Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-direct.h>
 11#include <linux/scatterlist.h>
 12#include <linux/dma-contiguous.h>
 13#include <linux/dma-noncoherent.h>
 14#include <linux/pfn.h>
 
 15#include <linux/set_memory.h>
 16#include <linux/swiotlb.h>
 
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but
 20 * some use it for entirely different regions:
 
 21 */
 22#ifndef ARCH_ZONE_DMA_BITS
 23#define ARCH_ZONE_DMA_BITS 24
 24#endif
 25
 26static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
 27{
 28	if (!dev->dma_mask) {
 29		dev_err_once(dev, "DMA map on device without dma_mask\n");
 30	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
 31		dev_err_once(dev,
 32			"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
 33			&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
 34	}
 35	WARN_ON_ONCE(1);
 36}
 37
 38static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 39		phys_addr_t phys)
 40{
 41	if (force_dma_unencrypted(dev))
 42		return __phys_to_dma(dev, phys);
 43	return phys_to_dma(dev, phys);
 44}
 45
 
 
 
 
 
 
 46u64 dma_direct_get_required_mask(struct device *dev)
 47{
 48	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
 
 49
 50	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 51}
 52
 53static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
 54		u64 *phys_mask)
 55{
 56	if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
 57		dma_mask = dev->bus_dma_mask;
 58
 59	if (force_dma_unencrypted(dev))
 60		*phys_mask = __dma_to_phys(dev, dma_mask);
 61	else
 62		*phys_mask = dma_to_phys(dev, dma_mask);
 63
 64	/*
 65	 * Optimistically try the zone that the physical address mask falls
 66	 * into first.  If that returns memory that isn't actually addressable
 67	 * we will fallback to the next lower zone and try again.
 68	 *
 69	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 70	 * zones.
 71	 */
 72	if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
 
 73		return GFP_DMA;
 74	if (*phys_mask <= DMA_BIT_MASK(32))
 75		return GFP_DMA32;
 76	return 0;
 77}
 78
 79static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 80{
 81	return phys_to_dma_direct(dev, phys) + size - 1 <=
 82			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
 
 
 
 
 83}
 84
 85struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
 86		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87{
 88	size_t alloc_size = PAGE_ALIGN(size);
 89	int node = dev_to_node(dev);
 90	struct page *page = NULL;
 91	u64 phys_mask;
 92
 93	if (attrs & DMA_ATTR_NO_WARN)
 94		gfp |= __GFP_NOWARN;
 95
 96	/* we always manually zero the memory once we are done: */
 97	gfp &= ~__GFP_ZERO;
 98	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
 99			&phys_mask);
100	page = dma_alloc_contiguous(dev, alloc_size, gfp);
101	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102		dma_free_contiguous(dev, page, alloc_size);
103		page = NULL;
 
 
 
104	}
105again:
106	if (!page)
107		page = alloc_pages_node(node, gfp, get_order(alloc_size));
108	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
109		dma_free_contiguous(dev, page, size);
110		page = NULL;
111
112		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
113		    phys_mask < DMA_BIT_MASK(64) &&
114		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
115			gfp |= GFP_DMA32;
116			goto again;
117		}
118
119		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
120			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
121			goto again;
122		}
123	}
124
125	return page;
126}
127
128void *dma_direct_alloc_pages(struct device *dev, size_t size,
129		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 
 
 
 
 
 
 
 
 
130{
131	struct page *page;
 
132	void *ret;
133
134	page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
 
 
 
 
135	if (!page)
136		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
138	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
139	    !force_dma_unencrypted(dev)) {
140		/* remove any dirty cache lines on the kernel alias */
141		if (!PageHighMem(page))
142			arch_dma_prep_coherent(page, size);
143		*dma_handle = phys_to_dma(dev, page_to_phys(page));
144		/* return the page pointer as the opaque cookie */
145		return page;
146	}
 
 
 
 
 
 
 
 
147
148	if (PageHighMem(page)) {
149		/*
150		 * Depending on the cma= arguments and per-arch setup
151		 * dma_alloc_contiguous could return highmem pages.
152		 * Without remapping there is no way to return them here,
153		 * so log an error and fail.
154		 */
155		dev_info(dev, "Rejecting highmem page from CMA.\n");
156		__dma_direct_free_pages(dev, size, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157		return NULL;
 
 
 
 
 
 
 
 
 
158	}
159
160	ret = page_address(page);
161	if (force_dma_unencrypted(dev)) {
162		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
163		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
 
 
 
 
 
 
 
 
 
 
164	} else {
165		*dma_handle = phys_to_dma(dev, page_to_phys(page));
 
 
166	}
 
167	memset(ret, 0, size);
168
169	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
170	    dma_alloc_need_uncached(dev, attrs)) {
171		arch_dma_prep_coherent(page, size);
172		ret = uncached_kernel_address(ret);
 
 
173	}
174
 
175	return ret;
176}
177
178void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179{
180	dma_free_contiguous(dev, page, size);
 
 
 
 
 
181}
182
183void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
184		dma_addr_t dma_addr, unsigned long attrs)
185{
186	unsigned int page_order = get_order(size);
187
188	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
189	    !force_dma_unencrypted(dev)) {
190		/* cpu_addr is a struct page cookie, not a kernel address */
191		__dma_direct_free_pages(dev, size, cpu_addr);
192		return;
193	}
194
195	if (force_dma_unencrypted(dev))
196		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
 
 
 
 
197
198	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199	    dma_alloc_need_uncached(dev, attrs))
200		cpu_addr = cached_kernel_address(cpu_addr);
201	__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202}
 
203
204void *dma_direct_alloc(struct device *dev, size_t size,
205		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206{
207	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208	    dma_alloc_need_uncached(dev, attrs))
209		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
 
 
 
 
 
 
 
 
211}
212
213void dma_direct_free(struct device *dev, size_t size,
214		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215{
216	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217	    dma_alloc_need_uncached(dev, attrs))
218		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219	else
220		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
221}
222
223#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224    defined(CONFIG_SWIOTLB)
225void dma_direct_sync_single_for_device(struct device *dev,
226		dma_addr_t addr, size_t size, enum dma_data_direction dir)
227{
228	phys_addr_t paddr = dma_to_phys(dev, addr);
229
230	if (unlikely(is_swiotlb_buffer(paddr)))
231		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
 
 
232
233	if (!dev_is_dma_coherent(dev))
234		arch_sync_dma_for_device(dev, paddr, size, dir);
 
235}
236EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237
 
 
238void dma_direct_sync_sg_for_device(struct device *dev,
239		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240{
241	struct scatterlist *sg;
242	int i;
243
244	for_each_sg(sgl, sg, nents, i) {
245		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
246
247		if (unlikely(is_swiotlb_buffer(paddr)))
248			swiotlb_tbl_sync_single(dev, paddr, sg->length,
249					dir, SYNC_FOR_DEVICE);
250
251		if (!dev_is_dma_coherent(dev))
252			arch_sync_dma_for_device(dev, paddr, sg->length,
253					dir);
254	}
255}
256EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
257#endif
258
259#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
260    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
261    defined(CONFIG_SWIOTLB)
262void dma_direct_sync_single_for_cpu(struct device *dev,
263		dma_addr_t addr, size_t size, enum dma_data_direction dir)
264{
265	phys_addr_t paddr = dma_to_phys(dev, addr);
266
267	if (!dev_is_dma_coherent(dev)) {
268		arch_sync_dma_for_cpu(dev, paddr, size, dir);
269		arch_sync_dma_for_cpu_all(dev);
270	}
271
272	if (unlikely(is_swiotlb_buffer(paddr)))
273		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
274}
275EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
276
277void dma_direct_sync_sg_for_cpu(struct device *dev,
278		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
279{
280	struct scatterlist *sg;
281	int i;
282
283	for_each_sg(sgl, sg, nents, i) {
284		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
285
286		if (!dev_is_dma_coherent(dev))
287			arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
 
 
288
289		if (unlikely(is_swiotlb_buffer(paddr)))
290			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
291					SYNC_FOR_CPU);
292	}
293
294	if (!dev_is_dma_coherent(dev))
295		arch_sync_dma_for_cpu_all(dev);
296}
297EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
298
299void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
300		size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302	phys_addr_t phys = dma_to_phys(dev, addr);
303
304	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
305		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
306
307	if (unlikely(is_swiotlb_buffer(phys)))
308		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
309}
310EXPORT_SYMBOL(dma_direct_unmap_page);
311
 
 
 
 
312void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
313		int nents, enum dma_data_direction dir, unsigned long attrs)
314{
315	struct scatterlist *sg;
316	int i;
317
318	for_each_sg(sgl, sg, nents, i)
319		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
320			     attrs);
321}
322EXPORT_SYMBOL(dma_direct_unmap_sg);
323#endif
324
325static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
326		size_t size)
327{
328	return swiotlb_force != SWIOTLB_FORCE &&
329		dma_capable(dev, dma_addr, size);
330}
331
332dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
333		unsigned long offset, size_t size, enum dma_data_direction dir,
334		unsigned long attrs)
335{
336	phys_addr_t phys = page_to_phys(page) + offset;
337	dma_addr_t dma_addr = phys_to_dma(dev, phys);
338
339	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
340	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
341		report_addr(dev, dma_addr, size);
342		return DMA_MAPPING_ERROR;
343	}
344
345	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
346		arch_sync_dma_for_device(dev, phys, size, dir);
347	return dma_addr;
348}
349EXPORT_SYMBOL(dma_direct_map_page);
350
351int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
352		enum dma_data_direction dir, unsigned long attrs)
353{
354	int i;
 
355	struct scatterlist *sg;
 
356
357	for_each_sg(sgl, sg, nents, i) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
359				sg->offset, sg->length, dir, attrs);
360		if (sg->dma_address == DMA_MAPPING_ERROR)
 
361			goto out_unmap;
 
362		sg_dma_len(sg) = sg->length;
363	}
364
365	return nents;
366
367out_unmap:
368	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
369	return 0;
370}
371EXPORT_SYMBOL(dma_direct_map_sg);
372
373dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
374		size_t size, enum dma_data_direction dir, unsigned long attrs)
375{
376	dma_addr_t dma_addr = paddr;
377
378	if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
379		report_addr(dev, dma_addr, size);
 
 
 
380		return DMA_MAPPING_ERROR;
381	}
382
383	return dma_addr;
384}
385EXPORT_SYMBOL(dma_direct_map_resource);
386
387/*
388 * Because 32-bit DMA masks are so common we expect every architecture to be
389 * able to satisfy them - either by not supporting more physical memory, or by
390 * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
391 * use an IOMMU instead of the direct mapping.
392 */
393int dma_direct_supported(struct device *dev, u64 mask)
394{
395	u64 min_mask;
 
396
397	if (IS_ENABLED(CONFIG_ZONE_DMA))
398		min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
399	else
400		min_mask = DMA_BIT_MASK(32);
 
401
402	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403
404	/*
405	 * This check needs to be against the actual bit mask value, so
406	 * use __phys_to_dma() here so that the SME encryption mask isn't
 
 
 
 
 
 
 
 
 
407	 * part of the check.
408	 */
409	return mask >= __phys_to_dma(dev, min_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410}
411
412size_t dma_direct_max_mapping_size(struct device *dev)
413{
414	/* If SWIOTLB is active, use its maximum mapping size */
415	if (is_swiotlb_active() &&
416	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
417		return swiotlb_max_mapping_size(dev);
418	return SIZE_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018-2020 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/scatterlist.h>
 
 
 12#include <linux/pfn.h>
 13#include <linux/vmalloc.h>
 14#include <linux/set_memory.h>
 15#include <linux/slab.h>
 16#include "direct.h"
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20 * it for entirely different regions. In that case the arch code needs to
 21 * override the variable below for dma-direct to work properly.
 22 */
 23u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26		phys_addr_t phys)
 27{
 28	if (force_dma_unencrypted(dev))
 29		return phys_to_dma_unencrypted(dev, phys);
 30	return phys_to_dma(dev, phys);
 31}
 32
 33static inline struct page *dma_direct_to_page(struct device *dev,
 34		dma_addr_t dma_addr)
 35{
 36	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37}
 38
 39u64 dma_direct_get_required_mask(struct device *dev)
 40{
 41	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42	u64 max_dma = phys_to_dma_direct(dev, phys);
 43
 44	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45}
 46
 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
 
 48{
 49	u64 dma_limit = min_not_zero(
 50		dev->coherent_dma_mask,
 51		dev->bus_dma_limit);
 
 
 
 
 52
 53	/*
 54	 * Optimistically try the zone that the physical address mask falls
 55	 * into first.  If that returns memory that isn't actually addressable
 56	 * we will fallback to the next lower zone and try again.
 57	 *
 58	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59	 * zones.
 60	 */
 61	*phys_limit = dma_to_phys(dev, dma_limit);
 62	if (*phys_limit <= zone_dma_limit)
 63		return GFP_DMA;
 64	if (*phys_limit <= DMA_BIT_MASK(32))
 65		return GFP_DMA32;
 66	return 0;
 67}
 68
 69bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70{
 71	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72
 73	if (dma_addr == DMA_MAPPING_ERROR)
 74		return false;
 75	return dma_addr + size - 1 <=
 76		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77}
 78
 79static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 80{
 81	if (!force_dma_unencrypted(dev))
 82		return 0;
 83	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 84}
 85
 86static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 87{
 88	int ret;
 89
 90	if (!force_dma_unencrypted(dev))
 91		return 0;
 92	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 93	if (ret)
 94		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 95	return ret;
 96}
 97
 98static void __dma_direct_free_pages(struct device *dev, struct page *page,
 99				    size_t size)
100{
101	if (swiotlb_free(dev, page, size))
102		return;
103	dma_free_contiguous(dev, page, size);
104}
105
106static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107{
108	struct page *page = swiotlb_alloc(dev, size);
109
110	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111		swiotlb_free(dev, page, size);
112		return NULL;
113	}
114
115	return page;
116}
117
118static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119		gfp_t gfp, bool allow_highmem)
120{
 
121	int node = dev_to_node(dev);
122	struct page *page = NULL;
123	u64 phys_limit;
124
125	WARN_ON_ONCE(!PAGE_ALIGNED(size));
 
126
127	if (is_swiotlb_for_alloc(dev))
128		return dma_direct_alloc_swiotlb(dev, size);
129
130	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131	page = dma_alloc_contiguous(dev, size, gfp);
132	if (page) {
133		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134		    (!allow_highmem && PageHighMem(page))) {
135			dma_free_contiguous(dev, page, size);
136			page = NULL;
137		}
138	}
139again:
140	if (!page)
141		page = alloc_pages_node(node, gfp, get_order(size));
142	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143		__free_pages(page, get_order(size));
144		page = NULL;
145
146		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147		    phys_limit < DMA_BIT_MASK(64) &&
148		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149			gfp |= GFP_DMA32;
150			goto again;
151		}
152
153		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155			goto again;
156		}
157	}
158
159	return page;
160}
161
162/*
163 * Check if a potentially blocking operations needs to dip into the atomic
164 * pools for the given device/gfp.
165 */
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172		dma_addr_t *dma_handle, gfp_t gfp)
173{
174	struct page *page;
175	u64 phys_limit;
176	void *ret;
177
178	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179		return NULL;
180
181	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183	if (!page)
184		return NULL;
185	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186	return ret;
187}
188
189static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190		dma_addr_t *dma_handle, gfp_t gfp)
191{
192	struct page *page;
193
194	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195	if (!page)
196		return NULL;
197
198	/* remove any dirty cache lines on the kernel alias */
199	if (!PageHighMem(page))
200		arch_dma_prep_coherent(page, size);
201
202	/* return the page pointer as the opaque cookie */
203	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204	return page;
205}
206
207void *dma_direct_alloc(struct device *dev, size_t size,
208		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209{
210	bool remap = false, set_uncached = false;
211	struct page *page;
212	void *ret;
213
214	size = PAGE_ALIGN(size);
215	if (attrs & DMA_ATTR_NO_WARN)
216		gfp |= __GFP_NOWARN;
217
218	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221
222	if (!dev_is_dma_coherent(dev)) {
223		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
224		    !is_swiotlb_for_alloc(dev))
225			return arch_dma_alloc(dev, size, dma_handle, gfp,
226					      attrs);
227
228		/*
229		 * If there is a global pool, always allocate from it for
230		 * non-coherent devices.
231		 */
232		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233			return dma_alloc_from_global_coherent(dev, size,
234					dma_handle);
235
 
236		/*
237		 * Otherwise we require the architecture to either be able to
238		 * mark arbitrary parts of the kernel direct mapping uncached,
239		 * or remapped it uncached.
 
240		 */
241		set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
242		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
243		if (!set_uncached && !remap) {
244			pr_warn_once("coherent DMA allocations not supported on this platform.\n");
245			return NULL;
246		}
247	}
248
249	/*
250	 * Remapping or decrypting memory may block, allocate the memory from
251	 * the atomic pools instead if we aren't allowed block.
252	 */
253	if ((remap || force_dma_unencrypted(dev)) &&
254	    dma_direct_use_pool(dev, gfp))
255		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256
257	/* we always manually zero the memory once we are done */
258	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
259	if (!page)
260		return NULL;
261
262	/*
263	 * dma_alloc_contiguous can return highmem pages depending on a
264	 * combination the cma= arguments and per-arch setup.  These need to be
265	 * remapped to return a kernel virtual address.
266	 */
267	if (PageHighMem(page)) {
268		remap = true;
269		set_uncached = false;
270	}
271
272	if (remap) {
273		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
274
275		if (force_dma_unencrypted(dev))
276			prot = pgprot_decrypted(prot);
277
278		/* remove any dirty cache lines on the kernel alias */
279		arch_dma_prep_coherent(page, size);
280
281		/* create a coherent mapping */
282		ret = dma_common_contiguous_remap(page, size, prot,
283				__builtin_return_address(0));
284		if (!ret)
285			goto out_free_pages;
286	} else {
287		ret = page_address(page);
288		if (dma_set_decrypted(dev, ret, size))
289			goto out_leak_pages;
290	}
291
292	memset(ret, 0, size);
293
294	if (set_uncached) {
 
295		arch_dma_prep_coherent(page, size);
296		ret = arch_dma_set_uncached(ret, size);
297		if (IS_ERR(ret))
298			goto out_encrypt_pages;
299	}
300
301	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302	return ret;
 
303
304out_encrypt_pages:
305	if (dma_set_encrypted(dev, page_address(page), size))
306		return NULL;
307out_free_pages:
308	__dma_direct_free_pages(dev, page, size);
309	return NULL;
310out_leak_pages:
311	return NULL;
312}
313
314void dma_direct_free(struct device *dev, size_t size,
315		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
316{
317	unsigned int page_order = get_order(size);
318
319	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
321		/* cpu_addr is a struct page cookie, not a kernel address */
322		dma_free_contiguous(dev, cpu_addr, size);
323		return;
324	}
325
326	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
327	    !dev_is_dma_coherent(dev) &&
328	    !is_swiotlb_for_alloc(dev)) {
329		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
330		return;
331	}
332
333	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334	    !dev_is_dma_coherent(dev)) {
335		if (!dma_release_from_global_coherent(page_order, cpu_addr))
336			WARN_ON_ONCE(1);
337		return;
338	}
339
340	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
341	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343		return;
344
345	if (is_vmalloc_addr(cpu_addr)) {
346		vunmap(cpu_addr);
347	} else {
348		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
349			arch_dma_clear_uncached(cpu_addr, size);
350		if (dma_set_encrypted(dev, cpu_addr, size))
351			return;
352	}
353
354	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
355}
356
357struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359{
360	struct page *page;
361	void *ret;
362
363	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
364		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
365
366	page = __dma_direct_alloc_pages(dev, size, gfp, false);
367	if (!page)
368		return NULL;
369
370	ret = page_address(page);
371	if (dma_set_decrypted(dev, ret, size))
372		goto out_leak_pages;
373	memset(ret, 0, size);
374	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375	return page;
376out_leak_pages:
377	return NULL;
378}
379
380void dma_direct_free_pages(struct device *dev, size_t size,
381		struct page *page, dma_addr_t dma_addr,
382		enum dma_data_direction dir)
 
383{
384	void *vaddr = page_address(page);
385
386	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
387	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
388	    dma_free_from_pool(dev, vaddr, size))
389		return;
390
391	if (dma_set_encrypted(dev, vaddr, size))
392		return;
393	__dma_direct_free_pages(dev, page, size);
394}
 
395
396#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397    defined(CONFIG_SWIOTLB)
398void dma_direct_sync_sg_for_device(struct device *dev,
399		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400{
401	struct scatterlist *sg;
402	int i;
403
404	for_each_sg(sgl, sg, nents, i) {
405		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406
407		swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
 
 
408
409		if (!dev_is_dma_coherent(dev))
410			arch_sync_dma_for_device(paddr, sg->length,
411					dir);
412	}
413}
 
414#endif
415
416#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418    defined(CONFIG_SWIOTLB)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419void dma_direct_sync_sg_for_cpu(struct device *dev,
420		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421{
422	struct scatterlist *sg;
423	int i;
424
425	for_each_sg(sgl, sg, nents, i) {
426		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427
428		if (!dev_is_dma_coherent(dev))
429			arch_sync_dma_for_cpu(paddr, sg->length, dir);
430
431		swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
432
433		if (dir == DMA_FROM_DEVICE)
434			arch_dma_mark_clean(paddr, sg->length);
 
435	}
436
437	if (!dev_is_dma_coherent(dev))
438		arch_sync_dma_for_cpu_all();
439}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440
441/*
442 * Unmaps segments, except for ones marked as pci_p2pdma which do not
443 * require any further action as they contain a bus address.
444 */
445void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446		int nents, enum dma_data_direction dir, unsigned long attrs)
447{
448	struct scatterlist *sg;
449	int i;
450
451	for_each_sg(sgl,  sg, nents, i) {
452		if (sg_dma_is_bus_address(sg))
453			sg_dma_unmark_bus_address(sg);
454		else
455			dma_direct_unmap_page(dev, sg->dma_address,
456					      sg_dma_len(sg), dir, attrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457	}
 
 
 
 
458}
459#endif
460
461int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462		enum dma_data_direction dir, unsigned long attrs)
463{
464	struct pci_p2pdma_map_state p2pdma_state = {};
465	enum pci_p2pdma_map_type map;
466	struct scatterlist *sg;
467	int i, ret;
468
469	for_each_sg(sgl, sg, nents, i) {
470		if (is_pci_p2pdma_page(sg_page(sg))) {
471			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
472			switch (map) {
473			case PCI_P2PDMA_MAP_BUS_ADDR:
474				continue;
475			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
476				/*
477				 * Any P2P mapping that traverses the PCI
478				 * host bridge must be mapped with CPU physical
479				 * address and not PCI bus addresses. This is
480				 * done with dma_direct_map_page() below.
481				 */
482				break;
483			default:
484				ret = -EREMOTEIO;
485				goto out_unmap;
486			}
487		}
488
489		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490				sg->offset, sg->length, dir, attrs);
491		if (sg->dma_address == DMA_MAPPING_ERROR) {
492			ret = -EIO;
493			goto out_unmap;
494		}
495		sg_dma_len(sg) = sg->length;
496	}
497
498	return nents;
499
500out_unmap:
501	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502	return ret;
503}
 
504
505dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506		size_t size, enum dma_data_direction dir, unsigned long attrs)
507{
508	dma_addr_t dma_addr = paddr;
509
510	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511		dev_err_once(dev,
512			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514		WARN_ON_ONCE(1);
515		return DMA_MAPPING_ERROR;
516	}
517
518	return dma_addr;
519}
 
520
521int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522		void *cpu_addr, dma_addr_t dma_addr, size_t size,
523		unsigned long attrs)
 
 
 
 
524{
525	struct page *page = dma_direct_to_page(dev, dma_addr);
526	int ret;
527
528	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529	if (!ret)
530		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531	return ret;
532}
533
534bool dma_direct_can_mmap(struct device *dev)
535{
536	return dev_is_dma_coherent(dev) ||
537		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538}
539
540int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541		void *cpu_addr, dma_addr_t dma_addr, size_t size,
542		unsigned long attrs)
543{
544	unsigned long user_count = vma_pages(vma);
545	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547	int ret = -ENXIO;
548
549	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550	if (force_dma_unencrypted(dev))
551		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
552
553	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554		return ret;
555	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556		return ret;
557
558	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559		return -ENXIO;
560	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561			user_count << PAGE_SHIFT, vma->vm_page_prot);
562}
563
564int dma_direct_supported(struct device *dev, u64 mask)
565{
566	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567
568	/*
569	 * Because 32-bit DMA masks are so common we expect every architecture
570	 * to be able to satisfy them - either by not supporting more physical
571	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572	 * architecture needs to use an IOMMU instead of the direct mapping.
573	 */
574	if (mask >= DMA_BIT_MASK(32))
575		return 1;
576
577	/*
578	 * This check needs to be against the actual bit mask value, so use
579	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580	 * part of the check.
581	 */
582	if (IS_ENABLED(CONFIG_ZONE_DMA))
583		min_mask = min_t(u64, min_mask, zone_dma_limit);
584	return mask >= phys_to_dma_unencrypted(dev, min_mask);
585}
586
587/*
588 * To check whether all ram resource ranges are covered by dma range map
589 * Returns 0 when further check is needed
590 * Returns 1 if there is some RAM range can't be covered by dma_range_map
591 */
592static int check_ram_in_range_map(unsigned long start_pfn,
593				  unsigned long nr_pages, void *data)
594{
595	unsigned long end_pfn = start_pfn + nr_pages;
596	const struct bus_dma_region *bdr = NULL;
597	const struct bus_dma_region *m;
598	struct device *dev = data;
599
600	while (start_pfn < end_pfn) {
601		for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
602			unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
603
604			if (start_pfn >= cpu_start_pfn &&
605			    start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
606				bdr = m;
607				break;
608			}
609		}
610		if (!bdr)
611			return 1;
612
613		start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
614	}
615
616	return 0;
617}
618
619bool dma_direct_all_ram_mapped(struct device *dev)
620{
621	if (!dev->dma_range_map)
622		return true;
623	return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
624				      check_ram_in_range_map);
625}
626
627size_t dma_direct_max_mapping_size(struct device *dev)
628{
629	/* If SWIOTLB is active, use its maximum mapping size */
630	if (is_swiotlb_active(dev) &&
631	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
632		return swiotlb_max_mapping_size(dev);
633	return SIZE_MAX;
634}
635
636bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637{
638	return !dev_is_dma_coherent(dev) ||
639	       swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
640}
641
642/**
643 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644 * @dev:	device pointer; needed to "own" the alloced memory.
645 * @cpu_start:  beginning of memory region covered by this offset.
646 * @dma_start:  beginning of DMA/PCI region covered by this offset.
647 * @size:	size of the region.
648 *
649 * This is for the simple case of a uniform offset which cannot
650 * be discovered by "dma-ranges".
651 *
652 * It returns -ENOMEM if out of memory, -EINVAL if a map
653 * already exists, 0 otherwise.
654 *
655 * Note: any call to this from a driver is a bug.  The mapping needs
656 * to be described by the device tree or other firmware interfaces.
657 */
658int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659			 dma_addr_t dma_start, u64 size)
660{
661	struct bus_dma_region *map;
662	u64 offset = (u64)cpu_start - (u64)dma_start;
663
664	if (dev->dma_range_map) {
665		dev_err(dev, "attempt to add DMA range to existing map\n");
666		return -EINVAL;
667	}
668
669	if (!offset)
670		return 0;
671
672	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673	if (!map)
674		return -ENOMEM;
675	map[0].cpu_start = cpu_start;
676	map[0].dma_start = dma_start;
677	map[0].size = size;
678	dev->dma_range_map = map;
679	return 0;
680}