Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
 
  29#include <linux/swap.h>
  30#include <linux/timex.h>
  31#include <linux/jiffies.h>
  32#include <linux/cpuset.h>
  33#include <linux/export.h>
  34#include <linux/notifier.h>
  35#include <linux/memcontrol.h>
  36#include <linux/mempolicy.h>
  37#include <linux/security.h>
  38#include <linux/ptrace.h>
  39#include <linux/freezer.h>
  40#include <linux/ftrace.h>
  41#include <linux/ratelimit.h>
  42#include <linux/kthread.h>
  43#include <linux/init.h>
  44#include <linux/mmu_notifier.h>
  45
  46#include <asm/tlb.h>
  47#include "internal.h"
  48#include "slab.h"
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/oom.h>
  52
  53int sysctl_panic_on_oom;
  54int sysctl_oom_kill_allocating_task;
  55int sysctl_oom_dump_tasks = 1;
  56
  57/*
  58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  60 * from different domains).
  61 *
  62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  63 * and mark_oom_victim
  64 */
  65DEFINE_MUTEX(oom_lock);
  66
  67static inline bool is_memcg_oom(struct oom_control *oc)
  68{
  69	return oc->memcg != NULL;
  70}
  71
  72#ifdef CONFIG_NUMA
  73/**
  74 * oom_cpuset_eligible() - check task eligiblity for kill
  75 * @start: task struct of which task to consider
  76 * @oc: pointer to struct oom_control
  77 *
  78 * Task eligibility is determined by whether or not a candidate task, @tsk,
  79 * shares the same mempolicy nodes as current if it is bound by such a policy
  80 * and whether or not it has the same set of allowed cpuset nodes.
  81 *
  82 * This function is assuming oom-killer context and 'current' has triggered
  83 * the oom-killer.
  84 */
  85static bool oom_cpuset_eligible(struct task_struct *start,
  86				struct oom_control *oc)
  87{
  88	struct task_struct *tsk;
  89	bool ret = false;
  90	const nodemask_t *mask = oc->nodemask;
  91
  92	if (is_memcg_oom(oc))
  93		return true;
  94
  95	rcu_read_lock();
  96	for_each_thread(start, tsk) {
  97		if (mask) {
  98			/*
  99			 * If this is a mempolicy constrained oom, tsk's
 100			 * cpuset is irrelevant.  Only return true if its
 101			 * mempolicy intersects current, otherwise it may be
 102			 * needlessly killed.
 103			 */
 104			ret = mempolicy_nodemask_intersects(tsk, mask);
 105		} else {
 106			/*
 107			 * This is not a mempolicy constrained oom, so only
 108			 * check the mems of tsk's cpuset.
 109			 */
 110			ret = cpuset_mems_allowed_intersects(current, tsk);
 111		}
 112		if (ret)
 113			break;
 114	}
 115	rcu_read_unlock();
 116
 117	return ret;
 118}
 119#else
 120static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 121{
 122	return true;
 123}
 124#endif /* CONFIG_NUMA */
 125
 126/*
 127 * The process p may have detached its own ->mm while exiting or through
 128 * use_mm(), but one or more of its subthreads may still have a valid
 129 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 130 * task_lock() held.
 131 */
 132struct task_struct *find_lock_task_mm(struct task_struct *p)
 133{
 134	struct task_struct *t;
 135
 136	rcu_read_lock();
 137
 138	for_each_thread(p, t) {
 139		task_lock(t);
 140		if (likely(t->mm))
 141			goto found;
 142		task_unlock(t);
 143	}
 144	t = NULL;
 145found:
 146	rcu_read_unlock();
 147
 148	return t;
 149}
 150
 151/*
 152 * order == -1 means the oom kill is required by sysrq, otherwise only
 153 * for display purposes.
 154 */
 155static inline bool is_sysrq_oom(struct oom_control *oc)
 156{
 157	return oc->order == -1;
 158}
 159
 160/* return true if the task is not adequate as candidate victim task. */
 161static bool oom_unkillable_task(struct task_struct *p)
 162{
 163	if (is_global_init(p))
 164		return true;
 165	if (p->flags & PF_KTHREAD)
 166		return true;
 167	return false;
 168}
 169
 170/*
 171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 172 * than all user memory (LRU pages)
 173 */
 174static bool is_dump_unreclaim_slabs(void)
 175{
 176	unsigned long nr_lru;
 177
 178	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 179		 global_node_page_state(NR_INACTIVE_ANON) +
 180		 global_node_page_state(NR_ACTIVE_FILE) +
 181		 global_node_page_state(NR_INACTIVE_FILE) +
 182		 global_node_page_state(NR_ISOLATED_ANON) +
 183		 global_node_page_state(NR_ISOLATED_FILE) +
 184		 global_node_page_state(NR_UNEVICTABLE);
 185
 186	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 187}
 188
 189/**
 190 * oom_badness - heuristic function to determine which candidate task to kill
 191 * @p: task struct of which task we should calculate
 192 * @totalpages: total present RAM allowed for page allocation
 193 *
 194 * The heuristic for determining which task to kill is made to be as simple and
 195 * predictable as possible.  The goal is to return the highest value for the
 196 * task consuming the most memory to avoid subsequent oom failures.
 197 */
 198unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
 199{
 200	long points;
 201	long adj;
 202
 203	if (oom_unkillable_task(p))
 204		return 0;
 205
 206	p = find_lock_task_mm(p);
 207	if (!p)
 208		return 0;
 209
 210	/*
 211	 * Do not even consider tasks which are explicitly marked oom
 212	 * unkillable or have been already oom reaped or the are in
 213	 * the middle of vfork
 214	 */
 215	adj = (long)p->signal->oom_score_adj;
 216	if (adj == OOM_SCORE_ADJ_MIN ||
 217			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 218			in_vfork(p)) {
 219		task_unlock(p);
 220		return 0;
 221	}
 222
 223	/*
 224	 * The baseline for the badness score is the proportion of RAM that each
 225	 * task's rss, pagetable and swap space use.
 226	 */
 227	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 228		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 229	task_unlock(p);
 230
 231	/* Normalize to oom_score_adj units */
 232	adj *= totalpages / 1000;
 233	points += adj;
 234
 235	/*
 236	 * Never return 0 for an eligible task regardless of the root bonus and
 237	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 238	 */
 239	return points > 0 ? points : 1;
 240}
 241
 242static const char * const oom_constraint_text[] = {
 243	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 244	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 245	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 246	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 247};
 248
 249/*
 250 * Determine the type of allocation constraint.
 251 */
 252static enum oom_constraint constrained_alloc(struct oom_control *oc)
 253{
 254	struct zone *zone;
 255	struct zoneref *z;
 256	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 257	bool cpuset_limited = false;
 258	int nid;
 259
 260	if (is_memcg_oom(oc)) {
 261		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 262		return CONSTRAINT_MEMCG;
 263	}
 264
 265	/* Default to all available memory */
 266	oc->totalpages = totalram_pages() + total_swap_pages;
 267
 268	if (!IS_ENABLED(CONFIG_NUMA))
 269		return CONSTRAINT_NONE;
 270
 271	if (!oc->zonelist)
 272		return CONSTRAINT_NONE;
 273	/*
 274	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 275	 * to kill current.We have to random task kill in this case.
 276	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 277	 */
 278	if (oc->gfp_mask & __GFP_THISNODE)
 279		return CONSTRAINT_NONE;
 280
 281	/*
 282	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 283	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 284	 * is enforced in get_page_from_freelist().
 285	 */
 286	if (oc->nodemask &&
 287	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 288		oc->totalpages = total_swap_pages;
 289		for_each_node_mask(nid, *oc->nodemask)
 290			oc->totalpages += node_present_pages(nid);
 291		return CONSTRAINT_MEMORY_POLICY;
 292	}
 293
 294	/* Check this allocation failure is caused by cpuset's wall function */
 295	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 296			high_zoneidx, oc->nodemask)
 297		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 298			cpuset_limited = true;
 299
 300	if (cpuset_limited) {
 301		oc->totalpages = total_swap_pages;
 302		for_each_node_mask(nid, cpuset_current_mems_allowed)
 303			oc->totalpages += node_present_pages(nid);
 304		return CONSTRAINT_CPUSET;
 305	}
 306	return CONSTRAINT_NONE;
 307}
 308
 309static int oom_evaluate_task(struct task_struct *task, void *arg)
 310{
 311	struct oom_control *oc = arg;
 312	unsigned long points;
 313
 314	if (oom_unkillable_task(task))
 315		goto next;
 316
 317	/* p may not have freeable memory in nodemask */
 318	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 319		goto next;
 320
 321	/*
 322	 * This task already has access to memory reserves and is being killed.
 323	 * Don't allow any other task to have access to the reserves unless
 324	 * the task has MMF_OOM_SKIP because chances that it would release
 325	 * any memory is quite low.
 326	 */
 327	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 328		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 329			goto next;
 330		goto abort;
 331	}
 332
 333	/*
 334	 * If task is allocating a lot of memory and has been marked to be
 335	 * killed first if it triggers an oom, then select it.
 336	 */
 337	if (oom_task_origin(task)) {
 338		points = ULONG_MAX;
 339		goto select;
 340	}
 341
 342	points = oom_badness(task, oc->totalpages);
 343	if (!points || points < oc->chosen_points)
 344		goto next;
 345
 346select:
 347	if (oc->chosen)
 348		put_task_struct(oc->chosen);
 349	get_task_struct(task);
 350	oc->chosen = task;
 351	oc->chosen_points = points;
 352next:
 353	return 0;
 354abort:
 355	if (oc->chosen)
 356		put_task_struct(oc->chosen);
 357	oc->chosen = (void *)-1UL;
 358	return 1;
 359}
 360
 361/*
 362 * Simple selection loop. We choose the process with the highest number of
 363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 364 */
 365static void select_bad_process(struct oom_control *oc)
 366{
 
 
 367	if (is_memcg_oom(oc))
 368		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 369	else {
 370		struct task_struct *p;
 371
 372		rcu_read_lock();
 373		for_each_process(p)
 374			if (oom_evaluate_task(p, oc))
 375				break;
 376		rcu_read_unlock();
 377	}
 378}
 379
 380static int dump_task(struct task_struct *p, void *arg)
 381{
 382	struct oom_control *oc = arg;
 383	struct task_struct *task;
 384
 385	if (oom_unkillable_task(p))
 386		return 0;
 387
 388	/* p may not have freeable memory in nodemask */
 389	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 390		return 0;
 391
 392	task = find_lock_task_mm(p);
 393	if (!task) {
 394		/*
 395		 * This is a kthread or all of p's threads have already
 396		 * detached their mm's.  There's no need to report
 397		 * them; they can't be oom killed anyway.
 398		 */
 399		return 0;
 400	}
 401
 402	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 403		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 404		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 405		mm_pgtables_bytes(task->mm),
 406		get_mm_counter(task->mm, MM_SWAPENTS),
 407		task->signal->oom_score_adj, task->comm);
 408	task_unlock(task);
 409
 410	return 0;
 411}
 412
 413/**
 414 * dump_tasks - dump current memory state of all system tasks
 415 * @oc: pointer to struct oom_control
 416 *
 417 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 419 * are not shown.
 420 * State information includes task's pid, uid, tgid, vm size, rss,
 421 * pgtables_bytes, swapents, oom_score_adj value, and name.
 422 */
 423static void dump_tasks(struct oom_control *oc)
 424{
 425	pr_info("Tasks state (memory values in pages):\n");
 426	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 427
 428	if (is_memcg_oom(oc))
 429		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 430	else {
 431		struct task_struct *p;
 432
 433		rcu_read_lock();
 434		for_each_process(p)
 435			dump_task(p, oc);
 436		rcu_read_unlock();
 437	}
 438}
 439
 440static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 441{
 442	/* one line summary of the oom killer context. */
 443	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 444			oom_constraint_text[oc->constraint],
 445			nodemask_pr_args(oc->nodemask));
 446	cpuset_print_current_mems_allowed();
 447	mem_cgroup_print_oom_context(oc->memcg, victim);
 448	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 449		from_kuid(&init_user_ns, task_uid(victim)));
 450}
 451
 452static void dump_header(struct oom_control *oc, struct task_struct *p)
 453{
 454	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 455		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 456			current->signal->oom_score_adj);
 457	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 458		pr_warn("COMPACTION is disabled!!!\n");
 459
 460	dump_stack();
 461	if (is_memcg_oom(oc))
 462		mem_cgroup_print_oom_meminfo(oc->memcg);
 463	else {
 464		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 465		if (is_dump_unreclaim_slabs())
 466			dump_unreclaimable_slab();
 467	}
 468	if (sysctl_oom_dump_tasks)
 469		dump_tasks(oc);
 470	if (p)
 471		dump_oom_summary(oc, p);
 472}
 473
 474/*
 475 * Number of OOM victims in flight
 476 */
 477static atomic_t oom_victims = ATOMIC_INIT(0);
 478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 479
 480static bool oom_killer_disabled __read_mostly;
 481
 482#define K(x) ((x) << (PAGE_SHIFT-10))
 483
 484/*
 485 * task->mm can be NULL if the task is the exited group leader.  So to
 486 * determine whether the task is using a particular mm, we examine all the
 487 * task's threads: if one of those is using this mm then this task was also
 488 * using it.
 489 */
 490bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 491{
 492	struct task_struct *t;
 493
 494	for_each_thread(p, t) {
 495		struct mm_struct *t_mm = READ_ONCE(t->mm);
 496		if (t_mm)
 497			return t_mm == mm;
 498	}
 499	return false;
 500}
 501
 502#ifdef CONFIG_MMU
 503/*
 504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 505 * victim (if that is possible) to help the OOM killer to move on.
 506 */
 507static struct task_struct *oom_reaper_th;
 508static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 509static struct task_struct *oom_reaper_list;
 510static DEFINE_SPINLOCK(oom_reaper_lock);
 511
 512bool __oom_reap_task_mm(struct mm_struct *mm)
 513{
 514	struct vm_area_struct *vma;
 515	bool ret = true;
 516
 517	/*
 518	 * Tell all users of get_user/copy_from_user etc... that the content
 519	 * is no longer stable. No barriers really needed because unmapping
 520	 * should imply barriers already and the reader would hit a page fault
 521	 * if it stumbled over a reaped memory.
 522	 */
 523	set_bit(MMF_UNSTABLE, &mm->flags);
 524
 525	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 526		if (!can_madv_lru_vma(vma))
 527			continue;
 528
 529		/*
 530		 * Only anonymous pages have a good chance to be dropped
 531		 * without additional steps which we cannot afford as we
 532		 * are OOM already.
 533		 *
 534		 * We do not even care about fs backed pages because all
 535		 * which are reclaimable have already been reclaimed and
 536		 * we do not want to block exit_mmap by keeping mm ref
 537		 * count elevated without a good reason.
 538		 */
 539		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 540			struct mmu_notifier_range range;
 541			struct mmu_gather tlb;
 542
 543			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 544						vma, mm, vma->vm_start,
 545						vma->vm_end);
 546			tlb_gather_mmu(&tlb, mm, range.start, range.end);
 547			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 548				tlb_finish_mmu(&tlb, range.start, range.end);
 549				ret = false;
 550				continue;
 551			}
 552			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 553			mmu_notifier_invalidate_range_end(&range);
 554			tlb_finish_mmu(&tlb, range.start, range.end);
 555		}
 556	}
 557
 558	return ret;
 559}
 560
 561/*
 562 * Reaps the address space of the give task.
 563 *
 564 * Returns true on success and false if none or part of the address space
 565 * has been reclaimed and the caller should retry later.
 566 */
 567static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 568{
 569	bool ret = true;
 570
 571	if (!down_read_trylock(&mm->mmap_sem)) {
 572		trace_skip_task_reaping(tsk->pid);
 573		return false;
 574	}
 575
 576	/*
 577	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 578	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 579	 * under mmap_sem for reading because it serializes against the
 580	 * down_write();up_write() cycle in exit_mmap().
 581	 */
 582	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 583		trace_skip_task_reaping(tsk->pid);
 584		goto out_unlock;
 585	}
 586
 587	trace_start_task_reaping(tsk->pid);
 588
 589	/* failed to reap part of the address space. Try again later */
 590	ret = __oom_reap_task_mm(mm);
 591	if (!ret)
 592		goto out_finish;
 593
 594	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 595			task_pid_nr(tsk), tsk->comm,
 596			K(get_mm_counter(mm, MM_ANONPAGES)),
 597			K(get_mm_counter(mm, MM_FILEPAGES)),
 598			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 599out_finish:
 600	trace_finish_task_reaping(tsk->pid);
 601out_unlock:
 602	up_read(&mm->mmap_sem);
 603
 604	return ret;
 605}
 606
 607#define MAX_OOM_REAP_RETRIES 10
 608static void oom_reap_task(struct task_struct *tsk)
 609{
 610	int attempts = 0;
 611	struct mm_struct *mm = tsk->signal->oom_mm;
 612
 613	/* Retry the down_read_trylock(mmap_sem) a few times */
 614	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 615		schedule_timeout_idle(HZ/10);
 616
 617	if (attempts <= MAX_OOM_REAP_RETRIES ||
 618	    test_bit(MMF_OOM_SKIP, &mm->flags))
 619		goto done;
 620
 621	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 622		task_pid_nr(tsk), tsk->comm);
 
 623	debug_show_all_locks();
 624
 625done:
 626	tsk->oom_reaper_list = NULL;
 627
 628	/*
 629	 * Hide this mm from OOM killer because it has been either reaped or
 630	 * somebody can't call up_write(mmap_sem).
 631	 */
 632	set_bit(MMF_OOM_SKIP, &mm->flags);
 633
 634	/* Drop a reference taken by wake_oom_reaper */
 635	put_task_struct(tsk);
 636}
 637
 638static int oom_reaper(void *unused)
 639{
 640	while (true) {
 641		struct task_struct *tsk = NULL;
 642
 643		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 644		spin_lock(&oom_reaper_lock);
 645		if (oom_reaper_list != NULL) {
 646			tsk = oom_reaper_list;
 647			oom_reaper_list = tsk->oom_reaper_list;
 648		}
 649		spin_unlock(&oom_reaper_lock);
 650
 651		if (tsk)
 652			oom_reap_task(tsk);
 653	}
 654
 655	return 0;
 656}
 657
 658static void wake_oom_reaper(struct task_struct *tsk)
 659{
 660	/* mm is already queued? */
 661	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 662		return;
 663
 664	get_task_struct(tsk);
 665
 666	spin_lock(&oom_reaper_lock);
 667	tsk->oom_reaper_list = oom_reaper_list;
 668	oom_reaper_list = tsk;
 669	spin_unlock(&oom_reaper_lock);
 670	trace_wake_reaper(tsk->pid);
 671	wake_up(&oom_reaper_wait);
 672}
 673
 674static int __init oom_init(void)
 675{
 676	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 677	return 0;
 678}
 679subsys_initcall(oom_init)
 680#else
 681static inline void wake_oom_reaper(struct task_struct *tsk)
 682{
 683}
 684#endif /* CONFIG_MMU */
 685
 686/**
 687 * mark_oom_victim - mark the given task as OOM victim
 688 * @tsk: task to mark
 689 *
 690 * Has to be called with oom_lock held and never after
 691 * oom has been disabled already.
 692 *
 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 694 * under task_lock or operate on the current).
 695 */
 696static void mark_oom_victim(struct task_struct *tsk)
 697{
 698	struct mm_struct *mm = tsk->mm;
 699
 700	WARN_ON(oom_killer_disabled);
 701	/* OOM killer might race with memcg OOM */
 702	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 703		return;
 704
 705	/* oom_mm is bound to the signal struct life time. */
 706	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 707		mmgrab(tsk->signal->oom_mm);
 708		set_bit(MMF_OOM_VICTIM, &mm->flags);
 709	}
 710
 711	/*
 712	 * Make sure that the task is woken up from uninterruptible sleep
 713	 * if it is frozen because OOM killer wouldn't be able to free
 714	 * any memory and livelock. freezing_slow_path will tell the freezer
 715	 * that TIF_MEMDIE tasks should be ignored.
 716	 */
 717	__thaw_task(tsk);
 718	atomic_inc(&oom_victims);
 719	trace_mark_victim(tsk->pid);
 720}
 721
 722/**
 723 * exit_oom_victim - note the exit of an OOM victim
 724 */
 725void exit_oom_victim(void)
 726{
 727	clear_thread_flag(TIF_MEMDIE);
 728
 729	if (!atomic_dec_return(&oom_victims))
 730		wake_up_all(&oom_victims_wait);
 731}
 732
 733/**
 734 * oom_killer_enable - enable OOM killer
 735 */
 736void oom_killer_enable(void)
 737{
 738	oom_killer_disabled = false;
 739	pr_info("OOM killer enabled.\n");
 740}
 741
 742/**
 743 * oom_killer_disable - disable OOM killer
 744 * @timeout: maximum timeout to wait for oom victims in jiffies
 745 *
 746 * Forces all page allocations to fail rather than trigger OOM killer.
 747 * Will block and wait until all OOM victims are killed or the given
 748 * timeout expires.
 749 *
 750 * The function cannot be called when there are runnable user tasks because
 751 * the userspace would see unexpected allocation failures as a result. Any
 752 * new usage of this function should be consulted with MM people.
 753 *
 754 * Returns true if successful and false if the OOM killer cannot be
 755 * disabled.
 756 */
 757bool oom_killer_disable(signed long timeout)
 758{
 759	signed long ret;
 760
 761	/*
 762	 * Make sure to not race with an ongoing OOM killer. Check that the
 763	 * current is not killed (possibly due to sharing the victim's memory).
 764	 */
 765	if (mutex_lock_killable(&oom_lock))
 766		return false;
 767	oom_killer_disabled = true;
 768	mutex_unlock(&oom_lock);
 769
 770	ret = wait_event_interruptible_timeout(oom_victims_wait,
 771			!atomic_read(&oom_victims), timeout);
 772	if (ret <= 0) {
 773		oom_killer_enable();
 774		return false;
 775	}
 776	pr_info("OOM killer disabled.\n");
 777
 778	return true;
 779}
 780
 781static inline bool __task_will_free_mem(struct task_struct *task)
 782{
 783	struct signal_struct *sig = task->signal;
 784
 785	/*
 786	 * A coredumping process may sleep for an extended period in exit_mm(),
 787	 * so the oom killer cannot assume that the process will promptly exit
 788	 * and release memory.
 789	 */
 790	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 791		return false;
 792
 793	if (sig->flags & SIGNAL_GROUP_EXIT)
 794		return true;
 795
 796	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 797		return true;
 798
 799	return false;
 800}
 801
 802/*
 803 * Checks whether the given task is dying or exiting and likely to
 804 * release its address space. This means that all threads and processes
 805 * sharing the same mm have to be killed or exiting.
 806 * Caller has to make sure that task->mm is stable (hold task_lock or
 807 * it operates on the current).
 808 */
 809static bool task_will_free_mem(struct task_struct *task)
 810{
 811	struct mm_struct *mm = task->mm;
 812	struct task_struct *p;
 813	bool ret = true;
 814
 815	/*
 816	 * Skip tasks without mm because it might have passed its exit_mm and
 817	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 818	 * on that for now. We can consider find_lock_task_mm in future.
 819	 */
 820	if (!mm)
 821		return false;
 822
 823	if (!__task_will_free_mem(task))
 824		return false;
 825
 826	/*
 827	 * This task has already been drained by the oom reaper so there are
 828	 * only small chances it will free some more
 829	 */
 830	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 831		return false;
 832
 833	if (atomic_read(&mm->mm_users) <= 1)
 834		return true;
 835
 836	/*
 837	 * Make sure that all tasks which share the mm with the given tasks
 838	 * are dying as well to make sure that a) nobody pins its mm and
 839	 * b) the task is also reapable by the oom reaper.
 840	 */
 841	rcu_read_lock();
 842	for_each_process(p) {
 843		if (!process_shares_mm(p, mm))
 844			continue;
 845		if (same_thread_group(task, p))
 846			continue;
 847		ret = __task_will_free_mem(p);
 848		if (!ret)
 849			break;
 850	}
 851	rcu_read_unlock();
 852
 853	return ret;
 854}
 855
 856static void __oom_kill_process(struct task_struct *victim, const char *message)
 857{
 858	struct task_struct *p;
 859	struct mm_struct *mm;
 860	bool can_oom_reap = true;
 861
 862	p = find_lock_task_mm(victim);
 863	if (!p) {
 
 
 864		put_task_struct(victim);
 865		return;
 866	} else if (victim != p) {
 867		get_task_struct(p);
 868		put_task_struct(victim);
 869		victim = p;
 870	}
 871
 872	/* Get a reference to safely compare mm after task_unlock(victim) */
 873	mm = victim->mm;
 874	mmgrab(mm);
 875
 876	/* Raise event before sending signal: task reaper must see this */
 877	count_vm_event(OOM_KILL);
 878	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 879
 880	/*
 881	 * We should send SIGKILL before granting access to memory reserves
 882	 * in order to prevent the OOM victim from depleting the memory
 883	 * reserves from the user space under its control.
 884	 */
 885	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 886	mark_oom_victim(victim);
 887	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 888		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 889		K(get_mm_counter(mm, MM_ANONPAGES)),
 890		K(get_mm_counter(mm, MM_FILEPAGES)),
 891		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 892		from_kuid(&init_user_ns, task_uid(victim)),
 893		mm_pgtables_bytes(mm), victim->signal->oom_score_adj);
 894	task_unlock(victim);
 895
 896	/*
 897	 * Kill all user processes sharing victim->mm in other thread groups, if
 898	 * any.  They don't get access to memory reserves, though, to avoid
 899	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 900	 * oom killed thread cannot exit because it requires the semaphore and
 901	 * its contended by another thread trying to allocate memory itself.
 902	 * That thread will now get access to memory reserves since it has a
 903	 * pending fatal signal.
 904	 */
 905	rcu_read_lock();
 906	for_each_process(p) {
 907		if (!process_shares_mm(p, mm))
 908			continue;
 909		if (same_thread_group(p, victim))
 910			continue;
 911		if (is_global_init(p)) {
 912			can_oom_reap = false;
 913			set_bit(MMF_OOM_SKIP, &mm->flags);
 914			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 915					task_pid_nr(victim), victim->comm,
 916					task_pid_nr(p), p->comm);
 917			continue;
 918		}
 919		/*
 920		 * No use_mm() user needs to read from the userspace so we are
 921		 * ok to reap it.
 922		 */
 923		if (unlikely(p->flags & PF_KTHREAD))
 924			continue;
 925		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 926	}
 927	rcu_read_unlock();
 928
 929	if (can_oom_reap)
 930		wake_oom_reaper(victim);
 931
 932	mmdrop(mm);
 933	put_task_struct(victim);
 934}
 935#undef K
 936
 937/*
 938 * Kill provided task unless it's secured by setting
 939 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 940 */
 941static int oom_kill_memcg_member(struct task_struct *task, void *message)
 942{
 943	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 944	    !is_global_init(task)) {
 945		get_task_struct(task);
 946		__oom_kill_process(task, message);
 947	}
 948	return 0;
 949}
 950
 951static void oom_kill_process(struct oom_control *oc, const char *message)
 952{
 953	struct task_struct *victim = oc->chosen;
 954	struct mem_cgroup *oom_group;
 955	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 956					      DEFAULT_RATELIMIT_BURST);
 957
 958	/*
 959	 * If the task is already exiting, don't alarm the sysadmin or kill
 960	 * its children or threads, just give it access to memory reserves
 961	 * so it can die quickly
 962	 */
 963	task_lock(victim);
 964	if (task_will_free_mem(victim)) {
 965		mark_oom_victim(victim);
 966		wake_oom_reaper(victim);
 967		task_unlock(victim);
 968		put_task_struct(victim);
 969		return;
 970	}
 971	task_unlock(victim);
 972
 973	if (__ratelimit(&oom_rs))
 974		dump_header(oc, victim);
 975
 976	/*
 977	 * Do we need to kill the entire memory cgroup?
 978	 * Or even one of the ancestor memory cgroups?
 979	 * Check this out before killing the victim task.
 980	 */
 981	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 982
 983	__oom_kill_process(victim, message);
 984
 985	/*
 986	 * If necessary, kill all tasks in the selected memory cgroup.
 987	 */
 988	if (oom_group) {
 989		mem_cgroup_print_oom_group(oom_group);
 990		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 991				      (void*)message);
 992		mem_cgroup_put(oom_group);
 993	}
 994}
 995
 996/*
 997 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 998 */
 999static void check_panic_on_oom(struct oom_control *oc)
1000{
1001	if (likely(!sysctl_panic_on_oom))
1002		return;
1003	if (sysctl_panic_on_oom != 2) {
1004		/*
1005		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006		 * does not panic for cpuset, mempolicy, or memcg allocation
1007		 * failures.
1008		 */
1009		if (oc->constraint != CONSTRAINT_NONE)
1010			return;
1011	}
1012	/* Do not panic for oom kills triggered by sysrq */
1013	if (is_sysrq_oom(oc))
1014		return;
1015	dump_header(oc, NULL);
1016	panic("Out of memory: %s panic_on_oom is enabled\n",
1017		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1018}
1019
1020static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1021
1022int register_oom_notifier(struct notifier_block *nb)
1023{
1024	return blocking_notifier_chain_register(&oom_notify_list, nb);
1025}
1026EXPORT_SYMBOL_GPL(register_oom_notifier);
1027
1028int unregister_oom_notifier(struct notifier_block *nb)
1029{
1030	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1031}
1032EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1033
1034/**
1035 * out_of_memory - kill the "best" process when we run out of memory
1036 * @oc: pointer to struct oom_control
1037 *
1038 * If we run out of memory, we have the choice between either
1039 * killing a random task (bad), letting the system crash (worse)
1040 * OR try to be smart about which process to kill. Note that we
1041 * don't have to be perfect here, we just have to be good.
1042 */
1043bool out_of_memory(struct oom_control *oc)
1044{
1045	unsigned long freed = 0;
1046
1047	if (oom_killer_disabled)
1048		return false;
1049
1050	if (!is_memcg_oom(oc)) {
1051		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1052		if (freed > 0)
1053			/* Got some memory back in the last second. */
1054			return true;
1055	}
1056
1057	/*
1058	 * If current has a pending SIGKILL or is exiting, then automatically
1059	 * select it.  The goal is to allow it to allocate so that it may
1060	 * quickly exit and free its memory.
1061	 */
1062	if (task_will_free_mem(current)) {
1063		mark_oom_victim(current);
1064		wake_oom_reaper(current);
1065		return true;
1066	}
1067
1068	/*
1069	 * The OOM killer does not compensate for IO-less reclaim.
1070	 * pagefault_out_of_memory lost its gfp context so we have to
1071	 * make sure exclude 0 mask - all other users should have at least
1072	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1074	 */
1075	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1076		return true;
1077
1078	/*
1079	 * Check if there were limitations on the allocation (only relevant for
1080	 * NUMA and memcg) that may require different handling.
1081	 */
1082	oc->constraint = constrained_alloc(oc);
1083	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1084		oc->nodemask = NULL;
1085	check_panic_on_oom(oc);
1086
1087	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1088	    current->mm && !oom_unkillable_task(current) &&
1089	    oom_cpuset_eligible(current, oc) &&
1090	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1091		get_task_struct(current);
1092		oc->chosen = current;
1093		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1094		return true;
1095	}
1096
1097	select_bad_process(oc);
1098	/* Found nothing?!?! */
1099	if (!oc->chosen) {
1100		dump_header(oc, NULL);
1101		pr_warn("Out of memory and no killable processes...\n");
1102		/*
1103		 * If we got here due to an actual allocation at the
1104		 * system level, we cannot survive this and will enter
1105		 * an endless loop in the allocator. Bail out now.
1106		 */
1107		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1108			panic("System is deadlocked on memory\n");
1109	}
1110	if (oc->chosen && oc->chosen != (void *)-1UL)
1111		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1112				 "Memory cgroup out of memory");
1113	return !!oc->chosen;
1114}
1115
1116/*
1117 * The pagefault handler calls here because it is out of memory, so kill a
1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119 * killing is already in progress so do nothing.
1120 */
1121void pagefault_out_of_memory(void)
1122{
1123	struct oom_control oc = {
1124		.zonelist = NULL,
1125		.nodemask = NULL,
1126		.memcg = NULL,
1127		.gfp_mask = 0,
1128		.order = 0,
1129	};
1130
1131	if (mem_cgroup_oom_synchronize(true))
1132		return;
1133
1134	if (!mutex_trylock(&oom_lock))
1135		return;
1136	out_of_memory(&oc);
1137	mutex_unlock(&oom_lock);
1138}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
  29#include <linux/sched/debug.h>
  30#include <linux/swap.h>
  31#include <linux/timex.h>
  32#include <linux/jiffies.h>
  33#include <linux/cpuset.h>
  34#include <linux/export.h>
  35#include <linux/notifier.h>
  36#include <linux/memcontrol.h>
  37#include <linux/mempolicy.h>
  38#include <linux/security.h>
  39#include <linux/ptrace.h>
  40#include <linux/freezer.h>
  41#include <linux/ftrace.h>
  42#include <linux/ratelimit.h>
  43#include <linux/kthread.h>
  44#include <linux/init.h>
  45#include <linux/mmu_notifier.h>
  46
  47#include <asm/tlb.h>
  48#include "internal.h"
  49#include "slab.h"
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/oom.h>
  53
  54int sysctl_panic_on_oom;
  55int sysctl_oom_kill_allocating_task;
  56int sysctl_oom_dump_tasks = 1;
  57
  58/*
  59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  61 * from different domains).
  62 *
  63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  64 * and mark_oom_victim
  65 */
  66DEFINE_MUTEX(oom_lock);
  67
  68static inline bool is_memcg_oom(struct oom_control *oc)
  69{
  70	return oc->memcg != NULL;
  71}
  72
  73#ifdef CONFIG_NUMA
  74/**
  75 * oom_cpuset_eligible() - check task eligiblity for kill
  76 * @start: task struct of which task to consider
  77 * @oc: pointer to struct oom_control
  78 *
  79 * Task eligibility is determined by whether or not a candidate task, @tsk,
  80 * shares the same mempolicy nodes as current if it is bound by such a policy
  81 * and whether or not it has the same set of allowed cpuset nodes.
  82 *
  83 * This function is assuming oom-killer context and 'current' has triggered
  84 * the oom-killer.
  85 */
  86static bool oom_cpuset_eligible(struct task_struct *start,
  87				struct oom_control *oc)
  88{
  89	struct task_struct *tsk;
  90	bool ret = false;
  91	const nodemask_t *mask = oc->nodemask;
  92
  93	if (is_memcg_oom(oc))
  94		return true;
  95
  96	rcu_read_lock();
  97	for_each_thread(start, tsk) {
  98		if (mask) {
  99			/*
 100			 * If this is a mempolicy constrained oom, tsk's
 101			 * cpuset is irrelevant.  Only return true if its
 102			 * mempolicy intersects current, otherwise it may be
 103			 * needlessly killed.
 104			 */
 105			ret = mempolicy_nodemask_intersects(tsk, mask);
 106		} else {
 107			/*
 108			 * This is not a mempolicy constrained oom, so only
 109			 * check the mems of tsk's cpuset.
 110			 */
 111			ret = cpuset_mems_allowed_intersects(current, tsk);
 112		}
 113		if (ret)
 114			break;
 115	}
 116	rcu_read_unlock();
 117
 118	return ret;
 119}
 120#else
 121static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 122{
 123	return true;
 124}
 125#endif /* CONFIG_NUMA */
 126
 127/*
 128 * The process p may have detached its own ->mm while exiting or through
 129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 130 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 131 * task_lock() held.
 132 */
 133struct task_struct *find_lock_task_mm(struct task_struct *p)
 134{
 135	struct task_struct *t;
 136
 137	rcu_read_lock();
 138
 139	for_each_thread(p, t) {
 140		task_lock(t);
 141		if (likely(t->mm))
 142			goto found;
 143		task_unlock(t);
 144	}
 145	t = NULL;
 146found:
 147	rcu_read_unlock();
 148
 149	return t;
 150}
 151
 152/*
 153 * order == -1 means the oom kill is required by sysrq, otherwise only
 154 * for display purposes.
 155 */
 156static inline bool is_sysrq_oom(struct oom_control *oc)
 157{
 158	return oc->order == -1;
 159}
 160
 161/* return true if the task is not adequate as candidate victim task. */
 162static bool oom_unkillable_task(struct task_struct *p)
 163{
 164	if (is_global_init(p))
 165		return true;
 166	if (p->flags & PF_KTHREAD)
 167		return true;
 168	return false;
 169}
 170
 171/*
 172 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 173 * than all user memory (LRU pages)
 174 */
 175static bool is_dump_unreclaim_slabs(void)
 176{
 177	unsigned long nr_lru;
 178
 179	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 180		 global_node_page_state(NR_INACTIVE_ANON) +
 181		 global_node_page_state(NR_ACTIVE_FILE) +
 182		 global_node_page_state(NR_INACTIVE_FILE) +
 183		 global_node_page_state(NR_ISOLATED_ANON) +
 184		 global_node_page_state(NR_ISOLATED_FILE) +
 185		 global_node_page_state(NR_UNEVICTABLE);
 186
 187	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
 188}
 189
 190/**
 191 * oom_badness - heuristic function to determine which candidate task to kill
 192 * @p: task struct of which task we should calculate
 193 * @totalpages: total present RAM allowed for page allocation
 194 *
 195 * The heuristic for determining which task to kill is made to be as simple and
 196 * predictable as possible.  The goal is to return the highest value for the
 197 * task consuming the most memory to avoid subsequent oom failures.
 198 */
 199long oom_badness(struct task_struct *p, unsigned long totalpages)
 200{
 201	long points;
 202	long adj;
 203
 204	if (oom_unkillable_task(p))
 205		return LONG_MIN;
 206
 207	p = find_lock_task_mm(p);
 208	if (!p)
 209		return LONG_MIN;
 210
 211	/*
 212	 * Do not even consider tasks which are explicitly marked oom
 213	 * unkillable or have been already oom reaped or the are in
 214	 * the middle of vfork
 215	 */
 216	adj = (long)p->signal->oom_score_adj;
 217	if (adj == OOM_SCORE_ADJ_MIN ||
 218			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 219			in_vfork(p)) {
 220		task_unlock(p);
 221		return LONG_MIN;
 222	}
 223
 224	/*
 225	 * The baseline for the badness score is the proportion of RAM that each
 226	 * task's rss, pagetable and swap space use.
 227	 */
 228	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 229		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 230	task_unlock(p);
 231
 232	/* Normalize to oom_score_adj units */
 233	adj *= totalpages / 1000;
 234	points += adj;
 235
 236	return points;
 
 
 
 
 237}
 238
 239static const char * const oom_constraint_text[] = {
 240	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 241	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 242	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 243	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 244};
 245
 246/*
 247 * Determine the type of allocation constraint.
 248 */
 249static enum oom_constraint constrained_alloc(struct oom_control *oc)
 250{
 251	struct zone *zone;
 252	struct zoneref *z;
 253	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
 254	bool cpuset_limited = false;
 255	int nid;
 256
 257	if (is_memcg_oom(oc)) {
 258		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 259		return CONSTRAINT_MEMCG;
 260	}
 261
 262	/* Default to all available memory */
 263	oc->totalpages = totalram_pages() + total_swap_pages;
 264
 265	if (!IS_ENABLED(CONFIG_NUMA))
 266		return CONSTRAINT_NONE;
 267
 268	if (!oc->zonelist)
 269		return CONSTRAINT_NONE;
 270	/*
 271	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 272	 * to kill current.We have to random task kill in this case.
 273	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 274	 */
 275	if (oc->gfp_mask & __GFP_THISNODE)
 276		return CONSTRAINT_NONE;
 277
 278	/*
 279	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 280	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 281	 * is enforced in get_page_from_freelist().
 282	 */
 283	if (oc->nodemask &&
 284	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 285		oc->totalpages = total_swap_pages;
 286		for_each_node_mask(nid, *oc->nodemask)
 287			oc->totalpages += node_present_pages(nid);
 288		return CONSTRAINT_MEMORY_POLICY;
 289	}
 290
 291	/* Check this allocation failure is caused by cpuset's wall function */
 292	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 293			highest_zoneidx, oc->nodemask)
 294		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 295			cpuset_limited = true;
 296
 297	if (cpuset_limited) {
 298		oc->totalpages = total_swap_pages;
 299		for_each_node_mask(nid, cpuset_current_mems_allowed)
 300			oc->totalpages += node_present_pages(nid);
 301		return CONSTRAINT_CPUSET;
 302	}
 303	return CONSTRAINT_NONE;
 304}
 305
 306static int oom_evaluate_task(struct task_struct *task, void *arg)
 307{
 308	struct oom_control *oc = arg;
 309	long points;
 310
 311	if (oom_unkillable_task(task))
 312		goto next;
 313
 314	/* p may not have freeable memory in nodemask */
 315	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 316		goto next;
 317
 318	/*
 319	 * This task already has access to memory reserves and is being killed.
 320	 * Don't allow any other task to have access to the reserves unless
 321	 * the task has MMF_OOM_SKIP because chances that it would release
 322	 * any memory is quite low.
 323	 */
 324	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 325		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 326			goto next;
 327		goto abort;
 328	}
 329
 330	/*
 331	 * If task is allocating a lot of memory and has been marked to be
 332	 * killed first if it triggers an oom, then select it.
 333	 */
 334	if (oom_task_origin(task)) {
 335		points = LONG_MAX;
 336		goto select;
 337	}
 338
 339	points = oom_badness(task, oc->totalpages);
 340	if (points == LONG_MIN || points < oc->chosen_points)
 341		goto next;
 342
 343select:
 344	if (oc->chosen)
 345		put_task_struct(oc->chosen);
 346	get_task_struct(task);
 347	oc->chosen = task;
 348	oc->chosen_points = points;
 349next:
 350	return 0;
 351abort:
 352	if (oc->chosen)
 353		put_task_struct(oc->chosen);
 354	oc->chosen = (void *)-1UL;
 355	return 1;
 356}
 357
 358/*
 359 * Simple selection loop. We choose the process with the highest number of
 360 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 361 */
 362static void select_bad_process(struct oom_control *oc)
 363{
 364	oc->chosen_points = LONG_MIN;
 365
 366	if (is_memcg_oom(oc))
 367		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 368	else {
 369		struct task_struct *p;
 370
 371		rcu_read_lock();
 372		for_each_process(p)
 373			if (oom_evaluate_task(p, oc))
 374				break;
 375		rcu_read_unlock();
 376	}
 377}
 378
 379static int dump_task(struct task_struct *p, void *arg)
 380{
 381	struct oom_control *oc = arg;
 382	struct task_struct *task;
 383
 384	if (oom_unkillable_task(p))
 385		return 0;
 386
 387	/* p may not have freeable memory in nodemask */
 388	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 389		return 0;
 390
 391	task = find_lock_task_mm(p);
 392	if (!task) {
 393		/*
 394		 * This is a kthread or all of p's threads have already
 395		 * detached their mm's.  There's no need to report
 396		 * them; they can't be oom killed anyway.
 397		 */
 398		return 0;
 399	}
 400
 401	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 402		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 403		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 404		mm_pgtables_bytes(task->mm),
 405		get_mm_counter(task->mm, MM_SWAPENTS),
 406		task->signal->oom_score_adj, task->comm);
 407	task_unlock(task);
 408
 409	return 0;
 410}
 411
 412/**
 413 * dump_tasks - dump current memory state of all system tasks
 414 * @oc: pointer to struct oom_control
 415 *
 416 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 417 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 418 * are not shown.
 419 * State information includes task's pid, uid, tgid, vm size, rss,
 420 * pgtables_bytes, swapents, oom_score_adj value, and name.
 421 */
 422static void dump_tasks(struct oom_control *oc)
 423{
 424	pr_info("Tasks state (memory values in pages):\n");
 425	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 426
 427	if (is_memcg_oom(oc))
 428		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 429	else {
 430		struct task_struct *p;
 431
 432		rcu_read_lock();
 433		for_each_process(p)
 434			dump_task(p, oc);
 435		rcu_read_unlock();
 436	}
 437}
 438
 439static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 440{
 441	/* one line summary of the oom killer context. */
 442	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 443			oom_constraint_text[oc->constraint],
 444			nodemask_pr_args(oc->nodemask));
 445	cpuset_print_current_mems_allowed();
 446	mem_cgroup_print_oom_context(oc->memcg, victim);
 447	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 448		from_kuid(&init_user_ns, task_uid(victim)));
 449}
 450
 451static void dump_header(struct oom_control *oc, struct task_struct *p)
 452{
 453	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 454		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 455			current->signal->oom_score_adj);
 456	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 457		pr_warn("COMPACTION is disabled!!!\n");
 458
 459	dump_stack();
 460	if (is_memcg_oom(oc))
 461		mem_cgroup_print_oom_meminfo(oc->memcg);
 462	else {
 463		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 464		if (is_dump_unreclaim_slabs())
 465			dump_unreclaimable_slab();
 466	}
 467	if (sysctl_oom_dump_tasks)
 468		dump_tasks(oc);
 469	if (p)
 470		dump_oom_summary(oc, p);
 471}
 472
 473/*
 474 * Number of OOM victims in flight
 475 */
 476static atomic_t oom_victims = ATOMIC_INIT(0);
 477static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 478
 479static bool oom_killer_disabled __read_mostly;
 480
 481#define K(x) ((x) << (PAGE_SHIFT-10))
 482
 483/*
 484 * task->mm can be NULL if the task is the exited group leader.  So to
 485 * determine whether the task is using a particular mm, we examine all the
 486 * task's threads: if one of those is using this mm then this task was also
 487 * using it.
 488 */
 489bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 490{
 491	struct task_struct *t;
 492
 493	for_each_thread(p, t) {
 494		struct mm_struct *t_mm = READ_ONCE(t->mm);
 495		if (t_mm)
 496			return t_mm == mm;
 497	}
 498	return false;
 499}
 500
 501#ifdef CONFIG_MMU
 502/*
 503 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 504 * victim (if that is possible) to help the OOM killer to move on.
 505 */
 506static struct task_struct *oom_reaper_th;
 507static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 508static struct task_struct *oom_reaper_list;
 509static DEFINE_SPINLOCK(oom_reaper_lock);
 510
 511bool __oom_reap_task_mm(struct mm_struct *mm)
 512{
 513	struct vm_area_struct *vma;
 514	bool ret = true;
 515
 516	/*
 517	 * Tell all users of get_user/copy_from_user etc... that the content
 518	 * is no longer stable. No barriers really needed because unmapping
 519	 * should imply barriers already and the reader would hit a page fault
 520	 * if it stumbled over a reaped memory.
 521	 */
 522	set_bit(MMF_UNSTABLE, &mm->flags);
 523
 524	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 525		if (!can_madv_lru_vma(vma))
 526			continue;
 527
 528		/*
 529		 * Only anonymous pages have a good chance to be dropped
 530		 * without additional steps which we cannot afford as we
 531		 * are OOM already.
 532		 *
 533		 * We do not even care about fs backed pages because all
 534		 * which are reclaimable have already been reclaimed and
 535		 * we do not want to block exit_mmap by keeping mm ref
 536		 * count elevated without a good reason.
 537		 */
 538		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 539			struct mmu_notifier_range range;
 540			struct mmu_gather tlb;
 541
 542			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 543						vma, mm, vma->vm_start,
 544						vma->vm_end);
 545			tlb_gather_mmu(&tlb, mm, range.start, range.end);
 546			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 547				tlb_finish_mmu(&tlb, range.start, range.end);
 548				ret = false;
 549				continue;
 550			}
 551			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 552			mmu_notifier_invalidate_range_end(&range);
 553			tlb_finish_mmu(&tlb, range.start, range.end);
 554		}
 555	}
 556
 557	return ret;
 558}
 559
 560/*
 561 * Reaps the address space of the give task.
 562 *
 563 * Returns true on success and false if none or part of the address space
 564 * has been reclaimed and the caller should retry later.
 565 */
 566static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 567{
 568	bool ret = true;
 569
 570	if (!mmap_read_trylock(mm)) {
 571		trace_skip_task_reaping(tsk->pid);
 572		return false;
 573	}
 574
 575	/*
 576	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 577	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 578	 * under mmap_lock for reading because it serializes against the
 579	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
 580	 */
 581	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 582		trace_skip_task_reaping(tsk->pid);
 583		goto out_unlock;
 584	}
 585
 586	trace_start_task_reaping(tsk->pid);
 587
 588	/* failed to reap part of the address space. Try again later */
 589	ret = __oom_reap_task_mm(mm);
 590	if (!ret)
 591		goto out_finish;
 592
 593	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 594			task_pid_nr(tsk), tsk->comm,
 595			K(get_mm_counter(mm, MM_ANONPAGES)),
 596			K(get_mm_counter(mm, MM_FILEPAGES)),
 597			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 598out_finish:
 599	trace_finish_task_reaping(tsk->pid);
 600out_unlock:
 601	mmap_read_unlock(mm);
 602
 603	return ret;
 604}
 605
 606#define MAX_OOM_REAP_RETRIES 10
 607static void oom_reap_task(struct task_struct *tsk)
 608{
 609	int attempts = 0;
 610	struct mm_struct *mm = tsk->signal->oom_mm;
 611
 612	/* Retry the mmap_read_trylock(mm) a few times */
 613	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 614		schedule_timeout_idle(HZ/10);
 615
 616	if (attempts <= MAX_OOM_REAP_RETRIES ||
 617	    test_bit(MMF_OOM_SKIP, &mm->flags))
 618		goto done;
 619
 620	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 621		task_pid_nr(tsk), tsk->comm);
 622	sched_show_task(tsk);
 623	debug_show_all_locks();
 624
 625done:
 626	tsk->oom_reaper_list = NULL;
 627
 628	/*
 629	 * Hide this mm from OOM killer because it has been either reaped or
 630	 * somebody can't call mmap_write_unlock(mm).
 631	 */
 632	set_bit(MMF_OOM_SKIP, &mm->flags);
 633
 634	/* Drop a reference taken by wake_oom_reaper */
 635	put_task_struct(tsk);
 636}
 637
 638static int oom_reaper(void *unused)
 639{
 640	while (true) {
 641		struct task_struct *tsk = NULL;
 642
 643		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 644		spin_lock(&oom_reaper_lock);
 645		if (oom_reaper_list != NULL) {
 646			tsk = oom_reaper_list;
 647			oom_reaper_list = tsk->oom_reaper_list;
 648		}
 649		spin_unlock(&oom_reaper_lock);
 650
 651		if (tsk)
 652			oom_reap_task(tsk);
 653	}
 654
 655	return 0;
 656}
 657
 658static void wake_oom_reaper(struct task_struct *tsk)
 659{
 660	/* mm is already queued? */
 661	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 662		return;
 663
 664	get_task_struct(tsk);
 665
 666	spin_lock(&oom_reaper_lock);
 667	tsk->oom_reaper_list = oom_reaper_list;
 668	oom_reaper_list = tsk;
 669	spin_unlock(&oom_reaper_lock);
 670	trace_wake_reaper(tsk->pid);
 671	wake_up(&oom_reaper_wait);
 672}
 673
 674static int __init oom_init(void)
 675{
 676	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 677	return 0;
 678}
 679subsys_initcall(oom_init)
 680#else
 681static inline void wake_oom_reaper(struct task_struct *tsk)
 682{
 683}
 684#endif /* CONFIG_MMU */
 685
 686/**
 687 * mark_oom_victim - mark the given task as OOM victim
 688 * @tsk: task to mark
 689 *
 690 * Has to be called with oom_lock held and never after
 691 * oom has been disabled already.
 692 *
 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 694 * under task_lock or operate on the current).
 695 */
 696static void mark_oom_victim(struct task_struct *tsk)
 697{
 698	struct mm_struct *mm = tsk->mm;
 699
 700	WARN_ON(oom_killer_disabled);
 701	/* OOM killer might race with memcg OOM */
 702	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 703		return;
 704
 705	/* oom_mm is bound to the signal struct life time. */
 706	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 707		mmgrab(tsk->signal->oom_mm);
 708		set_bit(MMF_OOM_VICTIM, &mm->flags);
 709	}
 710
 711	/*
 712	 * Make sure that the task is woken up from uninterruptible sleep
 713	 * if it is frozen because OOM killer wouldn't be able to free
 714	 * any memory and livelock. freezing_slow_path will tell the freezer
 715	 * that TIF_MEMDIE tasks should be ignored.
 716	 */
 717	__thaw_task(tsk);
 718	atomic_inc(&oom_victims);
 719	trace_mark_victim(tsk->pid);
 720}
 721
 722/**
 723 * exit_oom_victim - note the exit of an OOM victim
 724 */
 725void exit_oom_victim(void)
 726{
 727	clear_thread_flag(TIF_MEMDIE);
 728
 729	if (!atomic_dec_return(&oom_victims))
 730		wake_up_all(&oom_victims_wait);
 731}
 732
 733/**
 734 * oom_killer_enable - enable OOM killer
 735 */
 736void oom_killer_enable(void)
 737{
 738	oom_killer_disabled = false;
 739	pr_info("OOM killer enabled.\n");
 740}
 741
 742/**
 743 * oom_killer_disable - disable OOM killer
 744 * @timeout: maximum timeout to wait for oom victims in jiffies
 745 *
 746 * Forces all page allocations to fail rather than trigger OOM killer.
 747 * Will block and wait until all OOM victims are killed or the given
 748 * timeout expires.
 749 *
 750 * The function cannot be called when there are runnable user tasks because
 751 * the userspace would see unexpected allocation failures as a result. Any
 752 * new usage of this function should be consulted with MM people.
 753 *
 754 * Returns true if successful and false if the OOM killer cannot be
 755 * disabled.
 756 */
 757bool oom_killer_disable(signed long timeout)
 758{
 759	signed long ret;
 760
 761	/*
 762	 * Make sure to not race with an ongoing OOM killer. Check that the
 763	 * current is not killed (possibly due to sharing the victim's memory).
 764	 */
 765	if (mutex_lock_killable(&oom_lock))
 766		return false;
 767	oom_killer_disabled = true;
 768	mutex_unlock(&oom_lock);
 769
 770	ret = wait_event_interruptible_timeout(oom_victims_wait,
 771			!atomic_read(&oom_victims), timeout);
 772	if (ret <= 0) {
 773		oom_killer_enable();
 774		return false;
 775	}
 776	pr_info("OOM killer disabled.\n");
 777
 778	return true;
 779}
 780
 781static inline bool __task_will_free_mem(struct task_struct *task)
 782{
 783	struct signal_struct *sig = task->signal;
 784
 785	/*
 786	 * A coredumping process may sleep for an extended period in exit_mm(),
 787	 * so the oom killer cannot assume that the process will promptly exit
 788	 * and release memory.
 789	 */
 790	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 791		return false;
 792
 793	if (sig->flags & SIGNAL_GROUP_EXIT)
 794		return true;
 795
 796	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 797		return true;
 798
 799	return false;
 800}
 801
 802/*
 803 * Checks whether the given task is dying or exiting and likely to
 804 * release its address space. This means that all threads and processes
 805 * sharing the same mm have to be killed or exiting.
 806 * Caller has to make sure that task->mm is stable (hold task_lock or
 807 * it operates on the current).
 808 */
 809static bool task_will_free_mem(struct task_struct *task)
 810{
 811	struct mm_struct *mm = task->mm;
 812	struct task_struct *p;
 813	bool ret = true;
 814
 815	/*
 816	 * Skip tasks without mm because it might have passed its exit_mm and
 817	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 818	 * on that for now. We can consider find_lock_task_mm in future.
 819	 */
 820	if (!mm)
 821		return false;
 822
 823	if (!__task_will_free_mem(task))
 824		return false;
 825
 826	/*
 827	 * This task has already been drained by the oom reaper so there are
 828	 * only small chances it will free some more
 829	 */
 830	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 831		return false;
 832
 833	if (atomic_read(&mm->mm_users) <= 1)
 834		return true;
 835
 836	/*
 837	 * Make sure that all tasks which share the mm with the given tasks
 838	 * are dying as well to make sure that a) nobody pins its mm and
 839	 * b) the task is also reapable by the oom reaper.
 840	 */
 841	rcu_read_lock();
 842	for_each_process(p) {
 843		if (!process_shares_mm(p, mm))
 844			continue;
 845		if (same_thread_group(task, p))
 846			continue;
 847		ret = __task_will_free_mem(p);
 848		if (!ret)
 849			break;
 850	}
 851	rcu_read_unlock();
 852
 853	return ret;
 854}
 855
 856static void __oom_kill_process(struct task_struct *victim, const char *message)
 857{
 858	struct task_struct *p;
 859	struct mm_struct *mm;
 860	bool can_oom_reap = true;
 861
 862	p = find_lock_task_mm(victim);
 863	if (!p) {
 864		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
 865			message, task_pid_nr(victim), victim->comm);
 866		put_task_struct(victim);
 867		return;
 868	} else if (victim != p) {
 869		get_task_struct(p);
 870		put_task_struct(victim);
 871		victim = p;
 872	}
 873
 874	/* Get a reference to safely compare mm after task_unlock(victim) */
 875	mm = victim->mm;
 876	mmgrab(mm);
 877
 878	/* Raise event before sending signal: task reaper must see this */
 879	count_vm_event(OOM_KILL);
 880	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 881
 882	/*
 883	 * We should send SIGKILL before granting access to memory reserves
 884	 * in order to prevent the OOM victim from depleting the memory
 885	 * reserves from the user space under its control.
 886	 */
 887	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 888	mark_oom_victim(victim);
 889	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 890		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 891		K(get_mm_counter(mm, MM_ANONPAGES)),
 892		K(get_mm_counter(mm, MM_FILEPAGES)),
 893		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 894		from_kuid(&init_user_ns, task_uid(victim)),
 895		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
 896	task_unlock(victim);
 897
 898	/*
 899	 * Kill all user processes sharing victim->mm in other thread groups, if
 900	 * any.  They don't get access to memory reserves, though, to avoid
 901	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
 902	 * oom killed thread cannot exit because it requires the semaphore and
 903	 * its contended by another thread trying to allocate memory itself.
 904	 * That thread will now get access to memory reserves since it has a
 905	 * pending fatal signal.
 906	 */
 907	rcu_read_lock();
 908	for_each_process(p) {
 909		if (!process_shares_mm(p, mm))
 910			continue;
 911		if (same_thread_group(p, victim))
 912			continue;
 913		if (is_global_init(p)) {
 914			can_oom_reap = false;
 915			set_bit(MMF_OOM_SKIP, &mm->flags);
 916			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 917					task_pid_nr(victim), victim->comm,
 918					task_pid_nr(p), p->comm);
 919			continue;
 920		}
 921		/*
 922		 * No kthead_use_mm() user needs to read from the userspace so
 923		 * we are ok to reap it.
 924		 */
 925		if (unlikely(p->flags & PF_KTHREAD))
 926			continue;
 927		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 928	}
 929	rcu_read_unlock();
 930
 931	if (can_oom_reap)
 932		wake_oom_reaper(victim);
 933
 934	mmdrop(mm);
 935	put_task_struct(victim);
 936}
 937#undef K
 938
 939/*
 940 * Kill provided task unless it's secured by setting
 941 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 942 */
 943static int oom_kill_memcg_member(struct task_struct *task, void *message)
 944{
 945	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 946	    !is_global_init(task)) {
 947		get_task_struct(task);
 948		__oom_kill_process(task, message);
 949	}
 950	return 0;
 951}
 952
 953static void oom_kill_process(struct oom_control *oc, const char *message)
 954{
 955	struct task_struct *victim = oc->chosen;
 956	struct mem_cgroup *oom_group;
 957	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 958					      DEFAULT_RATELIMIT_BURST);
 959
 960	/*
 961	 * If the task is already exiting, don't alarm the sysadmin or kill
 962	 * its children or threads, just give it access to memory reserves
 963	 * so it can die quickly
 964	 */
 965	task_lock(victim);
 966	if (task_will_free_mem(victim)) {
 967		mark_oom_victim(victim);
 968		wake_oom_reaper(victim);
 969		task_unlock(victim);
 970		put_task_struct(victim);
 971		return;
 972	}
 973	task_unlock(victim);
 974
 975	if (__ratelimit(&oom_rs))
 976		dump_header(oc, victim);
 977
 978	/*
 979	 * Do we need to kill the entire memory cgroup?
 980	 * Or even one of the ancestor memory cgroups?
 981	 * Check this out before killing the victim task.
 982	 */
 983	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 984
 985	__oom_kill_process(victim, message);
 986
 987	/*
 988	 * If necessary, kill all tasks in the selected memory cgroup.
 989	 */
 990	if (oom_group) {
 991		mem_cgroup_print_oom_group(oom_group);
 992		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 993				      (void*)message);
 994		mem_cgroup_put(oom_group);
 995	}
 996}
 997
 998/*
 999 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1000 */
1001static void check_panic_on_oom(struct oom_control *oc)
1002{
1003	if (likely(!sysctl_panic_on_oom))
1004		return;
1005	if (sysctl_panic_on_oom != 2) {
1006		/*
1007		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1008		 * does not panic for cpuset, mempolicy, or memcg allocation
1009		 * failures.
1010		 */
1011		if (oc->constraint != CONSTRAINT_NONE)
1012			return;
1013	}
1014	/* Do not panic for oom kills triggered by sysrq */
1015	if (is_sysrq_oom(oc))
1016		return;
1017	dump_header(oc, NULL);
1018	panic("Out of memory: %s panic_on_oom is enabled\n",
1019		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1020}
1021
1022static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1023
1024int register_oom_notifier(struct notifier_block *nb)
1025{
1026	return blocking_notifier_chain_register(&oom_notify_list, nb);
1027}
1028EXPORT_SYMBOL_GPL(register_oom_notifier);
1029
1030int unregister_oom_notifier(struct notifier_block *nb)
1031{
1032	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1033}
1034EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1035
1036/**
1037 * out_of_memory - kill the "best" process when we run out of memory
1038 * @oc: pointer to struct oom_control
1039 *
1040 * If we run out of memory, we have the choice between either
1041 * killing a random task (bad), letting the system crash (worse)
1042 * OR try to be smart about which process to kill. Note that we
1043 * don't have to be perfect here, we just have to be good.
1044 */
1045bool out_of_memory(struct oom_control *oc)
1046{
1047	unsigned long freed = 0;
1048
1049	if (oom_killer_disabled)
1050		return false;
1051
1052	if (!is_memcg_oom(oc)) {
1053		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1054		if (freed > 0)
1055			/* Got some memory back in the last second. */
1056			return true;
1057	}
1058
1059	/*
1060	 * If current has a pending SIGKILL or is exiting, then automatically
1061	 * select it.  The goal is to allow it to allocate so that it may
1062	 * quickly exit and free its memory.
1063	 */
1064	if (task_will_free_mem(current)) {
1065		mark_oom_victim(current);
1066		wake_oom_reaper(current);
1067		return true;
1068	}
1069
1070	/*
1071	 * The OOM killer does not compensate for IO-less reclaim.
1072	 * pagefault_out_of_memory lost its gfp context so we have to
1073	 * make sure exclude 0 mask - all other users should have at least
1074	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1075	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1076	 */
1077	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1078		return true;
1079
1080	/*
1081	 * Check if there were limitations on the allocation (only relevant for
1082	 * NUMA and memcg) that may require different handling.
1083	 */
1084	oc->constraint = constrained_alloc(oc);
1085	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1086		oc->nodemask = NULL;
1087	check_panic_on_oom(oc);
1088
1089	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1090	    current->mm && !oom_unkillable_task(current) &&
1091	    oom_cpuset_eligible(current, oc) &&
1092	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1093		get_task_struct(current);
1094		oc->chosen = current;
1095		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1096		return true;
1097	}
1098
1099	select_bad_process(oc);
1100	/* Found nothing?!?! */
1101	if (!oc->chosen) {
1102		dump_header(oc, NULL);
1103		pr_warn("Out of memory and no killable processes...\n");
1104		/*
1105		 * If we got here due to an actual allocation at the
1106		 * system level, we cannot survive this and will enter
1107		 * an endless loop in the allocator. Bail out now.
1108		 */
1109		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1110			panic("System is deadlocked on memory\n");
1111	}
1112	if (oc->chosen && oc->chosen != (void *)-1UL)
1113		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1114				 "Memory cgroup out of memory");
1115	return !!oc->chosen;
1116}
1117
1118/*
1119 * The pagefault handler calls here because it is out of memory, so kill a
1120 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1121 * killing is already in progress so do nothing.
1122 */
1123void pagefault_out_of_memory(void)
1124{
1125	struct oom_control oc = {
1126		.zonelist = NULL,
1127		.nodemask = NULL,
1128		.memcg = NULL,
1129		.gfp_mask = 0,
1130		.order = 0,
1131	};
1132
1133	if (mem_cgroup_oom_synchronize(true))
1134		return;
1135
1136	if (!mutex_trylock(&oom_lock))
1137		return;
1138	out_of_memory(&oc);
1139	mutex_unlock(&oom_lock);
1140}