMER_STATE_ENQUEUED;
222		}
223	}
224
225	if (next) {
226		hrtimer_set_expires(&base->timer, next->expires);
227		ret = HRTIMER_RESTART;
228	}
229	spin_unlock_irqrestore(&base->lock, flags);
230
 
231	return ret;
232
233}
234
 
 
 
 
 
 
 
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
 
 
 
 
248	struct rtc_time tm;
249	ktime_t min, now;
250	unsigned long flags;
251	struct rtc_device *rtc;
252	int i;
253
254	spin_lock_irqsave(&freezer_delta_lock, flags);
255	min = freezer_delta;
256	freezer_delta = ktime_set(0, 0);
 
 
257	spin_unlock_irqrestore(&freezer_delta_lock, flags);
258
259	rtc = alarmtimer_get_rtcdev();
260	/* If we have no rtcdev, just return */
261	if (!rtc)
262		return 0;
263
264	/* Find the soonest timer to expire*/
265	for (i = 0; i < ALARM_NUMTYPE; i++) {
266		struct alarm_base *base = &alarm_bases[i];
267		struct timerqueue_node *next;
268		ktime_t delta;
269
270		spin_lock_irqsave(&base->lock, flags);
271		next = timerqueue_getnext(&base->timerqueue);
272		spin_unlock_irqrestore(&base->lock, flags);
273		if (!next)
274			continue;
275		delta = ktime_sub(next->expires, base->gettime());
276		if (!min.tv64 || (delta.tv64 < min.tv64))
 
277			min = delta;
 
 
278	}
279	if (min.tv64 == 0)
280		return 0;
281
282	/* XXX - Should we enforce a minimum sleep time? */
283	WARN_ON(min.tv64 < NSEC_PER_SEC);
 
 
 
 
284
285	/* Setup an rtc timer to fire that far in the future */
286	rtc_timer_cancel(rtc, &rtctimer);
287	rtc_read_time(rtc, &tm);
288	now = rtc_tm_to_ktime(tm);
289	now = ktime_add(now, min);
290
291	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
 
 
 
 
 
292
 
 
 
 
 
 
 
293	return 0;
294}
 
295#else
296static int alarmtimer_suspend(struct device *dev)
297{
298	return 0;
299}
 
 
 
 
 
300#endif
301
302static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
 
 
303{
304	ktime_t delta;
305	unsigned long flags;
306	struct alarm_base *base = &alarm_bases[type];
307
308	delta = ktime_sub(absexp, base->gettime());
309
310	spin_lock_irqsave(&freezer_delta_lock, flags);
311	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
312		freezer_delta = delta;
313	spin_unlock_irqrestore(&freezer_delta_lock, flags);
314}
315
316
317/**
318 * alarm_init - Initialize an alarm structure
319 * @alarm: ptr to alarm to be initialized
320 * @type: the type of the alarm
321 * @function: callback that is run when the alarm fires
322 */
323void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
325{
326	timerqueue_init(&alarm->node);
327	alarm->function = function;
328	alarm->type = type;
329	alarm->state = ALARMTIMER_STATE_INACTIVE;
330}
 
331
332/**
333 * alarm_start - Sets an alarm to fire
334 * @alarm: ptr to alarm to set
335 * @start: time to run the alarm
336 */
337void alarm_start(struct alarm *alarm, ktime_t start)
338{
339	struct alarm_base *base = &alarm_bases[alarm->type];
340	unsigned long flags;
341
342	spin_lock_irqsave(&base->lock, flags);
343	if (alarmtimer_active(alarm))
344		alarmtimer_remove(base, alarm);
345	alarm->node.expires = start;
346	alarmtimer_enqueue(base, alarm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347	spin_unlock_irqrestore(&base->lock, flags);
348}
 
349
350/**
351 * alarm_try_to_cancel - Tries to cancel an alarm timer
352 * @alarm: ptr to alarm to be canceled
353 *
354 * Returns 1 if the timer was canceled, 0 if it was not running,
355 * and -1 if the callback was running
356 */
357int alarm_try_to_cancel(struct alarm *alarm)
358{
359	struct alarm_base *base = &alarm_bases[alarm->type];
360	unsigned long flags;
361	int ret = -1;
 
362	spin_lock_irqsave(&base->lock, flags);
 
 
 
 
363
364	if (alarmtimer_callback_running(alarm))
365		goto out;
366
367	if (alarmtimer_is_queued(alarm)) {
368		alarmtimer_remove(base, alarm);
369		ret = 1;
370	} else
371		ret = 0;
372out:
373	spin_unlock_irqrestore(&base->lock, flags);
374	return ret;
375}
 
376
377
378/**
379 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
380 * @alarm: ptr to alarm to be canceled
381 *
382 * Returns 1 if the timer was canceled, 0 if it was not active.
383 */
384int alarm_cancel(struct alarm *alarm)
385{
386	for (;;) {
387		int ret = alarm_try_to_cancel(alarm);
388		if (ret >= 0)
389			return ret;
390		cpu_relax();
391	}
392}
 
393
394
395u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
396{
397	u64 overrun = 1;
398	ktime_t delta;
399
400	delta = ktime_sub(now, alarm->node.expires);
401
402	if (delta.tv64 < 0)
403		return 0;
404
405	if (unlikely(delta.tv64 >= interval.tv64)) {
406		s64 incr = ktime_to_ns(interval);
407
408		overrun = ktime_divns(delta, incr);
409
410		alarm->node.expires = ktime_add_ns(alarm->node.expires,
411							incr*overrun);
412
413		if (alarm->node.expires.tv64 > now.tv64)
414			return overrun;
415		/*
416		 * This (and the ktime_add() below) is the
417		 * correction for exact:
418		 */
419		overrun++;
420	}
421
422	alarm->node.expires = ktime_add(alarm->node.expires, interval);
423	return overrun;
424}
 
425
 
 
 
426
 
 
 
427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429/**
430 * clock2alarm - helper that converts from clockid to alarmtypes
431 * @clockid: clockid.
432 */
433static enum alarmtimer_type clock2alarm(clockid_t clockid)
434{
435	if (clockid == CLOCK_REALTIME_ALARM)
436		return ALARM_REALTIME;
437	if (clockid == CLOCK_BOOTTIME_ALARM)
438		return ALARM_BOOTTIME;
439	return -1;
440}
441
442/**
443 * alarm_handle_timer - Callback for posix timers
444 * @alarm: alarm that fired
445 *
446 * Posix timer callback for expired alarm timers.
447 */
448static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
449							ktime_t now)
450{
451	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
452						it.alarm.alarmtimer);
453	if (posix_timer_event(ptr, 0) != 0)
454		ptr->it_overrun++;
455
456	/* Re-add periodic timers */
457	if (ptr->it.alarm.interval.tv64) {
458		ptr->it_overrun += alarm_forward(alarm, now,
459						ptr->it.alarm.interval);
460		return ALARMTIMER_RESTART;
 
 
 
 
 
 
 
 
 
 
 
461	}
462	return ALARMTIMER_NORESTART;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463}
464
465/**
466 * alarm_clock_getres - posix getres interface
467 * @which_clock: clockid
468 * @tp: timespec to fill
469 *
470 * Returns the granularity of underlying alarm base clock
471 */
472static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
473{
474	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
475
476	if (!alarmtimer_get_rtcdev())
477		return -ENOTSUPP;
478
479	return hrtimer_get_res(baseid, tp);
 
 
480}
481
482/**
483 * alarm_clock_get - posix clock_get interface
484 * @which_clock: clockid
485 * @tp: timespec to fill.
486 *
487 * Provides the underlying alarm base time.
488 */
489static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
490{
491	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
492
493	if (!alarmtimer_get_rtcdev())
494		return -ENOTSUPP;
495
496	*tp = ktime_to_timespec(base->gettime());
497	return 0;
498}
499
500/**
501 * alarm_timer_create - posix timer_create interface
502 * @new_timer: k_itimer pointer to manage
503 *
504 * Initializes the k_itimer structure.
505 */
506static int alarm_timer_create(struct k_itimer *new_timer)
507{
508	enum  alarmtimer_type type;
509	struct alarm_base *base;
510
511	if (!alarmtimer_get_rtcdev())
512		return -ENOTSUPP;
513
514	if (!capable(CAP_WAKE_ALARM))
515		return -EPERM;
516
517	type = clock2alarm(new_timer->it_clock);
518	base = &alarm_bases[type];
519	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
520	return 0;
521}
522
523/**
524 * alarm_timer_get - posix timer_get interface
525 * @new_timer: k_itimer pointer
526 * @cur_setting: itimerspec data to fill
527 *
528 * Copies the itimerspec data out from the k_itimer
529 */
530static void alarm_timer_get(struct k_itimer *timr,
531				struct itimerspec *cur_setting)
532{
533	memset(cur_setting, 0, sizeof(struct itimerspec));
534
535	cur_setting->it_interval =
536			ktime_to_timespec(timr->it.alarm.interval);
537	cur_setting->it_value =
538		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
539	return;
540}
541
542/**
543 * alarm_timer_del - posix timer_del interface
544 * @timr: k_itimer pointer to be deleted
545 *
546 * Cancels any programmed alarms for the given timer.
547 */
548static int alarm_timer_del(struct k_itimer *timr)
549{
550	if (!rtcdev)
551		return -ENOTSUPP;
552
553	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
554		return TIMER_RETRY;
555
556	return 0;
557}
558
559/**
560 * alarm_timer_set - posix timer_set interface
561 * @timr: k_itimer pointer to be deleted
562 * @flags: timer flags
563 * @new_setting: itimerspec to be used
564 * @old_setting: itimerspec being replaced
565 *
566 * Sets the timer to new_setting, and starts the timer.
567 */
568static int alarm_timer_set(struct k_itimer *timr, int flags,
569				struct itimerspec *new_setting,
570				struct itimerspec *old_setting)
571{
572	if (!rtcdev)
573		return -ENOTSUPP;
574
575	if (old_setting)
576		alarm_timer_get(timr, old_setting);
577
578	/* If the timer was already set, cancel it */
579	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
580		return TIMER_RETRY;
581
582	/* start the timer */
583	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
584	alarm_start(&timr->it.alarm.alarmtimer,
585			timespec_to_ktime(new_setting->it_value));
586	return 0;
587}
588
589/**
590 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
591 * @alarm: ptr to alarm that fired
592 *
593 * Wakes up the task that set the alarmtimer
594 */
595static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
596								ktime_t now)
597{
598	struct task_struct *task = (struct task_struct *)alarm->data;
599
600	alarm->data = NULL;
601	if (task)
602		wake_up_process(task);
603	return ALARMTIMER_NORESTART;
604}
605
606/**
607 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
608 * @alarm: ptr to alarmtimer
609 * @absexp: absolute expiration time
610 *
611 * Sets the alarm timer and sleeps until it is fired or interrupted.
612 */
613static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
 
614{
 
615	alarm->data = (void *)current;
616	do {
617		set_current_state(TASK_INTERRUPTIBLE);
618		alarm_start(alarm, absexp);
619		if (likely(alarm->data))
620			schedule();
621
622		alarm_cancel(alarm);
623	} while (alarm->data && !signal_pending(current));
624
625	__set_current_state(TASK_RUNNING);
626
627	return (alarm->data == NULL);
628}
629
 
 
630
631/**
632 * update_rmtp - Update remaining timespec value
633 * @exp: expiration time
634 * @type: timer type
635 * @rmtp: user pointer to remaining timepsec value
636 *
637 * Helper function that fills in rmtp value with time between
638 * now and the exp value
639 */
640static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
641			struct timespec __user *rmtp)
642{
643	struct timespec rmt;
644	ktime_t rem;
645
646	rem = ktime_sub(exp, alarm_bases[type].gettime());
647
648	if (rem.tv64 <= 0)
649		return 0;
650	rmt = ktime_to_timespec(rem);
651
652	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
653		return -EFAULT;
654
655	return 1;
656
 
 
 
 
 
 
 
657}
658
659/**
660 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
661 * @restart: ptr to restart block
662 *
663 * Handles restarted clock_nanosleep calls
664 */
665static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
666{
667	enum  alarmtimer_type type = restart->nanosleep.clockid;
668	ktime_t exp;
669	struct timespec __user  *rmtp;
670	struct alarm alarm;
671	int ret = 0;
672
673	exp.tv64 = restart->nanosleep.expires;
674	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
675
676	if (alarmtimer_do_nsleep(&alarm, exp))
677		goto out;
678
679	if (freezing(current))
680		alarmtimer_freezerset(exp, type);
681
682	rmtp = restart->nanosleep.rmtp;
683	if (rmtp) {
684		ret = update_rmtp(exp, type, rmtp);
685		if (ret <= 0)
686			goto out;
687	}
688
 
689
690	/* The other values in restart are already filled in */
691	ret = -ERESTART_RESTARTBLOCK;
692out:
693	return ret;
694}
695
696/**
697 * alarm_timer_nsleep - alarmtimer nanosleep
698 * @which_clock: clockid
699 * @flags: determins abstime or relative
700 * @tsreq: requested sleep time (abs or rel)
701 * @rmtp: remaining sleep time saved
702 *
703 * Handles clock_nanosleep calls against _ALARM clockids
704 */
705static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
706		     struct timespec *tsreq, struct timespec __user *rmtp)
707{
708	enum  alarmtimer_type type = clock2alarm(which_clock);
 
709	struct alarm alarm;
710	ktime_t exp;
711	int ret = 0;
712	struct restart_block *restart;
713
714	if (!alarmtimer_get_rtcdev())
715		return -ENOTSUPP;
 
 
 
716
717	if (!capable(CAP_WAKE_ALARM))
718		return -EPERM;
719
720	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
721
722	exp = timespec_to_ktime(*tsreq);
723	/* Convert (if necessary) to absolute time */
724	if (flags != TIMER_ABSTIME) {
725		ktime_t now = alarm_bases[type].gettime();
726		exp = ktime_add(now, exp);
 
727	}
728
729	if (alarmtimer_do_nsleep(&alarm, exp))
730		goto out;
731
732	if (freezing(current))
733		alarmtimer_freezerset(exp, type);
734
735	/* abs timers don't set remaining time or restart */
736	if (flags == TIMER_ABSTIME) {
737		ret = -ERESTARTNOHAND;
738		goto out;
739	}
740
741	if (rmtp) {
742		ret = update_rmtp(exp, type, rmtp);
743		if (ret <= 0)
744			goto out;
745	}
746
747	restart = &current_thread_info()->restart_block;
748	restart->fn = alarm_timer_nsleep_restart;
749	restart->nanosleep.clockid = type;
750	restart->nanosleep.expires = exp.tv64;
751	restart->nanosleep.rmtp = rmtp;
752	ret = -ERESTART_RESTARTBLOCK;
753
754out:
755	return ret;
756}
757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
758
759/* Suspend hook structures */
760static const struct dev_pm_ops alarmtimer_pm_ops = {
761	.suspend = alarmtimer_suspend,
 
762};
763
764static struct platform_driver alarmtimer_driver = {
765	.driver = {
766		.name = "alarmtimer",
767		.pm = &alarmtimer_pm_ops,
768	}
769};
770
771/**
772 * alarmtimer_init - Initialize alarm timer code
773 *
774 * This function initializes the alarm bases and registers
775 * the posix clock ids.
776 */
777static int __init alarmtimer_init(void)
778{
779	struct platform_device *pdev;
780	int error = 0;
781	int i;
782	struct k_clock alarm_clock = {
783		.clock_getres	= alarm_clock_getres,
784		.clock_get	= alarm_clock_get,
785		.timer_create	= alarm_timer_create,
786		.timer_set	= alarm_timer_set,
787		.timer_del	= alarm_timer_del,
788		.timer_get	= alarm_timer_get,
789		.nsleep		= alarm_timer_nsleep,
790	};
791
792	alarmtimer_rtc_timer_init();
793
794	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
795	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
796
797	/* Initialize alarm bases */
798	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
799	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
800	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
801	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
802	for (i = 0; i < ALARM_NUMTYPE; i++) {
803		timerqueue_init_head(&alarm_bases[i].timerqueue);
804		spin_lock_init(&alarm_bases[i].lock);
805		hrtimer_init(&alarm_bases[i].timer,
806				alarm_bases[i].base_clockid,
807				HRTIMER_MODE_ABS);
808		alarm_bases[i].timer.function = alarmtimer_fired;
809	}
810
811	error = alarmtimer_rtc_interface_setup();
812	if (error)
813		return error;
814
815	error = platform_driver_register(&alarmtimer_driver);
816	if (error)
817		goto out_if;
818
819	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
820	if (IS_ERR(pdev)) {
821		error = PTR_ERR(pdev);
822		goto out_drv;
823	}
824	return 0;
825
826out_drv:
827	platform_driver_unregister(&alarmtimer_driver);
828out_if:
829	alarmtimer_rtc_interface_remove();
830	return error;
831}
832device_initcall(alarmtimer_init);