Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
 
  38
  39#include <asm/sections.h>
  40#include <asm/cacheflush.h>
  41#include <asm/errno.h>
  42#include <linux/uaccess.h>
  43
  44#define KPROBE_HASH_BITS 6
  45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  46
  47
  48static int kprobes_initialized;
 
 
 
 
 
  49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  51
  52/* NOTE: change this value only with kprobe_mutex held */
  53static bool kprobes_all_disarmed;
  54
  55/* This protects kprobe_table and optimizing_list */
  56static DEFINE_MUTEX(kprobe_mutex);
  57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  58static struct {
  59	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  61
  62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  63					unsigned int __unused)
  64{
  65	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  66}
  67
  68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  69{
  70	return &(kretprobe_table_locks[hash].lock);
  71}
  72
  73/* Blacklist -- list of struct kprobe_blacklist_entry */
  74static LIST_HEAD(kprobe_blacklist);
  75
  76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  77/*
  78 * kprobe->ainsn.insn points to the copy of the instruction to be
  79 * single-stepped. x86_64, POWER4 and above have no-exec support and
  80 * stepping on the instruction on a vmalloced/kmalloced/data page
  81 * is a recipe for disaster
  82 */
  83struct kprobe_insn_page {
  84	struct list_head list;
  85	kprobe_opcode_t *insns;		/* Page of instruction slots */
  86	struct kprobe_insn_cache *cache;
  87	int nused;
  88	int ngarbage;
  89	char slot_used[];
  90};
  91
  92#define KPROBE_INSN_PAGE_SIZE(slots)			\
  93	(offsetof(struct kprobe_insn_page, slot_used) +	\
  94	 (sizeof(char) * (slots)))
  95
  96static int slots_per_page(struct kprobe_insn_cache *c)
  97{
  98	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  99}
 100
 101enum kprobe_slot_state {
 102	SLOT_CLEAN = 0,
 103	SLOT_DIRTY = 1,
 104	SLOT_USED = 2,
 105};
 106
 107void __weak *alloc_insn_page(void)
 108{
 109	return module_alloc(PAGE_SIZE);
 110}
 111
 112void __weak free_insn_page(void *page)
 113{
 114	module_memfree(page);
 115}
 116
 117struct kprobe_insn_cache kprobe_insn_slots = {
 118	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 119	.alloc = alloc_insn_page,
 120	.free = free_insn_page,
 
 121	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 122	.insn_size = MAX_INSN_SIZE,
 123	.nr_garbage = 0,
 124};
 125static int collect_garbage_slots(struct kprobe_insn_cache *c);
 126
 127/**
 128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 129 * We allocate an executable page if there's no room on existing ones.
 130 */
 131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 132{
 133	struct kprobe_insn_page *kip;
 134	kprobe_opcode_t *slot = NULL;
 135
 136	/* Since the slot array is not protected by rcu, we need a mutex */
 137	mutex_lock(&c->mutex);
 138 retry:
 139	rcu_read_lock();
 140	list_for_each_entry_rcu(kip, &c->pages, list) {
 141		if (kip->nused < slots_per_page(c)) {
 142			int i;
 143			for (i = 0; i < slots_per_page(c); i++) {
 144				if (kip->slot_used[i] == SLOT_CLEAN) {
 145					kip->slot_used[i] = SLOT_USED;
 146					kip->nused++;
 147					slot = kip->insns + (i * c->insn_size);
 148					rcu_read_unlock();
 149					goto out;
 150				}
 151			}
 152			/* kip->nused is broken. Fix it. */
 153			kip->nused = slots_per_page(c);
 154			WARN_ON(1);
 155		}
 156	}
 157	rcu_read_unlock();
 158
 159	/* If there are any garbage slots, collect it and try again. */
 160	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 161		goto retry;
 162
 163	/* All out of space.  Need to allocate a new page. */
 164	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 165	if (!kip)
 166		goto out;
 167
 168	/*
 169	 * Use module_alloc so this page is within +/- 2GB of where the
 170	 * kernel image and loaded module images reside. This is required
 171	 * so x86_64 can correctly handle the %rip-relative fixups.
 172	 */
 173	kip->insns = c->alloc();
 174	if (!kip->insns) {
 175		kfree(kip);
 176		goto out;
 177	}
 178	INIT_LIST_HEAD(&kip->list);
 179	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 180	kip->slot_used[0] = SLOT_USED;
 181	kip->nused = 1;
 182	kip->ngarbage = 0;
 183	kip->cache = c;
 184	list_add_rcu(&kip->list, &c->pages);
 185	slot = kip->insns;
 
 
 
 
 186out:
 187	mutex_unlock(&c->mutex);
 188	return slot;
 189}
 190
 191/* Return 1 if all garbages are collected, otherwise 0. */
 192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 193{
 194	kip->slot_used[idx] = SLOT_CLEAN;
 195	kip->nused--;
 196	if (kip->nused == 0) {
 197		/*
 198		 * Page is no longer in use.  Free it unless
 199		 * it's the last one.  We keep the last one
 200		 * so as not to have to set it up again the
 201		 * next time somebody inserts a probe.
 202		 */
 203		if (!list_is_singular(&kip->list)) {
 
 
 
 
 
 
 
 204			list_del_rcu(&kip->list);
 205			synchronize_rcu();
 206			kip->cache->free(kip->insns);
 207			kfree(kip);
 208		}
 209		return 1;
 210	}
 211	return 0;
 212}
 213
 214static int collect_garbage_slots(struct kprobe_insn_cache *c)
 215{
 216	struct kprobe_insn_page *kip, *next;
 217
 218	/* Ensure no-one is interrupted on the garbages */
 219	synchronize_rcu();
 220
 221	list_for_each_entry_safe(kip, next, &c->pages, list) {
 222		int i;
 223		if (kip->ngarbage == 0)
 224			continue;
 225		kip->ngarbage = 0;	/* we will collect all garbages */
 226		for (i = 0; i < slots_per_page(c); i++) {
 227			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 228				break;
 229		}
 230	}
 231	c->nr_garbage = 0;
 232	return 0;
 233}
 234
 235void __free_insn_slot(struct kprobe_insn_cache *c,
 236		      kprobe_opcode_t *slot, int dirty)
 237{
 238	struct kprobe_insn_page *kip;
 239	long idx;
 240
 241	mutex_lock(&c->mutex);
 242	rcu_read_lock();
 243	list_for_each_entry_rcu(kip, &c->pages, list) {
 244		idx = ((long)slot - (long)kip->insns) /
 245			(c->insn_size * sizeof(kprobe_opcode_t));
 246		if (idx >= 0 && idx < slots_per_page(c))
 247			goto out;
 248	}
 249	/* Could not find this slot. */
 250	WARN_ON(1);
 251	kip = NULL;
 252out:
 253	rcu_read_unlock();
 254	/* Mark and sweep: this may sleep */
 255	if (kip) {
 256		/* Check double free */
 257		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 258		if (dirty) {
 259			kip->slot_used[idx] = SLOT_DIRTY;
 260			kip->ngarbage++;
 261			if (++c->nr_garbage > slots_per_page(c))
 262				collect_garbage_slots(c);
 263		} else {
 264			collect_one_slot(kip, idx);
 265		}
 266	}
 267	mutex_unlock(&c->mutex);
 268}
 269
 270/*
 271 * Check given address is on the page of kprobe instruction slots.
 272 * This will be used for checking whether the address on a stack
 273 * is on a text area or not.
 274 */
 275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 276{
 277	struct kprobe_insn_page *kip;
 278	bool ret = false;
 279
 280	rcu_read_lock();
 281	list_for_each_entry_rcu(kip, &c->pages, list) {
 282		if (addr >= (unsigned long)kip->insns &&
 283		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 284			ret = true;
 285			break;
 286		}
 287	}
 288	rcu_read_unlock();
 289
 290	return ret;
 291}
 292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293#ifdef CONFIG_OPTPROBES
 294/* For optimized_kprobe buffer */
 295struct kprobe_insn_cache kprobe_optinsn_slots = {
 296	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 297	.alloc = alloc_insn_page,
 298	.free = free_insn_page,
 
 299	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 300	/* .insn_size is initialized later */
 301	.nr_garbage = 0,
 302};
 303#endif
 304#endif
 305
 306/* We have preemption disabled.. so it is safe to use __ versions */
 307static inline void set_kprobe_instance(struct kprobe *kp)
 308{
 309	__this_cpu_write(kprobe_instance, kp);
 310}
 311
 312static inline void reset_kprobe_instance(void)
 313{
 314	__this_cpu_write(kprobe_instance, NULL);
 315}
 316
 317/*
 318 * This routine is called either:
 319 * 	- under the kprobe_mutex - during kprobe_[un]register()
 320 * 				OR
 321 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 322 */
 323struct kprobe *get_kprobe(void *addr)
 324{
 325	struct hlist_head *head;
 326	struct kprobe *p;
 327
 328	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 329	hlist_for_each_entry_rcu(p, head, hlist) {
 
 330		if (p->addr == addr)
 331			return p;
 332	}
 333
 334	return NULL;
 335}
 336NOKPROBE_SYMBOL(get_kprobe);
 337
 338static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 339
 340/* Return true if the kprobe is an aggregator */
 341static inline int kprobe_aggrprobe(struct kprobe *p)
 342{
 343	return p->pre_handler == aggr_pre_handler;
 344}
 345
 346/* Return true(!0) if the kprobe is unused */
 347static inline int kprobe_unused(struct kprobe *p)
 348{
 349	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 350	       list_empty(&p->list);
 351}
 352
 353/*
 354 * Keep all fields in the kprobe consistent
 355 */
 356static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 357{
 358	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 359	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 360}
 361
 362#ifdef CONFIG_OPTPROBES
 363/* NOTE: change this value only with kprobe_mutex held */
 364static bool kprobes_allow_optimization;
 365
 366/*
 367 * Call all pre_handler on the list, but ignores its return value.
 368 * This must be called from arch-dep optimized caller.
 369 */
 370void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 371{
 372	struct kprobe *kp;
 373
 374	list_for_each_entry_rcu(kp, &p->list, list) {
 375		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 376			set_kprobe_instance(kp);
 377			kp->pre_handler(kp, regs);
 378		}
 379		reset_kprobe_instance();
 380	}
 381}
 382NOKPROBE_SYMBOL(opt_pre_handler);
 383
 384/* Free optimized instructions and optimized_kprobe */
 385static void free_aggr_kprobe(struct kprobe *p)
 386{
 387	struct optimized_kprobe *op;
 388
 389	op = container_of(p, struct optimized_kprobe, kp);
 390	arch_remove_optimized_kprobe(op);
 391	arch_remove_kprobe(p);
 392	kfree(op);
 393}
 394
 395/* Return true(!0) if the kprobe is ready for optimization. */
 396static inline int kprobe_optready(struct kprobe *p)
 397{
 398	struct optimized_kprobe *op;
 399
 400	if (kprobe_aggrprobe(p)) {
 401		op = container_of(p, struct optimized_kprobe, kp);
 402		return arch_prepared_optinsn(&op->optinsn);
 403	}
 404
 405	return 0;
 406}
 407
 408/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 409static inline int kprobe_disarmed(struct kprobe *p)
 410{
 411	struct optimized_kprobe *op;
 412
 413	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 414	if (!kprobe_aggrprobe(p))
 415		return kprobe_disabled(p);
 416
 417	op = container_of(p, struct optimized_kprobe, kp);
 418
 419	return kprobe_disabled(p) && list_empty(&op->list);
 420}
 421
 422/* Return true(!0) if the probe is queued on (un)optimizing lists */
 423static int kprobe_queued(struct kprobe *p)
 424{
 425	struct optimized_kprobe *op;
 426
 427	if (kprobe_aggrprobe(p)) {
 428		op = container_of(p, struct optimized_kprobe, kp);
 429		if (!list_empty(&op->list))
 430			return 1;
 431	}
 432	return 0;
 433}
 434
 435/*
 436 * Return an optimized kprobe whose optimizing code replaces
 437 * instructions including addr (exclude breakpoint).
 438 */
 439static struct kprobe *get_optimized_kprobe(unsigned long addr)
 440{
 441	int i;
 442	struct kprobe *p = NULL;
 443	struct optimized_kprobe *op;
 444
 445	/* Don't check i == 0, since that is a breakpoint case. */
 446	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 447		p = get_kprobe((void *)(addr - i));
 448
 449	if (p && kprobe_optready(p)) {
 450		op = container_of(p, struct optimized_kprobe, kp);
 451		if (arch_within_optimized_kprobe(op, addr))
 452			return p;
 453	}
 454
 455	return NULL;
 456}
 457
 458/* Optimization staging list, protected by kprobe_mutex */
 459static LIST_HEAD(optimizing_list);
 460static LIST_HEAD(unoptimizing_list);
 461static LIST_HEAD(freeing_list);
 462
 463static void kprobe_optimizer(struct work_struct *work);
 464static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 465#define OPTIMIZE_DELAY 5
 466
 467/*
 468 * Optimize (replace a breakpoint with a jump) kprobes listed on
 469 * optimizing_list.
 470 */
 471static void do_optimize_kprobes(void)
 472{
 473	lockdep_assert_held(&text_mutex);
 474	/*
 475	 * The optimization/unoptimization refers online_cpus via
 476	 * stop_machine() and cpu-hotplug modifies online_cpus.
 477	 * And same time, text_mutex will be held in cpu-hotplug and here.
 478	 * This combination can cause a deadlock (cpu-hotplug try to lock
 479	 * text_mutex but stop_machine can not be done because online_cpus
 480	 * has been changed)
 481	 * To avoid this deadlock, caller must have locked cpu hotplug
 482	 * for preventing cpu-hotplug outside of text_mutex locking.
 483	 */
 484	lockdep_assert_cpus_held();
 485
 486	/* Optimization never be done when disarmed */
 487	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 488	    list_empty(&optimizing_list))
 489		return;
 490
 491	arch_optimize_kprobes(&optimizing_list);
 492}
 493
 494/*
 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 496 * if need) kprobes listed on unoptimizing_list.
 497 */
 498static void do_unoptimize_kprobes(void)
 499{
 500	struct optimized_kprobe *op, *tmp;
 501
 502	lockdep_assert_held(&text_mutex);
 503	/* See comment in do_optimize_kprobes() */
 504	lockdep_assert_cpus_held();
 505
 506	/* Unoptimization must be done anytime */
 507	if (list_empty(&unoptimizing_list))
 508		return;
 509
 510	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 511	/* Loop free_list for disarming */
 512	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 
 513		/* Disarm probes if marked disabled */
 514		if (kprobe_disabled(&op->kp))
 515			arch_disarm_kprobe(&op->kp);
 516		if (kprobe_unused(&op->kp)) {
 517			/*
 518			 * Remove unused probes from hash list. After waiting
 519			 * for synchronization, these probes are reclaimed.
 520			 * (reclaiming is done by do_free_cleaned_kprobes.)
 521			 */
 522			hlist_del_rcu(&op->kp.hlist);
 523		} else
 524			list_del_init(&op->list);
 525	}
 526}
 527
 528/* Reclaim all kprobes on the free_list */
 529static void do_free_cleaned_kprobes(void)
 530{
 531	struct optimized_kprobe *op, *tmp;
 532
 533	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 534		list_del_init(&op->list);
 535		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 536			/*
 537			 * This must not happen, but if there is a kprobe
 538			 * still in use, keep it on kprobes hash list.
 539			 */
 540			continue;
 541		}
 542		free_aggr_kprobe(&op->kp);
 543	}
 544}
 545
 546/* Start optimizer after OPTIMIZE_DELAY passed */
 547static void kick_kprobe_optimizer(void)
 548{
 549	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 550}
 551
 552/* Kprobe jump optimizer */
 553static void kprobe_optimizer(struct work_struct *work)
 554{
 555	mutex_lock(&kprobe_mutex);
 556	cpus_read_lock();
 557	mutex_lock(&text_mutex);
 558	/* Lock modules while optimizing kprobes */
 559	mutex_lock(&module_mutex);
 560
 561	/*
 562	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 563	 * kprobes before waiting for quiesence period.
 564	 */
 565	do_unoptimize_kprobes();
 566
 567	/*
 568	 * Step 2: Wait for quiesence period to ensure all potentially
 569	 * preempted tasks to have normally scheduled. Because optprobe
 570	 * may modify multiple instructions, there is a chance that Nth
 571	 * instruction is preempted. In that case, such tasks can return
 572	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 573	 * Note that on non-preemptive kernel, this is transparently converted
 574	 * to synchronoze_sched() to wait for all interrupts to have completed.
 575	 */
 576	synchronize_rcu_tasks();
 577
 578	/* Step 3: Optimize kprobes after quiesence period */
 579	do_optimize_kprobes();
 580
 581	/* Step 4: Free cleaned kprobes after quiesence period */
 582	do_free_cleaned_kprobes();
 583
 584	mutex_unlock(&module_mutex);
 585	mutex_unlock(&text_mutex);
 586	cpus_read_unlock();
 587	mutex_unlock(&kprobe_mutex);
 588
 589	/* Step 5: Kick optimizer again if needed */
 590	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 591		kick_kprobe_optimizer();
 
 
 592}
 593
 594/* Wait for completing optimization and unoptimization */
 595void wait_for_kprobe_optimizer(void)
 596{
 597	mutex_lock(&kprobe_mutex);
 598
 599	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 600		mutex_unlock(&kprobe_mutex);
 601
 602		/* this will also make optimizing_work execute immmediately */
 603		flush_delayed_work(&optimizing_work);
 604		/* @optimizing_work might not have been queued yet, relax */
 605		cpu_relax();
 606
 607		mutex_lock(&kprobe_mutex);
 608	}
 609
 610	mutex_unlock(&kprobe_mutex);
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 613/* Optimize kprobe if p is ready to be optimized */
 614static void optimize_kprobe(struct kprobe *p)
 615{
 616	struct optimized_kprobe *op;
 617
 618	/* Check if the kprobe is disabled or not ready for optimization. */
 619	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 620	    (kprobe_disabled(p) || kprobes_all_disarmed))
 621		return;
 622
 623	/* kprobes with post_handler can not be optimized */
 624	if (p->post_handler)
 625		return;
 626
 627	op = container_of(p, struct optimized_kprobe, kp);
 628
 629	/* Check there is no other kprobes at the optimized instructions */
 630	if (arch_check_optimized_kprobe(op) < 0)
 631		return;
 632
 633	/* Check if it is already optimized. */
 634	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 635		return;
 
 636	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 637
 638	if (!list_empty(&op->list))
 639		/* This is under unoptimizing. Just dequeue the probe */
 640		list_del_init(&op->list);
 641	else {
 642		list_add(&op->list, &optimizing_list);
 643		kick_kprobe_optimizer();
 644	}
 645}
 646
 647/* Short cut to direct unoptimizing */
 648static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 649{
 650	lockdep_assert_cpus_held();
 651	arch_unoptimize_kprobe(op);
 652	if (kprobe_disabled(&op->kp))
 653		arch_disarm_kprobe(&op->kp);
 654}
 655
 656/* Unoptimize a kprobe if p is optimized */
 657static void unoptimize_kprobe(struct kprobe *p, bool force)
 658{
 659	struct optimized_kprobe *op;
 660
 661	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 662		return; /* This is not an optprobe nor optimized */
 663
 664	op = container_of(p, struct optimized_kprobe, kp);
 665	if (!kprobe_optimized(p)) {
 666		/* Unoptimized or unoptimizing case */
 667		if (force && !list_empty(&op->list)) {
 668			/*
 669			 * Only if this is unoptimizing kprobe and forced,
 670			 * forcibly unoptimize it. (No need to unoptimize
 671			 * unoptimized kprobe again :)
 672			 */
 673			list_del_init(&op->list);
 674			force_unoptimize_kprobe(op);
 675		}
 676		return;
 677	}
 678
 679	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 680	if (!list_empty(&op->list)) {
 681		/* Dequeue from the optimization queue */
 682		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 683		return;
 684	}
 
 685	/* Optimized kprobe case */
 686	if (force)
 687		/* Forcibly update the code: this is a special case */
 688		force_unoptimize_kprobe(op);
 689	else {
 690		list_add(&op->list, &unoptimizing_list);
 691		kick_kprobe_optimizer();
 692	}
 693}
 694
 695/* Cancel unoptimizing for reusing */
 696static int reuse_unused_kprobe(struct kprobe *ap)
 697{
 698	struct optimized_kprobe *op;
 699
 700	/*
 701	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 702	 * there is still a relative jump) and disabled.
 703	 */
 704	op = container_of(ap, struct optimized_kprobe, kp);
 705	WARN_ON_ONCE(list_empty(&op->list));
 706	/* Enable the probe again */
 707	ap->flags &= ~KPROBE_FLAG_DISABLED;
 708	/* Optimize it again (remove from op->list) */
 709	if (!kprobe_optready(ap))
 710		return -EINVAL;
 711
 712	optimize_kprobe(ap);
 713	return 0;
 714}
 715
 716/* Remove optimized instructions */
 717static void kill_optimized_kprobe(struct kprobe *p)
 718{
 719	struct optimized_kprobe *op;
 720
 721	op = container_of(p, struct optimized_kprobe, kp);
 722	if (!list_empty(&op->list))
 723		/* Dequeue from the (un)optimization queue */
 724		list_del_init(&op->list);
 725	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 726
 727	if (kprobe_unused(p)) {
 728		/* Enqueue if it is unused */
 729		list_add(&op->list, &freeing_list);
 730		/*
 731		 * Remove unused probes from the hash list. After waiting
 732		 * for synchronization, this probe is reclaimed.
 733		 * (reclaiming is done by do_free_cleaned_kprobes().)
 734		 */
 735		hlist_del_rcu(&op->kp.hlist);
 736	}
 737
 738	/* Don't touch the code, because it is already freed. */
 739	arch_remove_optimized_kprobe(op);
 740}
 741
 742static inline
 743void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 744{
 745	if (!kprobe_ftrace(p))
 746		arch_prepare_optimized_kprobe(op, p);
 747}
 748
 749/* Try to prepare optimized instructions */
 750static void prepare_optimized_kprobe(struct kprobe *p)
 751{
 752	struct optimized_kprobe *op;
 753
 754	op = container_of(p, struct optimized_kprobe, kp);
 755	__prepare_optimized_kprobe(op, p);
 756}
 757
 758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 760{
 761	struct optimized_kprobe *op;
 762
 763	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 764	if (!op)
 765		return NULL;
 766
 767	INIT_LIST_HEAD(&op->list);
 768	op->kp.addr = p->addr;
 769	__prepare_optimized_kprobe(op, p);
 770
 771	return &op->kp;
 772}
 773
 774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 775
 776/*
 777 * Prepare an optimized_kprobe and optimize it
 778 * NOTE: p must be a normal registered kprobe
 779 */
 780static void try_to_optimize_kprobe(struct kprobe *p)
 781{
 782	struct kprobe *ap;
 783	struct optimized_kprobe *op;
 784
 785	/* Impossible to optimize ftrace-based kprobe */
 786	if (kprobe_ftrace(p))
 787		return;
 788
 789	/* For preparing optimization, jump_label_text_reserved() is called */
 790	cpus_read_lock();
 791	jump_label_lock();
 792	mutex_lock(&text_mutex);
 793
 794	ap = alloc_aggr_kprobe(p);
 795	if (!ap)
 796		goto out;
 797
 798	op = container_of(ap, struct optimized_kprobe, kp);
 799	if (!arch_prepared_optinsn(&op->optinsn)) {
 800		/* If failed to setup optimizing, fallback to kprobe */
 801		arch_remove_optimized_kprobe(op);
 802		kfree(op);
 803		goto out;
 804	}
 805
 806	init_aggr_kprobe(ap, p);
 807	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 808
 809out:
 810	mutex_unlock(&text_mutex);
 811	jump_label_unlock();
 812	cpus_read_unlock();
 813}
 814
 815#ifdef CONFIG_SYSCTL
 816static void optimize_all_kprobes(void)
 817{
 818	struct hlist_head *head;
 819	struct kprobe *p;
 820	unsigned int i;
 821
 822	mutex_lock(&kprobe_mutex);
 823	/* If optimization is already allowed, just return */
 824	if (kprobes_allow_optimization)
 825		goto out;
 826
 827	cpus_read_lock();
 828	kprobes_allow_optimization = true;
 829	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 830		head = &kprobe_table[i];
 831		hlist_for_each_entry_rcu(p, head, hlist)
 832			if (!kprobe_disabled(p))
 833				optimize_kprobe(p);
 834	}
 835	cpus_read_unlock();
 836	printk(KERN_INFO "Kprobes globally optimized\n");
 837out:
 838	mutex_unlock(&kprobe_mutex);
 839}
 840
 841static void unoptimize_all_kprobes(void)
 842{
 843	struct hlist_head *head;
 844	struct kprobe *p;
 845	unsigned int i;
 846
 847	mutex_lock(&kprobe_mutex);
 848	/* If optimization is already prohibited, just return */
 849	if (!kprobes_allow_optimization) {
 850		mutex_unlock(&kprobe_mutex);
 851		return;
 852	}
 853
 854	cpus_read_lock();
 855	kprobes_allow_optimization = false;
 856	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 857		head = &kprobe_table[i];
 858		hlist_for_each_entry_rcu(p, head, hlist) {
 859			if (!kprobe_disabled(p))
 860				unoptimize_kprobe(p, false);
 861		}
 862	}
 863	cpus_read_unlock();
 864	mutex_unlock(&kprobe_mutex);
 865
 866	/* Wait for unoptimizing completion */
 867	wait_for_kprobe_optimizer();
 868	printk(KERN_INFO "Kprobes globally unoptimized\n");
 869}
 870
 871static DEFINE_MUTEX(kprobe_sysctl_mutex);
 872int sysctl_kprobes_optimization;
 873int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 874				      void __user *buffer, size_t *length,
 875				      loff_t *ppos)
 876{
 877	int ret;
 878
 879	mutex_lock(&kprobe_sysctl_mutex);
 880	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 881	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 882
 883	if (sysctl_kprobes_optimization)
 884		optimize_all_kprobes();
 885	else
 886		unoptimize_all_kprobes();
 887	mutex_unlock(&kprobe_sysctl_mutex);
 888
 889	return ret;
 890}
 891#endif /* CONFIG_SYSCTL */
 892
 893/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 894static void __arm_kprobe(struct kprobe *p)
 895{
 896	struct kprobe *_p;
 897
 898	/* Check collision with other optimized kprobes */
 899	_p = get_optimized_kprobe((unsigned long)p->addr);
 900	if (unlikely(_p))
 901		/* Fallback to unoptimized kprobe */
 902		unoptimize_kprobe(_p, true);
 903
 904	arch_arm_kprobe(p);
 905	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 906}
 907
 908/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 909static void __disarm_kprobe(struct kprobe *p, bool reopt)
 910{
 911	struct kprobe *_p;
 912
 913	/* Try to unoptimize */
 914	unoptimize_kprobe(p, kprobes_all_disarmed);
 915
 916	if (!kprobe_queued(p)) {
 917		arch_disarm_kprobe(p);
 918		/* If another kprobe was blocked, optimize it. */
 919		_p = get_optimized_kprobe((unsigned long)p->addr);
 920		if (unlikely(_p) && reopt)
 921			optimize_kprobe(_p);
 922	}
 923	/* TODO: reoptimize others after unoptimized this probe */
 924}
 925
 926#else /* !CONFIG_OPTPROBES */
 927
 928#define optimize_kprobe(p)			do {} while (0)
 929#define unoptimize_kprobe(p, f)			do {} while (0)
 930#define kill_optimized_kprobe(p)		do {} while (0)
 931#define prepare_optimized_kprobe(p)		do {} while (0)
 932#define try_to_optimize_kprobe(p)		do {} while (0)
 933#define __arm_kprobe(p)				arch_arm_kprobe(p)
 934#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 935#define kprobe_disarmed(p)			kprobe_disabled(p)
 936#define wait_for_kprobe_optimizer()		do {} while (0)
 937
 938static int reuse_unused_kprobe(struct kprobe *ap)
 939{
 940	/*
 941	 * If the optimized kprobe is NOT supported, the aggr kprobe is
 942	 * released at the same time that the last aggregated kprobe is
 943	 * unregistered.
 944	 * Thus there should be no chance to reuse unused kprobe.
 945	 */
 946	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 947	return -EINVAL;
 948}
 949
 950static void free_aggr_kprobe(struct kprobe *p)
 951{
 952	arch_remove_kprobe(p);
 953	kfree(p);
 954}
 955
 956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 957{
 958	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 959}
 960#endif /* CONFIG_OPTPROBES */
 961
 962#ifdef CONFIG_KPROBES_ON_FTRACE
 963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 964	.func = kprobe_ftrace_handler,
 965	.flags = FTRACE_OPS_FL_SAVE_REGS,
 966};
 967
 968static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
 969	.func = kprobe_ftrace_handler,
 970	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 971};
 972
 973static int kprobe_ipmodify_enabled;
 974static int kprobe_ftrace_enabled;
 975
 976/* Must ensure p->addr is really on ftrace */
 977static int prepare_kprobe(struct kprobe *p)
 978{
 979	if (!kprobe_ftrace(p))
 980		return arch_prepare_kprobe(p);
 981
 982	return arch_prepare_kprobe_ftrace(p);
 983}
 984
 985/* Caller must lock kprobe_mutex */
 986static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
 987			       int *cnt)
 988{
 989	int ret = 0;
 990
 991	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
 992	if (ret) {
 993		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
 994			 p->addr, ret);
 995		return ret;
 996	}
 997
 998	if (*cnt == 0) {
 999		ret = register_ftrace_function(ops);
1000		if (ret) {
1001			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002			goto err_ftrace;
1003		}
1004	}
1005
1006	(*cnt)++;
1007	return ret;
1008
1009err_ftrace:
1010	/*
1011	 * At this point, sinec ops is not registered, we should be sefe from
1012	 * registering empty filter.
1013	 */
1014	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015	return ret;
1016}
1017
1018static int arm_kprobe_ftrace(struct kprobe *p)
1019{
1020	bool ipmodify = (p->post_handler != NULL);
1021
1022	return __arm_kprobe_ftrace(p,
1023		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025}
1026
1027/* Caller must lock kprobe_mutex */
1028static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029				  int *cnt)
1030{
1031	int ret = 0;
1032
1033	if (*cnt == 1) {
1034		ret = unregister_ftrace_function(ops);
1035		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036			return ret;
1037	}
1038
1039	(*cnt)--;
1040
1041	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043		  p->addr, ret);
1044	return ret;
1045}
1046
1047static int disarm_kprobe_ftrace(struct kprobe *p)
1048{
1049	bool ipmodify = (p->post_handler != NULL);
1050
1051	return __disarm_kprobe_ftrace(p,
1052		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054}
1055#else	/* !CONFIG_KPROBES_ON_FTRACE */
1056#define prepare_kprobe(p)	arch_prepare_kprobe(p)
1057#define arm_kprobe_ftrace(p)	(-ENODEV)
1058#define disarm_kprobe_ftrace(p)	(-ENODEV)
 
 
 
 
 
 
 
 
 
 
 
1059#endif
1060
1061/* Arm a kprobe with text_mutex */
1062static int arm_kprobe(struct kprobe *kp)
1063{
1064	if (unlikely(kprobe_ftrace(kp)))
1065		return arm_kprobe_ftrace(kp);
1066
1067	cpus_read_lock();
1068	mutex_lock(&text_mutex);
1069	__arm_kprobe(kp);
1070	mutex_unlock(&text_mutex);
1071	cpus_read_unlock();
1072
1073	return 0;
1074}
1075
1076/* Disarm a kprobe with text_mutex */
1077static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078{
1079	if (unlikely(kprobe_ftrace(kp)))
1080		return disarm_kprobe_ftrace(kp);
1081
1082	cpus_read_lock();
1083	mutex_lock(&text_mutex);
1084	__disarm_kprobe(kp, reopt);
1085	mutex_unlock(&text_mutex);
1086	cpus_read_unlock();
1087
1088	return 0;
1089}
1090
1091/*
1092 * Aggregate handlers for multiple kprobes support - these handlers
1093 * take care of invoking the individual kprobe handlers on p->list
1094 */
1095static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096{
1097	struct kprobe *kp;
1098
1099	list_for_each_entry_rcu(kp, &p->list, list) {
1100		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101			set_kprobe_instance(kp);
1102			if (kp->pre_handler(kp, regs))
1103				return 1;
1104		}
1105		reset_kprobe_instance();
1106	}
1107	return 0;
1108}
1109NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112			      unsigned long flags)
1113{
1114	struct kprobe *kp;
1115
1116	list_for_each_entry_rcu(kp, &p->list, list) {
1117		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118			set_kprobe_instance(kp);
1119			kp->post_handler(kp, regs, flags);
1120			reset_kprobe_instance();
1121		}
1122	}
1123}
1124NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127			      int trapnr)
1128{
1129	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131	/*
1132	 * if we faulted "during" the execution of a user specified
1133	 * probe handler, invoke just that probe's fault handler
1134	 */
1135	if (cur && cur->fault_handler) {
1136		if (cur->fault_handler(cur, regs, trapnr))
1137			return 1;
1138	}
1139	return 0;
1140}
1141NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143/* Walks the list and increments nmissed count for multiprobe case */
1144void kprobes_inc_nmissed_count(struct kprobe *p)
1145{
1146	struct kprobe *kp;
1147	if (!kprobe_aggrprobe(p)) {
1148		p->nmissed++;
1149	} else {
1150		list_for_each_entry_rcu(kp, &p->list, list)
1151			kp->nmissed++;
1152	}
1153	return;
1154}
1155NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157void recycle_rp_inst(struct kretprobe_instance *ri,
1158		     struct hlist_head *head)
1159{
1160	struct kretprobe *rp = ri->rp;
1161
1162	/* remove rp inst off the rprobe_inst_table */
1163	hlist_del(&ri->hlist);
1164	INIT_HLIST_NODE(&ri->hlist);
1165	if (likely(rp)) {
1166		raw_spin_lock(&rp->lock);
1167		hlist_add_head(&ri->hlist, &rp->free_instances);
1168		raw_spin_unlock(&rp->lock);
1169	} else
1170		/* Unregistering */
1171		hlist_add_head(&ri->hlist, head);
1172}
1173NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175void kretprobe_hash_lock(struct task_struct *tsk,
1176			 struct hlist_head **head, unsigned long *flags)
1177__acquires(hlist_lock)
1178{
1179	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180	raw_spinlock_t *hlist_lock;
1181
1182	*head = &kretprobe_inst_table[hash];
1183	hlist_lock = kretprobe_table_lock_ptr(hash);
1184	raw_spin_lock_irqsave(hlist_lock, *flags);
1185}
1186NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188static void kretprobe_table_lock(unsigned long hash,
1189				 unsigned long *flags)
1190__acquires(hlist_lock)
1191{
1192	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193	raw_spin_lock_irqsave(hlist_lock, *flags);
1194}
1195NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197void kretprobe_hash_unlock(struct task_struct *tsk,
1198			   unsigned long *flags)
1199__releases(hlist_lock)
1200{
1201	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202	raw_spinlock_t *hlist_lock;
1203
1204	hlist_lock = kretprobe_table_lock_ptr(hash);
1205	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206}
1207NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209static void kretprobe_table_unlock(unsigned long hash,
1210				   unsigned long *flags)
1211__releases(hlist_lock)
1212{
1213	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215}
1216NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218/*
1219 * This function is called from finish_task_switch when task tk becomes dead,
1220 * so that we can recycle any function-return probe instances associated
1221 * with this task. These left over instances represent probed functions
1222 * that have been called but will never return.
1223 */
1224void kprobe_flush_task(struct task_struct *tk)
1225{
1226	struct kretprobe_instance *ri;
1227	struct hlist_head *head, empty_rp;
1228	struct hlist_node *tmp;
1229	unsigned long hash, flags = 0;
1230
1231	if (unlikely(!kprobes_initialized))
1232		/* Early boot.  kretprobe_table_locks not yet initialized. */
1233		return;
1234
 
 
1235	INIT_HLIST_HEAD(&empty_rp);
1236	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237	head = &kretprobe_inst_table[hash];
1238	kretprobe_table_lock(hash, &flags);
1239	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240		if (ri->task == tk)
1241			recycle_rp_inst(ri, &empty_rp);
1242	}
1243	kretprobe_table_unlock(hash, &flags);
1244	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245		hlist_del(&ri->hlist);
1246		kfree(ri);
1247	}
 
 
1248}
1249NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251static inline void free_rp_inst(struct kretprobe *rp)
1252{
1253	struct kretprobe_instance *ri;
1254	struct hlist_node *next;
1255
1256	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257		hlist_del(&ri->hlist);
1258		kfree(ri);
1259	}
1260}
1261
1262static void cleanup_rp_inst(struct kretprobe *rp)
1263{
1264	unsigned long flags, hash;
1265	struct kretprobe_instance *ri;
1266	struct hlist_node *next;
1267	struct hlist_head *head;
1268
1269	/* No race here */
1270	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271		kretprobe_table_lock(hash, &flags);
1272		head = &kretprobe_inst_table[hash];
1273		hlist_for_each_entry_safe(ri, next, head, hlist) {
1274			if (ri->rp == rp)
1275				ri->rp = NULL;
1276		}
1277		kretprobe_table_unlock(hash, &flags);
1278	}
1279	free_rp_inst(rp);
1280}
1281NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283/* Add the new probe to ap->list */
1284static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285{
1286	if (p->post_handler)
1287		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1288
1289	list_add_rcu(&p->list, &ap->list);
1290	if (p->post_handler && !ap->post_handler)
1291		ap->post_handler = aggr_post_handler;
1292
1293	return 0;
1294}
1295
1296/*
1297 * Fill in the required fields of the "manager kprobe". Replace the
1298 * earlier kprobe in the hlist with the manager kprobe
1299 */
1300static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301{
1302	/* Copy p's insn slot to ap */
1303	copy_kprobe(p, ap);
1304	flush_insn_slot(ap);
1305	ap->addr = p->addr;
1306	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307	ap->pre_handler = aggr_pre_handler;
1308	ap->fault_handler = aggr_fault_handler;
1309	/* We don't care the kprobe which has gone. */
1310	if (p->post_handler && !kprobe_gone(p))
1311		ap->post_handler = aggr_post_handler;
1312
1313	INIT_LIST_HEAD(&ap->list);
1314	INIT_HLIST_NODE(&ap->hlist);
1315
1316	list_add_rcu(&p->list, &ap->list);
1317	hlist_replace_rcu(&p->hlist, &ap->hlist);
1318}
1319
1320/*
1321 * This is the second or subsequent kprobe at the address - handle
1322 * the intricacies
1323 */
1324static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325{
1326	int ret = 0;
1327	struct kprobe *ap = orig_p;
1328
1329	cpus_read_lock();
1330
1331	/* For preparing optimization, jump_label_text_reserved() is called */
1332	jump_label_lock();
1333	mutex_lock(&text_mutex);
1334
1335	if (!kprobe_aggrprobe(orig_p)) {
1336		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337		ap = alloc_aggr_kprobe(orig_p);
1338		if (!ap) {
1339			ret = -ENOMEM;
1340			goto out;
1341		}
1342		init_aggr_kprobe(ap, orig_p);
1343	} else if (kprobe_unused(ap)) {
1344		/* This probe is going to die. Rescue it */
1345		ret = reuse_unused_kprobe(ap);
1346		if (ret)
1347			goto out;
1348	}
1349
1350	if (kprobe_gone(ap)) {
1351		/*
1352		 * Attempting to insert new probe at the same location that
1353		 * had a probe in the module vaddr area which already
1354		 * freed. So, the instruction slot has already been
1355		 * released. We need a new slot for the new probe.
1356		 */
1357		ret = arch_prepare_kprobe(ap);
1358		if (ret)
1359			/*
1360			 * Even if fail to allocate new slot, don't need to
1361			 * free aggr_probe. It will be used next time, or
1362			 * freed by unregister_kprobe.
1363			 */
1364			goto out;
1365
1366		/* Prepare optimized instructions if possible. */
1367		prepare_optimized_kprobe(ap);
1368
1369		/*
1370		 * Clear gone flag to prevent allocating new slot again, and
1371		 * set disabled flag because it is not armed yet.
1372		 */
1373		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374			    | KPROBE_FLAG_DISABLED;
1375	}
1376
1377	/* Copy ap's insn slot to p */
1378	copy_kprobe(ap, p);
1379	ret = add_new_kprobe(ap, p);
1380
1381out:
1382	mutex_unlock(&text_mutex);
1383	jump_label_unlock();
1384	cpus_read_unlock();
1385
1386	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387		ap->flags &= ~KPROBE_FLAG_DISABLED;
1388		if (!kprobes_all_disarmed) {
1389			/* Arm the breakpoint again. */
1390			ret = arm_kprobe(ap);
1391			if (ret) {
1392				ap->flags |= KPROBE_FLAG_DISABLED;
1393				list_del_rcu(&p->list);
1394				synchronize_rcu();
1395			}
1396		}
1397	}
1398	return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403	/* The __kprobes marked functions and entry code must not be probed */
1404	return addr >= (unsigned long)__kprobes_text_start &&
1405	       addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408static bool __within_kprobe_blacklist(unsigned long addr)
1409{
1410	struct kprobe_blacklist_entry *ent;
1411
1412	if (arch_within_kprobe_blacklist(addr))
1413		return true;
1414	/*
1415	 * If there exists a kprobe_blacklist, verify and
1416	 * fail any probe registration in the prohibited area
1417	 */
1418	list_for_each_entry(ent, &kprobe_blacklist, list) {
1419		if (addr >= ent->start_addr && addr < ent->end_addr)
1420			return true;
1421	}
1422	return false;
1423}
1424
1425bool within_kprobe_blacklist(unsigned long addr)
1426{
1427	char symname[KSYM_NAME_LEN], *p;
1428
1429	if (__within_kprobe_blacklist(addr))
1430		return true;
1431
1432	/* Check if the address is on a suffixed-symbol */
1433	if (!lookup_symbol_name(addr, symname)) {
1434		p = strchr(symname, '.');
1435		if (!p)
1436			return false;
1437		*p = '\0';
1438		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439		if (addr)
1440			return __within_kprobe_blacklist(addr);
1441	}
1442	return false;
1443}
1444
1445/*
1446 * If we have a symbol_name argument, look it up and add the offset field
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452			const char *symbol_name, unsigned int offset)
1453{
1454	if ((symbol_name && addr) || (!symbol_name && !addr))
1455		goto invalid;
1456
1457	if (symbol_name) {
1458		addr = kprobe_lookup_name(symbol_name, offset);
1459		if (!addr)
1460			return ERR_PTR(-ENOENT);
1461	}
1462
1463	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464	if (addr)
1465		return addr;
1466
1467invalid:
1468	return ERR_PTR(-EINVAL);
1469}
1470
1471static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472{
1473	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474}
1475
1476/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478{
1479	struct kprobe *ap, *list_p;
1480
 
 
1481	ap = get_kprobe(p->addr);
1482	if (unlikely(!ap))
1483		return NULL;
1484
1485	if (p != ap) {
1486		list_for_each_entry_rcu(list_p, &ap->list, list)
1487			if (list_p == p)
1488			/* kprobe p is a valid probe */
1489				goto valid;
1490		return NULL;
1491	}
1492valid:
1493	return ap;
1494}
1495
1496/* Return error if the kprobe is being re-registered */
1497static inline int check_kprobe_rereg(struct kprobe *p)
1498{
1499	int ret = 0;
1500
1501	mutex_lock(&kprobe_mutex);
1502	if (__get_valid_kprobe(p))
1503		ret = -EINVAL;
1504	mutex_unlock(&kprobe_mutex);
1505
1506	return ret;
1507}
1508
1509int __weak arch_check_ftrace_location(struct kprobe *p)
1510{
1511	unsigned long ftrace_addr;
1512
1513	ftrace_addr = ftrace_location((unsigned long)p->addr);
1514	if (ftrace_addr) {
1515#ifdef CONFIG_KPROBES_ON_FTRACE
1516		/* Given address is not on the instruction boundary */
1517		if ((unsigned long)p->addr != ftrace_addr)
1518			return -EILSEQ;
1519		p->flags |= KPROBE_FLAG_FTRACE;
1520#else	/* !CONFIG_KPROBES_ON_FTRACE */
1521		return -EINVAL;
1522#endif
1523	}
1524	return 0;
1525}
1526
1527static int check_kprobe_address_safe(struct kprobe *p,
1528				     struct module **probed_mod)
1529{
1530	int ret;
1531
1532	ret = arch_check_ftrace_location(p);
1533	if (ret)
1534		return ret;
1535	jump_label_lock();
1536	preempt_disable();
1537
1538	/* Ensure it is not in reserved area nor out of text */
1539	if (!kernel_text_address((unsigned long) p->addr) ||
1540	    within_kprobe_blacklist((unsigned long) p->addr) ||
1541	    jump_label_text_reserved(p->addr, p->addr) ||
1542	    find_bug((unsigned long)p->addr)) {
1543		ret = -EINVAL;
1544		goto out;
1545	}
1546
1547	/* Check if are we probing a module */
1548	*probed_mod = __module_text_address((unsigned long) p->addr);
1549	if (*probed_mod) {
1550		/*
1551		 * We must hold a refcount of the probed module while updating
1552		 * its code to prohibit unexpected unloading.
1553		 */
1554		if (unlikely(!try_module_get(*probed_mod))) {
1555			ret = -ENOENT;
1556			goto out;
1557		}
1558
1559		/*
1560		 * If the module freed .init.text, we couldn't insert
1561		 * kprobes in there.
1562		 */
1563		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564		    (*probed_mod)->state != MODULE_STATE_COMING) {
1565			module_put(*probed_mod);
1566			*probed_mod = NULL;
1567			ret = -ENOENT;
1568		}
1569	}
1570out:
1571	preempt_enable();
1572	jump_label_unlock();
1573
1574	return ret;
1575}
1576
1577int register_kprobe(struct kprobe *p)
1578{
1579	int ret;
1580	struct kprobe *old_p;
1581	struct module *probed_mod;
1582	kprobe_opcode_t *addr;
1583
1584	/* Adjust probe address from symbol */
1585	addr = kprobe_addr(p);
1586	if (IS_ERR(addr))
1587		return PTR_ERR(addr);
1588	p->addr = addr;
1589
1590	ret = check_kprobe_rereg(p);
1591	if (ret)
1592		return ret;
1593
1594	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595	p->flags &= KPROBE_FLAG_DISABLED;
1596	p->nmissed = 0;
1597	INIT_LIST_HEAD(&p->list);
1598
1599	ret = check_kprobe_address_safe(p, &probed_mod);
1600	if (ret)
1601		return ret;
1602
1603	mutex_lock(&kprobe_mutex);
1604
1605	old_p = get_kprobe(p->addr);
1606	if (old_p) {
1607		/* Since this may unoptimize old_p, locking text_mutex. */
1608		ret = register_aggr_kprobe(old_p, p);
1609		goto out;
1610	}
1611
1612	cpus_read_lock();
1613	/* Prevent text modification */
1614	mutex_lock(&text_mutex);
1615	ret = prepare_kprobe(p);
1616	mutex_unlock(&text_mutex);
1617	cpus_read_unlock();
1618	if (ret)
1619		goto out;
1620
1621	INIT_HLIST_NODE(&p->hlist);
1622	hlist_add_head_rcu(&p->hlist,
1623		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626		ret = arm_kprobe(p);
1627		if (ret) {
1628			hlist_del_rcu(&p->hlist);
1629			synchronize_rcu();
1630			goto out;
1631		}
1632	}
1633
1634	/* Try to optimize kprobe */
1635	try_to_optimize_kprobe(p);
1636out:
1637	mutex_unlock(&kprobe_mutex);
1638
1639	if (probed_mod)
1640		module_put(probed_mod);
1641
1642	return ret;
1643}
1644EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646/* Check if all probes on the aggrprobe are disabled */
1647static int aggr_kprobe_disabled(struct kprobe *ap)
1648{
1649	struct kprobe *kp;
1650
1651	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1652		if (!kprobe_disabled(kp))
1653			/*
1654			 * There is an active probe on the list.
1655			 * We can't disable this ap.
1656			 */
1657			return 0;
1658
1659	return 1;
1660}
1661
1662/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663static struct kprobe *__disable_kprobe(struct kprobe *p)
1664{
1665	struct kprobe *orig_p;
1666	int ret;
1667
1668	/* Get an original kprobe for return */
1669	orig_p = __get_valid_kprobe(p);
1670	if (unlikely(orig_p == NULL))
1671		return ERR_PTR(-EINVAL);
1672
1673	if (!kprobe_disabled(p)) {
1674		/* Disable probe if it is a child probe */
1675		if (p != orig_p)
1676			p->flags |= KPROBE_FLAG_DISABLED;
1677
1678		/* Try to disarm and disable this/parent probe */
1679		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680			/*
1681			 * If kprobes_all_disarmed is set, orig_p
1682			 * should have already been disarmed, so
1683			 * skip unneed disarming process.
1684			 */
1685			if (!kprobes_all_disarmed) {
1686				ret = disarm_kprobe(orig_p, true);
1687				if (ret) {
1688					p->flags &= ~KPROBE_FLAG_DISABLED;
1689					return ERR_PTR(ret);
1690				}
1691			}
1692			orig_p->flags |= KPROBE_FLAG_DISABLED;
1693		}
1694	}
1695
1696	return orig_p;
1697}
1698
1699/*
1700 * Unregister a kprobe without a scheduler synchronization.
1701 */
1702static int __unregister_kprobe_top(struct kprobe *p)
1703{
1704	struct kprobe *ap, *list_p;
1705
1706	/* Disable kprobe. This will disarm it if needed. */
1707	ap = __disable_kprobe(p);
1708	if (IS_ERR(ap))
1709		return PTR_ERR(ap);
1710
1711	if (ap == p)
1712		/*
1713		 * This probe is an independent(and non-optimized) kprobe
1714		 * (not an aggrprobe). Remove from the hash list.
1715		 */
1716		goto disarmed;
1717
1718	/* Following process expects this probe is an aggrprobe */
1719	WARN_ON(!kprobe_aggrprobe(ap));
1720
1721	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722		/*
1723		 * !disarmed could be happen if the probe is under delayed
1724		 * unoptimizing.
1725		 */
1726		goto disarmed;
1727	else {
1728		/* If disabling probe has special handlers, update aggrprobe */
1729		if (p->post_handler && !kprobe_gone(p)) {
1730			list_for_each_entry_rcu(list_p, &ap->list, list) {
1731				if ((list_p != p) && (list_p->post_handler))
1732					goto noclean;
1733			}
1734			ap->post_handler = NULL;
1735		}
1736noclean:
1737		/*
1738		 * Remove from the aggrprobe: this path will do nothing in
1739		 * __unregister_kprobe_bottom().
1740		 */
1741		list_del_rcu(&p->list);
1742		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743			/*
1744			 * Try to optimize this probe again, because post
1745			 * handler may have been changed.
1746			 */
1747			optimize_kprobe(ap);
1748	}
1749	return 0;
1750
1751disarmed:
1752	hlist_del_rcu(&ap->hlist);
1753	return 0;
1754}
1755
1756static void __unregister_kprobe_bottom(struct kprobe *p)
1757{
1758	struct kprobe *ap;
1759
1760	if (list_empty(&p->list))
1761		/* This is an independent kprobe */
1762		arch_remove_kprobe(p);
1763	else if (list_is_singular(&p->list)) {
1764		/* This is the last child of an aggrprobe */
1765		ap = list_entry(p->list.next, struct kprobe, list);
1766		list_del(&p->list);
1767		free_aggr_kprobe(ap);
1768	}
1769	/* Otherwise, do nothing. */
1770}
1771
1772int register_kprobes(struct kprobe **kps, int num)
1773{
1774	int i, ret = 0;
1775
1776	if (num <= 0)
1777		return -EINVAL;
1778	for (i = 0; i < num; i++) {
1779		ret = register_kprobe(kps[i]);
1780		if (ret < 0) {
1781			if (i > 0)
1782				unregister_kprobes(kps, i);
1783			break;
1784		}
1785	}
1786	return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790void unregister_kprobe(struct kprobe *p)
1791{
1792	unregister_kprobes(&p, 1);
1793}
1794EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796void unregister_kprobes(struct kprobe **kps, int num)
1797{
1798	int i;
1799
1800	if (num <= 0)
1801		return;
1802	mutex_lock(&kprobe_mutex);
1803	for (i = 0; i < num; i++)
1804		if (__unregister_kprobe_top(kps[i]) < 0)
1805			kps[i]->addr = NULL;
1806	mutex_unlock(&kprobe_mutex);
1807
1808	synchronize_rcu();
1809	for (i = 0; i < num; i++)
1810		if (kps[i]->addr)
1811			__unregister_kprobe_bottom(kps[i]);
1812}
1813EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816					unsigned long val, void *data)
1817{
1818	return NOTIFY_DONE;
1819}
1820NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822static struct notifier_block kprobe_exceptions_nb = {
1823	.notifier_call = kprobe_exceptions_notify,
1824	.priority = 0x7fffffff /* we need to be notified first */
1825};
1826
1827unsigned long __weak arch_deref_entry_point(void *entry)
1828{
1829	return (unsigned long)entry;
1830}
1831
1832#ifdef CONFIG_KRETPROBES
1833/*
1834 * This kprobe pre_handler is registered with every kretprobe. When probe
1835 * hits it will set up the return probe.
1836 */
1837static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838{
1839	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840	unsigned long hash, flags = 0;
1841	struct kretprobe_instance *ri;
1842
1843	/*
1844	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1845	 * just skip the probe and increase the (inexact) 'nmissed'
1846	 * statistical counter, so that the user is informed that
1847	 * something happened:
1848	 */
1849	if (unlikely(in_nmi())) {
1850		rp->nmissed++;
1851		return 0;
1852	}
1853
1854	/* TODO: consider to only swap the RA after the last pre_handler fired */
1855	hash = hash_ptr(current, KPROBE_HASH_BITS);
1856	raw_spin_lock_irqsave(&rp->lock, flags);
1857	if (!hlist_empty(&rp->free_instances)) {
1858		ri = hlist_entry(rp->free_instances.first,
1859				struct kretprobe_instance, hlist);
1860		hlist_del(&ri->hlist);
1861		raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863		ri->rp = rp;
1864		ri->task = current;
1865
1866		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867			raw_spin_lock_irqsave(&rp->lock, flags);
1868			hlist_add_head(&ri->hlist, &rp->free_instances);
1869			raw_spin_unlock_irqrestore(&rp->lock, flags);
1870			return 0;
1871		}
1872
1873		arch_prepare_kretprobe(ri, regs);
1874
1875		/* XXX(hch): why is there no hlist_move_head? */
1876		INIT_HLIST_NODE(&ri->hlist);
1877		kretprobe_table_lock(hash, &flags);
1878		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879		kretprobe_table_unlock(hash, &flags);
1880	} else {
1881		rp->nmissed++;
1882		raw_spin_unlock_irqrestore(&rp->lock, flags);
1883	}
1884	return 0;
1885}
1886NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889{
1890	return !offset;
1891}
1892
1893bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1894{
1895	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896
1897	if (IS_ERR(kp_addr))
1898		return false;
1899
1900	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901						!arch_kprobe_on_func_entry(offset))
1902		return false;
1903
1904	return true;
1905}
1906
1907int register_kretprobe(struct kretprobe *rp)
1908{
1909	int ret = 0;
1910	struct kretprobe_instance *inst;
1911	int i;
1912	void *addr;
1913
1914	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1915		return -EINVAL;
1916
1917	if (kretprobe_blacklist_size) {
1918		addr = kprobe_addr(&rp->kp);
1919		if (IS_ERR(addr))
1920			return PTR_ERR(addr);
1921
1922		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923			if (kretprobe_blacklist[i].addr == addr)
1924				return -EINVAL;
1925		}
1926	}
1927
1928	rp->kp.pre_handler = pre_handler_kretprobe;
1929	rp->kp.post_handler = NULL;
1930	rp->kp.fault_handler = NULL;
1931
1932	/* Pre-allocate memory for max kretprobe instances */
1933	if (rp->maxactive <= 0) {
1934#ifdef CONFIG_PREEMPTION
1935		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936#else
1937		rp->maxactive = num_possible_cpus();
1938#endif
1939	}
1940	raw_spin_lock_init(&rp->lock);
1941	INIT_HLIST_HEAD(&rp->free_instances);
1942	for (i = 0; i < rp->maxactive; i++) {
1943		inst = kmalloc(sizeof(struct kretprobe_instance) +
1944			       rp->data_size, GFP_KERNEL);
1945		if (inst == NULL) {
1946			free_rp_inst(rp);
1947			return -ENOMEM;
1948		}
1949		INIT_HLIST_NODE(&inst->hlist);
1950		hlist_add_head(&inst->hlist, &rp->free_instances);
1951	}
1952
1953	rp->nmissed = 0;
1954	/* Establish function entry probe point */
1955	ret = register_kprobe(&rp->kp);
1956	if (ret != 0)
1957		free_rp_inst(rp);
1958	return ret;
1959}
1960EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962int register_kretprobes(struct kretprobe **rps, int num)
1963{
1964	int ret = 0, i;
1965
1966	if (num <= 0)
1967		return -EINVAL;
1968	for (i = 0; i < num; i++) {
1969		ret = register_kretprobe(rps[i]);
1970		if (ret < 0) {
1971			if (i > 0)
1972				unregister_kretprobes(rps, i);
1973			break;
1974		}
1975	}
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980void unregister_kretprobe(struct kretprobe *rp)
1981{
1982	unregister_kretprobes(&rp, 1);
1983}
1984EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986void unregister_kretprobes(struct kretprobe **rps, int num)
1987{
1988	int i;
1989
1990	if (num <= 0)
1991		return;
1992	mutex_lock(&kprobe_mutex);
1993	for (i = 0; i < num; i++)
1994		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995			rps[i]->kp.addr = NULL;
1996	mutex_unlock(&kprobe_mutex);
1997
1998	synchronize_rcu();
1999	for (i = 0; i < num; i++) {
2000		if (rps[i]->kp.addr) {
2001			__unregister_kprobe_bottom(&rps[i]->kp);
2002			cleanup_rp_inst(rps[i]);
2003		}
2004	}
2005}
2006EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008#else /* CONFIG_KRETPROBES */
2009int register_kretprobe(struct kretprobe *rp)
2010{
2011	return -ENOSYS;
2012}
2013EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015int register_kretprobes(struct kretprobe **rps, int num)
2016{
2017	return -ENOSYS;
2018}
2019EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021void unregister_kretprobe(struct kretprobe *rp)
2022{
2023}
2024EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026void unregister_kretprobes(struct kretprobe **rps, int num)
2027{
2028}
2029EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032{
2033	return 0;
2034}
2035NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037#endif /* CONFIG_KRETPROBES */
2038
2039/* Set the kprobe gone and remove its instruction buffer. */
2040static void kill_kprobe(struct kprobe *p)
2041{
2042	struct kprobe *kp;
2043
 
 
 
 
 
2044	p->flags |= KPROBE_FLAG_GONE;
2045	if (kprobe_aggrprobe(p)) {
2046		/*
2047		 * If this is an aggr_kprobe, we have to list all the
2048		 * chained probes and mark them GONE.
2049		 */
2050		list_for_each_entry_rcu(kp, &p->list, list)
2051			kp->flags |= KPROBE_FLAG_GONE;
2052		p->post_handler = NULL;
2053		kill_optimized_kprobe(p);
2054	}
2055	/*
2056	 * Here, we can remove insn_slot safely, because no thread calls
2057	 * the original probed function (which will be freed soon) any more.
2058	 */
2059	arch_remove_kprobe(p);
 
 
 
 
 
 
 
 
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065	int ret = 0;
2066	struct kprobe *p;
2067
2068	mutex_lock(&kprobe_mutex);
2069
2070	/* Disable this kprobe */
2071	p = __disable_kprobe(kp);
2072	if (IS_ERR(p))
2073		ret = PTR_ERR(p);
2074
2075	mutex_unlock(&kprobe_mutex);
2076	return ret;
2077}
2078EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080/* Enable one kprobe */
2081int enable_kprobe(struct kprobe *kp)
2082{
2083	int ret = 0;
2084	struct kprobe *p;
2085
2086	mutex_lock(&kprobe_mutex);
2087
2088	/* Check whether specified probe is valid. */
2089	p = __get_valid_kprobe(kp);
2090	if (unlikely(p == NULL)) {
2091		ret = -EINVAL;
2092		goto out;
2093	}
2094
2095	if (kprobe_gone(kp)) {
2096		/* This kprobe has gone, we couldn't enable it. */
2097		ret = -EINVAL;
2098		goto out;
2099	}
2100
2101	if (p != kp)
2102		kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105		p->flags &= ~KPROBE_FLAG_DISABLED;
2106		ret = arm_kprobe(p);
2107		if (ret)
2108			p->flags |= KPROBE_FLAG_DISABLED;
2109	}
2110out:
2111	mutex_unlock(&kprobe_mutex);
2112	return ret;
2113}
2114EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116/* Caller must NOT call this in usual path. This is only for critical case */
2117void dump_kprobe(struct kprobe *kp)
2118{
2119	pr_err("Dumping kprobe:\n");
2120	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121	       kp->symbol_name, kp->offset, kp->addr);
2122}
2123NOKPROBE_SYMBOL(dump_kprobe);
2124
2125int kprobe_add_ksym_blacklist(unsigned long entry)
2126{
2127	struct kprobe_blacklist_entry *ent;
2128	unsigned long offset = 0, size = 0;
2129
2130	if (!kernel_text_address(entry) ||
2131	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2132		return -EINVAL;
2133
2134	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135	if (!ent)
2136		return -ENOMEM;
2137	ent->start_addr = entry;
2138	ent->end_addr = entry + size;
2139	INIT_LIST_HEAD(&ent->list);
2140	list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142	return (int)size;
2143}
2144
2145/* Add all symbols in given area into kprobe blacklist */
2146int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147{
2148	unsigned long entry;
2149	int ret = 0;
2150
2151	for (entry = start; entry < end; entry += ret) {
2152		ret = kprobe_add_ksym_blacklist(entry);
2153		if (ret < 0)
2154			return ret;
2155		if (ret == 0)	/* In case of alias symbol */
2156			ret = 1;
2157	}
2158	return 0;
2159}
2160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161int __init __weak arch_populate_kprobe_blacklist(void)
2162{
2163	return 0;
2164}
2165
2166/*
2167 * Lookup and populate the kprobe_blacklist.
2168 *
2169 * Unlike the kretprobe blacklist, we'll need to determine
2170 * the range of addresses that belong to the said functions,
2171 * since a kprobe need not necessarily be at the beginning
2172 * of a function.
2173 */
2174static int __init populate_kprobe_blacklist(unsigned long *start,
2175					     unsigned long *end)
2176{
2177	unsigned long entry;
2178	unsigned long *iter;
2179	int ret;
2180
2181	for (iter = start; iter < end; iter++) {
2182		entry = arch_deref_entry_point((void *)*iter);
2183		ret = kprobe_add_ksym_blacklist(entry);
2184		if (ret == -EINVAL)
2185			continue;
2186		if (ret < 0)
2187			return ret;
2188	}
2189
2190	/* Symbols in __kprobes_text are blacklisted */
2191	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192					(unsigned long)__kprobes_text_end);
 
 
 
 
 
 
2193
2194	return ret ? : arch_populate_kprobe_blacklist();
2195}
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197/* Module notifier call back, checking kprobes on the module */
2198static int kprobes_module_callback(struct notifier_block *nb,
2199				   unsigned long val, void *data)
2200{
2201	struct module *mod = data;
2202	struct hlist_head *head;
2203	struct kprobe *p;
2204	unsigned int i;
2205	int checkcore = (val == MODULE_STATE_GOING);
2206
 
 
 
 
 
2207	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208		return NOTIFY_DONE;
2209
2210	/*
2211	 * When MODULE_STATE_GOING was notified, both of module .text and
2212	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213	 * notified, only .init.text section would be freed. We need to
2214	 * disable kprobes which have been inserted in the sections.
2215	 */
2216	mutex_lock(&kprobe_mutex);
2217	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218		head = &kprobe_table[i];
2219		hlist_for_each_entry_rcu(p, head, hlist)
 
 
 
2220			if (within_module_init((unsigned long)p->addr, mod) ||
2221			    (checkcore &&
2222			     within_module_core((unsigned long)p->addr, mod))) {
2223				/*
2224				 * The vaddr this probe is installed will soon
2225				 * be vfreed buy not synced to disk. Hence,
2226				 * disarming the breakpoint isn't needed.
2227				 *
2228				 * Note, this will also move any optimized probes
2229				 * that are pending to be removed from their
2230				 * corresponding lists to the freeing_list and
2231				 * will not be touched by the delayed
2232				 * kprobe_optimizer work handler.
2233				 */
2234				kill_kprobe(p);
2235			}
 
2236	}
 
 
2237	mutex_unlock(&kprobe_mutex);
2238	return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block kprobe_module_nb = {
2242	.notifier_call = kprobes_module_callback,
2243	.priority = 0
2244};
2245
2246/* Markers of _kprobe_blacklist section */
2247extern unsigned long __start_kprobe_blacklist[];
2248extern unsigned long __stop_kprobe_blacklist[];
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250static int __init init_kprobes(void)
2251{
2252	int i, err = 0;
2253
2254	/* FIXME allocate the probe table, currently defined statically */
2255	/* initialize all list heads */
2256	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257		INIT_HLIST_HEAD(&kprobe_table[i]);
2258		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260	}
2261
2262	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263					__stop_kprobe_blacklist);
2264	if (err) {
2265		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266		pr_err("Please take care of using kprobes.\n");
2267	}
2268
2269	if (kretprobe_blacklist_size) {
2270		/* lookup the function address from its name */
2271		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272			kretprobe_blacklist[i].addr =
2273				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274			if (!kretprobe_blacklist[i].addr)
2275				printk("kretprobe: lookup failed: %s\n",
2276				       kretprobe_blacklist[i].name);
2277		}
2278	}
2279
2280#if defined(CONFIG_OPTPROBES)
2281#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282	/* Init kprobe_optinsn_slots */
2283	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284#endif
2285	/* By default, kprobes can be optimized */
2286	kprobes_allow_optimization = true;
2287#endif
2288
2289	/* By default, kprobes are armed */
2290	kprobes_all_disarmed = false;
2291
2292	err = arch_init_kprobes();
2293	if (!err)
2294		err = register_die_notifier(&kprobe_exceptions_nb);
2295	if (!err)
2296		err = register_module_notifier(&kprobe_module_nb);
2297
2298	kprobes_initialized = (err == 0);
2299
2300	if (!err)
2301		init_test_probes();
2302	return err;
2303}
2304subsys_initcall(init_kprobes);
2305
2306#ifdef CONFIG_DEBUG_FS
2307static void report_probe(struct seq_file *pi, struct kprobe *p,
2308		const char *sym, int offset, char *modname, struct kprobe *pp)
2309{
2310	char *kprobe_type;
2311	void *addr = p->addr;
2312
2313	if (p->pre_handler == pre_handler_kretprobe)
2314		kprobe_type = "r";
2315	else
2316		kprobe_type = "k";
2317
2318	if (!kallsyms_show_value())
2319		addr = NULL;
2320
2321	if (sym)
2322		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2323			addr, kprobe_type, sym, offset,
2324			(modname ? modname : " "));
2325	else	/* try to use %pS */
2326		seq_printf(pi, "%px  %s  %pS ",
2327			addr, kprobe_type, p->addr);
2328
2329	if (!pp)
2330		pp = p;
2331	seq_printf(pi, "%s%s%s%s\n",
2332		(kprobe_gone(p) ? "[GONE]" : ""),
2333		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2334		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336}
2337
2338static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339{
2340	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341}
2342
2343static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344{
2345	(*pos)++;
2346	if (*pos >= KPROBE_TABLE_SIZE)
2347		return NULL;
2348	return pos;
2349}
2350
2351static void kprobe_seq_stop(struct seq_file *f, void *v)
2352{
2353	/* Nothing to do */
2354}
2355
2356static int show_kprobe_addr(struct seq_file *pi, void *v)
2357{
2358	struct hlist_head *head;
2359	struct kprobe *p, *kp;
2360	const char *sym = NULL;
2361	unsigned int i = *(loff_t *) v;
2362	unsigned long offset = 0;
2363	char *modname, namebuf[KSYM_NAME_LEN];
2364
2365	head = &kprobe_table[i];
2366	preempt_disable();
2367	hlist_for_each_entry_rcu(p, head, hlist) {
2368		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369					&offset, &modname, namebuf);
2370		if (kprobe_aggrprobe(p)) {
2371			list_for_each_entry_rcu(kp, &p->list, list)
2372				report_probe(pi, kp, sym, offset, modname, p);
2373		} else
2374			report_probe(pi, p, sym, offset, modname, NULL);
2375	}
2376	preempt_enable();
2377	return 0;
2378}
2379
2380static const struct seq_operations kprobes_seq_ops = {
2381	.start = kprobe_seq_start,
2382	.next  = kprobe_seq_next,
2383	.stop  = kprobe_seq_stop,
2384	.show  = show_kprobe_addr
2385};
2386
2387static int kprobes_open(struct inode *inode, struct file *filp)
2388{
2389	return seq_open(filp, &kprobes_seq_ops);
2390}
2391
2392static const struct file_operations debugfs_kprobes_operations = {
2393	.open           = kprobes_open,
2394	.read           = seq_read,
2395	.llseek         = seq_lseek,
2396	.release        = seq_release,
2397};
2398
2399/* kprobes/blacklist -- shows which functions can not be probed */
2400static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401{
 
2402	return seq_list_start(&kprobe_blacklist, *pos);
2403}
2404
2405static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406{
2407	return seq_list_next(v, &kprobe_blacklist, pos);
2408}
2409
2410static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411{
2412	struct kprobe_blacklist_entry *ent =
2413		list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415	/*
2416	 * If /proc/kallsyms is not showing kernel address, we won't
2417	 * show them here either.
2418	 */
2419	if (!kallsyms_show_value())
2420		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421			   (void *)ent->start_addr);
2422	else
2423		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424			   (void *)ent->end_addr, (void *)ent->start_addr);
2425	return 0;
2426}
2427
2428static const struct seq_operations kprobe_blacklist_seq_ops = {
2429	.start = kprobe_blacklist_seq_start,
2430	.next  = kprobe_blacklist_seq_next,
2431	.stop  = kprobe_seq_stop,	/* Reuse void function */
2432	.show  = kprobe_blacklist_seq_show,
2433};
2434
2435static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436{
2437	return seq_open(filp, &kprobe_blacklist_seq_ops);
2438}
2439
2440static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441	.open           = kprobe_blacklist_open,
2442	.read           = seq_read,
2443	.llseek         = seq_lseek,
2444	.release        = seq_release,
2445};
 
2446
2447static int arm_all_kprobes(void)
2448{
2449	struct hlist_head *head;
2450	struct kprobe *p;
2451	unsigned int i, total = 0, errors = 0;
2452	int err, ret = 0;
2453
2454	mutex_lock(&kprobe_mutex);
2455
2456	/* If kprobes are armed, just return */
2457	if (!kprobes_all_disarmed)
2458		goto already_enabled;
2459
2460	/*
2461	 * optimize_kprobe() called by arm_kprobe() checks
2462	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463	 * arm_kprobe.
2464	 */
2465	kprobes_all_disarmed = false;
2466	/* Arming kprobes doesn't optimize kprobe itself */
2467	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468		head = &kprobe_table[i];
2469		/* Arm all kprobes on a best-effort basis */
2470		hlist_for_each_entry_rcu(p, head, hlist) {
2471			if (!kprobe_disabled(p)) {
2472				err = arm_kprobe(p);
2473				if (err)  {
2474					errors++;
2475					ret = err;
2476				}
2477				total++;
2478			}
2479		}
2480	}
2481
2482	if (errors)
2483		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484			errors, total);
2485	else
2486		pr_info("Kprobes globally enabled\n");
2487
2488already_enabled:
2489	mutex_unlock(&kprobe_mutex);
2490	return ret;
2491}
2492
2493static int disarm_all_kprobes(void)
2494{
2495	struct hlist_head *head;
2496	struct kprobe *p;
2497	unsigned int i, total = 0, errors = 0;
2498	int err, ret = 0;
2499
2500	mutex_lock(&kprobe_mutex);
2501
2502	/* If kprobes are already disarmed, just return */
2503	if (kprobes_all_disarmed) {
2504		mutex_unlock(&kprobe_mutex);
2505		return 0;
2506	}
2507
2508	kprobes_all_disarmed = true;
2509
2510	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511		head = &kprobe_table[i];
2512		/* Disarm all kprobes on a best-effort basis */
2513		hlist_for_each_entry_rcu(p, head, hlist) {
2514			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515				err = disarm_kprobe(p, false);
2516				if (err) {
2517					errors++;
2518					ret = err;
2519				}
2520				total++;
2521			}
2522		}
2523	}
2524
2525	if (errors)
2526		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527			errors, total);
2528	else
2529		pr_info("Kprobes globally disabled\n");
2530
2531	mutex_unlock(&kprobe_mutex);
2532
2533	/* Wait for disarming all kprobes by optimizer */
2534	wait_for_kprobe_optimizer();
2535
2536	return ret;
2537}
2538
2539/*
2540 * XXX: The debugfs bool file interface doesn't allow for callbacks
2541 * when the bool state is switched. We can reuse that facility when
2542 * available
2543 */
2544static ssize_t read_enabled_file_bool(struct file *file,
2545	       char __user *user_buf, size_t count, loff_t *ppos)
2546{
2547	char buf[3];
2548
2549	if (!kprobes_all_disarmed)
2550		buf[0] = '1';
2551	else
2552		buf[0] = '0';
2553	buf[1] = '\n';
2554	buf[2] = 0x00;
2555	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556}
2557
2558static ssize_t write_enabled_file_bool(struct file *file,
2559	       const char __user *user_buf, size_t count, loff_t *ppos)
2560{
2561	char buf[32];
2562	size_t buf_size;
2563	int ret = 0;
2564
2565	buf_size = min(count, (sizeof(buf)-1));
2566	if (copy_from_user(buf, user_buf, buf_size))
2567		return -EFAULT;
2568
2569	buf[buf_size] = '\0';
2570	switch (buf[0]) {
2571	case 'y':
2572	case 'Y':
2573	case '1':
2574		ret = arm_all_kprobes();
2575		break;
2576	case 'n':
2577	case 'N':
2578	case '0':
2579		ret = disarm_all_kprobes();
2580		break;
2581	default:
2582		return -EINVAL;
2583	}
2584
2585	if (ret)
2586		return ret;
2587
2588	return count;
2589}
2590
2591static const struct file_operations fops_kp = {
2592	.read =         read_enabled_file_bool,
2593	.write =        write_enabled_file_bool,
2594	.llseek =	default_llseek,
2595};
2596
2597static int __init debugfs_kprobe_init(void)
2598{
2599	struct dentry *dir;
2600	unsigned int value = 1;
2601
2602	dir = debugfs_create_dir("kprobes", NULL);
2603
2604	debugfs_create_file("list", 0400, dir, NULL,
2605			    &debugfs_kprobes_operations);
2606
2607	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609	debugfs_create_file("blacklist", 0400, dir, NULL,
2610			    &debugfs_kprobe_blacklist_ops);
2611
2612	return 0;
2613}
2614
2615late_initcall(debugfs_kprobe_init);
2616#endif /* CONFIG_DEBUG_FS */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/sections.h>
  41#include <asm/cacheflush.h>
  42#include <asm/errno.h>
  43#include <linux/uaccess.h>
  44
  45#define KPROBE_HASH_BITS 6
  46#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  47
  48
  49static int kprobes_initialized;
  50/* kprobe_table can be accessed by
  51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
  52 * Or
  53 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  54 */
  55static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  56static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  57
  58/* NOTE: change this value only with kprobe_mutex held */
  59static bool kprobes_all_disarmed;
  60
  61/* This protects kprobe_table and optimizing_list */
  62static DEFINE_MUTEX(kprobe_mutex);
  63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  64static struct {
  65	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  66} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  67
  68kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  69					unsigned int __unused)
  70{
  71	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  72}
  73
  74static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  75{
  76	return &(kretprobe_table_locks[hash].lock);
  77}
  78
  79/* Blacklist -- list of struct kprobe_blacklist_entry */
  80static LIST_HEAD(kprobe_blacklist);
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * kprobe->ainsn.insn points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	return module_alloc(PAGE_SIZE);
 116}
 117
 118void __weak free_insn_page(void *page)
 119{
 120	module_memfree(page);
 121}
 122
 123struct kprobe_insn_cache kprobe_insn_slots = {
 124	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 125	.alloc = alloc_insn_page,
 126	.free = free_insn_page,
 127	.sym = KPROBE_INSN_PAGE_SYM,
 128	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 129	.insn_size = MAX_INSN_SIZE,
 130	.nr_garbage = 0,
 131};
 132static int collect_garbage_slots(struct kprobe_insn_cache *c);
 133
 134/**
 135 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 136 * We allocate an executable page if there's no room on existing ones.
 137 */
 138kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 139{
 140	struct kprobe_insn_page *kip;
 141	kprobe_opcode_t *slot = NULL;
 142
 143	/* Since the slot array is not protected by rcu, we need a mutex */
 144	mutex_lock(&c->mutex);
 145 retry:
 146	rcu_read_lock();
 147	list_for_each_entry_rcu(kip, &c->pages, list) {
 148		if (kip->nused < slots_per_page(c)) {
 149			int i;
 150			for (i = 0; i < slots_per_page(c); i++) {
 151				if (kip->slot_used[i] == SLOT_CLEAN) {
 152					kip->slot_used[i] = SLOT_USED;
 153					kip->nused++;
 154					slot = kip->insns + (i * c->insn_size);
 155					rcu_read_unlock();
 156					goto out;
 157				}
 158			}
 159			/* kip->nused is broken. Fix it. */
 160			kip->nused = slots_per_page(c);
 161			WARN_ON(1);
 162		}
 163	}
 164	rcu_read_unlock();
 165
 166	/* If there are any garbage slots, collect it and try again. */
 167	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 168		goto retry;
 169
 170	/* All out of space.  Need to allocate a new page. */
 171	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 172	if (!kip)
 173		goto out;
 174
 175	/*
 176	 * Use module_alloc so this page is within +/- 2GB of where the
 177	 * kernel image and loaded module images reside. This is required
 178	 * so x86_64 can correctly handle the %rip-relative fixups.
 179	 */
 180	kip->insns = c->alloc();
 181	if (!kip->insns) {
 182		kfree(kip);
 183		goto out;
 184	}
 185	INIT_LIST_HEAD(&kip->list);
 186	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 187	kip->slot_used[0] = SLOT_USED;
 188	kip->nused = 1;
 189	kip->ngarbage = 0;
 190	kip->cache = c;
 191	list_add_rcu(&kip->list, &c->pages);
 192	slot = kip->insns;
 193
 194	/* Record the perf ksymbol register event after adding the page */
 195	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 196			   PAGE_SIZE, false, c->sym);
 197out:
 198	mutex_unlock(&c->mutex);
 199	return slot;
 200}
 201
 202/* Return 1 if all garbages are collected, otherwise 0. */
 203static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 204{
 205	kip->slot_used[idx] = SLOT_CLEAN;
 206	kip->nused--;
 207	if (kip->nused == 0) {
 208		/*
 209		 * Page is no longer in use.  Free it unless
 210		 * it's the last one.  We keep the last one
 211		 * so as not to have to set it up again the
 212		 * next time somebody inserts a probe.
 213		 */
 214		if (!list_is_singular(&kip->list)) {
 215			/*
 216			 * Record perf ksymbol unregister event before removing
 217			 * the page.
 218			 */
 219			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 220					   (unsigned long)kip->insns, PAGE_SIZE, true,
 221					   kip->cache->sym);
 222			list_del_rcu(&kip->list);
 223			synchronize_rcu();
 224			kip->cache->free(kip->insns);
 225			kfree(kip);
 226		}
 227		return 1;
 228	}
 229	return 0;
 230}
 231
 232static int collect_garbage_slots(struct kprobe_insn_cache *c)
 233{
 234	struct kprobe_insn_page *kip, *next;
 235
 236	/* Ensure no-one is interrupted on the garbages */
 237	synchronize_rcu();
 238
 239	list_for_each_entry_safe(kip, next, &c->pages, list) {
 240		int i;
 241		if (kip->ngarbage == 0)
 242			continue;
 243		kip->ngarbage = 0;	/* we will collect all garbages */
 244		for (i = 0; i < slots_per_page(c); i++) {
 245			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 246				break;
 247		}
 248	}
 249	c->nr_garbage = 0;
 250	return 0;
 251}
 252
 253void __free_insn_slot(struct kprobe_insn_cache *c,
 254		      kprobe_opcode_t *slot, int dirty)
 255{
 256	struct kprobe_insn_page *kip;
 257	long idx;
 258
 259	mutex_lock(&c->mutex);
 260	rcu_read_lock();
 261	list_for_each_entry_rcu(kip, &c->pages, list) {
 262		idx = ((long)slot - (long)kip->insns) /
 263			(c->insn_size * sizeof(kprobe_opcode_t));
 264		if (idx >= 0 && idx < slots_per_page(c))
 265			goto out;
 266	}
 267	/* Could not find this slot. */
 268	WARN_ON(1);
 269	kip = NULL;
 270out:
 271	rcu_read_unlock();
 272	/* Mark and sweep: this may sleep */
 273	if (kip) {
 274		/* Check double free */
 275		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 276		if (dirty) {
 277			kip->slot_used[idx] = SLOT_DIRTY;
 278			kip->ngarbage++;
 279			if (++c->nr_garbage > slots_per_page(c))
 280				collect_garbage_slots(c);
 281		} else {
 282			collect_one_slot(kip, idx);
 283		}
 284	}
 285	mutex_unlock(&c->mutex);
 286}
 287
 288/*
 289 * Check given address is on the page of kprobe instruction slots.
 290 * This will be used for checking whether the address on a stack
 291 * is on a text area or not.
 292 */
 293bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 294{
 295	struct kprobe_insn_page *kip;
 296	bool ret = false;
 297
 298	rcu_read_lock();
 299	list_for_each_entry_rcu(kip, &c->pages, list) {
 300		if (addr >= (unsigned long)kip->insns &&
 301		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 302			ret = true;
 303			break;
 304		}
 305	}
 306	rcu_read_unlock();
 307
 308	return ret;
 309}
 310
 311int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 312			     unsigned long *value, char *type, char *sym)
 313{
 314	struct kprobe_insn_page *kip;
 315	int ret = -ERANGE;
 316
 317	rcu_read_lock();
 318	list_for_each_entry_rcu(kip, &c->pages, list) {
 319		if ((*symnum)--)
 320			continue;
 321		strlcpy(sym, c->sym, KSYM_NAME_LEN);
 322		*type = 't';
 323		*value = (unsigned long)kip->insns;
 324		ret = 0;
 325		break;
 326	}
 327	rcu_read_unlock();
 328
 329	return ret;
 330}
 331
 332#ifdef CONFIG_OPTPROBES
 333/* For optimized_kprobe buffer */
 334struct kprobe_insn_cache kprobe_optinsn_slots = {
 335	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 336	.alloc = alloc_insn_page,
 337	.free = free_insn_page,
 338	.sym = KPROBE_OPTINSN_PAGE_SYM,
 339	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 340	/* .insn_size is initialized later */
 341	.nr_garbage = 0,
 342};
 343#endif
 344#endif
 345
 346/* We have preemption disabled.. so it is safe to use __ versions */
 347static inline void set_kprobe_instance(struct kprobe *kp)
 348{
 349	__this_cpu_write(kprobe_instance, kp);
 350}
 351
 352static inline void reset_kprobe_instance(void)
 353{
 354	__this_cpu_write(kprobe_instance, NULL);
 355}
 356
 357/*
 358 * This routine is called either:
 359 * 	- under the kprobe_mutex - during kprobe_[un]register()
 360 * 				OR
 361 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 362 */
 363struct kprobe *get_kprobe(void *addr)
 364{
 365	struct hlist_head *head;
 366	struct kprobe *p;
 367
 368	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 369	hlist_for_each_entry_rcu(p, head, hlist,
 370				 lockdep_is_held(&kprobe_mutex)) {
 371		if (p->addr == addr)
 372			return p;
 373	}
 374
 375	return NULL;
 376}
 377NOKPROBE_SYMBOL(get_kprobe);
 378
 379static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 380
 381/* Return true if the kprobe is an aggregator */
 382static inline int kprobe_aggrprobe(struct kprobe *p)
 383{
 384	return p->pre_handler == aggr_pre_handler;
 385}
 386
 387/* Return true(!0) if the kprobe is unused */
 388static inline int kprobe_unused(struct kprobe *p)
 389{
 390	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 391	       list_empty(&p->list);
 392}
 393
 394/*
 395 * Keep all fields in the kprobe consistent
 396 */
 397static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 398{
 399	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 400	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 401}
 402
 403#ifdef CONFIG_OPTPROBES
 404/* NOTE: change this value only with kprobe_mutex held */
 405static bool kprobes_allow_optimization;
 406
 407/*
 408 * Call all pre_handler on the list, but ignores its return value.
 409 * This must be called from arch-dep optimized caller.
 410 */
 411void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 412{
 413	struct kprobe *kp;
 414
 415	list_for_each_entry_rcu(kp, &p->list, list) {
 416		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 417			set_kprobe_instance(kp);
 418			kp->pre_handler(kp, regs);
 419		}
 420		reset_kprobe_instance();
 421	}
 422}
 423NOKPROBE_SYMBOL(opt_pre_handler);
 424
 425/* Free optimized instructions and optimized_kprobe */
 426static void free_aggr_kprobe(struct kprobe *p)
 427{
 428	struct optimized_kprobe *op;
 429
 430	op = container_of(p, struct optimized_kprobe, kp);
 431	arch_remove_optimized_kprobe(op);
 432	arch_remove_kprobe(p);
 433	kfree(op);
 434}
 435
 436/* Return true(!0) if the kprobe is ready for optimization. */
 437static inline int kprobe_optready(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	if (kprobe_aggrprobe(p)) {
 442		op = container_of(p, struct optimized_kprobe, kp);
 443		return arch_prepared_optinsn(&op->optinsn);
 444	}
 445
 446	return 0;
 447}
 448
 449/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 450static inline int kprobe_disarmed(struct kprobe *p)
 451{
 452	struct optimized_kprobe *op;
 453
 454	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 455	if (!kprobe_aggrprobe(p))
 456		return kprobe_disabled(p);
 457
 458	op = container_of(p, struct optimized_kprobe, kp);
 459
 460	return kprobe_disabled(p) && list_empty(&op->list);
 461}
 462
 463/* Return true(!0) if the probe is queued on (un)optimizing lists */
 464static int kprobe_queued(struct kprobe *p)
 465{
 466	struct optimized_kprobe *op;
 467
 468	if (kprobe_aggrprobe(p)) {
 469		op = container_of(p, struct optimized_kprobe, kp);
 470		if (!list_empty(&op->list))
 471			return 1;
 472	}
 473	return 0;
 474}
 475
 476/*
 477 * Return an optimized kprobe whose optimizing code replaces
 478 * instructions including addr (exclude breakpoint).
 479 */
 480static struct kprobe *get_optimized_kprobe(unsigned long addr)
 481{
 482	int i;
 483	struct kprobe *p = NULL;
 484	struct optimized_kprobe *op;
 485
 486	/* Don't check i == 0, since that is a breakpoint case. */
 487	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 488		p = get_kprobe((void *)(addr - i));
 489
 490	if (p && kprobe_optready(p)) {
 491		op = container_of(p, struct optimized_kprobe, kp);
 492		if (arch_within_optimized_kprobe(op, addr))
 493			return p;
 494	}
 495
 496	return NULL;
 497}
 498
 499/* Optimization staging list, protected by kprobe_mutex */
 500static LIST_HEAD(optimizing_list);
 501static LIST_HEAD(unoptimizing_list);
 502static LIST_HEAD(freeing_list);
 503
 504static void kprobe_optimizer(struct work_struct *work);
 505static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 506#define OPTIMIZE_DELAY 5
 507
 508/*
 509 * Optimize (replace a breakpoint with a jump) kprobes listed on
 510 * optimizing_list.
 511 */
 512static void do_optimize_kprobes(void)
 513{
 514	lockdep_assert_held(&text_mutex);
 515	/*
 516	 * The optimization/unoptimization refers online_cpus via
 517	 * stop_machine() and cpu-hotplug modifies online_cpus.
 518	 * And same time, text_mutex will be held in cpu-hotplug and here.
 519	 * This combination can cause a deadlock (cpu-hotplug try to lock
 520	 * text_mutex but stop_machine can not be done because online_cpus
 521	 * has been changed)
 522	 * To avoid this deadlock, caller must have locked cpu hotplug
 523	 * for preventing cpu-hotplug outside of text_mutex locking.
 524	 */
 525	lockdep_assert_cpus_held();
 526
 527	/* Optimization never be done when disarmed */
 528	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 529	    list_empty(&optimizing_list))
 530		return;
 531
 532	arch_optimize_kprobes(&optimizing_list);
 533}
 534
 535/*
 536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 537 * if need) kprobes listed on unoptimizing_list.
 538 */
 539static void do_unoptimize_kprobes(void)
 540{
 541	struct optimized_kprobe *op, *tmp;
 542
 543	lockdep_assert_held(&text_mutex);
 544	/* See comment in do_optimize_kprobes() */
 545	lockdep_assert_cpus_held();
 546
 547	/* Unoptimization must be done anytime */
 548	if (list_empty(&unoptimizing_list))
 549		return;
 550
 551	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 552	/* Loop free_list for disarming */
 553	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 554		/* Switching from detour code to origin */
 555		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 556		/* Disarm probes if marked disabled */
 557		if (kprobe_disabled(&op->kp))
 558			arch_disarm_kprobe(&op->kp);
 559		if (kprobe_unused(&op->kp)) {
 560			/*
 561			 * Remove unused probes from hash list. After waiting
 562			 * for synchronization, these probes are reclaimed.
 563			 * (reclaiming is done by do_free_cleaned_kprobes.)
 564			 */
 565			hlist_del_rcu(&op->kp.hlist);
 566		} else
 567			list_del_init(&op->list);
 568	}
 569}
 570
 571/* Reclaim all kprobes on the free_list */
 572static void do_free_cleaned_kprobes(void)
 573{
 574	struct optimized_kprobe *op, *tmp;
 575
 576	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 577		list_del_init(&op->list);
 578		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 579			/*
 580			 * This must not happen, but if there is a kprobe
 581			 * still in use, keep it on kprobes hash list.
 582			 */
 583			continue;
 584		}
 585		free_aggr_kprobe(&op->kp);
 586	}
 587}
 588
 589/* Start optimizer after OPTIMIZE_DELAY passed */
 590static void kick_kprobe_optimizer(void)
 591{
 592	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 593}
 594
 595/* Kprobe jump optimizer */
 596static void kprobe_optimizer(struct work_struct *work)
 597{
 598	mutex_lock(&kprobe_mutex);
 599	cpus_read_lock();
 600	mutex_lock(&text_mutex);
 
 
 601
 602	/*
 603	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 604	 * kprobes before waiting for quiesence period.
 605	 */
 606	do_unoptimize_kprobes();
 607
 608	/*
 609	 * Step 2: Wait for quiesence period to ensure all potentially
 610	 * preempted tasks to have normally scheduled. Because optprobe
 611	 * may modify multiple instructions, there is a chance that Nth
 612	 * instruction is preempted. In that case, such tasks can return
 613	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 614	 * Note that on non-preemptive kernel, this is transparently converted
 615	 * to synchronoze_sched() to wait for all interrupts to have completed.
 616	 */
 617	synchronize_rcu_tasks();
 618
 619	/* Step 3: Optimize kprobes after quiesence period */
 620	do_optimize_kprobes();
 621
 622	/* Step 4: Free cleaned kprobes after quiesence period */
 623	do_free_cleaned_kprobes();
 624
 
 625	mutex_unlock(&text_mutex);
 626	cpus_read_unlock();
 
 627
 628	/* Step 5: Kick optimizer again if needed */
 629	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 630		kick_kprobe_optimizer();
 631
 632	mutex_unlock(&kprobe_mutex);
 633}
 634
 635/* Wait for completing optimization and unoptimization */
 636void wait_for_kprobe_optimizer(void)
 637{
 638	mutex_lock(&kprobe_mutex);
 639
 640	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 641		mutex_unlock(&kprobe_mutex);
 642
 643		/* this will also make optimizing_work execute immmediately */
 644		flush_delayed_work(&optimizing_work);
 645		/* @optimizing_work might not have been queued yet, relax */
 646		cpu_relax();
 647
 648		mutex_lock(&kprobe_mutex);
 649	}
 650
 651	mutex_unlock(&kprobe_mutex);
 652}
 653
 654static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 655{
 656	struct optimized_kprobe *_op;
 657
 658	list_for_each_entry(_op, &unoptimizing_list, list) {
 659		if (op == _op)
 660			return true;
 661	}
 662
 663	return false;
 664}
 665
 666/* Optimize kprobe if p is ready to be optimized */
 667static void optimize_kprobe(struct kprobe *p)
 668{
 669	struct optimized_kprobe *op;
 670
 671	/* Check if the kprobe is disabled or not ready for optimization. */
 672	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 673	    (kprobe_disabled(p) || kprobes_all_disarmed))
 674		return;
 675
 676	/* kprobes with post_handler can not be optimized */
 677	if (p->post_handler)
 678		return;
 679
 680	op = container_of(p, struct optimized_kprobe, kp);
 681
 682	/* Check there is no other kprobes at the optimized instructions */
 683	if (arch_check_optimized_kprobe(op) < 0)
 684		return;
 685
 686	/* Check if it is already optimized. */
 687	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 688		if (optprobe_queued_unopt(op)) {
 689			/* This is under unoptimizing. Just dequeue the probe */
 690			list_del_init(&op->list);
 691		}
 692		return;
 693	}
 694	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 695
 696	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
 697	if (WARN_ON_ONCE(!list_empty(&op->list)))
 698		return;
 699
 700	list_add(&op->list, &optimizing_list);
 701	kick_kprobe_optimizer();
 
 702}
 703
 704/* Short cut to direct unoptimizing */
 705static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 706{
 707	lockdep_assert_cpus_held();
 708	arch_unoptimize_kprobe(op);
 709	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 710}
 711
 712/* Unoptimize a kprobe if p is optimized */
 713static void unoptimize_kprobe(struct kprobe *p, bool force)
 714{
 715	struct optimized_kprobe *op;
 716
 717	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 718		return; /* This is not an optprobe nor optimized */
 719
 720	op = container_of(p, struct optimized_kprobe, kp);
 721	if (!kprobe_optimized(p))
 
 
 
 
 
 
 
 
 
 
 722		return;
 
 723
 
 724	if (!list_empty(&op->list)) {
 725		if (optprobe_queued_unopt(op)) {
 726			/* Queued in unoptimizing queue */
 727			if (force) {
 728				/*
 729				 * Forcibly unoptimize the kprobe here, and queue it
 730				 * in the freeing list for release afterwards.
 731				 */
 732				force_unoptimize_kprobe(op);
 733				list_move(&op->list, &freeing_list);
 734			}
 735		} else {
 736			/* Dequeue from the optimizing queue */
 737			list_del_init(&op->list);
 738			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 739		}
 740		return;
 741	}
 742
 743	/* Optimized kprobe case */
 744	if (force) {
 745		/* Forcibly update the code: this is a special case */
 746		force_unoptimize_kprobe(op);
 747	} else {
 748		list_add(&op->list, &unoptimizing_list);
 749		kick_kprobe_optimizer();
 750	}
 751}
 752
 753/* Cancel unoptimizing for reusing */
 754static int reuse_unused_kprobe(struct kprobe *ap)
 755{
 756	struct optimized_kprobe *op;
 757
 758	/*
 759	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 760	 * there is still a relative jump) and disabled.
 761	 */
 762	op = container_of(ap, struct optimized_kprobe, kp);
 763	WARN_ON_ONCE(list_empty(&op->list));
 764	/* Enable the probe again */
 765	ap->flags &= ~KPROBE_FLAG_DISABLED;
 766	/* Optimize it again (remove from op->list) */
 767	if (!kprobe_optready(ap))
 768		return -EINVAL;
 769
 770	optimize_kprobe(ap);
 771	return 0;
 772}
 773
 774/* Remove optimized instructions */
 775static void kill_optimized_kprobe(struct kprobe *p)
 776{
 777	struct optimized_kprobe *op;
 778
 779	op = container_of(p, struct optimized_kprobe, kp);
 780	if (!list_empty(&op->list))
 781		/* Dequeue from the (un)optimization queue */
 782		list_del_init(&op->list);
 783	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 784
 785	if (kprobe_unused(p)) {
 786		/* Enqueue if it is unused */
 787		list_add(&op->list, &freeing_list);
 788		/*
 789		 * Remove unused probes from the hash list. After waiting
 790		 * for synchronization, this probe is reclaimed.
 791		 * (reclaiming is done by do_free_cleaned_kprobes().)
 792		 */
 793		hlist_del_rcu(&op->kp.hlist);
 794	}
 795
 796	/* Don't touch the code, because it is already freed. */
 797	arch_remove_optimized_kprobe(op);
 798}
 799
 800static inline
 801void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 802{
 803	if (!kprobe_ftrace(p))
 804		arch_prepare_optimized_kprobe(op, p);
 805}
 806
 807/* Try to prepare optimized instructions */
 808static void prepare_optimized_kprobe(struct kprobe *p)
 809{
 810	struct optimized_kprobe *op;
 811
 812	op = container_of(p, struct optimized_kprobe, kp);
 813	__prepare_optimized_kprobe(op, p);
 814}
 815
 816/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 817static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 818{
 819	struct optimized_kprobe *op;
 820
 821	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 822	if (!op)
 823		return NULL;
 824
 825	INIT_LIST_HEAD(&op->list);
 826	op->kp.addr = p->addr;
 827	__prepare_optimized_kprobe(op, p);
 828
 829	return &op->kp;
 830}
 831
 832static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 833
 834/*
 835 * Prepare an optimized_kprobe and optimize it
 836 * NOTE: p must be a normal registered kprobe
 837 */
 838static void try_to_optimize_kprobe(struct kprobe *p)
 839{
 840	struct kprobe *ap;
 841	struct optimized_kprobe *op;
 842
 843	/* Impossible to optimize ftrace-based kprobe */
 844	if (kprobe_ftrace(p))
 845		return;
 846
 847	/* For preparing optimization, jump_label_text_reserved() is called */
 848	cpus_read_lock();
 849	jump_label_lock();
 850	mutex_lock(&text_mutex);
 851
 852	ap = alloc_aggr_kprobe(p);
 853	if (!ap)
 854		goto out;
 855
 856	op = container_of(ap, struct optimized_kprobe, kp);
 857	if (!arch_prepared_optinsn(&op->optinsn)) {
 858		/* If failed to setup optimizing, fallback to kprobe */
 859		arch_remove_optimized_kprobe(op);
 860		kfree(op);
 861		goto out;
 862	}
 863
 864	init_aggr_kprobe(ap, p);
 865	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 866
 867out:
 868	mutex_unlock(&text_mutex);
 869	jump_label_unlock();
 870	cpus_read_unlock();
 871}
 872
 873#ifdef CONFIG_SYSCTL
 874static void optimize_all_kprobes(void)
 875{
 876	struct hlist_head *head;
 877	struct kprobe *p;
 878	unsigned int i;
 879
 880	mutex_lock(&kprobe_mutex);
 881	/* If optimization is already allowed, just return */
 882	if (kprobes_allow_optimization)
 883		goto out;
 884
 885	cpus_read_lock();
 886	kprobes_allow_optimization = true;
 887	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 888		head = &kprobe_table[i];
 889		hlist_for_each_entry(p, head, hlist)
 890			if (!kprobe_disabled(p))
 891				optimize_kprobe(p);
 892	}
 893	cpus_read_unlock();
 894	printk(KERN_INFO "Kprobes globally optimized\n");
 895out:
 896	mutex_unlock(&kprobe_mutex);
 897}
 898
 899static void unoptimize_all_kprobes(void)
 900{
 901	struct hlist_head *head;
 902	struct kprobe *p;
 903	unsigned int i;
 904
 905	mutex_lock(&kprobe_mutex);
 906	/* If optimization is already prohibited, just return */
 907	if (!kprobes_allow_optimization) {
 908		mutex_unlock(&kprobe_mutex);
 909		return;
 910	}
 911
 912	cpus_read_lock();
 913	kprobes_allow_optimization = false;
 914	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 915		head = &kprobe_table[i];
 916		hlist_for_each_entry(p, head, hlist) {
 917			if (!kprobe_disabled(p))
 918				unoptimize_kprobe(p, false);
 919		}
 920	}
 921	cpus_read_unlock();
 922	mutex_unlock(&kprobe_mutex);
 923
 924	/* Wait for unoptimizing completion */
 925	wait_for_kprobe_optimizer();
 926	printk(KERN_INFO "Kprobes globally unoptimized\n");
 927}
 928
 929static DEFINE_MUTEX(kprobe_sysctl_mutex);
 930int sysctl_kprobes_optimization;
 931int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 932				      void *buffer, size_t *length,
 933				      loff_t *ppos)
 934{
 935	int ret;
 936
 937	mutex_lock(&kprobe_sysctl_mutex);
 938	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 939	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 940
 941	if (sysctl_kprobes_optimization)
 942		optimize_all_kprobes();
 943	else
 944		unoptimize_all_kprobes();
 945	mutex_unlock(&kprobe_sysctl_mutex);
 946
 947	return ret;
 948}
 949#endif /* CONFIG_SYSCTL */
 950
 951/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 952static void __arm_kprobe(struct kprobe *p)
 953{
 954	struct kprobe *_p;
 955
 956	/* Check collision with other optimized kprobes */
 957	_p = get_optimized_kprobe((unsigned long)p->addr);
 958	if (unlikely(_p))
 959		/* Fallback to unoptimized kprobe */
 960		unoptimize_kprobe(_p, true);
 961
 962	arch_arm_kprobe(p);
 963	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 964}
 965
 966/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 967static void __disarm_kprobe(struct kprobe *p, bool reopt)
 968{
 969	struct kprobe *_p;
 970
 971	/* Try to unoptimize */
 972	unoptimize_kprobe(p, kprobes_all_disarmed);
 973
 974	if (!kprobe_queued(p)) {
 975		arch_disarm_kprobe(p);
 976		/* If another kprobe was blocked, optimize it. */
 977		_p = get_optimized_kprobe((unsigned long)p->addr);
 978		if (unlikely(_p) && reopt)
 979			optimize_kprobe(_p);
 980	}
 981	/* TODO: reoptimize others after unoptimized this probe */
 982}
 983
 984#else /* !CONFIG_OPTPROBES */
 985
 986#define optimize_kprobe(p)			do {} while (0)
 987#define unoptimize_kprobe(p, f)			do {} while (0)
 988#define kill_optimized_kprobe(p)		do {} while (0)
 989#define prepare_optimized_kprobe(p)		do {} while (0)
 990#define try_to_optimize_kprobe(p)		do {} while (0)
 991#define __arm_kprobe(p)				arch_arm_kprobe(p)
 992#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 993#define kprobe_disarmed(p)			kprobe_disabled(p)
 994#define wait_for_kprobe_optimizer()		do {} while (0)
 995
 996static int reuse_unused_kprobe(struct kprobe *ap)
 997{
 998	/*
 999	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000	 * released at the same time that the last aggregated kprobe is
1001	 * unregistered.
1002	 * Thus there should be no chance to reuse unused kprobe.
1003	 */
1004	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005	return -EINVAL;
1006}
1007
1008static void free_aggr_kprobe(struct kprobe *p)
1009{
1010	arch_remove_kprobe(p);
1011	kfree(p);
1012}
1013
1014static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015{
1016	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017}
1018#endif /* CONFIG_OPTPROBES */
1019
1020#ifdef CONFIG_KPROBES_ON_FTRACE
1021static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022	.func = kprobe_ftrace_handler,
1023	.flags = FTRACE_OPS_FL_SAVE_REGS,
1024};
1025
1026static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027	.func = kprobe_ftrace_handler,
1028	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029};
1030
1031static int kprobe_ipmodify_enabled;
1032static int kprobe_ftrace_enabled;
1033
1034/* Must ensure p->addr is really on ftrace */
1035static int prepare_kprobe(struct kprobe *p)
1036{
1037	if (!kprobe_ftrace(p))
1038		return arch_prepare_kprobe(p);
1039
1040	return arch_prepare_kprobe_ftrace(p);
1041}
1042
1043/* Caller must lock kprobe_mutex */
1044static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045			       int *cnt)
1046{
1047	int ret = 0;
1048
1049	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050	if (ret) {
1051		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052			 p->addr, ret);
1053		return ret;
1054	}
1055
1056	if (*cnt == 0) {
1057		ret = register_ftrace_function(ops);
1058		if (ret) {
1059			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060			goto err_ftrace;
1061		}
1062	}
1063
1064	(*cnt)++;
1065	return ret;
1066
1067err_ftrace:
1068	/*
1069	 * At this point, sinec ops is not registered, we should be sefe from
1070	 * registering empty filter.
1071	 */
1072	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073	return ret;
1074}
1075
1076static int arm_kprobe_ftrace(struct kprobe *p)
1077{
1078	bool ipmodify = (p->post_handler != NULL);
1079
1080	return __arm_kprobe_ftrace(p,
1081		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083}
1084
1085/* Caller must lock kprobe_mutex */
1086static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087				  int *cnt)
1088{
1089	int ret = 0;
1090
1091	if (*cnt == 1) {
1092		ret = unregister_ftrace_function(ops);
1093		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094			return ret;
1095	}
1096
1097	(*cnt)--;
1098
1099	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101		  p->addr, ret);
1102	return ret;
1103}
1104
1105static int disarm_kprobe_ftrace(struct kprobe *p)
1106{
1107	bool ipmodify = (p->post_handler != NULL);
1108
1109	return __disarm_kprobe_ftrace(p,
1110		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112}
1113#else	/* !CONFIG_KPROBES_ON_FTRACE */
1114static inline int prepare_kprobe(struct kprobe *p)
1115{
1116	return arch_prepare_kprobe(p);
1117}
1118
1119static inline int arm_kprobe_ftrace(struct kprobe *p)
1120{
1121	return -ENODEV;
1122}
1123
1124static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125{
1126	return -ENODEV;
1127}
1128#endif
1129
1130/* Arm a kprobe with text_mutex */
1131static int arm_kprobe(struct kprobe *kp)
1132{
1133	if (unlikely(kprobe_ftrace(kp)))
1134		return arm_kprobe_ftrace(kp);
1135
1136	cpus_read_lock();
1137	mutex_lock(&text_mutex);
1138	__arm_kprobe(kp);
1139	mutex_unlock(&text_mutex);
1140	cpus_read_unlock();
1141
1142	return 0;
1143}
1144
1145/* Disarm a kprobe with text_mutex */
1146static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147{
1148	if (unlikely(kprobe_ftrace(kp)))
1149		return disarm_kprobe_ftrace(kp);
1150
1151	cpus_read_lock();
1152	mutex_lock(&text_mutex);
1153	__disarm_kprobe(kp, reopt);
1154	mutex_unlock(&text_mutex);
1155	cpus_read_unlock();
1156
1157	return 0;
1158}
1159
1160/*
1161 * Aggregate handlers for multiple kprobes support - these handlers
1162 * take care of invoking the individual kprobe handlers on p->list
1163 */
1164static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165{
1166	struct kprobe *kp;
1167
1168	list_for_each_entry_rcu(kp, &p->list, list) {
1169		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170			set_kprobe_instance(kp);
1171			if (kp->pre_handler(kp, regs))
1172				return 1;
1173		}
1174		reset_kprobe_instance();
1175	}
1176	return 0;
1177}
1178NOKPROBE_SYMBOL(aggr_pre_handler);
1179
1180static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181			      unsigned long flags)
1182{
1183	struct kprobe *kp;
1184
1185	list_for_each_entry_rcu(kp, &p->list, list) {
1186		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187			set_kprobe_instance(kp);
1188			kp->post_handler(kp, regs, flags);
1189			reset_kprobe_instance();
1190		}
1191	}
1192}
1193NOKPROBE_SYMBOL(aggr_post_handler);
1194
1195static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196			      int trapnr)
1197{
1198	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199
1200	/*
1201	 * if we faulted "during" the execution of a user specified
1202	 * probe handler, invoke just that probe's fault handler
1203	 */
1204	if (cur && cur->fault_handler) {
1205		if (cur->fault_handler(cur, regs, trapnr))
1206			return 1;
1207	}
1208	return 0;
1209}
1210NOKPROBE_SYMBOL(aggr_fault_handler);
1211
1212/* Walks the list and increments nmissed count for multiprobe case */
1213void kprobes_inc_nmissed_count(struct kprobe *p)
1214{
1215	struct kprobe *kp;
1216	if (!kprobe_aggrprobe(p)) {
1217		p->nmissed++;
1218	} else {
1219		list_for_each_entry_rcu(kp, &p->list, list)
1220			kp->nmissed++;
1221	}
1222	return;
1223}
1224NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225
1226void recycle_rp_inst(struct kretprobe_instance *ri,
1227		     struct hlist_head *head)
1228{
1229	struct kretprobe *rp = ri->rp;
1230
1231	/* remove rp inst off the rprobe_inst_table */
1232	hlist_del(&ri->hlist);
1233	INIT_HLIST_NODE(&ri->hlist);
1234	if (likely(rp)) {
1235		raw_spin_lock(&rp->lock);
1236		hlist_add_head(&ri->hlist, &rp->free_instances);
1237		raw_spin_unlock(&rp->lock);
1238	} else
1239		/* Unregistering */
1240		hlist_add_head(&ri->hlist, head);
1241}
1242NOKPROBE_SYMBOL(recycle_rp_inst);
1243
1244void kretprobe_hash_lock(struct task_struct *tsk,
1245			 struct hlist_head **head, unsigned long *flags)
1246__acquires(hlist_lock)
1247{
1248	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249	raw_spinlock_t *hlist_lock;
1250
1251	*head = &kretprobe_inst_table[hash];
1252	hlist_lock = kretprobe_table_lock_ptr(hash);
1253	raw_spin_lock_irqsave(hlist_lock, *flags);
1254}
1255NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256
1257static void kretprobe_table_lock(unsigned long hash,
1258				 unsigned long *flags)
1259__acquires(hlist_lock)
1260{
1261	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262	raw_spin_lock_irqsave(hlist_lock, *flags);
1263}
1264NOKPROBE_SYMBOL(kretprobe_table_lock);
1265
1266void kretprobe_hash_unlock(struct task_struct *tsk,
1267			   unsigned long *flags)
1268__releases(hlist_lock)
1269{
1270	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271	raw_spinlock_t *hlist_lock;
1272
1273	hlist_lock = kretprobe_table_lock_ptr(hash);
1274	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275}
1276NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277
1278static void kretprobe_table_unlock(unsigned long hash,
1279				   unsigned long *flags)
1280__releases(hlist_lock)
1281{
1282	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284}
1285NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286
1287struct kprobe kprobe_busy = {
1288	.addr = (void *) get_kprobe,
1289};
1290
1291void kprobe_busy_begin(void)
1292{
1293	struct kprobe_ctlblk *kcb;
1294
1295	preempt_disable();
1296	__this_cpu_write(current_kprobe, &kprobe_busy);
1297	kcb = get_kprobe_ctlblk();
1298	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299}
1300
1301void kprobe_busy_end(void)
1302{
1303	__this_cpu_write(current_kprobe, NULL);
1304	preempt_enable();
1305}
1306
1307/*
1308 * This function is called from finish_task_switch when task tk becomes dead,
1309 * so that we can recycle any function-return probe instances associated
1310 * with this task. These left over instances represent probed functions
1311 * that have been called but will never return.
1312 */
1313void kprobe_flush_task(struct task_struct *tk)
1314{
1315	struct kretprobe_instance *ri;
1316	struct hlist_head *head, empty_rp;
1317	struct hlist_node *tmp;
1318	unsigned long hash, flags = 0;
1319
1320	if (unlikely(!kprobes_initialized))
1321		/* Early boot.  kretprobe_table_locks not yet initialized. */
1322		return;
1323
1324	kprobe_busy_begin();
1325
1326	INIT_HLIST_HEAD(&empty_rp);
1327	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328	head = &kretprobe_inst_table[hash];
1329	kretprobe_table_lock(hash, &flags);
1330	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331		if (ri->task == tk)
1332			recycle_rp_inst(ri, &empty_rp);
1333	}
1334	kretprobe_table_unlock(hash, &flags);
1335	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336		hlist_del(&ri->hlist);
1337		kfree(ri);
1338	}
1339
1340	kprobe_busy_end();
1341}
1342NOKPROBE_SYMBOL(kprobe_flush_task);
1343
1344static inline void free_rp_inst(struct kretprobe *rp)
1345{
1346	struct kretprobe_instance *ri;
1347	struct hlist_node *next;
1348
1349	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350		hlist_del(&ri->hlist);
1351		kfree(ri);
1352	}
1353}
1354
1355static void cleanup_rp_inst(struct kretprobe *rp)
1356{
1357	unsigned long flags, hash;
1358	struct kretprobe_instance *ri;
1359	struct hlist_node *next;
1360	struct hlist_head *head;
1361
1362	/* No race here */
1363	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364		kretprobe_table_lock(hash, &flags);
1365		head = &kretprobe_inst_table[hash];
1366		hlist_for_each_entry_safe(ri, next, head, hlist) {
1367			if (ri->rp == rp)
1368				ri->rp = NULL;
1369		}
1370		kretprobe_table_unlock(hash, &flags);
1371	}
1372	free_rp_inst(rp);
1373}
1374NOKPROBE_SYMBOL(cleanup_rp_inst);
1375
1376/* Add the new probe to ap->list */
1377static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1378{
1379	if (p->post_handler)
1380		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1381
1382	list_add_rcu(&p->list, &ap->list);
1383	if (p->post_handler && !ap->post_handler)
1384		ap->post_handler = aggr_post_handler;
1385
1386	return 0;
1387}
1388
1389/*
1390 * Fill in the required fields of the "manager kprobe". Replace the
1391 * earlier kprobe in the hlist with the manager kprobe
1392 */
1393static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394{
1395	/* Copy p's insn slot to ap */
1396	copy_kprobe(p, ap);
1397	flush_insn_slot(ap);
1398	ap->addr = p->addr;
1399	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400	ap->pre_handler = aggr_pre_handler;
1401	ap->fault_handler = aggr_fault_handler;
1402	/* We don't care the kprobe which has gone. */
1403	if (p->post_handler && !kprobe_gone(p))
1404		ap->post_handler = aggr_post_handler;
1405
1406	INIT_LIST_HEAD(&ap->list);
1407	INIT_HLIST_NODE(&ap->hlist);
1408
1409	list_add_rcu(&p->list, &ap->list);
1410	hlist_replace_rcu(&p->hlist, &ap->hlist);
1411}
1412
1413/*
1414 * This is the second or subsequent kprobe at the address - handle
1415 * the intricacies
1416 */
1417static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1418{
1419	int ret = 0;
1420	struct kprobe *ap = orig_p;
1421
1422	cpus_read_lock();
1423
1424	/* For preparing optimization, jump_label_text_reserved() is called */
1425	jump_label_lock();
1426	mutex_lock(&text_mutex);
1427
1428	if (!kprobe_aggrprobe(orig_p)) {
1429		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430		ap = alloc_aggr_kprobe(orig_p);
1431		if (!ap) {
1432			ret = -ENOMEM;
1433			goto out;
1434		}
1435		init_aggr_kprobe(ap, orig_p);
1436	} else if (kprobe_unused(ap)) {
1437		/* This probe is going to die. Rescue it */
1438		ret = reuse_unused_kprobe(ap);
1439		if (ret)
1440			goto out;
1441	}
1442
1443	if (kprobe_gone(ap)) {
1444		/*
1445		 * Attempting to insert new probe at the same location that
1446		 * had a probe in the module vaddr area which already
1447		 * freed. So, the instruction slot has already been
1448		 * released. We need a new slot for the new probe.
1449		 */
1450		ret = arch_prepare_kprobe(ap);
1451		if (ret)
1452			/*
1453			 * Even if fail to allocate new slot, don't need to
1454			 * free aggr_probe. It will be used next time, or
1455			 * freed by unregister_kprobe.
1456			 */
1457			goto out;
1458
1459		/* Prepare optimized instructions if possible. */
1460		prepare_optimized_kprobe(ap);
1461
1462		/*
1463		 * Clear gone flag to prevent allocating new slot again, and
1464		 * set disabled flag because it is not armed yet.
1465		 */
1466		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467			    | KPROBE_FLAG_DISABLED;
1468	}
1469
1470	/* Copy ap's insn slot to p */
1471	copy_kprobe(ap, p);
1472	ret = add_new_kprobe(ap, p);
1473
1474out:
1475	mutex_unlock(&text_mutex);
1476	jump_label_unlock();
1477	cpus_read_unlock();
1478
1479	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480		ap->flags &= ~KPROBE_FLAG_DISABLED;
1481		if (!kprobes_all_disarmed) {
1482			/* Arm the breakpoint again. */
1483			ret = arm_kprobe(ap);
1484			if (ret) {
1485				ap->flags |= KPROBE_FLAG_DISABLED;
1486				list_del_rcu(&p->list);
1487				synchronize_rcu();
1488			}
1489		}
1490	}
1491	return ret;
1492}
1493
1494bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495{
1496	/* The __kprobes marked functions and entry code must not be probed */
1497	return addr >= (unsigned long)__kprobes_text_start &&
1498	       addr < (unsigned long)__kprobes_text_end;
1499}
1500
1501static bool __within_kprobe_blacklist(unsigned long addr)
1502{
1503	struct kprobe_blacklist_entry *ent;
1504
1505	if (arch_within_kprobe_blacklist(addr))
1506		return true;
1507	/*
1508	 * If there exists a kprobe_blacklist, verify and
1509	 * fail any probe registration in the prohibited area
1510	 */
1511	list_for_each_entry(ent, &kprobe_blacklist, list) {
1512		if (addr >= ent->start_addr && addr < ent->end_addr)
1513			return true;
1514	}
1515	return false;
1516}
1517
1518bool within_kprobe_blacklist(unsigned long addr)
1519{
1520	char symname[KSYM_NAME_LEN], *p;
1521
1522	if (__within_kprobe_blacklist(addr))
1523		return true;
1524
1525	/* Check if the address is on a suffixed-symbol */
1526	if (!lookup_symbol_name(addr, symname)) {
1527		p = strchr(symname, '.');
1528		if (!p)
1529			return false;
1530		*p = '\0';
1531		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532		if (addr)
1533			return __within_kprobe_blacklist(addr);
1534	}
1535	return false;
1536}
1537
1538/*
1539 * If we have a symbol_name argument, look it up and add the offset field
1540 * to it. This way, we can specify a relative address to a symbol.
1541 * This returns encoded errors if it fails to look up symbol or invalid
1542 * combination of parameters.
1543 */
1544static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545			const char *symbol_name, unsigned int offset)
1546{
1547	if ((symbol_name && addr) || (!symbol_name && !addr))
1548		goto invalid;
1549
1550	if (symbol_name) {
1551		addr = kprobe_lookup_name(symbol_name, offset);
1552		if (!addr)
1553			return ERR_PTR(-ENOENT);
1554	}
1555
1556	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557	if (addr)
1558		return addr;
1559
1560invalid:
1561	return ERR_PTR(-EINVAL);
1562}
1563
1564static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565{
1566	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567}
1568
1569/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571{
1572	struct kprobe *ap, *list_p;
1573
1574	lockdep_assert_held(&kprobe_mutex);
1575
1576	ap = get_kprobe(p->addr);
1577	if (unlikely(!ap))
1578		return NULL;
1579
1580	if (p != ap) {
1581		list_for_each_entry(list_p, &ap->list, list)
1582			if (list_p == p)
1583			/* kprobe p is a valid probe */
1584				goto valid;
1585		return NULL;
1586	}
1587valid:
1588	return ap;
1589}
1590
1591/* Return error if the kprobe is being re-registered */
1592static inline int check_kprobe_rereg(struct kprobe *p)
1593{
1594	int ret = 0;
1595
1596	mutex_lock(&kprobe_mutex);
1597	if (__get_valid_kprobe(p))
1598		ret = -EINVAL;
1599	mutex_unlock(&kprobe_mutex);
1600
1601	return ret;
1602}
1603
1604int __weak arch_check_ftrace_location(struct kprobe *p)
1605{
1606	unsigned long ftrace_addr;
1607
1608	ftrace_addr = ftrace_location((unsigned long)p->addr);
1609	if (ftrace_addr) {
1610#ifdef CONFIG_KPROBES_ON_FTRACE
1611		/* Given address is not on the instruction boundary */
1612		if ((unsigned long)p->addr != ftrace_addr)
1613			return -EILSEQ;
1614		p->flags |= KPROBE_FLAG_FTRACE;
1615#else	/* !CONFIG_KPROBES_ON_FTRACE */
1616		return -EINVAL;
1617#endif
1618	}
1619	return 0;
1620}
1621
1622static int check_kprobe_address_safe(struct kprobe *p,
1623				     struct module **probed_mod)
1624{
1625	int ret;
1626
1627	ret = arch_check_ftrace_location(p);
1628	if (ret)
1629		return ret;
1630	jump_label_lock();
1631	preempt_disable();
1632
1633	/* Ensure it is not in reserved area nor out of text */
1634	if (!kernel_text_address((unsigned long) p->addr) ||
1635	    within_kprobe_blacklist((unsigned long) p->addr) ||
1636	    jump_label_text_reserved(p->addr, p->addr) ||
1637	    find_bug((unsigned long)p->addr)) {
1638		ret = -EINVAL;
1639		goto out;
1640	}
1641
1642	/* Check if are we probing a module */
1643	*probed_mod = __module_text_address((unsigned long) p->addr);
1644	if (*probed_mod) {
1645		/*
1646		 * We must hold a refcount of the probed module while updating
1647		 * its code to prohibit unexpected unloading.
1648		 */
1649		if (unlikely(!try_module_get(*probed_mod))) {
1650			ret = -ENOENT;
1651			goto out;
1652		}
1653
1654		/*
1655		 * If the module freed .init.text, we couldn't insert
1656		 * kprobes in there.
1657		 */
1658		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659		    (*probed_mod)->state != MODULE_STATE_COMING) {
1660			module_put(*probed_mod);
1661			*probed_mod = NULL;
1662			ret = -ENOENT;
1663		}
1664	}
1665out:
1666	preempt_enable();
1667	jump_label_unlock();
1668
1669	return ret;
1670}
1671
1672int register_kprobe(struct kprobe *p)
1673{
1674	int ret;
1675	struct kprobe *old_p;
1676	struct module *probed_mod;
1677	kprobe_opcode_t *addr;
1678
1679	/* Adjust probe address from symbol */
1680	addr = kprobe_addr(p);
1681	if (IS_ERR(addr))
1682		return PTR_ERR(addr);
1683	p->addr = addr;
1684
1685	ret = check_kprobe_rereg(p);
1686	if (ret)
1687		return ret;
1688
1689	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690	p->flags &= KPROBE_FLAG_DISABLED;
1691	p->nmissed = 0;
1692	INIT_LIST_HEAD(&p->list);
1693
1694	ret = check_kprobe_address_safe(p, &probed_mod);
1695	if (ret)
1696		return ret;
1697
1698	mutex_lock(&kprobe_mutex);
1699
1700	old_p = get_kprobe(p->addr);
1701	if (old_p) {
1702		/* Since this may unoptimize old_p, locking text_mutex. */
1703		ret = register_aggr_kprobe(old_p, p);
1704		goto out;
1705	}
1706
1707	cpus_read_lock();
1708	/* Prevent text modification */
1709	mutex_lock(&text_mutex);
1710	ret = prepare_kprobe(p);
1711	mutex_unlock(&text_mutex);
1712	cpus_read_unlock();
1713	if (ret)
1714		goto out;
1715
1716	INIT_HLIST_NODE(&p->hlist);
1717	hlist_add_head_rcu(&p->hlist,
1718		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719
1720	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721		ret = arm_kprobe(p);
1722		if (ret) {
1723			hlist_del_rcu(&p->hlist);
1724			synchronize_rcu();
1725			goto out;
1726		}
1727	}
1728
1729	/* Try to optimize kprobe */
1730	try_to_optimize_kprobe(p);
1731out:
1732	mutex_unlock(&kprobe_mutex);
1733
1734	if (probed_mod)
1735		module_put(probed_mod);
1736
1737	return ret;
1738}
1739EXPORT_SYMBOL_GPL(register_kprobe);
1740
1741/* Check if all probes on the aggrprobe are disabled */
1742static int aggr_kprobe_disabled(struct kprobe *ap)
1743{
1744	struct kprobe *kp;
1745
1746	lockdep_assert_held(&kprobe_mutex);
1747
1748	list_for_each_entry(kp, &ap->list, list)
1749		if (!kprobe_disabled(kp))
1750			/*
1751			 * There is an active probe on the list.
1752			 * We can't disable this ap.
1753			 */
1754			return 0;
1755
1756	return 1;
1757}
1758
1759/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760static struct kprobe *__disable_kprobe(struct kprobe *p)
1761{
1762	struct kprobe *orig_p;
1763	int ret;
1764
1765	/* Get an original kprobe for return */
1766	orig_p = __get_valid_kprobe(p);
1767	if (unlikely(orig_p == NULL))
1768		return ERR_PTR(-EINVAL);
1769
1770	if (!kprobe_disabled(p)) {
1771		/* Disable probe if it is a child probe */
1772		if (p != orig_p)
1773			p->flags |= KPROBE_FLAG_DISABLED;
1774
1775		/* Try to disarm and disable this/parent probe */
1776		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777			/*
1778			 * If kprobes_all_disarmed is set, orig_p
1779			 * should have already been disarmed, so
1780			 * skip unneed disarming process.
1781			 */
1782			if (!kprobes_all_disarmed) {
1783				ret = disarm_kprobe(orig_p, true);
1784				if (ret) {
1785					p->flags &= ~KPROBE_FLAG_DISABLED;
1786					return ERR_PTR(ret);
1787				}
1788			}
1789			orig_p->flags |= KPROBE_FLAG_DISABLED;
1790		}
1791	}
1792
1793	return orig_p;
1794}
1795
1796/*
1797 * Unregister a kprobe without a scheduler synchronization.
1798 */
1799static int __unregister_kprobe_top(struct kprobe *p)
1800{
1801	struct kprobe *ap, *list_p;
1802
1803	/* Disable kprobe. This will disarm it if needed. */
1804	ap = __disable_kprobe(p);
1805	if (IS_ERR(ap))
1806		return PTR_ERR(ap);
1807
1808	if (ap == p)
1809		/*
1810		 * This probe is an independent(and non-optimized) kprobe
1811		 * (not an aggrprobe). Remove from the hash list.
1812		 */
1813		goto disarmed;
1814
1815	/* Following process expects this probe is an aggrprobe */
1816	WARN_ON(!kprobe_aggrprobe(ap));
1817
1818	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819		/*
1820		 * !disarmed could be happen if the probe is under delayed
1821		 * unoptimizing.
1822		 */
1823		goto disarmed;
1824	else {
1825		/* If disabling probe has special handlers, update aggrprobe */
1826		if (p->post_handler && !kprobe_gone(p)) {
1827			list_for_each_entry(list_p, &ap->list, list) {
1828				if ((list_p != p) && (list_p->post_handler))
1829					goto noclean;
1830			}
1831			ap->post_handler = NULL;
1832		}
1833noclean:
1834		/*
1835		 * Remove from the aggrprobe: this path will do nothing in
1836		 * __unregister_kprobe_bottom().
1837		 */
1838		list_del_rcu(&p->list);
1839		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840			/*
1841			 * Try to optimize this probe again, because post
1842			 * handler may have been changed.
1843			 */
1844			optimize_kprobe(ap);
1845	}
1846	return 0;
1847
1848disarmed:
1849	hlist_del_rcu(&ap->hlist);
1850	return 0;
1851}
1852
1853static void __unregister_kprobe_bottom(struct kprobe *p)
1854{
1855	struct kprobe *ap;
1856
1857	if (list_empty(&p->list))
1858		/* This is an independent kprobe */
1859		arch_remove_kprobe(p);
1860	else if (list_is_singular(&p->list)) {
1861		/* This is the last child of an aggrprobe */
1862		ap = list_entry(p->list.next, struct kprobe, list);
1863		list_del(&p->list);
1864		free_aggr_kprobe(ap);
1865	}
1866	/* Otherwise, do nothing. */
1867}
1868
1869int register_kprobes(struct kprobe **kps, int num)
1870{
1871	int i, ret = 0;
1872
1873	if (num <= 0)
1874		return -EINVAL;
1875	for (i = 0; i < num; i++) {
1876		ret = register_kprobe(kps[i]);
1877		if (ret < 0) {
1878			if (i > 0)
1879				unregister_kprobes(kps, i);
1880			break;
1881		}
1882	}
1883	return ret;
1884}
1885EXPORT_SYMBOL_GPL(register_kprobes);
1886
1887void unregister_kprobe(struct kprobe *p)
1888{
1889	unregister_kprobes(&p, 1);
1890}
1891EXPORT_SYMBOL_GPL(unregister_kprobe);
1892
1893void unregister_kprobes(struct kprobe **kps, int num)
1894{
1895	int i;
1896
1897	if (num <= 0)
1898		return;
1899	mutex_lock(&kprobe_mutex);
1900	for (i = 0; i < num; i++)
1901		if (__unregister_kprobe_top(kps[i]) < 0)
1902			kps[i]->addr = NULL;
1903	mutex_unlock(&kprobe_mutex);
1904
1905	synchronize_rcu();
1906	for (i = 0; i < num; i++)
1907		if (kps[i]->addr)
1908			__unregister_kprobe_bottom(kps[i]);
1909}
1910EXPORT_SYMBOL_GPL(unregister_kprobes);
1911
1912int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913					unsigned long val, void *data)
1914{
1915	return NOTIFY_DONE;
1916}
1917NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918
1919static struct notifier_block kprobe_exceptions_nb = {
1920	.notifier_call = kprobe_exceptions_notify,
1921	.priority = 0x7fffffff /* we need to be notified first */
1922};
1923
1924unsigned long __weak arch_deref_entry_point(void *entry)
1925{
1926	return (unsigned long)entry;
1927}
1928
1929#ifdef CONFIG_KRETPROBES
1930/*
1931 * This kprobe pre_handler is registered with every kretprobe. When probe
1932 * hits it will set up the return probe.
1933 */
1934static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1935{
1936	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937	unsigned long hash, flags = 0;
1938	struct kretprobe_instance *ri;
1939
1940	/*
1941	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942	 * just skip the probe and increase the (inexact) 'nmissed'
1943	 * statistical counter, so that the user is informed that
1944	 * something happened:
1945	 */
1946	if (unlikely(in_nmi())) {
1947		rp->nmissed++;
1948		return 0;
1949	}
1950
1951	/* TODO: consider to only swap the RA after the last pre_handler fired */
1952	hash = hash_ptr(current, KPROBE_HASH_BITS);
1953	raw_spin_lock_irqsave(&rp->lock, flags);
1954	if (!hlist_empty(&rp->free_instances)) {
1955		ri = hlist_entry(rp->free_instances.first,
1956				struct kretprobe_instance, hlist);
1957		hlist_del(&ri->hlist);
1958		raw_spin_unlock_irqrestore(&rp->lock, flags);
1959
1960		ri->rp = rp;
1961		ri->task = current;
1962
1963		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964			raw_spin_lock_irqsave(&rp->lock, flags);
1965			hlist_add_head(&ri->hlist, &rp->free_instances);
1966			raw_spin_unlock_irqrestore(&rp->lock, flags);
1967			return 0;
1968		}
1969
1970		arch_prepare_kretprobe(ri, regs);
1971
1972		/* XXX(hch): why is there no hlist_move_head? */
1973		INIT_HLIST_NODE(&ri->hlist);
1974		kretprobe_table_lock(hash, &flags);
1975		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976		kretprobe_table_unlock(hash, &flags);
1977	} else {
1978		rp->nmissed++;
1979		raw_spin_unlock_irqrestore(&rp->lock, flags);
1980	}
1981	return 0;
1982}
1983NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984
1985bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986{
1987	return !offset;
1988}
1989
1990bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991{
1992	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993
1994	if (IS_ERR(kp_addr))
1995		return false;
1996
1997	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998						!arch_kprobe_on_func_entry(offset))
1999		return false;
2000
2001	return true;
2002}
2003
2004int register_kretprobe(struct kretprobe *rp)
2005{
2006	int ret = 0;
2007	struct kretprobe_instance *inst;
2008	int i;
2009	void *addr;
2010
2011	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012		return -EINVAL;
2013
2014	if (kretprobe_blacklist_size) {
2015		addr = kprobe_addr(&rp->kp);
2016		if (IS_ERR(addr))
2017			return PTR_ERR(addr);
2018
2019		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020			if (kretprobe_blacklist[i].addr == addr)
2021				return -EINVAL;
2022		}
2023	}
2024
2025	rp->kp.pre_handler = pre_handler_kretprobe;
2026	rp->kp.post_handler = NULL;
2027	rp->kp.fault_handler = NULL;
2028
2029	/* Pre-allocate memory for max kretprobe instances */
2030	if (rp->maxactive <= 0) {
2031#ifdef CONFIG_PREEMPTION
2032		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033#else
2034		rp->maxactive = num_possible_cpus();
2035#endif
2036	}
2037	raw_spin_lock_init(&rp->lock);
2038	INIT_HLIST_HEAD(&rp->free_instances);
2039	for (i = 0; i < rp->maxactive; i++) {
2040		inst = kmalloc(sizeof(struct kretprobe_instance) +
2041			       rp->data_size, GFP_KERNEL);
2042		if (inst == NULL) {
2043			free_rp_inst(rp);
2044			return -ENOMEM;
2045		}
2046		INIT_HLIST_NODE(&inst->hlist);
2047		hlist_add_head(&inst->hlist, &rp->free_instances);
2048	}
2049
2050	rp->nmissed = 0;
2051	/* Establish function entry probe point */
2052	ret = register_kprobe(&rp->kp);
2053	if (ret != 0)
2054		free_rp_inst(rp);
2055	return ret;
2056}
2057EXPORT_SYMBOL_GPL(register_kretprobe);
2058
2059int register_kretprobes(struct kretprobe **rps, int num)
2060{
2061	int ret = 0, i;
2062
2063	if (num <= 0)
2064		return -EINVAL;
2065	for (i = 0; i < num; i++) {
2066		ret = register_kretprobe(rps[i]);
2067		if (ret < 0) {
2068			if (i > 0)
2069				unregister_kretprobes(rps, i);
2070			break;
2071		}
2072	}
2073	return ret;
2074}
2075EXPORT_SYMBOL_GPL(register_kretprobes);
2076
2077void unregister_kretprobe(struct kretprobe *rp)
2078{
2079	unregister_kretprobes(&rp, 1);
2080}
2081EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083void unregister_kretprobes(struct kretprobe **rps, int num)
2084{
2085	int i;
2086
2087	if (num <= 0)
2088		return;
2089	mutex_lock(&kprobe_mutex);
2090	for (i = 0; i < num; i++)
2091		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092			rps[i]->kp.addr = NULL;
2093	mutex_unlock(&kprobe_mutex);
2094
2095	synchronize_rcu();
2096	for (i = 0; i < num; i++) {
2097		if (rps[i]->kp.addr) {
2098			__unregister_kprobe_bottom(&rps[i]->kp);
2099			cleanup_rp_inst(rps[i]);
2100		}
2101	}
2102}
2103EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105#else /* CONFIG_KRETPROBES */
2106int register_kretprobe(struct kretprobe *rp)
2107{
2108	return -ENOSYS;
2109}
2110EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112int register_kretprobes(struct kretprobe **rps, int num)
2113{
2114	return -ENOSYS;
2115}
2116EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118void unregister_kretprobe(struct kretprobe *rp)
2119{
2120}
2121EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123void unregister_kretprobes(struct kretprobe **rps, int num)
2124{
2125}
2126EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129{
2130	return 0;
2131}
2132NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134#endif /* CONFIG_KRETPROBES */
2135
2136/* Set the kprobe gone and remove its instruction buffer. */
2137static void kill_kprobe(struct kprobe *p)
2138{
2139	struct kprobe *kp;
2140
2141	lockdep_assert_held(&kprobe_mutex);
2142
2143	if (WARN_ON_ONCE(kprobe_gone(p)))
2144		return;
2145
2146	p->flags |= KPROBE_FLAG_GONE;
2147	if (kprobe_aggrprobe(p)) {
2148		/*
2149		 * If this is an aggr_kprobe, we have to list all the
2150		 * chained probes and mark them GONE.
2151		 */
2152		list_for_each_entry(kp, &p->list, list)
2153			kp->flags |= KPROBE_FLAG_GONE;
2154		p->post_handler = NULL;
2155		kill_optimized_kprobe(p);
2156	}
2157	/*
2158	 * Here, we can remove insn_slot safely, because no thread calls
2159	 * the original probed function (which will be freed soon) any more.
2160	 */
2161	arch_remove_kprobe(p);
2162
2163	/*
2164	 * The module is going away. We should disarm the kprobe which
2165	 * is using ftrace, because ftrace framework is still available at
2166	 * MODULE_STATE_GOING notification.
2167	 */
2168	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2169		disarm_kprobe_ftrace(p);
2170}
2171
2172/* Disable one kprobe */
2173int disable_kprobe(struct kprobe *kp)
2174{
2175	int ret = 0;
2176	struct kprobe *p;
2177
2178	mutex_lock(&kprobe_mutex);
2179
2180	/* Disable this kprobe */
2181	p = __disable_kprobe(kp);
2182	if (IS_ERR(p))
2183		ret = PTR_ERR(p);
2184
2185	mutex_unlock(&kprobe_mutex);
2186	return ret;
2187}
2188EXPORT_SYMBOL_GPL(disable_kprobe);
2189
2190/* Enable one kprobe */
2191int enable_kprobe(struct kprobe *kp)
2192{
2193	int ret = 0;
2194	struct kprobe *p;
2195
2196	mutex_lock(&kprobe_mutex);
2197
2198	/* Check whether specified probe is valid. */
2199	p = __get_valid_kprobe(kp);
2200	if (unlikely(p == NULL)) {
2201		ret = -EINVAL;
2202		goto out;
2203	}
2204
2205	if (kprobe_gone(kp)) {
2206		/* This kprobe has gone, we couldn't enable it. */
2207		ret = -EINVAL;
2208		goto out;
2209	}
2210
2211	if (p != kp)
2212		kp->flags &= ~KPROBE_FLAG_DISABLED;
2213
2214	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2215		p->flags &= ~KPROBE_FLAG_DISABLED;
2216		ret = arm_kprobe(p);
2217		if (ret)
2218			p->flags |= KPROBE_FLAG_DISABLED;
2219	}
2220out:
2221	mutex_unlock(&kprobe_mutex);
2222	return ret;
2223}
2224EXPORT_SYMBOL_GPL(enable_kprobe);
2225
2226/* Caller must NOT call this in usual path. This is only for critical case */
2227void dump_kprobe(struct kprobe *kp)
2228{
2229	pr_err("Dumping kprobe:\n");
2230	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231	       kp->symbol_name, kp->offset, kp->addr);
2232}
2233NOKPROBE_SYMBOL(dump_kprobe);
2234
2235int kprobe_add_ksym_blacklist(unsigned long entry)
2236{
2237	struct kprobe_blacklist_entry *ent;
2238	unsigned long offset = 0, size = 0;
2239
2240	if (!kernel_text_address(entry) ||
2241	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2242		return -EINVAL;
2243
2244	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245	if (!ent)
2246		return -ENOMEM;
2247	ent->start_addr = entry;
2248	ent->end_addr = entry + size;
2249	INIT_LIST_HEAD(&ent->list);
2250	list_add_tail(&ent->list, &kprobe_blacklist);
2251
2252	return (int)size;
2253}
2254
2255/* Add all symbols in given area into kprobe blacklist */
2256int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257{
2258	unsigned long entry;
2259	int ret = 0;
2260
2261	for (entry = start; entry < end; entry += ret) {
2262		ret = kprobe_add_ksym_blacklist(entry);
2263		if (ret < 0)
2264			return ret;
2265		if (ret == 0)	/* In case of alias symbol */
2266			ret = 1;
2267	}
2268	return 0;
2269}
2270
2271/* Remove all symbols in given area from kprobe blacklist */
2272static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2273{
2274	struct kprobe_blacklist_entry *ent, *n;
2275
2276	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2277		if (ent->start_addr < start || ent->start_addr >= end)
2278			continue;
2279		list_del(&ent->list);
2280		kfree(ent);
2281	}
2282}
2283
2284static void kprobe_remove_ksym_blacklist(unsigned long entry)
2285{
2286	kprobe_remove_area_blacklist(entry, entry + 1);
2287}
2288
2289int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2290				   char *type, char *sym)
2291{
2292	return -ERANGE;
2293}
2294
2295int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2296		       char *sym)
2297{
2298#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2299	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2300		return 0;
2301#ifdef CONFIG_OPTPROBES
2302	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2303		return 0;
2304#endif
2305#endif
2306	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2307		return 0;
2308	return -ERANGE;
2309}
2310
2311int __init __weak arch_populate_kprobe_blacklist(void)
2312{
2313	return 0;
2314}
2315
2316/*
2317 * Lookup and populate the kprobe_blacklist.
2318 *
2319 * Unlike the kretprobe blacklist, we'll need to determine
2320 * the range of addresses that belong to the said functions,
2321 * since a kprobe need not necessarily be at the beginning
2322 * of a function.
2323 */
2324static int __init populate_kprobe_blacklist(unsigned long *start,
2325					     unsigned long *end)
2326{
2327	unsigned long entry;
2328	unsigned long *iter;
2329	int ret;
2330
2331	for (iter = start; iter < end; iter++) {
2332		entry = arch_deref_entry_point((void *)*iter);
2333		ret = kprobe_add_ksym_blacklist(entry);
2334		if (ret == -EINVAL)
2335			continue;
2336		if (ret < 0)
2337			return ret;
2338	}
2339
2340	/* Symbols in __kprobes_text are blacklisted */
2341	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2342					(unsigned long)__kprobes_text_end);
2343	if (ret)
2344		return ret;
2345
2346	/* Symbols in noinstr section are blacklisted */
2347	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2348					(unsigned long)__noinstr_text_end);
2349
2350	return ret ? : arch_populate_kprobe_blacklist();
2351}
2352
2353static void add_module_kprobe_blacklist(struct module *mod)
2354{
2355	unsigned long start, end;
2356	int i;
2357
2358	if (mod->kprobe_blacklist) {
2359		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2360			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2361	}
2362
2363	start = (unsigned long)mod->kprobes_text_start;
2364	if (start) {
2365		end = start + mod->kprobes_text_size;
2366		kprobe_add_area_blacklist(start, end);
2367	}
2368
2369	start = (unsigned long)mod->noinstr_text_start;
2370	if (start) {
2371		end = start + mod->noinstr_text_size;
2372		kprobe_add_area_blacklist(start, end);
2373	}
2374}
2375
2376static void remove_module_kprobe_blacklist(struct module *mod)
2377{
2378	unsigned long start, end;
2379	int i;
2380
2381	if (mod->kprobe_blacklist) {
2382		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2383			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2384	}
2385
2386	start = (unsigned long)mod->kprobes_text_start;
2387	if (start) {
2388		end = start + mod->kprobes_text_size;
2389		kprobe_remove_area_blacklist(start, end);
2390	}
2391
2392	start = (unsigned long)mod->noinstr_text_start;
2393	if (start) {
2394		end = start + mod->noinstr_text_size;
2395		kprobe_remove_area_blacklist(start, end);
2396	}
2397}
2398
2399/* Module notifier call back, checking kprobes on the module */
2400static int kprobes_module_callback(struct notifier_block *nb,
2401				   unsigned long val, void *data)
2402{
2403	struct module *mod = data;
2404	struct hlist_head *head;
2405	struct kprobe *p;
2406	unsigned int i;
2407	int checkcore = (val == MODULE_STATE_GOING);
2408
2409	if (val == MODULE_STATE_COMING) {
2410		mutex_lock(&kprobe_mutex);
2411		add_module_kprobe_blacklist(mod);
2412		mutex_unlock(&kprobe_mutex);
2413	}
2414	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2415		return NOTIFY_DONE;
2416
2417	/*
2418	 * When MODULE_STATE_GOING was notified, both of module .text and
2419	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2420	 * notified, only .init.text section would be freed. We need to
2421	 * disable kprobes which have been inserted in the sections.
2422	 */
2423	mutex_lock(&kprobe_mutex);
2424	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2425		head = &kprobe_table[i];
2426		hlist_for_each_entry(p, head, hlist) {
2427			if (kprobe_gone(p))
2428				continue;
2429
2430			if (within_module_init((unsigned long)p->addr, mod) ||
2431			    (checkcore &&
2432			     within_module_core((unsigned long)p->addr, mod))) {
2433				/*
2434				 * The vaddr this probe is installed will soon
2435				 * be vfreed buy not synced to disk. Hence,
2436				 * disarming the breakpoint isn't needed.
2437				 *
2438				 * Note, this will also move any optimized probes
2439				 * that are pending to be removed from their
2440				 * corresponding lists to the freeing_list and
2441				 * will not be touched by the delayed
2442				 * kprobe_optimizer work handler.
2443				 */
2444				kill_kprobe(p);
2445			}
2446		}
2447	}
2448	if (val == MODULE_STATE_GOING)
2449		remove_module_kprobe_blacklist(mod);
2450	mutex_unlock(&kprobe_mutex);
2451	return NOTIFY_DONE;
2452}
2453
2454static struct notifier_block kprobe_module_nb = {
2455	.notifier_call = kprobes_module_callback,
2456	.priority = 0
2457};
2458
2459/* Markers of _kprobe_blacklist section */
2460extern unsigned long __start_kprobe_blacklist[];
2461extern unsigned long __stop_kprobe_blacklist[];
2462
2463void kprobe_free_init_mem(void)
2464{
2465	void *start = (void *)(&__init_begin);
2466	void *end = (void *)(&__init_end);
2467	struct hlist_head *head;
2468	struct kprobe *p;
2469	int i;
2470
2471	mutex_lock(&kprobe_mutex);
2472
2473	/* Kill all kprobes on initmem */
2474	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2475		head = &kprobe_table[i];
2476		hlist_for_each_entry(p, head, hlist) {
2477			if (start <= (void *)p->addr && (void *)p->addr < end)
2478				kill_kprobe(p);
2479		}
2480	}
2481
2482	mutex_unlock(&kprobe_mutex);
2483}
2484
2485static int __init init_kprobes(void)
2486{
2487	int i, err = 0;
2488
2489	/* FIXME allocate the probe table, currently defined statically */
2490	/* initialize all list heads */
2491	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2492		INIT_HLIST_HEAD(&kprobe_table[i]);
2493		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2494		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2495	}
2496
2497	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2498					__stop_kprobe_blacklist);
2499	if (err) {
2500		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2501		pr_err("Please take care of using kprobes.\n");
2502	}
2503
2504	if (kretprobe_blacklist_size) {
2505		/* lookup the function address from its name */
2506		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2507			kretprobe_blacklist[i].addr =
2508				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2509			if (!kretprobe_blacklist[i].addr)
2510				printk("kretprobe: lookup failed: %s\n",
2511				       kretprobe_blacklist[i].name);
2512		}
2513	}
2514
2515#if defined(CONFIG_OPTPROBES)
2516#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517	/* Init kprobe_optinsn_slots */
2518	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519#endif
2520	/* By default, kprobes can be optimized */
2521	kprobes_allow_optimization = true;
2522#endif
2523
2524	/* By default, kprobes are armed */
2525	kprobes_all_disarmed = false;
2526
2527	err = arch_init_kprobes();
2528	if (!err)
2529		err = register_die_notifier(&kprobe_exceptions_nb);
2530	if (!err)
2531		err = register_module_notifier(&kprobe_module_nb);
2532
2533	kprobes_initialized = (err == 0);
2534
2535	if (!err)
2536		init_test_probes();
2537	return err;
2538}
2539subsys_initcall(init_kprobes);
2540
2541#ifdef CONFIG_DEBUG_FS
2542static void report_probe(struct seq_file *pi, struct kprobe *p,
2543		const char *sym, int offset, char *modname, struct kprobe *pp)
2544{
2545	char *kprobe_type;
2546	void *addr = p->addr;
2547
2548	if (p->pre_handler == pre_handler_kretprobe)
2549		kprobe_type = "r";
2550	else
2551		kprobe_type = "k";
2552
2553	if (!kallsyms_show_value(pi->file->f_cred))
2554		addr = NULL;
2555
2556	if (sym)
2557		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2558			addr, kprobe_type, sym, offset,
2559			(modname ? modname : " "));
2560	else	/* try to use %pS */
2561		seq_printf(pi, "%px  %s  %pS ",
2562			addr, kprobe_type, p->addr);
2563
2564	if (!pp)
2565		pp = p;
2566	seq_printf(pi, "%s%s%s%s\n",
2567		(kprobe_gone(p) ? "[GONE]" : ""),
2568		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2569		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2570		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2571}
2572
2573static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2574{
2575	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2576}
2577
2578static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2579{
2580	(*pos)++;
2581	if (*pos >= KPROBE_TABLE_SIZE)
2582		return NULL;
2583	return pos;
2584}
2585
2586static void kprobe_seq_stop(struct seq_file *f, void *v)
2587{
2588	/* Nothing to do */
2589}
2590
2591static int show_kprobe_addr(struct seq_file *pi, void *v)
2592{
2593	struct hlist_head *head;
2594	struct kprobe *p, *kp;
2595	const char *sym = NULL;
2596	unsigned int i = *(loff_t *) v;
2597	unsigned long offset = 0;
2598	char *modname, namebuf[KSYM_NAME_LEN];
2599
2600	head = &kprobe_table[i];
2601	preempt_disable();
2602	hlist_for_each_entry_rcu(p, head, hlist) {
2603		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2604					&offset, &modname, namebuf);
2605		if (kprobe_aggrprobe(p)) {
2606			list_for_each_entry_rcu(kp, &p->list, list)
2607				report_probe(pi, kp, sym, offset, modname, p);
2608		} else
2609			report_probe(pi, p, sym, offset, modname, NULL);
2610	}
2611	preempt_enable();
2612	return 0;
2613}
2614
2615static const struct seq_operations kprobes_sops = {
2616	.start = kprobe_seq_start,
2617	.next  = kprobe_seq_next,
2618	.stop  = kprobe_seq_stop,
2619	.show  = show_kprobe_addr
2620};
2621
2622DEFINE_SEQ_ATTRIBUTE(kprobes);
 
 
 
 
 
 
 
 
 
 
2623
2624/* kprobes/blacklist -- shows which functions can not be probed */
2625static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2626{
2627	mutex_lock(&kprobe_mutex);
2628	return seq_list_start(&kprobe_blacklist, *pos);
2629}
2630
2631static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2632{
2633	return seq_list_next(v, &kprobe_blacklist, pos);
2634}
2635
2636static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2637{
2638	struct kprobe_blacklist_entry *ent =
2639		list_entry(v, struct kprobe_blacklist_entry, list);
2640
2641	/*
2642	 * If /proc/kallsyms is not showing kernel address, we won't
2643	 * show them here either.
2644	 */
2645	if (!kallsyms_show_value(m->file->f_cred))
2646		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2647			   (void *)ent->start_addr);
2648	else
2649		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2650			   (void *)ent->end_addr, (void *)ent->start_addr);
2651	return 0;
2652}
2653
2654static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
 
 
 
 
 
 
 
2655{
2656	mutex_unlock(&kprobe_mutex);
2657}
2658
2659static const struct seq_operations kprobe_blacklist_sops = {
2660	.start = kprobe_blacklist_seq_start,
2661	.next  = kprobe_blacklist_seq_next,
2662	.stop  = kprobe_blacklist_seq_stop,
2663	.show  = kprobe_blacklist_seq_show,
2664};
2665DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2666
2667static int arm_all_kprobes(void)
2668{
2669	struct hlist_head *head;
2670	struct kprobe *p;
2671	unsigned int i, total = 0, errors = 0;
2672	int err, ret = 0;
2673
2674	mutex_lock(&kprobe_mutex);
2675
2676	/* If kprobes are armed, just return */
2677	if (!kprobes_all_disarmed)
2678		goto already_enabled;
2679
2680	/*
2681	 * optimize_kprobe() called by arm_kprobe() checks
2682	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2683	 * arm_kprobe.
2684	 */
2685	kprobes_all_disarmed = false;
2686	/* Arming kprobes doesn't optimize kprobe itself */
2687	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2688		head = &kprobe_table[i];
2689		/* Arm all kprobes on a best-effort basis */
2690		hlist_for_each_entry(p, head, hlist) {
2691			if (!kprobe_disabled(p)) {
2692				err = arm_kprobe(p);
2693				if (err)  {
2694					errors++;
2695					ret = err;
2696				}
2697				total++;
2698			}
2699		}
2700	}
2701
2702	if (errors)
2703		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2704			errors, total);
2705	else
2706		pr_info("Kprobes globally enabled\n");
2707
2708already_enabled:
2709	mutex_unlock(&kprobe_mutex);
2710	return ret;
2711}
2712
2713static int disarm_all_kprobes(void)
2714{
2715	struct hlist_head *head;
2716	struct kprobe *p;
2717	unsigned int i, total = 0, errors = 0;
2718	int err, ret = 0;
2719
2720	mutex_lock(&kprobe_mutex);
2721
2722	/* If kprobes are already disarmed, just return */
2723	if (kprobes_all_disarmed) {
2724		mutex_unlock(&kprobe_mutex);
2725		return 0;
2726	}
2727
2728	kprobes_all_disarmed = true;
2729
2730	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2731		head = &kprobe_table[i];
2732		/* Disarm all kprobes on a best-effort basis */
2733		hlist_for_each_entry(p, head, hlist) {
2734			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2735				err = disarm_kprobe(p, false);
2736				if (err) {
2737					errors++;
2738					ret = err;
2739				}
2740				total++;
2741			}
2742		}
2743	}
2744
2745	if (errors)
2746		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2747			errors, total);
2748	else
2749		pr_info("Kprobes globally disabled\n");
2750
2751	mutex_unlock(&kprobe_mutex);
2752
2753	/* Wait for disarming all kprobes by optimizer */
2754	wait_for_kprobe_optimizer();
2755
2756	return ret;
2757}
2758
2759/*
2760 * XXX: The debugfs bool file interface doesn't allow for callbacks
2761 * when the bool state is switched. We can reuse that facility when
2762 * available
2763 */
2764static ssize_t read_enabled_file_bool(struct file *file,
2765	       char __user *user_buf, size_t count, loff_t *ppos)
2766{
2767	char buf[3];
2768
2769	if (!kprobes_all_disarmed)
2770		buf[0] = '1';
2771	else
2772		buf[0] = '0';
2773	buf[1] = '\n';
2774	buf[2] = 0x00;
2775	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2776}
2777
2778static ssize_t write_enabled_file_bool(struct file *file,
2779	       const char __user *user_buf, size_t count, loff_t *ppos)
2780{
2781	char buf[32];
2782	size_t buf_size;
2783	int ret = 0;
2784
2785	buf_size = min(count, (sizeof(buf)-1));
2786	if (copy_from_user(buf, user_buf, buf_size))
2787		return -EFAULT;
2788
2789	buf[buf_size] = '\0';
2790	switch (buf[0]) {
2791	case 'y':
2792	case 'Y':
2793	case '1':
2794		ret = arm_all_kprobes();
2795		break;
2796	case 'n':
2797	case 'N':
2798	case '0':
2799		ret = disarm_all_kprobes();
2800		break;
2801	default:
2802		return -EINVAL;
2803	}
2804
2805	if (ret)
2806		return ret;
2807
2808	return count;
2809}
2810
2811static const struct file_operations fops_kp = {
2812	.read =         read_enabled_file_bool,
2813	.write =        write_enabled_file_bool,
2814	.llseek =	default_llseek,
2815};
2816
2817static int __init debugfs_kprobe_init(void)
2818{
2819	struct dentry *dir;
2820	unsigned int value = 1;
2821
2822	dir = debugfs_create_dir("kprobes", NULL);
2823
2824	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
2825
2826	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2827
2828	debugfs_create_file("blacklist", 0400, dir, NULL,
2829			    &kprobe_blacklist_fops);
2830
2831	return 0;
2832}
2833
2834late_initcall(debugfs_kprobe_init);
2835#endif /* CONFIG_DEBUG_FS */