Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7#include <linux/memblock.h> /* for max_pfn */
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/dma-direct.h>
11#include <linux/scatterlist.h>
12#include <linux/dma-contiguous.h>
13#include <linux/dma-noncoherent.h>
14#include <linux/pfn.h>
15#include <linux/set_memory.h>
16#include <linux/swiotlb.h>
17
18/*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20 * some use it for entirely different regions:
21 */
22#ifndef ARCH_ZONE_DMA_BITS
23#define ARCH_ZONE_DMA_BITS 24
24#endif
25
26static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27{
28 if (!dev->dma_mask) {
29 dev_err_once(dev, "DMA map on device without dma_mask\n");
30 } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31 dev_err_once(dev,
32 "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33 &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34 }
35 WARN_ON_ONCE(1);
36}
37
38static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39 phys_addr_t phys)
40{
41 if (force_dma_unencrypted(dev))
42 return __phys_to_dma(dev, phys);
43 return phys_to_dma(dev, phys);
44}
45
46u64 dma_direct_get_required_mask(struct device *dev)
47{
48 u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
49
50 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
51}
52
53static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
54 u64 *phys_mask)
55{
56 if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
57 dma_mask = dev->bus_dma_mask;
58
59 if (force_dma_unencrypted(dev))
60 *phys_mask = __dma_to_phys(dev, dma_mask);
61 else
62 *phys_mask = dma_to_phys(dev, dma_mask);
63
64 /*
65 * Optimistically try the zone that the physical address mask falls
66 * into first. If that returns memory that isn't actually addressable
67 * we will fallback to the next lower zone and try again.
68 *
69 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
70 * zones.
71 */
72 if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
73 return GFP_DMA;
74 if (*phys_mask <= DMA_BIT_MASK(32))
75 return GFP_DMA32;
76 return 0;
77}
78
79static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
80{
81 return phys_to_dma_direct(dev, phys) + size - 1 <=
82 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
83}
84
85struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
86 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
87{
88 size_t alloc_size = PAGE_ALIGN(size);
89 int node = dev_to_node(dev);
90 struct page *page = NULL;
91 u64 phys_mask;
92
93 if (attrs & DMA_ATTR_NO_WARN)
94 gfp |= __GFP_NOWARN;
95
96 /* we always manually zero the memory once we are done: */
97 gfp &= ~__GFP_ZERO;
98 gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
99 &phys_mask);
100 page = dma_alloc_contiguous(dev, alloc_size, gfp);
101 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 dma_free_contiguous(dev, page, alloc_size);
103 page = NULL;
104 }
105again:
106 if (!page)
107 page = alloc_pages_node(node, gfp, get_order(alloc_size));
108 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
109 dma_free_contiguous(dev, page, size);
110 page = NULL;
111
112 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
113 phys_mask < DMA_BIT_MASK(64) &&
114 !(gfp & (GFP_DMA32 | GFP_DMA))) {
115 gfp |= GFP_DMA32;
116 goto again;
117 }
118
119 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
120 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
121 goto again;
122 }
123 }
124
125 return page;
126}
127
128void *dma_direct_alloc_pages(struct device *dev, size_t size,
129 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
130{
131 struct page *page;
132 void *ret;
133
134 page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
135 if (!page)
136 return NULL;
137
138 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
139 !force_dma_unencrypted(dev)) {
140 /* remove any dirty cache lines on the kernel alias */
141 if (!PageHighMem(page))
142 arch_dma_prep_coherent(page, size);
143 *dma_handle = phys_to_dma(dev, page_to_phys(page));
144 /* return the page pointer as the opaque cookie */
145 return page;
146 }
147
148 if (PageHighMem(page)) {
149 /*
150 * Depending on the cma= arguments and per-arch setup
151 * dma_alloc_contiguous could return highmem pages.
152 * Without remapping there is no way to return them here,
153 * so log an error and fail.
154 */
155 dev_info(dev, "Rejecting highmem page from CMA.\n");
156 __dma_direct_free_pages(dev, size, page);
157 return NULL;
158 }
159
160 ret = page_address(page);
161 if (force_dma_unencrypted(dev)) {
162 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
163 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
164 } else {
165 *dma_handle = phys_to_dma(dev, page_to_phys(page));
166 }
167 memset(ret, 0, size);
168
169 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
170 dma_alloc_need_uncached(dev, attrs)) {
171 arch_dma_prep_coherent(page, size);
172 ret = uncached_kernel_address(ret);
173 }
174
175 return ret;
176}
177
178void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179{
180 dma_free_contiguous(dev, page, size);
181}
182
183void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
184 dma_addr_t dma_addr, unsigned long attrs)
185{
186 unsigned int page_order = get_order(size);
187
188 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
189 !force_dma_unencrypted(dev)) {
190 /* cpu_addr is a struct page cookie, not a kernel address */
191 __dma_direct_free_pages(dev, size, cpu_addr);
192 return;
193 }
194
195 if (force_dma_unencrypted(dev))
196 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197
198 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199 dma_alloc_need_uncached(dev, attrs))
200 cpu_addr = cached_kernel_address(cpu_addr);
201 __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202}
203
204void *dma_direct_alloc(struct device *dev, size_t size,
205 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206{
207 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208 dma_alloc_need_uncached(dev, attrs))
209 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211}
212
213void dma_direct_free(struct device *dev, size_t size,
214 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215{
216 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217 dma_alloc_need_uncached(dev, attrs))
218 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219 else
220 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221}
222
223#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224 defined(CONFIG_SWIOTLB)
225void dma_direct_sync_single_for_device(struct device *dev,
226 dma_addr_t addr, size_t size, enum dma_data_direction dir)
227{
228 phys_addr_t paddr = dma_to_phys(dev, addr);
229
230 if (unlikely(is_swiotlb_buffer(paddr)))
231 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232
233 if (!dev_is_dma_coherent(dev))
234 arch_sync_dma_for_device(dev, paddr, size, dir);
235}
236EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237
238void dma_direct_sync_sg_for_device(struct device *dev,
239 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240{
241 struct scatterlist *sg;
242 int i;
243
244 for_each_sg(sgl, sg, nents, i) {
245 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
246
247 if (unlikely(is_swiotlb_buffer(paddr)))
248 swiotlb_tbl_sync_single(dev, paddr, sg->length,
249 dir, SYNC_FOR_DEVICE);
250
251 if (!dev_is_dma_coherent(dev))
252 arch_sync_dma_for_device(dev, paddr, sg->length,
253 dir);
254 }
255}
256EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
257#endif
258
259#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
260 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
261 defined(CONFIG_SWIOTLB)
262void dma_direct_sync_single_for_cpu(struct device *dev,
263 dma_addr_t addr, size_t size, enum dma_data_direction dir)
264{
265 phys_addr_t paddr = dma_to_phys(dev, addr);
266
267 if (!dev_is_dma_coherent(dev)) {
268 arch_sync_dma_for_cpu(dev, paddr, size, dir);
269 arch_sync_dma_for_cpu_all(dev);
270 }
271
272 if (unlikely(is_swiotlb_buffer(paddr)))
273 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
274}
275EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
276
277void dma_direct_sync_sg_for_cpu(struct device *dev,
278 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
279{
280 struct scatterlist *sg;
281 int i;
282
283 for_each_sg(sgl, sg, nents, i) {
284 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
285
286 if (!dev_is_dma_coherent(dev))
287 arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
288
289 if (unlikely(is_swiotlb_buffer(paddr)))
290 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
291 SYNC_FOR_CPU);
292 }
293
294 if (!dev_is_dma_coherent(dev))
295 arch_sync_dma_for_cpu_all(dev);
296}
297EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
298
299void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
300 size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302 phys_addr_t phys = dma_to_phys(dev, addr);
303
304 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
305 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
306
307 if (unlikely(is_swiotlb_buffer(phys)))
308 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
309}
310EXPORT_SYMBOL(dma_direct_unmap_page);
311
312void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
313 int nents, enum dma_data_direction dir, unsigned long attrs)
314{
315 struct scatterlist *sg;
316 int i;
317
318 for_each_sg(sgl, sg, nents, i)
319 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
320 attrs);
321}
322EXPORT_SYMBOL(dma_direct_unmap_sg);
323#endif
324
325static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
326 size_t size)
327{
328 return swiotlb_force != SWIOTLB_FORCE &&
329 dma_capable(dev, dma_addr, size);
330}
331
332dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
333 unsigned long offset, size_t size, enum dma_data_direction dir,
334 unsigned long attrs)
335{
336 phys_addr_t phys = page_to_phys(page) + offset;
337 dma_addr_t dma_addr = phys_to_dma(dev, phys);
338
339 if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
340 !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
341 report_addr(dev, dma_addr, size);
342 return DMA_MAPPING_ERROR;
343 }
344
345 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
346 arch_sync_dma_for_device(dev, phys, size, dir);
347 return dma_addr;
348}
349EXPORT_SYMBOL(dma_direct_map_page);
350
351int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
352 enum dma_data_direction dir, unsigned long attrs)
353{
354 int i;
355 struct scatterlist *sg;
356
357 for_each_sg(sgl, sg, nents, i) {
358 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
359 sg->offset, sg->length, dir, attrs);
360 if (sg->dma_address == DMA_MAPPING_ERROR)
361 goto out_unmap;
362 sg_dma_len(sg) = sg->length;
363 }
364
365 return nents;
366
367out_unmap:
368 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
369 return 0;
370}
371EXPORT_SYMBOL(dma_direct_map_sg);
372
373dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
374 size_t size, enum dma_data_direction dir, unsigned long attrs)
375{
376 dma_addr_t dma_addr = paddr;
377
378 if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
379 report_addr(dev, dma_addr, size);
380 return DMA_MAPPING_ERROR;
381 }
382
383 return dma_addr;
384}
385EXPORT_SYMBOL(dma_direct_map_resource);
386
387/*
388 * Because 32-bit DMA masks are so common we expect every architecture to be
389 * able to satisfy them - either by not supporting more physical memory, or by
390 * providing a ZONE_DMA32. If neither is the case, the architecture needs to
391 * use an IOMMU instead of the direct mapping.
392 */
393int dma_direct_supported(struct device *dev, u64 mask)
394{
395 u64 min_mask;
396
397 if (IS_ENABLED(CONFIG_ZONE_DMA))
398 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
399 else
400 min_mask = DMA_BIT_MASK(32);
401
402 min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
403
404 /*
405 * This check needs to be against the actual bit mask value, so
406 * use __phys_to_dma() here so that the SME encryption mask isn't
407 * part of the check.
408 */
409 return mask >= __phys_to_dma(dev, min_mask);
410}
411
412size_t dma_direct_max_mapping_size(struct device *dev)
413{
414 /* If SWIOTLB is active, use its maximum mapping size */
415 if (is_swiotlb_active() &&
416 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
417 return swiotlb_max_mapping_size(dev);
418 return SIZE_MAX;
419}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7#include <linux/memblock.h> /* for max_pfn */
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/dma-direct.h>
11#include <linux/scatterlist.h>
12#include <linux/dma-contiguous.h>
13#include <linux/pfn.h>
14#include <linux/vmalloc.h>
15#include <linux/set_memory.h>
16
17/*
18 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
19 * it for entirely different regions. In that case the arch code needs to
20 * override the variable below for dma-direct to work properly.
21 */
22unsigned int zone_dma_bits __ro_after_init = 24;
23
24static inline dma_addr_t phys_to_dma_direct(struct device *dev,
25 phys_addr_t phys)
26{
27 if (force_dma_unencrypted(dev))
28 return __phys_to_dma(dev, phys);
29 return phys_to_dma(dev, phys);
30}
31
32static inline struct page *dma_direct_to_page(struct device *dev,
33 dma_addr_t dma_addr)
34{
35 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
36}
37
38u64 dma_direct_get_required_mask(struct device *dev)
39{
40 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
41 u64 max_dma = phys_to_dma_direct(dev, phys);
42
43 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
44}
45
46static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
47 u64 *phys_limit)
48{
49 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
50
51 if (force_dma_unencrypted(dev))
52 *phys_limit = __dma_to_phys(dev, dma_limit);
53 else
54 *phys_limit = dma_to_phys(dev, dma_limit);
55
56 /*
57 * Optimistically try the zone that the physical address mask falls
58 * into first. If that returns memory that isn't actually addressable
59 * we will fallback to the next lower zone and try again.
60 *
61 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
62 * zones.
63 */
64 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
65 return GFP_DMA;
66 if (*phys_limit <= DMA_BIT_MASK(32))
67 return GFP_DMA32;
68 return 0;
69}
70
71static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
72{
73 return phys_to_dma_direct(dev, phys) + size - 1 <=
74 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
75}
76
77/*
78 * Decrypting memory is allowed to block, so if this device requires
79 * unencrypted memory it must come from atomic pools.
80 */
81static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
82 unsigned long attrs)
83{
84 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
85 return false;
86 if (gfpflags_allow_blocking(gfp))
87 return false;
88 if (force_dma_unencrypted(dev))
89 return true;
90 if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
91 return false;
92 if (dma_alloc_need_uncached(dev, attrs))
93 return true;
94 return false;
95}
96
97static inline bool dma_should_free_from_pool(struct device *dev,
98 unsigned long attrs)
99{
100 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
101 return true;
102 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
103 !force_dma_unencrypted(dev))
104 return false;
105 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
106 return true;
107 return false;
108}
109
110static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
111 gfp_t gfp, unsigned long attrs)
112{
113 int node = dev_to_node(dev);
114 struct page *page = NULL;
115 u64 phys_limit;
116
117 WARN_ON_ONCE(!PAGE_ALIGNED(size));
118
119 if (attrs & DMA_ATTR_NO_WARN)
120 gfp |= __GFP_NOWARN;
121
122 /* we always manually zero the memory once we are done: */
123 gfp &= ~__GFP_ZERO;
124 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125 &phys_limit);
126 page = dma_alloc_contiguous(dev, size, gfp);
127 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
128 dma_free_contiguous(dev, page, size);
129 page = NULL;
130 }
131again:
132 if (!page)
133 page = alloc_pages_node(node, gfp, get_order(size));
134 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
135 dma_free_contiguous(dev, page, size);
136 page = NULL;
137
138 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
139 phys_limit < DMA_BIT_MASK(64) &&
140 !(gfp & (GFP_DMA32 | GFP_DMA))) {
141 gfp |= GFP_DMA32;
142 goto again;
143 }
144
145 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
146 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
147 goto again;
148 }
149 }
150
151 return page;
152}
153
154void *dma_direct_alloc_pages(struct device *dev, size_t size,
155 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
156{
157 struct page *page;
158 void *ret;
159 int err;
160
161 size = PAGE_ALIGN(size);
162
163 if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
164 u64 phys_mask;
165
166 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
167 &phys_mask);
168 page = dma_alloc_from_pool(dev, size, &ret, gfp,
169 dma_coherent_ok);
170 if (!page)
171 return NULL;
172 goto done;
173 }
174
175 page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
176 if (!page)
177 return NULL;
178
179 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
180 !force_dma_unencrypted(dev)) {
181 /* remove any dirty cache lines on the kernel alias */
182 if (!PageHighMem(page))
183 arch_dma_prep_coherent(page, size);
184 /* return the page pointer as the opaque cookie */
185 ret = page;
186 goto done;
187 }
188
189 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
190 dma_alloc_need_uncached(dev, attrs)) ||
191 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
192 /* remove any dirty cache lines on the kernel alias */
193 arch_dma_prep_coherent(page, size);
194
195 /* create a coherent mapping */
196 ret = dma_common_contiguous_remap(page, size,
197 dma_pgprot(dev, PAGE_KERNEL, attrs),
198 __builtin_return_address(0));
199 if (!ret)
200 goto out_free_pages;
201 if (force_dma_unencrypted(dev)) {
202 err = set_memory_decrypted((unsigned long)ret,
203 1 << get_order(size));
204 if (err)
205 goto out_free_pages;
206 }
207 memset(ret, 0, size);
208 goto done;
209 }
210
211 if (PageHighMem(page)) {
212 /*
213 * Depending on the cma= arguments and per-arch setup
214 * dma_alloc_contiguous could return highmem pages.
215 * Without remapping there is no way to return them here,
216 * so log an error and fail.
217 */
218 dev_info(dev, "Rejecting highmem page from CMA.\n");
219 goto out_free_pages;
220 }
221
222 ret = page_address(page);
223 if (force_dma_unencrypted(dev)) {
224 err = set_memory_decrypted((unsigned long)ret,
225 1 << get_order(size));
226 if (err)
227 goto out_free_pages;
228 }
229
230 memset(ret, 0, size);
231
232 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
233 dma_alloc_need_uncached(dev, attrs)) {
234 arch_dma_prep_coherent(page, size);
235 ret = arch_dma_set_uncached(ret, size);
236 if (IS_ERR(ret))
237 goto out_encrypt_pages;
238 }
239done:
240 if (force_dma_unencrypted(dev))
241 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
242 else
243 *dma_handle = phys_to_dma(dev, page_to_phys(page));
244 return ret;
245
246out_encrypt_pages:
247 if (force_dma_unencrypted(dev)) {
248 err = set_memory_encrypted((unsigned long)page_address(page),
249 1 << get_order(size));
250 /* If memory cannot be re-encrypted, it must be leaked */
251 if (err)
252 return NULL;
253 }
254out_free_pages:
255 dma_free_contiguous(dev, page, size);
256 return NULL;
257}
258
259void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
260 dma_addr_t dma_addr, unsigned long attrs)
261{
262 unsigned int page_order = get_order(size);
263
264 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
265 if (dma_should_free_from_pool(dev, attrs) &&
266 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
267 return;
268
269 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
270 !force_dma_unencrypted(dev)) {
271 /* cpu_addr is a struct page cookie, not a kernel address */
272 dma_free_contiguous(dev, cpu_addr, size);
273 return;
274 }
275
276 if (force_dma_unencrypted(dev))
277 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
278
279 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
280 vunmap(cpu_addr);
281 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
282 arch_dma_clear_uncached(cpu_addr, size);
283
284 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
285}
286
287void *dma_direct_alloc(struct device *dev, size_t size,
288 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
289{
290 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
291 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
292 dma_alloc_need_uncached(dev, attrs))
293 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
294 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
295}
296
297void dma_direct_free(struct device *dev, size_t size,
298 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
299{
300 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
301 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
302 dma_alloc_need_uncached(dev, attrs))
303 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
304 else
305 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
306}
307
308#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
309 defined(CONFIG_SWIOTLB)
310void dma_direct_sync_sg_for_device(struct device *dev,
311 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
312{
313 struct scatterlist *sg;
314 int i;
315
316 for_each_sg(sgl, sg, nents, i) {
317 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
318
319 if (unlikely(is_swiotlb_buffer(paddr)))
320 swiotlb_tbl_sync_single(dev, paddr, sg->length,
321 dir, SYNC_FOR_DEVICE);
322
323 if (!dev_is_dma_coherent(dev))
324 arch_sync_dma_for_device(paddr, sg->length,
325 dir);
326 }
327}
328#endif
329
330#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
331 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
332 defined(CONFIG_SWIOTLB)
333void dma_direct_sync_sg_for_cpu(struct device *dev,
334 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
335{
336 struct scatterlist *sg;
337 int i;
338
339 for_each_sg(sgl, sg, nents, i) {
340 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
341
342 if (!dev_is_dma_coherent(dev))
343 arch_sync_dma_for_cpu(paddr, sg->length, dir);
344
345 if (unlikely(is_swiotlb_buffer(paddr)))
346 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
347 SYNC_FOR_CPU);
348 }
349
350 if (!dev_is_dma_coherent(dev))
351 arch_sync_dma_for_cpu_all();
352}
353
354void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
355 int nents, enum dma_data_direction dir, unsigned long attrs)
356{
357 struct scatterlist *sg;
358 int i;
359
360 for_each_sg(sgl, sg, nents, i)
361 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
362 attrs);
363}
364#endif
365
366int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
367 enum dma_data_direction dir, unsigned long attrs)
368{
369 int i;
370 struct scatterlist *sg;
371
372 for_each_sg(sgl, sg, nents, i) {
373 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
374 sg->offset, sg->length, dir, attrs);
375 if (sg->dma_address == DMA_MAPPING_ERROR)
376 goto out_unmap;
377 sg_dma_len(sg) = sg->length;
378 }
379
380 return nents;
381
382out_unmap:
383 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
384 return 0;
385}
386
387dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
388 size_t size, enum dma_data_direction dir, unsigned long attrs)
389{
390 dma_addr_t dma_addr = paddr;
391
392 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
393 dev_err_once(dev,
394 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
395 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
396 WARN_ON_ONCE(1);
397 return DMA_MAPPING_ERROR;
398 }
399
400 return dma_addr;
401}
402
403int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
404 void *cpu_addr, dma_addr_t dma_addr, size_t size,
405 unsigned long attrs)
406{
407 struct page *page = dma_direct_to_page(dev, dma_addr);
408 int ret;
409
410 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
411 if (!ret)
412 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
413 return ret;
414}
415
416bool dma_direct_can_mmap(struct device *dev)
417{
418 return dev_is_dma_coherent(dev) ||
419 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
420}
421
422int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
423 void *cpu_addr, dma_addr_t dma_addr, size_t size,
424 unsigned long attrs)
425{
426 unsigned long user_count = vma_pages(vma);
427 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
428 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
429 int ret = -ENXIO;
430
431 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
432
433 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
434 return ret;
435
436 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
437 return -ENXIO;
438 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
439 user_count << PAGE_SHIFT, vma->vm_page_prot);
440}
441
442int dma_direct_supported(struct device *dev, u64 mask)
443{
444 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
445
446 /*
447 * Because 32-bit DMA masks are so common we expect every architecture
448 * to be able to satisfy them - either by not supporting more physical
449 * memory, or by providing a ZONE_DMA32. If neither is the case, the
450 * architecture needs to use an IOMMU instead of the direct mapping.
451 */
452 if (mask >= DMA_BIT_MASK(32))
453 return 1;
454
455 /*
456 * This check needs to be against the actual bit mask value, so
457 * use __phys_to_dma() here so that the SME encryption mask isn't
458 * part of the check.
459 */
460 if (IS_ENABLED(CONFIG_ZONE_DMA))
461 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
462 return mask >= __phys_to_dma(dev, min_mask);
463}
464
465size_t dma_direct_max_mapping_size(struct device *dev)
466{
467 /* If SWIOTLB is active, use its maximum mapping size */
468 if (is_swiotlb_active() &&
469 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
470 return swiotlb_max_mapping_size(dev);
471 return SIZE_MAX;
472}
473
474bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
475{
476 return !dev_is_dma_coherent(dev) ||
477 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
478}