Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38
39#include <asm/sections.h>
40#include <asm/cacheflush.h>
41#include <asm/errno.h>
42#include <linux/uaccess.h>
43
44#define KPROBE_HASH_BITS 6
45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48static int kprobes_initialized;
49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52/* NOTE: change this value only with kprobe_mutex held */
53static bool kprobes_all_disarmed;
54
55/* This protects kprobe_table and optimizing_list */
56static DEFINE_MUTEX(kprobe_mutex);
57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
64{
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66}
67
68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69{
70 return &(kretprobe_table_locks[hash].lock);
71}
72
73/* Blacklist -- list of struct kprobe_blacklist_entry */
74static LIST_HEAD(kprobe_blacklist);
75
76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77/*
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
82 */
83struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
90};
91
92#define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
95
96static int slots_per_page(struct kprobe_insn_cache *c)
97{
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99}
100
101enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
105};
106
107void __weak *alloc_insn_page(void)
108{
109 return module_alloc(PAGE_SIZE);
110}
111
112void __weak free_insn_page(void *page)
113{
114 module_memfree(page);
115}
116
117struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
124};
125static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127/**
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
130 */
131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132{
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
135
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
150 }
151 }
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
155 }
156 }
157 rcu_read_unlock();
158
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
162
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
167
168 /*
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
172 */
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
177 }
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186out:
187 mutex_unlock(&c->mutex);
188 return slot;
189}
190
191/* Return 1 if all garbages are collected, otherwise 0. */
192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193{
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
197 /*
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
202 */
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
208 }
209 return 1;
210 }
211 return 0;
212}
213
214static int collect_garbage_slots(struct kprobe_insn_cache *c)
215{
216 struct kprobe_insn_page *kip, *next;
217
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
220
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
229 }
230 }
231 c->nr_garbage = 0;
232 return 0;
233}
234
235void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
237{
238 struct kprobe_insn_page *kip;
239 long idx;
240
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
248 }
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
265 }
266 }
267 mutex_unlock(&c->mutex);
268}
269
270/*
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
274 */
275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276{
277 struct kprobe_insn_page *kip;
278 bool ret = false;
279
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
286 }
287 }
288 rcu_read_unlock();
289
290 return ret;
291}
292
293#ifdef CONFIG_OPTPROBES
294/* For optimized_kprobe buffer */
295struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
302};
303#endif
304#endif
305
306/* We have preemption disabled.. so it is safe to use __ versions */
307static inline void set_kprobe_instance(struct kprobe *kp)
308{
309 __this_cpu_write(kprobe_instance, kp);
310}
311
312static inline void reset_kprobe_instance(void)
313{
314 __this_cpu_write(kprobe_instance, NULL);
315}
316
317/*
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
322 */
323struct kprobe *get_kprobe(void *addr)
324{
325 struct hlist_head *head;
326 struct kprobe *p;
327
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist) {
330 if (p->addr == addr)
331 return p;
332 }
333
334 return NULL;
335}
336NOKPROBE_SYMBOL(get_kprobe);
337
338static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340/* Return true if the kprobe is an aggregator */
341static inline int kprobe_aggrprobe(struct kprobe *p)
342{
343 return p->pre_handler == aggr_pre_handler;
344}
345
346/* Return true(!0) if the kprobe is unused */
347static inline int kprobe_unused(struct kprobe *p)
348{
349 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 list_empty(&p->list);
351}
352
353/*
354 * Keep all fields in the kprobe consistent
355 */
356static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357{
358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360}
361
362#ifdef CONFIG_OPTPROBES
363/* NOTE: change this value only with kprobe_mutex held */
364static bool kprobes_allow_optimization;
365
366/*
367 * Call all pre_handler on the list, but ignores its return value.
368 * This must be called from arch-dep optimized caller.
369 */
370void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371{
372 struct kprobe *kp;
373
374 list_for_each_entry_rcu(kp, &p->list, list) {
375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 set_kprobe_instance(kp);
377 kp->pre_handler(kp, regs);
378 }
379 reset_kprobe_instance();
380 }
381}
382NOKPROBE_SYMBOL(opt_pre_handler);
383
384/* Free optimized instructions and optimized_kprobe */
385static void free_aggr_kprobe(struct kprobe *p)
386{
387 struct optimized_kprobe *op;
388
389 op = container_of(p, struct optimized_kprobe, kp);
390 arch_remove_optimized_kprobe(op);
391 arch_remove_kprobe(p);
392 kfree(op);
393}
394
395/* Return true(!0) if the kprobe is ready for optimization. */
396static inline int kprobe_optready(struct kprobe *p)
397{
398 struct optimized_kprobe *op;
399
400 if (kprobe_aggrprobe(p)) {
401 op = container_of(p, struct optimized_kprobe, kp);
402 return arch_prepared_optinsn(&op->optinsn);
403 }
404
405 return 0;
406}
407
408/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409static inline int kprobe_disarmed(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 if (!kprobe_aggrprobe(p))
415 return kprobe_disabled(p);
416
417 op = container_of(p, struct optimized_kprobe, kp);
418
419 return kprobe_disabled(p) && list_empty(&op->list);
420}
421
422/* Return true(!0) if the probe is queued on (un)optimizing lists */
423static int kprobe_queued(struct kprobe *p)
424{
425 struct optimized_kprobe *op;
426
427 if (kprobe_aggrprobe(p)) {
428 op = container_of(p, struct optimized_kprobe, kp);
429 if (!list_empty(&op->list))
430 return 1;
431 }
432 return 0;
433}
434
435/*
436 * Return an optimized kprobe whose optimizing code replaces
437 * instructions including addr (exclude breakpoint).
438 */
439static struct kprobe *get_optimized_kprobe(unsigned long addr)
440{
441 int i;
442 struct kprobe *p = NULL;
443 struct optimized_kprobe *op;
444
445 /* Don't check i == 0, since that is a breakpoint case. */
446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 p = get_kprobe((void *)(addr - i));
448
449 if (p && kprobe_optready(p)) {
450 op = container_of(p, struct optimized_kprobe, kp);
451 if (arch_within_optimized_kprobe(op, addr))
452 return p;
453 }
454
455 return NULL;
456}
457
458/* Optimization staging list, protected by kprobe_mutex */
459static LIST_HEAD(optimizing_list);
460static LIST_HEAD(unoptimizing_list);
461static LIST_HEAD(freeing_list);
462
463static void kprobe_optimizer(struct work_struct *work);
464static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465#define OPTIMIZE_DELAY 5
466
467/*
468 * Optimize (replace a breakpoint with a jump) kprobes listed on
469 * optimizing_list.
470 */
471static void do_optimize_kprobes(void)
472{
473 lockdep_assert_held(&text_mutex);
474 /*
475 * The optimization/unoptimization refers online_cpus via
476 * stop_machine() and cpu-hotplug modifies online_cpus.
477 * And same time, text_mutex will be held in cpu-hotplug and here.
478 * This combination can cause a deadlock (cpu-hotplug try to lock
479 * text_mutex but stop_machine can not be done because online_cpus
480 * has been changed)
481 * To avoid this deadlock, caller must have locked cpu hotplug
482 * for preventing cpu-hotplug outside of text_mutex locking.
483 */
484 lockdep_assert_cpus_held();
485
486 /* Optimization never be done when disarmed */
487 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 list_empty(&optimizing_list))
489 return;
490
491 arch_optimize_kprobes(&optimizing_list);
492}
493
494/*
495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496 * if need) kprobes listed on unoptimizing_list.
497 */
498static void do_unoptimize_kprobes(void)
499{
500 struct optimized_kprobe *op, *tmp;
501
502 lockdep_assert_held(&text_mutex);
503 /* See comment in do_optimize_kprobes() */
504 lockdep_assert_cpus_held();
505
506 /* Unoptimization must be done anytime */
507 if (list_empty(&unoptimizing_list))
508 return;
509
510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 /* Loop free_list for disarming */
512 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 /* Disarm probes if marked disabled */
514 if (kprobe_disabled(&op->kp))
515 arch_disarm_kprobe(&op->kp);
516 if (kprobe_unused(&op->kp)) {
517 /*
518 * Remove unused probes from hash list. After waiting
519 * for synchronization, these probes are reclaimed.
520 * (reclaiming is done by do_free_cleaned_kprobes.)
521 */
522 hlist_del_rcu(&op->kp.hlist);
523 } else
524 list_del_init(&op->list);
525 }
526}
527
528/* Reclaim all kprobes on the free_list */
529static void do_free_cleaned_kprobes(void)
530{
531 struct optimized_kprobe *op, *tmp;
532
533 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
534 list_del_init(&op->list);
535 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
536 /*
537 * This must not happen, but if there is a kprobe
538 * still in use, keep it on kprobes hash list.
539 */
540 continue;
541 }
542 free_aggr_kprobe(&op->kp);
543 }
544}
545
546/* Start optimizer after OPTIMIZE_DELAY passed */
547static void kick_kprobe_optimizer(void)
548{
549 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
550}
551
552/* Kprobe jump optimizer */
553static void kprobe_optimizer(struct work_struct *work)
554{
555 mutex_lock(&kprobe_mutex);
556 cpus_read_lock();
557 mutex_lock(&text_mutex);
558 /* Lock modules while optimizing kprobes */
559 mutex_lock(&module_mutex);
560
561 /*
562 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
563 * kprobes before waiting for quiesence period.
564 */
565 do_unoptimize_kprobes();
566
567 /*
568 * Step 2: Wait for quiesence period to ensure all potentially
569 * preempted tasks to have normally scheduled. Because optprobe
570 * may modify multiple instructions, there is a chance that Nth
571 * instruction is preempted. In that case, such tasks can return
572 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
573 * Note that on non-preemptive kernel, this is transparently converted
574 * to synchronoze_sched() to wait for all interrupts to have completed.
575 */
576 synchronize_rcu_tasks();
577
578 /* Step 3: Optimize kprobes after quiesence period */
579 do_optimize_kprobes();
580
581 /* Step 4: Free cleaned kprobes after quiesence period */
582 do_free_cleaned_kprobes();
583
584 mutex_unlock(&module_mutex);
585 mutex_unlock(&text_mutex);
586 cpus_read_unlock();
587 mutex_unlock(&kprobe_mutex);
588
589 /* Step 5: Kick optimizer again if needed */
590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 kick_kprobe_optimizer();
592}
593
594/* Wait for completing optimization and unoptimization */
595void wait_for_kprobe_optimizer(void)
596{
597 mutex_lock(&kprobe_mutex);
598
599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 mutex_unlock(&kprobe_mutex);
601
602 /* this will also make optimizing_work execute immmediately */
603 flush_delayed_work(&optimizing_work);
604 /* @optimizing_work might not have been queued yet, relax */
605 cpu_relax();
606
607 mutex_lock(&kprobe_mutex);
608 }
609
610 mutex_unlock(&kprobe_mutex);
611}
612
613/* Optimize kprobe if p is ready to be optimized */
614static void optimize_kprobe(struct kprobe *p)
615{
616 struct optimized_kprobe *op;
617
618 /* Check if the kprobe is disabled or not ready for optimization. */
619 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 (kprobe_disabled(p) || kprobes_all_disarmed))
621 return;
622
623 /* kprobes with post_handler can not be optimized */
624 if (p->post_handler)
625 return;
626
627 op = container_of(p, struct optimized_kprobe, kp);
628
629 /* Check there is no other kprobes at the optimized instructions */
630 if (arch_check_optimized_kprobe(op) < 0)
631 return;
632
633 /* Check if it is already optimized. */
634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 return;
636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637
638 if (!list_empty(&op->list))
639 /* This is under unoptimizing. Just dequeue the probe */
640 list_del_init(&op->list);
641 else {
642 list_add(&op->list, &optimizing_list);
643 kick_kprobe_optimizer();
644 }
645}
646
647/* Short cut to direct unoptimizing */
648static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649{
650 lockdep_assert_cpus_held();
651 arch_unoptimize_kprobe(op);
652 if (kprobe_disabled(&op->kp))
653 arch_disarm_kprobe(&op->kp);
654}
655
656/* Unoptimize a kprobe if p is optimized */
657static void unoptimize_kprobe(struct kprobe *p, bool force)
658{
659 struct optimized_kprobe *op;
660
661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 return; /* This is not an optprobe nor optimized */
663
664 op = container_of(p, struct optimized_kprobe, kp);
665 if (!kprobe_optimized(p)) {
666 /* Unoptimized or unoptimizing case */
667 if (force && !list_empty(&op->list)) {
668 /*
669 * Only if this is unoptimizing kprobe and forced,
670 * forcibly unoptimize it. (No need to unoptimize
671 * unoptimized kprobe again :)
672 */
673 list_del_init(&op->list);
674 force_unoptimize_kprobe(op);
675 }
676 return;
677 }
678
679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 if (!list_empty(&op->list)) {
681 /* Dequeue from the optimization queue */
682 list_del_init(&op->list);
683 return;
684 }
685 /* Optimized kprobe case */
686 if (force)
687 /* Forcibly update the code: this is a special case */
688 force_unoptimize_kprobe(op);
689 else {
690 list_add(&op->list, &unoptimizing_list);
691 kick_kprobe_optimizer();
692 }
693}
694
695/* Cancel unoptimizing for reusing */
696static int reuse_unused_kprobe(struct kprobe *ap)
697{
698 struct optimized_kprobe *op;
699
700 /*
701 * Unused kprobe MUST be on the way of delayed unoptimizing (means
702 * there is still a relative jump) and disabled.
703 */
704 op = container_of(ap, struct optimized_kprobe, kp);
705 WARN_ON_ONCE(list_empty(&op->list));
706 /* Enable the probe again */
707 ap->flags &= ~KPROBE_FLAG_DISABLED;
708 /* Optimize it again (remove from op->list) */
709 if (!kprobe_optready(ap))
710 return -EINVAL;
711
712 optimize_kprobe(ap);
713 return 0;
714}
715
716/* Remove optimized instructions */
717static void kill_optimized_kprobe(struct kprobe *p)
718{
719 struct optimized_kprobe *op;
720
721 op = container_of(p, struct optimized_kprobe, kp);
722 if (!list_empty(&op->list))
723 /* Dequeue from the (un)optimization queue */
724 list_del_init(&op->list);
725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726
727 if (kprobe_unused(p)) {
728 /* Enqueue if it is unused */
729 list_add(&op->list, &freeing_list);
730 /*
731 * Remove unused probes from the hash list. After waiting
732 * for synchronization, this probe is reclaimed.
733 * (reclaiming is done by do_free_cleaned_kprobes().)
734 */
735 hlist_del_rcu(&op->kp.hlist);
736 }
737
738 /* Don't touch the code, because it is already freed. */
739 arch_remove_optimized_kprobe(op);
740}
741
742static inline
743void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744{
745 if (!kprobe_ftrace(p))
746 arch_prepare_optimized_kprobe(op, p);
747}
748
749/* Try to prepare optimized instructions */
750static void prepare_optimized_kprobe(struct kprobe *p)
751{
752 struct optimized_kprobe *op;
753
754 op = container_of(p, struct optimized_kprobe, kp);
755 __prepare_optimized_kprobe(op, p);
756}
757
758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760{
761 struct optimized_kprobe *op;
762
763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 if (!op)
765 return NULL;
766
767 INIT_LIST_HEAD(&op->list);
768 op->kp.addr = p->addr;
769 __prepare_optimized_kprobe(op, p);
770
771 return &op->kp;
772}
773
774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775
776/*
777 * Prepare an optimized_kprobe and optimize it
778 * NOTE: p must be a normal registered kprobe
779 */
780static void try_to_optimize_kprobe(struct kprobe *p)
781{
782 struct kprobe *ap;
783 struct optimized_kprobe *op;
784
785 /* Impossible to optimize ftrace-based kprobe */
786 if (kprobe_ftrace(p))
787 return;
788
789 /* For preparing optimization, jump_label_text_reserved() is called */
790 cpus_read_lock();
791 jump_label_lock();
792 mutex_lock(&text_mutex);
793
794 ap = alloc_aggr_kprobe(p);
795 if (!ap)
796 goto out;
797
798 op = container_of(ap, struct optimized_kprobe, kp);
799 if (!arch_prepared_optinsn(&op->optinsn)) {
800 /* If failed to setup optimizing, fallback to kprobe */
801 arch_remove_optimized_kprobe(op);
802 kfree(op);
803 goto out;
804 }
805
806 init_aggr_kprobe(ap, p);
807 optimize_kprobe(ap); /* This just kicks optimizer thread */
808
809out:
810 mutex_unlock(&text_mutex);
811 jump_label_unlock();
812 cpus_read_unlock();
813}
814
815#ifdef CONFIG_SYSCTL
816static void optimize_all_kprobes(void)
817{
818 struct hlist_head *head;
819 struct kprobe *p;
820 unsigned int i;
821
822 mutex_lock(&kprobe_mutex);
823 /* If optimization is already allowed, just return */
824 if (kprobes_allow_optimization)
825 goto out;
826
827 cpus_read_lock();
828 kprobes_allow_optimization = true;
829 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830 head = &kprobe_table[i];
831 hlist_for_each_entry_rcu(p, head, hlist)
832 if (!kprobe_disabled(p))
833 optimize_kprobe(p);
834 }
835 cpus_read_unlock();
836 printk(KERN_INFO "Kprobes globally optimized\n");
837out:
838 mutex_unlock(&kprobe_mutex);
839}
840
841static void unoptimize_all_kprobes(void)
842{
843 struct hlist_head *head;
844 struct kprobe *p;
845 unsigned int i;
846
847 mutex_lock(&kprobe_mutex);
848 /* If optimization is already prohibited, just return */
849 if (!kprobes_allow_optimization) {
850 mutex_unlock(&kprobe_mutex);
851 return;
852 }
853
854 cpus_read_lock();
855 kprobes_allow_optimization = false;
856 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857 head = &kprobe_table[i];
858 hlist_for_each_entry_rcu(p, head, hlist) {
859 if (!kprobe_disabled(p))
860 unoptimize_kprobe(p, false);
861 }
862 }
863 cpus_read_unlock();
864 mutex_unlock(&kprobe_mutex);
865
866 /* Wait for unoptimizing completion */
867 wait_for_kprobe_optimizer();
868 printk(KERN_INFO "Kprobes globally unoptimized\n");
869}
870
871static DEFINE_MUTEX(kprobe_sysctl_mutex);
872int sysctl_kprobes_optimization;
873int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874 void __user *buffer, size_t *length,
875 loff_t *ppos)
876{
877 int ret;
878
879 mutex_lock(&kprobe_sysctl_mutex);
880 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882
883 if (sysctl_kprobes_optimization)
884 optimize_all_kprobes();
885 else
886 unoptimize_all_kprobes();
887 mutex_unlock(&kprobe_sysctl_mutex);
888
889 return ret;
890}
891#endif /* CONFIG_SYSCTL */
892
893/* Put a breakpoint for a probe. Must be called with text_mutex locked */
894static void __arm_kprobe(struct kprobe *p)
895{
896 struct kprobe *_p;
897
898 /* Check collision with other optimized kprobes */
899 _p = get_optimized_kprobe((unsigned long)p->addr);
900 if (unlikely(_p))
901 /* Fallback to unoptimized kprobe */
902 unoptimize_kprobe(_p, true);
903
904 arch_arm_kprobe(p);
905 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
906}
907
908/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909static void __disarm_kprobe(struct kprobe *p, bool reopt)
910{
911 struct kprobe *_p;
912
913 /* Try to unoptimize */
914 unoptimize_kprobe(p, kprobes_all_disarmed);
915
916 if (!kprobe_queued(p)) {
917 arch_disarm_kprobe(p);
918 /* If another kprobe was blocked, optimize it. */
919 _p = get_optimized_kprobe((unsigned long)p->addr);
920 if (unlikely(_p) && reopt)
921 optimize_kprobe(_p);
922 }
923 /* TODO: reoptimize others after unoptimized this probe */
924}
925
926#else /* !CONFIG_OPTPROBES */
927
928#define optimize_kprobe(p) do {} while (0)
929#define unoptimize_kprobe(p, f) do {} while (0)
930#define kill_optimized_kprobe(p) do {} while (0)
931#define prepare_optimized_kprobe(p) do {} while (0)
932#define try_to_optimize_kprobe(p) do {} while (0)
933#define __arm_kprobe(p) arch_arm_kprobe(p)
934#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
935#define kprobe_disarmed(p) kprobe_disabled(p)
936#define wait_for_kprobe_optimizer() do {} while (0)
937
938static int reuse_unused_kprobe(struct kprobe *ap)
939{
940 /*
941 * If the optimized kprobe is NOT supported, the aggr kprobe is
942 * released at the same time that the last aggregated kprobe is
943 * unregistered.
944 * Thus there should be no chance to reuse unused kprobe.
945 */
946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 return -EINVAL;
948}
949
950static void free_aggr_kprobe(struct kprobe *p)
951{
952 arch_remove_kprobe(p);
953 kfree(p);
954}
955
956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957{
958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959}
960#endif /* CONFIG_OPTPROBES */
961
962#ifdef CONFIG_KPROBES_ON_FTRACE
963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 .func = kprobe_ftrace_handler,
965 .flags = FTRACE_OPS_FL_SAVE_REGS,
966};
967
968static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
969 .func = kprobe_ftrace_handler,
970 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
971};
972
973static int kprobe_ipmodify_enabled;
974static int kprobe_ftrace_enabled;
975
976/* Must ensure p->addr is really on ftrace */
977static int prepare_kprobe(struct kprobe *p)
978{
979 if (!kprobe_ftrace(p))
980 return arch_prepare_kprobe(p);
981
982 return arch_prepare_kprobe_ftrace(p);
983}
984
985/* Caller must lock kprobe_mutex */
986static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
987 int *cnt)
988{
989 int ret = 0;
990
991 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
992 if (ret) {
993 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
994 p->addr, ret);
995 return ret;
996 }
997
998 if (*cnt == 0) {
999 ret = register_ftrace_function(ops);
1000 if (ret) {
1001 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002 goto err_ftrace;
1003 }
1004 }
1005
1006 (*cnt)++;
1007 return ret;
1008
1009err_ftrace:
1010 /*
1011 * At this point, sinec ops is not registered, we should be sefe from
1012 * registering empty filter.
1013 */
1014 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015 return ret;
1016}
1017
1018static int arm_kprobe_ftrace(struct kprobe *p)
1019{
1020 bool ipmodify = (p->post_handler != NULL);
1021
1022 return __arm_kprobe_ftrace(p,
1023 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025}
1026
1027/* Caller must lock kprobe_mutex */
1028static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029 int *cnt)
1030{
1031 int ret = 0;
1032
1033 if (*cnt == 1) {
1034 ret = unregister_ftrace_function(ops);
1035 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036 return ret;
1037 }
1038
1039 (*cnt)--;
1040
1041 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043 p->addr, ret);
1044 return ret;
1045}
1046
1047static int disarm_kprobe_ftrace(struct kprobe *p)
1048{
1049 bool ipmodify = (p->post_handler != NULL);
1050
1051 return __disarm_kprobe_ftrace(p,
1052 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054}
1055#else /* !CONFIG_KPROBES_ON_FTRACE */
1056#define prepare_kprobe(p) arch_prepare_kprobe(p)
1057#define arm_kprobe_ftrace(p) (-ENODEV)
1058#define disarm_kprobe_ftrace(p) (-ENODEV)
1059#endif
1060
1061/* Arm a kprobe with text_mutex */
1062static int arm_kprobe(struct kprobe *kp)
1063{
1064 if (unlikely(kprobe_ftrace(kp)))
1065 return arm_kprobe_ftrace(kp);
1066
1067 cpus_read_lock();
1068 mutex_lock(&text_mutex);
1069 __arm_kprobe(kp);
1070 mutex_unlock(&text_mutex);
1071 cpus_read_unlock();
1072
1073 return 0;
1074}
1075
1076/* Disarm a kprobe with text_mutex */
1077static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078{
1079 if (unlikely(kprobe_ftrace(kp)))
1080 return disarm_kprobe_ftrace(kp);
1081
1082 cpus_read_lock();
1083 mutex_lock(&text_mutex);
1084 __disarm_kprobe(kp, reopt);
1085 mutex_unlock(&text_mutex);
1086 cpus_read_unlock();
1087
1088 return 0;
1089}
1090
1091/*
1092 * Aggregate handlers for multiple kprobes support - these handlers
1093 * take care of invoking the individual kprobe handlers on p->list
1094 */
1095static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096{
1097 struct kprobe *kp;
1098
1099 list_for_each_entry_rcu(kp, &p->list, list) {
1100 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101 set_kprobe_instance(kp);
1102 if (kp->pre_handler(kp, regs))
1103 return 1;
1104 }
1105 reset_kprobe_instance();
1106 }
1107 return 0;
1108}
1109NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112 unsigned long flags)
1113{
1114 struct kprobe *kp;
1115
1116 list_for_each_entry_rcu(kp, &p->list, list) {
1117 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118 set_kprobe_instance(kp);
1119 kp->post_handler(kp, regs, flags);
1120 reset_kprobe_instance();
1121 }
1122 }
1123}
1124NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127 int trapnr)
1128{
1129 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131 /*
1132 * if we faulted "during" the execution of a user specified
1133 * probe handler, invoke just that probe's fault handler
1134 */
1135 if (cur && cur->fault_handler) {
1136 if (cur->fault_handler(cur, regs, trapnr))
1137 return 1;
1138 }
1139 return 0;
1140}
1141NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143/* Walks the list and increments nmissed count for multiprobe case */
1144void kprobes_inc_nmissed_count(struct kprobe *p)
1145{
1146 struct kprobe *kp;
1147 if (!kprobe_aggrprobe(p)) {
1148 p->nmissed++;
1149 } else {
1150 list_for_each_entry_rcu(kp, &p->list, list)
1151 kp->nmissed++;
1152 }
1153 return;
1154}
1155NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157void recycle_rp_inst(struct kretprobe_instance *ri,
1158 struct hlist_head *head)
1159{
1160 struct kretprobe *rp = ri->rp;
1161
1162 /* remove rp inst off the rprobe_inst_table */
1163 hlist_del(&ri->hlist);
1164 INIT_HLIST_NODE(&ri->hlist);
1165 if (likely(rp)) {
1166 raw_spin_lock(&rp->lock);
1167 hlist_add_head(&ri->hlist, &rp->free_instances);
1168 raw_spin_unlock(&rp->lock);
1169 } else
1170 /* Unregistering */
1171 hlist_add_head(&ri->hlist, head);
1172}
1173NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175void kretprobe_hash_lock(struct task_struct *tsk,
1176 struct hlist_head **head, unsigned long *flags)
1177__acquires(hlist_lock)
1178{
1179 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180 raw_spinlock_t *hlist_lock;
1181
1182 *head = &kretprobe_inst_table[hash];
1183 hlist_lock = kretprobe_table_lock_ptr(hash);
1184 raw_spin_lock_irqsave(hlist_lock, *flags);
1185}
1186NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188static void kretprobe_table_lock(unsigned long hash,
1189 unsigned long *flags)
1190__acquires(hlist_lock)
1191{
1192 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193 raw_spin_lock_irqsave(hlist_lock, *flags);
1194}
1195NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197void kretprobe_hash_unlock(struct task_struct *tsk,
1198 unsigned long *flags)
1199__releases(hlist_lock)
1200{
1201 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202 raw_spinlock_t *hlist_lock;
1203
1204 hlist_lock = kretprobe_table_lock_ptr(hash);
1205 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206}
1207NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209static void kretprobe_table_unlock(unsigned long hash,
1210 unsigned long *flags)
1211__releases(hlist_lock)
1212{
1213 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215}
1216NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
1218/*
1219 * This function is called from finish_task_switch when task tk becomes dead,
1220 * so that we can recycle any function-return probe instances associated
1221 * with this task. These left over instances represent probed functions
1222 * that have been called but will never return.
1223 */
1224void kprobe_flush_task(struct task_struct *tk)
1225{
1226 struct kretprobe_instance *ri;
1227 struct hlist_head *head, empty_rp;
1228 struct hlist_node *tmp;
1229 unsigned long hash, flags = 0;
1230
1231 if (unlikely(!kprobes_initialized))
1232 /* Early boot. kretprobe_table_locks not yet initialized. */
1233 return;
1234
1235 INIT_HLIST_HEAD(&empty_rp);
1236 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237 head = &kretprobe_inst_table[hash];
1238 kretprobe_table_lock(hash, &flags);
1239 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240 if (ri->task == tk)
1241 recycle_rp_inst(ri, &empty_rp);
1242 }
1243 kretprobe_table_unlock(hash, &flags);
1244 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245 hlist_del(&ri->hlist);
1246 kfree(ri);
1247 }
1248}
1249NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251static inline void free_rp_inst(struct kretprobe *rp)
1252{
1253 struct kretprobe_instance *ri;
1254 struct hlist_node *next;
1255
1256 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257 hlist_del(&ri->hlist);
1258 kfree(ri);
1259 }
1260}
1261
1262static void cleanup_rp_inst(struct kretprobe *rp)
1263{
1264 unsigned long flags, hash;
1265 struct kretprobe_instance *ri;
1266 struct hlist_node *next;
1267 struct hlist_head *head;
1268
1269 /* No race here */
1270 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271 kretprobe_table_lock(hash, &flags);
1272 head = &kretprobe_inst_table[hash];
1273 hlist_for_each_entry_safe(ri, next, head, hlist) {
1274 if (ri->rp == rp)
1275 ri->rp = NULL;
1276 }
1277 kretprobe_table_unlock(hash, &flags);
1278 }
1279 free_rp_inst(rp);
1280}
1281NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283/* Add the new probe to ap->list */
1284static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285{
1286 if (p->post_handler)
1287 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1288
1289 list_add_rcu(&p->list, &ap->list);
1290 if (p->post_handler && !ap->post_handler)
1291 ap->post_handler = aggr_post_handler;
1292
1293 return 0;
1294}
1295
1296/*
1297 * Fill in the required fields of the "manager kprobe". Replace the
1298 * earlier kprobe in the hlist with the manager kprobe
1299 */
1300static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301{
1302 /* Copy p's insn slot to ap */
1303 copy_kprobe(p, ap);
1304 flush_insn_slot(ap);
1305 ap->addr = p->addr;
1306 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307 ap->pre_handler = aggr_pre_handler;
1308 ap->fault_handler = aggr_fault_handler;
1309 /* We don't care the kprobe which has gone. */
1310 if (p->post_handler && !kprobe_gone(p))
1311 ap->post_handler = aggr_post_handler;
1312
1313 INIT_LIST_HEAD(&ap->list);
1314 INIT_HLIST_NODE(&ap->hlist);
1315
1316 list_add_rcu(&p->list, &ap->list);
1317 hlist_replace_rcu(&p->hlist, &ap->hlist);
1318}
1319
1320/*
1321 * This is the second or subsequent kprobe at the address - handle
1322 * the intricacies
1323 */
1324static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325{
1326 int ret = 0;
1327 struct kprobe *ap = orig_p;
1328
1329 cpus_read_lock();
1330
1331 /* For preparing optimization, jump_label_text_reserved() is called */
1332 jump_label_lock();
1333 mutex_lock(&text_mutex);
1334
1335 if (!kprobe_aggrprobe(orig_p)) {
1336 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337 ap = alloc_aggr_kprobe(orig_p);
1338 if (!ap) {
1339 ret = -ENOMEM;
1340 goto out;
1341 }
1342 init_aggr_kprobe(ap, orig_p);
1343 } else if (kprobe_unused(ap)) {
1344 /* This probe is going to die. Rescue it */
1345 ret = reuse_unused_kprobe(ap);
1346 if (ret)
1347 goto out;
1348 }
1349
1350 if (kprobe_gone(ap)) {
1351 /*
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1356 */
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1359 /*
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1363 */
1364 goto out;
1365
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1368
1369 /*
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1372 */
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1375 }
1376
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1380
1381out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1385
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_rcu();
1395 }
1396 }
1397 }
1398 return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408static bool __within_kprobe_blacklist(unsigned long addr)
1409{
1410 struct kprobe_blacklist_entry *ent;
1411
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1414 /*
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1417 */
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1421 }
1422 return false;
1423}
1424
1425bool within_kprobe_blacklist(unsigned long addr)
1426{
1427 char symname[KSYM_NAME_LEN], *p;
1428
1429 if (__within_kprobe_blacklist(addr))
1430 return true;
1431
1432 /* Check if the address is on a suffixed-symbol */
1433 if (!lookup_symbol_name(addr, symname)) {
1434 p = strchr(symname, '.');
1435 if (!p)
1436 return false;
1437 *p = '\0';
1438 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439 if (addr)
1440 return __within_kprobe_blacklist(addr);
1441 }
1442 return false;
1443}
1444
1445/*
1446 * If we have a symbol_name argument, look it up and add the offset field
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452 const char *symbol_name, unsigned int offset)
1453{
1454 if ((symbol_name && addr) || (!symbol_name && !addr))
1455 goto invalid;
1456
1457 if (symbol_name) {
1458 addr = kprobe_lookup_name(symbol_name, offset);
1459 if (!addr)
1460 return ERR_PTR(-ENOENT);
1461 }
1462
1463 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464 if (addr)
1465 return addr;
1466
1467invalid:
1468 return ERR_PTR(-EINVAL);
1469}
1470
1471static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472{
1473 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474}
1475
1476/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478{
1479 struct kprobe *ap, *list_p;
1480
1481 ap = get_kprobe(p->addr);
1482 if (unlikely(!ap))
1483 return NULL;
1484
1485 if (p != ap) {
1486 list_for_each_entry_rcu(list_p, &ap->list, list)
1487 if (list_p == p)
1488 /* kprobe p is a valid probe */
1489 goto valid;
1490 return NULL;
1491 }
1492valid:
1493 return ap;
1494}
1495
1496/* Return error if the kprobe is being re-registered */
1497static inline int check_kprobe_rereg(struct kprobe *p)
1498{
1499 int ret = 0;
1500
1501 mutex_lock(&kprobe_mutex);
1502 if (__get_valid_kprobe(p))
1503 ret = -EINVAL;
1504 mutex_unlock(&kprobe_mutex);
1505
1506 return ret;
1507}
1508
1509int __weak arch_check_ftrace_location(struct kprobe *p)
1510{
1511 unsigned long ftrace_addr;
1512
1513 ftrace_addr = ftrace_location((unsigned long)p->addr);
1514 if (ftrace_addr) {
1515#ifdef CONFIG_KPROBES_ON_FTRACE
1516 /* Given address is not on the instruction boundary */
1517 if ((unsigned long)p->addr != ftrace_addr)
1518 return -EILSEQ;
1519 p->flags |= KPROBE_FLAG_FTRACE;
1520#else /* !CONFIG_KPROBES_ON_FTRACE */
1521 return -EINVAL;
1522#endif
1523 }
1524 return 0;
1525}
1526
1527static int check_kprobe_address_safe(struct kprobe *p,
1528 struct module **probed_mod)
1529{
1530 int ret;
1531
1532 ret = arch_check_ftrace_location(p);
1533 if (ret)
1534 return ret;
1535 jump_label_lock();
1536 preempt_disable();
1537
1538 /* Ensure it is not in reserved area nor out of text */
1539 if (!kernel_text_address((unsigned long) p->addr) ||
1540 within_kprobe_blacklist((unsigned long) p->addr) ||
1541 jump_label_text_reserved(p->addr, p->addr) ||
1542 find_bug((unsigned long)p->addr)) {
1543 ret = -EINVAL;
1544 goto out;
1545 }
1546
1547 /* Check if are we probing a module */
1548 *probed_mod = __module_text_address((unsigned long) p->addr);
1549 if (*probed_mod) {
1550 /*
1551 * We must hold a refcount of the probed module while updating
1552 * its code to prohibit unexpected unloading.
1553 */
1554 if (unlikely(!try_module_get(*probed_mod))) {
1555 ret = -ENOENT;
1556 goto out;
1557 }
1558
1559 /*
1560 * If the module freed .init.text, we couldn't insert
1561 * kprobes in there.
1562 */
1563 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564 (*probed_mod)->state != MODULE_STATE_COMING) {
1565 module_put(*probed_mod);
1566 *probed_mod = NULL;
1567 ret = -ENOENT;
1568 }
1569 }
1570out:
1571 preempt_enable();
1572 jump_label_unlock();
1573
1574 return ret;
1575}
1576
1577int register_kprobe(struct kprobe *p)
1578{
1579 int ret;
1580 struct kprobe *old_p;
1581 struct module *probed_mod;
1582 kprobe_opcode_t *addr;
1583
1584 /* Adjust probe address from symbol */
1585 addr = kprobe_addr(p);
1586 if (IS_ERR(addr))
1587 return PTR_ERR(addr);
1588 p->addr = addr;
1589
1590 ret = check_kprobe_rereg(p);
1591 if (ret)
1592 return ret;
1593
1594 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595 p->flags &= KPROBE_FLAG_DISABLED;
1596 p->nmissed = 0;
1597 INIT_LIST_HEAD(&p->list);
1598
1599 ret = check_kprobe_address_safe(p, &probed_mod);
1600 if (ret)
1601 return ret;
1602
1603 mutex_lock(&kprobe_mutex);
1604
1605 old_p = get_kprobe(p->addr);
1606 if (old_p) {
1607 /* Since this may unoptimize old_p, locking text_mutex. */
1608 ret = register_aggr_kprobe(old_p, p);
1609 goto out;
1610 }
1611
1612 cpus_read_lock();
1613 /* Prevent text modification */
1614 mutex_lock(&text_mutex);
1615 ret = prepare_kprobe(p);
1616 mutex_unlock(&text_mutex);
1617 cpus_read_unlock();
1618 if (ret)
1619 goto out;
1620
1621 INIT_HLIST_NODE(&p->hlist);
1622 hlist_add_head_rcu(&p->hlist,
1623 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626 ret = arm_kprobe(p);
1627 if (ret) {
1628 hlist_del_rcu(&p->hlist);
1629 synchronize_rcu();
1630 goto out;
1631 }
1632 }
1633
1634 /* Try to optimize kprobe */
1635 try_to_optimize_kprobe(p);
1636out:
1637 mutex_unlock(&kprobe_mutex);
1638
1639 if (probed_mod)
1640 module_put(probed_mod);
1641
1642 return ret;
1643}
1644EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646/* Check if all probes on the aggrprobe are disabled */
1647static int aggr_kprobe_disabled(struct kprobe *ap)
1648{
1649 struct kprobe *kp;
1650
1651 list_for_each_entry_rcu(kp, &ap->list, list)
1652 if (!kprobe_disabled(kp))
1653 /*
1654 * There is an active probe on the list.
1655 * We can't disable this ap.
1656 */
1657 return 0;
1658
1659 return 1;
1660}
1661
1662/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663static struct kprobe *__disable_kprobe(struct kprobe *p)
1664{
1665 struct kprobe *orig_p;
1666 int ret;
1667
1668 /* Get an original kprobe for return */
1669 orig_p = __get_valid_kprobe(p);
1670 if (unlikely(orig_p == NULL))
1671 return ERR_PTR(-EINVAL);
1672
1673 if (!kprobe_disabled(p)) {
1674 /* Disable probe if it is a child probe */
1675 if (p != orig_p)
1676 p->flags |= KPROBE_FLAG_DISABLED;
1677
1678 /* Try to disarm and disable this/parent probe */
1679 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680 /*
1681 * If kprobes_all_disarmed is set, orig_p
1682 * should have already been disarmed, so
1683 * skip unneed disarming process.
1684 */
1685 if (!kprobes_all_disarmed) {
1686 ret = disarm_kprobe(orig_p, true);
1687 if (ret) {
1688 p->flags &= ~KPROBE_FLAG_DISABLED;
1689 return ERR_PTR(ret);
1690 }
1691 }
1692 orig_p->flags |= KPROBE_FLAG_DISABLED;
1693 }
1694 }
1695
1696 return orig_p;
1697}
1698
1699/*
1700 * Unregister a kprobe without a scheduler synchronization.
1701 */
1702static int __unregister_kprobe_top(struct kprobe *p)
1703{
1704 struct kprobe *ap, *list_p;
1705
1706 /* Disable kprobe. This will disarm it if needed. */
1707 ap = __disable_kprobe(p);
1708 if (IS_ERR(ap))
1709 return PTR_ERR(ap);
1710
1711 if (ap == p)
1712 /*
1713 * This probe is an independent(and non-optimized) kprobe
1714 * (not an aggrprobe). Remove from the hash list.
1715 */
1716 goto disarmed;
1717
1718 /* Following process expects this probe is an aggrprobe */
1719 WARN_ON(!kprobe_aggrprobe(ap));
1720
1721 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722 /*
1723 * !disarmed could be happen if the probe is under delayed
1724 * unoptimizing.
1725 */
1726 goto disarmed;
1727 else {
1728 /* If disabling probe has special handlers, update aggrprobe */
1729 if (p->post_handler && !kprobe_gone(p)) {
1730 list_for_each_entry_rcu(list_p, &ap->list, list) {
1731 if ((list_p != p) && (list_p->post_handler))
1732 goto noclean;
1733 }
1734 ap->post_handler = NULL;
1735 }
1736noclean:
1737 /*
1738 * Remove from the aggrprobe: this path will do nothing in
1739 * __unregister_kprobe_bottom().
1740 */
1741 list_del_rcu(&p->list);
1742 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743 /*
1744 * Try to optimize this probe again, because post
1745 * handler may have been changed.
1746 */
1747 optimize_kprobe(ap);
1748 }
1749 return 0;
1750
1751disarmed:
1752 hlist_del_rcu(&ap->hlist);
1753 return 0;
1754}
1755
1756static void __unregister_kprobe_bottom(struct kprobe *p)
1757{
1758 struct kprobe *ap;
1759
1760 if (list_empty(&p->list))
1761 /* This is an independent kprobe */
1762 arch_remove_kprobe(p);
1763 else if (list_is_singular(&p->list)) {
1764 /* This is the last child of an aggrprobe */
1765 ap = list_entry(p->list.next, struct kprobe, list);
1766 list_del(&p->list);
1767 free_aggr_kprobe(ap);
1768 }
1769 /* Otherwise, do nothing. */
1770}
1771
1772int register_kprobes(struct kprobe **kps, int num)
1773{
1774 int i, ret = 0;
1775
1776 if (num <= 0)
1777 return -EINVAL;
1778 for (i = 0; i < num; i++) {
1779 ret = register_kprobe(kps[i]);
1780 if (ret < 0) {
1781 if (i > 0)
1782 unregister_kprobes(kps, i);
1783 break;
1784 }
1785 }
1786 return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790void unregister_kprobe(struct kprobe *p)
1791{
1792 unregister_kprobes(&p, 1);
1793}
1794EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796void unregister_kprobes(struct kprobe **kps, int num)
1797{
1798 int i;
1799
1800 if (num <= 0)
1801 return;
1802 mutex_lock(&kprobe_mutex);
1803 for (i = 0; i < num; i++)
1804 if (__unregister_kprobe_top(kps[i]) < 0)
1805 kps[i]->addr = NULL;
1806 mutex_unlock(&kprobe_mutex);
1807
1808 synchronize_rcu();
1809 for (i = 0; i < num; i++)
1810 if (kps[i]->addr)
1811 __unregister_kprobe_bottom(kps[i]);
1812}
1813EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816 unsigned long val, void *data)
1817{
1818 return NOTIFY_DONE;
1819}
1820NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822static struct notifier_block kprobe_exceptions_nb = {
1823 .notifier_call = kprobe_exceptions_notify,
1824 .priority = 0x7fffffff /* we need to be notified first */
1825};
1826
1827unsigned long __weak arch_deref_entry_point(void *entry)
1828{
1829 return (unsigned long)entry;
1830}
1831
1832#ifdef CONFIG_KRETPROBES
1833/*
1834 * This kprobe pre_handler is registered with every kretprobe. When probe
1835 * hits it will set up the return probe.
1836 */
1837static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838{
1839 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840 unsigned long hash, flags = 0;
1841 struct kretprobe_instance *ri;
1842
1843 /*
1844 * To avoid deadlocks, prohibit return probing in NMI contexts,
1845 * just skip the probe and increase the (inexact) 'nmissed'
1846 * statistical counter, so that the user is informed that
1847 * something happened:
1848 */
1849 if (unlikely(in_nmi())) {
1850 rp->nmissed++;
1851 return 0;
1852 }
1853
1854 /* TODO: consider to only swap the RA after the last pre_handler fired */
1855 hash = hash_ptr(current, KPROBE_HASH_BITS);
1856 raw_spin_lock_irqsave(&rp->lock, flags);
1857 if (!hlist_empty(&rp->free_instances)) {
1858 ri = hlist_entry(rp->free_instances.first,
1859 struct kretprobe_instance, hlist);
1860 hlist_del(&ri->hlist);
1861 raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863 ri->rp = rp;
1864 ri->task = current;
1865
1866 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867 raw_spin_lock_irqsave(&rp->lock, flags);
1868 hlist_add_head(&ri->hlist, &rp->free_instances);
1869 raw_spin_unlock_irqrestore(&rp->lock, flags);
1870 return 0;
1871 }
1872
1873 arch_prepare_kretprobe(ri, regs);
1874
1875 /* XXX(hch): why is there no hlist_move_head? */
1876 INIT_HLIST_NODE(&ri->hlist);
1877 kretprobe_table_lock(hash, &flags);
1878 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879 kretprobe_table_unlock(hash, &flags);
1880 } else {
1881 rp->nmissed++;
1882 raw_spin_unlock_irqrestore(&rp->lock, flags);
1883 }
1884 return 0;
1885}
1886NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889{
1890 return !offset;
1891}
1892
1893bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1894{
1895 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896
1897 if (IS_ERR(kp_addr))
1898 return false;
1899
1900 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901 !arch_kprobe_on_func_entry(offset))
1902 return false;
1903
1904 return true;
1905}
1906
1907int register_kretprobe(struct kretprobe *rp)
1908{
1909 int ret = 0;
1910 struct kretprobe_instance *inst;
1911 int i;
1912 void *addr;
1913
1914 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1915 return -EINVAL;
1916
1917 if (kretprobe_blacklist_size) {
1918 addr = kprobe_addr(&rp->kp);
1919 if (IS_ERR(addr))
1920 return PTR_ERR(addr);
1921
1922 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923 if (kretprobe_blacklist[i].addr == addr)
1924 return -EINVAL;
1925 }
1926 }
1927
1928 rp->kp.pre_handler = pre_handler_kretprobe;
1929 rp->kp.post_handler = NULL;
1930 rp->kp.fault_handler = NULL;
1931
1932 /* Pre-allocate memory for max kretprobe instances */
1933 if (rp->maxactive <= 0) {
1934#ifdef CONFIG_PREEMPTION
1935 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936#else
1937 rp->maxactive = num_possible_cpus();
1938#endif
1939 }
1940 raw_spin_lock_init(&rp->lock);
1941 INIT_HLIST_HEAD(&rp->free_instances);
1942 for (i = 0; i < rp->maxactive; i++) {
1943 inst = kmalloc(sizeof(struct kretprobe_instance) +
1944 rp->data_size, GFP_KERNEL);
1945 if (inst == NULL) {
1946 free_rp_inst(rp);
1947 return -ENOMEM;
1948 }
1949 INIT_HLIST_NODE(&inst->hlist);
1950 hlist_add_head(&inst->hlist, &rp->free_instances);
1951 }
1952
1953 rp->nmissed = 0;
1954 /* Establish function entry probe point */
1955 ret = register_kprobe(&rp->kp);
1956 if (ret != 0)
1957 free_rp_inst(rp);
1958 return ret;
1959}
1960EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962int register_kretprobes(struct kretprobe **rps, int num)
1963{
1964 int ret = 0, i;
1965
1966 if (num <= 0)
1967 return -EINVAL;
1968 for (i = 0; i < num; i++) {
1969 ret = register_kretprobe(rps[i]);
1970 if (ret < 0) {
1971 if (i > 0)
1972 unregister_kretprobes(rps, i);
1973 break;
1974 }
1975 }
1976 return ret;
1977}
1978EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980void unregister_kretprobe(struct kretprobe *rp)
1981{
1982 unregister_kretprobes(&rp, 1);
1983}
1984EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986void unregister_kretprobes(struct kretprobe **rps, int num)
1987{
1988 int i;
1989
1990 if (num <= 0)
1991 return;
1992 mutex_lock(&kprobe_mutex);
1993 for (i = 0; i < num; i++)
1994 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995 rps[i]->kp.addr = NULL;
1996 mutex_unlock(&kprobe_mutex);
1997
1998 synchronize_rcu();
1999 for (i = 0; i < num; i++) {
2000 if (rps[i]->kp.addr) {
2001 __unregister_kprobe_bottom(&rps[i]->kp);
2002 cleanup_rp_inst(rps[i]);
2003 }
2004 }
2005}
2006EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008#else /* CONFIG_KRETPROBES */
2009int register_kretprobe(struct kretprobe *rp)
2010{
2011 return -ENOSYS;
2012}
2013EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015int register_kretprobes(struct kretprobe **rps, int num)
2016{
2017 return -ENOSYS;
2018}
2019EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021void unregister_kretprobe(struct kretprobe *rp)
2022{
2023}
2024EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026void unregister_kretprobes(struct kretprobe **rps, int num)
2027{
2028}
2029EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032{
2033 return 0;
2034}
2035NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037#endif /* CONFIG_KRETPROBES */
2038
2039/* Set the kprobe gone and remove its instruction buffer. */
2040static void kill_kprobe(struct kprobe *p)
2041{
2042 struct kprobe *kp;
2043
2044 p->flags |= KPROBE_FLAG_GONE;
2045 if (kprobe_aggrprobe(p)) {
2046 /*
2047 * If this is an aggr_kprobe, we have to list all the
2048 * chained probes and mark them GONE.
2049 */
2050 list_for_each_entry_rcu(kp, &p->list, list)
2051 kp->flags |= KPROBE_FLAG_GONE;
2052 p->post_handler = NULL;
2053 kill_optimized_kprobe(p);
2054 }
2055 /*
2056 * Here, we can remove insn_slot safely, because no thread calls
2057 * the original probed function (which will be freed soon) any more.
2058 */
2059 arch_remove_kprobe(p);
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065 int ret = 0;
2066 struct kprobe *p;
2067
2068 mutex_lock(&kprobe_mutex);
2069
2070 /* Disable this kprobe */
2071 p = __disable_kprobe(kp);
2072 if (IS_ERR(p))
2073 ret = PTR_ERR(p);
2074
2075 mutex_unlock(&kprobe_mutex);
2076 return ret;
2077}
2078EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080/* Enable one kprobe */
2081int enable_kprobe(struct kprobe *kp)
2082{
2083 int ret = 0;
2084 struct kprobe *p;
2085
2086 mutex_lock(&kprobe_mutex);
2087
2088 /* Check whether specified probe is valid. */
2089 p = __get_valid_kprobe(kp);
2090 if (unlikely(p == NULL)) {
2091 ret = -EINVAL;
2092 goto out;
2093 }
2094
2095 if (kprobe_gone(kp)) {
2096 /* This kprobe has gone, we couldn't enable it. */
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100
2101 if (p != kp)
2102 kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105 p->flags &= ~KPROBE_FLAG_DISABLED;
2106 ret = arm_kprobe(p);
2107 if (ret)
2108 p->flags |= KPROBE_FLAG_DISABLED;
2109 }
2110out:
2111 mutex_unlock(&kprobe_mutex);
2112 return ret;
2113}
2114EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116/* Caller must NOT call this in usual path. This is only for critical case */
2117void dump_kprobe(struct kprobe *kp)
2118{
2119 pr_err("Dumping kprobe:\n");
2120 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121 kp->symbol_name, kp->offset, kp->addr);
2122}
2123NOKPROBE_SYMBOL(dump_kprobe);
2124
2125int kprobe_add_ksym_blacklist(unsigned long entry)
2126{
2127 struct kprobe_blacklist_entry *ent;
2128 unsigned long offset = 0, size = 0;
2129
2130 if (!kernel_text_address(entry) ||
2131 !kallsyms_lookup_size_offset(entry, &size, &offset))
2132 return -EINVAL;
2133
2134 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135 if (!ent)
2136 return -ENOMEM;
2137 ent->start_addr = entry;
2138 ent->end_addr = entry + size;
2139 INIT_LIST_HEAD(&ent->list);
2140 list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142 return (int)size;
2143}
2144
2145/* Add all symbols in given area into kprobe blacklist */
2146int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147{
2148 unsigned long entry;
2149 int ret = 0;
2150
2151 for (entry = start; entry < end; entry += ret) {
2152 ret = kprobe_add_ksym_blacklist(entry);
2153 if (ret < 0)
2154 return ret;
2155 if (ret == 0) /* In case of alias symbol */
2156 ret = 1;
2157 }
2158 return 0;
2159}
2160
2161int __init __weak arch_populate_kprobe_blacklist(void)
2162{
2163 return 0;
2164}
2165
2166/*
2167 * Lookup and populate the kprobe_blacklist.
2168 *
2169 * Unlike the kretprobe blacklist, we'll need to determine
2170 * the range of addresses that belong to the said functions,
2171 * since a kprobe need not necessarily be at the beginning
2172 * of a function.
2173 */
2174static int __init populate_kprobe_blacklist(unsigned long *start,
2175 unsigned long *end)
2176{
2177 unsigned long entry;
2178 unsigned long *iter;
2179 int ret;
2180
2181 for (iter = start; iter < end; iter++) {
2182 entry = arch_deref_entry_point((void *)*iter);
2183 ret = kprobe_add_ksym_blacklist(entry);
2184 if (ret == -EINVAL)
2185 continue;
2186 if (ret < 0)
2187 return ret;
2188 }
2189
2190 /* Symbols in __kprobes_text are blacklisted */
2191 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192 (unsigned long)__kprobes_text_end);
2193
2194 return ret ? : arch_populate_kprobe_blacklist();
2195}
2196
2197/* Module notifier call back, checking kprobes on the module */
2198static int kprobes_module_callback(struct notifier_block *nb,
2199 unsigned long val, void *data)
2200{
2201 struct module *mod = data;
2202 struct hlist_head *head;
2203 struct kprobe *p;
2204 unsigned int i;
2205 int checkcore = (val == MODULE_STATE_GOING);
2206
2207 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208 return NOTIFY_DONE;
2209
2210 /*
2211 * When MODULE_STATE_GOING was notified, both of module .text and
2212 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213 * notified, only .init.text section would be freed. We need to
2214 * disable kprobes which have been inserted in the sections.
2215 */
2216 mutex_lock(&kprobe_mutex);
2217 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218 head = &kprobe_table[i];
2219 hlist_for_each_entry_rcu(p, head, hlist)
2220 if (within_module_init((unsigned long)p->addr, mod) ||
2221 (checkcore &&
2222 within_module_core((unsigned long)p->addr, mod))) {
2223 /*
2224 * The vaddr this probe is installed will soon
2225 * be vfreed buy not synced to disk. Hence,
2226 * disarming the breakpoint isn't needed.
2227 *
2228 * Note, this will also move any optimized probes
2229 * that are pending to be removed from their
2230 * corresponding lists to the freeing_list and
2231 * will not be touched by the delayed
2232 * kprobe_optimizer work handler.
2233 */
2234 kill_kprobe(p);
2235 }
2236 }
2237 mutex_unlock(&kprobe_mutex);
2238 return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block kprobe_module_nb = {
2242 .notifier_call = kprobes_module_callback,
2243 .priority = 0
2244};
2245
2246/* Markers of _kprobe_blacklist section */
2247extern unsigned long __start_kprobe_blacklist[];
2248extern unsigned long __stop_kprobe_blacklist[];
2249
2250static int __init init_kprobes(void)
2251{
2252 int i, err = 0;
2253
2254 /* FIXME allocate the probe table, currently defined statically */
2255 /* initialize all list heads */
2256 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257 INIT_HLIST_HEAD(&kprobe_table[i]);
2258 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260 }
2261
2262 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263 __stop_kprobe_blacklist);
2264 if (err) {
2265 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266 pr_err("Please take care of using kprobes.\n");
2267 }
2268
2269 if (kretprobe_blacklist_size) {
2270 /* lookup the function address from its name */
2271 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272 kretprobe_blacklist[i].addr =
2273 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274 if (!kretprobe_blacklist[i].addr)
2275 printk("kretprobe: lookup failed: %s\n",
2276 kretprobe_blacklist[i].name);
2277 }
2278 }
2279
2280#if defined(CONFIG_OPTPROBES)
2281#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282 /* Init kprobe_optinsn_slots */
2283 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284#endif
2285 /* By default, kprobes can be optimized */
2286 kprobes_allow_optimization = true;
2287#endif
2288
2289 /* By default, kprobes are armed */
2290 kprobes_all_disarmed = false;
2291
2292 err = arch_init_kprobes();
2293 if (!err)
2294 err = register_die_notifier(&kprobe_exceptions_nb);
2295 if (!err)
2296 err = register_module_notifier(&kprobe_module_nb);
2297
2298 kprobes_initialized = (err == 0);
2299
2300 if (!err)
2301 init_test_probes();
2302 return err;
2303}
2304subsys_initcall(init_kprobes);
2305
2306#ifdef CONFIG_DEBUG_FS
2307static void report_probe(struct seq_file *pi, struct kprobe *p,
2308 const char *sym, int offset, char *modname, struct kprobe *pp)
2309{
2310 char *kprobe_type;
2311 void *addr = p->addr;
2312
2313 if (p->pre_handler == pre_handler_kretprobe)
2314 kprobe_type = "r";
2315 else
2316 kprobe_type = "k";
2317
2318 if (!kallsyms_show_value())
2319 addr = NULL;
2320
2321 if (sym)
2322 seq_printf(pi, "%px %s %s+0x%x %s ",
2323 addr, kprobe_type, sym, offset,
2324 (modname ? modname : " "));
2325 else /* try to use %pS */
2326 seq_printf(pi, "%px %s %pS ",
2327 addr, kprobe_type, p->addr);
2328
2329 if (!pp)
2330 pp = p;
2331 seq_printf(pi, "%s%s%s%s\n",
2332 (kprobe_gone(p) ? "[GONE]" : ""),
2333 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2334 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336}
2337
2338static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339{
2340 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341}
2342
2343static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344{
2345 (*pos)++;
2346 if (*pos >= KPROBE_TABLE_SIZE)
2347 return NULL;
2348 return pos;
2349}
2350
2351static void kprobe_seq_stop(struct seq_file *f, void *v)
2352{
2353 /* Nothing to do */
2354}
2355
2356static int show_kprobe_addr(struct seq_file *pi, void *v)
2357{
2358 struct hlist_head *head;
2359 struct kprobe *p, *kp;
2360 const char *sym = NULL;
2361 unsigned int i = *(loff_t *) v;
2362 unsigned long offset = 0;
2363 char *modname, namebuf[KSYM_NAME_LEN];
2364
2365 head = &kprobe_table[i];
2366 preempt_disable();
2367 hlist_for_each_entry_rcu(p, head, hlist) {
2368 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369 &offset, &modname, namebuf);
2370 if (kprobe_aggrprobe(p)) {
2371 list_for_each_entry_rcu(kp, &p->list, list)
2372 report_probe(pi, kp, sym, offset, modname, p);
2373 } else
2374 report_probe(pi, p, sym, offset, modname, NULL);
2375 }
2376 preempt_enable();
2377 return 0;
2378}
2379
2380static const struct seq_operations kprobes_seq_ops = {
2381 .start = kprobe_seq_start,
2382 .next = kprobe_seq_next,
2383 .stop = kprobe_seq_stop,
2384 .show = show_kprobe_addr
2385};
2386
2387static int kprobes_open(struct inode *inode, struct file *filp)
2388{
2389 return seq_open(filp, &kprobes_seq_ops);
2390}
2391
2392static const struct file_operations debugfs_kprobes_operations = {
2393 .open = kprobes_open,
2394 .read = seq_read,
2395 .llseek = seq_lseek,
2396 .release = seq_release,
2397};
2398
2399/* kprobes/blacklist -- shows which functions can not be probed */
2400static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401{
2402 return seq_list_start(&kprobe_blacklist, *pos);
2403}
2404
2405static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406{
2407 return seq_list_next(v, &kprobe_blacklist, pos);
2408}
2409
2410static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411{
2412 struct kprobe_blacklist_entry *ent =
2413 list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415 /*
2416 * If /proc/kallsyms is not showing kernel address, we won't
2417 * show them here either.
2418 */
2419 if (!kallsyms_show_value())
2420 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421 (void *)ent->start_addr);
2422 else
2423 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424 (void *)ent->end_addr, (void *)ent->start_addr);
2425 return 0;
2426}
2427
2428static const struct seq_operations kprobe_blacklist_seq_ops = {
2429 .start = kprobe_blacklist_seq_start,
2430 .next = kprobe_blacklist_seq_next,
2431 .stop = kprobe_seq_stop, /* Reuse void function */
2432 .show = kprobe_blacklist_seq_show,
2433};
2434
2435static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436{
2437 return seq_open(filp, &kprobe_blacklist_seq_ops);
2438}
2439
2440static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441 .open = kprobe_blacklist_open,
2442 .read = seq_read,
2443 .llseek = seq_lseek,
2444 .release = seq_release,
2445};
2446
2447static int arm_all_kprobes(void)
2448{
2449 struct hlist_head *head;
2450 struct kprobe *p;
2451 unsigned int i, total = 0, errors = 0;
2452 int err, ret = 0;
2453
2454 mutex_lock(&kprobe_mutex);
2455
2456 /* If kprobes are armed, just return */
2457 if (!kprobes_all_disarmed)
2458 goto already_enabled;
2459
2460 /*
2461 * optimize_kprobe() called by arm_kprobe() checks
2462 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463 * arm_kprobe.
2464 */
2465 kprobes_all_disarmed = false;
2466 /* Arming kprobes doesn't optimize kprobe itself */
2467 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468 head = &kprobe_table[i];
2469 /* Arm all kprobes on a best-effort basis */
2470 hlist_for_each_entry_rcu(p, head, hlist) {
2471 if (!kprobe_disabled(p)) {
2472 err = arm_kprobe(p);
2473 if (err) {
2474 errors++;
2475 ret = err;
2476 }
2477 total++;
2478 }
2479 }
2480 }
2481
2482 if (errors)
2483 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484 errors, total);
2485 else
2486 pr_info("Kprobes globally enabled\n");
2487
2488already_enabled:
2489 mutex_unlock(&kprobe_mutex);
2490 return ret;
2491}
2492
2493static int disarm_all_kprobes(void)
2494{
2495 struct hlist_head *head;
2496 struct kprobe *p;
2497 unsigned int i, total = 0, errors = 0;
2498 int err, ret = 0;
2499
2500 mutex_lock(&kprobe_mutex);
2501
2502 /* If kprobes are already disarmed, just return */
2503 if (kprobes_all_disarmed) {
2504 mutex_unlock(&kprobe_mutex);
2505 return 0;
2506 }
2507
2508 kprobes_all_disarmed = true;
2509
2510 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511 head = &kprobe_table[i];
2512 /* Disarm all kprobes on a best-effort basis */
2513 hlist_for_each_entry_rcu(p, head, hlist) {
2514 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515 err = disarm_kprobe(p, false);
2516 if (err) {
2517 errors++;
2518 ret = err;
2519 }
2520 total++;
2521 }
2522 }
2523 }
2524
2525 if (errors)
2526 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527 errors, total);
2528 else
2529 pr_info("Kprobes globally disabled\n");
2530
2531 mutex_unlock(&kprobe_mutex);
2532
2533 /* Wait for disarming all kprobes by optimizer */
2534 wait_for_kprobe_optimizer();
2535
2536 return ret;
2537}
2538
2539/*
2540 * XXX: The debugfs bool file interface doesn't allow for callbacks
2541 * when the bool state is switched. We can reuse that facility when
2542 * available
2543 */
2544static ssize_t read_enabled_file_bool(struct file *file,
2545 char __user *user_buf, size_t count, loff_t *ppos)
2546{
2547 char buf[3];
2548
2549 if (!kprobes_all_disarmed)
2550 buf[0] = '1';
2551 else
2552 buf[0] = '0';
2553 buf[1] = '\n';
2554 buf[2] = 0x00;
2555 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556}
2557
2558static ssize_t write_enabled_file_bool(struct file *file,
2559 const char __user *user_buf, size_t count, loff_t *ppos)
2560{
2561 char buf[32];
2562 size_t buf_size;
2563 int ret = 0;
2564
2565 buf_size = min(count, (sizeof(buf)-1));
2566 if (copy_from_user(buf, user_buf, buf_size))
2567 return -EFAULT;
2568
2569 buf[buf_size] = '\0';
2570 switch (buf[0]) {
2571 case 'y':
2572 case 'Y':
2573 case '1':
2574 ret = arm_all_kprobes();
2575 break;
2576 case 'n':
2577 case 'N':
2578 case '0':
2579 ret = disarm_all_kprobes();
2580 break;
2581 default:
2582 return -EINVAL;
2583 }
2584
2585 if (ret)
2586 return ret;
2587
2588 return count;
2589}
2590
2591static const struct file_operations fops_kp = {
2592 .read = read_enabled_file_bool,
2593 .write = write_enabled_file_bool,
2594 .llseek = default_llseek,
2595};
2596
2597static int __init debugfs_kprobe_init(void)
2598{
2599 struct dentry *dir;
2600 unsigned int value = 1;
2601
2602 dir = debugfs_create_dir("kprobes", NULL);
2603
2604 debugfs_create_file("list", 0400, dir, NULL,
2605 &debugfs_kprobes_operations);
2606
2607 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609 debugfs_create_file("blacklist", 0400, dir, NULL,
2610 &debugfs_kprobe_blacklist_ops);
2611
2612 return 0;
2613}
2614
2615late_initcall(debugfs_kprobe_init);
2616#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38#include <linux/perf_event.h>
39
40#include <asm/sections.h>
41#include <asm/cacheflush.h>
42#include <asm/errno.h>
43#include <linux/uaccess.h>
44
45#define KPROBE_HASH_BITS 6
46#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49static int kprobes_initialized;
50/* kprobe_table can be accessed by
51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52 * Or
53 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54 */
55static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
57
58/* NOTE: change this value only with kprobe_mutex held */
59static bool kprobes_all_disarmed;
60
61/* This protects kprobe_table and optimizing_list */
62static DEFINE_MUTEX(kprobe_mutex);
63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64static struct {
65 raw_spinlock_t lock ____cacheline_aligned_in_smp;
66} kretprobe_table_locks[KPROBE_TABLE_SIZE];
67
68kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69 unsigned int __unused)
70{
71 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72}
73
74static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
75{
76 return &(kretprobe_table_locks[hash].lock);
77}
78
79/* Blacklist -- list of struct kprobe_blacklist_entry */
80static LIST_HEAD(kprobe_blacklist);
81
82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83/*
84 * kprobe->ainsn.insn points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96};
97
98#define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
102static int slots_per_page(struct kprobe_insn_cache *c)
103{
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105}
106
107enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111};
112
113void __weak *alloc_insn_page(void)
114{
115 return module_alloc(PAGE_SIZE);
116}
117
118void __weak free_insn_page(void *page)
119{
120 module_memfree(page);
121}
122
123struct kprobe_insn_cache kprobe_insn_slots = {
124 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
125 .alloc = alloc_insn_page,
126 .free = free_insn_page,
127 .sym = KPROBE_INSN_PAGE_SYM,
128 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
129 .insn_size = MAX_INSN_SIZE,
130 .nr_garbage = 0,
131};
132static int collect_garbage_slots(struct kprobe_insn_cache *c);
133
134/**
135 * __get_insn_slot() - Find a slot on an executable page for an instruction.
136 * We allocate an executable page if there's no room on existing ones.
137 */
138kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
139{
140 struct kprobe_insn_page *kip;
141 kprobe_opcode_t *slot = NULL;
142
143 /* Since the slot array is not protected by rcu, we need a mutex */
144 mutex_lock(&c->mutex);
145 retry:
146 rcu_read_lock();
147 list_for_each_entry_rcu(kip, &c->pages, list) {
148 if (kip->nused < slots_per_page(c)) {
149 int i;
150 for (i = 0; i < slots_per_page(c); i++) {
151 if (kip->slot_used[i] == SLOT_CLEAN) {
152 kip->slot_used[i] = SLOT_USED;
153 kip->nused++;
154 slot = kip->insns + (i * c->insn_size);
155 rcu_read_unlock();
156 goto out;
157 }
158 }
159 /* kip->nused is broken. Fix it. */
160 kip->nused = slots_per_page(c);
161 WARN_ON(1);
162 }
163 }
164 rcu_read_unlock();
165
166 /* If there are any garbage slots, collect it and try again. */
167 if (c->nr_garbage && collect_garbage_slots(c) == 0)
168 goto retry;
169
170 /* All out of space. Need to allocate a new page. */
171 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
172 if (!kip)
173 goto out;
174
175 /*
176 * Use module_alloc so this page is within +/- 2GB of where the
177 * kernel image and loaded module images reside. This is required
178 * so x86_64 can correctly handle the %rip-relative fixups.
179 */
180 kip->insns = c->alloc();
181 if (!kip->insns) {
182 kfree(kip);
183 goto out;
184 }
185 INIT_LIST_HEAD(&kip->list);
186 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
187 kip->slot_used[0] = SLOT_USED;
188 kip->nused = 1;
189 kip->ngarbage = 0;
190 kip->cache = c;
191 list_add_rcu(&kip->list, &c->pages);
192 slot = kip->insns;
193
194 /* Record the perf ksymbol register event after adding the page */
195 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
196 PAGE_SIZE, false, c->sym);
197out:
198 mutex_unlock(&c->mutex);
199 return slot;
200}
201
202/* Return 1 if all garbages are collected, otherwise 0. */
203static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
204{
205 kip->slot_used[idx] = SLOT_CLEAN;
206 kip->nused--;
207 if (kip->nused == 0) {
208 /*
209 * Page is no longer in use. Free it unless
210 * it's the last one. We keep the last one
211 * so as not to have to set it up again the
212 * next time somebody inserts a probe.
213 */
214 if (!list_is_singular(&kip->list)) {
215 /*
216 * Record perf ksymbol unregister event before removing
217 * the page.
218 */
219 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
220 (unsigned long)kip->insns, PAGE_SIZE, true,
221 kip->cache->sym);
222 list_del_rcu(&kip->list);
223 synchronize_rcu();
224 kip->cache->free(kip->insns);
225 kfree(kip);
226 }
227 return 1;
228 }
229 return 0;
230}
231
232static int collect_garbage_slots(struct kprobe_insn_cache *c)
233{
234 struct kprobe_insn_page *kip, *next;
235
236 /* Ensure no-one is interrupted on the garbages */
237 synchronize_rcu();
238
239 list_for_each_entry_safe(kip, next, &c->pages, list) {
240 int i;
241 if (kip->ngarbage == 0)
242 continue;
243 kip->ngarbage = 0; /* we will collect all garbages */
244 for (i = 0; i < slots_per_page(c); i++) {
245 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
246 break;
247 }
248 }
249 c->nr_garbage = 0;
250 return 0;
251}
252
253void __free_insn_slot(struct kprobe_insn_cache *c,
254 kprobe_opcode_t *slot, int dirty)
255{
256 struct kprobe_insn_page *kip;
257 long idx;
258
259 mutex_lock(&c->mutex);
260 rcu_read_lock();
261 list_for_each_entry_rcu(kip, &c->pages, list) {
262 idx = ((long)slot - (long)kip->insns) /
263 (c->insn_size * sizeof(kprobe_opcode_t));
264 if (idx >= 0 && idx < slots_per_page(c))
265 goto out;
266 }
267 /* Could not find this slot. */
268 WARN_ON(1);
269 kip = NULL;
270out:
271 rcu_read_unlock();
272 /* Mark and sweep: this may sleep */
273 if (kip) {
274 /* Check double free */
275 WARN_ON(kip->slot_used[idx] != SLOT_USED);
276 if (dirty) {
277 kip->slot_used[idx] = SLOT_DIRTY;
278 kip->ngarbage++;
279 if (++c->nr_garbage > slots_per_page(c))
280 collect_garbage_slots(c);
281 } else {
282 collect_one_slot(kip, idx);
283 }
284 }
285 mutex_unlock(&c->mutex);
286}
287
288/*
289 * Check given address is on the page of kprobe instruction slots.
290 * This will be used for checking whether the address on a stack
291 * is on a text area or not.
292 */
293bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
294{
295 struct kprobe_insn_page *kip;
296 bool ret = false;
297
298 rcu_read_lock();
299 list_for_each_entry_rcu(kip, &c->pages, list) {
300 if (addr >= (unsigned long)kip->insns &&
301 addr < (unsigned long)kip->insns + PAGE_SIZE) {
302 ret = true;
303 break;
304 }
305 }
306 rcu_read_unlock();
307
308 return ret;
309}
310
311int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
312 unsigned long *value, char *type, char *sym)
313{
314 struct kprobe_insn_page *kip;
315 int ret = -ERANGE;
316
317 rcu_read_lock();
318 list_for_each_entry_rcu(kip, &c->pages, list) {
319 if ((*symnum)--)
320 continue;
321 strlcpy(sym, c->sym, KSYM_NAME_LEN);
322 *type = 't';
323 *value = (unsigned long)kip->insns;
324 ret = 0;
325 break;
326 }
327 rcu_read_unlock();
328
329 return ret;
330}
331
332#ifdef CONFIG_OPTPROBES
333/* For optimized_kprobe buffer */
334struct kprobe_insn_cache kprobe_optinsn_slots = {
335 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
336 .alloc = alloc_insn_page,
337 .free = free_insn_page,
338 .sym = KPROBE_OPTINSN_PAGE_SYM,
339 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
340 /* .insn_size is initialized later */
341 .nr_garbage = 0,
342};
343#endif
344#endif
345
346/* We have preemption disabled.. so it is safe to use __ versions */
347static inline void set_kprobe_instance(struct kprobe *kp)
348{
349 __this_cpu_write(kprobe_instance, kp);
350}
351
352static inline void reset_kprobe_instance(void)
353{
354 __this_cpu_write(kprobe_instance, NULL);
355}
356
357/*
358 * This routine is called either:
359 * - under the kprobe_mutex - during kprobe_[un]register()
360 * OR
361 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
362 */
363struct kprobe *get_kprobe(void *addr)
364{
365 struct hlist_head *head;
366 struct kprobe *p;
367
368 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
369 hlist_for_each_entry_rcu(p, head, hlist,
370 lockdep_is_held(&kprobe_mutex)) {
371 if (p->addr == addr)
372 return p;
373 }
374
375 return NULL;
376}
377NOKPROBE_SYMBOL(get_kprobe);
378
379static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
380
381/* Return true if the kprobe is an aggregator */
382static inline int kprobe_aggrprobe(struct kprobe *p)
383{
384 return p->pre_handler == aggr_pre_handler;
385}
386
387/* Return true(!0) if the kprobe is unused */
388static inline int kprobe_unused(struct kprobe *p)
389{
390 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
391 list_empty(&p->list);
392}
393
394/*
395 * Keep all fields in the kprobe consistent
396 */
397static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
398{
399 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
400 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
401}
402
403#ifdef CONFIG_OPTPROBES
404/* NOTE: change this value only with kprobe_mutex held */
405static bool kprobes_allow_optimization;
406
407/*
408 * Call all pre_handler on the list, but ignores its return value.
409 * This must be called from arch-dep optimized caller.
410 */
411void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
412{
413 struct kprobe *kp;
414
415 list_for_each_entry_rcu(kp, &p->list, list) {
416 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
417 set_kprobe_instance(kp);
418 kp->pre_handler(kp, regs);
419 }
420 reset_kprobe_instance();
421 }
422}
423NOKPROBE_SYMBOL(opt_pre_handler);
424
425/* Free optimized instructions and optimized_kprobe */
426static void free_aggr_kprobe(struct kprobe *p)
427{
428 struct optimized_kprobe *op;
429
430 op = container_of(p, struct optimized_kprobe, kp);
431 arch_remove_optimized_kprobe(op);
432 arch_remove_kprobe(p);
433 kfree(op);
434}
435
436/* Return true(!0) if the kprobe is ready for optimization. */
437static inline int kprobe_optready(struct kprobe *p)
438{
439 struct optimized_kprobe *op;
440
441 if (kprobe_aggrprobe(p)) {
442 op = container_of(p, struct optimized_kprobe, kp);
443 return arch_prepared_optinsn(&op->optinsn);
444 }
445
446 return 0;
447}
448
449/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
450static inline int kprobe_disarmed(struct kprobe *p)
451{
452 struct optimized_kprobe *op;
453
454 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
455 if (!kprobe_aggrprobe(p))
456 return kprobe_disabled(p);
457
458 op = container_of(p, struct optimized_kprobe, kp);
459
460 return kprobe_disabled(p) && list_empty(&op->list);
461}
462
463/* Return true(!0) if the probe is queued on (un)optimizing lists */
464static int kprobe_queued(struct kprobe *p)
465{
466 struct optimized_kprobe *op;
467
468 if (kprobe_aggrprobe(p)) {
469 op = container_of(p, struct optimized_kprobe, kp);
470 if (!list_empty(&op->list))
471 return 1;
472 }
473 return 0;
474}
475
476/*
477 * Return an optimized kprobe whose optimizing code replaces
478 * instructions including addr (exclude breakpoint).
479 */
480static struct kprobe *get_optimized_kprobe(unsigned long addr)
481{
482 int i;
483 struct kprobe *p = NULL;
484 struct optimized_kprobe *op;
485
486 /* Don't check i == 0, since that is a breakpoint case. */
487 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
488 p = get_kprobe((void *)(addr - i));
489
490 if (p && kprobe_optready(p)) {
491 op = container_of(p, struct optimized_kprobe, kp);
492 if (arch_within_optimized_kprobe(op, addr))
493 return p;
494 }
495
496 return NULL;
497}
498
499/* Optimization staging list, protected by kprobe_mutex */
500static LIST_HEAD(optimizing_list);
501static LIST_HEAD(unoptimizing_list);
502static LIST_HEAD(freeing_list);
503
504static void kprobe_optimizer(struct work_struct *work);
505static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
506#define OPTIMIZE_DELAY 5
507
508/*
509 * Optimize (replace a breakpoint with a jump) kprobes listed on
510 * optimizing_list.
511 */
512static void do_optimize_kprobes(void)
513{
514 lockdep_assert_held(&text_mutex);
515 /*
516 * The optimization/unoptimization refers online_cpus via
517 * stop_machine() and cpu-hotplug modifies online_cpus.
518 * And same time, text_mutex will be held in cpu-hotplug and here.
519 * This combination can cause a deadlock (cpu-hotplug try to lock
520 * text_mutex but stop_machine can not be done because online_cpus
521 * has been changed)
522 * To avoid this deadlock, caller must have locked cpu hotplug
523 * for preventing cpu-hotplug outside of text_mutex locking.
524 */
525 lockdep_assert_cpus_held();
526
527 /* Optimization never be done when disarmed */
528 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
529 list_empty(&optimizing_list))
530 return;
531
532 arch_optimize_kprobes(&optimizing_list);
533}
534
535/*
536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
537 * if need) kprobes listed on unoptimizing_list.
538 */
539static void do_unoptimize_kprobes(void)
540{
541 struct optimized_kprobe *op, *tmp;
542
543 lockdep_assert_held(&text_mutex);
544 /* See comment in do_optimize_kprobes() */
545 lockdep_assert_cpus_held();
546
547 /* Unoptimization must be done anytime */
548 if (list_empty(&unoptimizing_list))
549 return;
550
551 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
552 /* Loop free_list for disarming */
553 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
554 /* Switching from detour code to origin */
555 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
556 /* Disarm probes if marked disabled */
557 if (kprobe_disabled(&op->kp))
558 arch_disarm_kprobe(&op->kp);
559 if (kprobe_unused(&op->kp)) {
560 /*
561 * Remove unused probes from hash list. After waiting
562 * for synchronization, these probes are reclaimed.
563 * (reclaiming is done by do_free_cleaned_kprobes.)
564 */
565 hlist_del_rcu(&op->kp.hlist);
566 } else
567 list_del_init(&op->list);
568 }
569}
570
571/* Reclaim all kprobes on the free_list */
572static void do_free_cleaned_kprobes(void)
573{
574 struct optimized_kprobe *op, *tmp;
575
576 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
577 list_del_init(&op->list);
578 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
579 /*
580 * This must not happen, but if there is a kprobe
581 * still in use, keep it on kprobes hash list.
582 */
583 continue;
584 }
585 free_aggr_kprobe(&op->kp);
586 }
587}
588
589/* Start optimizer after OPTIMIZE_DELAY passed */
590static void kick_kprobe_optimizer(void)
591{
592 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
593}
594
595/* Kprobe jump optimizer */
596static void kprobe_optimizer(struct work_struct *work)
597{
598 mutex_lock(&kprobe_mutex);
599 cpus_read_lock();
600 mutex_lock(&text_mutex);
601
602 /*
603 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
604 * kprobes before waiting for quiesence period.
605 */
606 do_unoptimize_kprobes();
607
608 /*
609 * Step 2: Wait for quiesence period to ensure all potentially
610 * preempted tasks to have normally scheduled. Because optprobe
611 * may modify multiple instructions, there is a chance that Nth
612 * instruction is preempted. In that case, such tasks can return
613 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
614 * Note that on non-preemptive kernel, this is transparently converted
615 * to synchronoze_sched() to wait for all interrupts to have completed.
616 */
617 synchronize_rcu_tasks();
618
619 /* Step 3: Optimize kprobes after quiesence period */
620 do_optimize_kprobes();
621
622 /* Step 4: Free cleaned kprobes after quiesence period */
623 do_free_cleaned_kprobes();
624
625 mutex_unlock(&text_mutex);
626 cpus_read_unlock();
627
628 /* Step 5: Kick optimizer again if needed */
629 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
630 kick_kprobe_optimizer();
631
632 mutex_unlock(&kprobe_mutex);
633}
634
635/* Wait for completing optimization and unoptimization */
636void wait_for_kprobe_optimizer(void)
637{
638 mutex_lock(&kprobe_mutex);
639
640 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
641 mutex_unlock(&kprobe_mutex);
642
643 /* this will also make optimizing_work execute immmediately */
644 flush_delayed_work(&optimizing_work);
645 /* @optimizing_work might not have been queued yet, relax */
646 cpu_relax();
647
648 mutex_lock(&kprobe_mutex);
649 }
650
651 mutex_unlock(&kprobe_mutex);
652}
653
654static bool optprobe_queued_unopt(struct optimized_kprobe *op)
655{
656 struct optimized_kprobe *_op;
657
658 list_for_each_entry(_op, &unoptimizing_list, list) {
659 if (op == _op)
660 return true;
661 }
662
663 return false;
664}
665
666/* Optimize kprobe if p is ready to be optimized */
667static void optimize_kprobe(struct kprobe *p)
668{
669 struct optimized_kprobe *op;
670
671 /* Check if the kprobe is disabled or not ready for optimization. */
672 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
673 (kprobe_disabled(p) || kprobes_all_disarmed))
674 return;
675
676 /* kprobes with post_handler can not be optimized */
677 if (p->post_handler)
678 return;
679
680 op = container_of(p, struct optimized_kprobe, kp);
681
682 /* Check there is no other kprobes at the optimized instructions */
683 if (arch_check_optimized_kprobe(op) < 0)
684 return;
685
686 /* Check if it is already optimized. */
687 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
688 if (optprobe_queued_unopt(op)) {
689 /* This is under unoptimizing. Just dequeue the probe */
690 list_del_init(&op->list);
691 }
692 return;
693 }
694 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
695
696 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
697 if (WARN_ON_ONCE(!list_empty(&op->list)))
698 return;
699
700 list_add(&op->list, &optimizing_list);
701 kick_kprobe_optimizer();
702}
703
704/* Short cut to direct unoptimizing */
705static void force_unoptimize_kprobe(struct optimized_kprobe *op)
706{
707 lockdep_assert_cpus_held();
708 arch_unoptimize_kprobe(op);
709 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
710}
711
712/* Unoptimize a kprobe if p is optimized */
713static void unoptimize_kprobe(struct kprobe *p, bool force)
714{
715 struct optimized_kprobe *op;
716
717 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
718 return; /* This is not an optprobe nor optimized */
719
720 op = container_of(p, struct optimized_kprobe, kp);
721 if (!kprobe_optimized(p))
722 return;
723
724 if (!list_empty(&op->list)) {
725 if (optprobe_queued_unopt(op)) {
726 /* Queued in unoptimizing queue */
727 if (force) {
728 /*
729 * Forcibly unoptimize the kprobe here, and queue it
730 * in the freeing list for release afterwards.
731 */
732 force_unoptimize_kprobe(op);
733 list_move(&op->list, &freeing_list);
734 }
735 } else {
736 /* Dequeue from the optimizing queue */
737 list_del_init(&op->list);
738 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739 }
740 return;
741 }
742
743 /* Optimized kprobe case */
744 if (force) {
745 /* Forcibly update the code: this is a special case */
746 force_unoptimize_kprobe(op);
747 } else {
748 list_add(&op->list, &unoptimizing_list);
749 kick_kprobe_optimizer();
750 }
751}
752
753/* Cancel unoptimizing for reusing */
754static int reuse_unused_kprobe(struct kprobe *ap)
755{
756 struct optimized_kprobe *op;
757
758 /*
759 * Unused kprobe MUST be on the way of delayed unoptimizing (means
760 * there is still a relative jump) and disabled.
761 */
762 op = container_of(ap, struct optimized_kprobe, kp);
763 WARN_ON_ONCE(list_empty(&op->list));
764 /* Enable the probe again */
765 ap->flags &= ~KPROBE_FLAG_DISABLED;
766 /* Optimize it again (remove from op->list) */
767 if (!kprobe_optready(ap))
768 return -EINVAL;
769
770 optimize_kprobe(ap);
771 return 0;
772}
773
774/* Remove optimized instructions */
775static void kill_optimized_kprobe(struct kprobe *p)
776{
777 struct optimized_kprobe *op;
778
779 op = container_of(p, struct optimized_kprobe, kp);
780 if (!list_empty(&op->list))
781 /* Dequeue from the (un)optimization queue */
782 list_del_init(&op->list);
783 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
784
785 if (kprobe_unused(p)) {
786 /* Enqueue if it is unused */
787 list_add(&op->list, &freeing_list);
788 /*
789 * Remove unused probes from the hash list. After waiting
790 * for synchronization, this probe is reclaimed.
791 * (reclaiming is done by do_free_cleaned_kprobes().)
792 */
793 hlist_del_rcu(&op->kp.hlist);
794 }
795
796 /* Don't touch the code, because it is already freed. */
797 arch_remove_optimized_kprobe(op);
798}
799
800static inline
801void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
802{
803 if (!kprobe_ftrace(p))
804 arch_prepare_optimized_kprobe(op, p);
805}
806
807/* Try to prepare optimized instructions */
808static void prepare_optimized_kprobe(struct kprobe *p)
809{
810 struct optimized_kprobe *op;
811
812 op = container_of(p, struct optimized_kprobe, kp);
813 __prepare_optimized_kprobe(op, p);
814}
815
816/* Allocate new optimized_kprobe and try to prepare optimized instructions */
817static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
818{
819 struct optimized_kprobe *op;
820
821 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
822 if (!op)
823 return NULL;
824
825 INIT_LIST_HEAD(&op->list);
826 op->kp.addr = p->addr;
827 __prepare_optimized_kprobe(op, p);
828
829 return &op->kp;
830}
831
832static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
833
834/*
835 * Prepare an optimized_kprobe and optimize it
836 * NOTE: p must be a normal registered kprobe
837 */
838static void try_to_optimize_kprobe(struct kprobe *p)
839{
840 struct kprobe *ap;
841 struct optimized_kprobe *op;
842
843 /* Impossible to optimize ftrace-based kprobe */
844 if (kprobe_ftrace(p))
845 return;
846
847 /* For preparing optimization, jump_label_text_reserved() is called */
848 cpus_read_lock();
849 jump_label_lock();
850 mutex_lock(&text_mutex);
851
852 ap = alloc_aggr_kprobe(p);
853 if (!ap)
854 goto out;
855
856 op = container_of(ap, struct optimized_kprobe, kp);
857 if (!arch_prepared_optinsn(&op->optinsn)) {
858 /* If failed to setup optimizing, fallback to kprobe */
859 arch_remove_optimized_kprobe(op);
860 kfree(op);
861 goto out;
862 }
863
864 init_aggr_kprobe(ap, p);
865 optimize_kprobe(ap); /* This just kicks optimizer thread */
866
867out:
868 mutex_unlock(&text_mutex);
869 jump_label_unlock();
870 cpus_read_unlock();
871}
872
873#ifdef CONFIG_SYSCTL
874static void optimize_all_kprobes(void)
875{
876 struct hlist_head *head;
877 struct kprobe *p;
878 unsigned int i;
879
880 mutex_lock(&kprobe_mutex);
881 /* If optimization is already allowed, just return */
882 if (kprobes_allow_optimization)
883 goto out;
884
885 cpus_read_lock();
886 kprobes_allow_optimization = true;
887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888 head = &kprobe_table[i];
889 hlist_for_each_entry(p, head, hlist)
890 if (!kprobe_disabled(p))
891 optimize_kprobe(p);
892 }
893 cpus_read_unlock();
894 printk(KERN_INFO "Kprobes globally optimized\n");
895out:
896 mutex_unlock(&kprobe_mutex);
897}
898
899static void unoptimize_all_kprobes(void)
900{
901 struct hlist_head *head;
902 struct kprobe *p;
903 unsigned int i;
904
905 mutex_lock(&kprobe_mutex);
906 /* If optimization is already prohibited, just return */
907 if (!kprobes_allow_optimization) {
908 mutex_unlock(&kprobe_mutex);
909 return;
910 }
911
912 cpus_read_lock();
913 kprobes_allow_optimization = false;
914 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
915 head = &kprobe_table[i];
916 hlist_for_each_entry(p, head, hlist) {
917 if (!kprobe_disabled(p))
918 unoptimize_kprobe(p, false);
919 }
920 }
921 cpus_read_unlock();
922 mutex_unlock(&kprobe_mutex);
923
924 /* Wait for unoptimizing completion */
925 wait_for_kprobe_optimizer();
926 printk(KERN_INFO "Kprobes globally unoptimized\n");
927}
928
929static DEFINE_MUTEX(kprobe_sysctl_mutex);
930int sysctl_kprobes_optimization;
931int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
932 void *buffer, size_t *length,
933 loff_t *ppos)
934{
935 int ret;
936
937 mutex_lock(&kprobe_sysctl_mutex);
938 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940
941 if (sysctl_kprobes_optimization)
942 optimize_all_kprobes();
943 else
944 unoptimize_all_kprobes();
945 mutex_unlock(&kprobe_sysctl_mutex);
946
947 return ret;
948}
949#endif /* CONFIG_SYSCTL */
950
951/* Put a breakpoint for a probe. Must be called with text_mutex locked */
952static void __arm_kprobe(struct kprobe *p)
953{
954 struct kprobe *_p;
955
956 /* Check collision with other optimized kprobes */
957 _p = get_optimized_kprobe((unsigned long)p->addr);
958 if (unlikely(_p))
959 /* Fallback to unoptimized kprobe */
960 unoptimize_kprobe(_p, true);
961
962 arch_arm_kprobe(p);
963 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
964}
965
966/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
967static void __disarm_kprobe(struct kprobe *p, bool reopt)
968{
969 struct kprobe *_p;
970
971 /* Try to unoptimize */
972 unoptimize_kprobe(p, kprobes_all_disarmed);
973
974 if (!kprobe_queued(p)) {
975 arch_disarm_kprobe(p);
976 /* If another kprobe was blocked, optimize it. */
977 _p = get_optimized_kprobe((unsigned long)p->addr);
978 if (unlikely(_p) && reopt)
979 optimize_kprobe(_p);
980 }
981 /* TODO: reoptimize others after unoptimized this probe */
982}
983
984#else /* !CONFIG_OPTPROBES */
985
986#define optimize_kprobe(p) do {} while (0)
987#define unoptimize_kprobe(p, f) do {} while (0)
988#define kill_optimized_kprobe(p) do {} while (0)
989#define prepare_optimized_kprobe(p) do {} while (0)
990#define try_to_optimize_kprobe(p) do {} while (0)
991#define __arm_kprobe(p) arch_arm_kprobe(p)
992#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
993#define kprobe_disarmed(p) kprobe_disabled(p)
994#define wait_for_kprobe_optimizer() do {} while (0)
995
996static int reuse_unused_kprobe(struct kprobe *ap)
997{
998 /*
999 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000 * released at the same time that the last aggregated kprobe is
1001 * unregistered.
1002 * Thus there should be no chance to reuse unused kprobe.
1003 */
1004 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005 return -EINVAL;
1006}
1007
1008static void free_aggr_kprobe(struct kprobe *p)
1009{
1010 arch_remove_kprobe(p);
1011 kfree(p);
1012}
1013
1014static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015{
1016 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017}
1018#endif /* CONFIG_OPTPROBES */
1019
1020#ifdef CONFIG_KPROBES_ON_FTRACE
1021static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022 .func = kprobe_ftrace_handler,
1023 .flags = FTRACE_OPS_FL_SAVE_REGS,
1024};
1025
1026static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027 .func = kprobe_ftrace_handler,
1028 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029};
1030
1031static int kprobe_ipmodify_enabled;
1032static int kprobe_ftrace_enabled;
1033
1034/* Must ensure p->addr is really on ftrace */
1035static int prepare_kprobe(struct kprobe *p)
1036{
1037 if (!kprobe_ftrace(p))
1038 return arch_prepare_kprobe(p);
1039
1040 return arch_prepare_kprobe_ftrace(p);
1041}
1042
1043/* Caller must lock kprobe_mutex */
1044static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045 int *cnt)
1046{
1047 int ret = 0;
1048
1049 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050 if (ret) {
1051 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052 p->addr, ret);
1053 return ret;
1054 }
1055
1056 if (*cnt == 0) {
1057 ret = register_ftrace_function(ops);
1058 if (ret) {
1059 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060 goto err_ftrace;
1061 }
1062 }
1063
1064 (*cnt)++;
1065 return ret;
1066
1067err_ftrace:
1068 /*
1069 * At this point, sinec ops is not registered, we should be sefe from
1070 * registering empty filter.
1071 */
1072 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073 return ret;
1074}
1075
1076static int arm_kprobe_ftrace(struct kprobe *p)
1077{
1078 bool ipmodify = (p->post_handler != NULL);
1079
1080 return __arm_kprobe_ftrace(p,
1081 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083}
1084
1085/* Caller must lock kprobe_mutex */
1086static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087 int *cnt)
1088{
1089 int ret = 0;
1090
1091 if (*cnt == 1) {
1092 ret = unregister_ftrace_function(ops);
1093 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094 return ret;
1095 }
1096
1097 (*cnt)--;
1098
1099 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101 p->addr, ret);
1102 return ret;
1103}
1104
1105static int disarm_kprobe_ftrace(struct kprobe *p)
1106{
1107 bool ipmodify = (p->post_handler != NULL);
1108
1109 return __disarm_kprobe_ftrace(p,
1110 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112}
1113#else /* !CONFIG_KPROBES_ON_FTRACE */
1114static inline int prepare_kprobe(struct kprobe *p)
1115{
1116 return arch_prepare_kprobe(p);
1117}
1118
1119static inline int arm_kprobe_ftrace(struct kprobe *p)
1120{
1121 return -ENODEV;
1122}
1123
1124static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125{
1126 return -ENODEV;
1127}
1128#endif
1129
1130/* Arm a kprobe with text_mutex */
1131static int arm_kprobe(struct kprobe *kp)
1132{
1133 if (unlikely(kprobe_ftrace(kp)))
1134 return arm_kprobe_ftrace(kp);
1135
1136 cpus_read_lock();
1137 mutex_lock(&text_mutex);
1138 __arm_kprobe(kp);
1139 mutex_unlock(&text_mutex);
1140 cpus_read_unlock();
1141
1142 return 0;
1143}
1144
1145/* Disarm a kprobe with text_mutex */
1146static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147{
1148 if (unlikely(kprobe_ftrace(kp)))
1149 return disarm_kprobe_ftrace(kp);
1150
1151 cpus_read_lock();
1152 mutex_lock(&text_mutex);
1153 __disarm_kprobe(kp, reopt);
1154 mutex_unlock(&text_mutex);
1155 cpus_read_unlock();
1156
1157 return 0;
1158}
1159
1160/*
1161 * Aggregate handlers for multiple kprobes support - these handlers
1162 * take care of invoking the individual kprobe handlers on p->list
1163 */
1164static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165{
1166 struct kprobe *kp;
1167
1168 list_for_each_entry_rcu(kp, &p->list, list) {
1169 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170 set_kprobe_instance(kp);
1171 if (kp->pre_handler(kp, regs))
1172 return 1;
1173 }
1174 reset_kprobe_instance();
1175 }
1176 return 0;
1177}
1178NOKPROBE_SYMBOL(aggr_pre_handler);
1179
1180static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181 unsigned long flags)
1182{
1183 struct kprobe *kp;
1184
1185 list_for_each_entry_rcu(kp, &p->list, list) {
1186 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187 set_kprobe_instance(kp);
1188 kp->post_handler(kp, regs, flags);
1189 reset_kprobe_instance();
1190 }
1191 }
1192}
1193NOKPROBE_SYMBOL(aggr_post_handler);
1194
1195static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196 int trapnr)
1197{
1198 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199
1200 /*
1201 * if we faulted "during" the execution of a user specified
1202 * probe handler, invoke just that probe's fault handler
1203 */
1204 if (cur && cur->fault_handler) {
1205 if (cur->fault_handler(cur, regs, trapnr))
1206 return 1;
1207 }
1208 return 0;
1209}
1210NOKPROBE_SYMBOL(aggr_fault_handler);
1211
1212/* Walks the list and increments nmissed count for multiprobe case */
1213void kprobes_inc_nmissed_count(struct kprobe *p)
1214{
1215 struct kprobe *kp;
1216 if (!kprobe_aggrprobe(p)) {
1217 p->nmissed++;
1218 } else {
1219 list_for_each_entry_rcu(kp, &p->list, list)
1220 kp->nmissed++;
1221 }
1222 return;
1223}
1224NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225
1226void recycle_rp_inst(struct kretprobe_instance *ri,
1227 struct hlist_head *head)
1228{
1229 struct kretprobe *rp = ri->rp;
1230
1231 /* remove rp inst off the rprobe_inst_table */
1232 hlist_del(&ri->hlist);
1233 INIT_HLIST_NODE(&ri->hlist);
1234 if (likely(rp)) {
1235 raw_spin_lock(&rp->lock);
1236 hlist_add_head(&ri->hlist, &rp->free_instances);
1237 raw_spin_unlock(&rp->lock);
1238 } else
1239 /* Unregistering */
1240 hlist_add_head(&ri->hlist, head);
1241}
1242NOKPROBE_SYMBOL(recycle_rp_inst);
1243
1244void kretprobe_hash_lock(struct task_struct *tsk,
1245 struct hlist_head **head, unsigned long *flags)
1246__acquires(hlist_lock)
1247{
1248 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249 raw_spinlock_t *hlist_lock;
1250
1251 *head = &kretprobe_inst_table[hash];
1252 hlist_lock = kretprobe_table_lock_ptr(hash);
1253 raw_spin_lock_irqsave(hlist_lock, *flags);
1254}
1255NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256
1257static void kretprobe_table_lock(unsigned long hash,
1258 unsigned long *flags)
1259__acquires(hlist_lock)
1260{
1261 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262 raw_spin_lock_irqsave(hlist_lock, *flags);
1263}
1264NOKPROBE_SYMBOL(kretprobe_table_lock);
1265
1266void kretprobe_hash_unlock(struct task_struct *tsk,
1267 unsigned long *flags)
1268__releases(hlist_lock)
1269{
1270 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271 raw_spinlock_t *hlist_lock;
1272
1273 hlist_lock = kretprobe_table_lock_ptr(hash);
1274 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275}
1276NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277
1278static void kretprobe_table_unlock(unsigned long hash,
1279 unsigned long *flags)
1280__releases(hlist_lock)
1281{
1282 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284}
1285NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286
1287struct kprobe kprobe_busy = {
1288 .addr = (void *) get_kprobe,
1289};
1290
1291void kprobe_busy_begin(void)
1292{
1293 struct kprobe_ctlblk *kcb;
1294
1295 preempt_disable();
1296 __this_cpu_write(current_kprobe, &kprobe_busy);
1297 kcb = get_kprobe_ctlblk();
1298 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299}
1300
1301void kprobe_busy_end(void)
1302{
1303 __this_cpu_write(current_kprobe, NULL);
1304 preempt_enable();
1305}
1306
1307/*
1308 * This function is called from finish_task_switch when task tk becomes dead,
1309 * so that we can recycle any function-return probe instances associated
1310 * with this task. These left over instances represent probed functions
1311 * that have been called but will never return.
1312 */
1313void kprobe_flush_task(struct task_struct *tk)
1314{
1315 struct kretprobe_instance *ri;
1316 struct hlist_head *head, empty_rp;
1317 struct hlist_node *tmp;
1318 unsigned long hash, flags = 0;
1319
1320 if (unlikely(!kprobes_initialized))
1321 /* Early boot. kretprobe_table_locks not yet initialized. */
1322 return;
1323
1324 kprobe_busy_begin();
1325
1326 INIT_HLIST_HEAD(&empty_rp);
1327 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328 head = &kretprobe_inst_table[hash];
1329 kretprobe_table_lock(hash, &flags);
1330 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331 if (ri->task == tk)
1332 recycle_rp_inst(ri, &empty_rp);
1333 }
1334 kretprobe_table_unlock(hash, &flags);
1335 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336 hlist_del(&ri->hlist);
1337 kfree(ri);
1338 }
1339
1340 kprobe_busy_end();
1341}
1342NOKPROBE_SYMBOL(kprobe_flush_task);
1343
1344static inline void free_rp_inst(struct kretprobe *rp)
1345{
1346 struct kretprobe_instance *ri;
1347 struct hlist_node *next;
1348
1349 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350 hlist_del(&ri->hlist);
1351 kfree(ri);
1352 }
1353}
1354
1355static void cleanup_rp_inst(struct kretprobe *rp)
1356{
1357 unsigned long flags, hash;
1358 struct kretprobe_instance *ri;
1359 struct hlist_node *next;
1360 struct hlist_head *head;
1361
1362 /* No race here */
1363 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364 kretprobe_table_lock(hash, &flags);
1365 head = &kretprobe_inst_table[hash];
1366 hlist_for_each_entry_safe(ri, next, head, hlist) {
1367 if (ri->rp == rp)
1368 ri->rp = NULL;
1369 }
1370 kretprobe_table_unlock(hash, &flags);
1371 }
1372 free_rp_inst(rp);
1373}
1374NOKPROBE_SYMBOL(cleanup_rp_inst);
1375
1376/* Add the new probe to ap->list */
1377static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1378{
1379 if (p->post_handler)
1380 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1381
1382 list_add_rcu(&p->list, &ap->list);
1383 if (p->post_handler && !ap->post_handler)
1384 ap->post_handler = aggr_post_handler;
1385
1386 return 0;
1387}
1388
1389/*
1390 * Fill in the required fields of the "manager kprobe". Replace the
1391 * earlier kprobe in the hlist with the manager kprobe
1392 */
1393static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394{
1395 /* Copy p's insn slot to ap */
1396 copy_kprobe(p, ap);
1397 flush_insn_slot(ap);
1398 ap->addr = p->addr;
1399 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400 ap->pre_handler = aggr_pre_handler;
1401 ap->fault_handler = aggr_fault_handler;
1402 /* We don't care the kprobe which has gone. */
1403 if (p->post_handler && !kprobe_gone(p))
1404 ap->post_handler = aggr_post_handler;
1405
1406 INIT_LIST_HEAD(&ap->list);
1407 INIT_HLIST_NODE(&ap->hlist);
1408
1409 list_add_rcu(&p->list, &ap->list);
1410 hlist_replace_rcu(&p->hlist, &ap->hlist);
1411}
1412
1413/*
1414 * This is the second or subsequent kprobe at the address - handle
1415 * the intricacies
1416 */
1417static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1418{
1419 int ret = 0;
1420 struct kprobe *ap = orig_p;
1421
1422 cpus_read_lock();
1423
1424 /* For preparing optimization, jump_label_text_reserved() is called */
1425 jump_label_lock();
1426 mutex_lock(&text_mutex);
1427
1428 if (!kprobe_aggrprobe(orig_p)) {
1429 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430 ap = alloc_aggr_kprobe(orig_p);
1431 if (!ap) {
1432 ret = -ENOMEM;
1433 goto out;
1434 }
1435 init_aggr_kprobe(ap, orig_p);
1436 } else if (kprobe_unused(ap)) {
1437 /* This probe is going to die. Rescue it */
1438 ret = reuse_unused_kprobe(ap);
1439 if (ret)
1440 goto out;
1441 }
1442
1443 if (kprobe_gone(ap)) {
1444 /*
1445 * Attempting to insert new probe at the same location that
1446 * had a probe in the module vaddr area which already
1447 * freed. So, the instruction slot has already been
1448 * released. We need a new slot for the new probe.
1449 */
1450 ret = arch_prepare_kprobe(ap);
1451 if (ret)
1452 /*
1453 * Even if fail to allocate new slot, don't need to
1454 * free aggr_probe. It will be used next time, or
1455 * freed by unregister_kprobe.
1456 */
1457 goto out;
1458
1459 /* Prepare optimized instructions if possible. */
1460 prepare_optimized_kprobe(ap);
1461
1462 /*
1463 * Clear gone flag to prevent allocating new slot again, and
1464 * set disabled flag because it is not armed yet.
1465 */
1466 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467 | KPROBE_FLAG_DISABLED;
1468 }
1469
1470 /* Copy ap's insn slot to p */
1471 copy_kprobe(ap, p);
1472 ret = add_new_kprobe(ap, p);
1473
1474out:
1475 mutex_unlock(&text_mutex);
1476 jump_label_unlock();
1477 cpus_read_unlock();
1478
1479 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480 ap->flags &= ~KPROBE_FLAG_DISABLED;
1481 if (!kprobes_all_disarmed) {
1482 /* Arm the breakpoint again. */
1483 ret = arm_kprobe(ap);
1484 if (ret) {
1485 ap->flags |= KPROBE_FLAG_DISABLED;
1486 list_del_rcu(&p->list);
1487 synchronize_rcu();
1488 }
1489 }
1490 }
1491 return ret;
1492}
1493
1494bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495{
1496 /* The __kprobes marked functions and entry code must not be probed */
1497 return addr >= (unsigned long)__kprobes_text_start &&
1498 addr < (unsigned long)__kprobes_text_end;
1499}
1500
1501static bool __within_kprobe_blacklist(unsigned long addr)
1502{
1503 struct kprobe_blacklist_entry *ent;
1504
1505 if (arch_within_kprobe_blacklist(addr))
1506 return true;
1507 /*
1508 * If there exists a kprobe_blacklist, verify and
1509 * fail any probe registration in the prohibited area
1510 */
1511 list_for_each_entry(ent, &kprobe_blacklist, list) {
1512 if (addr >= ent->start_addr && addr < ent->end_addr)
1513 return true;
1514 }
1515 return false;
1516}
1517
1518bool within_kprobe_blacklist(unsigned long addr)
1519{
1520 char symname[KSYM_NAME_LEN], *p;
1521
1522 if (__within_kprobe_blacklist(addr))
1523 return true;
1524
1525 /* Check if the address is on a suffixed-symbol */
1526 if (!lookup_symbol_name(addr, symname)) {
1527 p = strchr(symname, '.');
1528 if (!p)
1529 return false;
1530 *p = '\0';
1531 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532 if (addr)
1533 return __within_kprobe_blacklist(addr);
1534 }
1535 return false;
1536}
1537
1538/*
1539 * If we have a symbol_name argument, look it up and add the offset field
1540 * to it. This way, we can specify a relative address to a symbol.
1541 * This returns encoded errors if it fails to look up symbol or invalid
1542 * combination of parameters.
1543 */
1544static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545 const char *symbol_name, unsigned int offset)
1546{
1547 if ((symbol_name && addr) || (!symbol_name && !addr))
1548 goto invalid;
1549
1550 if (symbol_name) {
1551 addr = kprobe_lookup_name(symbol_name, offset);
1552 if (!addr)
1553 return ERR_PTR(-ENOENT);
1554 }
1555
1556 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557 if (addr)
1558 return addr;
1559
1560invalid:
1561 return ERR_PTR(-EINVAL);
1562}
1563
1564static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565{
1566 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567}
1568
1569/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571{
1572 struct kprobe *ap, *list_p;
1573
1574 lockdep_assert_held(&kprobe_mutex);
1575
1576 ap = get_kprobe(p->addr);
1577 if (unlikely(!ap))
1578 return NULL;
1579
1580 if (p != ap) {
1581 list_for_each_entry(list_p, &ap->list, list)
1582 if (list_p == p)
1583 /* kprobe p is a valid probe */
1584 goto valid;
1585 return NULL;
1586 }
1587valid:
1588 return ap;
1589}
1590
1591/* Return error if the kprobe is being re-registered */
1592static inline int check_kprobe_rereg(struct kprobe *p)
1593{
1594 int ret = 0;
1595
1596 mutex_lock(&kprobe_mutex);
1597 if (__get_valid_kprobe(p))
1598 ret = -EINVAL;
1599 mutex_unlock(&kprobe_mutex);
1600
1601 return ret;
1602}
1603
1604int __weak arch_check_ftrace_location(struct kprobe *p)
1605{
1606 unsigned long ftrace_addr;
1607
1608 ftrace_addr = ftrace_location((unsigned long)p->addr);
1609 if (ftrace_addr) {
1610#ifdef CONFIG_KPROBES_ON_FTRACE
1611 /* Given address is not on the instruction boundary */
1612 if ((unsigned long)p->addr != ftrace_addr)
1613 return -EILSEQ;
1614 p->flags |= KPROBE_FLAG_FTRACE;
1615#else /* !CONFIG_KPROBES_ON_FTRACE */
1616 return -EINVAL;
1617#endif
1618 }
1619 return 0;
1620}
1621
1622static int check_kprobe_address_safe(struct kprobe *p,
1623 struct module **probed_mod)
1624{
1625 int ret;
1626
1627 ret = arch_check_ftrace_location(p);
1628 if (ret)
1629 return ret;
1630 jump_label_lock();
1631 preempt_disable();
1632
1633 /* Ensure it is not in reserved area nor out of text */
1634 if (!kernel_text_address((unsigned long) p->addr) ||
1635 within_kprobe_blacklist((unsigned long) p->addr) ||
1636 jump_label_text_reserved(p->addr, p->addr) ||
1637 find_bug((unsigned long)p->addr)) {
1638 ret = -EINVAL;
1639 goto out;
1640 }
1641
1642 /* Check if are we probing a module */
1643 *probed_mod = __module_text_address((unsigned long) p->addr);
1644 if (*probed_mod) {
1645 /*
1646 * We must hold a refcount of the probed module while updating
1647 * its code to prohibit unexpected unloading.
1648 */
1649 if (unlikely(!try_module_get(*probed_mod))) {
1650 ret = -ENOENT;
1651 goto out;
1652 }
1653
1654 /*
1655 * If the module freed .init.text, we couldn't insert
1656 * kprobes in there.
1657 */
1658 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659 (*probed_mod)->state != MODULE_STATE_COMING) {
1660 module_put(*probed_mod);
1661 *probed_mod = NULL;
1662 ret = -ENOENT;
1663 }
1664 }
1665out:
1666 preempt_enable();
1667 jump_label_unlock();
1668
1669 return ret;
1670}
1671
1672int register_kprobe(struct kprobe *p)
1673{
1674 int ret;
1675 struct kprobe *old_p;
1676 struct module *probed_mod;
1677 kprobe_opcode_t *addr;
1678
1679 /* Adjust probe address from symbol */
1680 addr = kprobe_addr(p);
1681 if (IS_ERR(addr))
1682 return PTR_ERR(addr);
1683 p->addr = addr;
1684
1685 ret = check_kprobe_rereg(p);
1686 if (ret)
1687 return ret;
1688
1689 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690 p->flags &= KPROBE_FLAG_DISABLED;
1691 p->nmissed = 0;
1692 INIT_LIST_HEAD(&p->list);
1693
1694 ret = check_kprobe_address_safe(p, &probed_mod);
1695 if (ret)
1696 return ret;
1697
1698 mutex_lock(&kprobe_mutex);
1699
1700 old_p = get_kprobe(p->addr);
1701 if (old_p) {
1702 /* Since this may unoptimize old_p, locking text_mutex. */
1703 ret = register_aggr_kprobe(old_p, p);
1704 goto out;
1705 }
1706
1707 cpus_read_lock();
1708 /* Prevent text modification */
1709 mutex_lock(&text_mutex);
1710 ret = prepare_kprobe(p);
1711 mutex_unlock(&text_mutex);
1712 cpus_read_unlock();
1713 if (ret)
1714 goto out;
1715
1716 INIT_HLIST_NODE(&p->hlist);
1717 hlist_add_head_rcu(&p->hlist,
1718 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719
1720 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721 ret = arm_kprobe(p);
1722 if (ret) {
1723 hlist_del_rcu(&p->hlist);
1724 synchronize_rcu();
1725 goto out;
1726 }
1727 }
1728
1729 /* Try to optimize kprobe */
1730 try_to_optimize_kprobe(p);
1731out:
1732 mutex_unlock(&kprobe_mutex);
1733
1734 if (probed_mod)
1735 module_put(probed_mod);
1736
1737 return ret;
1738}
1739EXPORT_SYMBOL_GPL(register_kprobe);
1740
1741/* Check if all probes on the aggrprobe are disabled */
1742static int aggr_kprobe_disabled(struct kprobe *ap)
1743{
1744 struct kprobe *kp;
1745
1746 lockdep_assert_held(&kprobe_mutex);
1747
1748 list_for_each_entry(kp, &ap->list, list)
1749 if (!kprobe_disabled(kp))
1750 /*
1751 * There is an active probe on the list.
1752 * We can't disable this ap.
1753 */
1754 return 0;
1755
1756 return 1;
1757}
1758
1759/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760static struct kprobe *__disable_kprobe(struct kprobe *p)
1761{
1762 struct kprobe *orig_p;
1763 int ret;
1764
1765 /* Get an original kprobe for return */
1766 orig_p = __get_valid_kprobe(p);
1767 if (unlikely(orig_p == NULL))
1768 return ERR_PTR(-EINVAL);
1769
1770 if (!kprobe_disabled(p)) {
1771 /* Disable probe if it is a child probe */
1772 if (p != orig_p)
1773 p->flags |= KPROBE_FLAG_DISABLED;
1774
1775 /* Try to disarm and disable this/parent probe */
1776 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777 /*
1778 * If kprobes_all_disarmed is set, orig_p
1779 * should have already been disarmed, so
1780 * skip unneed disarming process.
1781 */
1782 if (!kprobes_all_disarmed) {
1783 ret = disarm_kprobe(orig_p, true);
1784 if (ret) {
1785 p->flags &= ~KPROBE_FLAG_DISABLED;
1786 return ERR_PTR(ret);
1787 }
1788 }
1789 orig_p->flags |= KPROBE_FLAG_DISABLED;
1790 }
1791 }
1792
1793 return orig_p;
1794}
1795
1796/*
1797 * Unregister a kprobe without a scheduler synchronization.
1798 */
1799static int __unregister_kprobe_top(struct kprobe *p)
1800{
1801 struct kprobe *ap, *list_p;
1802
1803 /* Disable kprobe. This will disarm it if needed. */
1804 ap = __disable_kprobe(p);
1805 if (IS_ERR(ap))
1806 return PTR_ERR(ap);
1807
1808 if (ap == p)
1809 /*
1810 * This probe is an independent(and non-optimized) kprobe
1811 * (not an aggrprobe). Remove from the hash list.
1812 */
1813 goto disarmed;
1814
1815 /* Following process expects this probe is an aggrprobe */
1816 WARN_ON(!kprobe_aggrprobe(ap));
1817
1818 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819 /*
1820 * !disarmed could be happen if the probe is under delayed
1821 * unoptimizing.
1822 */
1823 goto disarmed;
1824 else {
1825 /* If disabling probe has special handlers, update aggrprobe */
1826 if (p->post_handler && !kprobe_gone(p)) {
1827 list_for_each_entry(list_p, &ap->list, list) {
1828 if ((list_p != p) && (list_p->post_handler))
1829 goto noclean;
1830 }
1831 ap->post_handler = NULL;
1832 }
1833noclean:
1834 /*
1835 * Remove from the aggrprobe: this path will do nothing in
1836 * __unregister_kprobe_bottom().
1837 */
1838 list_del_rcu(&p->list);
1839 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840 /*
1841 * Try to optimize this probe again, because post
1842 * handler may have been changed.
1843 */
1844 optimize_kprobe(ap);
1845 }
1846 return 0;
1847
1848disarmed:
1849 hlist_del_rcu(&ap->hlist);
1850 return 0;
1851}
1852
1853static void __unregister_kprobe_bottom(struct kprobe *p)
1854{
1855 struct kprobe *ap;
1856
1857 if (list_empty(&p->list))
1858 /* This is an independent kprobe */
1859 arch_remove_kprobe(p);
1860 else if (list_is_singular(&p->list)) {
1861 /* This is the last child of an aggrprobe */
1862 ap = list_entry(p->list.next, struct kprobe, list);
1863 list_del(&p->list);
1864 free_aggr_kprobe(ap);
1865 }
1866 /* Otherwise, do nothing. */
1867}
1868
1869int register_kprobes(struct kprobe **kps, int num)
1870{
1871 int i, ret = 0;
1872
1873 if (num <= 0)
1874 return -EINVAL;
1875 for (i = 0; i < num; i++) {
1876 ret = register_kprobe(kps[i]);
1877 if (ret < 0) {
1878 if (i > 0)
1879 unregister_kprobes(kps, i);
1880 break;
1881 }
1882 }
1883 return ret;
1884}
1885EXPORT_SYMBOL_GPL(register_kprobes);
1886
1887void unregister_kprobe(struct kprobe *p)
1888{
1889 unregister_kprobes(&p, 1);
1890}
1891EXPORT_SYMBOL_GPL(unregister_kprobe);
1892
1893void unregister_kprobes(struct kprobe **kps, int num)
1894{
1895 int i;
1896
1897 if (num <= 0)
1898 return;
1899 mutex_lock(&kprobe_mutex);
1900 for (i = 0; i < num; i++)
1901 if (__unregister_kprobe_top(kps[i]) < 0)
1902 kps[i]->addr = NULL;
1903 mutex_unlock(&kprobe_mutex);
1904
1905 synchronize_rcu();
1906 for (i = 0; i < num; i++)
1907 if (kps[i]->addr)
1908 __unregister_kprobe_bottom(kps[i]);
1909}
1910EXPORT_SYMBOL_GPL(unregister_kprobes);
1911
1912int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913 unsigned long val, void *data)
1914{
1915 return NOTIFY_DONE;
1916}
1917NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918
1919static struct notifier_block kprobe_exceptions_nb = {
1920 .notifier_call = kprobe_exceptions_notify,
1921 .priority = 0x7fffffff /* we need to be notified first */
1922};
1923
1924unsigned long __weak arch_deref_entry_point(void *entry)
1925{
1926 return (unsigned long)entry;
1927}
1928
1929#ifdef CONFIG_KRETPROBES
1930/*
1931 * This kprobe pre_handler is registered with every kretprobe. When probe
1932 * hits it will set up the return probe.
1933 */
1934static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1935{
1936 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937 unsigned long hash, flags = 0;
1938 struct kretprobe_instance *ri;
1939
1940 /*
1941 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942 * just skip the probe and increase the (inexact) 'nmissed'
1943 * statistical counter, so that the user is informed that
1944 * something happened:
1945 */
1946 if (unlikely(in_nmi())) {
1947 rp->nmissed++;
1948 return 0;
1949 }
1950
1951 /* TODO: consider to only swap the RA after the last pre_handler fired */
1952 hash = hash_ptr(current, KPROBE_HASH_BITS);
1953 raw_spin_lock_irqsave(&rp->lock, flags);
1954 if (!hlist_empty(&rp->free_instances)) {
1955 ri = hlist_entry(rp->free_instances.first,
1956 struct kretprobe_instance, hlist);
1957 hlist_del(&ri->hlist);
1958 raw_spin_unlock_irqrestore(&rp->lock, flags);
1959
1960 ri->rp = rp;
1961 ri->task = current;
1962
1963 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964 raw_spin_lock_irqsave(&rp->lock, flags);
1965 hlist_add_head(&ri->hlist, &rp->free_instances);
1966 raw_spin_unlock_irqrestore(&rp->lock, flags);
1967 return 0;
1968 }
1969
1970 arch_prepare_kretprobe(ri, regs);
1971
1972 /* XXX(hch): why is there no hlist_move_head? */
1973 INIT_HLIST_NODE(&ri->hlist);
1974 kretprobe_table_lock(hash, &flags);
1975 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976 kretprobe_table_unlock(hash, &flags);
1977 } else {
1978 rp->nmissed++;
1979 raw_spin_unlock_irqrestore(&rp->lock, flags);
1980 }
1981 return 0;
1982}
1983NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984
1985bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986{
1987 return !offset;
1988}
1989
1990bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991{
1992 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993
1994 if (IS_ERR(kp_addr))
1995 return false;
1996
1997 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998 !arch_kprobe_on_func_entry(offset))
1999 return false;
2000
2001 return true;
2002}
2003
2004int register_kretprobe(struct kretprobe *rp)
2005{
2006 int ret = 0;
2007 struct kretprobe_instance *inst;
2008 int i;
2009 void *addr;
2010
2011 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012 return -EINVAL;
2013
2014 if (kretprobe_blacklist_size) {
2015 addr = kprobe_addr(&rp->kp);
2016 if (IS_ERR(addr))
2017 return PTR_ERR(addr);
2018
2019 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020 if (kretprobe_blacklist[i].addr == addr)
2021 return -EINVAL;
2022 }
2023 }
2024
2025 rp->kp.pre_handler = pre_handler_kretprobe;
2026 rp->kp.post_handler = NULL;
2027 rp->kp.fault_handler = NULL;
2028
2029 /* Pre-allocate memory for max kretprobe instances */
2030 if (rp->maxactive <= 0) {
2031#ifdef CONFIG_PREEMPTION
2032 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033#else
2034 rp->maxactive = num_possible_cpus();
2035#endif
2036 }
2037 raw_spin_lock_init(&rp->lock);
2038 INIT_HLIST_HEAD(&rp->free_instances);
2039 for (i = 0; i < rp->maxactive; i++) {
2040 inst = kmalloc(sizeof(struct kretprobe_instance) +
2041 rp->data_size, GFP_KERNEL);
2042 if (inst == NULL) {
2043 free_rp_inst(rp);
2044 return -ENOMEM;
2045 }
2046 INIT_HLIST_NODE(&inst->hlist);
2047 hlist_add_head(&inst->hlist, &rp->free_instances);
2048 }
2049
2050 rp->nmissed = 0;
2051 /* Establish function entry probe point */
2052 ret = register_kprobe(&rp->kp);
2053 if (ret != 0)
2054 free_rp_inst(rp);
2055 return ret;
2056}
2057EXPORT_SYMBOL_GPL(register_kretprobe);
2058
2059int register_kretprobes(struct kretprobe **rps, int num)
2060{
2061 int ret = 0, i;
2062
2063 if (num <= 0)
2064 return -EINVAL;
2065 for (i = 0; i < num; i++) {
2066 ret = register_kretprobe(rps[i]);
2067 if (ret < 0) {
2068 if (i > 0)
2069 unregister_kretprobes(rps, i);
2070 break;
2071 }
2072 }
2073 return ret;
2074}
2075EXPORT_SYMBOL_GPL(register_kretprobes);
2076
2077void unregister_kretprobe(struct kretprobe *rp)
2078{
2079 unregister_kretprobes(&rp, 1);
2080}
2081EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083void unregister_kretprobes(struct kretprobe **rps, int num)
2084{
2085 int i;
2086
2087 if (num <= 0)
2088 return;
2089 mutex_lock(&kprobe_mutex);
2090 for (i = 0; i < num; i++)
2091 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092 rps[i]->kp.addr = NULL;
2093 mutex_unlock(&kprobe_mutex);
2094
2095 synchronize_rcu();
2096 for (i = 0; i < num; i++) {
2097 if (rps[i]->kp.addr) {
2098 __unregister_kprobe_bottom(&rps[i]->kp);
2099 cleanup_rp_inst(rps[i]);
2100 }
2101 }
2102}
2103EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105#else /* CONFIG_KRETPROBES */
2106int register_kretprobe(struct kretprobe *rp)
2107{
2108 return -ENOSYS;
2109}
2110EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112int register_kretprobes(struct kretprobe **rps, int num)
2113{
2114 return -ENOSYS;
2115}
2116EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118void unregister_kretprobe(struct kretprobe *rp)
2119{
2120}
2121EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123void unregister_kretprobes(struct kretprobe **rps, int num)
2124{
2125}
2126EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129{
2130 return 0;
2131}
2132NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134#endif /* CONFIG_KRETPROBES */
2135
2136/* Set the kprobe gone and remove its instruction buffer. */
2137static void kill_kprobe(struct kprobe *p)
2138{
2139 struct kprobe *kp;
2140
2141 lockdep_assert_held(&kprobe_mutex);
2142
2143 if (WARN_ON_ONCE(kprobe_gone(p)))
2144 return;
2145
2146 p->flags |= KPROBE_FLAG_GONE;
2147 if (kprobe_aggrprobe(p)) {
2148 /*
2149 * If this is an aggr_kprobe, we have to list all the
2150 * chained probes and mark them GONE.
2151 */
2152 list_for_each_entry(kp, &p->list, list)
2153 kp->flags |= KPROBE_FLAG_GONE;
2154 p->post_handler = NULL;
2155 kill_optimized_kprobe(p);
2156 }
2157 /*
2158 * Here, we can remove insn_slot safely, because no thread calls
2159 * the original probed function (which will be freed soon) any more.
2160 */
2161 arch_remove_kprobe(p);
2162
2163 /*
2164 * The module is going away. We should disarm the kprobe which
2165 * is using ftrace, because ftrace framework is still available at
2166 * MODULE_STATE_GOING notification.
2167 */
2168 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2169 disarm_kprobe_ftrace(p);
2170}
2171
2172/* Disable one kprobe */
2173int disable_kprobe(struct kprobe *kp)
2174{
2175 int ret = 0;
2176 struct kprobe *p;
2177
2178 mutex_lock(&kprobe_mutex);
2179
2180 /* Disable this kprobe */
2181 p = __disable_kprobe(kp);
2182 if (IS_ERR(p))
2183 ret = PTR_ERR(p);
2184
2185 mutex_unlock(&kprobe_mutex);
2186 return ret;
2187}
2188EXPORT_SYMBOL_GPL(disable_kprobe);
2189
2190/* Enable one kprobe */
2191int enable_kprobe(struct kprobe *kp)
2192{
2193 int ret = 0;
2194 struct kprobe *p;
2195
2196 mutex_lock(&kprobe_mutex);
2197
2198 /* Check whether specified probe is valid. */
2199 p = __get_valid_kprobe(kp);
2200 if (unlikely(p == NULL)) {
2201 ret = -EINVAL;
2202 goto out;
2203 }
2204
2205 if (kprobe_gone(kp)) {
2206 /* This kprobe has gone, we couldn't enable it. */
2207 ret = -EINVAL;
2208 goto out;
2209 }
2210
2211 if (p != kp)
2212 kp->flags &= ~KPROBE_FLAG_DISABLED;
2213
2214 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2215 p->flags &= ~KPROBE_FLAG_DISABLED;
2216 ret = arm_kprobe(p);
2217 if (ret)
2218 p->flags |= KPROBE_FLAG_DISABLED;
2219 }
2220out:
2221 mutex_unlock(&kprobe_mutex);
2222 return ret;
2223}
2224EXPORT_SYMBOL_GPL(enable_kprobe);
2225
2226/* Caller must NOT call this in usual path. This is only for critical case */
2227void dump_kprobe(struct kprobe *kp)
2228{
2229 pr_err("Dumping kprobe:\n");
2230 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231 kp->symbol_name, kp->offset, kp->addr);
2232}
2233NOKPROBE_SYMBOL(dump_kprobe);
2234
2235int kprobe_add_ksym_blacklist(unsigned long entry)
2236{
2237 struct kprobe_blacklist_entry *ent;
2238 unsigned long offset = 0, size = 0;
2239
2240 if (!kernel_text_address(entry) ||
2241 !kallsyms_lookup_size_offset(entry, &size, &offset))
2242 return -EINVAL;
2243
2244 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245 if (!ent)
2246 return -ENOMEM;
2247 ent->start_addr = entry;
2248 ent->end_addr = entry + size;
2249 INIT_LIST_HEAD(&ent->list);
2250 list_add_tail(&ent->list, &kprobe_blacklist);
2251
2252 return (int)size;
2253}
2254
2255/* Add all symbols in given area into kprobe blacklist */
2256int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257{
2258 unsigned long entry;
2259 int ret = 0;
2260
2261 for (entry = start; entry < end; entry += ret) {
2262 ret = kprobe_add_ksym_blacklist(entry);
2263 if (ret < 0)
2264 return ret;
2265 if (ret == 0) /* In case of alias symbol */
2266 ret = 1;
2267 }
2268 return 0;
2269}
2270
2271/* Remove all symbols in given area from kprobe blacklist */
2272static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2273{
2274 struct kprobe_blacklist_entry *ent, *n;
2275
2276 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2277 if (ent->start_addr < start || ent->start_addr >= end)
2278 continue;
2279 list_del(&ent->list);
2280 kfree(ent);
2281 }
2282}
2283
2284static void kprobe_remove_ksym_blacklist(unsigned long entry)
2285{
2286 kprobe_remove_area_blacklist(entry, entry + 1);
2287}
2288
2289int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2290 char *type, char *sym)
2291{
2292 return -ERANGE;
2293}
2294
2295int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2296 char *sym)
2297{
2298#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2299 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2300 return 0;
2301#ifdef CONFIG_OPTPROBES
2302 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2303 return 0;
2304#endif
2305#endif
2306 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2307 return 0;
2308 return -ERANGE;
2309}
2310
2311int __init __weak arch_populate_kprobe_blacklist(void)
2312{
2313 return 0;
2314}
2315
2316/*
2317 * Lookup and populate the kprobe_blacklist.
2318 *
2319 * Unlike the kretprobe blacklist, we'll need to determine
2320 * the range of addresses that belong to the said functions,
2321 * since a kprobe need not necessarily be at the beginning
2322 * of a function.
2323 */
2324static int __init populate_kprobe_blacklist(unsigned long *start,
2325 unsigned long *end)
2326{
2327 unsigned long entry;
2328 unsigned long *iter;
2329 int ret;
2330
2331 for (iter = start; iter < end; iter++) {
2332 entry = arch_deref_entry_point((void *)*iter);
2333 ret = kprobe_add_ksym_blacklist(entry);
2334 if (ret == -EINVAL)
2335 continue;
2336 if (ret < 0)
2337 return ret;
2338 }
2339
2340 /* Symbols in __kprobes_text are blacklisted */
2341 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2342 (unsigned long)__kprobes_text_end);
2343 if (ret)
2344 return ret;
2345
2346 /* Symbols in noinstr section are blacklisted */
2347 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2348 (unsigned long)__noinstr_text_end);
2349
2350 return ret ? : arch_populate_kprobe_blacklist();
2351}
2352
2353static void add_module_kprobe_blacklist(struct module *mod)
2354{
2355 unsigned long start, end;
2356 int i;
2357
2358 if (mod->kprobe_blacklist) {
2359 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2360 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2361 }
2362
2363 start = (unsigned long)mod->kprobes_text_start;
2364 if (start) {
2365 end = start + mod->kprobes_text_size;
2366 kprobe_add_area_blacklist(start, end);
2367 }
2368
2369 start = (unsigned long)mod->noinstr_text_start;
2370 if (start) {
2371 end = start + mod->noinstr_text_size;
2372 kprobe_add_area_blacklist(start, end);
2373 }
2374}
2375
2376static void remove_module_kprobe_blacklist(struct module *mod)
2377{
2378 unsigned long start, end;
2379 int i;
2380
2381 if (mod->kprobe_blacklist) {
2382 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2383 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2384 }
2385
2386 start = (unsigned long)mod->kprobes_text_start;
2387 if (start) {
2388 end = start + mod->kprobes_text_size;
2389 kprobe_remove_area_blacklist(start, end);
2390 }
2391
2392 start = (unsigned long)mod->noinstr_text_start;
2393 if (start) {
2394 end = start + mod->noinstr_text_size;
2395 kprobe_remove_area_blacklist(start, end);
2396 }
2397}
2398
2399/* Module notifier call back, checking kprobes on the module */
2400static int kprobes_module_callback(struct notifier_block *nb,
2401 unsigned long val, void *data)
2402{
2403 struct module *mod = data;
2404 struct hlist_head *head;
2405 struct kprobe *p;
2406 unsigned int i;
2407 int checkcore = (val == MODULE_STATE_GOING);
2408
2409 if (val == MODULE_STATE_COMING) {
2410 mutex_lock(&kprobe_mutex);
2411 add_module_kprobe_blacklist(mod);
2412 mutex_unlock(&kprobe_mutex);
2413 }
2414 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2415 return NOTIFY_DONE;
2416
2417 /*
2418 * When MODULE_STATE_GOING was notified, both of module .text and
2419 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2420 * notified, only .init.text section would be freed. We need to
2421 * disable kprobes which have been inserted in the sections.
2422 */
2423 mutex_lock(&kprobe_mutex);
2424 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2425 head = &kprobe_table[i];
2426 hlist_for_each_entry(p, head, hlist) {
2427 if (kprobe_gone(p))
2428 continue;
2429
2430 if (within_module_init((unsigned long)p->addr, mod) ||
2431 (checkcore &&
2432 within_module_core((unsigned long)p->addr, mod))) {
2433 /*
2434 * The vaddr this probe is installed will soon
2435 * be vfreed buy not synced to disk. Hence,
2436 * disarming the breakpoint isn't needed.
2437 *
2438 * Note, this will also move any optimized probes
2439 * that are pending to be removed from their
2440 * corresponding lists to the freeing_list and
2441 * will not be touched by the delayed
2442 * kprobe_optimizer work handler.
2443 */
2444 kill_kprobe(p);
2445 }
2446 }
2447 }
2448 if (val == MODULE_STATE_GOING)
2449 remove_module_kprobe_blacklist(mod);
2450 mutex_unlock(&kprobe_mutex);
2451 return NOTIFY_DONE;
2452}
2453
2454static struct notifier_block kprobe_module_nb = {
2455 .notifier_call = kprobes_module_callback,
2456 .priority = 0
2457};
2458
2459/* Markers of _kprobe_blacklist section */
2460extern unsigned long __start_kprobe_blacklist[];
2461extern unsigned long __stop_kprobe_blacklist[];
2462
2463void kprobe_free_init_mem(void)
2464{
2465 void *start = (void *)(&__init_begin);
2466 void *end = (void *)(&__init_end);
2467 struct hlist_head *head;
2468 struct kprobe *p;
2469 int i;
2470
2471 mutex_lock(&kprobe_mutex);
2472
2473 /* Kill all kprobes on initmem */
2474 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2475 head = &kprobe_table[i];
2476 hlist_for_each_entry(p, head, hlist) {
2477 if (start <= (void *)p->addr && (void *)p->addr < end)
2478 kill_kprobe(p);
2479 }
2480 }
2481
2482 mutex_unlock(&kprobe_mutex);
2483}
2484
2485static int __init init_kprobes(void)
2486{
2487 int i, err = 0;
2488
2489 /* FIXME allocate the probe table, currently defined statically */
2490 /* initialize all list heads */
2491 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2492 INIT_HLIST_HEAD(&kprobe_table[i]);
2493 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2494 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2495 }
2496
2497 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2498 __stop_kprobe_blacklist);
2499 if (err) {
2500 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2501 pr_err("Please take care of using kprobes.\n");
2502 }
2503
2504 if (kretprobe_blacklist_size) {
2505 /* lookup the function address from its name */
2506 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2507 kretprobe_blacklist[i].addr =
2508 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2509 if (!kretprobe_blacklist[i].addr)
2510 printk("kretprobe: lookup failed: %s\n",
2511 kretprobe_blacklist[i].name);
2512 }
2513 }
2514
2515#if defined(CONFIG_OPTPROBES)
2516#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517 /* Init kprobe_optinsn_slots */
2518 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519#endif
2520 /* By default, kprobes can be optimized */
2521 kprobes_allow_optimization = true;
2522#endif
2523
2524 /* By default, kprobes are armed */
2525 kprobes_all_disarmed = false;
2526
2527 err = arch_init_kprobes();
2528 if (!err)
2529 err = register_die_notifier(&kprobe_exceptions_nb);
2530 if (!err)
2531 err = register_module_notifier(&kprobe_module_nb);
2532
2533 kprobes_initialized = (err == 0);
2534
2535 if (!err)
2536 init_test_probes();
2537 return err;
2538}
2539subsys_initcall(init_kprobes);
2540
2541#ifdef CONFIG_DEBUG_FS
2542static void report_probe(struct seq_file *pi, struct kprobe *p,
2543 const char *sym, int offset, char *modname, struct kprobe *pp)
2544{
2545 char *kprobe_type;
2546 void *addr = p->addr;
2547
2548 if (p->pre_handler == pre_handler_kretprobe)
2549 kprobe_type = "r";
2550 else
2551 kprobe_type = "k";
2552
2553 if (!kallsyms_show_value(pi->file->f_cred))
2554 addr = NULL;
2555
2556 if (sym)
2557 seq_printf(pi, "%px %s %s+0x%x %s ",
2558 addr, kprobe_type, sym, offset,
2559 (modname ? modname : " "));
2560 else /* try to use %pS */
2561 seq_printf(pi, "%px %s %pS ",
2562 addr, kprobe_type, p->addr);
2563
2564 if (!pp)
2565 pp = p;
2566 seq_printf(pi, "%s%s%s%s\n",
2567 (kprobe_gone(p) ? "[GONE]" : ""),
2568 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2569 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2570 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2571}
2572
2573static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2574{
2575 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2576}
2577
2578static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2579{
2580 (*pos)++;
2581 if (*pos >= KPROBE_TABLE_SIZE)
2582 return NULL;
2583 return pos;
2584}
2585
2586static void kprobe_seq_stop(struct seq_file *f, void *v)
2587{
2588 /* Nothing to do */
2589}
2590
2591static int show_kprobe_addr(struct seq_file *pi, void *v)
2592{
2593 struct hlist_head *head;
2594 struct kprobe *p, *kp;
2595 const char *sym = NULL;
2596 unsigned int i = *(loff_t *) v;
2597 unsigned long offset = 0;
2598 char *modname, namebuf[KSYM_NAME_LEN];
2599
2600 head = &kprobe_table[i];
2601 preempt_disable();
2602 hlist_for_each_entry_rcu(p, head, hlist) {
2603 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2604 &offset, &modname, namebuf);
2605 if (kprobe_aggrprobe(p)) {
2606 list_for_each_entry_rcu(kp, &p->list, list)
2607 report_probe(pi, kp, sym, offset, modname, p);
2608 } else
2609 report_probe(pi, p, sym, offset, modname, NULL);
2610 }
2611 preempt_enable();
2612 return 0;
2613}
2614
2615static const struct seq_operations kprobes_sops = {
2616 .start = kprobe_seq_start,
2617 .next = kprobe_seq_next,
2618 .stop = kprobe_seq_stop,
2619 .show = show_kprobe_addr
2620};
2621
2622DEFINE_SEQ_ATTRIBUTE(kprobes);
2623
2624/* kprobes/blacklist -- shows which functions can not be probed */
2625static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2626{
2627 mutex_lock(&kprobe_mutex);
2628 return seq_list_start(&kprobe_blacklist, *pos);
2629}
2630
2631static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2632{
2633 return seq_list_next(v, &kprobe_blacklist, pos);
2634}
2635
2636static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2637{
2638 struct kprobe_blacklist_entry *ent =
2639 list_entry(v, struct kprobe_blacklist_entry, list);
2640
2641 /*
2642 * If /proc/kallsyms is not showing kernel address, we won't
2643 * show them here either.
2644 */
2645 if (!kallsyms_show_value(m->file->f_cred))
2646 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2647 (void *)ent->start_addr);
2648 else
2649 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2650 (void *)ent->end_addr, (void *)ent->start_addr);
2651 return 0;
2652}
2653
2654static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2655{
2656 mutex_unlock(&kprobe_mutex);
2657}
2658
2659static const struct seq_operations kprobe_blacklist_sops = {
2660 .start = kprobe_blacklist_seq_start,
2661 .next = kprobe_blacklist_seq_next,
2662 .stop = kprobe_blacklist_seq_stop,
2663 .show = kprobe_blacklist_seq_show,
2664};
2665DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2666
2667static int arm_all_kprobes(void)
2668{
2669 struct hlist_head *head;
2670 struct kprobe *p;
2671 unsigned int i, total = 0, errors = 0;
2672 int err, ret = 0;
2673
2674 mutex_lock(&kprobe_mutex);
2675
2676 /* If kprobes are armed, just return */
2677 if (!kprobes_all_disarmed)
2678 goto already_enabled;
2679
2680 /*
2681 * optimize_kprobe() called by arm_kprobe() checks
2682 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2683 * arm_kprobe.
2684 */
2685 kprobes_all_disarmed = false;
2686 /* Arming kprobes doesn't optimize kprobe itself */
2687 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2688 head = &kprobe_table[i];
2689 /* Arm all kprobes on a best-effort basis */
2690 hlist_for_each_entry(p, head, hlist) {
2691 if (!kprobe_disabled(p)) {
2692 err = arm_kprobe(p);
2693 if (err) {
2694 errors++;
2695 ret = err;
2696 }
2697 total++;
2698 }
2699 }
2700 }
2701
2702 if (errors)
2703 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2704 errors, total);
2705 else
2706 pr_info("Kprobes globally enabled\n");
2707
2708already_enabled:
2709 mutex_unlock(&kprobe_mutex);
2710 return ret;
2711}
2712
2713static int disarm_all_kprobes(void)
2714{
2715 struct hlist_head *head;
2716 struct kprobe *p;
2717 unsigned int i, total = 0, errors = 0;
2718 int err, ret = 0;
2719
2720 mutex_lock(&kprobe_mutex);
2721
2722 /* If kprobes are already disarmed, just return */
2723 if (kprobes_all_disarmed) {
2724 mutex_unlock(&kprobe_mutex);
2725 return 0;
2726 }
2727
2728 kprobes_all_disarmed = true;
2729
2730 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2731 head = &kprobe_table[i];
2732 /* Disarm all kprobes on a best-effort basis */
2733 hlist_for_each_entry(p, head, hlist) {
2734 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2735 err = disarm_kprobe(p, false);
2736 if (err) {
2737 errors++;
2738 ret = err;
2739 }
2740 total++;
2741 }
2742 }
2743 }
2744
2745 if (errors)
2746 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2747 errors, total);
2748 else
2749 pr_info("Kprobes globally disabled\n");
2750
2751 mutex_unlock(&kprobe_mutex);
2752
2753 /* Wait for disarming all kprobes by optimizer */
2754 wait_for_kprobe_optimizer();
2755
2756 return ret;
2757}
2758
2759/*
2760 * XXX: The debugfs bool file interface doesn't allow for callbacks
2761 * when the bool state is switched. We can reuse that facility when
2762 * available
2763 */
2764static ssize_t read_enabled_file_bool(struct file *file,
2765 char __user *user_buf, size_t count, loff_t *ppos)
2766{
2767 char buf[3];
2768
2769 if (!kprobes_all_disarmed)
2770 buf[0] = '1';
2771 else
2772 buf[0] = '0';
2773 buf[1] = '\n';
2774 buf[2] = 0x00;
2775 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2776}
2777
2778static ssize_t write_enabled_file_bool(struct file *file,
2779 const char __user *user_buf, size_t count, loff_t *ppos)
2780{
2781 char buf[32];
2782 size_t buf_size;
2783 int ret = 0;
2784
2785 buf_size = min(count, (sizeof(buf)-1));
2786 if (copy_from_user(buf, user_buf, buf_size))
2787 return -EFAULT;
2788
2789 buf[buf_size] = '\0';
2790 switch (buf[0]) {
2791 case 'y':
2792 case 'Y':
2793 case '1':
2794 ret = arm_all_kprobes();
2795 break;
2796 case 'n':
2797 case 'N':
2798 case '0':
2799 ret = disarm_all_kprobes();
2800 break;
2801 default:
2802 return -EINVAL;
2803 }
2804
2805 if (ret)
2806 return ret;
2807
2808 return count;
2809}
2810
2811static const struct file_operations fops_kp = {
2812 .read = read_enabled_file_bool,
2813 .write = write_enabled_file_bool,
2814 .llseek = default_llseek,
2815};
2816
2817static int __init debugfs_kprobe_init(void)
2818{
2819 struct dentry *dir;
2820 unsigned int value = 1;
2821
2822 dir = debugfs_create_dir("kprobes", NULL);
2823
2824 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2825
2826 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2827
2828 debugfs_create_file("blacklist", 0400, dir, NULL,
2829 &kprobe_blacklist_fops);
2830
2831 return 0;
2832}
2833
2834late_initcall(debugfs_kprobe_init);
2835#endif /* CONFIG_DEBUG_FS */