Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-direct.h>
 11#include <linux/scatterlist.h>
 12#include <linux/dma-contiguous.h>
 13#include <linux/dma-noncoherent.h>
 14#include <linux/pfn.h>
 15#include <linux/set_memory.h>
 16#include <linux/swiotlb.h>
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but
 20 * some use it for entirely different regions:
 21 */
 22#ifndef ARCH_ZONE_DMA_BITS
 23#define ARCH_ZONE_DMA_BITS 24
 24#endif
 25
 26static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
 27{
 28	if (!dev->dma_mask) {
 29		dev_err_once(dev, "DMA map on device without dma_mask\n");
 30	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
 31		dev_err_once(dev,
 32			"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
 33			&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
 34	}
 35	WARN_ON_ONCE(1);
 36}
 37
 38static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 39		phys_addr_t phys)
 40{
 41	if (force_dma_unencrypted(dev))
 42		return __phys_to_dma(dev, phys);
 43	return phys_to_dma(dev, phys);
 44}
 45
 46u64 dma_direct_get_required_mask(struct device *dev)
 47{
 48	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
 49
 50	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 51}
 52
 53static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
 54		u64 *phys_mask)
 55{
 56	if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
 57		dma_mask = dev->bus_dma_mask;
 58
 59	if (force_dma_unencrypted(dev))
 60		*phys_mask = __dma_to_phys(dev, dma_mask);
 61	else
 62		*phys_mask = dma_to_phys(dev, dma_mask);
 63
 64	/*
 65	 * Optimistically try the zone that the physical address mask falls
 66	 * into first.  If that returns memory that isn't actually addressable
 67	 * we will fallback to the next lower zone and try again.
 68	 *
 69	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 70	 * zones.
 71	 */
 72	if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
 73		return GFP_DMA;
 74	if (*phys_mask <= DMA_BIT_MASK(32))
 75		return GFP_DMA32;
 76	return 0;
 77}
 78
 79static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 80{
 81	return phys_to_dma_direct(dev, phys) + size - 1 <=
 82			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
 83}
 84
 85struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
 86		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 87{
 88	size_t alloc_size = PAGE_ALIGN(size);
 89	int node = dev_to_node(dev);
 90	struct page *page = NULL;
 91	u64 phys_mask;
 92
 93	if (attrs & DMA_ATTR_NO_WARN)
 94		gfp |= __GFP_NOWARN;
 95
 96	/* we always manually zero the memory once we are done: */
 97	gfp &= ~__GFP_ZERO;
 98	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
 99			&phys_mask);
100	page = dma_alloc_contiguous(dev, alloc_size, gfp);
101	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102		dma_free_contiguous(dev, page, alloc_size);
103		page = NULL;
104	}
105again:
106	if (!page)
107		page = alloc_pages_node(node, gfp, get_order(alloc_size));
108	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
109		dma_free_contiguous(dev, page, size);
110		page = NULL;
111
112		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
113		    phys_mask < DMA_BIT_MASK(64) &&
114		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
115			gfp |= GFP_DMA32;
116			goto again;
117		}
118
119		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
120			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
121			goto again;
122		}
123	}
124
125	return page;
126}
127
128void *dma_direct_alloc_pages(struct device *dev, size_t size,
129		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
130{
131	struct page *page;
132	void *ret;
133
134	page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
135	if (!page)
136		return NULL;
137
138	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
139	    !force_dma_unencrypted(dev)) {
140		/* remove any dirty cache lines on the kernel alias */
141		if (!PageHighMem(page))
142			arch_dma_prep_coherent(page, size);
143		*dma_handle = phys_to_dma(dev, page_to_phys(page));
144		/* return the page pointer as the opaque cookie */
145		return page;
146	}
147
148	if (PageHighMem(page)) {
149		/*
150		 * Depending on the cma= arguments and per-arch setup
151		 * dma_alloc_contiguous could return highmem pages.
152		 * Without remapping there is no way to return them here,
153		 * so log an error and fail.
154		 */
155		dev_info(dev, "Rejecting highmem page from CMA.\n");
156		__dma_direct_free_pages(dev, size, page);
157		return NULL;
158	}
159
160	ret = page_address(page);
161	if (force_dma_unencrypted(dev)) {
162		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
163		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
164	} else {
165		*dma_handle = phys_to_dma(dev, page_to_phys(page));
166	}
167	memset(ret, 0, size);
168
169	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
170	    dma_alloc_need_uncached(dev, attrs)) {
171		arch_dma_prep_coherent(page, size);
172		ret = uncached_kernel_address(ret);
173	}
174
175	return ret;
176}
177
178void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179{
180	dma_free_contiguous(dev, page, size);
181}
182
183void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
184		dma_addr_t dma_addr, unsigned long attrs)
185{
186	unsigned int page_order = get_order(size);
187
188	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
189	    !force_dma_unencrypted(dev)) {
190		/* cpu_addr is a struct page cookie, not a kernel address */
191		__dma_direct_free_pages(dev, size, cpu_addr);
192		return;
193	}
194
195	if (force_dma_unencrypted(dev))
196		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197
198	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199	    dma_alloc_need_uncached(dev, attrs))
200		cpu_addr = cached_kernel_address(cpu_addr);
201	__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202}
203
204void *dma_direct_alloc(struct device *dev, size_t size,
205		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206{
207	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208	    dma_alloc_need_uncached(dev, attrs))
209		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211}
212
213void dma_direct_free(struct device *dev, size_t size,
214		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215{
216	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217	    dma_alloc_need_uncached(dev, attrs))
218		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219	else
220		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221}
222
223#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224    defined(CONFIG_SWIOTLB)
225void dma_direct_sync_single_for_device(struct device *dev,
226		dma_addr_t addr, size_t size, enum dma_data_direction dir)
227{
228	phys_addr_t paddr = dma_to_phys(dev, addr);
229
230	if (unlikely(is_swiotlb_buffer(paddr)))
231		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232
233	if (!dev_is_dma_coherent(dev))
234		arch_sync_dma_for_device(dev, paddr, size, dir);
235}
236EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237
238void dma_direct_sync_sg_for_device(struct device *dev,
239		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240{
241	struct scatterlist *sg;
242	int i;
243
244	for_each_sg(sgl, sg, nents, i) {
245		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
246
247		if (unlikely(is_swiotlb_buffer(paddr)))
248			swiotlb_tbl_sync_single(dev, paddr, sg->length,
249					dir, SYNC_FOR_DEVICE);
250
251		if (!dev_is_dma_coherent(dev))
252			arch_sync_dma_for_device(dev, paddr, sg->length,
253					dir);
254	}
255}
256EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
257#endif
258
259#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
260    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
261    defined(CONFIG_SWIOTLB)
262void dma_direct_sync_single_for_cpu(struct device *dev,
263		dma_addr_t addr, size_t size, enum dma_data_direction dir)
264{
265	phys_addr_t paddr = dma_to_phys(dev, addr);
266
267	if (!dev_is_dma_coherent(dev)) {
268		arch_sync_dma_for_cpu(dev, paddr, size, dir);
269		arch_sync_dma_for_cpu_all(dev);
270	}
271
272	if (unlikely(is_swiotlb_buffer(paddr)))
273		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
274}
275EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
276
277void dma_direct_sync_sg_for_cpu(struct device *dev,
278		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
279{
280	struct scatterlist *sg;
281	int i;
282
283	for_each_sg(sgl, sg, nents, i) {
284		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
285
286		if (!dev_is_dma_coherent(dev))
287			arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
288
289		if (unlikely(is_swiotlb_buffer(paddr)))
290			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
291					SYNC_FOR_CPU);
292	}
293
294	if (!dev_is_dma_coherent(dev))
295		arch_sync_dma_for_cpu_all(dev);
296}
297EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
298
299void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
300		size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302	phys_addr_t phys = dma_to_phys(dev, addr);
303
304	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
305		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
306
307	if (unlikely(is_swiotlb_buffer(phys)))
308		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
309}
310EXPORT_SYMBOL(dma_direct_unmap_page);
311
312void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
313		int nents, enum dma_data_direction dir, unsigned long attrs)
314{
315	struct scatterlist *sg;
316	int i;
317
318	for_each_sg(sgl, sg, nents, i)
319		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
320			     attrs);
321}
322EXPORT_SYMBOL(dma_direct_unmap_sg);
323#endif
324
325static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
326		size_t size)
327{
328	return swiotlb_force != SWIOTLB_FORCE &&
329		dma_capable(dev, dma_addr, size);
330}
331
332dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
333		unsigned long offset, size_t size, enum dma_data_direction dir,
334		unsigned long attrs)
335{
336	phys_addr_t phys = page_to_phys(page) + offset;
337	dma_addr_t dma_addr = phys_to_dma(dev, phys);
338
339	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
340	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
341		report_addr(dev, dma_addr, size);
342		return DMA_MAPPING_ERROR;
343	}
344
345	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
346		arch_sync_dma_for_device(dev, phys, size, dir);
347	return dma_addr;
348}
349EXPORT_SYMBOL(dma_direct_map_page);
350
351int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
352		enum dma_data_direction dir, unsigned long attrs)
353{
354	int i;
355	struct scatterlist *sg;
356
357	for_each_sg(sgl, sg, nents, i) {
358		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
359				sg->offset, sg->length, dir, attrs);
360		if (sg->dma_address == DMA_MAPPING_ERROR)
361			goto out_unmap;
362		sg_dma_len(sg) = sg->length;
363	}
364
365	return nents;
366
367out_unmap:
368	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
369	return 0;
370}
371EXPORT_SYMBOL(dma_direct_map_sg);
372
373dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
374		size_t size, enum dma_data_direction dir, unsigned long attrs)
375{
376	dma_addr_t dma_addr = paddr;
377
378	if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
379		report_addr(dev, dma_addr, size);
380		return DMA_MAPPING_ERROR;
381	}
382
383	return dma_addr;
384}
385EXPORT_SYMBOL(dma_direct_map_resource);
386
387/*
388 * Because 32-bit DMA masks are so common we expect every architecture to be
389 * able to satisfy them - either by not supporting more physical memory, or by
390 * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
391 * use an IOMMU instead of the direct mapping.
392 */
393int dma_direct_supported(struct device *dev, u64 mask)
394{
395	u64 min_mask;
396
397	if (IS_ENABLED(CONFIG_ZONE_DMA))
398		min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
399	else
400		min_mask = DMA_BIT_MASK(32);
401
402	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
403
404	/*
405	 * This check needs to be against the actual bit mask value, so
406	 * use __phys_to_dma() here so that the SME encryption mask isn't
407	 * part of the check.
408	 */
409	return mask >= __phys_to_dma(dev, min_mask);
410}
411
412size_t dma_direct_max_mapping_size(struct device *dev)
413{
414	/* If SWIOTLB is active, use its maximum mapping size */
415	if (is_swiotlb_active() &&
416	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
417		return swiotlb_max_mapping_size(dev);
418	return SIZE_MAX;
419}