Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 
 
 
 
 
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35
 36#include <asm/firmware.h>
 37#include <asm/page.h>
 38#include <asm/pgtable.h>
 39#include <asm/mmu.h>
 40#include <asm/mmu_context.h>
 
 41#include <asm/siginfo.h>
 42#include <asm/debug.h>
 43#include <asm/kup.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45/*
 46 * Check whether the instruction inst is a store using
 47 * an update addressing form which will update r1.
 48 */
 49static bool store_updates_sp(unsigned int inst)
 50{
 
 
 
 
 51	/* check for 1 in the rA field */
 52	if (((inst >> 16) & 0x1f) != 1)
 53		return false;
 54	/* check major opcode */
 55	switch (inst >> 26) {
 56	case OP_STWU:
 57	case OP_STBU:
 58	case OP_STHU:
 59	case OP_STFSU:
 60	case OP_STFDU:
 61		return true;
 62	case OP_STD:	/* std or stdu */
 63		return (inst & 3) == 1;
 64	case OP_31:
 65		/* check minor opcode */
 66		switch ((inst >> 1) & 0x3ff) {
 67		case OP_31_XOP_STDUX:
 68		case OP_31_XOP_STWUX:
 69		case OP_31_XOP_STBUX:
 70		case OP_31_XOP_STHUX:
 71		case OP_31_XOP_STFSUX:
 72		case OP_31_XOP_STFDUX:
 73			return true;
 74		}
 75	}
 76	return false;
 77}
 78/*
 79 * do_page_fault error handling helpers
 80 */
 81
 82static int
 83__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 84{
 85	/*
 86	 * If we are in kernel mode, bail out with a SEGV, this will
 87	 * be caught by the assembly which will restore the non-volatile
 88	 * registers before calling bad_page_fault()
 89	 */
 90	if (!user_mode(regs))
 91		return SIGSEGV;
 92
 93	_exception(SIGSEGV, regs, si_code, address);
 94
 95	return 0;
 96}
 97
 98static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 99{
100	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
101}
102
103static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
104{
105	struct mm_struct *mm = current->mm;
106
107	/*
108	 * Something tried to access memory that isn't in our memory map..
109	 * Fix it, but check if it's kernel or user first..
110	 */
111	up_read(&mm->mmap_sem);
112
113	return __bad_area_nosemaphore(regs, address, si_code);
114}
115
116static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117{
118	return __bad_area(regs, address, SEGV_MAPERR);
119}
120
121static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
122				    int pkey)
123{
124	/*
125	 * If we are in kernel mode, bail out with a SEGV, this will
126	 * be caught by the assembly which will restore the non-volatile
127	 * registers before calling bad_page_fault()
128	 */
129	if (!user_mode(regs))
130		return SIGSEGV;
131
132	_exception_pkey(regs, address, pkey);
133
134	return 0;
135}
136
137static noinline int bad_access(struct pt_regs *regs, unsigned long address)
138{
139	return __bad_area(regs, address, SEGV_ACCERR);
140}
141
142static int do_sigbus(struct pt_regs *regs, unsigned long address,
143		     vm_fault_t fault)
144{
145	if (!user_mode(regs))
146		return SIGBUS;
147
148	current->thread.trap_nr = BUS_ADRERR;
 
 
 
 
149#ifdef CONFIG_MEMORY_FAILURE
150	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
151		unsigned int lsb = 0; /* shutup gcc */
152
153		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
154			current->comm, current->pid, address);
155
156		if (fault & VM_FAULT_HWPOISON_LARGE)
157			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
158		if (fault & VM_FAULT_HWPOISON)
159			lsb = PAGE_SHIFT;
160
161		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
162		return 0;
163	}
164
 
 
 
 
165#endif
166	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
167	return 0;
 
168}
169
170static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
171				vm_fault_t fault)
172{
173	/*
174	 * Kernel page fault interrupted by SIGKILL. We have no reason to
175	 * continue processing.
176	 */
177	if (fatal_signal_pending(current) && !user_mode(regs))
178		return SIGKILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
180	/* Out of memory */
181	if (fault & VM_FAULT_OOM) {
 
 
182		/*
183		 * We ran out of memory, or some other thing happened to us that
184		 * made us unable to handle the page fault gracefully.
185		 */
186		if (!user_mode(regs))
187			return SIGSEGV;
188		pagefault_out_of_memory();
189	} else {
190		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
191			     VM_FAULT_HWPOISON_LARGE))
192			return do_sigbus(regs, addr, fault);
193		else if (fault & VM_FAULT_SIGSEGV)
194			return bad_area_nosemaphore(regs, addr);
195		else
196			BUG();
197	}
198	return 0;
199}
200
201/* Is this a bad kernel fault ? */
202static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
203			     unsigned long address, bool is_write)
204{
205	int is_exec = TRAP(regs) == 0x400;
206
207	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
208	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
209				      DSISR_PROTFAULT))) {
210		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
211				    address >= TASK_SIZE ? "exec-protected" : "user",
212				    address,
213				    from_kuid(&init_user_ns, current_uid()));
214
215		// Kernel exec fault is always bad
216		return true;
217	}
218
219	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
220	    !search_exception_tables(regs->nip)) {
221		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
222				    address,
223				    from_kuid(&init_user_ns, current_uid()));
224	}
225
226	// Kernel fault on kernel address is bad
227	if (address >= TASK_SIZE)
228		return true;
229
230	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
231	if (!search_exception_tables(regs->nip))
232		return true;
233
234	// Read/write fault in a valid region (the exception table search passed
235	// above), but blocked by KUAP is bad, it can never succeed.
236	if (bad_kuap_fault(regs, is_write))
237		return true;
238
239	// What's left? Kernel fault on user in well defined regions (extable
240	// matched), and allowed by KUAP in the faulting context.
241	return false;
242}
243
244static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
245				struct vm_area_struct *vma, unsigned int flags,
246				bool *must_retry)
247{
248	/*
249	 * N.B. The POWER/Open ABI allows programs to access up to
250	 * 288 bytes below the stack pointer.
251	 * The kernel signal delivery code writes up to about 1.5kB
252	 * below the stack pointer (r1) before decrementing it.
253	 * The exec code can write slightly over 640kB to the stack
254	 * before setting the user r1.  Thus we allow the stack to
255	 * expand to 1MB without further checks.
256	 */
257	if (address + 0x100000 < vma->vm_end) {
258		unsigned int __user *nip = (unsigned int __user *)regs->nip;
259		/* get user regs even if this fault is in kernel mode */
260		struct pt_regs *uregs = current->thread.regs;
261		if (uregs == NULL)
262			return true;
263
264		/*
265		 * A user-mode access to an address a long way below
266		 * the stack pointer is only valid if the instruction
267		 * is one which would update the stack pointer to the
268		 * address accessed if the instruction completed,
269		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
270		 * (or the byte, halfword, float or double forms).
271		 *
272		 * If we don't check this then any write to the area
273		 * between the last mapped region and the stack will
274		 * expand the stack rather than segfaulting.
275		 */
276		if (address + 2048 >= uregs->gpr[1])
277			return false;
278
279		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
280		    access_ok(nip, sizeof(*nip))) {
281			unsigned int inst;
282			int res;
283
284			pagefault_disable();
285			res = __get_user_inatomic(inst, nip);
286			pagefault_enable();
287			if (!res)
288				return !store_updates_sp(inst);
289			*must_retry = true;
290		}
291		return true;
292	}
293	return false;
294}
295
296static bool access_error(bool is_write, bool is_exec,
297			 struct vm_area_struct *vma)
298{
299	/*
300	 * Allow execution from readable areas if the MMU does not
301	 * provide separate controls over reading and executing.
302	 *
303	 * Note: That code used to not be enabled for 4xx/BookE.
304	 * It is now as I/D cache coherency for these is done at
305	 * set_pte_at() time and I see no reason why the test
306	 * below wouldn't be valid on those processors. This -may-
307	 * break programs compiled with a really old ABI though.
308	 */
309	if (is_exec) {
310		return !(vma->vm_flags & VM_EXEC) &&
311			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
312			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
313	}
314
315	if (is_write) {
316		if (unlikely(!(vma->vm_flags & VM_WRITE)))
317			return true;
318		return false;
319	}
320
321	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
322		return true;
323	/*
324	 * We should ideally do the vma pkey access check here. But in the
325	 * fault path, handle_mm_fault() also does the same check. To avoid
326	 * these multiple checks, we skip it here and handle access error due
327	 * to pkeys later.
328	 */
329	return false;
330}
331
332#ifdef CONFIG_PPC_SMLPAR
333static inline void cmo_account_page_fault(void)
334{
335	if (firmware_has_feature(FW_FEATURE_CMO)) {
336		u32 page_ins;
337
338		preempt_disable();
339		page_ins = be32_to_cpu(get_lppaca()->page_ins);
340		page_ins += 1 << PAGE_FACTOR;
341		get_lppaca()->page_ins = cpu_to_be32(page_ins);
342		preempt_enable();
343	}
344}
345#else
346static inline void cmo_account_page_fault(void) { }
347#endif /* CONFIG_PPC_SMLPAR */
348
349#ifdef CONFIG_PPC_BOOK3S
350static void sanity_check_fault(bool is_write, bool is_user,
351			       unsigned long error_code, unsigned long address)
352{
353	/*
354	 * Userspace trying to access kernel address, we get PROTFAULT for that.
355	 */
356	if (is_user && address >= TASK_SIZE) {
357		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
358				   current->comm, current->pid, address,
359				   from_kuid(&init_user_ns, current_uid()));
360		return;
361	}
362
363	/*
364	 * For hash translation mode, we should never get a
365	 * PROTFAULT. Any update to pte to reduce access will result in us
366	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
367	 * fault instead of DSISR_PROTFAULT.
368	 *
369	 * A pte update to relax the access will not result in a hash page table
370	 * entry invalidate and hence can result in DSISR_PROTFAULT.
371	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
372	 * the special !is_write in the below conditional.
373	 *
374	 * For platforms that doesn't supports coherent icache and do support
375	 * per page noexec bit, we do setup things such that we do the
376	 * sync between D/I cache via fault. But that is handled via low level
377	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
378	 * here in such case.
379	 *
380	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
381	 * check should handle those and hence we should fall to the bad_area
382	 * handling correctly.
383	 *
384	 * For embedded with per page exec support that doesn't support coherent
385	 * icache we do get PROTFAULT and we handle that D/I cache sync in
386	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
387	 * is conditional for server MMU.
388	 *
389	 * For radix, we can get prot fault for autonuma case, because radix
390	 * page table will have them marked noaccess for user.
391	 */
392	if (radix_enabled() || is_write)
393		return;
394
395	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 
 
396}
397#else
398static void sanity_check_fault(bool is_write, bool is_user,
399			       unsigned long error_code, unsigned long address) { }
400#endif /* CONFIG_PPC_BOOK3S */
401
402/*
403 * Define the correct "is_write" bit in error_code based
404 * on the processor family
405 */
406#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
407#define page_fault_is_write(__err)	((__err) & ESR_DST)
408#define page_fault_is_bad(__err)	(0)
409#else
410#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
411#if defined(CONFIG_PPC_8xx)
412#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
413#elif defined(CONFIG_PPC64)
414#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
415#else
416#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
417#endif
418#endif
419
420/*
421 * For 600- and 800-family processors, the error_code parameter is DSISR
422 * for a data fault, SRR1 for an instruction fault. For 400-family processors
423 * the error_code parameter is ESR for a data fault, 0 for an instruction
424 * fault.
425 * For 64-bit processors, the error_code parameter is
426 *  - DSISR for a non-SLB data access fault,
427 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
428 *  - 0 any SLB fault.
429 *
430 * The return value is 0 if the fault was handled, or the signal
431 * number if this is a kernel fault that can't be handled here.
432 */
433static int __do_page_fault(struct pt_regs *regs, unsigned long address,
434			   unsigned long error_code)
435{
 
436	struct vm_area_struct * vma;
437	struct mm_struct *mm = current->mm;
438	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
439 	int is_exec = TRAP(regs) == 0x400;
440	int is_user = user_mode(regs);
441	int is_write = page_fault_is_write(error_code);
442	vm_fault_t fault, major = 0;
443	bool must_retry = false;
444	bool kprobe_fault = kprobe_page_fault(regs, 11);
445
446	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
447		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
448
449	if (unlikely(page_fault_is_bad(error_code))) {
450		if (is_user) {
451			_exception(SIGBUS, regs, BUS_OBJERR, address);
452			return 0;
453		}
454		return SIGBUS;
 
 
 
 
455	}
 
456
457	/* Additional sanity check(s) */
458	sanity_check_fault(is_write, is_user, error_code, address);
459
460	/*
461	 * The kernel should never take an execute fault nor should it
462	 * take a page fault to a kernel address or a page fault to a user
463	 * address outside of dedicated places
464	 */
465	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
466		return SIGSEGV;
467
468	/*
469	 * If we're in an interrupt, have no user context or are running
470	 * in a region with pagefaults disabled then we must not take the fault
471	 */
472	if (unlikely(faulthandler_disabled() || !mm)) {
473		if (is_user)
474			printk_ratelimited(KERN_ERR "Page fault in user mode"
475					   " with faulthandler_disabled()=%d"
476					   " mm=%p\n",
477					   faulthandler_disabled(), mm);
478		return bad_area_nosemaphore(regs, address);
479	}
480
 
 
 
 
 
 
 
 
 
481	/* We restore the interrupt state now */
482	if (!arch_irq_disabled_regs(regs))
483		local_irq_enable();
484
485	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
486
487	if (error_code & DSISR_KEYFAULT)
488		return bad_key_fault_exception(regs, address,
489					       get_mm_addr_key(mm, address));
490
491	/*
492	 * We want to do this outside mmap_sem, because reading code around nip
493	 * can result in fault, which will cause a deadlock when called with
494	 * mmap_sem held
495	 */
496	if (is_user)
 
 
 
497		flags |= FAULT_FLAG_USER;
498	if (is_write)
499		flags |= FAULT_FLAG_WRITE;
500	if (is_exec)
501		flags |= FAULT_FLAG_INSTRUCTION;
502
503	/* When running in the kernel we expect faults to occur only to
504	 * addresses in user space.  All other faults represent errors in the
505	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
506	 * erroneous fault occurring in a code path which already holds mmap_sem
507	 * we will deadlock attempting to validate the fault against the
508	 * address space.  Luckily the kernel only validly references user
509	 * space from well defined areas of code, which are listed in the
510	 * exceptions table.
511	 *
512	 * As the vast majority of faults will be valid we will only perform
513	 * the source reference check when there is a possibility of a deadlock.
514	 * Attempt to lock the address space, if we cannot we then validate the
515	 * source.  If this is invalid we can skip the address space check,
516	 * thus avoiding the deadlock.
517	 */
518	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
519		if (!is_user && !search_exception_tables(regs->nip))
520			return bad_area_nosemaphore(regs, address);
521
522retry:
523		down_read(&mm->mmap_sem);
524	} else {
525		/*
526		 * The above down_read_trylock() might have succeeded in
527		 * which case we'll have missed the might_sleep() from
528		 * down_read():
529		 */
530		might_sleep();
531	}
532
533	vma = find_vma(mm, address);
534	if (unlikely(!vma))
535		return bad_area(regs, address);
536	if (likely(vma->vm_start <= address))
537		goto good_area;
538	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
539		return bad_area(regs, address);
540
541	/* The stack is being expanded, check if it's valid */
542	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
543					 &must_retry))) {
544		if (!must_retry)
545			return bad_area(regs, address);
546
547		up_read(&mm->mmap_sem);
548		if (fault_in_pages_readable((const char __user *)regs->nip,
549					    sizeof(unsigned int)))
550			return bad_area_nosemaphore(regs, address);
551		goto retry;
552	}
553
554	/* Try to expand it */
555	if (unlikely(expand_stack(vma, address)))
556		return bad_area(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
558good_area:
559	if (unlikely(access_error(is_write, is_exec, vma)))
560		return bad_access(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561
562	/*
563	 * If for any reason at all we couldn't handle the fault,
564	 * make sure we exit gracefully rather than endlessly redo
565	 * the fault.
566	 */
567	fault = handle_mm_fault(vma, address, flags);
568
569#ifdef CONFIG_PPC_MEM_KEYS
570	/*
571	 * we skipped checking for access error due to key earlier.
572	 * Check that using handle_mm_fault error return.
573	 */
574	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
575		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
576
577		int pkey = vma_pkey(vma);
578
579		up_read(&mm->mmap_sem);
580		return bad_key_fault_exception(regs, address, pkey);
581	}
582#endif /* CONFIG_PPC_MEM_KEYS */
583
584	major |= fault & VM_FAULT_MAJOR;
585
586	/*
587	 * Handle the retry right now, the mmap_sem has been released in that
588	 * case.
 
589	 */
590	if (unlikely(fault & VM_FAULT_RETRY)) {
591		/* We retry only once */
592		if (flags & FAULT_FLAG_ALLOW_RETRY) {
593			/*
594			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
595			 * of starvation.
596			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597			flags &= ~FAULT_FLAG_ALLOW_RETRY;
598			flags |= FAULT_FLAG_TRIED;
599			if (!fatal_signal_pending(current))
600				goto retry;
601		}
602
603		/*
604		 * User mode? Just return to handle the fatal exception otherwise
605		 * return to bad_page_fault
606		 */
607		return is_user ? 0 : SIGBUS;
608	}
609
610	up_read(&current->mm->mmap_sem);
 
611
612	if (unlikely(fault & VM_FAULT_ERROR))
613		return mm_fault_error(regs, address, fault);
614
615	/*
616	 * Major/minor page fault accounting.
617	 */
618	if (major) {
619		current->maj_flt++;
620		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
621		cmo_account_page_fault();
622	} else {
623		current->min_flt++;
624		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
625	}
626	return 0;
627}
628NOKPROBE_SYMBOL(__do_page_fault);
629
630int do_page_fault(struct pt_regs *regs, unsigned long address,
631		  unsigned long error_code)
632{
633	enum ctx_state prev_state = exception_enter();
634	int rc = __do_page_fault(regs, address, error_code);
 
 
 
635	exception_exit(prev_state);
636	return rc;
 
637}
638NOKPROBE_SYMBOL(do_page_fault);
639
640/*
641 * bad_page_fault is called when we have a bad access from the kernel.
642 * It is called from the DSI and ISI handlers in head.S and from some
643 * of the procedures in traps.c.
644 */
645void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
646{
647	const struct exception_table_entry *entry;
648
649	/* Are we prepared to handle this fault?  */
650	if ((entry = search_exception_tables(regs->nip)) != NULL) {
651		regs->nip = extable_fixup(entry);
652		return;
653	}
654
655	/* kernel has accessed a bad area */
656
657	switch (TRAP(regs)) {
658	case 0x300:
659	case 0x380:
660	case 0xe00:
661		pr_alert("BUG: %s at 0x%08lx\n",
662			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
663			 "Unable to handle kernel data access", regs->dar);
664		break;
665	case 0x400:
666	case 0x480:
667		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
668			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
669		break;
670	case 0x600:
671		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
672			 regs->dar);
673		break;
674	default:
675		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
676			 regs->dar);
677		break;
678	}
679	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
680		regs->nip);
681
682	if (task_stack_end_corrupted(current))
683		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
684
685	die("Kernel access of bad area", regs, sig);
686}
v4.6
 
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Derived from "arch/i386/mm/fault.c"
  6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7 *
  8 *  Modified by Cort Dougan and Paul Mackerras.
  9 *
 10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 11 *
 12 *  This program is free software; you can redistribute it and/or
 13 *  modify it under the terms of the GNU General Public License
 14 *  as published by the Free Software Foundation; either version
 15 *  2 of the License, or (at your option) any later version.
 16 */
 17
 18#include <linux/signal.h>
 19#include <linux/sched.h>
 
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/string.h>
 23#include <linux/types.h>
 
 24#include <linux/ptrace.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/highmem.h>
 29#include <linux/module.h>
 30#include <linux/kprobes.h>
 31#include <linux/kdebug.h>
 32#include <linux/perf_event.h>
 33#include <linux/ratelimit.h>
 34#include <linux/context_tracking.h>
 35#include <linux/hugetlb.h>
 36#include <linux/uaccess.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/page.h>
 40#include <asm/pgtable.h>
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 43#include <asm/tlbflush.h>
 44#include <asm/siginfo.h>
 45#include <asm/debug.h>
 46
 47#include "icswx.h"
 48
 49#ifdef CONFIG_KPROBES
 50static inline int notify_page_fault(struct pt_regs *regs)
 51{
 52	int ret = 0;
 53
 54	/* kprobe_running() needs smp_processor_id() */
 55	if (!user_mode(regs)) {
 56		preempt_disable();
 57		if (kprobe_running() && kprobe_fault_handler(regs, 11))
 58			ret = 1;
 59		preempt_enable();
 60	}
 61
 62	return ret;
 63}
 64#else
 65static inline int notify_page_fault(struct pt_regs *regs)
 66{
 67	return 0;
 68}
 69#endif
 70
 71/*
 72 * Check whether the instruction at regs->nip is a store using
 73 * an update addressing form which will update r1.
 74 */
 75static int store_updates_sp(struct pt_regs *regs)
 76{
 77	unsigned int inst;
 78
 79	if (get_user(inst, (unsigned int __user *)regs->nip))
 80		return 0;
 81	/* check for 1 in the rA field */
 82	if (((inst >> 16) & 0x1f) != 1)
 83		return 0;
 84	/* check major opcode */
 85	switch (inst >> 26) {
 86	case 37:	/* stwu */
 87	case 39:	/* stbu */
 88	case 45:	/* sthu */
 89	case 53:	/* stfsu */
 90	case 55:	/* stfdu */
 91		return 1;
 92	case 62:	/* std or stdu */
 93		return (inst & 3) == 1;
 94	case 31:
 95		/* check minor opcode */
 96		switch ((inst >> 1) & 0x3ff) {
 97		case 181:	/* stdux */
 98		case 183:	/* stwux */
 99		case 247:	/* stbux */
100		case 439:	/* sthux */
101		case 695:	/* stfsux */
102		case 759:	/* stfdux */
103			return 1;
104		}
105	}
106	return 0;
107}
108/*
109 * do_page_fault error handling helpers
110 */
111
112#define MM_FAULT_RETURN		0
113#define MM_FAULT_CONTINUE	-1
114#define MM_FAULT_ERR(sig)	(sig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
116static int do_sigbus(struct pt_regs *regs, unsigned long address,
117		     unsigned int fault)
 
 
 
 
 
 
 
 
 
 
 
 
118{
119	siginfo_t info;
120	unsigned int lsb = 0;
121
122	up_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
 
 
124	if (!user_mode(regs))
125		return MM_FAULT_ERR(SIGBUS);
126
127	current->thread.trap_nr = BUS_ADRERR;
128	info.si_signo = SIGBUS;
129	info.si_errno = 0;
130	info.si_code = BUS_ADRERR;
131	info.si_addr = (void __user *)address;
132#ifdef CONFIG_MEMORY_FAILURE
133	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 
 
134		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
135			current->comm, current->pid, address);
136		info.si_code = BUS_MCEERR_AR;
 
 
 
 
 
 
 
137	}
138
139	if (fault & VM_FAULT_HWPOISON_LARGE)
140		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
141	if (fault & VM_FAULT_HWPOISON)
142		lsb = PAGE_SHIFT;
143#endif
144	info.si_addr_lsb = lsb;
145	force_sig_info(SIGBUS, &info, current);
146	return MM_FAULT_RETURN;
147}
148
149static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
 
150{
151	/*
152	 * Pagefault was interrupted by SIGKILL. We have no reason to
153	 * continue the pagefault.
154	 */
155	if (fatal_signal_pending(current)) {
156		/*
157		 * If we have retry set, the mmap semaphore will have
158		 * alrady been released in __lock_page_or_retry(). Else
159		 * we release it now.
160		 */
161		if (!(fault & VM_FAULT_RETRY))
162			up_read(&current->mm->mmap_sem);
163		/* Coming from kernel, we need to deal with uaccess fixups */
164		if (user_mode(regs))
165			return MM_FAULT_RETURN;
166		return MM_FAULT_ERR(SIGKILL);
167	}
168
169	/* No fault: be happy */
170	if (!(fault & VM_FAULT_ERROR))
171		return MM_FAULT_CONTINUE;
172
173	/* Out of memory */
174	if (fault & VM_FAULT_OOM) {
175		up_read(&current->mm->mmap_sem);
176
177		/*
178		 * We ran out of memory, or some other thing happened to us that
179		 * made us unable to handle the page fault gracefully.
180		 */
181		if (!user_mode(regs))
182			return MM_FAULT_ERR(SIGKILL);
183		pagefault_out_of_memory();
184		return MM_FAULT_RETURN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185	}
186
187	if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
188		return do_sigbus(regs, addr, fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
190	/* We don't understand the fault code, this is fatal */
191	BUG();
192	return MM_FAULT_CONTINUE;
193}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
195/*
196 * For 600- and 800-family processors, the error_code parameter is DSISR
197 * for a data fault, SRR1 for an instruction fault. For 400-family processors
198 * the error_code parameter is ESR for a data fault, 0 for an instruction
199 * fault.
200 * For 64-bit processors, the error_code parameter is
201 *  - DSISR for a non-SLB data access fault,
202 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
203 *  - 0 any SLB fault.
204 *
205 * The return value is 0 if the fault was handled, or the signal
206 * number if this is a kernel fault that can't be handled here.
207 */
208int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
209			    unsigned long error_code)
210{
211	enum ctx_state prev_state = exception_enter();
212	struct vm_area_struct * vma;
213	struct mm_struct *mm = current->mm;
214	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
215	int code = SEGV_MAPERR;
216	int is_write = 0;
217	int trap = TRAP(regs);
218 	int is_exec = trap == 0x400;
219	int fault;
220	int rc = 0, store_update_sp = 0;
221
222#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
223	/*
224	 * Fortunately the bit assignments in SRR1 for an instruction
225	 * fault and DSISR for a data fault are mostly the same for the
226	 * bits we are interested in.  But there are some bits which
227	 * indicate errors in DSISR but can validly be set in SRR1.
228	 */
229	if (trap == 0x400)
230		error_code &= 0x48200000;
231	else
232		is_write = error_code & DSISR_ISSTORE;
233#else
234	is_write = error_code & ESR_DST;
235#endif /* CONFIG_4xx || CONFIG_BOOKE */
236
237#ifdef CONFIG_PPC_ICSWX
238	/*
239	 * we need to do this early because this "data storage
240	 * interrupt" does not update the DAR/DEAR so we don't want to
241	 * look at it
242	 */
243	if (error_code & ICSWX_DSI_UCT) {
244		rc = acop_handle_fault(regs, address, error_code);
245		if (rc)
246			goto bail;
247	}
248#endif /* CONFIG_PPC_ICSWX */
249
250	if (notify_page_fault(regs))
251		goto bail;
252
253	if (unlikely(debugger_fault_handler(regs)))
254		goto bail;
 
 
 
 
 
255
256	/* On a kernel SLB miss we can only check for a valid exception entry */
257	if (!user_mode(regs) && (address >= TASK_SIZE)) {
258		rc = SIGSEGV;
259		goto bail;
 
 
 
 
 
 
 
260	}
261
262#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
263			     defined(CONFIG_PPC_BOOK3S_64))
264  	if (error_code & DSISR_DABRMATCH) {
265		/* breakpoint match */
266		do_break(regs, address, error_code);
267		goto bail;
268	}
269#endif
270
271	/* We restore the interrupt state now */
272	if (!arch_irq_disabled_regs(regs))
273		local_irq_enable();
274
275	if (faulthandler_disabled() || mm == NULL) {
276		if (!user_mode(regs)) {
277			rc = SIGSEGV;
278			goto bail;
279		}
280		/* faulthandler_disabled() in user mode is really bad,
281		   as is current->mm == NULL. */
282		printk(KERN_EMERG "Page fault in user mode with "
283		       "faulthandler_disabled() = %d mm = %p\n",
284		       faulthandler_disabled(), mm);
285		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
286		       regs->nip, regs->msr);
287		die("Weird page fault", regs, SIGSEGV);
288	}
289
290	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
 
291
292	/*
293	 * We want to do this outside mmap_sem, because reading code around nip
294	 * can result in fault, which will cause a deadlock when called with
295	 * mmap_sem held
296	 */
297	if (user_mode(regs))
298		store_update_sp = store_updates_sp(regs);
299
300	if (user_mode(regs))
301		flags |= FAULT_FLAG_USER;
 
 
 
 
302
303	/* When running in the kernel we expect faults to occur only to
304	 * addresses in user space.  All other faults represent errors in the
305	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
306	 * erroneous fault occurring in a code path which already holds mmap_sem
307	 * we will deadlock attempting to validate the fault against the
308	 * address space.  Luckily the kernel only validly references user
309	 * space from well defined areas of code, which are listed in the
310	 * exceptions table.
311	 *
312	 * As the vast majority of faults will be valid we will only perform
313	 * the source reference check when there is a possibility of a deadlock.
314	 * Attempt to lock the address space, if we cannot we then validate the
315	 * source.  If this is invalid we can skip the address space check,
316	 * thus avoiding the deadlock.
317	 */
318	if (!down_read_trylock(&mm->mmap_sem)) {
319		if (!user_mode(regs) && !search_exception_tables(regs->nip))
320			goto bad_area_nosemaphore;
321
322retry:
323		down_read(&mm->mmap_sem);
324	} else {
325		/*
326		 * The above down_read_trylock() might have succeeded in
327		 * which case we'll have missed the might_sleep() from
328		 * down_read():
329		 */
330		might_sleep();
331	}
332
333	vma = find_vma(mm, address);
334	if (!vma)
335		goto bad_area;
336	if (vma->vm_start <= address)
337		goto good_area;
338	if (!(vma->vm_flags & VM_GROWSDOWN))
339		goto bad_area;
340
341	/*
342	 * N.B. The POWER/Open ABI allows programs to access up to
343	 * 288 bytes below the stack pointer.
344	 * The kernel signal delivery code writes up to about 1.5kB
345	 * below the stack pointer (r1) before decrementing it.
346	 * The exec code can write slightly over 640kB to the stack
347	 * before setting the user r1.  Thus we allow the stack to
348	 * expand to 1MB without further checks.
349	 */
350	if (address + 0x100000 < vma->vm_end) {
351		/* get user regs even if this fault is in kernel mode */
352		struct pt_regs *uregs = current->thread.regs;
353		if (uregs == NULL)
354			goto bad_area;
355
356		/*
357		 * A user-mode access to an address a long way below
358		 * the stack pointer is only valid if the instruction
359		 * is one which would update the stack pointer to the
360		 * address accessed if the instruction completed,
361		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
362		 * (or the byte, halfword, float or double forms).
363		 *
364		 * If we don't check this then any write to the area
365		 * between the last mapped region and the stack will
366		 * expand the stack rather than segfaulting.
367		 */
368		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
369			goto bad_area;
370	}
371	if (expand_stack(vma, address))
372		goto bad_area;
373
374good_area:
375	code = SEGV_ACCERR;
376#if defined(CONFIG_6xx)
377	if (error_code & 0x95700000)
378		/* an error such as lwarx to I/O controller space,
379		   address matching DABR, eciwx, etc. */
380		goto bad_area;
381#endif /* CONFIG_6xx */
382#if defined(CONFIG_8xx)
383        /* The MPC8xx seems to always set 0x80000000, which is
384         * "undefined".  Of those that can be set, this is the only
385         * one which seems bad.
386         */
387	if (error_code & 0x10000000)
388                /* Guarded storage error. */
389		goto bad_area;
390#endif /* CONFIG_8xx */
391
392	if (is_exec) {
393		/*
394		 * Allow execution from readable areas if the MMU does not
395		 * provide separate controls over reading and executing.
396		 *
397		 * Note: That code used to not be enabled for 4xx/BookE.
398		 * It is now as I/D cache coherency for these is done at
399		 * set_pte_at() time and I see no reason why the test
400		 * below wouldn't be valid on those processors. This -may-
401		 * break programs compiled with a really old ABI though.
402		 */
403		if (!(vma->vm_flags & VM_EXEC) &&
404		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
405		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
406			goto bad_area;
407#ifdef CONFIG_PPC_STD_MMU
408		/*
409		 * protfault should only happen due to us
410		 * mapping a region readonly temporarily. PROT_NONE
411		 * is also covered by the VMA check above.
412		 */
413		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
414#endif /* CONFIG_PPC_STD_MMU */
415	/* a write */
416	} else if (is_write) {
417		if (!(vma->vm_flags & VM_WRITE))
418			goto bad_area;
419		flags |= FAULT_FLAG_WRITE;
420	/* a read */
421	} else {
422		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
423			goto bad_area;
424		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
425	}
426
427	/*
428	 * If for any reason at all we couldn't handle the fault,
429	 * make sure we exit gracefully rather than endlessly redo
430	 * the fault.
431	 */
432	fault = handle_mm_fault(mm, vma, address, flags);
433	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
434		if (fault & VM_FAULT_SIGSEGV)
435			goto bad_area;
436		rc = mm_fault_error(regs, address, fault);
437		if (rc >= MM_FAULT_RETURN)
438			goto bail;
439		else
440			rc = 0;
 
 
 
 
 
441	}
 
 
 
442
443	/*
444	 * Major/minor page fault accounting is only done on the
445	 * initial attempt. If we go through a retry, it is extremely
446	 * likely that the page will be found in page cache at that point.
447	 */
448	if (flags & FAULT_FLAG_ALLOW_RETRY) {
449		if (fault & VM_FAULT_MAJOR) {
450			current->maj_flt++;
451			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
452				      regs, address);
453#ifdef CONFIG_PPC_SMLPAR
454			if (firmware_has_feature(FW_FEATURE_CMO)) {
455				u32 page_ins;
456
457				preempt_disable();
458				page_ins = be32_to_cpu(get_lppaca()->page_ins);
459				page_ins += 1 << PAGE_FACTOR;
460				get_lppaca()->page_ins = cpu_to_be32(page_ins);
461				preempt_enable();
462			}
463#endif /* CONFIG_PPC_SMLPAR */
464		} else {
465			current->min_flt++;
466			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
467				      regs, address);
468		}
469		if (fault & VM_FAULT_RETRY) {
470			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
471			 * of starvation. */
472			flags &= ~FAULT_FLAG_ALLOW_RETRY;
473			flags |= FAULT_FLAG_TRIED;
474			goto retry;
 
475		}
 
 
 
 
 
 
476	}
477
478	up_read(&mm->mmap_sem);
479	goto bail;
480
481bad_area:
482	up_read(&mm->mmap_sem);
483
484bad_area_nosemaphore:
485	/* User mode accesses cause a SIGSEGV */
486	if (user_mode(regs)) {
487		_exception(SIGSEGV, regs, code, address);
488		goto bail;
 
 
 
 
 
489	}
 
 
 
490
491	if (is_exec && (error_code & DSISR_PROTFAULT))
492		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
493				   " page (%lx) - exploit attempt? (uid: %d)\n",
494				   address, from_kuid(&init_user_ns, current_uid()));
495
496	rc = SIGSEGV;
497
498bail:
499	exception_exit(prev_state);
500	return rc;
501
502}
 
503
504/*
505 * bad_page_fault is called when we have a bad access from the kernel.
506 * It is called from the DSI and ISI handlers in head.S and from some
507 * of the procedures in traps.c.
508 */
509void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
510{
511	const struct exception_table_entry *entry;
512
513	/* Are we prepared to handle this fault?  */
514	if ((entry = search_exception_tables(regs->nip)) != NULL) {
515		regs->nip = entry->fixup;
516		return;
517	}
518
519	/* kernel has accessed a bad area */
520
521	switch (regs->trap) {
522	case 0x300:
523	case 0x380:
524		printk(KERN_ALERT "Unable to handle kernel paging request for "
525			"data at address 0x%08lx\n", regs->dar);
 
 
526		break;
527	case 0x400:
528	case 0x480:
529		printk(KERN_ALERT "Unable to handle kernel paging request for "
530			"instruction fetch\n");
531		break;
532	case 0x600:
533		printk(KERN_ALERT "Unable to handle kernel paging request for "
534			"unaligned access at address 0x%08lx\n", regs->dar);
535		break;
536	default:
537		printk(KERN_ALERT "Unable to handle kernel paging request for "
538			"unknown fault\n");
539		break;
540	}
541	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
542		regs->nip);
543
544	if (task_stack_end_corrupted(current))
545		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
546
547	die("Kernel access of bad area", regs, sig);
548}