Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 
 
 35
 36#include <asm/firmware.h>
 
 37#include <asm/page.h>
 38#include <asm/pgtable.h>
 39#include <asm/mmu.h>
 40#include <asm/mmu_context.h>
 41#include <asm/siginfo.h>
 42#include <asm/debug.h>
 43#include <asm/kup.h>
 
 
 44
 45/*
 46 * Check whether the instruction inst is a store using
 47 * an update addressing form which will update r1.
 48 */
 49static bool store_updates_sp(unsigned int inst)
 50{
 51	/* check for 1 in the rA field */
 52	if (((inst >> 16) & 0x1f) != 1)
 53		return false;
 54	/* check major opcode */
 55	switch (inst >> 26) {
 56	case OP_STWU:
 57	case OP_STBU:
 58	case OP_STHU:
 59	case OP_STFSU:
 60	case OP_STFDU:
 61		return true;
 62	case OP_STD:	/* std or stdu */
 63		return (inst & 3) == 1;
 64	case OP_31:
 65		/* check minor opcode */
 66		switch ((inst >> 1) & 0x3ff) {
 67		case OP_31_XOP_STDUX:
 68		case OP_31_XOP_STWUX:
 69		case OP_31_XOP_STBUX:
 70		case OP_31_XOP_STHUX:
 71		case OP_31_XOP_STFSUX:
 72		case OP_31_XOP_STFDUX:
 73			return true;
 74		}
 75	}
 76	return false;
 77}
 78/*
 79 * do_page_fault error handling helpers
 80 */
 81
 82static int
 83__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 84{
 85	/*
 86	 * If we are in kernel mode, bail out with a SEGV, this will
 87	 * be caught by the assembly which will restore the non-volatile
 88	 * registers before calling bad_page_fault()
 89	 */
 90	if (!user_mode(regs))
 91		return SIGSEGV;
 92
 93	_exception(SIGSEGV, regs, si_code, address);
 94
 95	return 0;
 96}
 97
 98static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 99{
100	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
101}
102
103static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
104{
105	struct mm_struct *mm = current->mm;
106
107	/*
108	 * Something tried to access memory that isn't in our memory map..
109	 * Fix it, but check if it's kernel or user first..
110	 */
111	up_read(&mm->mmap_sem);
112
113	return __bad_area_nosemaphore(regs, address, si_code);
114}
115
116static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117{
118	return __bad_area(regs, address, SEGV_MAPERR);
119}
120
121static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
122				    int pkey)
123{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124	/*
125	 * If we are in kernel mode, bail out with a SEGV, this will
126	 * be caught by the assembly which will restore the non-volatile
127	 * registers before calling bad_page_fault()
128	 */
129	if (!user_mode(regs))
130		return SIGSEGV;
131
132	_exception_pkey(regs, address, pkey);
133
134	return 0;
135}
136
137static noinline int bad_access(struct pt_regs *regs, unsigned long address)
138{
139	return __bad_area(regs, address, SEGV_ACCERR);
140}
141
142static int do_sigbus(struct pt_regs *regs, unsigned long address,
143		     vm_fault_t fault)
144{
145	if (!user_mode(regs))
146		return SIGBUS;
147
148	current->thread.trap_nr = BUS_ADRERR;
149#ifdef CONFIG_MEMORY_FAILURE
150	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
151		unsigned int lsb = 0; /* shutup gcc */
152
153		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
154			current->comm, current->pid, address);
155
156		if (fault & VM_FAULT_HWPOISON_LARGE)
157			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
158		if (fault & VM_FAULT_HWPOISON)
159			lsb = PAGE_SHIFT;
160
161		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
162		return 0;
163	}
164
165#endif
166	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
167	return 0;
168}
169
170static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
171				vm_fault_t fault)
172{
173	/*
174	 * Kernel page fault interrupted by SIGKILL. We have no reason to
175	 * continue processing.
176	 */
177	if (fatal_signal_pending(current) && !user_mode(regs))
178		return SIGKILL;
179
180	/* Out of memory */
181	if (fault & VM_FAULT_OOM) {
182		/*
183		 * We ran out of memory, or some other thing happened to us that
184		 * made us unable to handle the page fault gracefully.
185		 */
186		if (!user_mode(regs))
187			return SIGSEGV;
188		pagefault_out_of_memory();
189	} else {
190		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
191			     VM_FAULT_HWPOISON_LARGE))
192			return do_sigbus(regs, addr, fault);
193		else if (fault & VM_FAULT_SIGSEGV)
194			return bad_area_nosemaphore(regs, addr);
195		else
196			BUG();
197	}
198	return 0;
199}
200
201/* Is this a bad kernel fault ? */
202static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
203			     unsigned long address, bool is_write)
204{
205	int is_exec = TRAP(regs) == 0x400;
206
207	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
208	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
209				      DSISR_PROTFAULT))) {
210		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
211				    address >= TASK_SIZE ? "exec-protected" : "user",
212				    address,
213				    from_kuid(&init_user_ns, current_uid()));
214
215		// Kernel exec fault is always bad
216		return true;
217	}
218
219	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
220	    !search_exception_tables(regs->nip)) {
221		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
222				    address,
223				    from_kuid(&init_user_ns, current_uid()));
224	}
225
226	// Kernel fault on kernel address is bad
227	if (address >= TASK_SIZE)
228		return true;
229
230	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
231	if (!search_exception_tables(regs->nip))
232		return true;
 
 
233
234	// Read/write fault in a valid region (the exception table search passed
235	// above), but blocked by KUAP is bad, it can never succeed.
236	if (bad_kuap_fault(regs, is_write))
237		return true;
 
 
 
 
238
239	// What's left? Kernel fault on user in well defined regions (extable
240	// matched), and allowed by KUAP in the faulting context.
241	return false;
242}
243
244static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
245				struct vm_area_struct *vma, unsigned int flags,
246				bool *must_retry)
247{
248	/*
249	 * N.B. The POWER/Open ABI allows programs to access up to
250	 * 288 bytes below the stack pointer.
251	 * The kernel signal delivery code writes up to about 1.5kB
252	 * below the stack pointer (r1) before decrementing it.
253	 * The exec code can write slightly over 640kB to the stack
254	 * before setting the user r1.  Thus we allow the stack to
255	 * expand to 1MB without further checks.
256	 */
257	if (address + 0x100000 < vma->vm_end) {
258		unsigned int __user *nip = (unsigned int __user *)regs->nip;
259		/* get user regs even if this fault is in kernel mode */
260		struct pt_regs *uregs = current->thread.regs;
261		if (uregs == NULL)
262			return true;
263
264		/*
265		 * A user-mode access to an address a long way below
266		 * the stack pointer is only valid if the instruction
267		 * is one which would update the stack pointer to the
268		 * address accessed if the instruction completed,
269		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
270		 * (or the byte, halfword, float or double forms).
271		 *
272		 * If we don't check this then any write to the area
273		 * between the last mapped region and the stack will
274		 * expand the stack rather than segfaulting.
275		 */
276		if (address + 2048 >= uregs->gpr[1])
277			return false;
278
279		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
280		    access_ok(nip, sizeof(*nip))) {
281			unsigned int inst;
282			int res;
283
284			pagefault_disable();
285			res = __get_user_inatomic(inst, nip);
286			pagefault_enable();
287			if (!res)
288				return !store_updates_sp(inst);
289			*must_retry = true;
290		}
291		return true;
292	}
293	return false;
294}
295
296static bool access_error(bool is_write, bool is_exec,
297			 struct vm_area_struct *vma)
298{
299	/*
300	 * Allow execution from readable areas if the MMU does not
301	 * provide separate controls over reading and executing.
302	 *
303	 * Note: That code used to not be enabled for 4xx/BookE.
304	 * It is now as I/D cache coherency for these is done at
305	 * set_pte_at() time and I see no reason why the test
306	 * below wouldn't be valid on those processors. This -may-
307	 * break programs compiled with a really old ABI though.
308	 */
309	if (is_exec) {
310		return !(vma->vm_flags & VM_EXEC) &&
311			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
312			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
313	}
314
315	if (is_write) {
316		if (unlikely(!(vma->vm_flags & VM_WRITE)))
317			return true;
318		return false;
319	}
320
321	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
322		return true;
323	/*
324	 * We should ideally do the vma pkey access check here. But in the
325	 * fault path, handle_mm_fault() also does the same check. To avoid
326	 * these multiple checks, we skip it here and handle access error due
327	 * to pkeys later.
328	 */
329	return false;
330}
331
332#ifdef CONFIG_PPC_SMLPAR
333static inline void cmo_account_page_fault(void)
334{
335	if (firmware_has_feature(FW_FEATURE_CMO)) {
336		u32 page_ins;
337
338		preempt_disable();
339		page_ins = be32_to_cpu(get_lppaca()->page_ins);
340		page_ins += 1 << PAGE_FACTOR;
341		get_lppaca()->page_ins = cpu_to_be32(page_ins);
342		preempt_enable();
343	}
344}
345#else
346static inline void cmo_account_page_fault(void) { }
347#endif /* CONFIG_PPC_SMLPAR */
348
349#ifdef CONFIG_PPC_BOOK3S
350static void sanity_check_fault(bool is_write, bool is_user,
351			       unsigned long error_code, unsigned long address)
352{
353	/*
354	 * Userspace trying to access kernel address, we get PROTFAULT for that.
355	 */
356	if (is_user && address >= TASK_SIZE) {
 
 
 
357		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
358				   current->comm, current->pid, address,
359				   from_kuid(&init_user_ns, current_uid()));
360		return;
361	}
362
 
 
 
363	/*
364	 * For hash translation mode, we should never get a
365	 * PROTFAULT. Any update to pte to reduce access will result in us
366	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
367	 * fault instead of DSISR_PROTFAULT.
368	 *
369	 * A pte update to relax the access will not result in a hash page table
370	 * entry invalidate and hence can result in DSISR_PROTFAULT.
371	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
372	 * the special !is_write in the below conditional.
373	 *
374	 * For platforms that doesn't supports coherent icache and do support
375	 * per page noexec bit, we do setup things such that we do the
376	 * sync between D/I cache via fault. But that is handled via low level
377	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
378	 * here in such case.
379	 *
380	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
381	 * check should handle those and hence we should fall to the bad_area
382	 * handling correctly.
383	 *
384	 * For embedded with per page exec support that doesn't support coherent
385	 * icache we do get PROTFAULT and we handle that D/I cache sync in
386	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
387	 * is conditional for server MMU.
388	 *
389	 * For radix, we can get prot fault for autonuma case, because radix
390	 * page table will have them marked noaccess for user.
391	 */
392	if (radix_enabled() || is_write)
393		return;
394
395	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
396}
397#else
398static void sanity_check_fault(bool is_write, bool is_user,
399			       unsigned long error_code, unsigned long address) { }
400#endif /* CONFIG_PPC_BOOK3S */
401
402/*
403 * Define the correct "is_write" bit in error_code based
404 * on the processor family
405 */
406#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
407#define page_fault_is_write(__err)	((__err) & ESR_DST)
408#define page_fault_is_bad(__err)	(0)
409#else
410#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
411#if defined(CONFIG_PPC_8xx)
 
 
 
 
412#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
413#elif defined(CONFIG_PPC64)
414#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
415#else
416#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
417#endif
418#endif
419
420/*
421 * For 600- and 800-family processors, the error_code parameter is DSISR
422 * for a data fault, SRR1 for an instruction fault. For 400-family processors
423 * the error_code parameter is ESR for a data fault, 0 for an instruction
424 * fault.
425 * For 64-bit processors, the error_code parameter is
426 *  - DSISR for a non-SLB data access fault,
427 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
428 *  - 0 any SLB fault.
429 *
430 * The return value is 0 if the fault was handled, or the signal
431 * number if this is a kernel fault that can't be handled here.
432 */
433static int __do_page_fault(struct pt_regs *regs, unsigned long address,
434			   unsigned long error_code)
435{
436	struct vm_area_struct * vma;
437	struct mm_struct *mm = current->mm;
438	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
439 	int is_exec = TRAP(regs) == 0x400;
440	int is_user = user_mode(regs);
441	int is_write = page_fault_is_write(error_code);
442	vm_fault_t fault, major = 0;
443	bool must_retry = false;
444	bool kprobe_fault = kprobe_page_fault(regs, 11);
445
446	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
447		return 0;
448
449	if (unlikely(page_fault_is_bad(error_code))) {
450		if (is_user) {
451			_exception(SIGBUS, regs, BUS_OBJERR, address);
452			return 0;
453		}
454		return SIGBUS;
455	}
456
457	/* Additional sanity check(s) */
458	sanity_check_fault(is_write, is_user, error_code, address);
459
460	/*
461	 * The kernel should never take an execute fault nor should it
462	 * take a page fault to a kernel address or a page fault to a user
463	 * address outside of dedicated places
464	 */
465	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
 
 
 
466		return SIGSEGV;
 
467
468	/*
469	 * If we're in an interrupt, have no user context or are running
470	 * in a region with pagefaults disabled then we must not take the fault
471	 */
472	if (unlikely(faulthandler_disabled() || !mm)) {
473		if (is_user)
474			printk_ratelimited(KERN_ERR "Page fault in user mode"
475					   " with faulthandler_disabled()=%d"
476					   " mm=%p\n",
477					   faulthandler_disabled(), mm);
478		return bad_area_nosemaphore(regs, address);
479	}
480
481	/* We restore the interrupt state now */
482	if (!arch_irq_disabled_regs(regs))
483		local_irq_enable();
484
485	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
486
487	if (error_code & DSISR_KEYFAULT)
488		return bad_key_fault_exception(regs, address,
489					       get_mm_addr_key(mm, address));
490
491	/*
492	 * We want to do this outside mmap_sem, because reading code around nip
493	 * can result in fault, which will cause a deadlock when called with
494	 * mmap_sem held
495	 */
496	if (is_user)
497		flags |= FAULT_FLAG_USER;
498	if (is_write)
499		flags |= FAULT_FLAG_WRITE;
500	if (is_exec)
501		flags |= FAULT_FLAG_INSTRUCTION;
502
503	/* When running in the kernel we expect faults to occur only to
504	 * addresses in user space.  All other faults represent errors in the
505	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
506	 * erroneous fault occurring in a code path which already holds mmap_sem
507	 * we will deadlock attempting to validate the fault against the
508	 * address space.  Luckily the kernel only validly references user
509	 * space from well defined areas of code, which are listed in the
510	 * exceptions table.
511	 *
512	 * As the vast majority of faults will be valid we will only perform
513	 * the source reference check when there is a possibility of a deadlock.
514	 * Attempt to lock the address space, if we cannot we then validate the
515	 * source.  If this is invalid we can skip the address space check,
516	 * thus avoiding the deadlock.
517	 */
518	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
519		if (!is_user && !search_exception_tables(regs->nip))
520			return bad_area_nosemaphore(regs, address);
521
522retry:
523		down_read(&mm->mmap_sem);
524	} else {
525		/*
526		 * The above down_read_trylock() might have succeeded in
527		 * which case we'll have missed the might_sleep() from
528		 * down_read():
529		 */
530		might_sleep();
531	}
532
533	vma = find_vma(mm, address);
534	if (unlikely(!vma))
535		return bad_area(regs, address);
536	if (likely(vma->vm_start <= address))
537		goto good_area;
538	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
539		return bad_area(regs, address);
540
541	/* The stack is being expanded, check if it's valid */
542	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
543					 &must_retry))) {
544		if (!must_retry)
545			return bad_area(regs, address);
546
547		up_read(&mm->mmap_sem);
548		if (fault_in_pages_readable((const char __user *)regs->nip,
549					    sizeof(unsigned int)))
550			return bad_area_nosemaphore(regs, address);
551		goto retry;
552	}
553
554	/* Try to expand it */
555	if (unlikely(expand_stack(vma, address)))
556		return bad_area(regs, address);
557
558good_area:
559	if (unlikely(access_error(is_write, is_exec, vma)))
560		return bad_access(regs, address);
561
562	/*
563	 * If for any reason at all we couldn't handle the fault,
564	 * make sure we exit gracefully rather than endlessly redo
565	 * the fault.
566	 */
567	fault = handle_mm_fault(vma, address, flags);
568
569#ifdef CONFIG_PPC_MEM_KEYS
570	/*
571	 * we skipped checking for access error due to key earlier.
572	 * Check that using handle_mm_fault error return.
573	 */
574	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
575		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
576
577		int pkey = vma_pkey(vma);
578
579		up_read(&mm->mmap_sem);
580		return bad_key_fault_exception(regs, address, pkey);
581	}
582#endif /* CONFIG_PPC_MEM_KEYS */
583
584	major |= fault & VM_FAULT_MAJOR;
585
 
 
 
586	/*
587	 * Handle the retry right now, the mmap_sem has been released in that
588	 * case.
589	 */
590	if (unlikely(fault & VM_FAULT_RETRY)) {
591		/* We retry only once */
592		if (flags & FAULT_FLAG_ALLOW_RETRY) {
593			/*
594			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
595			 * of starvation.
596			 */
597			flags &= ~FAULT_FLAG_ALLOW_RETRY;
598			flags |= FAULT_FLAG_TRIED;
599			if (!fatal_signal_pending(current))
600				goto retry;
601		}
602
603		/*
604		 * User mode? Just return to handle the fatal exception otherwise
605		 * return to bad_page_fault
606		 */
607		return is_user ? 0 : SIGBUS;
608	}
609
610	up_read(&current->mm->mmap_sem);
611
612	if (unlikely(fault & VM_FAULT_ERROR))
613		return mm_fault_error(regs, address, fault);
614
615	/*
616	 * Major/minor page fault accounting.
617	 */
618	if (major) {
619		current->maj_flt++;
620		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
621		cmo_account_page_fault();
622	} else {
623		current->min_flt++;
624		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
625	}
626	return 0;
627}
628NOKPROBE_SYMBOL(__do_page_fault);
629
630int do_page_fault(struct pt_regs *regs, unsigned long address,
631		  unsigned long error_code)
632{
633	enum ctx_state prev_state = exception_enter();
634	int rc = __do_page_fault(regs, address, error_code);
635	exception_exit(prev_state);
636	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
637}
638NOKPROBE_SYMBOL(do_page_fault);
 
639
640/*
641 * bad_page_fault is called when we have a bad access from the kernel.
642 * It is called from the DSI and ISI handlers in head.S and from some
643 * of the procedures in traps.c.
644 */
645void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
646{
647	const struct exception_table_entry *entry;
648
649	/* Are we prepared to handle this fault?  */
650	if ((entry = search_exception_tables(regs->nip)) != NULL) {
651		regs->nip = extable_fixup(entry);
652		return;
653	}
654
655	/* kernel has accessed a bad area */
656
657	switch (TRAP(regs)) {
658	case 0x300:
659	case 0x380:
660	case 0xe00:
661		pr_alert("BUG: %s at 0x%08lx\n",
662			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
663			 "Unable to handle kernel data access", regs->dar);
 
664		break;
665	case 0x400:
666	case 0x480:
667		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
668			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
669		break;
670	case 0x600:
671		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
672			 regs->dar);
673		break;
674	default:
675		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
676			 regs->dar);
677		break;
678	}
679	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
680		regs->nip);
681
682	if (task_stack_end_corrupted(current))
683		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
684
685	die("Kernel access of bad area", regs, sig);
686}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 75{
 76	struct mm_struct *mm = current->mm;
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	mmap_read_unlock(mm);
 83
 84	return __bad_area_nosemaphore(regs, address, si_code);
 85}
 86
 87static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 88{
 89	return __bad_area(regs, address, SEGV_MAPERR);
 90}
 91
 92static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 93				    struct vm_area_struct *vma)
 94{
 95	struct mm_struct *mm = current->mm;
 96	int pkey;
 97
 98	/*
 99	 * We don't try to fetch the pkey from page table because reading
100	 * page table without locking doesn't guarantee stable pte value.
101	 * Hence the pkey value that we return to userspace can be different
102	 * from the pkey that actually caused access error.
103	 *
104	 * It does *not* guarantee that the VMA we find here
105	 * was the one that we faulted on.
106	 *
107	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
108	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
109	 * 3. T1   : faults...
110	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
111	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
112	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
113	 *	     faulted on a pte with its pkey=4.
114	 */
115	pkey = vma_pkey(vma);
116
117	mmap_read_unlock(mm);
118
119	/*
120	 * If we are in kernel mode, bail out with a SEGV, this will
121	 * be caught by the assembly which will restore the non-volatile
122	 * registers before calling bad_page_fault()
123	 */
124	if (!user_mode(regs))
125		return SIGSEGV;
126
127	_exception_pkey(regs, address, pkey);
128
129	return 0;
130}
131
132static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133{
134	return __bad_area(regs, address, SEGV_ACCERR);
135}
136
137static int do_sigbus(struct pt_regs *regs, unsigned long address,
138		     vm_fault_t fault)
139{
140	if (!user_mode(regs))
141		return SIGBUS;
142
143	current->thread.trap_nr = BUS_ADRERR;
144#ifdef CONFIG_MEMORY_FAILURE
145	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
146		unsigned int lsb = 0; /* shutup gcc */
147
148		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
149			current->comm, current->pid, address);
150
151		if (fault & VM_FAULT_HWPOISON_LARGE)
152			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
153		if (fault & VM_FAULT_HWPOISON)
154			lsb = PAGE_SHIFT;
155
156		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
157		return 0;
158	}
159
160#endif
161	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
162	return 0;
163}
164
165static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
166				vm_fault_t fault)
167{
168	/*
169	 * Kernel page fault interrupted by SIGKILL. We have no reason to
170	 * continue processing.
171	 */
172	if (fatal_signal_pending(current) && !user_mode(regs))
173		return SIGKILL;
174
175	/* Out of memory */
176	if (fault & VM_FAULT_OOM) {
177		/*
178		 * We ran out of memory, or some other thing happened to us that
179		 * made us unable to handle the page fault gracefully.
180		 */
181		if (!user_mode(regs))
182			return SIGSEGV;
183		pagefault_out_of_memory();
184	} else {
185		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
186			     VM_FAULT_HWPOISON_LARGE))
187			return do_sigbus(regs, addr, fault);
188		else if (fault & VM_FAULT_SIGSEGV)
189			return bad_area_nosemaphore(regs, addr);
190		else
191			BUG();
192	}
193	return 0;
194}
195
196/* Is this a bad kernel fault ? */
197static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
198			     unsigned long address, bool is_write)
199{
200	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
201
202	if (is_exec) {
 
 
203		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
204				    address >= TASK_SIZE ? "exec-protected" : "user",
205				    address,
206				    from_kuid(&init_user_ns, current_uid()));
207
208		// Kernel exec fault is always bad
209		return true;
210	}
211
 
 
 
 
 
 
 
212	// Kernel fault on kernel address is bad
213	if (address >= TASK_SIZE)
214		return true;
215
216	// Read/write fault blocked by KUAP is bad, it can never succeed.
217	if (bad_kuap_fault(regs, address, is_write)) {
218		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
219				    is_write ? "write" : "read", address,
220				    from_kuid(&init_user_ns, current_uid()));
221
222		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
223		if (!search_exception_tables(regs->nip))
224			return true;
225
226		// Read/write fault in a valid region (the exception table search passed
227		// above), but blocked by KUAP is bad, it can never succeed.
228		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
229	}
230
231	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
 
232	return false;
233}
234
235static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
236			      struct vm_area_struct *vma)
237{
238	/*
239	 * Make sure to check the VMA so that we do not perform
240	 * faults just to hit a pkey fault as soon as we fill in a
241	 * page. Only called for current mm, hence foreign == 0
242	 */
243	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244		return true;
245
246	return false;
247}
248
249static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
 
250{
251	/*
252	 * Allow execution from readable areas if the MMU does not
253	 * provide separate controls over reading and executing.
254	 *
255	 * Note: That code used to not be enabled for 4xx/BookE.
256	 * It is now as I/D cache coherency for these is done at
257	 * set_pte_at() time and I see no reason why the test
258	 * below wouldn't be valid on those processors. This -may-
259	 * break programs compiled with a really old ABI though.
260	 */
261	if (is_exec) {
262		return !(vma->vm_flags & VM_EXEC) &&
263			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
264			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
265	}
266
267	if (is_write) {
268		if (unlikely(!(vma->vm_flags & VM_WRITE)))
269			return true;
270		return false;
271	}
272
273	if (unlikely(!vma_is_accessible(vma)))
274		return true;
275	/*
276	 * We should ideally do the vma pkey access check here. But in the
277	 * fault path, handle_mm_fault() also does the same check. To avoid
278	 * these multiple checks, we skip it here and handle access error due
279	 * to pkeys later.
280	 */
281	return false;
282}
283
284#ifdef CONFIG_PPC_SMLPAR
285static inline void cmo_account_page_fault(void)
286{
287	if (firmware_has_feature(FW_FEATURE_CMO)) {
288		u32 page_ins;
289
290		preempt_disable();
291		page_ins = be32_to_cpu(get_lppaca()->page_ins);
292		page_ins += 1 << PAGE_FACTOR;
293		get_lppaca()->page_ins = cpu_to_be32(page_ins);
294		preempt_enable();
295	}
296}
297#else
298static inline void cmo_account_page_fault(void) { }
299#endif /* CONFIG_PPC_SMLPAR */
300
 
301static void sanity_check_fault(bool is_write, bool is_user,
302			       unsigned long error_code, unsigned long address)
303{
304	/*
305	 * Userspace trying to access kernel address, we get PROTFAULT for that.
306	 */
307	if (is_user && address >= TASK_SIZE) {
308		if ((long)address == -1)
309			return;
310
311		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
312				   current->comm, current->pid, address,
313				   from_kuid(&init_user_ns, current_uid()));
314		return;
315	}
316
317	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
318		return;
319
320	/*
321	 * For hash translation mode, we should never get a
322	 * PROTFAULT. Any update to pte to reduce access will result in us
323	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
324	 * fault instead of DSISR_PROTFAULT.
325	 *
326	 * A pte update to relax the access will not result in a hash page table
327	 * entry invalidate and hence can result in DSISR_PROTFAULT.
328	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
329	 * the special !is_write in the below conditional.
330	 *
331	 * For platforms that doesn't supports coherent icache and do support
332	 * per page noexec bit, we do setup things such that we do the
333	 * sync between D/I cache via fault. But that is handled via low level
334	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
335	 * here in such case.
336	 *
337	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
338	 * check should handle those and hence we should fall to the bad_area
339	 * handling correctly.
340	 *
341	 * For embedded with per page exec support that doesn't support coherent
342	 * icache we do get PROTFAULT and we handle that D/I cache sync in
343	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
344	 * is conditional for server MMU.
345	 *
346	 * For radix, we can get prot fault for autonuma case, because radix
347	 * page table will have them marked noaccess for user.
348	 */
349	if (radix_enabled() || is_write)
350		return;
351
352	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
353}
 
 
 
 
354
355/*
356 * Define the correct "is_write" bit in error_code based
357 * on the processor family
358 */
359#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
360#define page_fault_is_write(__err)	((__err) & ESR_DST)
 
361#else
362#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
363#endif
364
365#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
366#define page_fault_is_bad(__err)	(0)
367#elif defined(CONFIG_PPC_8xx)
368#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
369#elif defined(CONFIG_PPC64)
370#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
371#else
372#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
373#endif
 
374
375/*
376 * For 600- and 800-family processors, the error_code parameter is DSISR
377 * for a data fault, SRR1 for an instruction fault.
378 * For 400-family processors the error_code parameter is ESR for a data fault,
379 * 0 for an instruction fault.
380 * For 64-bit processors, the error_code parameter is DSISR for a data access
381 * fault, SRR1 & 0x08000000 for an instruction access fault.
 
 
382 *
383 * The return value is 0 if the fault was handled, or the signal
384 * number if this is a kernel fault that can't be handled here.
385 */
386static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
387			   unsigned long error_code)
388{
389	struct vm_area_struct * vma;
390	struct mm_struct *mm = current->mm;
391	unsigned int flags = FAULT_FLAG_DEFAULT;
392	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
393	int is_user = user_mode(regs);
394	int is_write = page_fault_is_write(error_code);
395	vm_fault_t fault, major = 0;
 
396	bool kprobe_fault = kprobe_page_fault(regs, 11);
397
398	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
399		return 0;
400
401	if (unlikely(page_fault_is_bad(error_code))) {
402		if (is_user) {
403			_exception(SIGBUS, regs, BUS_OBJERR, address);
404			return 0;
405		}
406		return SIGBUS;
407	}
408
409	/* Additional sanity check(s) */
410	sanity_check_fault(is_write, is_user, error_code, address);
411
412	/*
413	 * The kernel should never take an execute fault nor should it
414	 * take a page fault to a kernel address or a page fault to a user
415	 * address outside of dedicated places
416	 */
417	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
418		if (kfence_handle_page_fault(address, is_write, regs))
419			return 0;
420
421		return SIGSEGV;
422	}
423
424	/*
425	 * If we're in an interrupt, have no user context or are running
426	 * in a region with pagefaults disabled then we must not take the fault
427	 */
428	if (unlikely(faulthandler_disabled() || !mm)) {
429		if (is_user)
430			printk_ratelimited(KERN_ERR "Page fault in user mode"
431					   " with faulthandler_disabled()=%d"
432					   " mm=%p\n",
433					   faulthandler_disabled(), mm);
434		return bad_area_nosemaphore(regs, address);
435	}
436
437	interrupt_cond_local_irq_enable(regs);
 
 
438
439	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
440
 
 
 
 
441	/*
442	 * We want to do this outside mmap_lock, because reading code around nip
443	 * can result in fault, which will cause a deadlock when called with
444	 * mmap_lock held
445	 */
446	if (is_user)
447		flags |= FAULT_FLAG_USER;
448	if (is_write)
449		flags |= FAULT_FLAG_WRITE;
450	if (is_exec)
451		flags |= FAULT_FLAG_INSTRUCTION;
452
453	/* When running in the kernel we expect faults to occur only to
454	 * addresses in user space.  All other faults represent errors in the
455	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
456	 * erroneous fault occurring in a code path which already holds mmap_lock
457	 * we will deadlock attempting to validate the fault against the
458	 * address space.  Luckily the kernel only validly references user
459	 * space from well defined areas of code, which are listed in the
460	 * exceptions table.
461	 *
462	 * As the vast majority of faults will be valid we will only perform
463	 * the source reference check when there is a possibility of a deadlock.
464	 * Attempt to lock the address space, if we cannot we then validate the
465	 * source.  If this is invalid we can skip the address space check,
466	 * thus avoiding the deadlock.
467	 */
468	if (unlikely(!mmap_read_trylock(mm))) {
469		if (!is_user && !search_exception_tables(regs->nip))
470			return bad_area_nosemaphore(regs, address);
471
472retry:
473		mmap_read_lock(mm);
474	} else {
475		/*
476		 * The above down_read_trylock() might have succeeded in
477		 * which case we'll have missed the might_sleep() from
478		 * down_read():
479		 */
480		might_sleep();
481	}
482
483	vma = find_vma(mm, address);
484	if (unlikely(!vma))
485		return bad_area(regs, address);
 
 
 
 
486
487	if (unlikely(vma->vm_start > address)) {
488		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
 
 
489			return bad_area(regs, address);
490
491		if (unlikely(expand_stack(vma, address)))
492			return bad_area(regs, address);
 
 
 
493	}
494
495	if (unlikely(access_pkey_error(is_write, is_exec,
496				       (error_code & DSISR_KEYFAULT), vma)))
497		return bad_access_pkey(regs, address, vma);
498
 
499	if (unlikely(access_error(is_write, is_exec, vma)))
500		return bad_access(regs, address);
501
502	/*
503	 * If for any reason at all we couldn't handle the fault,
504	 * make sure we exit gracefully rather than endlessly redo
505	 * the fault.
506	 */
507	fault = handle_mm_fault(vma, address, flags, regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508
509	major |= fault & VM_FAULT_MAJOR;
510
511	if (fault_signal_pending(fault, regs))
512		return user_mode(regs) ? 0 : SIGBUS;
513
514	/*
515	 * Handle the retry right now, the mmap_lock has been released in that
516	 * case.
517	 */
518	if (unlikely(fault & VM_FAULT_RETRY)) {
 
519		if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
 
 
 
520			flags |= FAULT_FLAG_TRIED;
521			goto retry;
 
522		}
 
 
 
 
 
 
523	}
524
525	mmap_read_unlock(current->mm);
526
527	if (unlikely(fault & VM_FAULT_ERROR))
528		return mm_fault_error(regs, address, fault);
529
530	/*
531	 * Major/minor page fault accounting.
532	 */
533	if (major)
 
 
534		cmo_account_page_fault();
535
 
 
 
536	return 0;
537}
538NOKPROBE_SYMBOL(___do_page_fault);
539
540static __always_inline void __do_page_fault(struct pt_regs *regs)
 
541{
542	long err;
543
544	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
545	if (unlikely(err))
546		bad_page_fault(regs, err);
547}
548
549DEFINE_INTERRUPT_HANDLER(do_page_fault)
550{
551	__do_page_fault(regs);
552}
553
554#ifdef CONFIG_PPC_BOOK3S_64
555/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
556void hash__do_page_fault(struct pt_regs *regs)
557{
558	__do_page_fault(regs);
559}
560NOKPROBE_SYMBOL(hash__do_page_fault);
561#endif
562
563/*
564 * bad_page_fault is called when we have a bad access from the kernel.
565 * It is called from the DSI and ISI handlers in head.S and from some
566 * of the procedures in traps.c.
567 */
568static void __bad_page_fault(struct pt_regs *regs, int sig)
569{
570	int is_write = page_fault_is_write(regs->dsisr);
 
 
 
 
 
 
571
572	/* kernel has accessed a bad area */
573
574	switch (TRAP(regs)) {
575	case INTERRUPT_DATA_STORAGE:
576	case INTERRUPT_DATA_SEGMENT:
577	case INTERRUPT_H_DATA_STORAGE:
578		pr_alert("BUG: %s on %s at 0x%08lx\n",
579			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
580			 "Unable to handle kernel data access",
581			 is_write ? "write" : "read", regs->dar);
582		break;
583	case INTERRUPT_INST_STORAGE:
584	case INTERRUPT_INST_SEGMENT:
585		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
586			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
587		break;
588	case INTERRUPT_ALIGNMENT:
589		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
590			 regs->dar);
591		break;
592	default:
593		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
594			 regs->dar);
595		break;
596	}
597	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
598		regs->nip);
599
600	if (task_stack_end_corrupted(current))
601		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
602
603	die("Kernel access of bad area", regs, sig);
604}
605
606void bad_page_fault(struct pt_regs *regs, int sig)
607{
608	const struct exception_table_entry *entry;
609
610	/* Are we prepared to handle this fault?  */
611	entry = search_exception_tables(instruction_pointer(regs));
612	if (entry)
613		instruction_pointer_set(regs, extable_fixup(entry));
614	else
615		__bad_page_fault(regs, sig);
616}
617
618#ifdef CONFIG_PPC_BOOK3S_64
619DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
620{
621	bad_page_fault(regs, SIGSEGV);
622}
623#endif