Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
 
  29#include <linux/swap.h>
 
  30#include <linux/timex.h>
  31#include <linux/jiffies.h>
  32#include <linux/cpuset.h>
  33#include <linux/export.h>
  34#include <linux/notifier.h>
  35#include <linux/memcontrol.h>
  36#include <linux/mempolicy.h>
  37#include <linux/security.h>
  38#include <linux/ptrace.h>
  39#include <linux/freezer.h>
  40#include <linux/ftrace.h>
  41#include <linux/ratelimit.h>
  42#include <linux/kthread.h>
  43#include <linux/init.h>
  44#include <linux/mmu_notifier.h>
 
 
  45
  46#include <asm/tlb.h>
  47#include "internal.h"
  48#include "slab.h"
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/oom.h>
  52
  53int sysctl_panic_on_oom;
  54int sysctl_oom_kill_allocating_task;
  55int sysctl_oom_dump_tasks = 1;
  56
  57/*
  58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  60 * from different domains).
  61 *
  62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  63 * and mark_oom_victim
  64 */
  65DEFINE_MUTEX(oom_lock);
 
 
  66
  67static inline bool is_memcg_oom(struct oom_control *oc)
  68{
  69	return oc->memcg != NULL;
  70}
  71
  72#ifdef CONFIG_NUMA
  73/**
  74 * oom_cpuset_eligible() - check task eligiblity for kill
  75 * @start: task struct of which task to consider
  76 * @oc: pointer to struct oom_control
  77 *
  78 * Task eligibility is determined by whether or not a candidate task, @tsk,
  79 * shares the same mempolicy nodes as current if it is bound by such a policy
  80 * and whether or not it has the same set of allowed cpuset nodes.
  81 *
  82 * This function is assuming oom-killer context and 'current' has triggered
  83 * the oom-killer.
  84 */
  85static bool oom_cpuset_eligible(struct task_struct *start,
  86				struct oom_control *oc)
  87{
  88	struct task_struct *tsk;
  89	bool ret = false;
  90	const nodemask_t *mask = oc->nodemask;
  91
  92	if (is_memcg_oom(oc))
  93		return true;
  94
  95	rcu_read_lock();
  96	for_each_thread(start, tsk) {
  97		if (mask) {
  98			/*
  99			 * If this is a mempolicy constrained oom, tsk's
 100			 * cpuset is irrelevant.  Only return true if its
 101			 * mempolicy intersects current, otherwise it may be
 102			 * needlessly killed.
 103			 */
 104			ret = mempolicy_nodemask_intersects(tsk, mask);
 105		} else {
 106			/*
 107			 * This is not a mempolicy constrained oom, so only
 108			 * check the mems of tsk's cpuset.
 109			 */
 110			ret = cpuset_mems_allowed_intersects(current, tsk);
 111		}
 112		if (ret)
 113			break;
 114	}
 115	rcu_read_unlock();
 116
 117	return ret;
 118}
 119#else
 120static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 121{
 122	return true;
 123}
 124#endif /* CONFIG_NUMA */
 125
 126/*
 127 * The process p may have detached its own ->mm while exiting or through
 128 * use_mm(), but one or more of its subthreads may still have a valid
 129 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 130 * task_lock() held.
 131 */
 132struct task_struct *find_lock_task_mm(struct task_struct *p)
 133{
 134	struct task_struct *t;
 135
 136	rcu_read_lock();
 137
 138	for_each_thread(p, t) {
 139		task_lock(t);
 140		if (likely(t->mm))
 141			goto found;
 142		task_unlock(t);
 143	}
 144	t = NULL;
 145found:
 146	rcu_read_unlock();
 147
 148	return t;
 149}
 150
 151/*
 152 * order == -1 means the oom kill is required by sysrq, otherwise only
 153 * for display purposes.
 154 */
 155static inline bool is_sysrq_oom(struct oom_control *oc)
 156{
 157	return oc->order == -1;
 158}
 159
 160/* return true if the task is not adequate as candidate victim task. */
 161static bool oom_unkillable_task(struct task_struct *p)
 162{
 163	if (is_global_init(p))
 164		return true;
 165	if (p->flags & PF_KTHREAD)
 166		return true;
 167	return false;
 168}
 169
 170/*
 171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 172 * than all user memory (LRU pages)
 173 */
 174static bool is_dump_unreclaim_slabs(void)
 
 
 175{
 176	unsigned long nr_lru;
 177
 178	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 179		 global_node_page_state(NR_INACTIVE_ANON) +
 180		 global_node_page_state(NR_ACTIVE_FILE) +
 181		 global_node_page_state(NR_INACTIVE_FILE) +
 182		 global_node_page_state(NR_ISOLATED_ANON) +
 183		 global_node_page_state(NR_ISOLATED_FILE) +
 184		 global_node_page_state(NR_UNEVICTABLE);
 185
 186	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 187}
 188
 189/**
 190 * oom_badness - heuristic function to determine which candidate task to kill
 191 * @p: task struct of which task we should calculate
 192 * @totalpages: total present RAM allowed for page allocation
 193 *
 194 * The heuristic for determining which task to kill is made to be as simple and
 195 * predictable as possible.  The goal is to return the highest value for the
 196 * task consuming the most memory to avoid subsequent oom failures.
 197 */
 198unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
 199{
 200	long points;
 201	long adj;
 202
 203	if (oom_unkillable_task(p))
 204		return 0;
 205
 206	p = find_lock_task_mm(p);
 207	if (!p)
 208		return 0;
 209
 210	/*
 211	 * Do not even consider tasks which are explicitly marked oom
 212	 * unkillable or have been already oom reaped or the are in
 213	 * the middle of vfork
 214	 */
 215	adj = (long)p->signal->oom_score_adj;
 216	if (adj == OOM_SCORE_ADJ_MIN ||
 217			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 218			in_vfork(p)) {
 219		task_unlock(p);
 220		return 0;
 221	}
 222
 223	/*
 224	 * The baseline for the badness score is the proportion of RAM that each
 225	 * task's rss, pagetable and swap space use.
 226	 */
 227	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 228		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 229	task_unlock(p);
 230
 231	/* Normalize to oom_score_adj units */
 232	adj *= totalpages / 1000;
 233	points += adj;
 234
 235	/*
 236	 * Never return 0 for an eligible task regardless of the root bonus and
 237	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 238	 */
 239	return points > 0 ? points : 1;
 240}
 241
 242static const char * const oom_constraint_text[] = {
 243	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 244	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 245	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 246	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 247};
 248
 249/*
 250 * Determine the type of allocation constraint.
 251 */
 252static enum oom_constraint constrained_alloc(struct oom_control *oc)
 253{
 254	struct zone *zone;
 255	struct zoneref *z;
 256	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 257	bool cpuset_limited = false;
 258	int nid;
 259
 260	if (is_memcg_oom(oc)) {
 261		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 262		return CONSTRAINT_MEMCG;
 263	}
 264
 265	/* Default to all available memory */
 266	oc->totalpages = totalram_pages() + total_swap_pages;
 267
 268	if (!IS_ENABLED(CONFIG_NUMA))
 269		return CONSTRAINT_NONE;
 270
 271	if (!oc->zonelist)
 272		return CONSTRAINT_NONE;
 273	/*
 274	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 275	 * to kill current.We have to random task kill in this case.
 276	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 277	 */
 278	if (oc->gfp_mask & __GFP_THISNODE)
 279		return CONSTRAINT_NONE;
 280
 281	/*
 282	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 283	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 284	 * is enforced in get_page_from_freelist().
 285	 */
 286	if (oc->nodemask &&
 287	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 288		oc->totalpages = total_swap_pages;
 289		for_each_node_mask(nid, *oc->nodemask)
 290			oc->totalpages += node_present_pages(nid);
 291		return CONSTRAINT_MEMORY_POLICY;
 292	}
 293
 294	/* Check this allocation failure is caused by cpuset's wall function */
 295	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 296			high_zoneidx, oc->nodemask)
 297		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 298			cpuset_limited = true;
 299
 300	if (cpuset_limited) {
 301		oc->totalpages = total_swap_pages;
 302		for_each_node_mask(nid, cpuset_current_mems_allowed)
 303			oc->totalpages += node_present_pages(nid);
 304		return CONSTRAINT_CPUSET;
 305	}
 306	return CONSTRAINT_NONE;
 307}
 308
 309static int oom_evaluate_task(struct task_struct *task, void *arg)
 310{
 311	struct oom_control *oc = arg;
 312	unsigned long points;
 313
 314	if (oom_unkillable_task(task))
 315		goto next;
 316
 317	/* p may not have freeable memory in nodemask */
 318	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 319		goto next;
 320
 321	/*
 322	 * This task already has access to memory reserves and is being killed.
 323	 * Don't allow any other task to have access to the reserves unless
 324	 * the task has MMF_OOM_SKIP because chances that it would release
 325	 * any memory is quite low.
 326	 */
 327	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 328		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 329			goto next;
 330		goto abort;
 331	}
 332
 333	/*
 334	 * If task is allocating a lot of memory and has been marked to be
 335	 * killed first if it triggers an oom, then select it.
 336	 */
 337	if (oom_task_origin(task)) {
 338		points = ULONG_MAX;
 339		goto select;
 340	}
 341
 342	points = oom_badness(task, oc->totalpages);
 343	if (!points || points < oc->chosen_points)
 344		goto next;
 345
 346select:
 347	if (oc->chosen)
 348		put_task_struct(oc->chosen);
 349	get_task_struct(task);
 350	oc->chosen = task;
 351	oc->chosen_points = points;
 352next:
 353	return 0;
 354abort:
 355	if (oc->chosen)
 356		put_task_struct(oc->chosen);
 357	oc->chosen = (void *)-1UL;
 358	return 1;
 359}
 360
 361/*
 362 * Simple selection loop. We choose the process with the highest number of
 363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 364 */
 365static void select_bad_process(struct oom_control *oc)
 366{
 
 
 367	if (is_memcg_oom(oc))
 368		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 369	else {
 370		struct task_struct *p;
 371
 372		rcu_read_lock();
 373		for_each_process(p)
 374			if (oom_evaluate_task(p, oc))
 375				break;
 376		rcu_read_unlock();
 377	}
 378}
 379
 380static int dump_task(struct task_struct *p, void *arg)
 381{
 382	struct oom_control *oc = arg;
 383	struct task_struct *task;
 384
 385	if (oom_unkillable_task(p))
 386		return 0;
 387
 388	/* p may not have freeable memory in nodemask */
 389	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 390		return 0;
 391
 392	task = find_lock_task_mm(p);
 393	if (!task) {
 394		/*
 395		 * This is a kthread or all of p's threads have already
 396		 * detached their mm's.  There's no need to report
 397		 * them; they can't be oom killed anyway.
 398		 */
 399		return 0;
 400	}
 401
 402	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 403		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 404		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 405		mm_pgtables_bytes(task->mm),
 
 406		get_mm_counter(task->mm, MM_SWAPENTS),
 407		task->signal->oom_score_adj, task->comm);
 408	task_unlock(task);
 409
 410	return 0;
 411}
 412
 413/**
 414 * dump_tasks - dump current memory state of all system tasks
 415 * @oc: pointer to struct oom_control
 416 *
 417 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 419 * are not shown.
 420 * State information includes task's pid, uid, tgid, vm size, rss,
 421 * pgtables_bytes, swapents, oom_score_adj value, and name.
 422 */
 423static void dump_tasks(struct oom_control *oc)
 424{
 425	pr_info("Tasks state (memory values in pages):\n");
 426	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 427
 428	if (is_memcg_oom(oc))
 429		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 430	else {
 431		struct task_struct *p;
 
 432
 433		rcu_read_lock();
 434		for_each_process(p)
 
 
 
 435			dump_task(p, oc);
 
 436		rcu_read_unlock();
 437	}
 438}
 439
 440static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 441{
 442	/* one line summary of the oom killer context. */
 443	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 444			oom_constraint_text[oc->constraint],
 445			nodemask_pr_args(oc->nodemask));
 446	cpuset_print_current_mems_allowed();
 447	mem_cgroup_print_oom_context(oc->memcg, victim);
 448	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 449		from_kuid(&init_user_ns, task_uid(victim)));
 450}
 451
 452static void dump_header(struct oom_control *oc, struct task_struct *p)
 453{
 454	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 455		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 456			current->signal->oom_score_adj);
 457	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 458		pr_warn("COMPACTION is disabled!!!\n");
 459
 460	dump_stack();
 461	if (is_memcg_oom(oc))
 462		mem_cgroup_print_oom_meminfo(oc->memcg);
 463	else {
 464		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 465		if (is_dump_unreclaim_slabs())
 466			dump_unreclaimable_slab();
 467	}
 468	if (sysctl_oom_dump_tasks)
 469		dump_tasks(oc);
 470	if (p)
 471		dump_oom_summary(oc, p);
 472}
 473
 474/*
 475 * Number of OOM victims in flight
 476 */
 477static atomic_t oom_victims = ATOMIC_INIT(0);
 478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 479
 480static bool oom_killer_disabled __read_mostly;
 481
 482#define K(x) ((x) << (PAGE_SHIFT-10))
 483
 484/*
 485 * task->mm can be NULL if the task is the exited group leader.  So to
 486 * determine whether the task is using a particular mm, we examine all the
 487 * task's threads: if one of those is using this mm then this task was also
 488 * using it.
 489 */
 490bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 491{
 492	struct task_struct *t;
 493
 494	for_each_thread(p, t) {
 495		struct mm_struct *t_mm = READ_ONCE(t->mm);
 496		if (t_mm)
 497			return t_mm == mm;
 498	}
 499	return false;
 500}
 501
 502#ifdef CONFIG_MMU
 503/*
 504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 505 * victim (if that is possible) to help the OOM killer to move on.
 506 */
 507static struct task_struct *oom_reaper_th;
 508static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 509static struct task_struct *oom_reaper_list;
 510static DEFINE_SPINLOCK(oom_reaper_lock);
 511
 512bool __oom_reap_task_mm(struct mm_struct *mm)
 513{
 514	struct vm_area_struct *vma;
 515	bool ret = true;
 
 516
 517	/*
 518	 * Tell all users of get_user/copy_from_user etc... that the content
 519	 * is no longer stable. No barriers really needed because unmapping
 520	 * should imply barriers already and the reader would hit a page fault
 521	 * if it stumbled over a reaped memory.
 522	 */
 523	set_bit(MMF_UNSTABLE, &mm->flags);
 524
 525	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 526		if (!can_madv_lru_vma(vma))
 527			continue;
 528
 529		/*
 530		 * Only anonymous pages have a good chance to be dropped
 531		 * without additional steps which we cannot afford as we
 532		 * are OOM already.
 533		 *
 534		 * We do not even care about fs backed pages because all
 535		 * which are reclaimable have already been reclaimed and
 536		 * we do not want to block exit_mmap by keeping mm ref
 537		 * count elevated without a good reason.
 538		 */
 539		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 540			struct mmu_notifier_range range;
 541			struct mmu_gather tlb;
 542
 543			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 544						vma, mm, vma->vm_start,
 545						vma->vm_end);
 546			tlb_gather_mmu(&tlb, mm, range.start, range.end);
 547			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 548				tlb_finish_mmu(&tlb, range.start, range.end);
 549				ret = false;
 550				continue;
 551			}
 552			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 553			mmu_notifier_invalidate_range_end(&range);
 554			tlb_finish_mmu(&tlb, range.start, range.end);
 555		}
 556	}
 557
 558	return ret;
 559}
 560
 561/*
 562 * Reaps the address space of the give task.
 563 *
 564 * Returns true on success and false if none or part of the address space
 565 * has been reclaimed and the caller should retry later.
 566 */
 567static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 568{
 569	bool ret = true;
 570
 571	if (!down_read_trylock(&mm->mmap_sem)) {
 572		trace_skip_task_reaping(tsk->pid);
 573		return false;
 574	}
 575
 576	/*
 577	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 578	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 579	 * under mmap_sem for reading because it serializes against the
 580	 * down_write();up_write() cycle in exit_mmap().
 581	 */
 582	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 583		trace_skip_task_reaping(tsk->pid);
 584		goto out_unlock;
 585	}
 586
 587	trace_start_task_reaping(tsk->pid);
 588
 589	/* failed to reap part of the address space. Try again later */
 590	ret = __oom_reap_task_mm(mm);
 591	if (!ret)
 592		goto out_finish;
 593
 594	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 595			task_pid_nr(tsk), tsk->comm,
 596			K(get_mm_counter(mm, MM_ANONPAGES)),
 597			K(get_mm_counter(mm, MM_FILEPAGES)),
 598			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 599out_finish:
 600	trace_finish_task_reaping(tsk->pid);
 601out_unlock:
 602	up_read(&mm->mmap_sem);
 603
 604	return ret;
 605}
 606
 607#define MAX_OOM_REAP_RETRIES 10
 608static void oom_reap_task(struct task_struct *tsk)
 609{
 610	int attempts = 0;
 611	struct mm_struct *mm = tsk->signal->oom_mm;
 612
 613	/* Retry the down_read_trylock(mmap_sem) a few times */
 614	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 615		schedule_timeout_idle(HZ/10);
 616
 617	if (attempts <= MAX_OOM_REAP_RETRIES ||
 618	    test_bit(MMF_OOM_SKIP, &mm->flags))
 619		goto done;
 620
 621	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 622		task_pid_nr(tsk), tsk->comm);
 
 623	debug_show_all_locks();
 624
 625done:
 626	tsk->oom_reaper_list = NULL;
 627
 628	/*
 629	 * Hide this mm from OOM killer because it has been either reaped or
 630	 * somebody can't call up_write(mmap_sem).
 631	 */
 632	set_bit(MMF_OOM_SKIP, &mm->flags);
 633
 634	/* Drop a reference taken by wake_oom_reaper */
 635	put_task_struct(tsk);
 636}
 637
 638static int oom_reaper(void *unused)
 639{
 
 
 640	while (true) {
 641		struct task_struct *tsk = NULL;
 642
 643		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 644		spin_lock(&oom_reaper_lock);
 645		if (oom_reaper_list != NULL) {
 646			tsk = oom_reaper_list;
 647			oom_reaper_list = tsk->oom_reaper_list;
 648		}
 649		spin_unlock(&oom_reaper_lock);
 650
 651		if (tsk)
 652			oom_reap_task(tsk);
 653	}
 654
 655	return 0;
 656}
 657
 658static void wake_oom_reaper(struct task_struct *tsk)
 659{
 660	/* mm is already queued? */
 661	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 662		return;
 
 663
 664	get_task_struct(tsk);
 
 
 
 
 665
 666	spin_lock(&oom_reaper_lock);
 667	tsk->oom_reaper_list = oom_reaper_list;
 668	oom_reaper_list = tsk;
 669	spin_unlock(&oom_reaper_lock);
 670	trace_wake_reaper(tsk->pid);
 671	wake_up(&oom_reaper_wait);
 672}
 673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674static int __init oom_init(void)
 675{
 676	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 
 
 
 677	return 0;
 678}
 679subsys_initcall(oom_init)
 680#else
 681static inline void wake_oom_reaper(struct task_struct *tsk)
 682{
 683}
 684#endif /* CONFIG_MMU */
 685
 686/**
 687 * mark_oom_victim - mark the given task as OOM victim
 688 * @tsk: task to mark
 689 *
 690 * Has to be called with oom_lock held and never after
 691 * oom has been disabled already.
 692 *
 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 694 * under task_lock or operate on the current).
 695 */
 696static void mark_oom_victim(struct task_struct *tsk)
 697{
 
 698	struct mm_struct *mm = tsk->mm;
 699
 700	WARN_ON(oom_killer_disabled);
 701	/* OOM killer might race with memcg OOM */
 702	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 703		return;
 704
 705	/* oom_mm is bound to the signal struct life time. */
 706	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 707		mmgrab(tsk->signal->oom_mm);
 708		set_bit(MMF_OOM_VICTIM, &mm->flags);
 709	}
 710
 711	/*
 712	 * Make sure that the task is woken up from uninterruptible sleep
 713	 * if it is frozen because OOM killer wouldn't be able to free
 714	 * any memory and livelock. freezing_slow_path will tell the freezer
 715	 * that TIF_MEMDIE tasks should be ignored.
 716	 */
 717	__thaw_task(tsk);
 718	atomic_inc(&oom_victims);
 719	trace_mark_victim(tsk->pid);
 
 
 720}
 721
 722/**
 723 * exit_oom_victim - note the exit of an OOM victim
 724 */
 725void exit_oom_victim(void)
 726{
 727	clear_thread_flag(TIF_MEMDIE);
 728
 729	if (!atomic_dec_return(&oom_victims))
 730		wake_up_all(&oom_victims_wait);
 731}
 732
 733/**
 734 * oom_killer_enable - enable OOM killer
 735 */
 736void oom_killer_enable(void)
 737{
 738	oom_killer_disabled = false;
 739	pr_info("OOM killer enabled.\n");
 740}
 741
 742/**
 743 * oom_killer_disable - disable OOM killer
 744 * @timeout: maximum timeout to wait for oom victims in jiffies
 745 *
 746 * Forces all page allocations to fail rather than trigger OOM killer.
 747 * Will block and wait until all OOM victims are killed or the given
 748 * timeout expires.
 749 *
 750 * The function cannot be called when there are runnable user tasks because
 751 * the userspace would see unexpected allocation failures as a result. Any
 752 * new usage of this function should be consulted with MM people.
 753 *
 754 * Returns true if successful and false if the OOM killer cannot be
 755 * disabled.
 756 */
 757bool oom_killer_disable(signed long timeout)
 758{
 759	signed long ret;
 760
 761	/*
 762	 * Make sure to not race with an ongoing OOM killer. Check that the
 763	 * current is not killed (possibly due to sharing the victim's memory).
 764	 */
 765	if (mutex_lock_killable(&oom_lock))
 766		return false;
 767	oom_killer_disabled = true;
 768	mutex_unlock(&oom_lock);
 769
 770	ret = wait_event_interruptible_timeout(oom_victims_wait,
 771			!atomic_read(&oom_victims), timeout);
 772	if (ret <= 0) {
 773		oom_killer_enable();
 774		return false;
 775	}
 776	pr_info("OOM killer disabled.\n");
 777
 778	return true;
 779}
 780
 781static inline bool __task_will_free_mem(struct task_struct *task)
 782{
 783	struct signal_struct *sig = task->signal;
 784
 785	/*
 786	 * A coredumping process may sleep for an extended period in exit_mm(),
 787	 * so the oom killer cannot assume that the process will promptly exit
 788	 * and release memory.
 789	 */
 790	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 791		return false;
 792
 793	if (sig->flags & SIGNAL_GROUP_EXIT)
 794		return true;
 795
 796	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 797		return true;
 798
 799	return false;
 800}
 801
 802/*
 803 * Checks whether the given task is dying or exiting and likely to
 804 * release its address space. This means that all threads and processes
 805 * sharing the same mm have to be killed or exiting.
 806 * Caller has to make sure that task->mm is stable (hold task_lock or
 807 * it operates on the current).
 808 */
 809static bool task_will_free_mem(struct task_struct *task)
 810{
 811	struct mm_struct *mm = task->mm;
 812	struct task_struct *p;
 813	bool ret = true;
 814
 815	/*
 816	 * Skip tasks without mm because it might have passed its exit_mm and
 817	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 818	 * on that for now. We can consider find_lock_task_mm in future.
 819	 */
 820	if (!mm)
 821		return false;
 822
 823	if (!__task_will_free_mem(task))
 824		return false;
 825
 826	/*
 827	 * This task has already been drained by the oom reaper so there are
 828	 * only small chances it will free some more
 829	 */
 830	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 831		return false;
 832
 833	if (atomic_read(&mm->mm_users) <= 1)
 834		return true;
 835
 836	/*
 837	 * Make sure that all tasks which share the mm with the given tasks
 838	 * are dying as well to make sure that a) nobody pins its mm and
 839	 * b) the task is also reapable by the oom reaper.
 840	 */
 841	rcu_read_lock();
 842	for_each_process(p) {
 843		if (!process_shares_mm(p, mm))
 844			continue;
 845		if (same_thread_group(task, p))
 846			continue;
 847		ret = __task_will_free_mem(p);
 848		if (!ret)
 849			break;
 850	}
 851	rcu_read_unlock();
 852
 853	return ret;
 854}
 855
 856static void __oom_kill_process(struct task_struct *victim, const char *message)
 857{
 858	struct task_struct *p;
 859	struct mm_struct *mm;
 860	bool can_oom_reap = true;
 861
 862	p = find_lock_task_mm(victim);
 863	if (!p) {
 
 
 864		put_task_struct(victim);
 865		return;
 866	} else if (victim != p) {
 867		get_task_struct(p);
 868		put_task_struct(victim);
 869		victim = p;
 870	}
 871
 872	/* Get a reference to safely compare mm after task_unlock(victim) */
 873	mm = victim->mm;
 874	mmgrab(mm);
 875
 876	/* Raise event before sending signal: task reaper must see this */
 877	count_vm_event(OOM_KILL);
 878	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 879
 880	/*
 881	 * We should send SIGKILL before granting access to memory reserves
 882	 * in order to prevent the OOM victim from depleting the memory
 883	 * reserves from the user space under its control.
 884	 */
 885	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 886	mark_oom_victim(victim);
 887	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 888		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 889		K(get_mm_counter(mm, MM_ANONPAGES)),
 890		K(get_mm_counter(mm, MM_FILEPAGES)),
 891		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 892		from_kuid(&init_user_ns, task_uid(victim)),
 893		mm_pgtables_bytes(mm), victim->signal->oom_score_adj);
 894	task_unlock(victim);
 895
 896	/*
 897	 * Kill all user processes sharing victim->mm in other thread groups, if
 898	 * any.  They don't get access to memory reserves, though, to avoid
 899	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 900	 * oom killed thread cannot exit because it requires the semaphore and
 901	 * its contended by another thread trying to allocate memory itself.
 902	 * That thread will now get access to memory reserves since it has a
 903	 * pending fatal signal.
 904	 */
 905	rcu_read_lock();
 906	for_each_process(p) {
 907		if (!process_shares_mm(p, mm))
 908			continue;
 909		if (same_thread_group(p, victim))
 910			continue;
 911		if (is_global_init(p)) {
 912			can_oom_reap = false;
 913			set_bit(MMF_OOM_SKIP, &mm->flags);
 914			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 915					task_pid_nr(victim), victim->comm,
 916					task_pid_nr(p), p->comm);
 917			continue;
 918		}
 919		/*
 920		 * No use_mm() user needs to read from the userspace so we are
 921		 * ok to reap it.
 922		 */
 923		if (unlikely(p->flags & PF_KTHREAD))
 924			continue;
 925		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 926	}
 927	rcu_read_unlock();
 928
 929	if (can_oom_reap)
 930		wake_oom_reaper(victim);
 931
 932	mmdrop(mm);
 933	put_task_struct(victim);
 934}
 935#undef K
 936
 937/*
 938 * Kill provided task unless it's secured by setting
 939 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 940 */
 941static int oom_kill_memcg_member(struct task_struct *task, void *message)
 942{
 943	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 944	    !is_global_init(task)) {
 945		get_task_struct(task);
 946		__oom_kill_process(task, message);
 947	}
 948	return 0;
 949}
 950
 951static void oom_kill_process(struct oom_control *oc, const char *message)
 952{
 953	struct task_struct *victim = oc->chosen;
 954	struct mem_cgroup *oom_group;
 955	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 956					      DEFAULT_RATELIMIT_BURST);
 957
 958	/*
 959	 * If the task is already exiting, don't alarm the sysadmin or kill
 960	 * its children or threads, just give it access to memory reserves
 961	 * so it can die quickly
 962	 */
 963	task_lock(victim);
 964	if (task_will_free_mem(victim)) {
 965		mark_oom_victim(victim);
 966		wake_oom_reaper(victim);
 967		task_unlock(victim);
 968		put_task_struct(victim);
 969		return;
 970	}
 971	task_unlock(victim);
 972
 973	if (__ratelimit(&oom_rs))
 974		dump_header(oc, victim);
 
 
 975
 976	/*
 977	 * Do we need to kill the entire memory cgroup?
 978	 * Or even one of the ancestor memory cgroups?
 979	 * Check this out before killing the victim task.
 980	 */
 981	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 982
 983	__oom_kill_process(victim, message);
 984
 985	/*
 986	 * If necessary, kill all tasks in the selected memory cgroup.
 987	 */
 988	if (oom_group) {
 
 989		mem_cgroup_print_oom_group(oom_group);
 990		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 991				      (void*)message);
 992		mem_cgroup_put(oom_group);
 993	}
 994}
 995
 996/*
 997 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 998 */
 999static void check_panic_on_oom(struct oom_control *oc)
1000{
1001	if (likely(!sysctl_panic_on_oom))
1002		return;
1003	if (sysctl_panic_on_oom != 2) {
1004		/*
1005		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006		 * does not panic for cpuset, mempolicy, or memcg allocation
1007		 * failures.
1008		 */
1009		if (oc->constraint != CONSTRAINT_NONE)
1010			return;
1011	}
1012	/* Do not panic for oom kills triggered by sysrq */
1013	if (is_sysrq_oom(oc))
1014		return;
1015	dump_header(oc, NULL);
1016	panic("Out of memory: %s panic_on_oom is enabled\n",
1017		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1018}
1019
1020static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1021
1022int register_oom_notifier(struct notifier_block *nb)
1023{
1024	return blocking_notifier_chain_register(&oom_notify_list, nb);
1025}
1026EXPORT_SYMBOL_GPL(register_oom_notifier);
1027
1028int unregister_oom_notifier(struct notifier_block *nb)
1029{
1030	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1031}
1032EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1033
1034/**
1035 * out_of_memory - kill the "best" process when we run out of memory
1036 * @oc: pointer to struct oom_control
1037 *
1038 * If we run out of memory, we have the choice between either
1039 * killing a random task (bad), letting the system crash (worse)
1040 * OR try to be smart about which process to kill. Note that we
1041 * don't have to be perfect here, we just have to be good.
1042 */
1043bool out_of_memory(struct oom_control *oc)
1044{
1045	unsigned long freed = 0;
1046
1047	if (oom_killer_disabled)
1048		return false;
1049
1050	if (!is_memcg_oom(oc)) {
1051		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1052		if (freed > 0)
1053			/* Got some memory back in the last second. */
1054			return true;
1055	}
1056
1057	/*
1058	 * If current has a pending SIGKILL or is exiting, then automatically
1059	 * select it.  The goal is to allow it to allocate so that it may
1060	 * quickly exit and free its memory.
1061	 */
1062	if (task_will_free_mem(current)) {
1063		mark_oom_victim(current);
1064		wake_oom_reaper(current);
1065		return true;
1066	}
1067
1068	/*
1069	 * The OOM killer does not compensate for IO-less reclaim.
1070	 * pagefault_out_of_memory lost its gfp context so we have to
1071	 * make sure exclude 0 mask - all other users should have at least
1072	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1074	 */
1075	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1076		return true;
1077
1078	/*
1079	 * Check if there were limitations on the allocation (only relevant for
1080	 * NUMA and memcg) that may require different handling.
1081	 */
1082	oc->constraint = constrained_alloc(oc);
1083	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1084		oc->nodemask = NULL;
1085	check_panic_on_oom(oc);
1086
1087	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1088	    current->mm && !oom_unkillable_task(current) &&
1089	    oom_cpuset_eligible(current, oc) &&
1090	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1091		get_task_struct(current);
1092		oc->chosen = current;
1093		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1094		return true;
1095	}
1096
1097	select_bad_process(oc);
1098	/* Found nothing?!?! */
1099	if (!oc->chosen) {
1100		dump_header(oc, NULL);
1101		pr_warn("Out of memory and no killable processes...\n");
1102		/*
1103		 * If we got here due to an actual allocation at the
1104		 * system level, we cannot survive this and will enter
1105		 * an endless loop in the allocator. Bail out now.
1106		 */
1107		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1108			panic("System is deadlocked on memory\n");
1109	}
1110	if (oc->chosen && oc->chosen != (void *)-1UL)
1111		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1112				 "Memory cgroup out of memory");
1113	return !!oc->chosen;
1114}
1115
1116/*
1117 * The pagefault handler calls here because it is out of memory, so kill a
1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119 * killing is already in progress so do nothing.
 
1120 */
1121void pagefault_out_of_memory(void)
1122{
1123	struct oom_control oc = {
1124		.zonelist = NULL,
1125		.nodemask = NULL,
1126		.memcg = NULL,
1127		.gfp_mask = 0,
1128		.order = 0,
1129	};
1130
1131	if (mem_cgroup_oom_synchronize(true))
1132		return;
1133
1134	if (!mutex_trylock(&oom_lock))
1135		return;
1136	out_of_memory(&oc);
1137	mutex_unlock(&oom_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
 
  27#include <linux/sched/task.h>
  28#include <linux/sched/debug.h>
  29#include <linux/swap.h>
  30#include <linux/syscalls.h>
  31#include <linux/timex.h>
  32#include <linux/jiffies.h>
  33#include <linux/cpuset.h>
  34#include <linux/export.h>
  35#include <linux/notifier.h>
  36#include <linux/memcontrol.h>
  37#include <linux/mempolicy.h>
  38#include <linux/security.h>
  39#include <linux/ptrace.h>
  40#include <linux/freezer.h>
  41#include <linux/ftrace.h>
  42#include <linux/ratelimit.h>
  43#include <linux/kthread.h>
  44#include <linux/init.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/cred.h>
  47#include <linux/nmi.h>
  48
  49#include <asm/tlb.h>
  50#include "internal.h"
  51#include "slab.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/oom.h>
  55
  56static int sysctl_panic_on_oom;
  57static int sysctl_oom_kill_allocating_task;
  58static int sysctl_oom_dump_tasks = 1;
  59
  60/*
  61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  63 * from different domains).
  64 *
  65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  66 * and mark_oom_victim
  67 */
  68DEFINE_MUTEX(oom_lock);
  69/* Serializes oom_score_adj and oom_score_adj_min updates */
  70DEFINE_MUTEX(oom_adj_mutex);
  71
  72static inline bool is_memcg_oom(struct oom_control *oc)
  73{
  74	return oc->memcg != NULL;
  75}
  76
  77#ifdef CONFIG_NUMA
  78/**
  79 * oom_cpuset_eligible() - check task eligibility for kill
  80 * @start: task struct of which task to consider
  81 * @oc: pointer to struct oom_control
  82 *
  83 * Task eligibility is determined by whether or not a candidate task, @tsk,
  84 * shares the same mempolicy nodes as current if it is bound by such a policy
  85 * and whether or not it has the same set of allowed cpuset nodes.
  86 *
  87 * This function is assuming oom-killer context and 'current' has triggered
  88 * the oom-killer.
  89 */
  90static bool oom_cpuset_eligible(struct task_struct *start,
  91				struct oom_control *oc)
  92{
  93	struct task_struct *tsk;
  94	bool ret = false;
  95	const nodemask_t *mask = oc->nodemask;
  96
 
 
 
  97	rcu_read_lock();
  98	for_each_thread(start, tsk) {
  99		if (mask) {
 100			/*
 101			 * If this is a mempolicy constrained oom, tsk's
 102			 * cpuset is irrelevant.  Only return true if its
 103			 * mempolicy intersects current, otherwise it may be
 104			 * needlessly killed.
 105			 */
 106			ret = mempolicy_in_oom_domain(tsk, mask);
 107		} else {
 108			/*
 109			 * This is not a mempolicy constrained oom, so only
 110			 * check the mems of tsk's cpuset.
 111			 */
 112			ret = cpuset_mems_allowed_intersects(current, tsk);
 113		}
 114		if (ret)
 115			break;
 116	}
 117	rcu_read_unlock();
 118
 119	return ret;
 120}
 121#else
 122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 123{
 124	return true;
 125}
 126#endif /* CONFIG_NUMA */
 127
 128/*
 129 * The process p may have detached its own ->mm while exiting or through
 130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 131 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 132 * task_lock() held.
 133 */
 134struct task_struct *find_lock_task_mm(struct task_struct *p)
 135{
 136	struct task_struct *t;
 137
 138	rcu_read_lock();
 139
 140	for_each_thread(p, t) {
 141		task_lock(t);
 142		if (likely(t->mm))
 143			goto found;
 144		task_unlock(t);
 145	}
 146	t = NULL;
 147found:
 148	rcu_read_unlock();
 149
 150	return t;
 151}
 152
 153/*
 154 * order == -1 means the oom kill is required by sysrq, otherwise only
 155 * for display purposes.
 156 */
 157static inline bool is_sysrq_oom(struct oom_control *oc)
 158{
 159	return oc->order == -1;
 160}
 161
 162/* return true if the task is not adequate as candidate victim task. */
 163static bool oom_unkillable_task(struct task_struct *p)
 164{
 165	if (is_global_init(p))
 166		return true;
 167	if (p->flags & PF_KTHREAD)
 168		return true;
 169	return false;
 170}
 171
 172/*
 173 * Check whether unreclaimable slab amount is greater than
 174 * all user memory(LRU pages).
 175 * dump_unreclaimable_slab() could help in the case that
 176 * oom due to too much unreclaimable slab used by kernel.
 177*/
 178static bool should_dump_unreclaim_slab(void)
 179{
 180	unsigned long nr_lru;
 181
 182	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 183		 global_node_page_state(NR_INACTIVE_ANON) +
 184		 global_node_page_state(NR_ACTIVE_FILE) +
 185		 global_node_page_state(NR_INACTIVE_FILE) +
 186		 global_node_page_state(NR_ISOLATED_ANON) +
 187		 global_node_page_state(NR_ISOLATED_FILE) +
 188		 global_node_page_state(NR_UNEVICTABLE);
 189
 190	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
 191}
 192
 193/**
 194 * oom_badness - heuristic function to determine which candidate task to kill
 195 * @p: task struct of which task we should calculate
 196 * @totalpages: total present RAM allowed for page allocation
 197 *
 198 * The heuristic for determining which task to kill is made to be as simple and
 199 * predictable as possible.  The goal is to return the highest value for the
 200 * task consuming the most memory to avoid subsequent oom failures.
 201 */
 202long oom_badness(struct task_struct *p, unsigned long totalpages)
 203{
 204	long points;
 205	long adj;
 206
 207	if (oom_unkillable_task(p))
 208		return LONG_MIN;
 209
 210	p = find_lock_task_mm(p);
 211	if (!p)
 212		return LONG_MIN;
 213
 214	/*
 215	 * Do not even consider tasks which are explicitly marked oom
 216	 * unkillable or have been already oom reaped or the are in
 217	 * the middle of vfork
 218	 */
 219	adj = (long)p->signal->oom_score_adj;
 220	if (adj == OOM_SCORE_ADJ_MIN ||
 221			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 222			in_vfork(p)) {
 223		task_unlock(p);
 224		return LONG_MIN;
 225	}
 226
 227	/*
 228	 * The baseline for the badness score is the proportion of RAM that each
 229	 * task's rss, pagetable and swap space use.
 230	 */
 231	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 232		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 233	task_unlock(p);
 234
 235	/* Normalize to oom_score_adj units */
 236	adj *= totalpages / 1000;
 237	points += adj;
 238
 239	return points;
 
 
 
 
 240}
 241
 242static const char * const oom_constraint_text[] = {
 243	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 244	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 245	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 246	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 247};
 248
 249/*
 250 * Determine the type of allocation constraint.
 251 */
 252static enum oom_constraint constrained_alloc(struct oom_control *oc)
 253{
 254	struct zone *zone;
 255	struct zoneref *z;
 256	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
 257	bool cpuset_limited = false;
 258	int nid;
 259
 260	if (is_memcg_oom(oc)) {
 261		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 262		return CONSTRAINT_MEMCG;
 263	}
 264
 265	/* Default to all available memory */
 266	oc->totalpages = totalram_pages() + total_swap_pages;
 267
 268	if (!IS_ENABLED(CONFIG_NUMA))
 269		return CONSTRAINT_NONE;
 270
 271	if (!oc->zonelist)
 272		return CONSTRAINT_NONE;
 273	/*
 274	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 275	 * to kill current.We have to random task kill in this case.
 276	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 277	 */
 278	if (oc->gfp_mask & __GFP_THISNODE)
 279		return CONSTRAINT_NONE;
 280
 281	/*
 282	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 283	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 284	 * is enforced in get_page_from_freelist().
 285	 */
 286	if (oc->nodemask &&
 287	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 288		oc->totalpages = total_swap_pages;
 289		for_each_node_mask(nid, *oc->nodemask)
 290			oc->totalpages += node_present_pages(nid);
 291		return CONSTRAINT_MEMORY_POLICY;
 292	}
 293
 294	/* Check this allocation failure is caused by cpuset's wall function */
 295	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 296			highest_zoneidx, oc->nodemask)
 297		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 298			cpuset_limited = true;
 299
 300	if (cpuset_limited) {
 301		oc->totalpages = total_swap_pages;
 302		for_each_node_mask(nid, cpuset_current_mems_allowed)
 303			oc->totalpages += node_present_pages(nid);
 304		return CONSTRAINT_CPUSET;
 305	}
 306	return CONSTRAINT_NONE;
 307}
 308
 309static int oom_evaluate_task(struct task_struct *task, void *arg)
 310{
 311	struct oom_control *oc = arg;
 312	long points;
 313
 314	if (oom_unkillable_task(task))
 315		goto next;
 316
 317	/* p may not have freeable memory in nodemask */
 318	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 319		goto next;
 320
 321	/*
 322	 * This task already has access to memory reserves and is being killed.
 323	 * Don't allow any other task to have access to the reserves unless
 324	 * the task has MMF_OOM_SKIP because chances that it would release
 325	 * any memory is quite low.
 326	 */
 327	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 328		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 329			goto next;
 330		goto abort;
 331	}
 332
 333	/*
 334	 * If task is allocating a lot of memory and has been marked to be
 335	 * killed first if it triggers an oom, then select it.
 336	 */
 337	if (oom_task_origin(task)) {
 338		points = LONG_MAX;
 339		goto select;
 340	}
 341
 342	points = oom_badness(task, oc->totalpages);
 343	if (points == LONG_MIN || points < oc->chosen_points)
 344		goto next;
 345
 346select:
 347	if (oc->chosen)
 348		put_task_struct(oc->chosen);
 349	get_task_struct(task);
 350	oc->chosen = task;
 351	oc->chosen_points = points;
 352next:
 353	return 0;
 354abort:
 355	if (oc->chosen)
 356		put_task_struct(oc->chosen);
 357	oc->chosen = (void *)-1UL;
 358	return 1;
 359}
 360
 361/*
 362 * Simple selection loop. We choose the process with the highest number of
 363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 364 */
 365static void select_bad_process(struct oom_control *oc)
 366{
 367	oc->chosen_points = LONG_MIN;
 368
 369	if (is_memcg_oom(oc))
 370		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 371	else {
 372		struct task_struct *p;
 373
 374		rcu_read_lock();
 375		for_each_process(p)
 376			if (oom_evaluate_task(p, oc))
 377				break;
 378		rcu_read_unlock();
 379	}
 380}
 381
 382static int dump_task(struct task_struct *p, void *arg)
 383{
 384	struct oom_control *oc = arg;
 385	struct task_struct *task;
 386
 387	if (oom_unkillable_task(p))
 388		return 0;
 389
 390	/* p may not have freeable memory in nodemask */
 391	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 392		return 0;
 393
 394	task = find_lock_task_mm(p);
 395	if (!task) {
 396		/*
 397		 * All of p's threads have already detached their mm's. There's
 398		 * no need to report them; they can't be oom killed anyway.
 
 399		 */
 400		return 0;
 401	}
 402
 403	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
 404		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 405		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 406		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
 407		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
 408		get_mm_counter(task->mm, MM_SWAPENTS),
 409		task->signal->oom_score_adj, task->comm);
 410	task_unlock(task);
 411
 412	return 0;
 413}
 414
 415/**
 416 * dump_tasks - dump current memory state of all system tasks
 417 * @oc: pointer to struct oom_control
 418 *
 419 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 421 * are not shown.
 422 * State information includes task's pid, uid, tgid, vm size, rss,
 423 * pgtables_bytes, swapents, oom_score_adj value, and name.
 424 */
 425static void dump_tasks(struct oom_control *oc)
 426{
 427	pr_info("Tasks state (memory values in pages):\n");
 428	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
 429
 430	if (is_memcg_oom(oc))
 431		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 432	else {
 433		struct task_struct *p;
 434		int i = 0;
 435
 436		rcu_read_lock();
 437		for_each_process(p) {
 438			/* Avoid potential softlockup warning */
 439			if ((++i & 1023) == 0)
 440				touch_softlockup_watchdog();
 441			dump_task(p, oc);
 442		}
 443		rcu_read_unlock();
 444	}
 445}
 446
 447static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
 448{
 449	/* one line summary of the oom killer context. */
 450	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 451			oom_constraint_text[oc->constraint],
 452			nodemask_pr_args(oc->nodemask));
 453	cpuset_print_current_mems_allowed();
 454	mem_cgroup_print_oom_context(oc->memcg, victim);
 455	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 456		from_kuid(&init_user_ns, task_uid(victim)));
 457}
 458
 459static void dump_header(struct oom_control *oc)
 460{
 461	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 462		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 463			current->signal->oom_score_adj);
 464	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 465		pr_warn("COMPACTION is disabled!!!\n");
 466
 467	dump_stack();
 468	if (is_memcg_oom(oc))
 469		mem_cgroup_print_oom_meminfo(oc->memcg);
 470	else {
 471		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
 472		if (should_dump_unreclaim_slab())
 473			dump_unreclaimable_slab();
 474	}
 475	if (sysctl_oom_dump_tasks)
 476		dump_tasks(oc);
 
 
 477}
 478
 479/*
 480 * Number of OOM victims in flight
 481 */
 482static atomic_t oom_victims = ATOMIC_INIT(0);
 483static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 484
 485static bool oom_killer_disabled __read_mostly;
 486
 
 
 487/*
 488 * task->mm can be NULL if the task is the exited group leader.  So to
 489 * determine whether the task is using a particular mm, we examine all the
 490 * task's threads: if one of those is using this mm then this task was also
 491 * using it.
 492 */
 493bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 494{
 495	struct task_struct *t;
 496
 497	for_each_thread(p, t) {
 498		struct mm_struct *t_mm = READ_ONCE(t->mm);
 499		if (t_mm)
 500			return t_mm == mm;
 501	}
 502	return false;
 503}
 504
 505#ifdef CONFIG_MMU
 506/*
 507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 508 * victim (if that is possible) to help the OOM killer to move on.
 509 */
 510static struct task_struct *oom_reaper_th;
 511static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 512static struct task_struct *oom_reaper_list;
 513static DEFINE_SPINLOCK(oom_reaper_lock);
 514
 515static bool __oom_reap_task_mm(struct mm_struct *mm)
 516{
 517	struct vm_area_struct *vma;
 518	bool ret = true;
 519	VMA_ITERATOR(vmi, mm, 0);
 520
 521	/*
 522	 * Tell all users of get_user/copy_from_user etc... that the content
 523	 * is no longer stable. No barriers really needed because unmapping
 524	 * should imply barriers already and the reader would hit a page fault
 525	 * if it stumbled over a reaped memory.
 526	 */
 527	set_bit(MMF_UNSTABLE, &mm->flags);
 528
 529	for_each_vma(vmi, vma) {
 530		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
 531			continue;
 532
 533		/*
 534		 * Only anonymous pages have a good chance to be dropped
 535		 * without additional steps which we cannot afford as we
 536		 * are OOM already.
 537		 *
 538		 * We do not even care about fs backed pages because all
 539		 * which are reclaimable have already been reclaimed and
 540		 * we do not want to block exit_mmap by keeping mm ref
 541		 * count elevated without a good reason.
 542		 */
 543		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 544			struct mmu_notifier_range range;
 545			struct mmu_gather tlb;
 546
 547			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 548						mm, vma->vm_start,
 549						vma->vm_end);
 550			tlb_gather_mmu(&tlb, mm);
 551			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 552				tlb_finish_mmu(&tlb);
 553				ret = false;
 554				continue;
 555			}
 556			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 557			mmu_notifier_invalidate_range_end(&range);
 558			tlb_finish_mmu(&tlb);
 559		}
 560	}
 561
 562	return ret;
 563}
 564
 565/*
 566 * Reaps the address space of the give task.
 567 *
 568 * Returns true on success and false if none or part of the address space
 569 * has been reclaimed and the caller should retry later.
 570 */
 571static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 572{
 573	bool ret = true;
 574
 575	if (!mmap_read_trylock(mm)) {
 576		trace_skip_task_reaping(tsk->pid);
 577		return false;
 578	}
 579
 580	/*
 581	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 582	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 583	 * under mmap_lock for reading because it serializes against the
 584	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
 585	 */
 586	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 587		trace_skip_task_reaping(tsk->pid);
 588		goto out_unlock;
 589	}
 590
 591	trace_start_task_reaping(tsk->pid);
 592
 593	/* failed to reap part of the address space. Try again later */
 594	ret = __oom_reap_task_mm(mm);
 595	if (!ret)
 596		goto out_finish;
 597
 598	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 599			task_pid_nr(tsk), tsk->comm,
 600			K(get_mm_counter(mm, MM_ANONPAGES)),
 601			K(get_mm_counter(mm, MM_FILEPAGES)),
 602			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 603out_finish:
 604	trace_finish_task_reaping(tsk->pid);
 605out_unlock:
 606	mmap_read_unlock(mm);
 607
 608	return ret;
 609}
 610
 611#define MAX_OOM_REAP_RETRIES 10
 612static void oom_reap_task(struct task_struct *tsk)
 613{
 614	int attempts = 0;
 615	struct mm_struct *mm = tsk->signal->oom_mm;
 616
 617	/* Retry the mmap_read_trylock(mm) a few times */
 618	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 619		schedule_timeout_idle(HZ/10);
 620
 621	if (attempts <= MAX_OOM_REAP_RETRIES ||
 622	    test_bit(MMF_OOM_SKIP, &mm->flags))
 623		goto done;
 624
 625	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 626		task_pid_nr(tsk), tsk->comm);
 627	sched_show_task(tsk);
 628	debug_show_all_locks();
 629
 630done:
 631	tsk->oom_reaper_list = NULL;
 632
 633	/*
 634	 * Hide this mm from OOM killer because it has been either reaped or
 635	 * somebody can't call mmap_write_unlock(mm).
 636	 */
 637	set_bit(MMF_OOM_SKIP, &mm->flags);
 638
 639	/* Drop a reference taken by queue_oom_reaper */
 640	put_task_struct(tsk);
 641}
 642
 643static int oom_reaper(void *unused)
 644{
 645	set_freezable();
 646
 647	while (true) {
 648		struct task_struct *tsk = NULL;
 649
 650		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 651		spin_lock_irq(&oom_reaper_lock);
 652		if (oom_reaper_list != NULL) {
 653			tsk = oom_reaper_list;
 654			oom_reaper_list = tsk->oom_reaper_list;
 655		}
 656		spin_unlock_irq(&oom_reaper_lock);
 657
 658		if (tsk)
 659			oom_reap_task(tsk);
 660	}
 661
 662	return 0;
 663}
 664
 665static void wake_oom_reaper(struct timer_list *timer)
 666{
 667	struct task_struct *tsk = container_of(timer, struct task_struct,
 668			oom_reaper_timer);
 669	struct mm_struct *mm = tsk->signal->oom_mm;
 670	unsigned long flags;
 671
 672	/* The victim managed to terminate on its own - see exit_mmap */
 673	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 674		put_task_struct(tsk);
 675		return;
 676	}
 677
 678	spin_lock_irqsave(&oom_reaper_lock, flags);
 679	tsk->oom_reaper_list = oom_reaper_list;
 680	oom_reaper_list = tsk;
 681	spin_unlock_irqrestore(&oom_reaper_lock, flags);
 682	trace_wake_reaper(tsk->pid);
 683	wake_up(&oom_reaper_wait);
 684}
 685
 686/*
 687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
 688 * The timers timeout is arbitrary... the longer it is, the longer the worst
 689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
 690 * get in the way and release resources needed by the process exit path.
 691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
 692 * before the exit path is able to wake the futex waiters.
 693 */
 694#define OOM_REAPER_DELAY (2*HZ)
 695static void queue_oom_reaper(struct task_struct *tsk)
 696{
 697	/* mm is already queued? */
 698	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 699		return;
 700
 701	get_task_struct(tsk);
 702	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
 703	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
 704	add_timer(&tsk->oom_reaper_timer);
 705}
 706
 707#ifdef CONFIG_SYSCTL
 708static struct ctl_table vm_oom_kill_table[] = {
 709	{
 710		.procname	= "panic_on_oom",
 711		.data		= &sysctl_panic_on_oom,
 712		.maxlen		= sizeof(sysctl_panic_on_oom),
 713		.mode		= 0644,
 714		.proc_handler	= proc_dointvec_minmax,
 715		.extra1		= SYSCTL_ZERO,
 716		.extra2		= SYSCTL_TWO,
 717	},
 718	{
 719		.procname	= "oom_kill_allocating_task",
 720		.data		= &sysctl_oom_kill_allocating_task,
 721		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
 722		.mode		= 0644,
 723		.proc_handler	= proc_dointvec,
 724	},
 725	{
 726		.procname	= "oom_dump_tasks",
 727		.data		= &sysctl_oom_dump_tasks,
 728		.maxlen		= sizeof(sysctl_oom_dump_tasks),
 729		.mode		= 0644,
 730		.proc_handler	= proc_dointvec,
 731	},
 732};
 733#endif
 734
 735static int __init oom_init(void)
 736{
 737	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 738#ifdef CONFIG_SYSCTL
 739	register_sysctl_init("vm", vm_oom_kill_table);
 740#endif
 741	return 0;
 742}
 743subsys_initcall(oom_init)
 744#else
 745static inline void queue_oom_reaper(struct task_struct *tsk)
 746{
 747}
 748#endif /* CONFIG_MMU */
 749
 750/**
 751 * mark_oom_victim - mark the given task as OOM victim
 752 * @tsk: task to mark
 753 *
 754 * Has to be called with oom_lock held and never after
 755 * oom has been disabled already.
 756 *
 757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 758 * under task_lock or operate on the current).
 759 */
 760static void mark_oom_victim(struct task_struct *tsk)
 761{
 762	const struct cred *cred;
 763	struct mm_struct *mm = tsk->mm;
 764
 765	WARN_ON(oom_killer_disabled);
 766	/* OOM killer might race with memcg OOM */
 767	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 768		return;
 769
 770	/* oom_mm is bound to the signal struct life time. */
 771	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
 772		mmgrab(tsk->signal->oom_mm);
 
 
 773
 774	/*
 775	 * Make sure that the task is woken up from uninterruptible sleep
 776	 * if it is frozen because OOM killer wouldn't be able to free
 777	 * any memory and livelock. freezing_slow_path will tell the freezer
 778	 * that TIF_MEMDIE tasks should be ignored.
 779	 */
 780	__thaw_task(tsk);
 781	atomic_inc(&oom_victims);
 782	cred = get_task_cred(tsk);
 783	trace_mark_victim(tsk, cred->uid.val);
 784	put_cred(cred);
 785}
 786
 787/**
 788 * exit_oom_victim - note the exit of an OOM victim
 789 */
 790void exit_oom_victim(void)
 791{
 792	clear_thread_flag(TIF_MEMDIE);
 793
 794	if (!atomic_dec_return(&oom_victims))
 795		wake_up_all(&oom_victims_wait);
 796}
 797
 798/**
 799 * oom_killer_enable - enable OOM killer
 800 */
 801void oom_killer_enable(void)
 802{
 803	oom_killer_disabled = false;
 804	pr_info("OOM killer enabled.\n");
 805}
 806
 807/**
 808 * oom_killer_disable - disable OOM killer
 809 * @timeout: maximum timeout to wait for oom victims in jiffies
 810 *
 811 * Forces all page allocations to fail rather than trigger OOM killer.
 812 * Will block and wait until all OOM victims are killed or the given
 813 * timeout expires.
 814 *
 815 * The function cannot be called when there are runnable user tasks because
 816 * the userspace would see unexpected allocation failures as a result. Any
 817 * new usage of this function should be consulted with MM people.
 818 *
 819 * Returns true if successful and false if the OOM killer cannot be
 820 * disabled.
 821 */
 822bool oom_killer_disable(signed long timeout)
 823{
 824	signed long ret;
 825
 826	/*
 827	 * Make sure to not race with an ongoing OOM killer. Check that the
 828	 * current is not killed (possibly due to sharing the victim's memory).
 829	 */
 830	if (mutex_lock_killable(&oom_lock))
 831		return false;
 832	oom_killer_disabled = true;
 833	mutex_unlock(&oom_lock);
 834
 835	ret = wait_event_interruptible_timeout(oom_victims_wait,
 836			!atomic_read(&oom_victims), timeout);
 837	if (ret <= 0) {
 838		oom_killer_enable();
 839		return false;
 840	}
 841	pr_info("OOM killer disabled.\n");
 842
 843	return true;
 844}
 845
 846static inline bool __task_will_free_mem(struct task_struct *task)
 847{
 848	struct signal_struct *sig = task->signal;
 849
 850	/*
 851	 * A coredumping process may sleep for an extended period in
 852	 * coredump_task_exit(), so the oom killer cannot assume that
 853	 * the process will promptly exit and release memory.
 854	 */
 855	if (sig->core_state)
 856		return false;
 857
 858	if (sig->flags & SIGNAL_GROUP_EXIT)
 859		return true;
 860
 861	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 862		return true;
 863
 864	return false;
 865}
 866
 867/*
 868 * Checks whether the given task is dying or exiting and likely to
 869 * release its address space. This means that all threads and processes
 870 * sharing the same mm have to be killed or exiting.
 871 * Caller has to make sure that task->mm is stable (hold task_lock or
 872 * it operates on the current).
 873 */
 874static bool task_will_free_mem(struct task_struct *task)
 875{
 876	struct mm_struct *mm = task->mm;
 877	struct task_struct *p;
 878	bool ret = true;
 879
 880	/*
 881	 * Skip tasks without mm because it might have passed its exit_mm and
 882	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 883	 * on that for now. We can consider find_lock_task_mm in future.
 884	 */
 885	if (!mm)
 886		return false;
 887
 888	if (!__task_will_free_mem(task))
 889		return false;
 890
 891	/*
 892	 * This task has already been drained by the oom reaper so there are
 893	 * only small chances it will free some more
 894	 */
 895	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 896		return false;
 897
 898	if (atomic_read(&mm->mm_users) <= 1)
 899		return true;
 900
 901	/*
 902	 * Make sure that all tasks which share the mm with the given tasks
 903	 * are dying as well to make sure that a) nobody pins its mm and
 904	 * b) the task is also reapable by the oom reaper.
 905	 */
 906	rcu_read_lock();
 907	for_each_process(p) {
 908		if (!process_shares_mm(p, mm))
 909			continue;
 910		if (same_thread_group(task, p))
 911			continue;
 912		ret = __task_will_free_mem(p);
 913		if (!ret)
 914			break;
 915	}
 916	rcu_read_unlock();
 917
 918	return ret;
 919}
 920
 921static void __oom_kill_process(struct task_struct *victim, const char *message)
 922{
 923	struct task_struct *p;
 924	struct mm_struct *mm;
 925	bool can_oom_reap = true;
 926
 927	p = find_lock_task_mm(victim);
 928	if (!p) {
 929		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
 930			message, task_pid_nr(victim), victim->comm);
 931		put_task_struct(victim);
 932		return;
 933	} else if (victim != p) {
 934		get_task_struct(p);
 935		put_task_struct(victim);
 936		victim = p;
 937	}
 938
 939	/* Get a reference to safely compare mm after task_unlock(victim) */
 940	mm = victim->mm;
 941	mmgrab(mm);
 942
 943	/* Raise event before sending signal: task reaper must see this */
 944	count_vm_event(OOM_KILL);
 945	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 946
 947	/*
 948	 * We should send SIGKILL before granting access to memory reserves
 949	 * in order to prevent the OOM victim from depleting the memory
 950	 * reserves from the user space under its control.
 951	 */
 952	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 953	mark_oom_victim(victim);
 954	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 955		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 956		K(get_mm_counter(mm, MM_ANONPAGES)),
 957		K(get_mm_counter(mm, MM_FILEPAGES)),
 958		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 959		from_kuid(&init_user_ns, task_uid(victim)),
 960		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
 961	task_unlock(victim);
 962
 963	/*
 964	 * Kill all user processes sharing victim->mm in other thread groups, if
 965	 * any.  They don't get access to memory reserves, though, to avoid
 966	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
 967	 * oom killed thread cannot exit because it requires the semaphore and
 968	 * its contended by another thread trying to allocate memory itself.
 969	 * That thread will now get access to memory reserves since it has a
 970	 * pending fatal signal.
 971	 */
 972	rcu_read_lock();
 973	for_each_process(p) {
 974		if (!process_shares_mm(p, mm))
 975			continue;
 976		if (same_thread_group(p, victim))
 977			continue;
 978		if (is_global_init(p)) {
 979			can_oom_reap = false;
 980			set_bit(MMF_OOM_SKIP, &mm->flags);
 981			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 982					task_pid_nr(victim), victim->comm,
 983					task_pid_nr(p), p->comm);
 984			continue;
 985		}
 986		/*
 987		 * No kthread_use_mm() user needs to read from the userspace so
 988		 * we are ok to reap it.
 989		 */
 990		if (unlikely(p->flags & PF_KTHREAD))
 991			continue;
 992		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 993	}
 994	rcu_read_unlock();
 995
 996	if (can_oom_reap)
 997		queue_oom_reaper(victim);
 998
 999	mmdrop(mm);
1000	put_task_struct(victim);
1001}
 
1002
1003/*
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1006 */
1007static int oom_kill_memcg_member(struct task_struct *task, void *message)
1008{
1009	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1010	    !is_global_init(task)) {
1011		get_task_struct(task);
1012		__oom_kill_process(task, message);
1013	}
1014	return 0;
1015}
1016
1017static void oom_kill_process(struct oom_control *oc, const char *message)
1018{
1019	struct task_struct *victim = oc->chosen;
1020	struct mem_cgroup *oom_group;
1021	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1022					      DEFAULT_RATELIMIT_BURST);
1023
1024	/*
1025	 * If the task is already exiting, don't alarm the sysadmin or kill
1026	 * its children or threads, just give it access to memory reserves
1027	 * so it can die quickly
1028	 */
1029	task_lock(victim);
1030	if (task_will_free_mem(victim)) {
1031		mark_oom_victim(victim);
1032		queue_oom_reaper(victim);
1033		task_unlock(victim);
1034		put_task_struct(victim);
1035		return;
1036	}
1037	task_unlock(victim);
1038
1039	if (__ratelimit(&oom_rs)) {
1040		dump_header(oc);
1041		dump_oom_victim(oc, victim);
1042	}
1043
1044	/*
1045	 * Do we need to kill the entire memory cgroup?
1046	 * Or even one of the ancestor memory cgroups?
1047	 * Check this out before killing the victim task.
1048	 */
1049	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1050
1051	__oom_kill_process(victim, message);
1052
1053	/*
1054	 * If necessary, kill all tasks in the selected memory cgroup.
1055	 */
1056	if (oom_group) {
1057		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1058		mem_cgroup_print_oom_group(oom_group);
1059		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1060				      (void *)message);
1061		mem_cgroup_put(oom_group);
1062	}
1063}
1064
1065/*
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1067 */
1068static void check_panic_on_oom(struct oom_control *oc)
1069{
1070	if (likely(!sysctl_panic_on_oom))
1071		return;
1072	if (sysctl_panic_on_oom != 2) {
1073		/*
1074		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075		 * does not panic for cpuset, mempolicy, or memcg allocation
1076		 * failures.
1077		 */
1078		if (oc->constraint != CONSTRAINT_NONE)
1079			return;
1080	}
1081	/* Do not panic for oom kills triggered by sysrq */
1082	if (is_sysrq_oom(oc))
1083		return;
1084	dump_header(oc);
1085	panic("Out of memory: %s panic_on_oom is enabled\n",
1086		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1087}
1088
1089static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1090
1091int register_oom_notifier(struct notifier_block *nb)
1092{
1093	return blocking_notifier_chain_register(&oom_notify_list, nb);
1094}
1095EXPORT_SYMBOL_GPL(register_oom_notifier);
1096
1097int unregister_oom_notifier(struct notifier_block *nb)
1098{
1099	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1100}
1101EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1102
1103/**
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1106 *
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1111 */
1112bool out_of_memory(struct oom_control *oc)
1113{
1114	unsigned long freed = 0;
1115
1116	if (oom_killer_disabled)
1117		return false;
1118
1119	if (!is_memcg_oom(oc)) {
1120		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1121		if (freed > 0 && !is_sysrq_oom(oc))
1122			/* Got some memory back in the last second. */
1123			return true;
1124	}
1125
1126	/*
1127	 * If current has a pending SIGKILL or is exiting, then automatically
1128	 * select it.  The goal is to allow it to allocate so that it may
1129	 * quickly exit and free its memory.
1130	 */
1131	if (task_will_free_mem(current)) {
1132		mark_oom_victim(current);
1133		queue_oom_reaper(current);
1134		return true;
1135	}
1136
1137	/*
1138	 * The OOM killer does not compensate for IO-less reclaim.
1139	 * But mem_cgroup_oom() has to invoke the OOM killer even
1140	 * if it is a GFP_NOFS allocation.
 
 
1141	 */
1142	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1143		return true;
1144
1145	/*
1146	 * Check if there were limitations on the allocation (only relevant for
1147	 * NUMA and memcg) that may require different handling.
1148	 */
1149	oc->constraint = constrained_alloc(oc);
1150	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1151		oc->nodemask = NULL;
1152	check_panic_on_oom(oc);
1153
1154	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1155	    current->mm && !oom_unkillable_task(current) &&
1156	    oom_cpuset_eligible(current, oc) &&
1157	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1158		get_task_struct(current);
1159		oc->chosen = current;
1160		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1161		return true;
1162	}
1163
1164	select_bad_process(oc);
1165	/* Found nothing?!?! */
1166	if (!oc->chosen) {
1167		dump_header(oc);
1168		pr_warn("Out of memory and no killable processes...\n");
1169		/*
1170		 * If we got here due to an actual allocation at the
1171		 * system level, we cannot survive this and will enter
1172		 * an endless loop in the allocator. Bail out now.
1173		 */
1174		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1175			panic("System is deadlocked on memory\n");
1176	}
1177	if (oc->chosen && oc->chosen != (void *)-1UL)
1178		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1179				 "Memory cgroup out of memory");
1180	return !!oc->chosen;
1181}
1182
1183/*
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1188 */
1189void pagefault_out_of_memory(void)
1190{
1191	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1192				      DEFAULT_RATELIMIT_BURST);
 
 
 
 
 
1193
1194	if (mem_cgroup_oom_synchronize(true))
1195		return;
1196
1197	if (fatal_signal_pending(current))
1198		return;
1199
1200	if (__ratelimit(&pfoom_rs))
1201		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1202}
1203
1204SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1205{
1206#ifdef CONFIG_MMU
1207	struct mm_struct *mm = NULL;
1208	struct task_struct *task;
1209	struct task_struct *p;
1210	unsigned int f_flags;
1211	bool reap = false;
1212	long ret = 0;
1213
1214	if (flags)
1215		return -EINVAL;
1216
1217	task = pidfd_get_task(pidfd, &f_flags);
1218	if (IS_ERR(task))
1219		return PTR_ERR(task);
1220
1221	/*
1222	 * Make sure to choose a thread which still has a reference to mm
1223	 * during the group exit
1224	 */
1225	p = find_lock_task_mm(task);
1226	if (!p) {
1227		ret = -ESRCH;
1228		goto put_task;
1229	}
1230
1231	mm = p->mm;
1232	mmgrab(mm);
1233
1234	if (task_will_free_mem(p))
1235		reap = true;
1236	else {
1237		/* Error only if the work has not been done already */
1238		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1239			ret = -EINVAL;
1240	}
1241	task_unlock(p);
1242
1243	if (!reap)
1244		goto drop_mm;
1245
1246	if (mmap_read_lock_killable(mm)) {
1247		ret = -EINTR;
1248		goto drop_mm;
1249	}
1250	/*
1251	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252	 * possible change in exit_mmap is seen
1253	 */
1254	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1255		ret = -EAGAIN;
1256	mmap_read_unlock(mm);
1257
1258drop_mm:
1259	mmdrop(mm);
1260put_task:
1261	put_task_struct(task);
1262	return ret;
1263#else
1264	return -ENOSYS;
1265#endif /* CONFIG_MMU */
1266}