Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
 
 
  38
  39#include <asm/sections.h>
  40#include <asm/cacheflush.h>
  41#include <asm/errno.h>
  42#include <linux/uaccess.h>
  43
  44#define KPROBE_HASH_BITS 6
  45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  46
  47
  48static int kprobes_initialized;
 
 
 
 
 
  49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  51
  52/* NOTE: change this value only with kprobe_mutex held */
  53static bool kprobes_all_disarmed;
  54
  55/* This protects kprobe_table and optimizing_list */
  56static DEFINE_MUTEX(kprobe_mutex);
  57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  58static struct {
  59	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  61
  62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  63					unsigned int __unused)
  64{
  65	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  66}
  67
  68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  69{
  70	return &(kretprobe_table_locks[hash].lock);
  71}
  72
  73/* Blacklist -- list of struct kprobe_blacklist_entry */
  74static LIST_HEAD(kprobe_blacklist);
  75
  76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  77/*
  78 * kprobe->ainsn.insn points to the copy of the instruction to be
  79 * single-stepped. x86_64, POWER4 and above have no-exec support and
  80 * stepping on the instruction on a vmalloced/kmalloced/data page
  81 * is a recipe for disaster
  82 */
  83struct kprobe_insn_page {
  84	struct list_head list;
  85	kprobe_opcode_t *insns;		/* Page of instruction slots */
  86	struct kprobe_insn_cache *cache;
  87	int nused;
  88	int ngarbage;
  89	char slot_used[];
  90};
  91
  92#define KPROBE_INSN_PAGE_SIZE(slots)			\
  93	(offsetof(struct kprobe_insn_page, slot_used) +	\
  94	 (sizeof(char) * (slots)))
  95
  96static int slots_per_page(struct kprobe_insn_cache *c)
  97{
  98	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  99}
 100
 101enum kprobe_slot_state {
 102	SLOT_CLEAN = 0,
 103	SLOT_DIRTY = 1,
 104	SLOT_USED = 2,
 105};
 106
 107void __weak *alloc_insn_page(void)
 108{
 109	return module_alloc(PAGE_SIZE);
 110}
 111
 112void __weak free_insn_page(void *page)
 113{
 114	module_memfree(page);
 115}
 116
 117struct kprobe_insn_cache kprobe_insn_slots = {
 118	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 119	.alloc = alloc_insn_page,
 120	.free = free_insn_page,
 
 121	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 122	.insn_size = MAX_INSN_SIZE,
 123	.nr_garbage = 0,
 124};
 125static int collect_garbage_slots(struct kprobe_insn_cache *c);
 126
 127/**
 128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 129 * We allocate an executable page if there's no room on existing ones.
 130 */
 131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 132{
 133	struct kprobe_insn_page *kip;
 134	kprobe_opcode_t *slot = NULL;
 135
 136	/* Since the slot array is not protected by rcu, we need a mutex */
 137	mutex_lock(&c->mutex);
 138 retry:
 139	rcu_read_lock();
 140	list_for_each_entry_rcu(kip, &c->pages, list) {
 141		if (kip->nused < slots_per_page(c)) {
 142			int i;
 143			for (i = 0; i < slots_per_page(c); i++) {
 144				if (kip->slot_used[i] == SLOT_CLEAN) {
 145					kip->slot_used[i] = SLOT_USED;
 146					kip->nused++;
 147					slot = kip->insns + (i * c->insn_size);
 148					rcu_read_unlock();
 149					goto out;
 150				}
 151			}
 152			/* kip->nused is broken. Fix it. */
 153			kip->nused = slots_per_page(c);
 154			WARN_ON(1);
 155		}
 156	}
 157	rcu_read_unlock();
 158
 159	/* If there are any garbage slots, collect it and try again. */
 160	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 161		goto retry;
 162
 163	/* All out of space.  Need to allocate a new page. */
 164	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 165	if (!kip)
 166		goto out;
 167
 168	/*
 169	 * Use module_alloc so this page is within +/- 2GB of where the
 170	 * kernel image and loaded module images reside. This is required
 171	 * so x86_64 can correctly handle the %rip-relative fixups.
 172	 */
 173	kip->insns = c->alloc();
 174	if (!kip->insns) {
 175		kfree(kip);
 176		goto out;
 177	}
 178	INIT_LIST_HEAD(&kip->list);
 179	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 180	kip->slot_used[0] = SLOT_USED;
 181	kip->nused = 1;
 182	kip->ngarbage = 0;
 183	kip->cache = c;
 184	list_add_rcu(&kip->list, &c->pages);
 185	slot = kip->insns;
 
 
 
 
 186out:
 187	mutex_unlock(&c->mutex);
 188	return slot;
 189}
 190
 191/* Return 1 if all garbages are collected, otherwise 0. */
 192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 193{
 194	kip->slot_used[idx] = SLOT_CLEAN;
 195	kip->nused--;
 196	if (kip->nused == 0) {
 197		/*
 198		 * Page is no longer in use.  Free it unless
 199		 * it's the last one.  We keep the last one
 200		 * so as not to have to set it up again the
 201		 * next time somebody inserts a probe.
 202		 */
 203		if (!list_is_singular(&kip->list)) {
 
 
 
 
 
 
 
 204			list_del_rcu(&kip->list);
 205			synchronize_rcu();
 206			kip->cache->free(kip->insns);
 207			kfree(kip);
 208		}
 209		return 1;
 210	}
 211	return 0;
 212}
 213
 214static int collect_garbage_slots(struct kprobe_insn_cache *c)
 215{
 216	struct kprobe_insn_page *kip, *next;
 217
 218	/* Ensure no-one is interrupted on the garbages */
 219	synchronize_rcu();
 220
 221	list_for_each_entry_safe(kip, next, &c->pages, list) {
 222		int i;
 223		if (kip->ngarbage == 0)
 224			continue;
 225		kip->ngarbage = 0;	/* we will collect all garbages */
 226		for (i = 0; i < slots_per_page(c); i++) {
 227			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 228				break;
 229		}
 230	}
 231	c->nr_garbage = 0;
 232	return 0;
 233}
 234
 235void __free_insn_slot(struct kprobe_insn_cache *c,
 236		      kprobe_opcode_t *slot, int dirty)
 237{
 238	struct kprobe_insn_page *kip;
 239	long idx;
 240
 241	mutex_lock(&c->mutex);
 242	rcu_read_lock();
 243	list_for_each_entry_rcu(kip, &c->pages, list) {
 244		idx = ((long)slot - (long)kip->insns) /
 245			(c->insn_size * sizeof(kprobe_opcode_t));
 246		if (idx >= 0 && idx < slots_per_page(c))
 247			goto out;
 248	}
 249	/* Could not find this slot. */
 250	WARN_ON(1);
 251	kip = NULL;
 252out:
 253	rcu_read_unlock();
 254	/* Mark and sweep: this may sleep */
 255	if (kip) {
 256		/* Check double free */
 257		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 258		if (dirty) {
 259			kip->slot_used[idx] = SLOT_DIRTY;
 260			kip->ngarbage++;
 261			if (++c->nr_garbage > slots_per_page(c))
 262				collect_garbage_slots(c);
 263		} else {
 264			collect_one_slot(kip, idx);
 265		}
 266	}
 267	mutex_unlock(&c->mutex);
 268}
 269
 270/*
 271 * Check given address is on the page of kprobe instruction slots.
 272 * This will be used for checking whether the address on a stack
 273 * is on a text area or not.
 274 */
 275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 276{
 277	struct kprobe_insn_page *kip;
 278	bool ret = false;
 279
 280	rcu_read_lock();
 281	list_for_each_entry_rcu(kip, &c->pages, list) {
 282		if (addr >= (unsigned long)kip->insns &&
 283		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 284			ret = true;
 285			break;
 286		}
 287	}
 288	rcu_read_unlock();
 289
 290	return ret;
 291}
 292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293#ifdef CONFIG_OPTPROBES
 
 
 
 
 
 
 
 
 
 
 294/* For optimized_kprobe buffer */
 295struct kprobe_insn_cache kprobe_optinsn_slots = {
 296	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 297	.alloc = alloc_insn_page,
 298	.free = free_insn_page,
 
 299	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 300	/* .insn_size is initialized later */
 301	.nr_garbage = 0,
 302};
 303#endif
 304#endif
 305
 306/* We have preemption disabled.. so it is safe to use __ versions */
 307static inline void set_kprobe_instance(struct kprobe *kp)
 308{
 309	__this_cpu_write(kprobe_instance, kp);
 310}
 311
 312static inline void reset_kprobe_instance(void)
 313{
 314	__this_cpu_write(kprobe_instance, NULL);
 315}
 316
 317/*
 318 * This routine is called either:
 319 * 	- under the kprobe_mutex - during kprobe_[un]register()
 320 * 				OR
 321 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 322 */
 323struct kprobe *get_kprobe(void *addr)
 324{
 325	struct hlist_head *head;
 326	struct kprobe *p;
 327
 328	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 329	hlist_for_each_entry_rcu(p, head, hlist) {
 
 330		if (p->addr == addr)
 331			return p;
 332	}
 333
 334	return NULL;
 335}
 336NOKPROBE_SYMBOL(get_kprobe);
 337
 338static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 339
 340/* Return true if the kprobe is an aggregator */
 341static inline int kprobe_aggrprobe(struct kprobe *p)
 342{
 343	return p->pre_handler == aggr_pre_handler;
 344}
 345
 346/* Return true(!0) if the kprobe is unused */
 347static inline int kprobe_unused(struct kprobe *p)
 348{
 349	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 350	       list_empty(&p->list);
 351}
 352
 353/*
 354 * Keep all fields in the kprobe consistent
 355 */
 356static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 357{
 358	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 359	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 360}
 361
 362#ifdef CONFIG_OPTPROBES
 363/* NOTE: change this value only with kprobe_mutex held */
 364static bool kprobes_allow_optimization;
 365
 366/*
 367 * Call all pre_handler on the list, but ignores its return value.
 368 * This must be called from arch-dep optimized caller.
 369 */
 370void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 371{
 372	struct kprobe *kp;
 373
 374	list_for_each_entry_rcu(kp, &p->list, list) {
 375		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 376			set_kprobe_instance(kp);
 377			kp->pre_handler(kp, regs);
 378		}
 379		reset_kprobe_instance();
 380	}
 381}
 382NOKPROBE_SYMBOL(opt_pre_handler);
 383
 384/* Free optimized instructions and optimized_kprobe */
 385static void free_aggr_kprobe(struct kprobe *p)
 386{
 387	struct optimized_kprobe *op;
 388
 389	op = container_of(p, struct optimized_kprobe, kp);
 390	arch_remove_optimized_kprobe(op);
 391	arch_remove_kprobe(p);
 392	kfree(op);
 393}
 394
 395/* Return true(!0) if the kprobe is ready for optimization. */
 396static inline int kprobe_optready(struct kprobe *p)
 397{
 398	struct optimized_kprobe *op;
 399
 400	if (kprobe_aggrprobe(p)) {
 401		op = container_of(p, struct optimized_kprobe, kp);
 402		return arch_prepared_optinsn(&op->optinsn);
 403	}
 404
 405	return 0;
 406}
 407
 408/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 409static inline int kprobe_disarmed(struct kprobe *p)
 410{
 411	struct optimized_kprobe *op;
 412
 413	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 414	if (!kprobe_aggrprobe(p))
 415		return kprobe_disabled(p);
 416
 417	op = container_of(p, struct optimized_kprobe, kp);
 418
 419	return kprobe_disabled(p) && list_empty(&op->list);
 420}
 421
 422/* Return true(!0) if the probe is queued on (un)optimizing lists */
 423static int kprobe_queued(struct kprobe *p)
 424{
 425	struct optimized_kprobe *op;
 426
 427	if (kprobe_aggrprobe(p)) {
 428		op = container_of(p, struct optimized_kprobe, kp);
 429		if (!list_empty(&op->list))
 430			return 1;
 431	}
 432	return 0;
 433}
 434
 435/*
 436 * Return an optimized kprobe whose optimizing code replaces
 437 * instructions including addr (exclude breakpoint).
 438 */
 439static struct kprobe *get_optimized_kprobe(unsigned long addr)
 440{
 441	int i;
 442	struct kprobe *p = NULL;
 443	struct optimized_kprobe *op;
 444
 445	/* Don't check i == 0, since that is a breakpoint case. */
 446	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 447		p = get_kprobe((void *)(addr - i));
 448
 449	if (p && kprobe_optready(p)) {
 450		op = container_of(p, struct optimized_kprobe, kp);
 451		if (arch_within_optimized_kprobe(op, addr))
 452			return p;
 453	}
 454
 455	return NULL;
 456}
 457
 458/* Optimization staging list, protected by kprobe_mutex */
 459static LIST_HEAD(optimizing_list);
 460static LIST_HEAD(unoptimizing_list);
 461static LIST_HEAD(freeing_list);
 462
 463static void kprobe_optimizer(struct work_struct *work);
 464static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 465#define OPTIMIZE_DELAY 5
 466
 467/*
 468 * Optimize (replace a breakpoint with a jump) kprobes listed on
 469 * optimizing_list.
 470 */
 471static void do_optimize_kprobes(void)
 472{
 473	lockdep_assert_held(&text_mutex);
 474	/*
 475	 * The optimization/unoptimization refers online_cpus via
 476	 * stop_machine() and cpu-hotplug modifies online_cpus.
 477	 * And same time, text_mutex will be held in cpu-hotplug and here.
 478	 * This combination can cause a deadlock (cpu-hotplug try to lock
 479	 * text_mutex but stop_machine can not be done because online_cpus
 480	 * has been changed)
 481	 * To avoid this deadlock, caller must have locked cpu hotplug
 482	 * for preventing cpu-hotplug outside of text_mutex locking.
 483	 */
 484	lockdep_assert_cpus_held();
 485
 486	/* Optimization never be done when disarmed */
 487	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 488	    list_empty(&optimizing_list))
 489		return;
 490
 491	arch_optimize_kprobes(&optimizing_list);
 492}
 493
 494/*
 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 496 * if need) kprobes listed on unoptimizing_list.
 497 */
 498static void do_unoptimize_kprobes(void)
 499{
 500	struct optimized_kprobe *op, *tmp;
 501
 502	lockdep_assert_held(&text_mutex);
 503	/* See comment in do_optimize_kprobes() */
 504	lockdep_assert_cpus_held();
 505
 506	/* Unoptimization must be done anytime */
 507	if (list_empty(&unoptimizing_list))
 508		return;
 509
 510	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 511	/* Loop free_list for disarming */
 512	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 
 513		/* Disarm probes if marked disabled */
 514		if (kprobe_disabled(&op->kp))
 515			arch_disarm_kprobe(&op->kp);
 516		if (kprobe_unused(&op->kp)) {
 517			/*
 518			 * Remove unused probes from hash list. After waiting
 519			 * for synchronization, these probes are reclaimed.
 520			 * (reclaiming is done by do_free_cleaned_kprobes.)
 521			 */
 522			hlist_del_rcu(&op->kp.hlist);
 523		} else
 524			list_del_init(&op->list);
 525	}
 526}
 527
 528/* Reclaim all kprobes on the free_list */
 529static void do_free_cleaned_kprobes(void)
 530{
 531	struct optimized_kprobe *op, *tmp;
 532
 533	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 534		list_del_init(&op->list);
 535		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 536			/*
 537			 * This must not happen, but if there is a kprobe
 538			 * still in use, keep it on kprobes hash list.
 539			 */
 540			continue;
 541		}
 542		free_aggr_kprobe(&op->kp);
 543	}
 544}
 545
 546/* Start optimizer after OPTIMIZE_DELAY passed */
 547static void kick_kprobe_optimizer(void)
 548{
 549	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 550}
 551
 552/* Kprobe jump optimizer */
 553static void kprobe_optimizer(struct work_struct *work)
 554{
 555	mutex_lock(&kprobe_mutex);
 556	cpus_read_lock();
 557	mutex_lock(&text_mutex);
 558	/* Lock modules while optimizing kprobes */
 559	mutex_lock(&module_mutex);
 560
 561	/*
 562	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 563	 * kprobes before waiting for quiesence period.
 564	 */
 565	do_unoptimize_kprobes();
 566
 567	/*
 568	 * Step 2: Wait for quiesence period to ensure all potentially
 569	 * preempted tasks to have normally scheduled. Because optprobe
 570	 * may modify multiple instructions, there is a chance that Nth
 571	 * instruction is preempted. In that case, such tasks can return
 572	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 573	 * Note that on non-preemptive kernel, this is transparently converted
 574	 * to synchronoze_sched() to wait for all interrupts to have completed.
 575	 */
 576	synchronize_rcu_tasks();
 577
 578	/* Step 3: Optimize kprobes after quiesence period */
 579	do_optimize_kprobes();
 580
 581	/* Step 4: Free cleaned kprobes after quiesence period */
 582	do_free_cleaned_kprobes();
 583
 584	mutex_unlock(&module_mutex);
 585	mutex_unlock(&text_mutex);
 586	cpus_read_unlock();
 587	mutex_unlock(&kprobe_mutex);
 588
 589	/* Step 5: Kick optimizer again if needed */
 590	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 591		kick_kprobe_optimizer();
 
 
 592}
 593
 594/* Wait for completing optimization and unoptimization */
 595void wait_for_kprobe_optimizer(void)
 596{
 597	mutex_lock(&kprobe_mutex);
 598
 599	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 600		mutex_unlock(&kprobe_mutex);
 601
 602		/* this will also make optimizing_work execute immmediately */
 603		flush_delayed_work(&optimizing_work);
 604		/* @optimizing_work might not have been queued yet, relax */
 605		cpu_relax();
 606
 607		mutex_lock(&kprobe_mutex);
 608	}
 609
 610	mutex_unlock(&kprobe_mutex);
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 613/* Optimize kprobe if p is ready to be optimized */
 614static void optimize_kprobe(struct kprobe *p)
 615{
 616	struct optimized_kprobe *op;
 617
 618	/* Check if the kprobe is disabled or not ready for optimization. */
 619	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 620	    (kprobe_disabled(p) || kprobes_all_disarmed))
 621		return;
 622
 623	/* kprobes with post_handler can not be optimized */
 624	if (p->post_handler)
 625		return;
 626
 627	op = container_of(p, struct optimized_kprobe, kp);
 628
 629	/* Check there is no other kprobes at the optimized instructions */
 630	if (arch_check_optimized_kprobe(op) < 0)
 631		return;
 632
 633	/* Check if it is already optimized. */
 634	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 635		return;
 
 636	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 637
 638	if (!list_empty(&op->list))
 639		/* This is under unoptimizing. Just dequeue the probe */
 640		list_del_init(&op->list);
 641	else {
 642		list_add(&op->list, &optimizing_list);
 643		kick_kprobe_optimizer();
 644	}
 645}
 646
 647/* Short cut to direct unoptimizing */
 648static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 649{
 650	lockdep_assert_cpus_held();
 651	arch_unoptimize_kprobe(op);
 652	if (kprobe_disabled(&op->kp))
 653		arch_disarm_kprobe(&op->kp);
 654}
 655
 656/* Unoptimize a kprobe if p is optimized */
 657static void unoptimize_kprobe(struct kprobe *p, bool force)
 658{
 659	struct optimized_kprobe *op;
 660
 661	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 662		return; /* This is not an optprobe nor optimized */
 663
 664	op = container_of(p, struct optimized_kprobe, kp);
 665	if (!kprobe_optimized(p)) {
 666		/* Unoptimized or unoptimizing case */
 667		if (force && !list_empty(&op->list)) {
 668			/*
 669			 * Only if this is unoptimizing kprobe and forced,
 670			 * forcibly unoptimize it. (No need to unoptimize
 671			 * unoptimized kprobe again :)
 672			 */
 673			list_del_init(&op->list);
 674			force_unoptimize_kprobe(op);
 675		}
 676		return;
 677	}
 678
 679	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 680	if (!list_empty(&op->list)) {
 681		/* Dequeue from the optimization queue */
 682		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 683		return;
 684	}
 
 685	/* Optimized kprobe case */
 686	if (force)
 687		/* Forcibly update the code: this is a special case */
 688		force_unoptimize_kprobe(op);
 689	else {
 690		list_add(&op->list, &unoptimizing_list);
 691		kick_kprobe_optimizer();
 692	}
 693}
 694
 695/* Cancel unoptimizing for reusing */
 696static int reuse_unused_kprobe(struct kprobe *ap)
 697{
 698	struct optimized_kprobe *op;
 699
 700	/*
 701	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 702	 * there is still a relative jump) and disabled.
 703	 */
 704	op = container_of(ap, struct optimized_kprobe, kp);
 705	WARN_ON_ONCE(list_empty(&op->list));
 706	/* Enable the probe again */
 707	ap->flags &= ~KPROBE_FLAG_DISABLED;
 708	/* Optimize it again (remove from op->list) */
 709	if (!kprobe_optready(ap))
 710		return -EINVAL;
 711
 712	optimize_kprobe(ap);
 713	return 0;
 714}
 715
 716/* Remove optimized instructions */
 717static void kill_optimized_kprobe(struct kprobe *p)
 718{
 719	struct optimized_kprobe *op;
 720
 721	op = container_of(p, struct optimized_kprobe, kp);
 722	if (!list_empty(&op->list))
 723		/* Dequeue from the (un)optimization queue */
 724		list_del_init(&op->list);
 725	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 726
 727	if (kprobe_unused(p)) {
 728		/* Enqueue if it is unused */
 729		list_add(&op->list, &freeing_list);
 730		/*
 731		 * Remove unused probes from the hash list. After waiting
 732		 * for synchronization, this probe is reclaimed.
 733		 * (reclaiming is done by do_free_cleaned_kprobes().)
 734		 */
 735		hlist_del_rcu(&op->kp.hlist);
 736	}
 737
 738	/* Don't touch the code, because it is already freed. */
 739	arch_remove_optimized_kprobe(op);
 740}
 741
 742static inline
 743void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 744{
 745	if (!kprobe_ftrace(p))
 746		arch_prepare_optimized_kprobe(op, p);
 747}
 748
 749/* Try to prepare optimized instructions */
 750static void prepare_optimized_kprobe(struct kprobe *p)
 751{
 752	struct optimized_kprobe *op;
 753
 754	op = container_of(p, struct optimized_kprobe, kp);
 755	__prepare_optimized_kprobe(op, p);
 756}
 757
 758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 760{
 761	struct optimized_kprobe *op;
 762
 763	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 764	if (!op)
 765		return NULL;
 766
 767	INIT_LIST_HEAD(&op->list);
 768	op->kp.addr = p->addr;
 769	__prepare_optimized_kprobe(op, p);
 770
 771	return &op->kp;
 772}
 773
 774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 775
 776/*
 777 * Prepare an optimized_kprobe and optimize it
 778 * NOTE: p must be a normal registered kprobe
 779 */
 780static void try_to_optimize_kprobe(struct kprobe *p)
 781{
 782	struct kprobe *ap;
 783	struct optimized_kprobe *op;
 784
 785	/* Impossible to optimize ftrace-based kprobe */
 786	if (kprobe_ftrace(p))
 787		return;
 788
 789	/* For preparing optimization, jump_label_text_reserved() is called */
 790	cpus_read_lock();
 791	jump_label_lock();
 792	mutex_lock(&text_mutex);
 793
 794	ap = alloc_aggr_kprobe(p);
 795	if (!ap)
 796		goto out;
 797
 798	op = container_of(ap, struct optimized_kprobe, kp);
 799	if (!arch_prepared_optinsn(&op->optinsn)) {
 800		/* If failed to setup optimizing, fallback to kprobe */
 801		arch_remove_optimized_kprobe(op);
 802		kfree(op);
 803		goto out;
 804	}
 805
 806	init_aggr_kprobe(ap, p);
 807	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 808
 809out:
 810	mutex_unlock(&text_mutex);
 811	jump_label_unlock();
 812	cpus_read_unlock();
 813}
 814
 815#ifdef CONFIG_SYSCTL
 816static void optimize_all_kprobes(void)
 817{
 818	struct hlist_head *head;
 819	struct kprobe *p;
 820	unsigned int i;
 821
 822	mutex_lock(&kprobe_mutex);
 823	/* If optimization is already allowed, just return */
 824	if (kprobes_allow_optimization)
 825		goto out;
 826
 827	cpus_read_lock();
 828	kprobes_allow_optimization = true;
 829	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 830		head = &kprobe_table[i];
 831		hlist_for_each_entry_rcu(p, head, hlist)
 832			if (!kprobe_disabled(p))
 833				optimize_kprobe(p);
 834	}
 835	cpus_read_unlock();
 836	printk(KERN_INFO "Kprobes globally optimized\n");
 837out:
 838	mutex_unlock(&kprobe_mutex);
 839}
 840
 
 841static void unoptimize_all_kprobes(void)
 842{
 843	struct hlist_head *head;
 844	struct kprobe *p;
 845	unsigned int i;
 846
 847	mutex_lock(&kprobe_mutex);
 848	/* If optimization is already prohibited, just return */
 849	if (!kprobes_allow_optimization) {
 850		mutex_unlock(&kprobe_mutex);
 851		return;
 852	}
 853
 854	cpus_read_lock();
 855	kprobes_allow_optimization = false;
 856	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 857		head = &kprobe_table[i];
 858		hlist_for_each_entry_rcu(p, head, hlist) {
 859			if (!kprobe_disabled(p))
 860				unoptimize_kprobe(p, false);
 861		}
 862	}
 863	cpus_read_unlock();
 864	mutex_unlock(&kprobe_mutex);
 865
 866	/* Wait for unoptimizing completion */
 867	wait_for_kprobe_optimizer();
 868	printk(KERN_INFO "Kprobes globally unoptimized\n");
 869}
 870
 871static DEFINE_MUTEX(kprobe_sysctl_mutex);
 872int sysctl_kprobes_optimization;
 873int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 874				      void __user *buffer, size_t *length,
 875				      loff_t *ppos)
 876{
 877	int ret;
 878
 879	mutex_lock(&kprobe_sysctl_mutex);
 880	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 881	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 882
 883	if (sysctl_kprobes_optimization)
 884		optimize_all_kprobes();
 885	else
 886		unoptimize_all_kprobes();
 887	mutex_unlock(&kprobe_sysctl_mutex);
 888
 889	return ret;
 890}
 891#endif /* CONFIG_SYSCTL */
 892
 893/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 894static void __arm_kprobe(struct kprobe *p)
 895{
 896	struct kprobe *_p;
 897
 898	/* Check collision with other optimized kprobes */
 899	_p = get_optimized_kprobe((unsigned long)p->addr);
 900	if (unlikely(_p))
 901		/* Fallback to unoptimized kprobe */
 902		unoptimize_kprobe(_p, true);
 903
 904	arch_arm_kprobe(p);
 905	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 906}
 907
 908/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 909static void __disarm_kprobe(struct kprobe *p, bool reopt)
 910{
 911	struct kprobe *_p;
 912
 913	/* Try to unoptimize */
 914	unoptimize_kprobe(p, kprobes_all_disarmed);
 915
 916	if (!kprobe_queued(p)) {
 917		arch_disarm_kprobe(p);
 918		/* If another kprobe was blocked, optimize it. */
 919		_p = get_optimized_kprobe((unsigned long)p->addr);
 920		if (unlikely(_p) && reopt)
 921			optimize_kprobe(_p);
 922	}
 923	/* TODO: reoptimize others after unoptimized this probe */
 924}
 925
 926#else /* !CONFIG_OPTPROBES */
 927
 928#define optimize_kprobe(p)			do {} while (0)
 929#define unoptimize_kprobe(p, f)			do {} while (0)
 930#define kill_optimized_kprobe(p)		do {} while (0)
 931#define prepare_optimized_kprobe(p)		do {} while (0)
 932#define try_to_optimize_kprobe(p)		do {} while (0)
 933#define __arm_kprobe(p)				arch_arm_kprobe(p)
 934#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 935#define kprobe_disarmed(p)			kprobe_disabled(p)
 936#define wait_for_kprobe_optimizer()		do {} while (0)
 937
 938static int reuse_unused_kprobe(struct kprobe *ap)
 939{
 940	/*
 941	 * If the optimized kprobe is NOT supported, the aggr kprobe is
 942	 * released at the same time that the last aggregated kprobe is
 943	 * unregistered.
 944	 * Thus there should be no chance to reuse unused kprobe.
 945	 */
 946	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 947	return -EINVAL;
 948}
 949
 950static void free_aggr_kprobe(struct kprobe *p)
 951{
 952	arch_remove_kprobe(p);
 953	kfree(p);
 954}
 955
 956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 957{
 958	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 959}
 960#endif /* CONFIG_OPTPROBES */
 961
 962#ifdef CONFIG_KPROBES_ON_FTRACE
 963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 964	.func = kprobe_ftrace_handler,
 965	.flags = FTRACE_OPS_FL_SAVE_REGS,
 966};
 967
 968static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
 969	.func = kprobe_ftrace_handler,
 970	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 971};
 972
 973static int kprobe_ipmodify_enabled;
 974static int kprobe_ftrace_enabled;
 975
 976/* Must ensure p->addr is really on ftrace */
 977static int prepare_kprobe(struct kprobe *p)
 978{
 979	if (!kprobe_ftrace(p))
 980		return arch_prepare_kprobe(p);
 981
 982	return arch_prepare_kprobe_ftrace(p);
 983}
 984
 985/* Caller must lock kprobe_mutex */
 986static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
 987			       int *cnt)
 988{
 989	int ret = 0;
 990
 991	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
 992	if (ret) {
 993		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
 994			 p->addr, ret);
 995		return ret;
 996	}
 997
 998	if (*cnt == 0) {
 999		ret = register_ftrace_function(ops);
1000		if (ret) {
1001			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002			goto err_ftrace;
1003		}
1004	}
1005
1006	(*cnt)++;
1007	return ret;
1008
1009err_ftrace:
1010	/*
1011	 * At this point, sinec ops is not registered, we should be sefe from
1012	 * registering empty filter.
1013	 */
1014	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015	return ret;
1016}
1017
1018static int arm_kprobe_ftrace(struct kprobe *p)
1019{
1020	bool ipmodify = (p->post_handler != NULL);
1021
1022	return __arm_kprobe_ftrace(p,
1023		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025}
1026
1027/* Caller must lock kprobe_mutex */
1028static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029				  int *cnt)
1030{
1031	int ret = 0;
1032
1033	if (*cnt == 1) {
1034		ret = unregister_ftrace_function(ops);
1035		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036			return ret;
1037	}
1038
1039	(*cnt)--;
1040
1041	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043		  p->addr, ret);
1044	return ret;
1045}
1046
1047static int disarm_kprobe_ftrace(struct kprobe *p)
1048{
1049	bool ipmodify = (p->post_handler != NULL);
1050
1051	return __disarm_kprobe_ftrace(p,
1052		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054}
1055#else	/* !CONFIG_KPROBES_ON_FTRACE */
1056#define prepare_kprobe(p)	arch_prepare_kprobe(p)
1057#define arm_kprobe_ftrace(p)	(-ENODEV)
1058#define disarm_kprobe_ftrace(p)	(-ENODEV)
 
 
 
 
 
 
 
 
 
 
 
1059#endif
1060
1061/* Arm a kprobe with text_mutex */
1062static int arm_kprobe(struct kprobe *kp)
1063{
1064	if (unlikely(kprobe_ftrace(kp)))
1065		return arm_kprobe_ftrace(kp);
1066
1067	cpus_read_lock();
1068	mutex_lock(&text_mutex);
1069	__arm_kprobe(kp);
1070	mutex_unlock(&text_mutex);
1071	cpus_read_unlock();
1072
1073	return 0;
1074}
1075
1076/* Disarm a kprobe with text_mutex */
1077static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078{
1079	if (unlikely(kprobe_ftrace(kp)))
1080		return disarm_kprobe_ftrace(kp);
1081
1082	cpus_read_lock();
1083	mutex_lock(&text_mutex);
1084	__disarm_kprobe(kp, reopt);
1085	mutex_unlock(&text_mutex);
1086	cpus_read_unlock();
1087
1088	return 0;
1089}
1090
1091/*
1092 * Aggregate handlers for multiple kprobes support - these handlers
1093 * take care of invoking the individual kprobe handlers on p->list
1094 */
1095static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096{
1097	struct kprobe *kp;
1098
1099	list_for_each_entry_rcu(kp, &p->list, list) {
1100		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101			set_kprobe_instance(kp);
1102			if (kp->pre_handler(kp, regs))
1103				return 1;
1104		}
1105		reset_kprobe_instance();
1106	}
1107	return 0;
1108}
1109NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112			      unsigned long flags)
1113{
1114	struct kprobe *kp;
1115
1116	list_for_each_entry_rcu(kp, &p->list, list) {
1117		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118			set_kprobe_instance(kp);
1119			kp->post_handler(kp, regs, flags);
1120			reset_kprobe_instance();
1121		}
1122	}
1123}
1124NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127			      int trapnr)
1128{
1129	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131	/*
1132	 * if we faulted "during" the execution of a user specified
1133	 * probe handler, invoke just that probe's fault handler
1134	 */
1135	if (cur && cur->fault_handler) {
1136		if (cur->fault_handler(cur, regs, trapnr))
1137			return 1;
1138	}
1139	return 0;
1140}
1141NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143/* Walks the list and increments nmissed count for multiprobe case */
1144void kprobes_inc_nmissed_count(struct kprobe *p)
1145{
1146	struct kprobe *kp;
1147	if (!kprobe_aggrprobe(p)) {
1148		p->nmissed++;
1149	} else {
1150		list_for_each_entry_rcu(kp, &p->list, list)
1151			kp->nmissed++;
1152	}
1153	return;
1154}
1155NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157void recycle_rp_inst(struct kretprobe_instance *ri,
1158		     struct hlist_head *head)
1159{
1160	struct kretprobe *rp = ri->rp;
1161
1162	/* remove rp inst off the rprobe_inst_table */
1163	hlist_del(&ri->hlist);
1164	INIT_HLIST_NODE(&ri->hlist);
1165	if (likely(rp)) {
1166		raw_spin_lock(&rp->lock);
1167		hlist_add_head(&ri->hlist, &rp->free_instances);
1168		raw_spin_unlock(&rp->lock);
1169	} else
1170		/* Unregistering */
1171		hlist_add_head(&ri->hlist, head);
1172}
1173NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175void kretprobe_hash_lock(struct task_struct *tsk,
1176			 struct hlist_head **head, unsigned long *flags)
1177__acquires(hlist_lock)
1178{
1179	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180	raw_spinlock_t *hlist_lock;
1181
1182	*head = &kretprobe_inst_table[hash];
1183	hlist_lock = kretprobe_table_lock_ptr(hash);
1184	raw_spin_lock_irqsave(hlist_lock, *flags);
 
1185}
1186NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188static void kretprobe_table_lock(unsigned long hash,
1189				 unsigned long *flags)
1190__acquires(hlist_lock)
1191{
1192	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193	raw_spin_lock_irqsave(hlist_lock, *flags);
1194}
1195NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197void kretprobe_hash_unlock(struct task_struct *tsk,
1198			   unsigned long *flags)
1199__releases(hlist_lock)
1200{
1201	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202	raw_spinlock_t *hlist_lock;
1203
1204	hlist_lock = kretprobe_table_lock_ptr(hash);
1205	raw_spin_unlock_irqrestore(hlist_lock, *flags);
 
 
1206}
1207NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209static void kretprobe_table_unlock(unsigned long hash,
1210				   unsigned long *flags)
1211__releases(hlist_lock)
1212{
1213	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215}
1216NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
1218/*
1219 * This function is called from finish_task_switch when task tk becomes dead,
1220 * so that we can recycle any function-return probe instances associated
1221 * with this task. These left over instances represent probed functions
1222 * that have been called but will never return.
1223 */
1224void kprobe_flush_task(struct task_struct *tk)
1225{
1226	struct kretprobe_instance *ri;
1227	struct hlist_head *head, empty_rp;
1228	struct hlist_node *tmp;
1229	unsigned long hash, flags = 0;
1230
 
1231	if (unlikely(!kprobes_initialized))
1232		/* Early boot.  kretprobe_table_locks not yet initialized. */
1233		return;
1234
1235	INIT_HLIST_HEAD(&empty_rp);
1236	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237	head = &kretprobe_inst_table[hash];
1238	kretprobe_table_lock(hash, &flags);
1239	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240		if (ri->task == tk)
1241			recycle_rp_inst(ri, &empty_rp);
1242	}
1243	kretprobe_table_unlock(hash, &flags);
1244	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245		hlist_del(&ri->hlist);
1246		kfree(ri);
1247	}
 
 
1248}
1249NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251static inline void free_rp_inst(struct kretprobe *rp)
1252{
1253	struct kretprobe_instance *ri;
1254	struct hlist_node *next;
 
 
 
 
 
 
1255
1256	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257		hlist_del(&ri->hlist);
1258		kfree(ri);
 
1259	}
1260}
1261
1262static void cleanup_rp_inst(struct kretprobe *rp)
1263{
1264	unsigned long flags, hash;
1265	struct kretprobe_instance *ri;
1266	struct hlist_node *next;
1267	struct hlist_head *head;
1268
1269	/* No race here */
1270	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271		kretprobe_table_lock(hash, &flags);
1272		head = &kretprobe_inst_table[hash];
1273		hlist_for_each_entry_safe(ri, next, head, hlist) {
1274			if (ri->rp == rp)
1275				ri->rp = NULL;
1276		}
1277		kretprobe_table_unlock(hash, &flags);
1278	}
1279	free_rp_inst(rp);
1280}
1281NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283/* Add the new probe to ap->list */
1284static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285{
1286	if (p->post_handler)
1287		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1288
1289	list_add_rcu(&p->list, &ap->list);
1290	if (p->post_handler && !ap->post_handler)
1291		ap->post_handler = aggr_post_handler;
1292
1293	return 0;
1294}
1295
1296/*
1297 * Fill in the required fields of the "manager kprobe". Replace the
1298 * earlier kprobe in the hlist with the manager kprobe
1299 */
1300static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301{
1302	/* Copy p's insn slot to ap */
1303	copy_kprobe(p, ap);
1304	flush_insn_slot(ap);
1305	ap->addr = p->addr;
1306	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307	ap->pre_handler = aggr_pre_handler;
1308	ap->fault_handler = aggr_fault_handler;
1309	/* We don't care the kprobe which has gone. */
1310	if (p->post_handler && !kprobe_gone(p))
1311		ap->post_handler = aggr_post_handler;
1312
1313	INIT_LIST_HEAD(&ap->list);
1314	INIT_HLIST_NODE(&ap->hlist);
1315
1316	list_add_rcu(&p->list, &ap->list);
1317	hlist_replace_rcu(&p->hlist, &ap->hlist);
1318}
1319
1320/*
1321 * This is the second or subsequent kprobe at the address - handle
1322 * the intricacies
1323 */
1324static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325{
1326	int ret = 0;
1327	struct kprobe *ap = orig_p;
1328
1329	cpus_read_lock();
1330
1331	/* For preparing optimization, jump_label_text_reserved() is called */
1332	jump_label_lock();
1333	mutex_lock(&text_mutex);
1334
1335	if (!kprobe_aggrprobe(orig_p)) {
1336		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337		ap = alloc_aggr_kprobe(orig_p);
1338		if (!ap) {
1339			ret = -ENOMEM;
1340			goto out;
1341		}
1342		init_aggr_kprobe(ap, orig_p);
1343	} else if (kprobe_unused(ap)) {
1344		/* This probe is going to die. Rescue it */
1345		ret = reuse_unused_kprobe(ap);
1346		if (ret)
1347			goto out;
1348	}
1349
1350	if (kprobe_gone(ap)) {
1351		/*
1352		 * Attempting to insert new probe at the same location that
1353		 * had a probe in the module vaddr area which already
1354		 * freed. So, the instruction slot has already been
1355		 * released. We need a new slot for the new probe.
1356		 */
1357		ret = arch_prepare_kprobe(ap);
1358		if (ret)
1359			/*
1360			 * Even if fail to allocate new slot, don't need to
1361			 * free aggr_probe. It will be used next time, or
1362			 * freed by unregister_kprobe.
1363			 */
1364			goto out;
1365
1366		/* Prepare optimized instructions if possible. */
1367		prepare_optimized_kprobe(ap);
1368
1369		/*
1370		 * Clear gone flag to prevent allocating new slot again, and
1371		 * set disabled flag because it is not armed yet.
1372		 */
1373		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374			    | KPROBE_FLAG_DISABLED;
1375	}
1376
1377	/* Copy ap's insn slot to p */
1378	copy_kprobe(ap, p);
1379	ret = add_new_kprobe(ap, p);
1380
1381out:
1382	mutex_unlock(&text_mutex);
1383	jump_label_unlock();
1384	cpus_read_unlock();
1385
1386	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387		ap->flags &= ~KPROBE_FLAG_DISABLED;
1388		if (!kprobes_all_disarmed) {
1389			/* Arm the breakpoint again. */
1390			ret = arm_kprobe(ap);
1391			if (ret) {
1392				ap->flags |= KPROBE_FLAG_DISABLED;
1393				list_del_rcu(&p->list);
1394				synchronize_rcu();
1395			}
1396		}
1397	}
1398	return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403	/* The __kprobes marked functions and entry code must not be probed */
1404	return addr >= (unsigned long)__kprobes_text_start &&
1405	       addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408static bool __within_kprobe_blacklist(unsigned long addr)
1409{
1410	struct kprobe_blacklist_entry *ent;
1411
1412	if (arch_within_kprobe_blacklist(addr))
1413		return true;
1414	/*
1415	 * If there exists a kprobe_blacklist, verify and
1416	 * fail any probe registration in the prohibited area
1417	 */
1418	list_for_each_entry(ent, &kprobe_blacklist, list) {
1419		if (addr >= ent->start_addr && addr < ent->end_addr)
1420			return true;
1421	}
1422	return false;
1423}
1424
1425bool within_kprobe_blacklist(unsigned long addr)
1426{
1427	char symname[KSYM_NAME_LEN], *p;
1428
1429	if (__within_kprobe_blacklist(addr))
1430		return true;
1431
1432	/* Check if the address is on a suffixed-symbol */
1433	if (!lookup_symbol_name(addr, symname)) {
1434		p = strchr(symname, '.');
1435		if (!p)
1436			return false;
1437		*p = '\0';
1438		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439		if (addr)
1440			return __within_kprobe_blacklist(addr);
1441	}
1442	return false;
1443}
1444
1445/*
1446 * If we have a symbol_name argument, look it up and add the offset field
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452			const char *symbol_name, unsigned int offset)
1453{
1454	if ((symbol_name && addr) || (!symbol_name && !addr))
1455		goto invalid;
1456
1457	if (symbol_name) {
1458		addr = kprobe_lookup_name(symbol_name, offset);
1459		if (!addr)
1460			return ERR_PTR(-ENOENT);
1461	}
1462
1463	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464	if (addr)
1465		return addr;
1466
1467invalid:
1468	return ERR_PTR(-EINVAL);
1469}
1470
1471static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472{
1473	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474}
1475
1476/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478{
1479	struct kprobe *ap, *list_p;
1480
 
 
1481	ap = get_kprobe(p->addr);
1482	if (unlikely(!ap))
1483		return NULL;
1484
1485	if (p != ap) {
1486		list_for_each_entry_rcu(list_p, &ap->list, list)
1487			if (list_p == p)
1488			/* kprobe p is a valid probe */
1489				goto valid;
1490		return NULL;
1491	}
1492valid:
1493	return ap;
1494}
1495
1496/* Return error if the kprobe is being re-registered */
1497static inline int check_kprobe_rereg(struct kprobe *p)
 
 
 
1498{
1499	int ret = 0;
1500
1501	mutex_lock(&kprobe_mutex);
1502	if (__get_valid_kprobe(p))
1503		ret = -EINVAL;
1504	mutex_unlock(&kprobe_mutex);
1505
1506	return ret;
1507}
1508
1509int __weak arch_check_ftrace_location(struct kprobe *p)
1510{
1511	unsigned long ftrace_addr;
1512
1513	ftrace_addr = ftrace_location((unsigned long)p->addr);
1514	if (ftrace_addr) {
1515#ifdef CONFIG_KPROBES_ON_FTRACE
1516		/* Given address is not on the instruction boundary */
1517		if ((unsigned long)p->addr != ftrace_addr)
1518			return -EILSEQ;
1519		p->flags |= KPROBE_FLAG_FTRACE;
1520#else	/* !CONFIG_KPROBES_ON_FTRACE */
1521		return -EINVAL;
1522#endif
1523	}
1524	return 0;
1525}
1526
1527static int check_kprobe_address_safe(struct kprobe *p,
1528				     struct module **probed_mod)
1529{
1530	int ret;
1531
1532	ret = arch_check_ftrace_location(p);
1533	if (ret)
1534		return ret;
1535	jump_label_lock();
1536	preempt_disable();
1537
1538	/* Ensure it is not in reserved area nor out of text */
1539	if (!kernel_text_address((unsigned long) p->addr) ||
1540	    within_kprobe_blacklist((unsigned long) p->addr) ||
1541	    jump_label_text_reserved(p->addr, p->addr) ||
 
1542	    find_bug((unsigned long)p->addr)) {
1543		ret = -EINVAL;
1544		goto out;
1545	}
1546
1547	/* Check if are we probing a module */
1548	*probed_mod = __module_text_address((unsigned long) p->addr);
1549	if (*probed_mod) {
1550		/*
1551		 * We must hold a refcount of the probed module while updating
1552		 * its code to prohibit unexpected unloading.
1553		 */
1554		if (unlikely(!try_module_get(*probed_mod))) {
1555			ret = -ENOENT;
1556			goto out;
1557		}
1558
1559		/*
1560		 * If the module freed .init.text, we couldn't insert
1561		 * kprobes in there.
1562		 */
1563		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564		    (*probed_mod)->state != MODULE_STATE_COMING) {
1565			module_put(*probed_mod);
1566			*probed_mod = NULL;
1567			ret = -ENOENT;
1568		}
1569	}
1570out:
1571	preempt_enable();
1572	jump_label_unlock();
1573
1574	return ret;
1575}
1576
1577int register_kprobe(struct kprobe *p)
1578{
1579	int ret;
1580	struct kprobe *old_p;
1581	struct module *probed_mod;
1582	kprobe_opcode_t *addr;
1583
1584	/* Adjust probe address from symbol */
1585	addr = kprobe_addr(p);
1586	if (IS_ERR(addr))
1587		return PTR_ERR(addr);
1588	p->addr = addr;
1589
1590	ret = check_kprobe_rereg(p);
1591	if (ret)
1592		return ret;
1593
1594	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595	p->flags &= KPROBE_FLAG_DISABLED;
1596	p->nmissed = 0;
1597	INIT_LIST_HEAD(&p->list);
1598
1599	ret = check_kprobe_address_safe(p, &probed_mod);
1600	if (ret)
1601		return ret;
1602
1603	mutex_lock(&kprobe_mutex);
1604
1605	old_p = get_kprobe(p->addr);
1606	if (old_p) {
1607		/* Since this may unoptimize old_p, locking text_mutex. */
1608		ret = register_aggr_kprobe(old_p, p);
1609		goto out;
1610	}
1611
1612	cpus_read_lock();
1613	/* Prevent text modification */
1614	mutex_lock(&text_mutex);
1615	ret = prepare_kprobe(p);
1616	mutex_unlock(&text_mutex);
1617	cpus_read_unlock();
1618	if (ret)
1619		goto out;
1620
1621	INIT_HLIST_NODE(&p->hlist);
1622	hlist_add_head_rcu(&p->hlist,
1623		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626		ret = arm_kprobe(p);
1627		if (ret) {
1628			hlist_del_rcu(&p->hlist);
1629			synchronize_rcu();
1630			goto out;
1631		}
1632	}
1633
1634	/* Try to optimize kprobe */
1635	try_to_optimize_kprobe(p);
1636out:
1637	mutex_unlock(&kprobe_mutex);
1638
1639	if (probed_mod)
1640		module_put(probed_mod);
1641
1642	return ret;
1643}
1644EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646/* Check if all probes on the aggrprobe are disabled */
1647static int aggr_kprobe_disabled(struct kprobe *ap)
1648{
1649	struct kprobe *kp;
1650
1651	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1652		if (!kprobe_disabled(kp))
1653			/*
1654			 * There is an active probe on the list.
1655			 * We can't disable this ap.
1656			 */
1657			return 0;
1658
1659	return 1;
1660}
1661
1662/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663static struct kprobe *__disable_kprobe(struct kprobe *p)
1664{
1665	struct kprobe *orig_p;
1666	int ret;
1667
1668	/* Get an original kprobe for return */
1669	orig_p = __get_valid_kprobe(p);
1670	if (unlikely(orig_p == NULL))
1671		return ERR_PTR(-EINVAL);
1672
1673	if (!kprobe_disabled(p)) {
1674		/* Disable probe if it is a child probe */
1675		if (p != orig_p)
1676			p->flags |= KPROBE_FLAG_DISABLED;
1677
1678		/* Try to disarm and disable this/parent probe */
1679		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680			/*
1681			 * If kprobes_all_disarmed is set, orig_p
1682			 * should have already been disarmed, so
1683			 * skip unneed disarming process.
1684			 */
1685			if (!kprobes_all_disarmed) {
1686				ret = disarm_kprobe(orig_p, true);
1687				if (ret) {
1688					p->flags &= ~KPROBE_FLAG_DISABLED;
1689					return ERR_PTR(ret);
1690				}
1691			}
1692			orig_p->flags |= KPROBE_FLAG_DISABLED;
1693		}
1694	}
1695
1696	return orig_p;
1697}
1698
1699/*
1700 * Unregister a kprobe without a scheduler synchronization.
1701 */
1702static int __unregister_kprobe_top(struct kprobe *p)
1703{
1704	struct kprobe *ap, *list_p;
1705
1706	/* Disable kprobe. This will disarm it if needed. */
1707	ap = __disable_kprobe(p);
1708	if (IS_ERR(ap))
1709		return PTR_ERR(ap);
1710
1711	if (ap == p)
1712		/*
1713		 * This probe is an independent(and non-optimized) kprobe
1714		 * (not an aggrprobe). Remove from the hash list.
1715		 */
1716		goto disarmed;
1717
1718	/* Following process expects this probe is an aggrprobe */
1719	WARN_ON(!kprobe_aggrprobe(ap));
1720
1721	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722		/*
1723		 * !disarmed could be happen if the probe is under delayed
1724		 * unoptimizing.
1725		 */
1726		goto disarmed;
1727	else {
1728		/* If disabling probe has special handlers, update aggrprobe */
1729		if (p->post_handler && !kprobe_gone(p)) {
1730			list_for_each_entry_rcu(list_p, &ap->list, list) {
1731				if ((list_p != p) && (list_p->post_handler))
1732					goto noclean;
1733			}
1734			ap->post_handler = NULL;
1735		}
1736noclean:
1737		/*
1738		 * Remove from the aggrprobe: this path will do nothing in
1739		 * __unregister_kprobe_bottom().
1740		 */
1741		list_del_rcu(&p->list);
1742		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743			/*
1744			 * Try to optimize this probe again, because post
1745			 * handler may have been changed.
1746			 */
1747			optimize_kprobe(ap);
1748	}
1749	return 0;
1750
1751disarmed:
1752	hlist_del_rcu(&ap->hlist);
1753	return 0;
1754}
1755
1756static void __unregister_kprobe_bottom(struct kprobe *p)
1757{
1758	struct kprobe *ap;
1759
1760	if (list_empty(&p->list))
1761		/* This is an independent kprobe */
1762		arch_remove_kprobe(p);
1763	else if (list_is_singular(&p->list)) {
1764		/* This is the last child of an aggrprobe */
1765		ap = list_entry(p->list.next, struct kprobe, list);
1766		list_del(&p->list);
1767		free_aggr_kprobe(ap);
1768	}
1769	/* Otherwise, do nothing. */
1770}
1771
1772int register_kprobes(struct kprobe **kps, int num)
1773{
1774	int i, ret = 0;
1775
1776	if (num <= 0)
1777		return -EINVAL;
1778	for (i = 0; i < num; i++) {
1779		ret = register_kprobe(kps[i]);
1780		if (ret < 0) {
1781			if (i > 0)
1782				unregister_kprobes(kps, i);
1783			break;
1784		}
1785	}
1786	return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790void unregister_kprobe(struct kprobe *p)
1791{
1792	unregister_kprobes(&p, 1);
1793}
1794EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796void unregister_kprobes(struct kprobe **kps, int num)
1797{
1798	int i;
1799
1800	if (num <= 0)
1801		return;
1802	mutex_lock(&kprobe_mutex);
1803	for (i = 0; i < num; i++)
1804		if (__unregister_kprobe_top(kps[i]) < 0)
1805			kps[i]->addr = NULL;
1806	mutex_unlock(&kprobe_mutex);
1807
1808	synchronize_rcu();
1809	for (i = 0; i < num; i++)
1810		if (kps[i]->addr)
1811			__unregister_kprobe_bottom(kps[i]);
1812}
1813EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816					unsigned long val, void *data)
1817{
1818	return NOTIFY_DONE;
1819}
1820NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822static struct notifier_block kprobe_exceptions_nb = {
1823	.notifier_call = kprobe_exceptions_notify,
1824	.priority = 0x7fffffff /* we need to be notified first */
1825};
1826
1827unsigned long __weak arch_deref_entry_point(void *entry)
1828{
1829	return (unsigned long)entry;
1830}
1831
1832#ifdef CONFIG_KRETPROBES
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833/*
1834 * This kprobe pre_handler is registered with every kretprobe. When probe
1835 * hits it will set up the return probe.
1836 */
1837static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838{
1839	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840	unsigned long hash, flags = 0;
1841	struct kretprobe_instance *ri;
 
1842
1843	/*
1844	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1845	 * just skip the probe and increase the (inexact) 'nmissed'
1846	 * statistical counter, so that the user is informed that
1847	 * something happened:
1848	 */
1849	if (unlikely(in_nmi())) {
1850		rp->nmissed++;
1851		return 0;
1852	}
1853
1854	/* TODO: consider to only swap the RA after the last pre_handler fired */
1855	hash = hash_ptr(current, KPROBE_HASH_BITS);
1856	raw_spin_lock_irqsave(&rp->lock, flags);
1857	if (!hlist_empty(&rp->free_instances)) {
1858		ri = hlist_entry(rp->free_instances.first,
1859				struct kretprobe_instance, hlist);
1860		hlist_del(&ri->hlist);
1861		raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863		ri->rp = rp;
1864		ri->task = current;
1865
1866		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867			raw_spin_lock_irqsave(&rp->lock, flags);
1868			hlist_add_head(&ri->hlist, &rp->free_instances);
1869			raw_spin_unlock_irqrestore(&rp->lock, flags);
1870			return 0;
1871		}
1872
1873		arch_prepare_kretprobe(ri, regs);
1874
1875		/* XXX(hch): why is there no hlist_move_head? */
1876		INIT_HLIST_NODE(&ri->hlist);
1877		kretprobe_table_lock(hash, &flags);
1878		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879		kretprobe_table_unlock(hash, &flags);
1880	} else {
1881		rp->nmissed++;
1882		raw_spin_unlock_irqrestore(&rp->lock, flags);
1883	}
 
 
 
 
 
1884	return 0;
1885}
1886NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889{
1890	return !offset;
1891}
1892
1893bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
1894{
1895	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896
1897	if (IS_ERR(kp_addr))
1898		return false;
 
 
 
1899
1900	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901						!arch_kprobe_on_func_entry(offset))
1902		return false;
1903
1904	return true;
1905}
1906
1907int register_kretprobe(struct kretprobe *rp)
1908{
1909	int ret = 0;
1910	struct kretprobe_instance *inst;
1911	int i;
1912	void *addr;
1913
1914	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
 
 
 
 
 
1915		return -EINVAL;
1916
1917	if (kretprobe_blacklist_size) {
1918		addr = kprobe_addr(&rp->kp);
1919		if (IS_ERR(addr))
1920			return PTR_ERR(addr);
1921
1922		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923			if (kretprobe_blacklist[i].addr == addr)
1924				return -EINVAL;
1925		}
1926	}
1927
1928	rp->kp.pre_handler = pre_handler_kretprobe;
1929	rp->kp.post_handler = NULL;
1930	rp->kp.fault_handler = NULL;
1931
1932	/* Pre-allocate memory for max kretprobe instances */
1933	if (rp->maxactive <= 0) {
1934#ifdef CONFIG_PREEMPTION
1935		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936#else
1937		rp->maxactive = num_possible_cpus();
1938#endif
1939	}
1940	raw_spin_lock_init(&rp->lock);
1941	INIT_HLIST_HEAD(&rp->free_instances);
 
 
 
 
1942	for (i = 0; i < rp->maxactive; i++) {
1943		inst = kmalloc(sizeof(struct kretprobe_instance) +
1944			       rp->data_size, GFP_KERNEL);
1945		if (inst == NULL) {
 
1946			free_rp_inst(rp);
1947			return -ENOMEM;
1948		}
1949		INIT_HLIST_NODE(&inst->hlist);
1950		hlist_add_head(&inst->hlist, &rp->free_instances);
1951	}
 
1952
1953	rp->nmissed = 0;
1954	/* Establish function entry probe point */
1955	ret = register_kprobe(&rp->kp);
1956	if (ret != 0)
1957		free_rp_inst(rp);
1958	return ret;
1959}
1960EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962int register_kretprobes(struct kretprobe **rps, int num)
1963{
1964	int ret = 0, i;
1965
1966	if (num <= 0)
1967		return -EINVAL;
1968	for (i = 0; i < num; i++) {
1969		ret = register_kretprobe(rps[i]);
1970		if (ret < 0) {
1971			if (i > 0)
1972				unregister_kretprobes(rps, i);
1973			break;
1974		}
1975	}
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980void unregister_kretprobe(struct kretprobe *rp)
1981{
1982	unregister_kretprobes(&rp, 1);
1983}
1984EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986void unregister_kretprobes(struct kretprobe **rps, int num)
1987{
1988	int i;
1989
1990	if (num <= 0)
1991		return;
1992	mutex_lock(&kprobe_mutex);
1993	for (i = 0; i < num; i++)
1994		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995			rps[i]->kp.addr = NULL;
 
 
1996	mutex_unlock(&kprobe_mutex);
1997
1998	synchronize_rcu();
1999	for (i = 0; i < num; i++) {
2000		if (rps[i]->kp.addr) {
2001			__unregister_kprobe_bottom(&rps[i]->kp);
2002			cleanup_rp_inst(rps[i]);
2003		}
2004	}
2005}
2006EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008#else /* CONFIG_KRETPROBES */
2009int register_kretprobe(struct kretprobe *rp)
2010{
2011	return -ENOSYS;
2012}
2013EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015int register_kretprobes(struct kretprobe **rps, int num)
2016{
2017	return -ENOSYS;
2018}
2019EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021void unregister_kretprobe(struct kretprobe *rp)
2022{
2023}
2024EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026void unregister_kretprobes(struct kretprobe **rps, int num)
2027{
2028}
2029EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032{
2033	return 0;
2034}
2035NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037#endif /* CONFIG_KRETPROBES */
2038
2039/* Set the kprobe gone and remove its instruction buffer. */
2040static void kill_kprobe(struct kprobe *p)
2041{
2042	struct kprobe *kp;
2043
 
 
2044	p->flags |= KPROBE_FLAG_GONE;
2045	if (kprobe_aggrprobe(p)) {
2046		/*
2047		 * If this is an aggr_kprobe, we have to list all the
2048		 * chained probes and mark them GONE.
2049		 */
2050		list_for_each_entry_rcu(kp, &p->list, list)
2051			kp->flags |= KPROBE_FLAG_GONE;
2052		p->post_handler = NULL;
2053		kill_optimized_kprobe(p);
2054	}
2055	/*
2056	 * Here, we can remove insn_slot safely, because no thread calls
2057	 * the original probed function (which will be freed soon) any more.
2058	 */
2059	arch_remove_kprobe(p);
 
 
 
 
 
 
 
 
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065	int ret = 0;
2066	struct kprobe *p;
2067
2068	mutex_lock(&kprobe_mutex);
2069
2070	/* Disable this kprobe */
2071	p = __disable_kprobe(kp);
2072	if (IS_ERR(p))
2073		ret = PTR_ERR(p);
2074
2075	mutex_unlock(&kprobe_mutex);
2076	return ret;
2077}
2078EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080/* Enable one kprobe */
2081int enable_kprobe(struct kprobe *kp)
2082{
2083	int ret = 0;
2084	struct kprobe *p;
2085
2086	mutex_lock(&kprobe_mutex);
2087
2088	/* Check whether specified probe is valid. */
2089	p = __get_valid_kprobe(kp);
2090	if (unlikely(p == NULL)) {
2091		ret = -EINVAL;
2092		goto out;
2093	}
2094
2095	if (kprobe_gone(kp)) {
2096		/* This kprobe has gone, we couldn't enable it. */
2097		ret = -EINVAL;
2098		goto out;
2099	}
2100
2101	if (p != kp)
2102		kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105		p->flags &= ~KPROBE_FLAG_DISABLED;
2106		ret = arm_kprobe(p);
2107		if (ret)
2108			p->flags |= KPROBE_FLAG_DISABLED;
2109	}
2110out:
2111	mutex_unlock(&kprobe_mutex);
2112	return ret;
2113}
2114EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116/* Caller must NOT call this in usual path. This is only for critical case */
2117void dump_kprobe(struct kprobe *kp)
2118{
2119	pr_err("Dumping kprobe:\n");
2120	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121	       kp->symbol_name, kp->offset, kp->addr);
2122}
2123NOKPROBE_SYMBOL(dump_kprobe);
2124
2125int kprobe_add_ksym_blacklist(unsigned long entry)
2126{
2127	struct kprobe_blacklist_entry *ent;
2128	unsigned long offset = 0, size = 0;
2129
2130	if (!kernel_text_address(entry) ||
2131	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2132		return -EINVAL;
2133
2134	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135	if (!ent)
2136		return -ENOMEM;
2137	ent->start_addr = entry;
2138	ent->end_addr = entry + size;
2139	INIT_LIST_HEAD(&ent->list);
2140	list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142	return (int)size;
2143}
2144
2145/* Add all symbols in given area into kprobe blacklist */
2146int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147{
2148	unsigned long entry;
2149	int ret = 0;
2150
2151	for (entry = start; entry < end; entry += ret) {
2152		ret = kprobe_add_ksym_blacklist(entry);
2153		if (ret < 0)
2154			return ret;
2155		if (ret == 0)	/* In case of alias symbol */
2156			ret = 1;
2157	}
2158	return 0;
2159}
2160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161int __init __weak arch_populate_kprobe_blacklist(void)
2162{
2163	return 0;
2164}
2165
2166/*
2167 * Lookup and populate the kprobe_blacklist.
2168 *
2169 * Unlike the kretprobe blacklist, we'll need to determine
2170 * the range of addresses that belong to the said functions,
2171 * since a kprobe need not necessarily be at the beginning
2172 * of a function.
2173 */
2174static int __init populate_kprobe_blacklist(unsigned long *start,
2175					     unsigned long *end)
2176{
2177	unsigned long entry;
2178	unsigned long *iter;
2179	int ret;
2180
2181	for (iter = start; iter < end; iter++) {
2182		entry = arch_deref_entry_point((void *)*iter);
2183		ret = kprobe_add_ksym_blacklist(entry);
2184		if (ret == -EINVAL)
2185			continue;
2186		if (ret < 0)
2187			return ret;
2188	}
2189
2190	/* Symbols in __kprobes_text are blacklisted */
2191	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192					(unsigned long)__kprobes_text_end);
 
 
 
 
 
 
2193
2194	return ret ? : arch_populate_kprobe_blacklist();
2195}
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197/* Module notifier call back, checking kprobes on the module */
2198static int kprobes_module_callback(struct notifier_block *nb,
2199				   unsigned long val, void *data)
2200{
2201	struct module *mod = data;
2202	struct hlist_head *head;
2203	struct kprobe *p;
2204	unsigned int i;
2205	int checkcore = (val == MODULE_STATE_GOING);
2206
 
 
 
 
 
2207	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208		return NOTIFY_DONE;
2209
2210	/*
2211	 * When MODULE_STATE_GOING was notified, both of module .text and
2212	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213	 * notified, only .init.text section would be freed. We need to
2214	 * disable kprobes which have been inserted in the sections.
2215	 */
2216	mutex_lock(&kprobe_mutex);
2217	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218		head = &kprobe_table[i];
2219		hlist_for_each_entry_rcu(p, head, hlist)
2220			if (within_module_init((unsigned long)p->addr, mod) ||
2221			    (checkcore &&
2222			     within_module_core((unsigned long)p->addr, mod))) {
2223				/*
2224				 * The vaddr this probe is installed will soon
2225				 * be vfreed buy not synced to disk. Hence,
2226				 * disarming the breakpoint isn't needed.
2227				 *
2228				 * Note, this will also move any optimized probes
2229				 * that are pending to be removed from their
2230				 * corresponding lists to the freeing_list and
2231				 * will not be touched by the delayed
2232				 * kprobe_optimizer work handler.
2233				 */
2234				kill_kprobe(p);
2235			}
2236	}
 
 
2237	mutex_unlock(&kprobe_mutex);
2238	return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block kprobe_module_nb = {
2242	.notifier_call = kprobes_module_callback,
2243	.priority = 0
2244};
2245
2246/* Markers of _kprobe_blacklist section */
2247extern unsigned long __start_kprobe_blacklist[];
2248extern unsigned long __stop_kprobe_blacklist[];
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250static int __init init_kprobes(void)
2251{
2252	int i, err = 0;
2253
2254	/* FIXME allocate the probe table, currently defined statically */
2255	/* initialize all list heads */
2256	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257		INIT_HLIST_HEAD(&kprobe_table[i]);
2258		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260	}
2261
2262	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263					__stop_kprobe_blacklist);
2264	if (err) {
2265		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266		pr_err("Please take care of using kprobes.\n");
2267	}
2268
2269	if (kretprobe_blacklist_size) {
2270		/* lookup the function address from its name */
2271		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272			kretprobe_blacklist[i].addr =
2273				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274			if (!kretprobe_blacklist[i].addr)
2275				printk("kretprobe: lookup failed: %s\n",
2276				       kretprobe_blacklist[i].name);
2277		}
2278	}
2279
2280#if defined(CONFIG_OPTPROBES)
2281#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282	/* Init kprobe_optinsn_slots */
2283	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284#endif
2285	/* By default, kprobes can be optimized */
2286	kprobes_allow_optimization = true;
2287#endif
2288
2289	/* By default, kprobes are armed */
2290	kprobes_all_disarmed = false;
2291
 
 
 
 
 
2292	err = arch_init_kprobes();
2293	if (!err)
2294		err = register_die_notifier(&kprobe_exceptions_nb);
2295	if (!err)
2296		err = register_module_notifier(&kprobe_module_nb);
2297
2298	kprobes_initialized = (err == 0);
2299
2300	if (!err)
2301		init_test_probes();
2302	return err;
2303}
2304subsys_initcall(init_kprobes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305
2306#ifdef CONFIG_DEBUG_FS
2307static void report_probe(struct seq_file *pi, struct kprobe *p,
2308		const char *sym, int offset, char *modname, struct kprobe *pp)
2309{
2310	char *kprobe_type;
2311	void *addr = p->addr;
2312
2313	if (p->pre_handler == pre_handler_kretprobe)
2314		kprobe_type = "r";
2315	else
2316		kprobe_type = "k";
2317
2318	if (!kallsyms_show_value())
2319		addr = NULL;
2320
2321	if (sym)
2322		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2323			addr, kprobe_type, sym, offset,
2324			(modname ? modname : " "));
2325	else	/* try to use %pS */
2326		seq_printf(pi, "%px  %s  %pS ",
2327			addr, kprobe_type, p->addr);
2328
2329	if (!pp)
2330		pp = p;
2331	seq_printf(pi, "%s%s%s%s\n",
2332		(kprobe_gone(p) ? "[GONE]" : ""),
2333		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2334		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336}
2337
2338static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339{
2340	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341}
2342
2343static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344{
2345	(*pos)++;
2346	if (*pos >= KPROBE_TABLE_SIZE)
2347		return NULL;
2348	return pos;
2349}
2350
2351static void kprobe_seq_stop(struct seq_file *f, void *v)
2352{
2353	/* Nothing to do */
2354}
2355
2356static int show_kprobe_addr(struct seq_file *pi, void *v)
2357{
2358	struct hlist_head *head;
2359	struct kprobe *p, *kp;
2360	const char *sym = NULL;
2361	unsigned int i = *(loff_t *) v;
2362	unsigned long offset = 0;
2363	char *modname, namebuf[KSYM_NAME_LEN];
2364
2365	head = &kprobe_table[i];
2366	preempt_disable();
2367	hlist_for_each_entry_rcu(p, head, hlist) {
2368		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369					&offset, &modname, namebuf);
2370		if (kprobe_aggrprobe(p)) {
2371			list_for_each_entry_rcu(kp, &p->list, list)
2372				report_probe(pi, kp, sym, offset, modname, p);
2373		} else
2374			report_probe(pi, p, sym, offset, modname, NULL);
2375	}
2376	preempt_enable();
2377	return 0;
2378}
2379
2380static const struct seq_operations kprobes_seq_ops = {
2381	.start = kprobe_seq_start,
2382	.next  = kprobe_seq_next,
2383	.stop  = kprobe_seq_stop,
2384	.show  = show_kprobe_addr
2385};
2386
2387static int kprobes_open(struct inode *inode, struct file *filp)
2388{
2389	return seq_open(filp, &kprobes_seq_ops);
2390}
2391
2392static const struct file_operations debugfs_kprobes_operations = {
2393	.open           = kprobes_open,
2394	.read           = seq_read,
2395	.llseek         = seq_lseek,
2396	.release        = seq_release,
2397};
2398
2399/* kprobes/blacklist -- shows which functions can not be probed */
2400static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401{
 
2402	return seq_list_start(&kprobe_blacklist, *pos);
2403}
2404
2405static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406{
2407	return seq_list_next(v, &kprobe_blacklist, pos);
2408}
2409
2410static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411{
2412	struct kprobe_blacklist_entry *ent =
2413		list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415	/*
2416	 * If /proc/kallsyms is not showing kernel address, we won't
2417	 * show them here either.
2418	 */
2419	if (!kallsyms_show_value())
2420		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421			   (void *)ent->start_addr);
2422	else
2423		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424			   (void *)ent->end_addr, (void *)ent->start_addr);
2425	return 0;
2426}
2427
2428static const struct seq_operations kprobe_blacklist_seq_ops = {
2429	.start = kprobe_blacklist_seq_start,
2430	.next  = kprobe_blacklist_seq_next,
2431	.stop  = kprobe_seq_stop,	/* Reuse void function */
2432	.show  = kprobe_blacklist_seq_show,
2433};
2434
2435static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436{
2437	return seq_open(filp, &kprobe_blacklist_seq_ops);
2438}
2439
2440static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441	.open           = kprobe_blacklist_open,
2442	.read           = seq_read,
2443	.llseek         = seq_lseek,
2444	.release        = seq_release,
2445};
 
2446
2447static int arm_all_kprobes(void)
2448{
2449	struct hlist_head *head;
2450	struct kprobe *p;
2451	unsigned int i, total = 0, errors = 0;
2452	int err, ret = 0;
2453
2454	mutex_lock(&kprobe_mutex);
2455
2456	/* If kprobes are armed, just return */
2457	if (!kprobes_all_disarmed)
2458		goto already_enabled;
2459
2460	/*
2461	 * optimize_kprobe() called by arm_kprobe() checks
2462	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463	 * arm_kprobe.
2464	 */
2465	kprobes_all_disarmed = false;
2466	/* Arming kprobes doesn't optimize kprobe itself */
2467	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468		head = &kprobe_table[i];
2469		/* Arm all kprobes on a best-effort basis */
2470		hlist_for_each_entry_rcu(p, head, hlist) {
2471			if (!kprobe_disabled(p)) {
2472				err = arm_kprobe(p);
2473				if (err)  {
2474					errors++;
2475					ret = err;
2476				}
2477				total++;
2478			}
2479		}
2480	}
2481
2482	if (errors)
2483		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484			errors, total);
2485	else
2486		pr_info("Kprobes globally enabled\n");
2487
2488already_enabled:
2489	mutex_unlock(&kprobe_mutex);
2490	return ret;
2491}
2492
2493static int disarm_all_kprobes(void)
2494{
2495	struct hlist_head *head;
2496	struct kprobe *p;
2497	unsigned int i, total = 0, errors = 0;
2498	int err, ret = 0;
2499
2500	mutex_lock(&kprobe_mutex);
2501
2502	/* If kprobes are already disarmed, just return */
2503	if (kprobes_all_disarmed) {
2504		mutex_unlock(&kprobe_mutex);
2505		return 0;
2506	}
2507
2508	kprobes_all_disarmed = true;
2509
2510	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511		head = &kprobe_table[i];
2512		/* Disarm all kprobes on a best-effort basis */
2513		hlist_for_each_entry_rcu(p, head, hlist) {
2514			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515				err = disarm_kprobe(p, false);
2516				if (err) {
2517					errors++;
2518					ret = err;
2519				}
2520				total++;
2521			}
2522		}
2523	}
2524
2525	if (errors)
2526		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527			errors, total);
2528	else
2529		pr_info("Kprobes globally disabled\n");
2530
2531	mutex_unlock(&kprobe_mutex);
2532
2533	/* Wait for disarming all kprobes by optimizer */
2534	wait_for_kprobe_optimizer();
2535
2536	return ret;
2537}
2538
2539/*
2540 * XXX: The debugfs bool file interface doesn't allow for callbacks
2541 * when the bool state is switched. We can reuse that facility when
2542 * available
2543 */
2544static ssize_t read_enabled_file_bool(struct file *file,
2545	       char __user *user_buf, size_t count, loff_t *ppos)
2546{
2547	char buf[3];
2548
2549	if (!kprobes_all_disarmed)
2550		buf[0] = '1';
2551	else
2552		buf[0] = '0';
2553	buf[1] = '\n';
2554	buf[2] = 0x00;
2555	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556}
2557
2558static ssize_t write_enabled_file_bool(struct file *file,
2559	       const char __user *user_buf, size_t count, loff_t *ppos)
2560{
2561	char buf[32];
2562	size_t buf_size;
2563	int ret = 0;
2564
2565	buf_size = min(count, (sizeof(buf)-1));
2566	if (copy_from_user(buf, user_buf, buf_size))
2567		return -EFAULT;
2568
2569	buf[buf_size] = '\0';
2570	switch (buf[0]) {
2571	case 'y':
2572	case 'Y':
2573	case '1':
2574		ret = arm_all_kprobes();
2575		break;
2576	case 'n':
2577	case 'N':
2578	case '0':
2579		ret = disarm_all_kprobes();
2580		break;
2581	default:
2582		return -EINVAL;
2583	}
2584
2585	if (ret)
2586		return ret;
2587
2588	return count;
2589}
2590
2591static const struct file_operations fops_kp = {
2592	.read =         read_enabled_file_bool,
2593	.write =        write_enabled_file_bool,
2594	.llseek =	default_llseek,
2595};
2596
2597static int __init debugfs_kprobe_init(void)
2598{
2599	struct dentry *dir;
2600	unsigned int value = 1;
2601
2602	dir = debugfs_create_dir("kprobes", NULL);
2603
2604	debugfs_create_file("list", 0400, dir, NULL,
2605			    &debugfs_kprobes_operations);
2606
2607	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609	debugfs_create_file("blacklist", 0400, dir, NULL,
2610			    &debugfs_kprobe_blacklist_ops);
2611
2612	return 0;
2613}
2614
2615late_initcall(debugfs_kprobe_init);
2616#endif /* CONFIG_DEBUG_FS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38#include <linux/static_call.h>
  39#include <linux/perf_event.h>
  40
  41#include <asm/sections.h>
  42#include <asm/cacheflush.h>
  43#include <asm/errno.h>
  44#include <linux/uaccess.h>
  45
  46#define KPROBE_HASH_BITS 6
  47#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  48
  49
  50static int kprobes_initialized;
  51/* kprobe_table can be accessed by
  52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
  53 * Or
  54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  55 */
  56static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
 
  57
  58/* NOTE: change this value only with kprobe_mutex held */
  59static bool kprobes_all_disarmed;
  60
  61/* This protects kprobe_table and optimizing_list */
  62static DEFINE_MUTEX(kprobe_mutex);
  63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
 
 
 
  64
  65kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  66					unsigned int __unused)
  67{
  68	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  69}
  70
 
 
 
 
 
  71/* Blacklist -- list of struct kprobe_blacklist_entry */
  72static LIST_HEAD(kprobe_blacklist);
  73
  74#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  75/*
  76 * kprobe->ainsn.insn points to the copy of the instruction to be
  77 * single-stepped. x86_64, POWER4 and above have no-exec support and
  78 * stepping on the instruction on a vmalloced/kmalloced/data page
  79 * is a recipe for disaster
  80 */
  81struct kprobe_insn_page {
  82	struct list_head list;
  83	kprobe_opcode_t *insns;		/* Page of instruction slots */
  84	struct kprobe_insn_cache *cache;
  85	int nused;
  86	int ngarbage;
  87	char slot_used[];
  88};
  89
  90#define KPROBE_INSN_PAGE_SIZE(slots)			\
  91	(offsetof(struct kprobe_insn_page, slot_used) +	\
  92	 (sizeof(char) * (slots)))
  93
  94static int slots_per_page(struct kprobe_insn_cache *c)
  95{
  96	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  97}
  98
  99enum kprobe_slot_state {
 100	SLOT_CLEAN = 0,
 101	SLOT_DIRTY = 1,
 102	SLOT_USED = 2,
 103};
 104
 105void __weak *alloc_insn_page(void)
 106{
 107	return module_alloc(PAGE_SIZE);
 108}
 109
 110static void free_insn_page(void *page)
 111{
 112	module_memfree(page);
 113}
 114
 115struct kprobe_insn_cache kprobe_insn_slots = {
 116	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 117	.alloc = alloc_insn_page,
 118	.free = free_insn_page,
 119	.sym = KPROBE_INSN_PAGE_SYM,
 120	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 121	.insn_size = MAX_INSN_SIZE,
 122	.nr_garbage = 0,
 123};
 124static int collect_garbage_slots(struct kprobe_insn_cache *c);
 125
 126/**
 127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 128 * We allocate an executable page if there's no room on existing ones.
 129 */
 130kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 131{
 132	struct kprobe_insn_page *kip;
 133	kprobe_opcode_t *slot = NULL;
 134
 135	/* Since the slot array is not protected by rcu, we need a mutex */
 136	mutex_lock(&c->mutex);
 137 retry:
 138	rcu_read_lock();
 139	list_for_each_entry_rcu(kip, &c->pages, list) {
 140		if (kip->nused < slots_per_page(c)) {
 141			int i;
 142			for (i = 0; i < slots_per_page(c); i++) {
 143				if (kip->slot_used[i] == SLOT_CLEAN) {
 144					kip->slot_used[i] = SLOT_USED;
 145					kip->nused++;
 146					slot = kip->insns + (i * c->insn_size);
 147					rcu_read_unlock();
 148					goto out;
 149				}
 150			}
 151			/* kip->nused is broken. Fix it. */
 152			kip->nused = slots_per_page(c);
 153			WARN_ON(1);
 154		}
 155	}
 156	rcu_read_unlock();
 157
 158	/* If there are any garbage slots, collect it and try again. */
 159	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 160		goto retry;
 161
 162	/* All out of space.  Need to allocate a new page. */
 163	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 164	if (!kip)
 165		goto out;
 166
 167	/*
 168	 * Use module_alloc so this page is within +/- 2GB of where the
 169	 * kernel image and loaded module images reside. This is required
 170	 * so x86_64 can correctly handle the %rip-relative fixups.
 171	 */
 172	kip->insns = c->alloc();
 173	if (!kip->insns) {
 174		kfree(kip);
 175		goto out;
 176	}
 177	INIT_LIST_HEAD(&kip->list);
 178	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 179	kip->slot_used[0] = SLOT_USED;
 180	kip->nused = 1;
 181	kip->ngarbage = 0;
 182	kip->cache = c;
 183	list_add_rcu(&kip->list, &c->pages);
 184	slot = kip->insns;
 185
 186	/* Record the perf ksymbol register event after adding the page */
 187	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 188			   PAGE_SIZE, false, c->sym);
 189out:
 190	mutex_unlock(&c->mutex);
 191	return slot;
 192}
 193
 194/* Return 1 if all garbages are collected, otherwise 0. */
 195static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 196{
 197	kip->slot_used[idx] = SLOT_CLEAN;
 198	kip->nused--;
 199	if (kip->nused == 0) {
 200		/*
 201		 * Page is no longer in use.  Free it unless
 202		 * it's the last one.  We keep the last one
 203		 * so as not to have to set it up again the
 204		 * next time somebody inserts a probe.
 205		 */
 206		if (!list_is_singular(&kip->list)) {
 207			/*
 208			 * Record perf ksymbol unregister event before removing
 209			 * the page.
 210			 */
 211			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 212					   (unsigned long)kip->insns, PAGE_SIZE, true,
 213					   kip->cache->sym);
 214			list_del_rcu(&kip->list);
 215			synchronize_rcu();
 216			kip->cache->free(kip->insns);
 217			kfree(kip);
 218		}
 219		return 1;
 220	}
 221	return 0;
 222}
 223
 224static int collect_garbage_slots(struct kprobe_insn_cache *c)
 225{
 226	struct kprobe_insn_page *kip, *next;
 227
 228	/* Ensure no-one is interrupted on the garbages */
 229	synchronize_rcu();
 230
 231	list_for_each_entry_safe(kip, next, &c->pages, list) {
 232		int i;
 233		if (kip->ngarbage == 0)
 234			continue;
 235		kip->ngarbage = 0;	/* we will collect all garbages */
 236		for (i = 0; i < slots_per_page(c); i++) {
 237			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 238				break;
 239		}
 240	}
 241	c->nr_garbage = 0;
 242	return 0;
 243}
 244
 245void __free_insn_slot(struct kprobe_insn_cache *c,
 246		      kprobe_opcode_t *slot, int dirty)
 247{
 248	struct kprobe_insn_page *kip;
 249	long idx;
 250
 251	mutex_lock(&c->mutex);
 252	rcu_read_lock();
 253	list_for_each_entry_rcu(kip, &c->pages, list) {
 254		idx = ((long)slot - (long)kip->insns) /
 255			(c->insn_size * sizeof(kprobe_opcode_t));
 256		if (idx >= 0 && idx < slots_per_page(c))
 257			goto out;
 258	}
 259	/* Could not find this slot. */
 260	WARN_ON(1);
 261	kip = NULL;
 262out:
 263	rcu_read_unlock();
 264	/* Mark and sweep: this may sleep */
 265	if (kip) {
 266		/* Check double free */
 267		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 268		if (dirty) {
 269			kip->slot_used[idx] = SLOT_DIRTY;
 270			kip->ngarbage++;
 271			if (++c->nr_garbage > slots_per_page(c))
 272				collect_garbage_slots(c);
 273		} else {
 274			collect_one_slot(kip, idx);
 275		}
 276	}
 277	mutex_unlock(&c->mutex);
 278}
 279
 280/*
 281 * Check given address is on the page of kprobe instruction slots.
 282 * This will be used for checking whether the address on a stack
 283 * is on a text area or not.
 284 */
 285bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 286{
 287	struct kprobe_insn_page *kip;
 288	bool ret = false;
 289
 290	rcu_read_lock();
 291	list_for_each_entry_rcu(kip, &c->pages, list) {
 292		if (addr >= (unsigned long)kip->insns &&
 293		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 294			ret = true;
 295			break;
 296		}
 297	}
 298	rcu_read_unlock();
 299
 300	return ret;
 301}
 302
 303int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 304			     unsigned long *value, char *type, char *sym)
 305{
 306	struct kprobe_insn_page *kip;
 307	int ret = -ERANGE;
 308
 309	rcu_read_lock();
 310	list_for_each_entry_rcu(kip, &c->pages, list) {
 311		if ((*symnum)--)
 312			continue;
 313		strlcpy(sym, c->sym, KSYM_NAME_LEN);
 314		*type = 't';
 315		*value = (unsigned long)kip->insns;
 316		ret = 0;
 317		break;
 318	}
 319	rcu_read_unlock();
 320
 321	return ret;
 322}
 323
 324#ifdef CONFIG_OPTPROBES
 325void __weak *alloc_optinsn_page(void)
 326{
 327	return alloc_insn_page();
 328}
 329
 330void __weak free_optinsn_page(void *page)
 331{
 332	free_insn_page(page);
 333}
 334
 335/* For optimized_kprobe buffer */
 336struct kprobe_insn_cache kprobe_optinsn_slots = {
 337	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 338	.alloc = alloc_optinsn_page,
 339	.free = free_optinsn_page,
 340	.sym = KPROBE_OPTINSN_PAGE_SYM,
 341	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 342	/* .insn_size is initialized later */
 343	.nr_garbage = 0,
 344};
 345#endif
 346#endif
 347
 348/* We have preemption disabled.. so it is safe to use __ versions */
 349static inline void set_kprobe_instance(struct kprobe *kp)
 350{
 351	__this_cpu_write(kprobe_instance, kp);
 352}
 353
 354static inline void reset_kprobe_instance(void)
 355{
 356	__this_cpu_write(kprobe_instance, NULL);
 357}
 358
 359/*
 360 * This routine is called either:
 361 * 	- under the kprobe_mutex - during kprobe_[un]register()
 362 * 				OR
 363 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 364 */
 365struct kprobe *get_kprobe(void *addr)
 366{
 367	struct hlist_head *head;
 368	struct kprobe *p;
 369
 370	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 371	hlist_for_each_entry_rcu(p, head, hlist,
 372				 lockdep_is_held(&kprobe_mutex)) {
 373		if (p->addr == addr)
 374			return p;
 375	}
 376
 377	return NULL;
 378}
 379NOKPROBE_SYMBOL(get_kprobe);
 380
 381static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 382
 383/* Return true if the kprobe is an aggregator */
 384static inline int kprobe_aggrprobe(struct kprobe *p)
 385{
 386	return p->pre_handler == aggr_pre_handler;
 387}
 388
 389/* Return true(!0) if the kprobe is unused */
 390static inline int kprobe_unused(struct kprobe *p)
 391{
 392	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 393	       list_empty(&p->list);
 394}
 395
 396/*
 397 * Keep all fields in the kprobe consistent
 398 */
 399static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 400{
 401	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 402	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 403}
 404
 405#ifdef CONFIG_OPTPROBES
 406/* NOTE: change this value only with kprobe_mutex held */
 407static bool kprobes_allow_optimization;
 408
 409/*
 410 * Call all pre_handler on the list, but ignores its return value.
 411 * This must be called from arch-dep optimized caller.
 412 */
 413void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 414{
 415	struct kprobe *kp;
 416
 417	list_for_each_entry_rcu(kp, &p->list, list) {
 418		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 419			set_kprobe_instance(kp);
 420			kp->pre_handler(kp, regs);
 421		}
 422		reset_kprobe_instance();
 423	}
 424}
 425NOKPROBE_SYMBOL(opt_pre_handler);
 426
 427/* Free optimized instructions and optimized_kprobe */
 428static void free_aggr_kprobe(struct kprobe *p)
 429{
 430	struct optimized_kprobe *op;
 431
 432	op = container_of(p, struct optimized_kprobe, kp);
 433	arch_remove_optimized_kprobe(op);
 434	arch_remove_kprobe(p);
 435	kfree(op);
 436}
 437
 438/* Return true(!0) if the kprobe is ready for optimization. */
 439static inline int kprobe_optready(struct kprobe *p)
 440{
 441	struct optimized_kprobe *op;
 442
 443	if (kprobe_aggrprobe(p)) {
 444		op = container_of(p, struct optimized_kprobe, kp);
 445		return arch_prepared_optinsn(&op->optinsn);
 446	}
 447
 448	return 0;
 449}
 450
 451/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 452static inline int kprobe_disarmed(struct kprobe *p)
 453{
 454	struct optimized_kprobe *op;
 455
 456	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 457	if (!kprobe_aggrprobe(p))
 458		return kprobe_disabled(p);
 459
 460	op = container_of(p, struct optimized_kprobe, kp);
 461
 462	return kprobe_disabled(p) && list_empty(&op->list);
 463}
 464
 465/* Return true(!0) if the probe is queued on (un)optimizing lists */
 466static int kprobe_queued(struct kprobe *p)
 467{
 468	struct optimized_kprobe *op;
 469
 470	if (kprobe_aggrprobe(p)) {
 471		op = container_of(p, struct optimized_kprobe, kp);
 472		if (!list_empty(&op->list))
 473			return 1;
 474	}
 475	return 0;
 476}
 477
 478/*
 479 * Return an optimized kprobe whose optimizing code replaces
 480 * instructions including addr (exclude breakpoint).
 481 */
 482static struct kprobe *get_optimized_kprobe(unsigned long addr)
 483{
 484	int i;
 485	struct kprobe *p = NULL;
 486	struct optimized_kprobe *op;
 487
 488	/* Don't check i == 0, since that is a breakpoint case. */
 489	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 490		p = get_kprobe((void *)(addr - i));
 491
 492	if (p && kprobe_optready(p)) {
 493		op = container_of(p, struct optimized_kprobe, kp);
 494		if (arch_within_optimized_kprobe(op, addr))
 495			return p;
 496	}
 497
 498	return NULL;
 499}
 500
 501/* Optimization staging list, protected by kprobe_mutex */
 502static LIST_HEAD(optimizing_list);
 503static LIST_HEAD(unoptimizing_list);
 504static LIST_HEAD(freeing_list);
 505
 506static void kprobe_optimizer(struct work_struct *work);
 507static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 508#define OPTIMIZE_DELAY 5
 509
 510/*
 511 * Optimize (replace a breakpoint with a jump) kprobes listed on
 512 * optimizing_list.
 513 */
 514static void do_optimize_kprobes(void)
 515{
 516	lockdep_assert_held(&text_mutex);
 517	/*
 518	 * The optimization/unoptimization refers online_cpus via
 519	 * stop_machine() and cpu-hotplug modifies online_cpus.
 520	 * And same time, text_mutex will be held in cpu-hotplug and here.
 521	 * This combination can cause a deadlock (cpu-hotplug try to lock
 522	 * text_mutex but stop_machine can not be done because online_cpus
 523	 * has been changed)
 524	 * To avoid this deadlock, caller must have locked cpu hotplug
 525	 * for preventing cpu-hotplug outside of text_mutex locking.
 526	 */
 527	lockdep_assert_cpus_held();
 528
 529	/* Optimization never be done when disarmed */
 530	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 531	    list_empty(&optimizing_list))
 532		return;
 533
 534	arch_optimize_kprobes(&optimizing_list);
 535}
 536
 537/*
 538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 539 * if need) kprobes listed on unoptimizing_list.
 540 */
 541static void do_unoptimize_kprobes(void)
 542{
 543	struct optimized_kprobe *op, *tmp;
 544
 545	lockdep_assert_held(&text_mutex);
 546	/* See comment in do_optimize_kprobes() */
 547	lockdep_assert_cpus_held();
 548
 549	/* Unoptimization must be done anytime */
 550	if (list_empty(&unoptimizing_list))
 551		return;
 552
 553	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 554	/* Loop free_list for disarming */
 555	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 556		/* Switching from detour code to origin */
 557		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 558		/* Disarm probes if marked disabled */
 559		if (kprobe_disabled(&op->kp))
 560			arch_disarm_kprobe(&op->kp);
 561		if (kprobe_unused(&op->kp)) {
 562			/*
 563			 * Remove unused probes from hash list. After waiting
 564			 * for synchronization, these probes are reclaimed.
 565			 * (reclaiming is done by do_free_cleaned_kprobes.)
 566			 */
 567			hlist_del_rcu(&op->kp.hlist);
 568		} else
 569			list_del_init(&op->list);
 570	}
 571}
 572
 573/* Reclaim all kprobes on the free_list */
 574static void do_free_cleaned_kprobes(void)
 575{
 576	struct optimized_kprobe *op, *tmp;
 577
 578	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 579		list_del_init(&op->list);
 580		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 581			/*
 582			 * This must not happen, but if there is a kprobe
 583			 * still in use, keep it on kprobes hash list.
 584			 */
 585			continue;
 586		}
 587		free_aggr_kprobe(&op->kp);
 588	}
 589}
 590
 591/* Start optimizer after OPTIMIZE_DELAY passed */
 592static void kick_kprobe_optimizer(void)
 593{
 594	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 595}
 596
 597/* Kprobe jump optimizer */
 598static void kprobe_optimizer(struct work_struct *work)
 599{
 600	mutex_lock(&kprobe_mutex);
 601	cpus_read_lock();
 602	mutex_lock(&text_mutex);
 
 
 603
 604	/*
 605	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 606	 * kprobes before waiting for quiesence period.
 607	 */
 608	do_unoptimize_kprobes();
 609
 610	/*
 611	 * Step 2: Wait for quiesence period to ensure all potentially
 612	 * preempted tasks to have normally scheduled. Because optprobe
 613	 * may modify multiple instructions, there is a chance that Nth
 614	 * instruction is preempted. In that case, such tasks can return
 615	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 616	 * Note that on non-preemptive kernel, this is transparently converted
 617	 * to synchronoze_sched() to wait for all interrupts to have completed.
 618	 */
 619	synchronize_rcu_tasks();
 620
 621	/* Step 3: Optimize kprobes after quiesence period */
 622	do_optimize_kprobes();
 623
 624	/* Step 4: Free cleaned kprobes after quiesence period */
 625	do_free_cleaned_kprobes();
 626
 
 627	mutex_unlock(&text_mutex);
 628	cpus_read_unlock();
 
 629
 630	/* Step 5: Kick optimizer again if needed */
 631	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 632		kick_kprobe_optimizer();
 633
 634	mutex_unlock(&kprobe_mutex);
 635}
 636
 637/* Wait for completing optimization and unoptimization */
 638void wait_for_kprobe_optimizer(void)
 639{
 640	mutex_lock(&kprobe_mutex);
 641
 642	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 643		mutex_unlock(&kprobe_mutex);
 644
 645		/* this will also make optimizing_work execute immmediately */
 646		flush_delayed_work(&optimizing_work);
 647		/* @optimizing_work might not have been queued yet, relax */
 648		cpu_relax();
 649
 650		mutex_lock(&kprobe_mutex);
 651	}
 652
 653	mutex_unlock(&kprobe_mutex);
 654}
 655
 656static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 657{
 658	struct optimized_kprobe *_op;
 659
 660	list_for_each_entry(_op, &unoptimizing_list, list) {
 661		if (op == _op)
 662			return true;
 663	}
 664
 665	return false;
 666}
 667
 668/* Optimize kprobe if p is ready to be optimized */
 669static void optimize_kprobe(struct kprobe *p)
 670{
 671	struct optimized_kprobe *op;
 672
 673	/* Check if the kprobe is disabled or not ready for optimization. */
 674	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 675	    (kprobe_disabled(p) || kprobes_all_disarmed))
 676		return;
 677
 678	/* kprobes with post_handler can not be optimized */
 679	if (p->post_handler)
 680		return;
 681
 682	op = container_of(p, struct optimized_kprobe, kp);
 683
 684	/* Check there is no other kprobes at the optimized instructions */
 685	if (arch_check_optimized_kprobe(op) < 0)
 686		return;
 687
 688	/* Check if it is already optimized. */
 689	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 690		if (optprobe_queued_unopt(op)) {
 691			/* This is under unoptimizing. Just dequeue the probe */
 692			list_del_init(&op->list);
 693		}
 694		return;
 695	}
 696	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 697
 698	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
 699	if (WARN_ON_ONCE(!list_empty(&op->list)))
 700		return;
 701
 702	list_add(&op->list, &optimizing_list);
 703	kick_kprobe_optimizer();
 
 704}
 705
 706/* Short cut to direct unoptimizing */
 707static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 708{
 709	lockdep_assert_cpus_held();
 710	arch_unoptimize_kprobe(op);
 711	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 712}
 713
 714/* Unoptimize a kprobe if p is optimized */
 715static void unoptimize_kprobe(struct kprobe *p, bool force)
 716{
 717	struct optimized_kprobe *op;
 718
 719	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 720		return; /* This is not an optprobe nor optimized */
 721
 722	op = container_of(p, struct optimized_kprobe, kp);
 723	if (!kprobe_optimized(p))
 
 
 
 
 
 
 
 
 
 
 724		return;
 
 725
 
 726	if (!list_empty(&op->list)) {
 727		if (optprobe_queued_unopt(op)) {
 728			/* Queued in unoptimizing queue */
 729			if (force) {
 730				/*
 731				 * Forcibly unoptimize the kprobe here, and queue it
 732				 * in the freeing list for release afterwards.
 733				 */
 734				force_unoptimize_kprobe(op);
 735				list_move(&op->list, &freeing_list);
 736			}
 737		} else {
 738			/* Dequeue from the optimizing queue */
 739			list_del_init(&op->list);
 740			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 741		}
 742		return;
 743	}
 744
 745	/* Optimized kprobe case */
 746	if (force) {
 747		/* Forcibly update the code: this is a special case */
 748		force_unoptimize_kprobe(op);
 749	} else {
 750		list_add(&op->list, &unoptimizing_list);
 751		kick_kprobe_optimizer();
 752	}
 753}
 754
 755/* Cancel unoptimizing for reusing */
 756static int reuse_unused_kprobe(struct kprobe *ap)
 757{
 758	struct optimized_kprobe *op;
 759
 760	/*
 761	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 762	 * there is still a relative jump) and disabled.
 763	 */
 764	op = container_of(ap, struct optimized_kprobe, kp);
 765	WARN_ON_ONCE(list_empty(&op->list));
 766	/* Enable the probe again */
 767	ap->flags &= ~KPROBE_FLAG_DISABLED;
 768	/* Optimize it again (remove from op->list) */
 769	if (!kprobe_optready(ap))
 770		return -EINVAL;
 771
 772	optimize_kprobe(ap);
 773	return 0;
 774}
 775
 776/* Remove optimized instructions */
 777static void kill_optimized_kprobe(struct kprobe *p)
 778{
 779	struct optimized_kprobe *op;
 780
 781	op = container_of(p, struct optimized_kprobe, kp);
 782	if (!list_empty(&op->list))
 783		/* Dequeue from the (un)optimization queue */
 784		list_del_init(&op->list);
 785	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 786
 787	if (kprobe_unused(p)) {
 788		/* Enqueue if it is unused */
 789		list_add(&op->list, &freeing_list);
 790		/*
 791		 * Remove unused probes from the hash list. After waiting
 792		 * for synchronization, this probe is reclaimed.
 793		 * (reclaiming is done by do_free_cleaned_kprobes().)
 794		 */
 795		hlist_del_rcu(&op->kp.hlist);
 796	}
 797
 798	/* Don't touch the code, because it is already freed. */
 799	arch_remove_optimized_kprobe(op);
 800}
 801
 802static inline
 803void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 804{
 805	if (!kprobe_ftrace(p))
 806		arch_prepare_optimized_kprobe(op, p);
 807}
 808
 809/* Try to prepare optimized instructions */
 810static void prepare_optimized_kprobe(struct kprobe *p)
 811{
 812	struct optimized_kprobe *op;
 813
 814	op = container_of(p, struct optimized_kprobe, kp);
 815	__prepare_optimized_kprobe(op, p);
 816}
 817
 818/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 819static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 820{
 821	struct optimized_kprobe *op;
 822
 823	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 824	if (!op)
 825		return NULL;
 826
 827	INIT_LIST_HEAD(&op->list);
 828	op->kp.addr = p->addr;
 829	__prepare_optimized_kprobe(op, p);
 830
 831	return &op->kp;
 832}
 833
 834static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 835
 836/*
 837 * Prepare an optimized_kprobe and optimize it
 838 * NOTE: p must be a normal registered kprobe
 839 */
 840static void try_to_optimize_kprobe(struct kprobe *p)
 841{
 842	struct kprobe *ap;
 843	struct optimized_kprobe *op;
 844
 845	/* Impossible to optimize ftrace-based kprobe */
 846	if (kprobe_ftrace(p))
 847		return;
 848
 849	/* For preparing optimization, jump_label_text_reserved() is called */
 850	cpus_read_lock();
 851	jump_label_lock();
 852	mutex_lock(&text_mutex);
 853
 854	ap = alloc_aggr_kprobe(p);
 855	if (!ap)
 856		goto out;
 857
 858	op = container_of(ap, struct optimized_kprobe, kp);
 859	if (!arch_prepared_optinsn(&op->optinsn)) {
 860		/* If failed to setup optimizing, fallback to kprobe */
 861		arch_remove_optimized_kprobe(op);
 862		kfree(op);
 863		goto out;
 864	}
 865
 866	init_aggr_kprobe(ap, p);
 867	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 868
 869out:
 870	mutex_unlock(&text_mutex);
 871	jump_label_unlock();
 872	cpus_read_unlock();
 873}
 874
 
 875static void optimize_all_kprobes(void)
 876{
 877	struct hlist_head *head;
 878	struct kprobe *p;
 879	unsigned int i;
 880
 881	mutex_lock(&kprobe_mutex);
 882	/* If optimization is already allowed, just return */
 883	if (kprobes_allow_optimization)
 884		goto out;
 885
 886	cpus_read_lock();
 887	kprobes_allow_optimization = true;
 888	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 889		head = &kprobe_table[i];
 890		hlist_for_each_entry(p, head, hlist)
 891			if (!kprobe_disabled(p))
 892				optimize_kprobe(p);
 893	}
 894	cpus_read_unlock();
 895	printk(KERN_INFO "Kprobes globally optimized\n");
 896out:
 897	mutex_unlock(&kprobe_mutex);
 898}
 899
 900#ifdef CONFIG_SYSCTL
 901static void unoptimize_all_kprobes(void)
 902{
 903	struct hlist_head *head;
 904	struct kprobe *p;
 905	unsigned int i;
 906
 907	mutex_lock(&kprobe_mutex);
 908	/* If optimization is already prohibited, just return */
 909	if (!kprobes_allow_optimization) {
 910		mutex_unlock(&kprobe_mutex);
 911		return;
 912	}
 913
 914	cpus_read_lock();
 915	kprobes_allow_optimization = false;
 916	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 917		head = &kprobe_table[i];
 918		hlist_for_each_entry(p, head, hlist) {
 919			if (!kprobe_disabled(p))
 920				unoptimize_kprobe(p, false);
 921		}
 922	}
 923	cpus_read_unlock();
 924	mutex_unlock(&kprobe_mutex);
 925
 926	/* Wait for unoptimizing completion */
 927	wait_for_kprobe_optimizer();
 928	printk(KERN_INFO "Kprobes globally unoptimized\n");
 929}
 930
 931static DEFINE_MUTEX(kprobe_sysctl_mutex);
 932int sysctl_kprobes_optimization;
 933int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 934				      void *buffer, size_t *length,
 935				      loff_t *ppos)
 936{
 937	int ret;
 938
 939	mutex_lock(&kprobe_sysctl_mutex);
 940	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 941	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 942
 943	if (sysctl_kprobes_optimization)
 944		optimize_all_kprobes();
 945	else
 946		unoptimize_all_kprobes();
 947	mutex_unlock(&kprobe_sysctl_mutex);
 948
 949	return ret;
 950}
 951#endif /* CONFIG_SYSCTL */
 952
 953/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 954static void __arm_kprobe(struct kprobe *p)
 955{
 956	struct kprobe *_p;
 957
 958	/* Check collision with other optimized kprobes */
 959	_p = get_optimized_kprobe((unsigned long)p->addr);
 960	if (unlikely(_p))
 961		/* Fallback to unoptimized kprobe */
 962		unoptimize_kprobe(_p, true);
 963
 964	arch_arm_kprobe(p);
 965	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 966}
 967
 968/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 969static void __disarm_kprobe(struct kprobe *p, bool reopt)
 970{
 971	struct kprobe *_p;
 972
 973	/* Try to unoptimize */
 974	unoptimize_kprobe(p, kprobes_all_disarmed);
 975
 976	if (!kprobe_queued(p)) {
 977		arch_disarm_kprobe(p);
 978		/* If another kprobe was blocked, optimize it. */
 979		_p = get_optimized_kprobe((unsigned long)p->addr);
 980		if (unlikely(_p) && reopt)
 981			optimize_kprobe(_p);
 982	}
 983	/* TODO: reoptimize others after unoptimized this probe */
 984}
 985
 986#else /* !CONFIG_OPTPROBES */
 987
 988#define optimize_kprobe(p)			do {} while (0)
 989#define unoptimize_kprobe(p, f)			do {} while (0)
 990#define kill_optimized_kprobe(p)		do {} while (0)
 991#define prepare_optimized_kprobe(p)		do {} while (0)
 992#define try_to_optimize_kprobe(p)		do {} while (0)
 993#define __arm_kprobe(p)				arch_arm_kprobe(p)
 994#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 995#define kprobe_disarmed(p)			kprobe_disabled(p)
 996#define wait_for_kprobe_optimizer()		do {} while (0)
 997
 998static int reuse_unused_kprobe(struct kprobe *ap)
 999{
1000	/*
1001	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002	 * released at the same time that the last aggregated kprobe is
1003	 * unregistered.
1004	 * Thus there should be no chance to reuse unused kprobe.
1005	 */
1006	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007	return -EINVAL;
1008}
1009
1010static void free_aggr_kprobe(struct kprobe *p)
1011{
1012	arch_remove_kprobe(p);
1013	kfree(p);
1014}
1015
1016static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017{
1018	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019}
1020#endif /* CONFIG_OPTPROBES */
1021
1022#ifdef CONFIG_KPROBES_ON_FTRACE
1023static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024	.func = kprobe_ftrace_handler,
1025	.flags = FTRACE_OPS_FL_SAVE_REGS,
1026};
1027
1028static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029	.func = kprobe_ftrace_handler,
1030	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031};
1032
1033static int kprobe_ipmodify_enabled;
1034static int kprobe_ftrace_enabled;
1035
1036/* Must ensure p->addr is really on ftrace */
1037static int prepare_kprobe(struct kprobe *p)
1038{
1039	if (!kprobe_ftrace(p))
1040		return arch_prepare_kprobe(p);
1041
1042	return arch_prepare_kprobe_ftrace(p);
1043}
1044
1045/* Caller must lock kprobe_mutex */
1046static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047			       int *cnt)
1048{
1049	int ret = 0;
1050
1051	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052	if (ret) {
1053		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054			 p->addr, ret);
1055		return ret;
1056	}
1057
1058	if (*cnt == 0) {
1059		ret = register_ftrace_function(ops);
1060		if (ret) {
1061			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062			goto err_ftrace;
1063		}
1064	}
1065
1066	(*cnt)++;
1067	return ret;
1068
1069err_ftrace:
1070	/*
1071	 * At this point, sinec ops is not registered, we should be sefe from
1072	 * registering empty filter.
1073	 */
1074	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075	return ret;
1076}
1077
1078static int arm_kprobe_ftrace(struct kprobe *p)
1079{
1080	bool ipmodify = (p->post_handler != NULL);
1081
1082	return __arm_kprobe_ftrace(p,
1083		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085}
1086
1087/* Caller must lock kprobe_mutex */
1088static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089				  int *cnt)
1090{
1091	int ret = 0;
1092
1093	if (*cnt == 1) {
1094		ret = unregister_ftrace_function(ops);
1095		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096			return ret;
1097	}
1098
1099	(*cnt)--;
1100
1101	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103		  p->addr, ret);
1104	return ret;
1105}
1106
1107static int disarm_kprobe_ftrace(struct kprobe *p)
1108{
1109	bool ipmodify = (p->post_handler != NULL);
1110
1111	return __disarm_kprobe_ftrace(p,
1112		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114}
1115#else	/* !CONFIG_KPROBES_ON_FTRACE */
1116static inline int prepare_kprobe(struct kprobe *p)
1117{
1118	return arch_prepare_kprobe(p);
1119}
1120
1121static inline int arm_kprobe_ftrace(struct kprobe *p)
1122{
1123	return -ENODEV;
1124}
1125
1126static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127{
1128	return -ENODEV;
1129}
1130#endif
1131
1132/* Arm a kprobe with text_mutex */
1133static int arm_kprobe(struct kprobe *kp)
1134{
1135	if (unlikely(kprobe_ftrace(kp)))
1136		return arm_kprobe_ftrace(kp);
1137
1138	cpus_read_lock();
1139	mutex_lock(&text_mutex);
1140	__arm_kprobe(kp);
1141	mutex_unlock(&text_mutex);
1142	cpus_read_unlock();
1143
1144	return 0;
1145}
1146
1147/* Disarm a kprobe with text_mutex */
1148static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149{
1150	if (unlikely(kprobe_ftrace(kp)))
1151		return disarm_kprobe_ftrace(kp);
1152
1153	cpus_read_lock();
1154	mutex_lock(&text_mutex);
1155	__disarm_kprobe(kp, reopt);
1156	mutex_unlock(&text_mutex);
1157	cpus_read_unlock();
1158
1159	return 0;
1160}
1161
1162/*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167{
1168	struct kprobe *kp;
1169
1170	list_for_each_entry_rcu(kp, &p->list, list) {
1171		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172			set_kprobe_instance(kp);
1173			if (kp->pre_handler(kp, regs))
1174				return 1;
1175		}
1176		reset_kprobe_instance();
1177	}
1178	return 0;
1179}
1180NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183			      unsigned long flags)
1184{
1185	struct kprobe *kp;
1186
1187	list_for_each_entry_rcu(kp, &p->list, list) {
1188		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189			set_kprobe_instance(kp);
1190			kp->post_handler(kp, regs, flags);
1191			reset_kprobe_instance();
1192		}
1193	}
1194}
1195NOKPROBE_SYMBOL(aggr_post_handler);
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197/* Walks the list and increments nmissed count for multiprobe case */
1198void kprobes_inc_nmissed_count(struct kprobe *p)
1199{
1200	struct kprobe *kp;
1201	if (!kprobe_aggrprobe(p)) {
1202		p->nmissed++;
1203	} else {
1204		list_for_each_entry_rcu(kp, &p->list, list)
1205			kp->nmissed++;
1206	}
1207	return;
1208}
1209NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211static void free_rp_inst_rcu(struct rcu_head *head)
 
1212{
1213	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215	if (refcount_dec_and_test(&ri->rph->ref))
1216		kfree(ri->rph);
1217	kfree(ri);
 
 
 
 
 
 
 
1218}
1219NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221static void recycle_rp_inst(struct kretprobe_instance *ri)
 
 
1222{
1223	struct kretprobe *rp = get_kretprobe(ri);
 
1224
1225	if (likely(rp)) {
1226		freelist_add(&ri->freelist, &rp->freelist);
1227	} else
1228		call_rcu(&ri->rcu, free_rp_inst_rcu);
1229}
1230NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232static struct kprobe kprobe_busy = {
1233	.addr = (void *) get_kprobe,
1234};
 
 
 
 
 
1235
1236void kprobe_busy_begin(void)
 
 
1237{
1238	struct kprobe_ctlblk *kcb;
 
1239
1240	preempt_disable();
1241	__this_cpu_write(current_kprobe, &kprobe_busy);
1242	kcb = get_kprobe_ctlblk();
1243	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244}
 
1245
1246void kprobe_busy_end(void)
 
 
1247{
1248	__this_cpu_write(current_kprobe, NULL);
1249	preempt_enable();
1250}
 
1251
1252/*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258void kprobe_flush_task(struct task_struct *tk)
1259{
1260	struct kretprobe_instance *ri;
1261	struct llist_node *node;
 
 
1262
1263	/* Early boot, not yet initialized. */
1264	if (unlikely(!kprobes_initialized))
 
1265		return;
1266
1267	kprobe_busy_begin();
1268
1269	node = __llist_del_all(&tk->kretprobe_instances);
1270	while (node) {
1271		ri = container_of(node, struct kretprobe_instance, llist);
1272		node = node->next;
1273
1274		recycle_rp_inst(ri);
 
 
 
 
1275	}
1276
1277	kprobe_busy_end();
1278}
1279NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281static inline void free_rp_inst(struct kretprobe *rp)
1282{
1283	struct kretprobe_instance *ri;
1284	struct freelist_node *node;
1285	int count = 0;
1286
1287	node = rp->freelist.head;
1288	while (node) {
1289		ri = container_of(node, struct kretprobe_instance, freelist);
1290		node = node->next;
1291
 
 
1292		kfree(ri);
1293		count++;
1294	}
 
 
 
 
 
 
 
 
1295
1296	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297		kfree(rp->rph);
1298		rp->rph = NULL;
 
 
 
 
 
 
1299	}
 
1300}
 
1301
1302/* Add the new probe to ap->list */
1303static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304{
1305	if (p->post_handler)
1306		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1307
1308	list_add_rcu(&p->list, &ap->list);
1309	if (p->post_handler && !ap->post_handler)
1310		ap->post_handler = aggr_post_handler;
1311
1312	return 0;
1313}
1314
1315/*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320{
1321	/* Copy p's insn slot to ap */
1322	copy_kprobe(p, ap);
1323	flush_insn_slot(ap);
1324	ap->addr = p->addr;
1325	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326	ap->pre_handler = aggr_pre_handler;
 
1327	/* We don't care the kprobe which has gone. */
1328	if (p->post_handler && !kprobe_gone(p))
1329		ap->post_handler = aggr_post_handler;
1330
1331	INIT_LIST_HEAD(&ap->list);
1332	INIT_HLIST_NODE(&ap->hlist);
1333
1334	list_add_rcu(&p->list, &ap->list);
1335	hlist_replace_rcu(&p->hlist, &ap->hlist);
1336}
1337
1338/*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343{
1344	int ret = 0;
1345	struct kprobe *ap = orig_p;
1346
1347	cpus_read_lock();
1348
1349	/* For preparing optimization, jump_label_text_reserved() is called */
1350	jump_label_lock();
1351	mutex_lock(&text_mutex);
1352
1353	if (!kprobe_aggrprobe(orig_p)) {
1354		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355		ap = alloc_aggr_kprobe(orig_p);
1356		if (!ap) {
1357			ret = -ENOMEM;
1358			goto out;
1359		}
1360		init_aggr_kprobe(ap, orig_p);
1361	} else if (kprobe_unused(ap)) {
1362		/* This probe is going to die. Rescue it */
1363		ret = reuse_unused_kprobe(ap);
1364		if (ret)
1365			goto out;
1366	}
1367
1368	if (kprobe_gone(ap)) {
1369		/*
1370		 * Attempting to insert new probe at the same location that
1371		 * had a probe in the module vaddr area which already
1372		 * freed. So, the instruction slot has already been
1373		 * released. We need a new slot for the new probe.
1374		 */
1375		ret = arch_prepare_kprobe(ap);
1376		if (ret)
1377			/*
1378			 * Even if fail to allocate new slot, don't need to
1379			 * free aggr_probe. It will be used next time, or
1380			 * freed by unregister_kprobe.
1381			 */
1382			goto out;
1383
1384		/* Prepare optimized instructions if possible. */
1385		prepare_optimized_kprobe(ap);
1386
1387		/*
1388		 * Clear gone flag to prevent allocating new slot again, and
1389		 * set disabled flag because it is not armed yet.
1390		 */
1391		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392			    | KPROBE_FLAG_DISABLED;
1393	}
1394
1395	/* Copy ap's insn slot to p */
1396	copy_kprobe(ap, p);
1397	ret = add_new_kprobe(ap, p);
1398
1399out:
1400	mutex_unlock(&text_mutex);
1401	jump_label_unlock();
1402	cpus_read_unlock();
1403
1404	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405		ap->flags &= ~KPROBE_FLAG_DISABLED;
1406		if (!kprobes_all_disarmed) {
1407			/* Arm the breakpoint again. */
1408			ret = arm_kprobe(ap);
1409			if (ret) {
1410				ap->flags |= KPROBE_FLAG_DISABLED;
1411				list_del_rcu(&p->list);
1412				synchronize_rcu();
1413			}
1414		}
1415	}
1416	return ret;
1417}
1418
1419bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420{
1421	/* The __kprobes marked functions and entry code must not be probed */
1422	return addr >= (unsigned long)__kprobes_text_start &&
1423	       addr < (unsigned long)__kprobes_text_end;
1424}
1425
1426static bool __within_kprobe_blacklist(unsigned long addr)
1427{
1428	struct kprobe_blacklist_entry *ent;
1429
1430	if (arch_within_kprobe_blacklist(addr))
1431		return true;
1432	/*
1433	 * If there exists a kprobe_blacklist, verify and
1434	 * fail any probe registration in the prohibited area
1435	 */
1436	list_for_each_entry(ent, &kprobe_blacklist, list) {
1437		if (addr >= ent->start_addr && addr < ent->end_addr)
1438			return true;
1439	}
1440	return false;
1441}
1442
1443bool within_kprobe_blacklist(unsigned long addr)
1444{
1445	char symname[KSYM_NAME_LEN], *p;
1446
1447	if (__within_kprobe_blacklist(addr))
1448		return true;
1449
1450	/* Check if the address is on a suffixed-symbol */
1451	if (!lookup_symbol_name(addr, symname)) {
1452		p = strchr(symname, '.');
1453		if (!p)
1454			return false;
1455		*p = '\0';
1456		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457		if (addr)
1458			return __within_kprobe_blacklist(addr);
1459	}
1460	return false;
1461}
1462
1463/*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470			const char *symbol_name, unsigned int offset)
1471{
1472	if ((symbol_name && addr) || (!symbol_name && !addr))
1473		goto invalid;
1474
1475	if (symbol_name) {
1476		addr = kprobe_lookup_name(symbol_name, offset);
1477		if (!addr)
1478			return ERR_PTR(-ENOENT);
1479	}
1480
1481	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482	if (addr)
1483		return addr;
1484
1485invalid:
1486	return ERR_PTR(-EINVAL);
1487}
1488
1489static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490{
1491	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492}
1493
1494/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496{
1497	struct kprobe *ap, *list_p;
1498
1499	lockdep_assert_held(&kprobe_mutex);
1500
1501	ap = get_kprobe(p->addr);
1502	if (unlikely(!ap))
1503		return NULL;
1504
1505	if (p != ap) {
1506		list_for_each_entry(list_p, &ap->list, list)
1507			if (list_p == p)
1508			/* kprobe p is a valid probe */
1509				goto valid;
1510		return NULL;
1511	}
1512valid:
1513	return ap;
1514}
1515
1516/*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520static inline int warn_kprobe_rereg(struct kprobe *p)
1521{
1522	int ret = 0;
1523
1524	mutex_lock(&kprobe_mutex);
1525	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526		ret = -EINVAL;
1527	mutex_unlock(&kprobe_mutex);
1528
1529	return ret;
1530}
1531
1532int __weak arch_check_ftrace_location(struct kprobe *p)
1533{
1534	unsigned long ftrace_addr;
1535
1536	ftrace_addr = ftrace_location((unsigned long)p->addr);
1537	if (ftrace_addr) {
1538#ifdef CONFIG_KPROBES_ON_FTRACE
1539		/* Given address is not on the instruction boundary */
1540		if ((unsigned long)p->addr != ftrace_addr)
1541			return -EILSEQ;
1542		p->flags |= KPROBE_FLAG_FTRACE;
1543#else	/* !CONFIG_KPROBES_ON_FTRACE */
1544		return -EINVAL;
1545#endif
1546	}
1547	return 0;
1548}
1549
1550static int check_kprobe_address_safe(struct kprobe *p,
1551				     struct module **probed_mod)
1552{
1553	int ret;
1554
1555	ret = arch_check_ftrace_location(p);
1556	if (ret)
1557		return ret;
1558	jump_label_lock();
1559	preempt_disable();
1560
1561	/* Ensure it is not in reserved area nor out of text */
1562	if (!kernel_text_address((unsigned long) p->addr) ||
1563	    within_kprobe_blacklist((unsigned long) p->addr) ||
1564	    jump_label_text_reserved(p->addr, p->addr) ||
1565	    static_call_text_reserved(p->addr, p->addr) ||
1566	    find_bug((unsigned long)p->addr)) {
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	/* Check if are we probing a module */
1572	*probed_mod = __module_text_address((unsigned long) p->addr);
1573	if (*probed_mod) {
1574		/*
1575		 * We must hold a refcount of the probed module while updating
1576		 * its code to prohibit unexpected unloading.
1577		 */
1578		if (unlikely(!try_module_get(*probed_mod))) {
1579			ret = -ENOENT;
1580			goto out;
1581		}
1582
1583		/*
1584		 * If the module freed .init.text, we couldn't insert
1585		 * kprobes in there.
1586		 */
1587		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588		    (*probed_mod)->state != MODULE_STATE_COMING) {
1589			module_put(*probed_mod);
1590			*probed_mod = NULL;
1591			ret = -ENOENT;
1592		}
1593	}
1594out:
1595	preempt_enable();
1596	jump_label_unlock();
1597
1598	return ret;
1599}
1600
1601int register_kprobe(struct kprobe *p)
1602{
1603	int ret;
1604	struct kprobe *old_p;
1605	struct module *probed_mod;
1606	kprobe_opcode_t *addr;
1607
1608	/* Adjust probe address from symbol */
1609	addr = kprobe_addr(p);
1610	if (IS_ERR(addr))
1611		return PTR_ERR(addr);
1612	p->addr = addr;
1613
1614	ret = warn_kprobe_rereg(p);
1615	if (ret)
1616		return ret;
1617
1618	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619	p->flags &= KPROBE_FLAG_DISABLED;
1620	p->nmissed = 0;
1621	INIT_LIST_HEAD(&p->list);
1622
1623	ret = check_kprobe_address_safe(p, &probed_mod);
1624	if (ret)
1625		return ret;
1626
1627	mutex_lock(&kprobe_mutex);
1628
1629	old_p = get_kprobe(p->addr);
1630	if (old_p) {
1631		/* Since this may unoptimize old_p, locking text_mutex. */
1632		ret = register_aggr_kprobe(old_p, p);
1633		goto out;
1634	}
1635
1636	cpus_read_lock();
1637	/* Prevent text modification */
1638	mutex_lock(&text_mutex);
1639	ret = prepare_kprobe(p);
1640	mutex_unlock(&text_mutex);
1641	cpus_read_unlock();
1642	if (ret)
1643		goto out;
1644
1645	INIT_HLIST_NODE(&p->hlist);
1646	hlist_add_head_rcu(&p->hlist,
1647		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650		ret = arm_kprobe(p);
1651		if (ret) {
1652			hlist_del_rcu(&p->hlist);
1653			synchronize_rcu();
1654			goto out;
1655		}
1656	}
1657
1658	/* Try to optimize kprobe */
1659	try_to_optimize_kprobe(p);
1660out:
1661	mutex_unlock(&kprobe_mutex);
1662
1663	if (probed_mod)
1664		module_put(probed_mod);
1665
1666	return ret;
1667}
1668EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670/* Check if all probes on the aggrprobe are disabled */
1671static int aggr_kprobe_disabled(struct kprobe *ap)
1672{
1673	struct kprobe *kp;
1674
1675	lockdep_assert_held(&kprobe_mutex);
1676
1677	list_for_each_entry(kp, &ap->list, list)
1678		if (!kprobe_disabled(kp))
1679			/*
1680			 * There is an active probe on the list.
1681			 * We can't disable this ap.
1682			 */
1683			return 0;
1684
1685	return 1;
1686}
1687
1688/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689static struct kprobe *__disable_kprobe(struct kprobe *p)
1690{
1691	struct kprobe *orig_p;
1692	int ret;
1693
1694	/* Get an original kprobe for return */
1695	orig_p = __get_valid_kprobe(p);
1696	if (unlikely(orig_p == NULL))
1697		return ERR_PTR(-EINVAL);
1698
1699	if (!kprobe_disabled(p)) {
1700		/* Disable probe if it is a child probe */
1701		if (p != orig_p)
1702			p->flags |= KPROBE_FLAG_DISABLED;
1703
1704		/* Try to disarm and disable this/parent probe */
1705		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706			/*
1707			 * If kprobes_all_disarmed is set, orig_p
1708			 * should have already been disarmed, so
1709			 * skip unneed disarming process.
1710			 */
1711			if (!kprobes_all_disarmed) {
1712				ret = disarm_kprobe(orig_p, true);
1713				if (ret) {
1714					p->flags &= ~KPROBE_FLAG_DISABLED;
1715					return ERR_PTR(ret);
1716				}
1717			}
1718			orig_p->flags |= KPROBE_FLAG_DISABLED;
1719		}
1720	}
1721
1722	return orig_p;
1723}
1724
1725/*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728static int __unregister_kprobe_top(struct kprobe *p)
1729{
1730	struct kprobe *ap, *list_p;
1731
1732	/* Disable kprobe. This will disarm it if needed. */
1733	ap = __disable_kprobe(p);
1734	if (IS_ERR(ap))
1735		return PTR_ERR(ap);
1736
1737	if (ap == p)
1738		/*
1739		 * This probe is an independent(and non-optimized) kprobe
1740		 * (not an aggrprobe). Remove from the hash list.
1741		 */
1742		goto disarmed;
1743
1744	/* Following process expects this probe is an aggrprobe */
1745	WARN_ON(!kprobe_aggrprobe(ap));
1746
1747	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748		/*
1749		 * !disarmed could be happen if the probe is under delayed
1750		 * unoptimizing.
1751		 */
1752		goto disarmed;
1753	else {
1754		/* If disabling probe has special handlers, update aggrprobe */
1755		if (p->post_handler && !kprobe_gone(p)) {
1756			list_for_each_entry(list_p, &ap->list, list) {
1757				if ((list_p != p) && (list_p->post_handler))
1758					goto noclean;
1759			}
1760			ap->post_handler = NULL;
1761		}
1762noclean:
1763		/*
1764		 * Remove from the aggrprobe: this path will do nothing in
1765		 * __unregister_kprobe_bottom().
1766		 */
1767		list_del_rcu(&p->list);
1768		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769			/*
1770			 * Try to optimize this probe again, because post
1771			 * handler may have been changed.
1772			 */
1773			optimize_kprobe(ap);
1774	}
1775	return 0;
1776
1777disarmed:
1778	hlist_del_rcu(&ap->hlist);
1779	return 0;
1780}
1781
1782static void __unregister_kprobe_bottom(struct kprobe *p)
1783{
1784	struct kprobe *ap;
1785
1786	if (list_empty(&p->list))
1787		/* This is an independent kprobe */
1788		arch_remove_kprobe(p);
1789	else if (list_is_singular(&p->list)) {
1790		/* This is the last child of an aggrprobe */
1791		ap = list_entry(p->list.next, struct kprobe, list);
1792		list_del(&p->list);
1793		free_aggr_kprobe(ap);
1794	}
1795	/* Otherwise, do nothing. */
1796}
1797
1798int register_kprobes(struct kprobe **kps, int num)
1799{
1800	int i, ret = 0;
1801
1802	if (num <= 0)
1803		return -EINVAL;
1804	for (i = 0; i < num; i++) {
1805		ret = register_kprobe(kps[i]);
1806		if (ret < 0) {
1807			if (i > 0)
1808				unregister_kprobes(kps, i);
1809			break;
1810		}
1811	}
1812	return ret;
1813}
1814EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816void unregister_kprobe(struct kprobe *p)
1817{
1818	unregister_kprobes(&p, 1);
1819}
1820EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822void unregister_kprobes(struct kprobe **kps, int num)
1823{
1824	int i;
1825
1826	if (num <= 0)
1827		return;
1828	mutex_lock(&kprobe_mutex);
1829	for (i = 0; i < num; i++)
1830		if (__unregister_kprobe_top(kps[i]) < 0)
1831			kps[i]->addr = NULL;
1832	mutex_unlock(&kprobe_mutex);
1833
1834	synchronize_rcu();
1835	for (i = 0; i < num; i++)
1836		if (kps[i]->addr)
1837			__unregister_kprobe_bottom(kps[i]);
1838}
1839EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842					unsigned long val, void *data)
1843{
1844	return NOTIFY_DONE;
1845}
1846NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848static struct notifier_block kprobe_exceptions_nb = {
1849	.notifier_call = kprobe_exceptions_notify,
1850	.priority = 0x7fffffff /* we need to be notified first */
1851};
1852
1853unsigned long __weak arch_deref_entry_point(void *entry)
1854{
1855	return (unsigned long)entry;
1856}
1857
1858#ifdef CONFIG_KRETPROBES
1859
1860unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861					     void *trampoline_address,
1862					     void *frame_pointer)
1863{
1864	kprobe_opcode_t *correct_ret_addr = NULL;
1865	struct kretprobe_instance *ri = NULL;
1866	struct llist_node *first, *node;
1867	struct kretprobe *rp;
1868
1869	/* Find all nodes for this frame. */
1870	first = node = current->kretprobe_instances.first;
1871	while (node) {
1872		ri = container_of(node, struct kretprobe_instance, llist);
1873
1874		BUG_ON(ri->fp != frame_pointer);
1875
1876		if (ri->ret_addr != trampoline_address) {
1877			correct_ret_addr = ri->ret_addr;
1878			/*
1879			 * This is the real return address. Any other
1880			 * instances associated with this task are for
1881			 * other calls deeper on the call stack
1882			 */
1883			goto found;
1884		}
1885
1886		node = node->next;
1887	}
1888	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889	BUG_ON(1);
1890
1891found:
1892	/* Unlink all nodes for this frame. */
1893	current->kretprobe_instances.first = node->next;
1894	node->next = NULL;
1895
1896	/* Run them..  */
1897	while (first) {
1898		ri = container_of(first, struct kretprobe_instance, llist);
1899		first = first->next;
1900
1901		rp = get_kretprobe(ri);
1902		if (rp && rp->handler) {
1903			struct kprobe *prev = kprobe_running();
1904
1905			__this_cpu_write(current_kprobe, &rp->kp);
1906			ri->ret_addr = correct_ret_addr;
1907			rp->handler(ri, regs);
1908			__this_cpu_write(current_kprobe, prev);
1909		}
1910
1911		recycle_rp_inst(ri);
1912	}
1913
1914	return (unsigned long)correct_ret_addr;
1915}
1916NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
1918/*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923{
1924	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
 
1925	struct kretprobe_instance *ri;
1926	struct freelist_node *fn;
1927
1928	fn = freelist_try_get(&rp->freelist);
1929	if (!fn) {
 
 
 
 
 
1930		rp->nmissed++;
1931		return 0;
1932	}
1933
1934	ri = container_of(fn, struct kretprobe_instance, freelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1935
1936	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937		freelist_add(&ri->freelist, &rp->freelist);
1938		return 0;
 
 
 
 
 
1939	}
1940
1941	arch_prepare_kretprobe(ri, regs);
1942
1943	__llist_add(&ri->llist, &current->kretprobe_instances);
1944
1945	return 0;
1946}
1947NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950{
1951	return !offset;
1952}
1953
1954/**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym:  Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968{
1969	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971	if (IS_ERR(kp_addr))
1972		return PTR_ERR(kp_addr);
1973
1974	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975		return -ENOENT;
1976
1977	if (!arch_kprobe_on_func_entry(offset))
1978		return -EINVAL;
 
1979
1980	return 0;
1981}
1982
1983int register_kretprobe(struct kretprobe *rp)
1984{
1985	int ret;
1986	struct kretprobe_instance *inst;
1987	int i;
1988	void *addr;
1989
1990	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991	if (ret)
1992		return ret;
1993
1994	/* If only rp->kp.addr is specified, check reregistering kprobes */
1995	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996		return -EINVAL;
1997
1998	if (kretprobe_blacklist_size) {
1999		addr = kprobe_addr(&rp->kp);
2000		if (IS_ERR(addr))
2001			return PTR_ERR(addr);
2002
2003		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004			if (kretprobe_blacklist[i].addr == addr)
2005				return -EINVAL;
2006		}
2007	}
2008
2009	rp->kp.pre_handler = pre_handler_kretprobe;
2010	rp->kp.post_handler = NULL;
 
2011
2012	/* Pre-allocate memory for max kretprobe instances */
2013	if (rp->maxactive <= 0) {
2014#ifdef CONFIG_PREEMPTION
2015		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016#else
2017		rp->maxactive = num_possible_cpus();
2018#endif
2019	}
2020	rp->freelist.head = NULL;
2021	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022	if (!rp->rph)
2023		return -ENOMEM;
2024
2025	rp->rph->rp = rp;
2026	for (i = 0; i < rp->maxactive; i++) {
2027		inst = kzalloc(sizeof(struct kretprobe_instance) +
2028			       rp->data_size, GFP_KERNEL);
2029		if (inst == NULL) {
2030			refcount_set(&rp->rph->ref, i);
2031			free_rp_inst(rp);
2032			return -ENOMEM;
2033		}
2034		inst->rph = rp->rph;
2035		freelist_add(&inst->freelist, &rp->freelist);
2036	}
2037	refcount_set(&rp->rph->ref, i);
2038
2039	rp->nmissed = 0;
2040	/* Establish function entry probe point */
2041	ret = register_kprobe(&rp->kp);
2042	if (ret != 0)
2043		free_rp_inst(rp);
2044	return ret;
2045}
2046EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048int register_kretprobes(struct kretprobe **rps, int num)
2049{
2050	int ret = 0, i;
2051
2052	if (num <= 0)
2053		return -EINVAL;
2054	for (i = 0; i < num; i++) {
2055		ret = register_kretprobe(rps[i]);
2056		if (ret < 0) {
2057			if (i > 0)
2058				unregister_kretprobes(rps, i);
2059			break;
2060		}
2061	}
2062	return ret;
2063}
2064EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066void unregister_kretprobe(struct kretprobe *rp)
2067{
2068	unregister_kretprobes(&rp, 1);
2069}
2070EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072void unregister_kretprobes(struct kretprobe **rps, int num)
2073{
2074	int i;
2075
2076	if (num <= 0)
2077		return;
2078	mutex_lock(&kprobe_mutex);
2079	for (i = 0; i < num; i++) {
2080		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081			rps[i]->kp.addr = NULL;
2082		rps[i]->rph->rp = NULL;
2083	}
2084	mutex_unlock(&kprobe_mutex);
2085
2086	synchronize_rcu();
2087	for (i = 0; i < num; i++) {
2088		if (rps[i]->kp.addr) {
2089			__unregister_kprobe_bottom(&rps[i]->kp);
2090			free_rp_inst(rps[i]);
2091		}
2092	}
2093}
2094EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095
2096#else /* CONFIG_KRETPROBES */
2097int register_kretprobe(struct kretprobe *rp)
2098{
2099	return -ENOSYS;
2100}
2101EXPORT_SYMBOL_GPL(register_kretprobe);
2102
2103int register_kretprobes(struct kretprobe **rps, int num)
2104{
2105	return -ENOSYS;
2106}
2107EXPORT_SYMBOL_GPL(register_kretprobes);
2108
2109void unregister_kretprobe(struct kretprobe *rp)
2110{
2111}
2112EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113
2114void unregister_kretprobes(struct kretprobe **rps, int num)
2115{
2116}
2117EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120{
2121	return 0;
2122}
2123NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124
2125#endif /* CONFIG_KRETPROBES */
2126
2127/* Set the kprobe gone and remove its instruction buffer. */
2128static void kill_kprobe(struct kprobe *p)
2129{
2130	struct kprobe *kp;
2131
2132	lockdep_assert_held(&kprobe_mutex);
2133
2134	p->flags |= KPROBE_FLAG_GONE;
2135	if (kprobe_aggrprobe(p)) {
2136		/*
2137		 * If this is an aggr_kprobe, we have to list all the
2138		 * chained probes and mark them GONE.
2139		 */
2140		list_for_each_entry(kp, &p->list, list)
2141			kp->flags |= KPROBE_FLAG_GONE;
2142		p->post_handler = NULL;
2143		kill_optimized_kprobe(p);
2144	}
2145	/*
2146	 * Here, we can remove insn_slot safely, because no thread calls
2147	 * the original probed function (which will be freed soon) any more.
2148	 */
2149	arch_remove_kprobe(p);
2150
2151	/*
2152	 * The module is going away. We should disarm the kprobe which
2153	 * is using ftrace, because ftrace framework is still available at
2154	 * MODULE_STATE_GOING notification.
2155	 */
2156	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157		disarm_kprobe_ftrace(p);
2158}
2159
2160/* Disable one kprobe */
2161int disable_kprobe(struct kprobe *kp)
2162{
2163	int ret = 0;
2164	struct kprobe *p;
2165
2166	mutex_lock(&kprobe_mutex);
2167
2168	/* Disable this kprobe */
2169	p = __disable_kprobe(kp);
2170	if (IS_ERR(p))
2171		ret = PTR_ERR(p);
2172
2173	mutex_unlock(&kprobe_mutex);
2174	return ret;
2175}
2176EXPORT_SYMBOL_GPL(disable_kprobe);
2177
2178/* Enable one kprobe */
2179int enable_kprobe(struct kprobe *kp)
2180{
2181	int ret = 0;
2182	struct kprobe *p;
2183
2184	mutex_lock(&kprobe_mutex);
2185
2186	/* Check whether specified probe is valid. */
2187	p = __get_valid_kprobe(kp);
2188	if (unlikely(p == NULL)) {
2189		ret = -EINVAL;
2190		goto out;
2191	}
2192
2193	if (kprobe_gone(kp)) {
2194		/* This kprobe has gone, we couldn't enable it. */
2195		ret = -EINVAL;
2196		goto out;
2197	}
2198
2199	if (p != kp)
2200		kp->flags &= ~KPROBE_FLAG_DISABLED;
2201
2202	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203		p->flags &= ~KPROBE_FLAG_DISABLED;
2204		ret = arm_kprobe(p);
2205		if (ret)
2206			p->flags |= KPROBE_FLAG_DISABLED;
2207	}
2208out:
2209	mutex_unlock(&kprobe_mutex);
2210	return ret;
2211}
2212EXPORT_SYMBOL_GPL(enable_kprobe);
2213
2214/* Caller must NOT call this in usual path. This is only for critical case */
2215void dump_kprobe(struct kprobe *kp)
2216{
2217	pr_err("Dumping kprobe:\n");
2218	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219	       kp->symbol_name, kp->offset, kp->addr);
2220}
2221NOKPROBE_SYMBOL(dump_kprobe);
2222
2223int kprobe_add_ksym_blacklist(unsigned long entry)
2224{
2225	struct kprobe_blacklist_entry *ent;
2226	unsigned long offset = 0, size = 0;
2227
2228	if (!kernel_text_address(entry) ||
2229	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2230		return -EINVAL;
2231
2232	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233	if (!ent)
2234		return -ENOMEM;
2235	ent->start_addr = entry;
2236	ent->end_addr = entry + size;
2237	INIT_LIST_HEAD(&ent->list);
2238	list_add_tail(&ent->list, &kprobe_blacklist);
2239
2240	return (int)size;
2241}
2242
2243/* Add all symbols in given area into kprobe blacklist */
2244int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245{
2246	unsigned long entry;
2247	int ret = 0;
2248
2249	for (entry = start; entry < end; entry += ret) {
2250		ret = kprobe_add_ksym_blacklist(entry);
2251		if (ret < 0)
2252			return ret;
2253		if (ret == 0)	/* In case of alias symbol */
2254			ret = 1;
2255	}
2256	return 0;
2257}
2258
2259/* Remove all symbols in given area from kprobe blacklist */
2260static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261{
2262	struct kprobe_blacklist_entry *ent, *n;
2263
2264	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265		if (ent->start_addr < start || ent->start_addr >= end)
2266			continue;
2267		list_del(&ent->list);
2268		kfree(ent);
2269	}
2270}
2271
2272static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273{
2274	kprobe_remove_area_blacklist(entry, entry + 1);
2275}
2276
2277int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278				   char *type, char *sym)
2279{
2280	return -ERANGE;
2281}
2282
2283int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284		       char *sym)
2285{
2286#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288		return 0;
2289#ifdef CONFIG_OPTPROBES
2290	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291		return 0;
2292#endif
2293#endif
2294	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295		return 0;
2296	return -ERANGE;
2297}
2298
2299int __init __weak arch_populate_kprobe_blacklist(void)
2300{
2301	return 0;
2302}
2303
2304/*
2305 * Lookup and populate the kprobe_blacklist.
2306 *
2307 * Unlike the kretprobe blacklist, we'll need to determine
2308 * the range of addresses that belong to the said functions,
2309 * since a kprobe need not necessarily be at the beginning
2310 * of a function.
2311 */
2312static int __init populate_kprobe_blacklist(unsigned long *start,
2313					     unsigned long *end)
2314{
2315	unsigned long entry;
2316	unsigned long *iter;
2317	int ret;
2318
2319	for (iter = start; iter < end; iter++) {
2320		entry = arch_deref_entry_point((void *)*iter);
2321		ret = kprobe_add_ksym_blacklist(entry);
2322		if (ret == -EINVAL)
2323			continue;
2324		if (ret < 0)
2325			return ret;
2326	}
2327
2328	/* Symbols in __kprobes_text are blacklisted */
2329	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330					(unsigned long)__kprobes_text_end);
2331	if (ret)
2332		return ret;
2333
2334	/* Symbols in noinstr section are blacklisted */
2335	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336					(unsigned long)__noinstr_text_end);
2337
2338	return ret ? : arch_populate_kprobe_blacklist();
2339}
2340
2341static void add_module_kprobe_blacklist(struct module *mod)
2342{
2343	unsigned long start, end;
2344	int i;
2345
2346	if (mod->kprobe_blacklist) {
2347		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349	}
2350
2351	start = (unsigned long)mod->kprobes_text_start;
2352	if (start) {
2353		end = start + mod->kprobes_text_size;
2354		kprobe_add_area_blacklist(start, end);
2355	}
2356
2357	start = (unsigned long)mod->noinstr_text_start;
2358	if (start) {
2359		end = start + mod->noinstr_text_size;
2360		kprobe_add_area_blacklist(start, end);
2361	}
2362}
2363
2364static void remove_module_kprobe_blacklist(struct module *mod)
2365{
2366	unsigned long start, end;
2367	int i;
2368
2369	if (mod->kprobe_blacklist) {
2370		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372	}
2373
2374	start = (unsigned long)mod->kprobes_text_start;
2375	if (start) {
2376		end = start + mod->kprobes_text_size;
2377		kprobe_remove_area_blacklist(start, end);
2378	}
2379
2380	start = (unsigned long)mod->noinstr_text_start;
2381	if (start) {
2382		end = start + mod->noinstr_text_size;
2383		kprobe_remove_area_blacklist(start, end);
2384	}
2385}
2386
2387/* Module notifier call back, checking kprobes on the module */
2388static int kprobes_module_callback(struct notifier_block *nb,
2389				   unsigned long val, void *data)
2390{
2391	struct module *mod = data;
2392	struct hlist_head *head;
2393	struct kprobe *p;
2394	unsigned int i;
2395	int checkcore = (val == MODULE_STATE_GOING);
2396
2397	if (val == MODULE_STATE_COMING) {
2398		mutex_lock(&kprobe_mutex);
2399		add_module_kprobe_blacklist(mod);
2400		mutex_unlock(&kprobe_mutex);
2401	}
2402	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403		return NOTIFY_DONE;
2404
2405	/*
2406	 * When MODULE_STATE_GOING was notified, both of module .text and
2407	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408	 * notified, only .init.text section would be freed. We need to
2409	 * disable kprobes which have been inserted in the sections.
2410	 */
2411	mutex_lock(&kprobe_mutex);
2412	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413		head = &kprobe_table[i];
2414		hlist_for_each_entry(p, head, hlist)
2415			if (within_module_init((unsigned long)p->addr, mod) ||
2416			    (checkcore &&
2417			     within_module_core((unsigned long)p->addr, mod))) {
2418				/*
2419				 * The vaddr this probe is installed will soon
2420				 * be vfreed buy not synced to disk. Hence,
2421				 * disarming the breakpoint isn't needed.
2422				 *
2423				 * Note, this will also move any optimized probes
2424				 * that are pending to be removed from their
2425				 * corresponding lists to the freeing_list and
2426				 * will not be touched by the delayed
2427				 * kprobe_optimizer work handler.
2428				 */
2429				kill_kprobe(p);
2430			}
2431	}
2432	if (val == MODULE_STATE_GOING)
2433		remove_module_kprobe_blacklist(mod);
2434	mutex_unlock(&kprobe_mutex);
2435	return NOTIFY_DONE;
2436}
2437
2438static struct notifier_block kprobe_module_nb = {
2439	.notifier_call = kprobes_module_callback,
2440	.priority = 0
2441};
2442
2443/* Markers of _kprobe_blacklist section */
2444extern unsigned long __start_kprobe_blacklist[];
2445extern unsigned long __stop_kprobe_blacklist[];
2446
2447void kprobe_free_init_mem(void)
2448{
2449	void *start = (void *)(&__init_begin);
2450	void *end = (void *)(&__init_end);
2451	struct hlist_head *head;
2452	struct kprobe *p;
2453	int i;
2454
2455	mutex_lock(&kprobe_mutex);
2456
2457	/* Kill all kprobes on initmem */
2458	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459		head = &kprobe_table[i];
2460		hlist_for_each_entry(p, head, hlist) {
2461			if (start <= (void *)p->addr && (void *)p->addr < end)
2462				kill_kprobe(p);
2463		}
2464	}
2465
2466	mutex_unlock(&kprobe_mutex);
2467}
2468
2469static int __init init_kprobes(void)
2470{
2471	int i, err = 0;
2472
2473	/* FIXME allocate the probe table, currently defined statically */
2474	/* initialize all list heads */
2475	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476		INIT_HLIST_HEAD(&kprobe_table[i]);
 
 
 
2477
2478	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479					__stop_kprobe_blacklist);
2480	if (err) {
2481		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482		pr_err("Please take care of using kprobes.\n");
2483	}
2484
2485	if (kretprobe_blacklist_size) {
2486		/* lookup the function address from its name */
2487		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488			kretprobe_blacklist[i].addr =
2489				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490			if (!kretprobe_blacklist[i].addr)
2491				printk("kretprobe: lookup failed: %s\n",
2492				       kretprobe_blacklist[i].name);
2493		}
2494	}
2495
 
 
 
 
 
 
 
 
 
2496	/* By default, kprobes are armed */
2497	kprobes_all_disarmed = false;
2498
2499#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500	/* Init kprobe_optinsn_slots for allocation */
2501	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502#endif
2503
2504	err = arch_init_kprobes();
2505	if (!err)
2506		err = register_die_notifier(&kprobe_exceptions_nb);
2507	if (!err)
2508		err = register_module_notifier(&kprobe_module_nb);
2509
2510	kprobes_initialized = (err == 0);
2511
2512	if (!err)
2513		init_test_probes();
2514	return err;
2515}
2516early_initcall(init_kprobes);
2517
2518#if defined(CONFIG_OPTPROBES)
2519static int __init init_optprobes(void)
2520{
2521	/*
2522	 * Enable kprobe optimization - this kicks the optimizer which
2523	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524	 * not spawned in early initcall. So delay the optimization.
2525	 */
2526	optimize_all_kprobes();
2527
2528	return 0;
2529}
2530subsys_initcall(init_optprobes);
2531#endif
2532
2533#ifdef CONFIG_DEBUG_FS
2534static void report_probe(struct seq_file *pi, struct kprobe *p,
2535		const char *sym, int offset, char *modname, struct kprobe *pp)
2536{
2537	char *kprobe_type;
2538	void *addr = p->addr;
2539
2540	if (p->pre_handler == pre_handler_kretprobe)
2541		kprobe_type = "r";
2542	else
2543		kprobe_type = "k";
2544
2545	if (!kallsyms_show_value(pi->file->f_cred))
2546		addr = NULL;
2547
2548	if (sym)
2549		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2550			addr, kprobe_type, sym, offset,
2551			(modname ? modname : " "));
2552	else	/* try to use %pS */
2553		seq_printf(pi, "%px  %s  %pS ",
2554			addr, kprobe_type, p->addr);
2555
2556	if (!pp)
2557		pp = p;
2558	seq_printf(pi, "%s%s%s%s\n",
2559		(kprobe_gone(p) ? "[GONE]" : ""),
2560		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2561		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563}
2564
2565static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566{
2567	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568}
2569
2570static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571{
2572	(*pos)++;
2573	if (*pos >= KPROBE_TABLE_SIZE)
2574		return NULL;
2575	return pos;
2576}
2577
2578static void kprobe_seq_stop(struct seq_file *f, void *v)
2579{
2580	/* Nothing to do */
2581}
2582
2583static int show_kprobe_addr(struct seq_file *pi, void *v)
2584{
2585	struct hlist_head *head;
2586	struct kprobe *p, *kp;
2587	const char *sym = NULL;
2588	unsigned int i = *(loff_t *) v;
2589	unsigned long offset = 0;
2590	char *modname, namebuf[KSYM_NAME_LEN];
2591
2592	head = &kprobe_table[i];
2593	preempt_disable();
2594	hlist_for_each_entry_rcu(p, head, hlist) {
2595		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596					&offset, &modname, namebuf);
2597		if (kprobe_aggrprobe(p)) {
2598			list_for_each_entry_rcu(kp, &p->list, list)
2599				report_probe(pi, kp, sym, offset, modname, p);
2600		} else
2601			report_probe(pi, p, sym, offset, modname, NULL);
2602	}
2603	preempt_enable();
2604	return 0;
2605}
2606
2607static const struct seq_operations kprobes_sops = {
2608	.start = kprobe_seq_start,
2609	.next  = kprobe_seq_next,
2610	.stop  = kprobe_seq_stop,
2611	.show  = show_kprobe_addr
2612};
2613
2614DEFINE_SEQ_ATTRIBUTE(kprobes);
 
 
 
 
 
 
 
 
 
 
2615
2616/* kprobes/blacklist -- shows which functions can not be probed */
2617static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618{
2619	mutex_lock(&kprobe_mutex);
2620	return seq_list_start(&kprobe_blacklist, *pos);
2621}
2622
2623static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624{
2625	return seq_list_next(v, &kprobe_blacklist, pos);
2626}
2627
2628static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629{
2630	struct kprobe_blacklist_entry *ent =
2631		list_entry(v, struct kprobe_blacklist_entry, list);
2632
2633	/*
2634	 * If /proc/kallsyms is not showing kernel address, we won't
2635	 * show them here either.
2636	 */
2637	if (!kallsyms_show_value(m->file->f_cred))
2638		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639			   (void *)ent->start_addr);
2640	else
2641		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642			   (void *)ent->end_addr, (void *)ent->start_addr);
2643	return 0;
2644}
2645
2646static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
 
 
 
 
 
 
 
2647{
2648	mutex_unlock(&kprobe_mutex);
2649}
2650
2651static const struct seq_operations kprobe_blacklist_sops = {
2652	.start = kprobe_blacklist_seq_start,
2653	.next  = kprobe_blacklist_seq_next,
2654	.stop  = kprobe_blacklist_seq_stop,
2655	.show  = kprobe_blacklist_seq_show,
2656};
2657DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658
2659static int arm_all_kprobes(void)
2660{
2661	struct hlist_head *head;
2662	struct kprobe *p;
2663	unsigned int i, total = 0, errors = 0;
2664	int err, ret = 0;
2665
2666	mutex_lock(&kprobe_mutex);
2667
2668	/* If kprobes are armed, just return */
2669	if (!kprobes_all_disarmed)
2670		goto already_enabled;
2671
2672	/*
2673	 * optimize_kprobe() called by arm_kprobe() checks
2674	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675	 * arm_kprobe.
2676	 */
2677	kprobes_all_disarmed = false;
2678	/* Arming kprobes doesn't optimize kprobe itself */
2679	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680		head = &kprobe_table[i];
2681		/* Arm all kprobes on a best-effort basis */
2682		hlist_for_each_entry(p, head, hlist) {
2683			if (!kprobe_disabled(p)) {
2684				err = arm_kprobe(p);
2685				if (err)  {
2686					errors++;
2687					ret = err;
2688				}
2689				total++;
2690			}
2691		}
2692	}
2693
2694	if (errors)
2695		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696			errors, total);
2697	else
2698		pr_info("Kprobes globally enabled\n");
2699
2700already_enabled:
2701	mutex_unlock(&kprobe_mutex);
2702	return ret;
2703}
2704
2705static int disarm_all_kprobes(void)
2706{
2707	struct hlist_head *head;
2708	struct kprobe *p;
2709	unsigned int i, total = 0, errors = 0;
2710	int err, ret = 0;
2711
2712	mutex_lock(&kprobe_mutex);
2713
2714	/* If kprobes are already disarmed, just return */
2715	if (kprobes_all_disarmed) {
2716		mutex_unlock(&kprobe_mutex);
2717		return 0;
2718	}
2719
2720	kprobes_all_disarmed = true;
2721
2722	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723		head = &kprobe_table[i];
2724		/* Disarm all kprobes on a best-effort basis */
2725		hlist_for_each_entry(p, head, hlist) {
2726			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727				err = disarm_kprobe(p, false);
2728				if (err) {
2729					errors++;
2730					ret = err;
2731				}
2732				total++;
2733			}
2734		}
2735	}
2736
2737	if (errors)
2738		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739			errors, total);
2740	else
2741		pr_info("Kprobes globally disabled\n");
2742
2743	mutex_unlock(&kprobe_mutex);
2744
2745	/* Wait for disarming all kprobes by optimizer */
2746	wait_for_kprobe_optimizer();
2747
2748	return ret;
2749}
2750
2751/*
2752 * XXX: The debugfs bool file interface doesn't allow for callbacks
2753 * when the bool state is switched. We can reuse that facility when
2754 * available
2755 */
2756static ssize_t read_enabled_file_bool(struct file *file,
2757	       char __user *user_buf, size_t count, loff_t *ppos)
2758{
2759	char buf[3];
2760
2761	if (!kprobes_all_disarmed)
2762		buf[0] = '1';
2763	else
2764		buf[0] = '0';
2765	buf[1] = '\n';
2766	buf[2] = 0x00;
2767	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768}
2769
2770static ssize_t write_enabled_file_bool(struct file *file,
2771	       const char __user *user_buf, size_t count, loff_t *ppos)
2772{
2773	char buf[32];
2774	size_t buf_size;
2775	int ret = 0;
2776
2777	buf_size = min(count, (sizeof(buf)-1));
2778	if (copy_from_user(buf, user_buf, buf_size))
2779		return -EFAULT;
2780
2781	buf[buf_size] = '\0';
2782	switch (buf[0]) {
2783	case 'y':
2784	case 'Y':
2785	case '1':
2786		ret = arm_all_kprobes();
2787		break;
2788	case 'n':
2789	case 'N':
2790	case '0':
2791		ret = disarm_all_kprobes();
2792		break;
2793	default:
2794		return -EINVAL;
2795	}
2796
2797	if (ret)
2798		return ret;
2799
2800	return count;
2801}
2802
2803static const struct file_operations fops_kp = {
2804	.read =         read_enabled_file_bool,
2805	.write =        write_enabled_file_bool,
2806	.llseek =	default_llseek,
2807};
2808
2809static int __init debugfs_kprobe_init(void)
2810{
2811	struct dentry *dir;
2812	unsigned int value = 1;
2813
2814	dir = debugfs_create_dir("kprobes", NULL);
2815
2816	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
2817
2818	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819
2820	debugfs_create_file("blacklist", 0400, dir, NULL,
2821			    &kprobe_blacklist_fops);
2822
2823	return 0;
2824}
2825
2826late_initcall(debugfs_kprobe_init);
2827#endif /* CONFIG_DEBUG_FS */