Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 
 
 35
 36#include <asm/firmware.h>
 
 37#include <asm/page.h>
 38#include <asm/pgtable.h>
 39#include <asm/mmu.h>
 40#include <asm/mmu_context.h>
 41#include <asm/siginfo.h>
 42#include <asm/debug.h>
 43#include <asm/kup.h>
 
 
 44
 45/*
 46 * Check whether the instruction inst is a store using
 47 * an update addressing form which will update r1.
 48 */
 49static bool store_updates_sp(unsigned int inst)
 50{
 51	/* check for 1 in the rA field */
 52	if (((inst >> 16) & 0x1f) != 1)
 53		return false;
 54	/* check major opcode */
 55	switch (inst >> 26) {
 56	case OP_STWU:
 57	case OP_STBU:
 58	case OP_STHU:
 59	case OP_STFSU:
 60	case OP_STFDU:
 61		return true;
 62	case OP_STD:	/* std or stdu */
 63		return (inst & 3) == 1;
 64	case OP_31:
 65		/* check minor opcode */
 66		switch ((inst >> 1) & 0x3ff) {
 67		case OP_31_XOP_STDUX:
 68		case OP_31_XOP_STWUX:
 69		case OP_31_XOP_STBUX:
 70		case OP_31_XOP_STHUX:
 71		case OP_31_XOP_STFSUX:
 72		case OP_31_XOP_STFDUX:
 73			return true;
 74		}
 75	}
 76	return false;
 77}
 78/*
 79 * do_page_fault error handling helpers
 80 */
 81
 82static int
 83__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 84{
 85	/*
 86	 * If we are in kernel mode, bail out with a SEGV, this will
 87	 * be caught by the assembly which will restore the non-volatile
 88	 * registers before calling bad_page_fault()
 89	 */
 90	if (!user_mode(regs))
 91		return SIGSEGV;
 92
 93	_exception(SIGSEGV, regs, si_code, address);
 94
 95	return 0;
 96}
 97
 98static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 99{
100	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
101}
102
103static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 
104{
105	struct mm_struct *mm = current->mm;
106
107	/*
108	 * Something tried to access memory that isn't in our memory map..
109	 * Fix it, but check if it's kernel or user first..
110	 */
111	up_read(&mm->mmap_sem);
 
 
 
112
113	return __bad_area_nosemaphore(regs, address, si_code);
114}
115
116static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 
 
117{
118	return __bad_area(regs, address, SEGV_MAPERR);
119}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
122				    int pkey)
123{
124	/*
125	 * If we are in kernel mode, bail out with a SEGV, this will
126	 * be caught by the assembly which will restore the non-volatile
127	 * registers before calling bad_page_fault()
128	 */
129	if (!user_mode(regs))
130		return SIGSEGV;
131
132	_exception_pkey(regs, address, pkey);
133
134	return 0;
135}
136
137static noinline int bad_access(struct pt_regs *regs, unsigned long address)
 
138{
139	return __bad_area(regs, address, SEGV_ACCERR);
140}
141
142static int do_sigbus(struct pt_regs *regs, unsigned long address,
143		     vm_fault_t fault)
144{
145	if (!user_mode(regs))
146		return SIGBUS;
147
148	current->thread.trap_nr = BUS_ADRERR;
149#ifdef CONFIG_MEMORY_FAILURE
150	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
151		unsigned int lsb = 0; /* shutup gcc */
152
153		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
154			current->comm, current->pid, address);
155
156		if (fault & VM_FAULT_HWPOISON_LARGE)
157			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
158		if (fault & VM_FAULT_HWPOISON)
159			lsb = PAGE_SHIFT;
160
161		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
162		return 0;
163	}
164
165#endif
166	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
167	return 0;
168}
169
170static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
171				vm_fault_t fault)
172{
173	/*
174	 * Kernel page fault interrupted by SIGKILL. We have no reason to
175	 * continue processing.
176	 */
177	if (fatal_signal_pending(current) && !user_mode(regs))
178		return SIGKILL;
179
180	/* Out of memory */
181	if (fault & VM_FAULT_OOM) {
182		/*
183		 * We ran out of memory, or some other thing happened to us that
184		 * made us unable to handle the page fault gracefully.
185		 */
186		if (!user_mode(regs))
187			return SIGSEGV;
188		pagefault_out_of_memory();
189	} else {
190		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
191			     VM_FAULT_HWPOISON_LARGE))
192			return do_sigbus(regs, addr, fault);
193		else if (fault & VM_FAULT_SIGSEGV)
194			return bad_area_nosemaphore(regs, addr);
195		else
196			BUG();
197	}
198	return 0;
199}
200
201/* Is this a bad kernel fault ? */
202static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
203			     unsigned long address, bool is_write)
204{
205	int is_exec = TRAP(regs) == 0x400;
206
207	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
208	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
209				      DSISR_PROTFAULT))) {
210		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
211				    address >= TASK_SIZE ? "exec-protected" : "user",
212				    address,
213				    from_kuid(&init_user_ns, current_uid()));
214
215		// Kernel exec fault is always bad
216		return true;
217	}
218
219	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
220	    !search_exception_tables(regs->nip)) {
221		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
222				    address,
223				    from_kuid(&init_user_ns, current_uid()));
224	}
225
226	// Kernel fault on kernel address is bad
227	if (address >= TASK_SIZE)
228		return true;
229
230	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
231	if (!search_exception_tables(regs->nip))
232		return true;
 
 
233
234	// Read/write fault in a valid region (the exception table search passed
235	// above), but blocked by KUAP is bad, it can never succeed.
236	if (bad_kuap_fault(regs, is_write))
237		return true;
238
239	// What's left? Kernel fault on user in well defined regions (extable
240	// matched), and allowed by KUAP in the faulting context.
 
 
 
 
241	return false;
242}
243
244static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
245				struct vm_area_struct *vma, unsigned int flags,
246				bool *must_retry)
247{
248	/*
249	 * N.B. The POWER/Open ABI allows programs to access up to
250	 * 288 bytes below the stack pointer.
251	 * The kernel signal delivery code writes up to about 1.5kB
252	 * below the stack pointer (r1) before decrementing it.
253	 * The exec code can write slightly over 640kB to the stack
254	 * before setting the user r1.  Thus we allow the stack to
255	 * expand to 1MB without further checks.
256	 */
257	if (address + 0x100000 < vma->vm_end) {
258		unsigned int __user *nip = (unsigned int __user *)regs->nip;
259		/* get user regs even if this fault is in kernel mode */
260		struct pt_regs *uregs = current->thread.regs;
261		if (uregs == NULL)
262			return true;
263
264		/*
265		 * A user-mode access to an address a long way below
266		 * the stack pointer is only valid if the instruction
267		 * is one which would update the stack pointer to the
268		 * address accessed if the instruction completed,
269		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
270		 * (or the byte, halfword, float or double forms).
271		 *
272		 * If we don't check this then any write to the area
273		 * between the last mapped region and the stack will
274		 * expand the stack rather than segfaulting.
275		 */
276		if (address + 2048 >= uregs->gpr[1])
277			return false;
278
279		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
280		    access_ok(nip, sizeof(*nip))) {
281			unsigned int inst;
282			int res;
283
284			pagefault_disable();
285			res = __get_user_inatomic(inst, nip);
286			pagefault_enable();
287			if (!res)
288				return !store_updates_sp(inst);
289			*must_retry = true;
290		}
291		return true;
292	}
293	return false;
294}
295
296static bool access_error(bool is_write, bool is_exec,
297			 struct vm_area_struct *vma)
298{
299	/*
300	 * Allow execution from readable areas if the MMU does not
301	 * provide separate controls over reading and executing.
302	 *
303	 * Note: That code used to not be enabled for 4xx/BookE.
304	 * It is now as I/D cache coherency for these is done at
305	 * set_pte_at() time and I see no reason why the test
306	 * below wouldn't be valid on those processors. This -may-
307	 * break programs compiled with a really old ABI though.
308	 */
309	if (is_exec) {
310		return !(vma->vm_flags & VM_EXEC) &&
311			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
312			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
313	}
314
315	if (is_write) {
316		if (unlikely(!(vma->vm_flags & VM_WRITE)))
317			return true;
318		return false;
319	}
320
321	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 
 
 
 
 
 
 
 
 
322		return true;
 
323	/*
324	 * We should ideally do the vma pkey access check here. But in the
325	 * fault path, handle_mm_fault() also does the same check. To avoid
326	 * these multiple checks, we skip it here and handle access error due
327	 * to pkeys later.
328	 */
329	return false;
330}
331
332#ifdef CONFIG_PPC_SMLPAR
333static inline void cmo_account_page_fault(void)
334{
335	if (firmware_has_feature(FW_FEATURE_CMO)) {
336		u32 page_ins;
337
338		preempt_disable();
339		page_ins = be32_to_cpu(get_lppaca()->page_ins);
340		page_ins += 1 << PAGE_FACTOR;
341		get_lppaca()->page_ins = cpu_to_be32(page_ins);
342		preempt_enable();
343	}
344}
345#else
346static inline void cmo_account_page_fault(void) { }
347#endif /* CONFIG_PPC_SMLPAR */
348
349#ifdef CONFIG_PPC_BOOK3S
350static void sanity_check_fault(bool is_write, bool is_user,
351			       unsigned long error_code, unsigned long address)
352{
353	/*
354	 * Userspace trying to access kernel address, we get PROTFAULT for that.
355	 */
356	if (is_user && address >= TASK_SIZE) {
 
 
 
357		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
358				   current->comm, current->pid, address,
359				   from_kuid(&init_user_ns, current_uid()));
360		return;
361	}
362
 
 
 
363	/*
364	 * For hash translation mode, we should never get a
365	 * PROTFAULT. Any update to pte to reduce access will result in us
366	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
367	 * fault instead of DSISR_PROTFAULT.
368	 *
369	 * A pte update to relax the access will not result in a hash page table
370	 * entry invalidate and hence can result in DSISR_PROTFAULT.
371	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
372	 * the special !is_write in the below conditional.
373	 *
374	 * For platforms that doesn't supports coherent icache and do support
375	 * per page noexec bit, we do setup things such that we do the
376	 * sync between D/I cache via fault. But that is handled via low level
377	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
378	 * here in such case.
379	 *
380	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
381	 * check should handle those and hence we should fall to the bad_area
382	 * handling correctly.
383	 *
384	 * For embedded with per page exec support that doesn't support coherent
385	 * icache we do get PROTFAULT and we handle that D/I cache sync in
386	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
387	 * is conditional for server MMU.
388	 *
389	 * For radix, we can get prot fault for autonuma case, because radix
390	 * page table will have them marked noaccess for user.
391	 */
392	if (radix_enabled() || is_write)
393		return;
394
395	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
396}
397#else
398static void sanity_check_fault(bool is_write, bool is_user,
399			       unsigned long error_code, unsigned long address) { }
400#endif /* CONFIG_PPC_BOOK3S */
401
402/*
403 * Define the correct "is_write" bit in error_code based
404 * on the processor family
405 */
406#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
407#define page_fault_is_write(__err)	((__err) & ESR_DST)
408#define page_fault_is_bad(__err)	(0)
409#else
410#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
411#if defined(CONFIG_PPC_8xx)
 
 
 
 
412#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
413#elif defined(CONFIG_PPC64)
414#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415#else
416#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
417#endif
418#endif
419
420/*
421 * For 600- and 800-family processors, the error_code parameter is DSISR
422 * for a data fault, SRR1 for an instruction fault. For 400-family processors
423 * the error_code parameter is ESR for a data fault, 0 for an instruction
424 * fault.
425 * For 64-bit processors, the error_code parameter is
426 *  - DSISR for a non-SLB data access fault,
427 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
428 *  - 0 any SLB fault.
429 *
430 * The return value is 0 if the fault was handled, or the signal
431 * number if this is a kernel fault that can't be handled here.
432 */
433static int __do_page_fault(struct pt_regs *regs, unsigned long address,
434			   unsigned long error_code)
435{
436	struct vm_area_struct * vma;
437	struct mm_struct *mm = current->mm;
438	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
439 	int is_exec = TRAP(regs) == 0x400;
440	int is_user = user_mode(regs);
441	int is_write = page_fault_is_write(error_code);
442	vm_fault_t fault, major = 0;
443	bool must_retry = false;
444	bool kprobe_fault = kprobe_page_fault(regs, 11);
445
446	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
447		return 0;
448
449	if (unlikely(page_fault_is_bad(error_code))) {
450		if (is_user) {
451			_exception(SIGBUS, regs, BUS_OBJERR, address);
452			return 0;
453		}
454		return SIGBUS;
455	}
456
457	/* Additional sanity check(s) */
458	sanity_check_fault(is_write, is_user, error_code, address);
459
460	/*
461	 * The kernel should never take an execute fault nor should it
462	 * take a page fault to a kernel address or a page fault to a user
463	 * address outside of dedicated places
464	 */
465	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
 
 
 
 
 
 
 
 
 
466		return SIGSEGV;
 
467
468	/*
469	 * If we're in an interrupt, have no user context or are running
470	 * in a region with pagefaults disabled then we must not take the fault
471	 */
472	if (unlikely(faulthandler_disabled() || !mm)) {
473		if (is_user)
474			printk_ratelimited(KERN_ERR "Page fault in user mode"
475					   " with faulthandler_disabled()=%d"
476					   " mm=%p\n",
477					   faulthandler_disabled(), mm);
478		return bad_area_nosemaphore(regs, address);
479	}
480
481	/* We restore the interrupt state now */
482	if (!arch_irq_disabled_regs(regs))
483		local_irq_enable();
484
485	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
486
487	if (error_code & DSISR_KEYFAULT)
488		return bad_key_fault_exception(regs, address,
489					       get_mm_addr_key(mm, address));
490
491	/*
492	 * We want to do this outside mmap_sem, because reading code around nip
493	 * can result in fault, which will cause a deadlock when called with
494	 * mmap_sem held
495	 */
496	if (is_user)
497		flags |= FAULT_FLAG_USER;
498	if (is_write)
499		flags |= FAULT_FLAG_WRITE;
500	if (is_exec)
501		flags |= FAULT_FLAG_INSTRUCTION;
502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503	/* When running in the kernel we expect faults to occur only to
504	 * addresses in user space.  All other faults represent errors in the
505	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
506	 * erroneous fault occurring in a code path which already holds mmap_sem
507	 * we will deadlock attempting to validate the fault against the
508	 * address space.  Luckily the kernel only validly references user
509	 * space from well defined areas of code, which are listed in the
510	 * exceptions table.
511	 *
512	 * As the vast majority of faults will be valid we will only perform
513	 * the source reference check when there is a possibility of a deadlock.
514	 * Attempt to lock the address space, if we cannot we then validate the
515	 * source.  If this is invalid we can skip the address space check,
516	 * thus avoiding the deadlock.
517	 */
518	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
519		if (!is_user && !search_exception_tables(regs->nip))
520			return bad_area_nosemaphore(regs, address);
521
522retry:
523		down_read(&mm->mmap_sem);
524	} else {
525		/*
526		 * The above down_read_trylock() might have succeeded in
527		 * which case we'll have missed the might_sleep() from
528		 * down_read():
529		 */
530		might_sleep();
531	}
532
533	vma = find_vma(mm, address);
534	if (unlikely(!vma))
535		return bad_area(regs, address);
536	if (likely(vma->vm_start <= address))
537		goto good_area;
538	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
539		return bad_area(regs, address);
540
541	/* The stack is being expanded, check if it's valid */
542	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
543					 &must_retry))) {
544		if (!must_retry)
545			return bad_area(regs, address);
546
547		up_read(&mm->mmap_sem);
548		if (fault_in_pages_readable((const char __user *)regs->nip,
549					    sizeof(unsigned int)))
550			return bad_area_nosemaphore(regs, address);
551		goto retry;
552	}
553
554	/* Try to expand it */
555	if (unlikely(expand_stack(vma, address)))
556		return bad_area(regs, address);
557
558good_area:
559	if (unlikely(access_error(is_write, is_exec, vma)))
560		return bad_access(regs, address);
561
562	/*
563	 * If for any reason at all we couldn't handle the fault,
564	 * make sure we exit gracefully rather than endlessly redo
565	 * the fault.
566	 */
567	fault = handle_mm_fault(vma, address, flags);
568
569#ifdef CONFIG_PPC_MEM_KEYS
570	/*
571	 * we skipped checking for access error due to key earlier.
572	 * Check that using handle_mm_fault error return.
573	 */
574	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
575		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
576
577		int pkey = vma_pkey(vma);
578
579		up_read(&mm->mmap_sem);
580		return bad_key_fault_exception(regs, address, pkey);
581	}
582#endif /* CONFIG_PPC_MEM_KEYS */
583
584	major |= fault & VM_FAULT_MAJOR;
 
 
585
586	/*
587	 * Handle the retry right now, the mmap_sem has been released in that
588	 * case.
589	 */
590	if (unlikely(fault & VM_FAULT_RETRY)) {
591		/* We retry only once */
592		if (flags & FAULT_FLAG_ALLOW_RETRY) {
593			/*
594			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
595			 * of starvation.
596			 */
597			flags &= ~FAULT_FLAG_ALLOW_RETRY;
598			flags |= FAULT_FLAG_TRIED;
599			if (!fatal_signal_pending(current))
600				goto retry;
601		}
602
603		/*
604		 * User mode? Just return to handle the fatal exception otherwise
605		 * return to bad_page_fault
606		 */
607		return is_user ? 0 : SIGBUS;
608	}
609
610	up_read(&current->mm->mmap_sem);
611
 
612	if (unlikely(fault & VM_FAULT_ERROR))
613		return mm_fault_error(regs, address, fault);
614
 
615	/*
616	 * Major/minor page fault accounting.
617	 */
618	if (major) {
619		current->maj_flt++;
620		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
621		cmo_account_page_fault();
622	} else {
623		current->min_flt++;
624		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
625	}
626	return 0;
627}
628NOKPROBE_SYMBOL(__do_page_fault);
629
630int do_page_fault(struct pt_regs *regs, unsigned long address,
631		  unsigned long error_code)
632{
633	enum ctx_state prev_state = exception_enter();
634	int rc = __do_page_fault(regs, address, error_code);
635	exception_exit(prev_state);
636	return rc;
 
637}
638NOKPROBE_SYMBOL(do_page_fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
639
640/*
641 * bad_page_fault is called when we have a bad access from the kernel.
642 * It is called from the DSI and ISI handlers in head.S and from some
643 * of the procedures in traps.c.
644 */
645void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
646{
647	const struct exception_table_entry *entry;
648
649	/* Are we prepared to handle this fault?  */
650	if ((entry = search_exception_tables(regs->nip)) != NULL) {
651		regs->nip = extable_fixup(entry);
652		return;
653	}
654
655	/* kernel has accessed a bad area */
656
 
 
 
 
 
657	switch (TRAP(regs)) {
658	case 0x300:
659	case 0x380:
660	case 0xe00:
661		pr_alert("BUG: %s at 0x%08lx\n",
662			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
663			 "Unable to handle kernel data access", regs->dar);
664		break;
665	case 0x400:
666	case 0x480:
 
 
 
667		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
668			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
669		break;
670	case 0x600:
671		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
672			 regs->dar);
673		break;
674	default:
675		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
676			 regs->dar);
677		break;
678	}
679	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
680		regs->nip);
681
682	if (task_stack_end_corrupted(current))
683		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
684
685	die("Kernel access of bad area", regs, sig);
686}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
 75		      struct mm_struct *mm, struct vm_area_struct *vma)
 76{
 
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	if (mm)
 83		mmap_read_unlock(mm);
 84	else
 85		vma_end_read(vma);
 86
 87	return __bad_area_nosemaphore(regs, address, si_code);
 88}
 89
 90static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 91				    struct mm_struct *mm,
 92				    struct vm_area_struct *vma)
 93{
 94	int pkey;
 95
 96	/*
 97	 * We don't try to fetch the pkey from page table because reading
 98	 * page table without locking doesn't guarantee stable pte value.
 99	 * Hence the pkey value that we return to userspace can be different
100	 * from the pkey that actually caused access error.
101	 *
102	 * It does *not* guarantee that the VMA we find here
103	 * was the one that we faulted on.
104	 *
105	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
106	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
107	 * 3. T1   : faults...
108	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
109	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
110	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
111	 *	     faulted on a pte with its pkey=4.
112	 */
113	pkey = vma_pkey(vma);
114
115	if (mm)
116		mmap_read_unlock(mm);
117	else
118		vma_end_read(vma);
119
 
 
 
120	/*
121	 * If we are in kernel mode, bail out with a SEGV, this will
122	 * be caught by the assembly which will restore the non-volatile
123	 * registers before calling bad_page_fault()
124	 */
125	if (!user_mode(regs))
126		return SIGSEGV;
127
128	_exception_pkey(regs, address, pkey);
129
130	return 0;
131}
132
133static noinline int bad_access(struct pt_regs *regs, unsigned long address,
134			       struct mm_struct *mm, struct vm_area_struct *vma)
135{
136	return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
137}
138
139static int do_sigbus(struct pt_regs *regs, unsigned long address,
140		     vm_fault_t fault)
141{
142	if (!user_mode(regs))
143		return SIGBUS;
144
145	current->thread.trap_nr = BUS_ADRERR;
146#ifdef CONFIG_MEMORY_FAILURE
147	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
148		unsigned int lsb = 0; /* shutup gcc */
149
150		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
151			current->comm, current->pid, address);
152
153		if (fault & VM_FAULT_HWPOISON_LARGE)
154			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
155		if (fault & VM_FAULT_HWPOISON)
156			lsb = PAGE_SHIFT;
157
158		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
159		return 0;
160	}
161
162#endif
163	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
164	return 0;
165}
166
167static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
168				vm_fault_t fault)
169{
170	/*
171	 * Kernel page fault interrupted by SIGKILL. We have no reason to
172	 * continue processing.
173	 */
174	if (fatal_signal_pending(current) && !user_mode(regs))
175		return SIGKILL;
176
177	/* Out of memory */
178	if (fault & VM_FAULT_OOM) {
179		/*
180		 * We ran out of memory, or some other thing happened to us that
181		 * made us unable to handle the page fault gracefully.
182		 */
183		if (!user_mode(regs))
184			return SIGSEGV;
185		pagefault_out_of_memory();
186	} else {
187		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
188			     VM_FAULT_HWPOISON_LARGE))
189			return do_sigbus(regs, addr, fault);
190		else if (fault & VM_FAULT_SIGSEGV)
191			return bad_area_nosemaphore(regs, addr);
192		else
193			BUG();
194	}
195	return 0;
196}
197
198/* Is this a bad kernel fault ? */
199static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
200			     unsigned long address, bool is_write)
201{
202	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
203
204	if (is_exec) {
 
 
205		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
206				    address >= TASK_SIZE ? "exec-protected" : "user",
207				    address,
208				    from_kuid(&init_user_ns, current_uid()));
209
210		// Kernel exec fault is always bad
211		return true;
212	}
213
 
 
 
 
 
 
 
214	// Kernel fault on kernel address is bad
215	if (address >= TASK_SIZE)
216		return true;
217
218	// Read/write fault blocked by KUAP is bad, it can never succeed.
219	if (bad_kuap_fault(regs, address, is_write)) {
220		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
221				    is_write ? "write" : "read", address,
222				    from_kuid(&init_user_ns, current_uid()));
223
224		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
225		if (!search_exception_tables(regs->nip))
226			return true;
 
227
228		// Read/write fault in a valid region (the exception table search passed
229		// above), but blocked by KUAP is bad, it can never succeed.
230		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
231	}
232
233	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
234	return false;
235}
236
237static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238			      struct vm_area_struct *vma)
239{
240	/*
241	 * Make sure to check the VMA so that we do not perform
242	 * faults just to hit a pkey fault as soon as we fill in a
243	 * page. Only called for current mm, hence foreign == 0
244	 */
245	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246		return true;
247
248	return false;
249}
250
251static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
 
252{
253	/*
254	 * Allow execution from readable areas if the MMU does not
255	 * provide separate controls over reading and executing.
256	 *
257	 * Note: That code used to not be enabled for 4xx/BookE.
258	 * It is now as I/D cache coherency for these is done at
259	 * set_pte_at() time and I see no reason why the test
260	 * below wouldn't be valid on those processors. This -may-
261	 * break programs compiled with a really old ABI though.
262	 */
263	if (is_exec) {
264		return !(vma->vm_flags & VM_EXEC) &&
265			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
266			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
267	}
268
269	if (is_write) {
270		if (unlikely(!(vma->vm_flags & VM_WRITE)))
271			return true;
272		return false;
273	}
274
275	/*
276	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
277	 * defined in protection_map[].  In that case Read faults can only be
278	 * caused by a PROT_NONE mapping. However a non exec access on a
279	 * VM_EXEC only mapping is invalid anyway, so report it as such.
280	 */
281	if (unlikely(!vma_is_accessible(vma)))
282		return true;
283
284	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
285		return true;
286
287	/*
288	 * We should ideally do the vma pkey access check here. But in the
289	 * fault path, handle_mm_fault() also does the same check. To avoid
290	 * these multiple checks, we skip it here and handle access error due
291	 * to pkeys later.
292	 */
293	return false;
294}
295
296#ifdef CONFIG_PPC_SMLPAR
297static inline void cmo_account_page_fault(void)
298{
299	if (firmware_has_feature(FW_FEATURE_CMO)) {
300		u32 page_ins;
301
302		preempt_disable();
303		page_ins = be32_to_cpu(get_lppaca()->page_ins);
304		page_ins += 1 << PAGE_FACTOR;
305		get_lppaca()->page_ins = cpu_to_be32(page_ins);
306		preempt_enable();
307	}
308}
309#else
310static inline void cmo_account_page_fault(void) { }
311#endif /* CONFIG_PPC_SMLPAR */
312
 
313static void sanity_check_fault(bool is_write, bool is_user,
314			       unsigned long error_code, unsigned long address)
315{
316	/*
317	 * Userspace trying to access kernel address, we get PROTFAULT for that.
318	 */
319	if (is_user && address >= TASK_SIZE) {
320		if ((long)address == -1)
321			return;
322
323		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
324				   current->comm, current->pid, address,
325				   from_kuid(&init_user_ns, current_uid()));
326		return;
327	}
328
329	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
330		return;
331
332	/*
333	 * For hash translation mode, we should never get a
334	 * PROTFAULT. Any update to pte to reduce access will result in us
335	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
336	 * fault instead of DSISR_PROTFAULT.
337	 *
338	 * A pte update to relax the access will not result in a hash page table
339	 * entry invalidate and hence can result in DSISR_PROTFAULT.
340	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
341	 * the special !is_write in the below conditional.
342	 *
343	 * For platforms that doesn't supports coherent icache and do support
344	 * per page noexec bit, we do setup things such that we do the
345	 * sync between D/I cache via fault. But that is handled via low level
346	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
347	 * here in such case.
348	 *
349	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
350	 * check should handle those and hence we should fall to the bad_area
351	 * handling correctly.
352	 *
353	 * For embedded with per page exec support that doesn't support coherent
354	 * icache we do get PROTFAULT and we handle that D/I cache sync in
355	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
356	 * is conditional for server MMU.
357	 *
358	 * For radix, we can get prot fault for autonuma case, because radix
359	 * page table will have them marked noaccess for user.
360	 */
361	if (radix_enabled() || is_write)
362		return;
363
364	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
365}
 
 
 
 
366
367/*
368 * Define the correct "is_write" bit in error_code based
369 * on the processor family
370 */
371#ifdef CONFIG_BOOKE
372#define page_fault_is_write(__err)	((__err) & ESR_DST)
 
373#else
374#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
375#endif
376
377#ifdef CONFIG_BOOKE
378#define page_fault_is_bad(__err)	(0)
379#elif defined(CONFIG_PPC_8xx)
380#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
381#elif defined(CONFIG_PPC64)
382static int page_fault_is_bad(unsigned long err)
383{
384	unsigned long flag = DSISR_BAD_FAULT_64S;
385
386	/*
387	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
388	 * If byte 0, bit 3 of pi-attribute-specifier-type in
389	 * ibm,pi-features property is defined, ignore the DSI error
390	 * which is caused by the paste instruction on the
391	 * suspended NX window.
392	 */
393	if (mmu_has_feature(MMU_FTR_NX_DSI))
394		flag &= ~DSISR_BAD_COPYPASTE;
395
396	return err & flag;
397}
398#else
399#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
400#endif
 
401
402/*
403 * For 600- and 800-family processors, the error_code parameter is DSISR
404 * for a data fault, SRR1 for an instruction fault.
405 * For 400-family processors the error_code parameter is ESR for a data fault,
406 * 0 for an instruction fault.
407 * For 64-bit processors, the error_code parameter is DSISR for a data access
408 * fault, SRR1 & 0x08000000 for an instruction access fault.
 
 
409 *
410 * The return value is 0 if the fault was handled, or the signal
411 * number if this is a kernel fault that can't be handled here.
412 */
413static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
414			   unsigned long error_code)
415{
416	struct vm_area_struct * vma;
417	struct mm_struct *mm = current->mm;
418	unsigned int flags = FAULT_FLAG_DEFAULT;
419	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
420	int is_user = user_mode(regs);
421	int is_write = page_fault_is_write(error_code);
422	vm_fault_t fault, major = 0;
 
423	bool kprobe_fault = kprobe_page_fault(regs, 11);
424
425	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
426		return 0;
427
428	if (unlikely(page_fault_is_bad(error_code))) {
429		if (is_user) {
430			_exception(SIGBUS, regs, BUS_OBJERR, address);
431			return 0;
432		}
433		return SIGBUS;
434	}
435
436	/* Additional sanity check(s) */
437	sanity_check_fault(is_write, is_user, error_code, address);
438
439	/*
440	 * The kernel should never take an execute fault nor should it
441	 * take a page fault to a kernel address or a page fault to a user
442	 * address outside of dedicated places.
443	 *
444	 * Rather than kfence directly reporting false negatives, search whether
445	 * the NIP belongs to the fixup table for cases where fault could come
446	 * from functions like copy_from_kernel_nofault().
447	 */
448	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
449		if (is_kfence_address((void *)address) &&
450		    !search_exception_tables(instruction_pointer(regs)) &&
451		    kfence_handle_page_fault(address, is_write, regs))
452			return 0;
453
454		return SIGSEGV;
455	}
456
457	/*
458	 * If we're in an interrupt, have no user context or are running
459	 * in a region with pagefaults disabled then we must not take the fault
460	 */
461	if (unlikely(faulthandler_disabled() || !mm)) {
462		if (is_user)
463			printk_ratelimited(KERN_ERR "Page fault in user mode"
464					   " with faulthandler_disabled()=%d"
465					   " mm=%p\n",
466					   faulthandler_disabled(), mm);
467		return bad_area_nosemaphore(regs, address);
468	}
469
470	interrupt_cond_local_irq_enable(regs);
 
 
471
472	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
473
 
 
 
 
474	/*
475	 * We want to do this outside mmap_lock, because reading code around nip
476	 * can result in fault, which will cause a deadlock when called with
477	 * mmap_lock held
478	 */
479	if (is_user)
480		flags |= FAULT_FLAG_USER;
481	if (is_write)
482		flags |= FAULT_FLAG_WRITE;
483	if (is_exec)
484		flags |= FAULT_FLAG_INSTRUCTION;
485
486	if (!(flags & FAULT_FLAG_USER))
487		goto lock_mmap;
488
489	vma = lock_vma_under_rcu(mm, address);
490	if (!vma)
491		goto lock_mmap;
492
493	if (unlikely(access_pkey_error(is_write, is_exec,
494				       (error_code & DSISR_KEYFAULT), vma))) {
495		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
496		return bad_access_pkey(regs, address, NULL, vma);
497	}
498
499	if (unlikely(access_error(is_write, is_exec, vma))) {
500		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
501		return bad_access(regs, address, NULL, vma);
502	}
503
504	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
505	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
506		vma_end_read(vma);
507
508	if (!(fault & VM_FAULT_RETRY)) {
509		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
510		goto done;
511	}
512	count_vm_vma_lock_event(VMA_LOCK_RETRY);
513	if (fault & VM_FAULT_MAJOR)
514		flags |= FAULT_FLAG_TRIED;
515
516	if (fault_signal_pending(fault, regs))
517		return user_mode(regs) ? 0 : SIGBUS;
518
519lock_mmap:
520
521	/* When running in the kernel we expect faults to occur only to
522	 * addresses in user space.  All other faults represent errors in the
523	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
524	 * erroneous fault occurring in a code path which already holds mmap_lock
525	 * we will deadlock attempting to validate the fault against the
526	 * address space.  Luckily the kernel only validly references user
527	 * space from well defined areas of code, which are listed in the
528	 * exceptions table. lock_mm_and_find_vma() handles that logic.
529	 */
 
 
 
 
 
 
 
 
 
 
530retry:
531	vma = lock_mm_and_find_vma(mm, address, regs);
 
 
 
 
 
 
 
 
 
 
532	if (unlikely(!vma))
533		return bad_area_nosemaphore(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534
535	if (unlikely(access_pkey_error(is_write, is_exec,
536				       (error_code & DSISR_KEYFAULT), vma)))
537		return bad_access_pkey(regs, address, mm, vma);
538
 
539	if (unlikely(access_error(is_write, is_exec, vma)))
540		return bad_access(regs, address, mm, vma);
541
542	/*
543	 * If for any reason at all we couldn't handle the fault,
544	 * make sure we exit gracefully rather than endlessly redo
545	 * the fault.
546	 */
547	fault = handle_mm_fault(vma, address, flags, regs);
 
 
 
 
 
 
 
 
548
549	major |= fault & VM_FAULT_MAJOR;
550
551	if (fault_signal_pending(fault, regs))
552		return user_mode(regs) ? 0 : SIGBUS;
 
 
553
554	/* The fault is fully completed (including releasing mmap lock) */
555	if (fault & VM_FAULT_COMPLETED)
556		goto out;
557
558	/*
559	 * Handle the retry right now, the mmap_lock has been released in that
560	 * case.
561	 */
562	if (unlikely(fault & VM_FAULT_RETRY)) {
563		flags |= FAULT_FLAG_TRIED;
564		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565	}
566
567	mmap_read_unlock(current->mm);
568
569done:
570	if (unlikely(fault & VM_FAULT_ERROR))
571		return mm_fault_error(regs, address, fault);
572
573out:
574	/*
575	 * Major/minor page fault accounting.
576	 */
577	if (major)
 
 
578		cmo_account_page_fault();
579
 
 
 
580	return 0;
581}
582NOKPROBE_SYMBOL(___do_page_fault);
583
584static __always_inline void __do_page_fault(struct pt_regs *regs)
 
585{
586	long err;
587
588	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
589	if (unlikely(err))
590		bad_page_fault(regs, err);
591}
592
593DEFINE_INTERRUPT_HANDLER(do_page_fault)
594{
595	__do_page_fault(regs);
596}
597
598#ifdef CONFIG_PPC_BOOK3S_64
599/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
600void hash__do_page_fault(struct pt_regs *regs)
601{
602	__do_page_fault(regs);
603}
604NOKPROBE_SYMBOL(hash__do_page_fault);
605#endif
606
607/*
608 * bad_page_fault is called when we have a bad access from the kernel.
609 * It is called from the DSI and ISI handlers in head.S and from some
610 * of the procedures in traps.c.
611 */
612static void __bad_page_fault(struct pt_regs *regs, int sig)
613{
614	int is_write = page_fault_is_write(regs->dsisr);
615	const char *msg;
 
 
 
 
 
616
617	/* kernel has accessed a bad area */
618
619	if (regs->dar < PAGE_SIZE)
620		msg = "Kernel NULL pointer dereference";
621	else
622		msg = "Unable to handle kernel data access";
623
624	switch (TRAP(regs)) {
625	case INTERRUPT_DATA_STORAGE:
626	case INTERRUPT_H_DATA_STORAGE:
627		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
628			 is_write ? "write" : "read", regs->dar);
 
 
629		break;
630	case INTERRUPT_DATA_SEGMENT:
631		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
632		break;
633	case INTERRUPT_INST_STORAGE:
634	case INTERRUPT_INST_SEGMENT:
635		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
636			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
637		break;
638	case INTERRUPT_ALIGNMENT:
639		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
640			 regs->dar);
641		break;
642	default:
643		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
644			 regs->dar);
645		break;
646	}
647	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
648		regs->nip);
649
650	if (task_stack_end_corrupted(current))
651		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
652
653	die("Kernel access of bad area", regs, sig);
654}
655
656void bad_page_fault(struct pt_regs *regs, int sig)
657{
658	const struct exception_table_entry *entry;
659
660	/* Are we prepared to handle this fault?  */
661	entry = search_exception_tables(instruction_pointer(regs));
662	if (entry)
663		instruction_pointer_set(regs, extable_fixup(entry));
664	else
665		__bad_page_fault(regs, sig);
666}
667
668#ifdef CONFIG_PPC_BOOK3S_64
669DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
670{
671	bad_page_fault(regs, SIGSEGV);
672}
673
674/*
675 * In radix, segment interrupts indicate the EA is not addressable by the
676 * page table geometry, so they are always sent here.
677 *
678 * In hash, this is called if do_slb_fault returns error. Typically it is
679 * because the EA was outside the region allowed by software.
680 */
681DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
682{
683	int err = regs->result;
684
685	if (err == -EFAULT) {
686		if (user_mode(regs))
687			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
688		else
689			bad_page_fault(regs, SIGSEGV);
690	} else if (err == -EINVAL) {
691		unrecoverable_exception(regs);
692	} else {
693		BUG();
694	}
695}
696#endif