Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38
39#include <asm/sections.h>
40#include <asm/cacheflush.h>
41#include <asm/errno.h>
42#include <linux/uaccess.h>
43
44#define KPROBE_HASH_BITS 6
45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48static int kprobes_initialized;
49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52/* NOTE: change this value only with kprobe_mutex held */
53static bool kprobes_all_disarmed;
54
55/* This protects kprobe_table and optimizing_list */
56static DEFINE_MUTEX(kprobe_mutex);
57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
64{
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66}
67
68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69{
70 return &(kretprobe_table_locks[hash].lock);
71}
72
73/* Blacklist -- list of struct kprobe_blacklist_entry */
74static LIST_HEAD(kprobe_blacklist);
75
76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77/*
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
82 */
83struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
90};
91
92#define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
95
96static int slots_per_page(struct kprobe_insn_cache *c)
97{
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99}
100
101enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
105};
106
107void __weak *alloc_insn_page(void)
108{
109 return module_alloc(PAGE_SIZE);
110}
111
112void __weak free_insn_page(void *page)
113{
114 module_memfree(page);
115}
116
117struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
124};
125static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127/**
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
130 */
131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132{
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
135
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
150 }
151 }
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
155 }
156 }
157 rcu_read_unlock();
158
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
162
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
167
168 /*
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
172 */
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
177 }
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186out:
187 mutex_unlock(&c->mutex);
188 return slot;
189}
190
191/* Return 1 if all garbages are collected, otherwise 0. */
192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193{
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
197 /*
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
202 */
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
208 }
209 return 1;
210 }
211 return 0;
212}
213
214static int collect_garbage_slots(struct kprobe_insn_cache *c)
215{
216 struct kprobe_insn_page *kip, *next;
217
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
220
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
229 }
230 }
231 c->nr_garbage = 0;
232 return 0;
233}
234
235void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
237{
238 struct kprobe_insn_page *kip;
239 long idx;
240
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
248 }
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
265 }
266 }
267 mutex_unlock(&c->mutex);
268}
269
270/*
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
274 */
275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276{
277 struct kprobe_insn_page *kip;
278 bool ret = false;
279
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
286 }
287 }
288 rcu_read_unlock();
289
290 return ret;
291}
292
293#ifdef CONFIG_OPTPROBES
294/* For optimized_kprobe buffer */
295struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
302};
303#endif
304#endif
305
306/* We have preemption disabled.. so it is safe to use __ versions */
307static inline void set_kprobe_instance(struct kprobe *kp)
308{
309 __this_cpu_write(kprobe_instance, kp);
310}
311
312static inline void reset_kprobe_instance(void)
313{
314 __this_cpu_write(kprobe_instance, NULL);
315}
316
317/*
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
322 */
323struct kprobe *get_kprobe(void *addr)
324{
325 struct hlist_head *head;
326 struct kprobe *p;
327
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist) {
330 if (p->addr == addr)
331 return p;
332 }
333
334 return NULL;
335}
336NOKPROBE_SYMBOL(get_kprobe);
337
338static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340/* Return true if the kprobe is an aggregator */
341static inline int kprobe_aggrprobe(struct kprobe *p)
342{
343 return p->pre_handler == aggr_pre_handler;
344}
345
346/* Return true(!0) if the kprobe is unused */
347static inline int kprobe_unused(struct kprobe *p)
348{
349 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 list_empty(&p->list);
351}
352
353/*
354 * Keep all fields in the kprobe consistent
355 */
356static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357{
358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360}
361
362#ifdef CONFIG_OPTPROBES
363/* NOTE: change this value only with kprobe_mutex held */
364static bool kprobes_allow_optimization;
365
366/*
367 * Call all pre_handler on the list, but ignores its return value.
368 * This must be called from arch-dep optimized caller.
369 */
370void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371{
372 struct kprobe *kp;
373
374 list_for_each_entry_rcu(kp, &p->list, list) {
375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 set_kprobe_instance(kp);
377 kp->pre_handler(kp, regs);
378 }
379 reset_kprobe_instance();
380 }
381}
382NOKPROBE_SYMBOL(opt_pre_handler);
383
384/* Free optimized instructions and optimized_kprobe */
385static void free_aggr_kprobe(struct kprobe *p)
386{
387 struct optimized_kprobe *op;
388
389 op = container_of(p, struct optimized_kprobe, kp);
390 arch_remove_optimized_kprobe(op);
391 arch_remove_kprobe(p);
392 kfree(op);
393}
394
395/* Return true(!0) if the kprobe is ready for optimization. */
396static inline int kprobe_optready(struct kprobe *p)
397{
398 struct optimized_kprobe *op;
399
400 if (kprobe_aggrprobe(p)) {
401 op = container_of(p, struct optimized_kprobe, kp);
402 return arch_prepared_optinsn(&op->optinsn);
403 }
404
405 return 0;
406}
407
408/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409static inline int kprobe_disarmed(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 if (!kprobe_aggrprobe(p))
415 return kprobe_disabled(p);
416
417 op = container_of(p, struct optimized_kprobe, kp);
418
419 return kprobe_disabled(p) && list_empty(&op->list);
420}
421
422/* Return true(!0) if the probe is queued on (un)optimizing lists */
423static int kprobe_queued(struct kprobe *p)
424{
425 struct optimized_kprobe *op;
426
427 if (kprobe_aggrprobe(p)) {
428 op = container_of(p, struct optimized_kprobe, kp);
429 if (!list_empty(&op->list))
430 return 1;
431 }
432 return 0;
433}
434
435/*
436 * Return an optimized kprobe whose optimizing code replaces
437 * instructions including addr (exclude breakpoint).
438 */
439static struct kprobe *get_optimized_kprobe(unsigned long addr)
440{
441 int i;
442 struct kprobe *p = NULL;
443 struct optimized_kprobe *op;
444
445 /* Don't check i == 0, since that is a breakpoint case. */
446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 p = get_kprobe((void *)(addr - i));
448
449 if (p && kprobe_optready(p)) {
450 op = container_of(p, struct optimized_kprobe, kp);
451 if (arch_within_optimized_kprobe(op, addr))
452 return p;
453 }
454
455 return NULL;
456}
457
458/* Optimization staging list, protected by kprobe_mutex */
459static LIST_HEAD(optimizing_list);
460static LIST_HEAD(unoptimizing_list);
461static LIST_HEAD(freeing_list);
462
463static void kprobe_optimizer(struct work_struct *work);
464static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465#define OPTIMIZE_DELAY 5
466
467/*
468 * Optimize (replace a breakpoint with a jump) kprobes listed on
469 * optimizing_list.
470 */
471static void do_optimize_kprobes(void)
472{
473 lockdep_assert_held(&text_mutex);
474 /*
475 * The optimization/unoptimization refers online_cpus via
476 * stop_machine() and cpu-hotplug modifies online_cpus.
477 * And same time, text_mutex will be held in cpu-hotplug and here.
478 * This combination can cause a deadlock (cpu-hotplug try to lock
479 * text_mutex but stop_machine can not be done because online_cpus
480 * has been changed)
481 * To avoid this deadlock, caller must have locked cpu hotplug
482 * for preventing cpu-hotplug outside of text_mutex locking.
483 */
484 lockdep_assert_cpus_held();
485
486 /* Optimization never be done when disarmed */
487 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 list_empty(&optimizing_list))
489 return;
490
491 arch_optimize_kprobes(&optimizing_list);
492}
493
494/*
495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496 * if need) kprobes listed on unoptimizing_list.
497 */
498static void do_unoptimize_kprobes(void)
499{
500 struct optimized_kprobe *op, *tmp;
501
502 lockdep_assert_held(&text_mutex);
503 /* See comment in do_optimize_kprobes() */
504 lockdep_assert_cpus_held();
505
506 /* Unoptimization must be done anytime */
507 if (list_empty(&unoptimizing_list))
508 return;
509
510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 /* Loop free_list for disarming */
512 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 /* Disarm probes if marked disabled */
514 if (kprobe_disabled(&op->kp))
515 arch_disarm_kprobe(&op->kp);
516 if (kprobe_unused(&op->kp)) {
517 /*
518 * Remove unused probes from hash list. After waiting
519 * for synchronization, these probes are reclaimed.
520 * (reclaiming is done by do_free_cleaned_kprobes.)
521 */
522 hlist_del_rcu(&op->kp.hlist);
523 } else
524 list_del_init(&op->list);
525 }
526}
527
528/* Reclaim all kprobes on the free_list */
529static void do_free_cleaned_kprobes(void)
530{
531 struct optimized_kprobe *op, *tmp;
532
533 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
534 list_del_init(&op->list);
535 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
536 /*
537 * This must not happen, but if there is a kprobe
538 * still in use, keep it on kprobes hash list.
539 */
540 continue;
541 }
542 free_aggr_kprobe(&op->kp);
543 }
544}
545
546/* Start optimizer after OPTIMIZE_DELAY passed */
547static void kick_kprobe_optimizer(void)
548{
549 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
550}
551
552/* Kprobe jump optimizer */
553static void kprobe_optimizer(struct work_struct *work)
554{
555 mutex_lock(&kprobe_mutex);
556 cpus_read_lock();
557 mutex_lock(&text_mutex);
558 /* Lock modules while optimizing kprobes */
559 mutex_lock(&module_mutex);
560
561 /*
562 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
563 * kprobes before waiting for quiesence period.
564 */
565 do_unoptimize_kprobes();
566
567 /*
568 * Step 2: Wait for quiesence period to ensure all potentially
569 * preempted tasks to have normally scheduled. Because optprobe
570 * may modify multiple instructions, there is a chance that Nth
571 * instruction is preempted. In that case, such tasks can return
572 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
573 * Note that on non-preemptive kernel, this is transparently converted
574 * to synchronoze_sched() to wait for all interrupts to have completed.
575 */
576 synchronize_rcu_tasks();
577
578 /* Step 3: Optimize kprobes after quiesence period */
579 do_optimize_kprobes();
580
581 /* Step 4: Free cleaned kprobes after quiesence period */
582 do_free_cleaned_kprobes();
583
584 mutex_unlock(&module_mutex);
585 mutex_unlock(&text_mutex);
586 cpus_read_unlock();
587 mutex_unlock(&kprobe_mutex);
588
589 /* Step 5: Kick optimizer again if needed */
590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 kick_kprobe_optimizer();
592}
593
594/* Wait for completing optimization and unoptimization */
595void wait_for_kprobe_optimizer(void)
596{
597 mutex_lock(&kprobe_mutex);
598
599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 mutex_unlock(&kprobe_mutex);
601
602 /* this will also make optimizing_work execute immmediately */
603 flush_delayed_work(&optimizing_work);
604 /* @optimizing_work might not have been queued yet, relax */
605 cpu_relax();
606
607 mutex_lock(&kprobe_mutex);
608 }
609
610 mutex_unlock(&kprobe_mutex);
611}
612
613/* Optimize kprobe if p is ready to be optimized */
614static void optimize_kprobe(struct kprobe *p)
615{
616 struct optimized_kprobe *op;
617
618 /* Check if the kprobe is disabled or not ready for optimization. */
619 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 (kprobe_disabled(p) || kprobes_all_disarmed))
621 return;
622
623 /* kprobes with post_handler can not be optimized */
624 if (p->post_handler)
625 return;
626
627 op = container_of(p, struct optimized_kprobe, kp);
628
629 /* Check there is no other kprobes at the optimized instructions */
630 if (arch_check_optimized_kprobe(op) < 0)
631 return;
632
633 /* Check if it is already optimized. */
634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 return;
636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637
638 if (!list_empty(&op->list))
639 /* This is under unoptimizing. Just dequeue the probe */
640 list_del_init(&op->list);
641 else {
642 list_add(&op->list, &optimizing_list);
643 kick_kprobe_optimizer();
644 }
645}
646
647/* Short cut to direct unoptimizing */
648static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649{
650 lockdep_assert_cpus_held();
651 arch_unoptimize_kprobe(op);
652 if (kprobe_disabled(&op->kp))
653 arch_disarm_kprobe(&op->kp);
654}
655
656/* Unoptimize a kprobe if p is optimized */
657static void unoptimize_kprobe(struct kprobe *p, bool force)
658{
659 struct optimized_kprobe *op;
660
661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 return; /* This is not an optprobe nor optimized */
663
664 op = container_of(p, struct optimized_kprobe, kp);
665 if (!kprobe_optimized(p)) {
666 /* Unoptimized or unoptimizing case */
667 if (force && !list_empty(&op->list)) {
668 /*
669 * Only if this is unoptimizing kprobe and forced,
670 * forcibly unoptimize it. (No need to unoptimize
671 * unoptimized kprobe again :)
672 */
673 list_del_init(&op->list);
674 force_unoptimize_kprobe(op);
675 }
676 return;
677 }
678
679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 if (!list_empty(&op->list)) {
681 /* Dequeue from the optimization queue */
682 list_del_init(&op->list);
683 return;
684 }
685 /* Optimized kprobe case */
686 if (force)
687 /* Forcibly update the code: this is a special case */
688 force_unoptimize_kprobe(op);
689 else {
690 list_add(&op->list, &unoptimizing_list);
691 kick_kprobe_optimizer();
692 }
693}
694
695/* Cancel unoptimizing for reusing */
696static int reuse_unused_kprobe(struct kprobe *ap)
697{
698 struct optimized_kprobe *op;
699
700 /*
701 * Unused kprobe MUST be on the way of delayed unoptimizing (means
702 * there is still a relative jump) and disabled.
703 */
704 op = container_of(ap, struct optimized_kprobe, kp);
705 WARN_ON_ONCE(list_empty(&op->list));
706 /* Enable the probe again */
707 ap->flags &= ~KPROBE_FLAG_DISABLED;
708 /* Optimize it again (remove from op->list) */
709 if (!kprobe_optready(ap))
710 return -EINVAL;
711
712 optimize_kprobe(ap);
713 return 0;
714}
715
716/* Remove optimized instructions */
717static void kill_optimized_kprobe(struct kprobe *p)
718{
719 struct optimized_kprobe *op;
720
721 op = container_of(p, struct optimized_kprobe, kp);
722 if (!list_empty(&op->list))
723 /* Dequeue from the (un)optimization queue */
724 list_del_init(&op->list);
725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726
727 if (kprobe_unused(p)) {
728 /* Enqueue if it is unused */
729 list_add(&op->list, &freeing_list);
730 /*
731 * Remove unused probes from the hash list. After waiting
732 * for synchronization, this probe is reclaimed.
733 * (reclaiming is done by do_free_cleaned_kprobes().)
734 */
735 hlist_del_rcu(&op->kp.hlist);
736 }
737
738 /* Don't touch the code, because it is already freed. */
739 arch_remove_optimized_kprobe(op);
740}
741
742static inline
743void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744{
745 if (!kprobe_ftrace(p))
746 arch_prepare_optimized_kprobe(op, p);
747}
748
749/* Try to prepare optimized instructions */
750static void prepare_optimized_kprobe(struct kprobe *p)
751{
752 struct optimized_kprobe *op;
753
754 op = container_of(p, struct optimized_kprobe, kp);
755 __prepare_optimized_kprobe(op, p);
756}
757
758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760{
761 struct optimized_kprobe *op;
762
763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 if (!op)
765 return NULL;
766
767 INIT_LIST_HEAD(&op->list);
768 op->kp.addr = p->addr;
769 __prepare_optimized_kprobe(op, p);
770
771 return &op->kp;
772}
773
774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775
776/*
777 * Prepare an optimized_kprobe and optimize it
778 * NOTE: p must be a normal registered kprobe
779 */
780static void try_to_optimize_kprobe(struct kprobe *p)
781{
782 struct kprobe *ap;
783 struct optimized_kprobe *op;
784
785 /* Impossible to optimize ftrace-based kprobe */
786 if (kprobe_ftrace(p))
787 return;
788
789 /* For preparing optimization, jump_label_text_reserved() is called */
790 cpus_read_lock();
791 jump_label_lock();
792 mutex_lock(&text_mutex);
793
794 ap = alloc_aggr_kprobe(p);
795 if (!ap)
796 goto out;
797
798 op = container_of(ap, struct optimized_kprobe, kp);
799 if (!arch_prepared_optinsn(&op->optinsn)) {
800 /* If failed to setup optimizing, fallback to kprobe */
801 arch_remove_optimized_kprobe(op);
802 kfree(op);
803 goto out;
804 }
805
806 init_aggr_kprobe(ap, p);
807 optimize_kprobe(ap); /* This just kicks optimizer thread */
808
809out:
810 mutex_unlock(&text_mutex);
811 jump_label_unlock();
812 cpus_read_unlock();
813}
814
815#ifdef CONFIG_SYSCTL
816static void optimize_all_kprobes(void)
817{
818 struct hlist_head *head;
819 struct kprobe *p;
820 unsigned int i;
821
822 mutex_lock(&kprobe_mutex);
823 /* If optimization is already allowed, just return */
824 if (kprobes_allow_optimization)
825 goto out;
826
827 cpus_read_lock();
828 kprobes_allow_optimization = true;
829 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830 head = &kprobe_table[i];
831 hlist_for_each_entry_rcu(p, head, hlist)
832 if (!kprobe_disabled(p))
833 optimize_kprobe(p);
834 }
835 cpus_read_unlock();
836 printk(KERN_INFO "Kprobes globally optimized\n");
837out:
838 mutex_unlock(&kprobe_mutex);
839}
840
841static void unoptimize_all_kprobes(void)
842{
843 struct hlist_head *head;
844 struct kprobe *p;
845 unsigned int i;
846
847 mutex_lock(&kprobe_mutex);
848 /* If optimization is already prohibited, just return */
849 if (!kprobes_allow_optimization) {
850 mutex_unlock(&kprobe_mutex);
851 return;
852 }
853
854 cpus_read_lock();
855 kprobes_allow_optimization = false;
856 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857 head = &kprobe_table[i];
858 hlist_for_each_entry_rcu(p, head, hlist) {
859 if (!kprobe_disabled(p))
860 unoptimize_kprobe(p, false);
861 }
862 }
863 cpus_read_unlock();
864 mutex_unlock(&kprobe_mutex);
865
866 /* Wait for unoptimizing completion */
867 wait_for_kprobe_optimizer();
868 printk(KERN_INFO "Kprobes globally unoptimized\n");
869}
870
871static DEFINE_MUTEX(kprobe_sysctl_mutex);
872int sysctl_kprobes_optimization;
873int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874 void __user *buffer, size_t *length,
875 loff_t *ppos)
876{
877 int ret;
878
879 mutex_lock(&kprobe_sysctl_mutex);
880 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882
883 if (sysctl_kprobes_optimization)
884 optimize_all_kprobes();
885 else
886 unoptimize_all_kprobes();
887 mutex_unlock(&kprobe_sysctl_mutex);
888
889 return ret;
890}
891#endif /* CONFIG_SYSCTL */
892
893/* Put a breakpoint for a probe. Must be called with text_mutex locked */
894static void __arm_kprobe(struct kprobe *p)
895{
896 struct kprobe *_p;
897
898 /* Check collision with other optimized kprobes */
899 _p = get_optimized_kprobe((unsigned long)p->addr);
900 if (unlikely(_p))
901 /* Fallback to unoptimized kprobe */
902 unoptimize_kprobe(_p, true);
903
904 arch_arm_kprobe(p);
905 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
906}
907
908/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909static void __disarm_kprobe(struct kprobe *p, bool reopt)
910{
911 struct kprobe *_p;
912
913 /* Try to unoptimize */
914 unoptimize_kprobe(p, kprobes_all_disarmed);
915
916 if (!kprobe_queued(p)) {
917 arch_disarm_kprobe(p);
918 /* If another kprobe was blocked, optimize it. */
919 _p = get_optimized_kprobe((unsigned long)p->addr);
920 if (unlikely(_p) && reopt)
921 optimize_kprobe(_p);
922 }
923 /* TODO: reoptimize others after unoptimized this probe */
924}
925
926#else /* !CONFIG_OPTPROBES */
927
928#define optimize_kprobe(p) do {} while (0)
929#define unoptimize_kprobe(p, f) do {} while (0)
930#define kill_optimized_kprobe(p) do {} while (0)
931#define prepare_optimized_kprobe(p) do {} while (0)
932#define try_to_optimize_kprobe(p) do {} while (0)
933#define __arm_kprobe(p) arch_arm_kprobe(p)
934#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
935#define kprobe_disarmed(p) kprobe_disabled(p)
936#define wait_for_kprobe_optimizer() do {} while (0)
937
938static int reuse_unused_kprobe(struct kprobe *ap)
939{
940 /*
941 * If the optimized kprobe is NOT supported, the aggr kprobe is
942 * released at the same time that the last aggregated kprobe is
943 * unregistered.
944 * Thus there should be no chance to reuse unused kprobe.
945 */
946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 return -EINVAL;
948}
949
950static void free_aggr_kprobe(struct kprobe *p)
951{
952 arch_remove_kprobe(p);
953 kfree(p);
954}
955
956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957{
958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959}
960#endif /* CONFIG_OPTPROBES */
961
962#ifdef CONFIG_KPROBES_ON_FTRACE
963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 .func = kprobe_ftrace_handler,
965 .flags = FTRACE_OPS_FL_SAVE_REGS,
966};
967
968static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
969 .func = kprobe_ftrace_handler,
970 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
971};
972
973static int kprobe_ipmodify_enabled;
974static int kprobe_ftrace_enabled;
975
976/* Must ensure p->addr is really on ftrace */
977static int prepare_kprobe(struct kprobe *p)
978{
979 if (!kprobe_ftrace(p))
980 return arch_prepare_kprobe(p);
981
982 return arch_prepare_kprobe_ftrace(p);
983}
984
985/* Caller must lock kprobe_mutex */
986static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
987 int *cnt)
988{
989 int ret = 0;
990
991 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
992 if (ret) {
993 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
994 p->addr, ret);
995 return ret;
996 }
997
998 if (*cnt == 0) {
999 ret = register_ftrace_function(ops);
1000 if (ret) {
1001 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002 goto err_ftrace;
1003 }
1004 }
1005
1006 (*cnt)++;
1007 return ret;
1008
1009err_ftrace:
1010 /*
1011 * At this point, sinec ops is not registered, we should be sefe from
1012 * registering empty filter.
1013 */
1014 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015 return ret;
1016}
1017
1018static int arm_kprobe_ftrace(struct kprobe *p)
1019{
1020 bool ipmodify = (p->post_handler != NULL);
1021
1022 return __arm_kprobe_ftrace(p,
1023 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025}
1026
1027/* Caller must lock kprobe_mutex */
1028static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029 int *cnt)
1030{
1031 int ret = 0;
1032
1033 if (*cnt == 1) {
1034 ret = unregister_ftrace_function(ops);
1035 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036 return ret;
1037 }
1038
1039 (*cnt)--;
1040
1041 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043 p->addr, ret);
1044 return ret;
1045}
1046
1047static int disarm_kprobe_ftrace(struct kprobe *p)
1048{
1049 bool ipmodify = (p->post_handler != NULL);
1050
1051 return __disarm_kprobe_ftrace(p,
1052 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054}
1055#else /* !CONFIG_KPROBES_ON_FTRACE */
1056#define prepare_kprobe(p) arch_prepare_kprobe(p)
1057#define arm_kprobe_ftrace(p) (-ENODEV)
1058#define disarm_kprobe_ftrace(p) (-ENODEV)
1059#endif
1060
1061/* Arm a kprobe with text_mutex */
1062static int arm_kprobe(struct kprobe *kp)
1063{
1064 if (unlikely(kprobe_ftrace(kp)))
1065 return arm_kprobe_ftrace(kp);
1066
1067 cpus_read_lock();
1068 mutex_lock(&text_mutex);
1069 __arm_kprobe(kp);
1070 mutex_unlock(&text_mutex);
1071 cpus_read_unlock();
1072
1073 return 0;
1074}
1075
1076/* Disarm a kprobe with text_mutex */
1077static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078{
1079 if (unlikely(kprobe_ftrace(kp)))
1080 return disarm_kprobe_ftrace(kp);
1081
1082 cpus_read_lock();
1083 mutex_lock(&text_mutex);
1084 __disarm_kprobe(kp, reopt);
1085 mutex_unlock(&text_mutex);
1086 cpus_read_unlock();
1087
1088 return 0;
1089}
1090
1091/*
1092 * Aggregate handlers for multiple kprobes support - these handlers
1093 * take care of invoking the individual kprobe handlers on p->list
1094 */
1095static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096{
1097 struct kprobe *kp;
1098
1099 list_for_each_entry_rcu(kp, &p->list, list) {
1100 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101 set_kprobe_instance(kp);
1102 if (kp->pre_handler(kp, regs))
1103 return 1;
1104 }
1105 reset_kprobe_instance();
1106 }
1107 return 0;
1108}
1109NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112 unsigned long flags)
1113{
1114 struct kprobe *kp;
1115
1116 list_for_each_entry_rcu(kp, &p->list, list) {
1117 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118 set_kprobe_instance(kp);
1119 kp->post_handler(kp, regs, flags);
1120 reset_kprobe_instance();
1121 }
1122 }
1123}
1124NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127 int trapnr)
1128{
1129 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131 /*
1132 * if we faulted "during" the execution of a user specified
1133 * probe handler, invoke just that probe's fault handler
1134 */
1135 if (cur && cur->fault_handler) {
1136 if (cur->fault_handler(cur, regs, trapnr))
1137 return 1;
1138 }
1139 return 0;
1140}
1141NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143/* Walks the list and increments nmissed count for multiprobe case */
1144void kprobes_inc_nmissed_count(struct kprobe *p)
1145{
1146 struct kprobe *kp;
1147 if (!kprobe_aggrprobe(p)) {
1148 p->nmissed++;
1149 } else {
1150 list_for_each_entry_rcu(kp, &p->list, list)
1151 kp->nmissed++;
1152 }
1153 return;
1154}
1155NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157void recycle_rp_inst(struct kretprobe_instance *ri,
1158 struct hlist_head *head)
1159{
1160 struct kretprobe *rp = ri->rp;
1161
1162 /* remove rp inst off the rprobe_inst_table */
1163 hlist_del(&ri->hlist);
1164 INIT_HLIST_NODE(&ri->hlist);
1165 if (likely(rp)) {
1166 raw_spin_lock(&rp->lock);
1167 hlist_add_head(&ri->hlist, &rp->free_instances);
1168 raw_spin_unlock(&rp->lock);
1169 } else
1170 /* Unregistering */
1171 hlist_add_head(&ri->hlist, head);
1172}
1173NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175void kretprobe_hash_lock(struct task_struct *tsk,
1176 struct hlist_head **head, unsigned long *flags)
1177__acquires(hlist_lock)
1178{
1179 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180 raw_spinlock_t *hlist_lock;
1181
1182 *head = &kretprobe_inst_table[hash];
1183 hlist_lock = kretprobe_table_lock_ptr(hash);
1184 raw_spin_lock_irqsave(hlist_lock, *flags);
1185}
1186NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188static void kretprobe_table_lock(unsigned long hash,
1189 unsigned long *flags)
1190__acquires(hlist_lock)
1191{
1192 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193 raw_spin_lock_irqsave(hlist_lock, *flags);
1194}
1195NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197void kretprobe_hash_unlock(struct task_struct *tsk,
1198 unsigned long *flags)
1199__releases(hlist_lock)
1200{
1201 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202 raw_spinlock_t *hlist_lock;
1203
1204 hlist_lock = kretprobe_table_lock_ptr(hash);
1205 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206}
1207NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209static void kretprobe_table_unlock(unsigned long hash,
1210 unsigned long *flags)
1211__releases(hlist_lock)
1212{
1213 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215}
1216NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
1218/*
1219 * This function is called from finish_task_switch when task tk becomes dead,
1220 * so that we can recycle any function-return probe instances associated
1221 * with this task. These left over instances represent probed functions
1222 * that have been called but will never return.
1223 */
1224void kprobe_flush_task(struct task_struct *tk)
1225{
1226 struct kretprobe_instance *ri;
1227 struct hlist_head *head, empty_rp;
1228 struct hlist_node *tmp;
1229 unsigned long hash, flags = 0;
1230
1231 if (unlikely(!kprobes_initialized))
1232 /* Early boot. kretprobe_table_locks not yet initialized. */
1233 return;
1234
1235 INIT_HLIST_HEAD(&empty_rp);
1236 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237 head = &kretprobe_inst_table[hash];
1238 kretprobe_table_lock(hash, &flags);
1239 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240 if (ri->task == tk)
1241 recycle_rp_inst(ri, &empty_rp);
1242 }
1243 kretprobe_table_unlock(hash, &flags);
1244 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245 hlist_del(&ri->hlist);
1246 kfree(ri);
1247 }
1248}
1249NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251static inline void free_rp_inst(struct kretprobe *rp)
1252{
1253 struct kretprobe_instance *ri;
1254 struct hlist_node *next;
1255
1256 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257 hlist_del(&ri->hlist);
1258 kfree(ri);
1259 }
1260}
1261
1262static void cleanup_rp_inst(struct kretprobe *rp)
1263{
1264 unsigned long flags, hash;
1265 struct kretprobe_instance *ri;
1266 struct hlist_node *next;
1267 struct hlist_head *head;
1268
1269 /* No race here */
1270 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271 kretprobe_table_lock(hash, &flags);
1272 head = &kretprobe_inst_table[hash];
1273 hlist_for_each_entry_safe(ri, next, head, hlist) {
1274 if (ri->rp == rp)
1275 ri->rp = NULL;
1276 }
1277 kretprobe_table_unlock(hash, &flags);
1278 }
1279 free_rp_inst(rp);
1280}
1281NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283/* Add the new probe to ap->list */
1284static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285{
1286 if (p->post_handler)
1287 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1288
1289 list_add_rcu(&p->list, &ap->list);
1290 if (p->post_handler && !ap->post_handler)
1291 ap->post_handler = aggr_post_handler;
1292
1293 return 0;
1294}
1295
1296/*
1297 * Fill in the required fields of the "manager kprobe". Replace the
1298 * earlier kprobe in the hlist with the manager kprobe
1299 */
1300static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301{
1302 /* Copy p's insn slot to ap */
1303 copy_kprobe(p, ap);
1304 flush_insn_slot(ap);
1305 ap->addr = p->addr;
1306 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307 ap->pre_handler = aggr_pre_handler;
1308 ap->fault_handler = aggr_fault_handler;
1309 /* We don't care the kprobe which has gone. */
1310 if (p->post_handler && !kprobe_gone(p))
1311 ap->post_handler = aggr_post_handler;
1312
1313 INIT_LIST_HEAD(&ap->list);
1314 INIT_HLIST_NODE(&ap->hlist);
1315
1316 list_add_rcu(&p->list, &ap->list);
1317 hlist_replace_rcu(&p->hlist, &ap->hlist);
1318}
1319
1320/*
1321 * This is the second or subsequent kprobe at the address - handle
1322 * the intricacies
1323 */
1324static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325{
1326 int ret = 0;
1327 struct kprobe *ap = orig_p;
1328
1329 cpus_read_lock();
1330
1331 /* For preparing optimization, jump_label_text_reserved() is called */
1332 jump_label_lock();
1333 mutex_lock(&text_mutex);
1334
1335 if (!kprobe_aggrprobe(orig_p)) {
1336 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337 ap = alloc_aggr_kprobe(orig_p);
1338 if (!ap) {
1339 ret = -ENOMEM;
1340 goto out;
1341 }
1342 init_aggr_kprobe(ap, orig_p);
1343 } else if (kprobe_unused(ap)) {
1344 /* This probe is going to die. Rescue it */
1345 ret = reuse_unused_kprobe(ap);
1346 if (ret)
1347 goto out;
1348 }
1349
1350 if (kprobe_gone(ap)) {
1351 /*
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1356 */
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1359 /*
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1363 */
1364 goto out;
1365
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1368
1369 /*
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1372 */
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1375 }
1376
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1380
1381out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1385
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_rcu();
1395 }
1396 }
1397 }
1398 return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408static bool __within_kprobe_blacklist(unsigned long addr)
1409{
1410 struct kprobe_blacklist_entry *ent;
1411
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1414 /*
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1417 */
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1421 }
1422 return false;
1423}
1424
1425bool within_kprobe_blacklist(unsigned long addr)
1426{
1427 char symname[KSYM_NAME_LEN], *p;
1428
1429 if (__within_kprobe_blacklist(addr))
1430 return true;
1431
1432 /* Check if the address is on a suffixed-symbol */
1433 if (!lookup_symbol_name(addr, symname)) {
1434 p = strchr(symname, '.');
1435 if (!p)
1436 return false;
1437 *p = '\0';
1438 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439 if (addr)
1440 return __within_kprobe_blacklist(addr);
1441 }
1442 return false;
1443}
1444
1445/*
1446 * If we have a symbol_name argument, look it up and add the offset field
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452 const char *symbol_name, unsigned int offset)
1453{
1454 if ((symbol_name && addr) || (!symbol_name && !addr))
1455 goto invalid;
1456
1457 if (symbol_name) {
1458 addr = kprobe_lookup_name(symbol_name, offset);
1459 if (!addr)
1460 return ERR_PTR(-ENOENT);
1461 }
1462
1463 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464 if (addr)
1465 return addr;
1466
1467invalid:
1468 return ERR_PTR(-EINVAL);
1469}
1470
1471static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472{
1473 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474}
1475
1476/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478{
1479 struct kprobe *ap, *list_p;
1480
1481 ap = get_kprobe(p->addr);
1482 if (unlikely(!ap))
1483 return NULL;
1484
1485 if (p != ap) {
1486 list_for_each_entry_rcu(list_p, &ap->list, list)
1487 if (list_p == p)
1488 /* kprobe p is a valid probe */
1489 goto valid;
1490 return NULL;
1491 }
1492valid:
1493 return ap;
1494}
1495
1496/* Return error if the kprobe is being re-registered */
1497static inline int check_kprobe_rereg(struct kprobe *p)
1498{
1499 int ret = 0;
1500
1501 mutex_lock(&kprobe_mutex);
1502 if (__get_valid_kprobe(p))
1503 ret = -EINVAL;
1504 mutex_unlock(&kprobe_mutex);
1505
1506 return ret;
1507}
1508
1509int __weak arch_check_ftrace_location(struct kprobe *p)
1510{
1511 unsigned long ftrace_addr;
1512
1513 ftrace_addr = ftrace_location((unsigned long)p->addr);
1514 if (ftrace_addr) {
1515#ifdef CONFIG_KPROBES_ON_FTRACE
1516 /* Given address is not on the instruction boundary */
1517 if ((unsigned long)p->addr != ftrace_addr)
1518 return -EILSEQ;
1519 p->flags |= KPROBE_FLAG_FTRACE;
1520#else /* !CONFIG_KPROBES_ON_FTRACE */
1521 return -EINVAL;
1522#endif
1523 }
1524 return 0;
1525}
1526
1527static int check_kprobe_address_safe(struct kprobe *p,
1528 struct module **probed_mod)
1529{
1530 int ret;
1531
1532 ret = arch_check_ftrace_location(p);
1533 if (ret)
1534 return ret;
1535 jump_label_lock();
1536 preempt_disable();
1537
1538 /* Ensure it is not in reserved area nor out of text */
1539 if (!kernel_text_address((unsigned long) p->addr) ||
1540 within_kprobe_blacklist((unsigned long) p->addr) ||
1541 jump_label_text_reserved(p->addr, p->addr) ||
1542 find_bug((unsigned long)p->addr)) {
1543 ret = -EINVAL;
1544 goto out;
1545 }
1546
1547 /* Check if are we probing a module */
1548 *probed_mod = __module_text_address((unsigned long) p->addr);
1549 if (*probed_mod) {
1550 /*
1551 * We must hold a refcount of the probed module while updating
1552 * its code to prohibit unexpected unloading.
1553 */
1554 if (unlikely(!try_module_get(*probed_mod))) {
1555 ret = -ENOENT;
1556 goto out;
1557 }
1558
1559 /*
1560 * If the module freed .init.text, we couldn't insert
1561 * kprobes in there.
1562 */
1563 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564 (*probed_mod)->state != MODULE_STATE_COMING) {
1565 module_put(*probed_mod);
1566 *probed_mod = NULL;
1567 ret = -ENOENT;
1568 }
1569 }
1570out:
1571 preempt_enable();
1572 jump_label_unlock();
1573
1574 return ret;
1575}
1576
1577int register_kprobe(struct kprobe *p)
1578{
1579 int ret;
1580 struct kprobe *old_p;
1581 struct module *probed_mod;
1582 kprobe_opcode_t *addr;
1583
1584 /* Adjust probe address from symbol */
1585 addr = kprobe_addr(p);
1586 if (IS_ERR(addr))
1587 return PTR_ERR(addr);
1588 p->addr = addr;
1589
1590 ret = check_kprobe_rereg(p);
1591 if (ret)
1592 return ret;
1593
1594 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595 p->flags &= KPROBE_FLAG_DISABLED;
1596 p->nmissed = 0;
1597 INIT_LIST_HEAD(&p->list);
1598
1599 ret = check_kprobe_address_safe(p, &probed_mod);
1600 if (ret)
1601 return ret;
1602
1603 mutex_lock(&kprobe_mutex);
1604
1605 old_p = get_kprobe(p->addr);
1606 if (old_p) {
1607 /* Since this may unoptimize old_p, locking text_mutex. */
1608 ret = register_aggr_kprobe(old_p, p);
1609 goto out;
1610 }
1611
1612 cpus_read_lock();
1613 /* Prevent text modification */
1614 mutex_lock(&text_mutex);
1615 ret = prepare_kprobe(p);
1616 mutex_unlock(&text_mutex);
1617 cpus_read_unlock();
1618 if (ret)
1619 goto out;
1620
1621 INIT_HLIST_NODE(&p->hlist);
1622 hlist_add_head_rcu(&p->hlist,
1623 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626 ret = arm_kprobe(p);
1627 if (ret) {
1628 hlist_del_rcu(&p->hlist);
1629 synchronize_rcu();
1630 goto out;
1631 }
1632 }
1633
1634 /* Try to optimize kprobe */
1635 try_to_optimize_kprobe(p);
1636out:
1637 mutex_unlock(&kprobe_mutex);
1638
1639 if (probed_mod)
1640 module_put(probed_mod);
1641
1642 return ret;
1643}
1644EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646/* Check if all probes on the aggrprobe are disabled */
1647static int aggr_kprobe_disabled(struct kprobe *ap)
1648{
1649 struct kprobe *kp;
1650
1651 list_for_each_entry_rcu(kp, &ap->list, list)
1652 if (!kprobe_disabled(kp))
1653 /*
1654 * There is an active probe on the list.
1655 * We can't disable this ap.
1656 */
1657 return 0;
1658
1659 return 1;
1660}
1661
1662/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663static struct kprobe *__disable_kprobe(struct kprobe *p)
1664{
1665 struct kprobe *orig_p;
1666 int ret;
1667
1668 /* Get an original kprobe for return */
1669 orig_p = __get_valid_kprobe(p);
1670 if (unlikely(orig_p == NULL))
1671 return ERR_PTR(-EINVAL);
1672
1673 if (!kprobe_disabled(p)) {
1674 /* Disable probe if it is a child probe */
1675 if (p != orig_p)
1676 p->flags |= KPROBE_FLAG_DISABLED;
1677
1678 /* Try to disarm and disable this/parent probe */
1679 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680 /*
1681 * If kprobes_all_disarmed is set, orig_p
1682 * should have already been disarmed, so
1683 * skip unneed disarming process.
1684 */
1685 if (!kprobes_all_disarmed) {
1686 ret = disarm_kprobe(orig_p, true);
1687 if (ret) {
1688 p->flags &= ~KPROBE_FLAG_DISABLED;
1689 return ERR_PTR(ret);
1690 }
1691 }
1692 orig_p->flags |= KPROBE_FLAG_DISABLED;
1693 }
1694 }
1695
1696 return orig_p;
1697}
1698
1699/*
1700 * Unregister a kprobe without a scheduler synchronization.
1701 */
1702static int __unregister_kprobe_top(struct kprobe *p)
1703{
1704 struct kprobe *ap, *list_p;
1705
1706 /* Disable kprobe. This will disarm it if needed. */
1707 ap = __disable_kprobe(p);
1708 if (IS_ERR(ap))
1709 return PTR_ERR(ap);
1710
1711 if (ap == p)
1712 /*
1713 * This probe is an independent(and non-optimized) kprobe
1714 * (not an aggrprobe). Remove from the hash list.
1715 */
1716 goto disarmed;
1717
1718 /* Following process expects this probe is an aggrprobe */
1719 WARN_ON(!kprobe_aggrprobe(ap));
1720
1721 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722 /*
1723 * !disarmed could be happen if the probe is under delayed
1724 * unoptimizing.
1725 */
1726 goto disarmed;
1727 else {
1728 /* If disabling probe has special handlers, update aggrprobe */
1729 if (p->post_handler && !kprobe_gone(p)) {
1730 list_for_each_entry_rcu(list_p, &ap->list, list) {
1731 if ((list_p != p) && (list_p->post_handler))
1732 goto noclean;
1733 }
1734 ap->post_handler = NULL;
1735 }
1736noclean:
1737 /*
1738 * Remove from the aggrprobe: this path will do nothing in
1739 * __unregister_kprobe_bottom().
1740 */
1741 list_del_rcu(&p->list);
1742 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743 /*
1744 * Try to optimize this probe again, because post
1745 * handler may have been changed.
1746 */
1747 optimize_kprobe(ap);
1748 }
1749 return 0;
1750
1751disarmed:
1752 hlist_del_rcu(&ap->hlist);
1753 return 0;
1754}
1755
1756static void __unregister_kprobe_bottom(struct kprobe *p)
1757{
1758 struct kprobe *ap;
1759
1760 if (list_empty(&p->list))
1761 /* This is an independent kprobe */
1762 arch_remove_kprobe(p);
1763 else if (list_is_singular(&p->list)) {
1764 /* This is the last child of an aggrprobe */
1765 ap = list_entry(p->list.next, struct kprobe, list);
1766 list_del(&p->list);
1767 free_aggr_kprobe(ap);
1768 }
1769 /* Otherwise, do nothing. */
1770}
1771
1772int register_kprobes(struct kprobe **kps, int num)
1773{
1774 int i, ret = 0;
1775
1776 if (num <= 0)
1777 return -EINVAL;
1778 for (i = 0; i < num; i++) {
1779 ret = register_kprobe(kps[i]);
1780 if (ret < 0) {
1781 if (i > 0)
1782 unregister_kprobes(kps, i);
1783 break;
1784 }
1785 }
1786 return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790void unregister_kprobe(struct kprobe *p)
1791{
1792 unregister_kprobes(&p, 1);
1793}
1794EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796void unregister_kprobes(struct kprobe **kps, int num)
1797{
1798 int i;
1799
1800 if (num <= 0)
1801 return;
1802 mutex_lock(&kprobe_mutex);
1803 for (i = 0; i < num; i++)
1804 if (__unregister_kprobe_top(kps[i]) < 0)
1805 kps[i]->addr = NULL;
1806 mutex_unlock(&kprobe_mutex);
1807
1808 synchronize_rcu();
1809 for (i = 0; i < num; i++)
1810 if (kps[i]->addr)
1811 __unregister_kprobe_bottom(kps[i]);
1812}
1813EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816 unsigned long val, void *data)
1817{
1818 return NOTIFY_DONE;
1819}
1820NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822static struct notifier_block kprobe_exceptions_nb = {
1823 .notifier_call = kprobe_exceptions_notify,
1824 .priority = 0x7fffffff /* we need to be notified first */
1825};
1826
1827unsigned long __weak arch_deref_entry_point(void *entry)
1828{
1829 return (unsigned long)entry;
1830}
1831
1832#ifdef CONFIG_KRETPROBES
1833/*
1834 * This kprobe pre_handler is registered with every kretprobe. When probe
1835 * hits it will set up the return probe.
1836 */
1837static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838{
1839 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840 unsigned long hash, flags = 0;
1841 struct kretprobe_instance *ri;
1842
1843 /*
1844 * To avoid deadlocks, prohibit return probing in NMI contexts,
1845 * just skip the probe and increase the (inexact) 'nmissed'
1846 * statistical counter, so that the user is informed that
1847 * something happened:
1848 */
1849 if (unlikely(in_nmi())) {
1850 rp->nmissed++;
1851 return 0;
1852 }
1853
1854 /* TODO: consider to only swap the RA after the last pre_handler fired */
1855 hash = hash_ptr(current, KPROBE_HASH_BITS);
1856 raw_spin_lock_irqsave(&rp->lock, flags);
1857 if (!hlist_empty(&rp->free_instances)) {
1858 ri = hlist_entry(rp->free_instances.first,
1859 struct kretprobe_instance, hlist);
1860 hlist_del(&ri->hlist);
1861 raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863 ri->rp = rp;
1864 ri->task = current;
1865
1866 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867 raw_spin_lock_irqsave(&rp->lock, flags);
1868 hlist_add_head(&ri->hlist, &rp->free_instances);
1869 raw_spin_unlock_irqrestore(&rp->lock, flags);
1870 return 0;
1871 }
1872
1873 arch_prepare_kretprobe(ri, regs);
1874
1875 /* XXX(hch): why is there no hlist_move_head? */
1876 INIT_HLIST_NODE(&ri->hlist);
1877 kretprobe_table_lock(hash, &flags);
1878 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879 kretprobe_table_unlock(hash, &flags);
1880 } else {
1881 rp->nmissed++;
1882 raw_spin_unlock_irqrestore(&rp->lock, flags);
1883 }
1884 return 0;
1885}
1886NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889{
1890 return !offset;
1891}
1892
1893bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1894{
1895 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896
1897 if (IS_ERR(kp_addr))
1898 return false;
1899
1900 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901 !arch_kprobe_on_func_entry(offset))
1902 return false;
1903
1904 return true;
1905}
1906
1907int register_kretprobe(struct kretprobe *rp)
1908{
1909 int ret = 0;
1910 struct kretprobe_instance *inst;
1911 int i;
1912 void *addr;
1913
1914 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1915 return -EINVAL;
1916
1917 if (kretprobe_blacklist_size) {
1918 addr = kprobe_addr(&rp->kp);
1919 if (IS_ERR(addr))
1920 return PTR_ERR(addr);
1921
1922 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923 if (kretprobe_blacklist[i].addr == addr)
1924 return -EINVAL;
1925 }
1926 }
1927
1928 rp->kp.pre_handler = pre_handler_kretprobe;
1929 rp->kp.post_handler = NULL;
1930 rp->kp.fault_handler = NULL;
1931
1932 /* Pre-allocate memory for max kretprobe instances */
1933 if (rp->maxactive <= 0) {
1934#ifdef CONFIG_PREEMPTION
1935 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936#else
1937 rp->maxactive = num_possible_cpus();
1938#endif
1939 }
1940 raw_spin_lock_init(&rp->lock);
1941 INIT_HLIST_HEAD(&rp->free_instances);
1942 for (i = 0; i < rp->maxactive; i++) {
1943 inst = kmalloc(sizeof(struct kretprobe_instance) +
1944 rp->data_size, GFP_KERNEL);
1945 if (inst == NULL) {
1946 free_rp_inst(rp);
1947 return -ENOMEM;
1948 }
1949 INIT_HLIST_NODE(&inst->hlist);
1950 hlist_add_head(&inst->hlist, &rp->free_instances);
1951 }
1952
1953 rp->nmissed = 0;
1954 /* Establish function entry probe point */
1955 ret = register_kprobe(&rp->kp);
1956 if (ret != 0)
1957 free_rp_inst(rp);
1958 return ret;
1959}
1960EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962int register_kretprobes(struct kretprobe **rps, int num)
1963{
1964 int ret = 0, i;
1965
1966 if (num <= 0)
1967 return -EINVAL;
1968 for (i = 0; i < num; i++) {
1969 ret = register_kretprobe(rps[i]);
1970 if (ret < 0) {
1971 if (i > 0)
1972 unregister_kretprobes(rps, i);
1973 break;
1974 }
1975 }
1976 return ret;
1977}
1978EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980void unregister_kretprobe(struct kretprobe *rp)
1981{
1982 unregister_kretprobes(&rp, 1);
1983}
1984EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986void unregister_kretprobes(struct kretprobe **rps, int num)
1987{
1988 int i;
1989
1990 if (num <= 0)
1991 return;
1992 mutex_lock(&kprobe_mutex);
1993 for (i = 0; i < num; i++)
1994 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995 rps[i]->kp.addr = NULL;
1996 mutex_unlock(&kprobe_mutex);
1997
1998 synchronize_rcu();
1999 for (i = 0; i < num; i++) {
2000 if (rps[i]->kp.addr) {
2001 __unregister_kprobe_bottom(&rps[i]->kp);
2002 cleanup_rp_inst(rps[i]);
2003 }
2004 }
2005}
2006EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008#else /* CONFIG_KRETPROBES */
2009int register_kretprobe(struct kretprobe *rp)
2010{
2011 return -ENOSYS;
2012}
2013EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015int register_kretprobes(struct kretprobe **rps, int num)
2016{
2017 return -ENOSYS;
2018}
2019EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021void unregister_kretprobe(struct kretprobe *rp)
2022{
2023}
2024EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026void unregister_kretprobes(struct kretprobe **rps, int num)
2027{
2028}
2029EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032{
2033 return 0;
2034}
2035NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037#endif /* CONFIG_KRETPROBES */
2038
2039/* Set the kprobe gone and remove its instruction buffer. */
2040static void kill_kprobe(struct kprobe *p)
2041{
2042 struct kprobe *kp;
2043
2044 p->flags |= KPROBE_FLAG_GONE;
2045 if (kprobe_aggrprobe(p)) {
2046 /*
2047 * If this is an aggr_kprobe, we have to list all the
2048 * chained probes and mark them GONE.
2049 */
2050 list_for_each_entry_rcu(kp, &p->list, list)
2051 kp->flags |= KPROBE_FLAG_GONE;
2052 p->post_handler = NULL;
2053 kill_optimized_kprobe(p);
2054 }
2055 /*
2056 * Here, we can remove insn_slot safely, because no thread calls
2057 * the original probed function (which will be freed soon) any more.
2058 */
2059 arch_remove_kprobe(p);
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065 int ret = 0;
2066 struct kprobe *p;
2067
2068 mutex_lock(&kprobe_mutex);
2069
2070 /* Disable this kprobe */
2071 p = __disable_kprobe(kp);
2072 if (IS_ERR(p))
2073 ret = PTR_ERR(p);
2074
2075 mutex_unlock(&kprobe_mutex);
2076 return ret;
2077}
2078EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080/* Enable one kprobe */
2081int enable_kprobe(struct kprobe *kp)
2082{
2083 int ret = 0;
2084 struct kprobe *p;
2085
2086 mutex_lock(&kprobe_mutex);
2087
2088 /* Check whether specified probe is valid. */
2089 p = __get_valid_kprobe(kp);
2090 if (unlikely(p == NULL)) {
2091 ret = -EINVAL;
2092 goto out;
2093 }
2094
2095 if (kprobe_gone(kp)) {
2096 /* This kprobe has gone, we couldn't enable it. */
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100
2101 if (p != kp)
2102 kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105 p->flags &= ~KPROBE_FLAG_DISABLED;
2106 ret = arm_kprobe(p);
2107 if (ret)
2108 p->flags |= KPROBE_FLAG_DISABLED;
2109 }
2110out:
2111 mutex_unlock(&kprobe_mutex);
2112 return ret;
2113}
2114EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116/* Caller must NOT call this in usual path. This is only for critical case */
2117void dump_kprobe(struct kprobe *kp)
2118{
2119 pr_err("Dumping kprobe:\n");
2120 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121 kp->symbol_name, kp->offset, kp->addr);
2122}
2123NOKPROBE_SYMBOL(dump_kprobe);
2124
2125int kprobe_add_ksym_blacklist(unsigned long entry)
2126{
2127 struct kprobe_blacklist_entry *ent;
2128 unsigned long offset = 0, size = 0;
2129
2130 if (!kernel_text_address(entry) ||
2131 !kallsyms_lookup_size_offset(entry, &size, &offset))
2132 return -EINVAL;
2133
2134 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135 if (!ent)
2136 return -ENOMEM;
2137 ent->start_addr = entry;
2138 ent->end_addr = entry + size;
2139 INIT_LIST_HEAD(&ent->list);
2140 list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142 return (int)size;
2143}
2144
2145/* Add all symbols in given area into kprobe blacklist */
2146int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147{
2148 unsigned long entry;
2149 int ret = 0;
2150
2151 for (entry = start; entry < end; entry += ret) {
2152 ret = kprobe_add_ksym_blacklist(entry);
2153 if (ret < 0)
2154 return ret;
2155 if (ret == 0) /* In case of alias symbol */
2156 ret = 1;
2157 }
2158 return 0;
2159}
2160
2161int __init __weak arch_populate_kprobe_blacklist(void)
2162{
2163 return 0;
2164}
2165
2166/*
2167 * Lookup and populate the kprobe_blacklist.
2168 *
2169 * Unlike the kretprobe blacklist, we'll need to determine
2170 * the range of addresses that belong to the said functions,
2171 * since a kprobe need not necessarily be at the beginning
2172 * of a function.
2173 */
2174static int __init populate_kprobe_blacklist(unsigned long *start,
2175 unsigned long *end)
2176{
2177 unsigned long entry;
2178 unsigned long *iter;
2179 int ret;
2180
2181 for (iter = start; iter < end; iter++) {
2182 entry = arch_deref_entry_point((void *)*iter);
2183 ret = kprobe_add_ksym_blacklist(entry);
2184 if (ret == -EINVAL)
2185 continue;
2186 if (ret < 0)
2187 return ret;
2188 }
2189
2190 /* Symbols in __kprobes_text are blacklisted */
2191 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192 (unsigned long)__kprobes_text_end);
2193
2194 return ret ? : arch_populate_kprobe_blacklist();
2195}
2196
2197/* Module notifier call back, checking kprobes on the module */
2198static int kprobes_module_callback(struct notifier_block *nb,
2199 unsigned long val, void *data)
2200{
2201 struct module *mod = data;
2202 struct hlist_head *head;
2203 struct kprobe *p;
2204 unsigned int i;
2205 int checkcore = (val == MODULE_STATE_GOING);
2206
2207 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208 return NOTIFY_DONE;
2209
2210 /*
2211 * When MODULE_STATE_GOING was notified, both of module .text and
2212 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213 * notified, only .init.text section would be freed. We need to
2214 * disable kprobes which have been inserted in the sections.
2215 */
2216 mutex_lock(&kprobe_mutex);
2217 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218 head = &kprobe_table[i];
2219 hlist_for_each_entry_rcu(p, head, hlist)
2220 if (within_module_init((unsigned long)p->addr, mod) ||
2221 (checkcore &&
2222 within_module_core((unsigned long)p->addr, mod))) {
2223 /*
2224 * The vaddr this probe is installed will soon
2225 * be vfreed buy not synced to disk. Hence,
2226 * disarming the breakpoint isn't needed.
2227 *
2228 * Note, this will also move any optimized probes
2229 * that are pending to be removed from their
2230 * corresponding lists to the freeing_list and
2231 * will not be touched by the delayed
2232 * kprobe_optimizer work handler.
2233 */
2234 kill_kprobe(p);
2235 }
2236 }
2237 mutex_unlock(&kprobe_mutex);
2238 return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block kprobe_module_nb = {
2242 .notifier_call = kprobes_module_callback,
2243 .priority = 0
2244};
2245
2246/* Markers of _kprobe_blacklist section */
2247extern unsigned long __start_kprobe_blacklist[];
2248extern unsigned long __stop_kprobe_blacklist[];
2249
2250static int __init init_kprobes(void)
2251{
2252 int i, err = 0;
2253
2254 /* FIXME allocate the probe table, currently defined statically */
2255 /* initialize all list heads */
2256 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257 INIT_HLIST_HEAD(&kprobe_table[i]);
2258 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260 }
2261
2262 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263 __stop_kprobe_blacklist);
2264 if (err) {
2265 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266 pr_err("Please take care of using kprobes.\n");
2267 }
2268
2269 if (kretprobe_blacklist_size) {
2270 /* lookup the function address from its name */
2271 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272 kretprobe_blacklist[i].addr =
2273 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274 if (!kretprobe_blacklist[i].addr)
2275 printk("kretprobe: lookup failed: %s\n",
2276 kretprobe_blacklist[i].name);
2277 }
2278 }
2279
2280#if defined(CONFIG_OPTPROBES)
2281#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282 /* Init kprobe_optinsn_slots */
2283 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284#endif
2285 /* By default, kprobes can be optimized */
2286 kprobes_allow_optimization = true;
2287#endif
2288
2289 /* By default, kprobes are armed */
2290 kprobes_all_disarmed = false;
2291
2292 err = arch_init_kprobes();
2293 if (!err)
2294 err = register_die_notifier(&kprobe_exceptions_nb);
2295 if (!err)
2296 err = register_module_notifier(&kprobe_module_nb);
2297
2298 kprobes_initialized = (err == 0);
2299
2300 if (!err)
2301 init_test_probes();
2302 return err;
2303}
2304subsys_initcall(init_kprobes);
2305
2306#ifdef CONFIG_DEBUG_FS
2307static void report_probe(struct seq_file *pi, struct kprobe *p,
2308 const char *sym, int offset, char *modname, struct kprobe *pp)
2309{
2310 char *kprobe_type;
2311 void *addr = p->addr;
2312
2313 if (p->pre_handler == pre_handler_kretprobe)
2314 kprobe_type = "r";
2315 else
2316 kprobe_type = "k";
2317
2318 if (!kallsyms_show_value())
2319 addr = NULL;
2320
2321 if (sym)
2322 seq_printf(pi, "%px %s %s+0x%x %s ",
2323 addr, kprobe_type, sym, offset,
2324 (modname ? modname : " "));
2325 else /* try to use %pS */
2326 seq_printf(pi, "%px %s %pS ",
2327 addr, kprobe_type, p->addr);
2328
2329 if (!pp)
2330 pp = p;
2331 seq_printf(pi, "%s%s%s%s\n",
2332 (kprobe_gone(p) ? "[GONE]" : ""),
2333 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2334 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336}
2337
2338static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339{
2340 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341}
2342
2343static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344{
2345 (*pos)++;
2346 if (*pos >= KPROBE_TABLE_SIZE)
2347 return NULL;
2348 return pos;
2349}
2350
2351static void kprobe_seq_stop(struct seq_file *f, void *v)
2352{
2353 /* Nothing to do */
2354}
2355
2356static int show_kprobe_addr(struct seq_file *pi, void *v)
2357{
2358 struct hlist_head *head;
2359 struct kprobe *p, *kp;
2360 const char *sym = NULL;
2361 unsigned int i = *(loff_t *) v;
2362 unsigned long offset = 0;
2363 char *modname, namebuf[KSYM_NAME_LEN];
2364
2365 head = &kprobe_table[i];
2366 preempt_disable();
2367 hlist_for_each_entry_rcu(p, head, hlist) {
2368 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369 &offset, &modname, namebuf);
2370 if (kprobe_aggrprobe(p)) {
2371 list_for_each_entry_rcu(kp, &p->list, list)
2372 report_probe(pi, kp, sym, offset, modname, p);
2373 } else
2374 report_probe(pi, p, sym, offset, modname, NULL);
2375 }
2376 preempt_enable();
2377 return 0;
2378}
2379
2380static const struct seq_operations kprobes_seq_ops = {
2381 .start = kprobe_seq_start,
2382 .next = kprobe_seq_next,
2383 .stop = kprobe_seq_stop,
2384 .show = show_kprobe_addr
2385};
2386
2387static int kprobes_open(struct inode *inode, struct file *filp)
2388{
2389 return seq_open(filp, &kprobes_seq_ops);
2390}
2391
2392static const struct file_operations debugfs_kprobes_operations = {
2393 .open = kprobes_open,
2394 .read = seq_read,
2395 .llseek = seq_lseek,
2396 .release = seq_release,
2397};
2398
2399/* kprobes/blacklist -- shows which functions can not be probed */
2400static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401{
2402 return seq_list_start(&kprobe_blacklist, *pos);
2403}
2404
2405static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406{
2407 return seq_list_next(v, &kprobe_blacklist, pos);
2408}
2409
2410static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411{
2412 struct kprobe_blacklist_entry *ent =
2413 list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415 /*
2416 * If /proc/kallsyms is not showing kernel address, we won't
2417 * show them here either.
2418 */
2419 if (!kallsyms_show_value())
2420 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421 (void *)ent->start_addr);
2422 else
2423 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424 (void *)ent->end_addr, (void *)ent->start_addr);
2425 return 0;
2426}
2427
2428static const struct seq_operations kprobe_blacklist_seq_ops = {
2429 .start = kprobe_blacklist_seq_start,
2430 .next = kprobe_blacklist_seq_next,
2431 .stop = kprobe_seq_stop, /* Reuse void function */
2432 .show = kprobe_blacklist_seq_show,
2433};
2434
2435static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436{
2437 return seq_open(filp, &kprobe_blacklist_seq_ops);
2438}
2439
2440static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441 .open = kprobe_blacklist_open,
2442 .read = seq_read,
2443 .llseek = seq_lseek,
2444 .release = seq_release,
2445};
2446
2447static int arm_all_kprobes(void)
2448{
2449 struct hlist_head *head;
2450 struct kprobe *p;
2451 unsigned int i, total = 0, errors = 0;
2452 int err, ret = 0;
2453
2454 mutex_lock(&kprobe_mutex);
2455
2456 /* If kprobes are armed, just return */
2457 if (!kprobes_all_disarmed)
2458 goto already_enabled;
2459
2460 /*
2461 * optimize_kprobe() called by arm_kprobe() checks
2462 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463 * arm_kprobe.
2464 */
2465 kprobes_all_disarmed = false;
2466 /* Arming kprobes doesn't optimize kprobe itself */
2467 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468 head = &kprobe_table[i];
2469 /* Arm all kprobes on a best-effort basis */
2470 hlist_for_each_entry_rcu(p, head, hlist) {
2471 if (!kprobe_disabled(p)) {
2472 err = arm_kprobe(p);
2473 if (err) {
2474 errors++;
2475 ret = err;
2476 }
2477 total++;
2478 }
2479 }
2480 }
2481
2482 if (errors)
2483 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484 errors, total);
2485 else
2486 pr_info("Kprobes globally enabled\n");
2487
2488already_enabled:
2489 mutex_unlock(&kprobe_mutex);
2490 return ret;
2491}
2492
2493static int disarm_all_kprobes(void)
2494{
2495 struct hlist_head *head;
2496 struct kprobe *p;
2497 unsigned int i, total = 0, errors = 0;
2498 int err, ret = 0;
2499
2500 mutex_lock(&kprobe_mutex);
2501
2502 /* If kprobes are already disarmed, just return */
2503 if (kprobes_all_disarmed) {
2504 mutex_unlock(&kprobe_mutex);
2505 return 0;
2506 }
2507
2508 kprobes_all_disarmed = true;
2509
2510 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511 head = &kprobe_table[i];
2512 /* Disarm all kprobes on a best-effort basis */
2513 hlist_for_each_entry_rcu(p, head, hlist) {
2514 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515 err = disarm_kprobe(p, false);
2516 if (err) {
2517 errors++;
2518 ret = err;
2519 }
2520 total++;
2521 }
2522 }
2523 }
2524
2525 if (errors)
2526 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527 errors, total);
2528 else
2529 pr_info("Kprobes globally disabled\n");
2530
2531 mutex_unlock(&kprobe_mutex);
2532
2533 /* Wait for disarming all kprobes by optimizer */
2534 wait_for_kprobe_optimizer();
2535
2536 return ret;
2537}
2538
2539/*
2540 * XXX: The debugfs bool file interface doesn't allow for callbacks
2541 * when the bool state is switched. We can reuse that facility when
2542 * available
2543 */
2544static ssize_t read_enabled_file_bool(struct file *file,
2545 char __user *user_buf, size_t count, loff_t *ppos)
2546{
2547 char buf[3];
2548
2549 if (!kprobes_all_disarmed)
2550 buf[0] = '1';
2551 else
2552 buf[0] = '0';
2553 buf[1] = '\n';
2554 buf[2] = 0x00;
2555 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556}
2557
2558static ssize_t write_enabled_file_bool(struct file *file,
2559 const char __user *user_buf, size_t count, loff_t *ppos)
2560{
2561 char buf[32];
2562 size_t buf_size;
2563 int ret = 0;
2564
2565 buf_size = min(count, (sizeof(buf)-1));
2566 if (copy_from_user(buf, user_buf, buf_size))
2567 return -EFAULT;
2568
2569 buf[buf_size] = '\0';
2570 switch (buf[0]) {
2571 case 'y':
2572 case 'Y':
2573 case '1':
2574 ret = arm_all_kprobes();
2575 break;
2576 case 'n':
2577 case 'N':
2578 case '0':
2579 ret = disarm_all_kprobes();
2580 break;
2581 default:
2582 return -EINVAL;
2583 }
2584
2585 if (ret)
2586 return ret;
2587
2588 return count;
2589}
2590
2591static const struct file_operations fops_kp = {
2592 .read = read_enabled_file_bool,
2593 .write = write_enabled_file_bool,
2594 .llseek = default_llseek,
2595};
2596
2597static int __init debugfs_kprobe_init(void)
2598{
2599 struct dentry *dir;
2600 unsigned int value = 1;
2601
2602 dir = debugfs_create_dir("kprobes", NULL);
2603
2604 debugfs_create_file("list", 0400, dir, NULL,
2605 &debugfs_kprobes_operations);
2606
2607 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609 debugfs_create_file("blacklist", 0400, dir, NULL,
2610 &debugfs_kprobe_blacklist_ops);
2611
2612 return 0;
2613}
2614
2615late_initcall(debugfs_kprobe_init);
2616#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 */
20
21#define pr_fmt(fmt) "kprobes: " fmt
22
23#include <linux/kprobes.h>
24#include <linux/hash.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/stddef.h>
28#include <linux/export.h>
29#include <linux/moduleloader.h>
30#include <linux/kallsyms.h>
31#include <linux/freezer.h>
32#include <linux/seq_file.h>
33#include <linux/debugfs.h>
34#include <linux/sysctl.h>
35#include <linux/kdebug.h>
36#include <linux/memory.h>
37#include <linux/ftrace.h>
38#include <linux/cpu.h>
39#include <linux/jump_label.h>
40#include <linux/static_call.h>
41#include <linux/perf_event.h>
42
43#include <asm/sections.h>
44#include <asm/cacheflush.h>
45#include <asm/errno.h>
46#include <linux/uaccess.h>
47
48#define KPROBE_HASH_BITS 6
49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52#define kprobe_sysctls_init() do { } while (0)
53#endif
54
55static int kprobes_initialized;
56/* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63/* NOTE: change this value only with 'kprobe_mutex' held */
64static bool kprobes_all_disarmed;
65
66/* This protects 'kprobe_table' and 'optimizing_list' */
67static DEFINE_MUTEX(kprobe_mutex);
68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
72{
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74}
75
76/*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80static LIST_HEAD(kprobe_blacklist);
81
82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83/*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96};
97
98#define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
102static int slots_per_page(struct kprobe_insn_cache *c)
103{
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105}
106
107enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111};
112
113void __weak *alloc_insn_page(void)
114{
115 /*
116 * Use module_alloc() so this page is within +/- 2GB of where the
117 * kernel image and loaded module images reside. This is required
118 * for most of the architectures.
119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 */
121 return module_alloc(PAGE_SIZE);
122}
123
124static void free_insn_page(void *page)
125{
126 module_memfree(page);
127}
128
129struct kprobe_insn_cache kprobe_insn_slots = {
130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 .alloc = alloc_insn_page,
132 .free = free_insn_page,
133 .sym = KPROBE_INSN_PAGE_SYM,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 rcu_read_unlock();
163 goto out;
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171 rcu_read_unlock();
172
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 goto retry;
176
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 if (!kip)
180 goto out;
181
182 kip->insns = c->alloc();
183 if (!kip->insns) {
184 kfree(kip);
185 goto out;
186 }
187 INIT_LIST_HEAD(&kip->list);
188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 kip->slot_used[0] = SLOT_USED;
190 kip->nused = 1;
191 kip->ngarbage = 0;
192 kip->cache = c;
193 list_add_rcu(&kip->list, &c->pages);
194 slot = kip->insns;
195
196 /* Record the perf ksymbol register event after adding the page */
197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 PAGE_SIZE, false, c->sym);
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return true if all garbages are collected, otherwise false. */
205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 /*
218 * Record perf ksymbol unregister event before removing
219 * the page.
220 */
221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 (unsigned long)kip->insns, PAGE_SIZE, true,
223 kip->cache->sym);
224 list_del_rcu(&kip->list);
225 synchronize_rcu();
226 kip->cache->free(kip->insns);
227 kfree(kip);
228 }
229 return true;
230 }
231 return false;
232}
233
234static int collect_garbage_slots(struct kprobe_insn_cache *c)
235{
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_rcu();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254}
255
256void __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258{
259 struct kprobe_insn_page *kip;
260 long idx;
261
262 mutex_lock(&c->mutex);
263 rcu_read_lock();
264 list_for_each_entry_rcu(kip, &c->pages, list) {
265 idx = ((long)slot - (long)kip->insns) /
266 (c->insn_size * sizeof(kprobe_opcode_t));
267 if (idx >= 0 && idx < slots_per_page(c))
268 goto out;
269 }
270 /* Could not find this slot. */
271 WARN_ON(1);
272 kip = NULL;
273out:
274 rcu_read_unlock();
275 /* Mark and sweep: this may sleep */
276 if (kip) {
277 /* Check double free */
278 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 if (dirty) {
280 kip->slot_used[idx] = SLOT_DIRTY;
281 kip->ngarbage++;
282 if (++c->nr_garbage > slots_per_page(c))
283 collect_garbage_slots(c);
284 } else {
285 collect_one_slot(kip, idx);
286 }
287 }
288 mutex_unlock(&c->mutex);
289}
290
291/*
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
295 */
296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297{
298 struct kprobe_insn_page *kip;
299 bool ret = false;
300
301 rcu_read_lock();
302 list_for_each_entry_rcu(kip, &c->pages, list) {
303 if (addr >= (unsigned long)kip->insns &&
304 addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 ret = true;
306 break;
307 }
308 }
309 rcu_read_unlock();
310
311 return ret;
312}
313
314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 unsigned long *value, char *type, char *sym)
316{
317 struct kprobe_insn_page *kip;
318 int ret = -ERANGE;
319
320 rcu_read_lock();
321 list_for_each_entry_rcu(kip, &c->pages, list) {
322 if ((*symnum)--)
323 continue;
324 strscpy(sym, c->sym, KSYM_NAME_LEN);
325 *type = 't';
326 *value = (unsigned long)kip->insns;
327 ret = 0;
328 break;
329 }
330 rcu_read_unlock();
331
332 return ret;
333}
334
335#ifdef CONFIG_OPTPROBES
336void __weak *alloc_optinsn_page(void)
337{
338 return alloc_insn_page();
339}
340
341void __weak free_optinsn_page(void *page)
342{
343 free_insn_page(page);
344}
345
346/* For optimized_kprobe buffer */
347struct kprobe_insn_cache kprobe_optinsn_slots = {
348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 .alloc = alloc_optinsn_page,
350 .free = free_optinsn_page,
351 .sym = KPROBE_OPTINSN_PAGE_SYM,
352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 /* .insn_size is initialized later */
354 .nr_garbage = 0,
355};
356#endif
357#endif
358
359/* We have preemption disabled.. so it is safe to use __ versions */
360static inline void set_kprobe_instance(struct kprobe *kp)
361{
362 __this_cpu_write(kprobe_instance, kp);
363}
364
365static inline void reset_kprobe_instance(void)
366{
367 __this_cpu_write(kprobe_instance, NULL);
368}
369
370/*
371 * This routine is called either:
372 * - under the 'kprobe_mutex' - during kprobe_[un]register().
373 * OR
374 * - with preemption disabled - from architecture specific code.
375 */
376struct kprobe *get_kprobe(void *addr)
377{
378 struct hlist_head *head;
379 struct kprobe *p;
380
381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 hlist_for_each_entry_rcu(p, head, hlist,
383 lockdep_is_held(&kprobe_mutex)) {
384 if (p->addr == addr)
385 return p;
386 }
387
388 return NULL;
389}
390NOKPROBE_SYMBOL(get_kprobe);
391
392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394/* Return true if 'p' is an aggregator */
395static inline bool kprobe_aggrprobe(struct kprobe *p)
396{
397 return p->pre_handler == aggr_pre_handler;
398}
399
400/* Return true if 'p' is unused */
401static inline bool kprobe_unused(struct kprobe *p)
402{
403 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 list_empty(&p->list);
405}
406
407/* Keep all fields in the kprobe consistent. */
408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409{
410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412}
413
414#ifdef CONFIG_OPTPROBES
415/* NOTE: This is protected by 'kprobe_mutex'. */
416static bool kprobes_allow_optimization;
417
418/*
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
421 */
422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423{
424 struct kprobe *kp;
425
426 list_for_each_entry_rcu(kp, &p->list, list) {
427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 set_kprobe_instance(kp);
429 kp->pre_handler(kp, regs);
430 }
431 reset_kprobe_instance();
432 }
433}
434NOKPROBE_SYMBOL(opt_pre_handler);
435
436/* Free optimized instructions and optimized_kprobe */
437static void free_aggr_kprobe(struct kprobe *p)
438{
439 struct optimized_kprobe *op;
440
441 op = container_of(p, struct optimized_kprobe, kp);
442 arch_remove_optimized_kprobe(op);
443 arch_remove_kprobe(p);
444 kfree(op);
445}
446
447/* Return true if the kprobe is ready for optimization. */
448static inline int kprobe_optready(struct kprobe *p)
449{
450 struct optimized_kprobe *op;
451
452 if (kprobe_aggrprobe(p)) {
453 op = container_of(p, struct optimized_kprobe, kp);
454 return arch_prepared_optinsn(&op->optinsn);
455 }
456
457 return 0;
458}
459
460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
461bool kprobe_disarmed(struct kprobe *p)
462{
463 struct optimized_kprobe *op;
464
465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 if (!kprobe_aggrprobe(p))
467 return kprobe_disabled(p);
468
469 op = container_of(p, struct optimized_kprobe, kp);
470
471 return kprobe_disabled(p) && list_empty(&op->list);
472}
473
474/* Return true if the probe is queued on (un)optimizing lists */
475static bool kprobe_queued(struct kprobe *p)
476{
477 struct optimized_kprobe *op;
478
479 if (kprobe_aggrprobe(p)) {
480 op = container_of(p, struct optimized_kprobe, kp);
481 if (!list_empty(&op->list))
482 return true;
483 }
484 return false;
485}
486
487/*
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
490 */
491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492{
493 int i;
494 struct kprobe *p = NULL;
495 struct optimized_kprobe *op;
496
497 /* Don't check i == 0, since that is a breakpoint case. */
498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 p = get_kprobe(addr - i);
500
501 if (p && kprobe_optready(p)) {
502 op = container_of(p, struct optimized_kprobe, kp);
503 if (arch_within_optimized_kprobe(op, addr))
504 return p;
505 }
506
507 return NULL;
508}
509
510/* Optimization staging list, protected by 'kprobe_mutex' */
511static LIST_HEAD(optimizing_list);
512static LIST_HEAD(unoptimizing_list);
513static LIST_HEAD(freeing_list);
514
515static void kprobe_optimizer(struct work_struct *work);
516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517#define OPTIMIZE_DELAY 5
518
519/*
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
521 * 'optimizing_list'.
522 */
523static void do_optimize_kprobes(void)
524{
525 lockdep_assert_held(&text_mutex);
526 /*
527 * The optimization/unoptimization refers 'online_cpus' via
528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 * 'text_mutex' but stop_machine() can not be done because
532 * the 'online_cpus' has been changed)
533 * To avoid this deadlock, caller must have locked cpu-hotplug
534 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 */
536 lockdep_assert_cpus_held();
537
538 /* Optimization never be done when disarmed */
539 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 list_empty(&optimizing_list))
541 return;
542
543 arch_optimize_kprobes(&optimizing_list);
544}
545
546/*
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
549 */
550static void do_unoptimize_kprobes(void)
551{
552 struct optimized_kprobe *op, *tmp;
553
554 lockdep_assert_held(&text_mutex);
555 /* See comment in do_optimize_kprobes() */
556 lockdep_assert_cpus_held();
557
558 if (!list_empty(&unoptimizing_list))
559 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560
561 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563 /* Switching from detour code to origin */
564 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565 /* Disarm probes if marked disabled and not gone */
566 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567 arch_disarm_kprobe(&op->kp);
568 if (kprobe_unused(&op->kp)) {
569 /*
570 * Remove unused probes from hash list. After waiting
571 * for synchronization, these probes are reclaimed.
572 * (reclaiming is done by do_free_cleaned_kprobes().)
573 */
574 hlist_del_rcu(&op->kp.hlist);
575 } else
576 list_del_init(&op->list);
577 }
578}
579
580/* Reclaim all kprobes on the 'freeing_list' */
581static void do_free_cleaned_kprobes(void)
582{
583 struct optimized_kprobe *op, *tmp;
584
585 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586 list_del_init(&op->list);
587 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588 /*
589 * This must not happen, but if there is a kprobe
590 * still in use, keep it on kprobes hash list.
591 */
592 continue;
593 }
594 free_aggr_kprobe(&op->kp);
595 }
596}
597
598/* Start optimizer after OPTIMIZE_DELAY passed */
599static void kick_kprobe_optimizer(void)
600{
601 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602}
603
604/* Kprobe jump optimizer */
605static void kprobe_optimizer(struct work_struct *work)
606{
607 mutex_lock(&kprobe_mutex);
608 cpus_read_lock();
609 mutex_lock(&text_mutex);
610
611 /*
612 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613 * kprobes before waiting for quiesence period.
614 */
615 do_unoptimize_kprobes();
616
617 /*
618 * Step 2: Wait for quiesence period to ensure all potentially
619 * preempted tasks to have normally scheduled. Because optprobe
620 * may modify multiple instructions, there is a chance that Nth
621 * instruction is preempted. In that case, such tasks can return
622 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623 * Note that on non-preemptive kernel, this is transparently converted
624 * to synchronoze_sched() to wait for all interrupts to have completed.
625 */
626 synchronize_rcu_tasks();
627
628 /* Step 3: Optimize kprobes after quiesence period */
629 do_optimize_kprobes();
630
631 /* Step 4: Free cleaned kprobes after quiesence period */
632 do_free_cleaned_kprobes();
633
634 mutex_unlock(&text_mutex);
635 cpus_read_unlock();
636
637 /* Step 5: Kick optimizer again if needed */
638 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639 kick_kprobe_optimizer();
640
641 mutex_unlock(&kprobe_mutex);
642}
643
644/* Wait for completing optimization and unoptimization */
645void wait_for_kprobe_optimizer(void)
646{
647 mutex_lock(&kprobe_mutex);
648
649 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650 mutex_unlock(&kprobe_mutex);
651
652 /* This will also make 'optimizing_work' execute immmediately */
653 flush_delayed_work(&optimizing_work);
654 /* 'optimizing_work' might not have been queued yet, relax */
655 cpu_relax();
656
657 mutex_lock(&kprobe_mutex);
658 }
659
660 mutex_unlock(&kprobe_mutex);
661}
662
663bool optprobe_queued_unopt(struct optimized_kprobe *op)
664{
665 struct optimized_kprobe *_op;
666
667 list_for_each_entry(_op, &unoptimizing_list, list) {
668 if (op == _op)
669 return true;
670 }
671
672 return false;
673}
674
675/* Optimize kprobe if p is ready to be optimized */
676static void optimize_kprobe(struct kprobe *p)
677{
678 struct optimized_kprobe *op;
679
680 /* Check if the kprobe is disabled or not ready for optimization. */
681 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682 (kprobe_disabled(p) || kprobes_all_disarmed))
683 return;
684
685 /* kprobes with 'post_handler' can not be optimized */
686 if (p->post_handler)
687 return;
688
689 op = container_of(p, struct optimized_kprobe, kp);
690
691 /* Check there is no other kprobes at the optimized instructions */
692 if (arch_check_optimized_kprobe(op) < 0)
693 return;
694
695 /* Check if it is already optimized. */
696 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697 if (optprobe_queued_unopt(op)) {
698 /* This is under unoptimizing. Just dequeue the probe */
699 list_del_init(&op->list);
700 }
701 return;
702 }
703 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705 /*
706 * On the 'unoptimizing_list' and 'optimizing_list',
707 * 'op' must have OPTIMIZED flag
708 */
709 if (WARN_ON_ONCE(!list_empty(&op->list)))
710 return;
711
712 list_add(&op->list, &optimizing_list);
713 kick_kprobe_optimizer();
714}
715
716/* Short cut to direct unoptimizing */
717static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718{
719 lockdep_assert_cpus_held();
720 arch_unoptimize_kprobe(op);
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722}
723
724/* Unoptimize a kprobe if p is optimized */
725static void unoptimize_kprobe(struct kprobe *p, bool force)
726{
727 struct optimized_kprobe *op;
728
729 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730 return; /* This is not an optprobe nor optimized */
731
732 op = container_of(p, struct optimized_kprobe, kp);
733 if (!kprobe_optimized(p))
734 return;
735
736 if (!list_empty(&op->list)) {
737 if (optprobe_queued_unopt(op)) {
738 /* Queued in unoptimizing queue */
739 if (force) {
740 /*
741 * Forcibly unoptimize the kprobe here, and queue it
742 * in the freeing list for release afterwards.
743 */
744 force_unoptimize_kprobe(op);
745 list_move(&op->list, &freeing_list);
746 }
747 } else {
748 /* Dequeue from the optimizing queue */
749 list_del_init(&op->list);
750 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751 }
752 return;
753 }
754
755 /* Optimized kprobe case */
756 if (force) {
757 /* Forcibly update the code: this is a special case */
758 force_unoptimize_kprobe(op);
759 } else {
760 list_add(&op->list, &unoptimizing_list);
761 kick_kprobe_optimizer();
762 }
763}
764
765/* Cancel unoptimizing for reusing */
766static int reuse_unused_kprobe(struct kprobe *ap)
767{
768 struct optimized_kprobe *op;
769
770 /*
771 * Unused kprobe MUST be on the way of delayed unoptimizing (means
772 * there is still a relative jump) and disabled.
773 */
774 op = container_of(ap, struct optimized_kprobe, kp);
775 WARN_ON_ONCE(list_empty(&op->list));
776 /* Enable the probe again */
777 ap->flags &= ~KPROBE_FLAG_DISABLED;
778 /* Optimize it again. (remove from 'op->list') */
779 if (!kprobe_optready(ap))
780 return -EINVAL;
781
782 optimize_kprobe(ap);
783 return 0;
784}
785
786/* Remove optimized instructions */
787static void kill_optimized_kprobe(struct kprobe *p)
788{
789 struct optimized_kprobe *op;
790
791 op = container_of(p, struct optimized_kprobe, kp);
792 if (!list_empty(&op->list))
793 /* Dequeue from the (un)optimization queue */
794 list_del_init(&op->list);
795 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797 if (kprobe_unused(p)) {
798 /*
799 * Unused kprobe is on unoptimizing or freeing list. We move it
800 * to freeing_list and let the kprobe_optimizer() remove it from
801 * the kprobe hash list and free it.
802 */
803 if (optprobe_queued_unopt(op))
804 list_move(&op->list, &freeing_list);
805 }
806
807 /* Don't touch the code, because it is already freed. */
808 arch_remove_optimized_kprobe(op);
809}
810
811static inline
812void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813{
814 if (!kprobe_ftrace(p))
815 arch_prepare_optimized_kprobe(op, p);
816}
817
818/* Try to prepare optimized instructions */
819static void prepare_optimized_kprobe(struct kprobe *p)
820{
821 struct optimized_kprobe *op;
822
823 op = container_of(p, struct optimized_kprobe, kp);
824 __prepare_optimized_kprobe(op, p);
825}
826
827/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829{
830 struct optimized_kprobe *op;
831
832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833 if (!op)
834 return NULL;
835
836 INIT_LIST_HEAD(&op->list);
837 op->kp.addr = p->addr;
838 __prepare_optimized_kprobe(op, p);
839
840 return &op->kp;
841}
842
843static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845/*
846 * Prepare an optimized_kprobe and optimize it.
847 * NOTE: 'p' must be a normal registered kprobe.
848 */
849static void try_to_optimize_kprobe(struct kprobe *p)
850{
851 struct kprobe *ap;
852 struct optimized_kprobe *op;
853
854 /* Impossible to optimize ftrace-based kprobe. */
855 if (kprobe_ftrace(p))
856 return;
857
858 /* For preparing optimization, jump_label_text_reserved() is called. */
859 cpus_read_lock();
860 jump_label_lock();
861 mutex_lock(&text_mutex);
862
863 ap = alloc_aggr_kprobe(p);
864 if (!ap)
865 goto out;
866
867 op = container_of(ap, struct optimized_kprobe, kp);
868 if (!arch_prepared_optinsn(&op->optinsn)) {
869 /* If failed to setup optimizing, fallback to kprobe. */
870 arch_remove_optimized_kprobe(op);
871 kfree(op);
872 goto out;
873 }
874
875 init_aggr_kprobe(ap, p);
876 optimize_kprobe(ap); /* This just kicks optimizer thread. */
877
878out:
879 mutex_unlock(&text_mutex);
880 jump_label_unlock();
881 cpus_read_unlock();
882}
883
884static void optimize_all_kprobes(void)
885{
886 struct hlist_head *head;
887 struct kprobe *p;
888 unsigned int i;
889
890 mutex_lock(&kprobe_mutex);
891 /* If optimization is already allowed, just return. */
892 if (kprobes_allow_optimization)
893 goto out;
894
895 cpus_read_lock();
896 kprobes_allow_optimization = true;
897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898 head = &kprobe_table[i];
899 hlist_for_each_entry(p, head, hlist)
900 if (!kprobe_disabled(p))
901 optimize_kprobe(p);
902 }
903 cpus_read_unlock();
904 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905out:
906 mutex_unlock(&kprobe_mutex);
907}
908
909#ifdef CONFIG_SYSCTL
910static void unoptimize_all_kprobes(void)
911{
912 struct hlist_head *head;
913 struct kprobe *p;
914 unsigned int i;
915
916 mutex_lock(&kprobe_mutex);
917 /* If optimization is already prohibited, just return. */
918 if (!kprobes_allow_optimization) {
919 mutex_unlock(&kprobe_mutex);
920 return;
921 }
922
923 cpus_read_lock();
924 kprobes_allow_optimization = false;
925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926 head = &kprobe_table[i];
927 hlist_for_each_entry(p, head, hlist) {
928 if (!kprobe_disabled(p))
929 unoptimize_kprobe(p, false);
930 }
931 }
932 cpus_read_unlock();
933 mutex_unlock(&kprobe_mutex);
934
935 /* Wait for unoptimizing completion. */
936 wait_for_kprobe_optimizer();
937 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938}
939
940static DEFINE_MUTEX(kprobe_sysctl_mutex);
941static int sysctl_kprobes_optimization;
942static int proc_kprobes_optimization_handler(struct ctl_table *table,
943 int write, void *buffer,
944 size_t *length, loff_t *ppos)
945{
946 int ret;
947
948 mutex_lock(&kprobe_sysctl_mutex);
949 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951
952 if (sysctl_kprobes_optimization)
953 optimize_all_kprobes();
954 else
955 unoptimize_all_kprobes();
956 mutex_unlock(&kprobe_sysctl_mutex);
957
958 return ret;
959}
960
961static struct ctl_table kprobe_sysctls[] = {
962 {
963 .procname = "kprobes-optimization",
964 .data = &sysctl_kprobes_optimization,
965 .maxlen = sizeof(int),
966 .mode = 0644,
967 .proc_handler = proc_kprobes_optimization_handler,
968 .extra1 = SYSCTL_ZERO,
969 .extra2 = SYSCTL_ONE,
970 },
971 {}
972};
973
974static void __init kprobe_sysctls_init(void)
975{
976 register_sysctl_init("debug", kprobe_sysctls);
977}
978#endif /* CONFIG_SYSCTL */
979
980/* Put a breakpoint for a probe. */
981static void __arm_kprobe(struct kprobe *p)
982{
983 struct kprobe *_p;
984
985 lockdep_assert_held(&text_mutex);
986
987 /* Find the overlapping optimized kprobes. */
988 _p = get_optimized_kprobe(p->addr);
989 if (unlikely(_p))
990 /* Fallback to unoptimized kprobe */
991 unoptimize_kprobe(_p, true);
992
993 arch_arm_kprobe(p);
994 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
995}
996
997/* Remove the breakpoint of a probe. */
998static void __disarm_kprobe(struct kprobe *p, bool reopt)
999{
1000 struct kprobe *_p;
1001
1002 lockdep_assert_held(&text_mutex);
1003
1004 /* Try to unoptimize */
1005 unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007 if (!kprobe_queued(p)) {
1008 arch_disarm_kprobe(p);
1009 /* If another kprobe was blocked, re-optimize it. */
1010 _p = get_optimized_kprobe(p->addr);
1011 if (unlikely(_p) && reopt)
1012 optimize_kprobe(_p);
1013 }
1014 /*
1015 * TODO: Since unoptimization and real disarming will be done by
1016 * the worker thread, we can not check whether another probe are
1017 * unoptimized because of this probe here. It should be re-optimized
1018 * by the worker thread.
1019 */
1020}
1021
1022#else /* !CONFIG_OPTPROBES */
1023
1024#define optimize_kprobe(p) do {} while (0)
1025#define unoptimize_kprobe(p, f) do {} while (0)
1026#define kill_optimized_kprobe(p) do {} while (0)
1027#define prepare_optimized_kprobe(p) do {} while (0)
1028#define try_to_optimize_kprobe(p) do {} while (0)
1029#define __arm_kprobe(p) arch_arm_kprobe(p)
1030#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1031#define kprobe_disarmed(p) kprobe_disabled(p)
1032#define wait_for_kprobe_optimizer() do {} while (0)
1033
1034static int reuse_unused_kprobe(struct kprobe *ap)
1035{
1036 /*
1037 * If the optimized kprobe is NOT supported, the aggr kprobe is
1038 * released at the same time that the last aggregated kprobe is
1039 * unregistered.
1040 * Thus there should be no chance to reuse unused kprobe.
1041 */
1042 WARN_ON_ONCE(1);
1043 return -EINVAL;
1044}
1045
1046static void free_aggr_kprobe(struct kprobe *p)
1047{
1048 arch_remove_kprobe(p);
1049 kfree(p);
1050}
1051
1052static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053{
1054 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055}
1056#endif /* CONFIG_OPTPROBES */
1057
1058#ifdef CONFIG_KPROBES_ON_FTRACE
1059static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060 .func = kprobe_ftrace_handler,
1061 .flags = FTRACE_OPS_FL_SAVE_REGS,
1062};
1063
1064static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065 .func = kprobe_ftrace_handler,
1066 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067};
1068
1069static int kprobe_ipmodify_enabled;
1070static int kprobe_ftrace_enabled;
1071
1072static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073 int *cnt)
1074{
1075 int ret;
1076
1077 lockdep_assert_held(&kprobe_mutex);
1078
1079 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081 return ret;
1082
1083 if (*cnt == 0) {
1084 ret = register_ftrace_function(ops);
1085 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086 goto err_ftrace;
1087 }
1088
1089 (*cnt)++;
1090 return ret;
1091
1092err_ftrace:
1093 /*
1094 * At this point, sinec ops is not registered, we should be sefe from
1095 * registering empty filter.
1096 */
1097 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098 return ret;
1099}
1100
1101static int arm_kprobe_ftrace(struct kprobe *p)
1102{
1103 bool ipmodify = (p->post_handler != NULL);
1104
1105 return __arm_kprobe_ftrace(p,
1106 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108}
1109
1110static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111 int *cnt)
1112{
1113 int ret;
1114
1115 lockdep_assert_held(&kprobe_mutex);
1116
1117 if (*cnt == 1) {
1118 ret = unregister_ftrace_function(ops);
1119 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120 return ret;
1121 }
1122
1123 (*cnt)--;
1124
1125 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127 p->addr, ret);
1128 return ret;
1129}
1130
1131static int disarm_kprobe_ftrace(struct kprobe *p)
1132{
1133 bool ipmodify = (p->post_handler != NULL);
1134
1135 return __disarm_kprobe_ftrace(p,
1136 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138}
1139#else /* !CONFIG_KPROBES_ON_FTRACE */
1140static inline int arm_kprobe_ftrace(struct kprobe *p)
1141{
1142 return -ENODEV;
1143}
1144
1145static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146{
1147 return -ENODEV;
1148}
1149#endif
1150
1151static int prepare_kprobe(struct kprobe *p)
1152{
1153 /* Must ensure p->addr is really on ftrace */
1154 if (kprobe_ftrace(p))
1155 return arch_prepare_kprobe_ftrace(p);
1156
1157 return arch_prepare_kprobe(p);
1158}
1159
1160static int arm_kprobe(struct kprobe *kp)
1161{
1162 if (unlikely(kprobe_ftrace(kp)))
1163 return arm_kprobe_ftrace(kp);
1164
1165 cpus_read_lock();
1166 mutex_lock(&text_mutex);
1167 __arm_kprobe(kp);
1168 mutex_unlock(&text_mutex);
1169 cpus_read_unlock();
1170
1171 return 0;
1172}
1173
1174static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175{
1176 if (unlikely(kprobe_ftrace(kp)))
1177 return disarm_kprobe_ftrace(kp);
1178
1179 cpus_read_lock();
1180 mutex_lock(&text_mutex);
1181 __disarm_kprobe(kp, reopt);
1182 mutex_unlock(&text_mutex);
1183 cpus_read_unlock();
1184
1185 return 0;
1186}
1187
1188/*
1189 * Aggregate handlers for multiple kprobes support - these handlers
1190 * take care of invoking the individual kprobe handlers on p->list
1191 */
1192static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193{
1194 struct kprobe *kp;
1195
1196 list_for_each_entry_rcu(kp, &p->list, list) {
1197 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198 set_kprobe_instance(kp);
1199 if (kp->pre_handler(kp, regs))
1200 return 1;
1201 }
1202 reset_kprobe_instance();
1203 }
1204 return 0;
1205}
1206NOKPROBE_SYMBOL(aggr_pre_handler);
1207
1208static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209 unsigned long flags)
1210{
1211 struct kprobe *kp;
1212
1213 list_for_each_entry_rcu(kp, &p->list, list) {
1214 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215 set_kprobe_instance(kp);
1216 kp->post_handler(kp, regs, flags);
1217 reset_kprobe_instance();
1218 }
1219 }
1220}
1221NOKPROBE_SYMBOL(aggr_post_handler);
1222
1223/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1224void kprobes_inc_nmissed_count(struct kprobe *p)
1225{
1226 struct kprobe *kp;
1227
1228 if (!kprobe_aggrprobe(p)) {
1229 p->nmissed++;
1230 } else {
1231 list_for_each_entry_rcu(kp, &p->list, list)
1232 kp->nmissed++;
1233 }
1234}
1235NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236
1237static struct kprobe kprobe_busy = {
1238 .addr = (void *) get_kprobe,
1239};
1240
1241void kprobe_busy_begin(void)
1242{
1243 struct kprobe_ctlblk *kcb;
1244
1245 preempt_disable();
1246 __this_cpu_write(current_kprobe, &kprobe_busy);
1247 kcb = get_kprobe_ctlblk();
1248 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249}
1250
1251void kprobe_busy_end(void)
1252{
1253 __this_cpu_write(current_kprobe, NULL);
1254 preempt_enable();
1255}
1256
1257/* Add the new probe to 'ap->list'. */
1258static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259{
1260 if (p->post_handler)
1261 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1262
1263 list_add_rcu(&p->list, &ap->list);
1264 if (p->post_handler && !ap->post_handler)
1265 ap->post_handler = aggr_post_handler;
1266
1267 return 0;
1268}
1269
1270/*
1271 * Fill in the required fields of the aggregator kprobe. Replace the
1272 * earlier kprobe in the hlist with the aggregator kprobe.
1273 */
1274static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275{
1276 /* Copy the insn slot of 'p' to 'ap'. */
1277 copy_kprobe(p, ap);
1278 flush_insn_slot(ap);
1279 ap->addr = p->addr;
1280 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281 ap->pre_handler = aggr_pre_handler;
1282 /* We don't care the kprobe which has gone. */
1283 if (p->post_handler && !kprobe_gone(p))
1284 ap->post_handler = aggr_post_handler;
1285
1286 INIT_LIST_HEAD(&ap->list);
1287 INIT_HLIST_NODE(&ap->hlist);
1288
1289 list_add_rcu(&p->list, &ap->list);
1290 hlist_replace_rcu(&p->hlist, &ap->hlist);
1291}
1292
1293/*
1294 * This registers the second or subsequent kprobe at the same address.
1295 */
1296static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297{
1298 int ret = 0;
1299 struct kprobe *ap = orig_p;
1300
1301 cpus_read_lock();
1302
1303 /* For preparing optimization, jump_label_text_reserved() is called */
1304 jump_label_lock();
1305 mutex_lock(&text_mutex);
1306
1307 if (!kprobe_aggrprobe(orig_p)) {
1308 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309 ap = alloc_aggr_kprobe(orig_p);
1310 if (!ap) {
1311 ret = -ENOMEM;
1312 goto out;
1313 }
1314 init_aggr_kprobe(ap, orig_p);
1315 } else if (kprobe_unused(ap)) {
1316 /* This probe is going to die. Rescue it */
1317 ret = reuse_unused_kprobe(ap);
1318 if (ret)
1319 goto out;
1320 }
1321
1322 if (kprobe_gone(ap)) {
1323 /*
1324 * Attempting to insert new probe at the same location that
1325 * had a probe in the module vaddr area which already
1326 * freed. So, the instruction slot has already been
1327 * released. We need a new slot for the new probe.
1328 */
1329 ret = arch_prepare_kprobe(ap);
1330 if (ret)
1331 /*
1332 * Even if fail to allocate new slot, don't need to
1333 * free the 'ap'. It will be used next time, or
1334 * freed by unregister_kprobe().
1335 */
1336 goto out;
1337
1338 /* Prepare optimized instructions if possible. */
1339 prepare_optimized_kprobe(ap);
1340
1341 /*
1342 * Clear gone flag to prevent allocating new slot again, and
1343 * set disabled flag because it is not armed yet.
1344 */
1345 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346 | KPROBE_FLAG_DISABLED;
1347 }
1348
1349 /* Copy the insn slot of 'p' to 'ap'. */
1350 copy_kprobe(ap, p);
1351 ret = add_new_kprobe(ap, p);
1352
1353out:
1354 mutex_unlock(&text_mutex);
1355 jump_label_unlock();
1356 cpus_read_unlock();
1357
1358 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360 if (!kprobes_all_disarmed) {
1361 /* Arm the breakpoint again. */
1362 ret = arm_kprobe(ap);
1363 if (ret) {
1364 ap->flags |= KPROBE_FLAG_DISABLED;
1365 list_del_rcu(&p->list);
1366 synchronize_rcu();
1367 }
1368 }
1369 }
1370 return ret;
1371}
1372
1373bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374{
1375 /* The '__kprobes' functions and entry code must not be probed. */
1376 return addr >= (unsigned long)__kprobes_text_start &&
1377 addr < (unsigned long)__kprobes_text_end;
1378}
1379
1380static bool __within_kprobe_blacklist(unsigned long addr)
1381{
1382 struct kprobe_blacklist_entry *ent;
1383
1384 if (arch_within_kprobe_blacklist(addr))
1385 return true;
1386 /*
1387 * If 'kprobe_blacklist' is defined, check the address and
1388 * reject any probe registration in the prohibited area.
1389 */
1390 list_for_each_entry(ent, &kprobe_blacklist, list) {
1391 if (addr >= ent->start_addr && addr < ent->end_addr)
1392 return true;
1393 }
1394 return false;
1395}
1396
1397bool within_kprobe_blacklist(unsigned long addr)
1398{
1399 char symname[KSYM_NAME_LEN], *p;
1400
1401 if (__within_kprobe_blacklist(addr))
1402 return true;
1403
1404 /* Check if the address is on a suffixed-symbol */
1405 if (!lookup_symbol_name(addr, symname)) {
1406 p = strchr(symname, '.');
1407 if (!p)
1408 return false;
1409 *p = '\0';
1410 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411 if (addr)
1412 return __within_kprobe_blacklist(addr);
1413 }
1414 return false;
1415}
1416
1417/*
1418 * arch_adjust_kprobe_addr - adjust the address
1419 * @addr: symbol base address
1420 * @offset: offset within the symbol
1421 * @on_func_entry: was this @addr+@offset on the function entry
1422 *
1423 * Typically returns @addr + @offset, except for special cases where the
1424 * function might be prefixed by a CFI landing pad, in that case any offset
1425 * inside the landing pad is mapped to the first 'real' instruction of the
1426 * symbol.
1427 *
1428 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429 * instruction at +0.
1430 */
1431kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432 unsigned long offset,
1433 bool *on_func_entry)
1434{
1435 *on_func_entry = !offset;
1436 return (kprobe_opcode_t *)(addr + offset);
1437}
1438
1439/*
1440 * If 'symbol_name' is specified, look it up and add the 'offset'
1441 * to it. This way, we can specify a relative address to a symbol.
1442 * This returns encoded errors if it fails to look up symbol or invalid
1443 * combination of parameters.
1444 */
1445static kprobe_opcode_t *
1446_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447 unsigned long offset, bool *on_func_entry)
1448{
1449 if ((symbol_name && addr) || (!symbol_name && !addr))
1450 goto invalid;
1451
1452 if (symbol_name) {
1453 /*
1454 * Input: @sym + @offset
1455 * Output: @addr + @offset
1456 *
1457 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458 * argument into it's output!
1459 */
1460 addr = kprobe_lookup_name(symbol_name, offset);
1461 if (!addr)
1462 return ERR_PTR(-ENOENT);
1463 }
1464
1465 /*
1466 * So here we have @addr + @offset, displace it into a new
1467 * @addr' + @offset' where @addr' is the symbol start address.
1468 */
1469 addr = (void *)addr + offset;
1470 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471 return ERR_PTR(-ENOENT);
1472 addr = (void *)addr - offset;
1473
1474 /*
1475 * Then ask the architecture to re-combine them, taking care of
1476 * magical function entry details while telling us if this was indeed
1477 * at the start of the function.
1478 */
1479 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480 if (addr)
1481 return addr;
1482
1483invalid:
1484 return ERR_PTR(-EINVAL);
1485}
1486
1487static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488{
1489 bool on_func_entry;
1490 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491}
1492
1493/*
1494 * Check the 'p' is valid and return the aggregator kprobe
1495 * at the same address.
1496 */
1497static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498{
1499 struct kprobe *ap, *list_p;
1500
1501 lockdep_assert_held(&kprobe_mutex);
1502
1503 ap = get_kprobe(p->addr);
1504 if (unlikely(!ap))
1505 return NULL;
1506
1507 if (p != ap) {
1508 list_for_each_entry(list_p, &ap->list, list)
1509 if (list_p == p)
1510 /* kprobe p is a valid probe */
1511 goto valid;
1512 return NULL;
1513 }
1514valid:
1515 return ap;
1516}
1517
1518/*
1519 * Warn and return error if the kprobe is being re-registered since
1520 * there must be a software bug.
1521 */
1522static inline int warn_kprobe_rereg(struct kprobe *p)
1523{
1524 int ret = 0;
1525
1526 mutex_lock(&kprobe_mutex);
1527 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528 ret = -EINVAL;
1529 mutex_unlock(&kprobe_mutex);
1530
1531 return ret;
1532}
1533
1534static int check_ftrace_location(struct kprobe *p)
1535{
1536 unsigned long addr = (unsigned long)p->addr;
1537
1538 if (ftrace_location(addr) == addr) {
1539#ifdef CONFIG_KPROBES_ON_FTRACE
1540 p->flags |= KPROBE_FLAG_FTRACE;
1541#else /* !CONFIG_KPROBES_ON_FTRACE */
1542 return -EINVAL;
1543#endif
1544 }
1545 return 0;
1546}
1547
1548static bool is_cfi_preamble_symbol(unsigned long addr)
1549{
1550 char symbuf[KSYM_NAME_LEN];
1551
1552 if (lookup_symbol_name(addr, symbuf))
1553 return false;
1554
1555 return str_has_prefix("__cfi_", symbuf) ||
1556 str_has_prefix("__pfx_", symbuf);
1557}
1558
1559static int check_kprobe_address_safe(struct kprobe *p,
1560 struct module **probed_mod)
1561{
1562 int ret;
1563
1564 ret = check_ftrace_location(p);
1565 if (ret)
1566 return ret;
1567 jump_label_lock();
1568 preempt_disable();
1569
1570 /* Ensure the address is in a text area, and find a module if exists. */
1571 *probed_mod = NULL;
1572 if (!core_kernel_text((unsigned long) p->addr)) {
1573 *probed_mod = __module_text_address((unsigned long) p->addr);
1574 if (!(*probed_mod)) {
1575 ret = -EINVAL;
1576 goto out;
1577 }
1578 }
1579 /* Ensure it is not in reserved area. */
1580 if (in_gate_area_no_mm((unsigned long) p->addr) ||
1581 within_kprobe_blacklist((unsigned long) p->addr) ||
1582 jump_label_text_reserved(p->addr, p->addr) ||
1583 static_call_text_reserved(p->addr, p->addr) ||
1584 find_bug((unsigned long)p->addr) ||
1585 is_cfi_preamble_symbol((unsigned long)p->addr)) {
1586 ret = -EINVAL;
1587 goto out;
1588 }
1589
1590 /* Get module refcount and reject __init functions for loaded modules. */
1591 if (*probed_mod) {
1592 /*
1593 * We must hold a refcount of the probed module while updating
1594 * its code to prohibit unexpected unloading.
1595 */
1596 if (unlikely(!try_module_get(*probed_mod))) {
1597 ret = -ENOENT;
1598 goto out;
1599 }
1600
1601 /*
1602 * If the module freed '.init.text', we couldn't insert
1603 * kprobes in there.
1604 */
1605 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1606 (*probed_mod)->state != MODULE_STATE_COMING) {
1607 module_put(*probed_mod);
1608 *probed_mod = NULL;
1609 ret = -ENOENT;
1610 }
1611 }
1612out:
1613 preempt_enable();
1614 jump_label_unlock();
1615
1616 return ret;
1617}
1618
1619int register_kprobe(struct kprobe *p)
1620{
1621 int ret;
1622 struct kprobe *old_p;
1623 struct module *probed_mod;
1624 kprobe_opcode_t *addr;
1625 bool on_func_entry;
1626
1627 /* Adjust probe address from symbol */
1628 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1629 if (IS_ERR(addr))
1630 return PTR_ERR(addr);
1631 p->addr = addr;
1632
1633 ret = warn_kprobe_rereg(p);
1634 if (ret)
1635 return ret;
1636
1637 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1638 p->flags &= KPROBE_FLAG_DISABLED;
1639 p->nmissed = 0;
1640 INIT_LIST_HEAD(&p->list);
1641
1642 ret = check_kprobe_address_safe(p, &probed_mod);
1643 if (ret)
1644 return ret;
1645
1646 mutex_lock(&kprobe_mutex);
1647
1648 if (on_func_entry)
1649 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1650
1651 old_p = get_kprobe(p->addr);
1652 if (old_p) {
1653 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1654 ret = register_aggr_kprobe(old_p, p);
1655 goto out;
1656 }
1657
1658 cpus_read_lock();
1659 /* Prevent text modification */
1660 mutex_lock(&text_mutex);
1661 ret = prepare_kprobe(p);
1662 mutex_unlock(&text_mutex);
1663 cpus_read_unlock();
1664 if (ret)
1665 goto out;
1666
1667 INIT_HLIST_NODE(&p->hlist);
1668 hlist_add_head_rcu(&p->hlist,
1669 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1670
1671 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1672 ret = arm_kprobe(p);
1673 if (ret) {
1674 hlist_del_rcu(&p->hlist);
1675 synchronize_rcu();
1676 goto out;
1677 }
1678 }
1679
1680 /* Try to optimize kprobe */
1681 try_to_optimize_kprobe(p);
1682out:
1683 mutex_unlock(&kprobe_mutex);
1684
1685 if (probed_mod)
1686 module_put(probed_mod);
1687
1688 return ret;
1689}
1690EXPORT_SYMBOL_GPL(register_kprobe);
1691
1692/* Check if all probes on the 'ap' are disabled. */
1693static bool aggr_kprobe_disabled(struct kprobe *ap)
1694{
1695 struct kprobe *kp;
1696
1697 lockdep_assert_held(&kprobe_mutex);
1698
1699 list_for_each_entry(kp, &ap->list, list)
1700 if (!kprobe_disabled(kp))
1701 /*
1702 * Since there is an active probe on the list,
1703 * we can't disable this 'ap'.
1704 */
1705 return false;
1706
1707 return true;
1708}
1709
1710static struct kprobe *__disable_kprobe(struct kprobe *p)
1711{
1712 struct kprobe *orig_p;
1713 int ret;
1714
1715 lockdep_assert_held(&kprobe_mutex);
1716
1717 /* Get an original kprobe for return */
1718 orig_p = __get_valid_kprobe(p);
1719 if (unlikely(orig_p == NULL))
1720 return ERR_PTR(-EINVAL);
1721
1722 if (!kprobe_disabled(p)) {
1723 /* Disable probe if it is a child probe */
1724 if (p != orig_p)
1725 p->flags |= KPROBE_FLAG_DISABLED;
1726
1727 /* Try to disarm and disable this/parent probe */
1728 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1729 /*
1730 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1731 * is false, 'orig_p' might not have been armed yet.
1732 * Note arm_all_kprobes() __tries__ to arm all kprobes
1733 * on the best effort basis.
1734 */
1735 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1736 ret = disarm_kprobe(orig_p, true);
1737 if (ret) {
1738 p->flags &= ~KPROBE_FLAG_DISABLED;
1739 return ERR_PTR(ret);
1740 }
1741 }
1742 orig_p->flags |= KPROBE_FLAG_DISABLED;
1743 }
1744 }
1745
1746 return orig_p;
1747}
1748
1749/*
1750 * Unregister a kprobe without a scheduler synchronization.
1751 */
1752static int __unregister_kprobe_top(struct kprobe *p)
1753{
1754 struct kprobe *ap, *list_p;
1755
1756 /* Disable kprobe. This will disarm it if needed. */
1757 ap = __disable_kprobe(p);
1758 if (IS_ERR(ap))
1759 return PTR_ERR(ap);
1760
1761 if (ap == p)
1762 /*
1763 * This probe is an independent(and non-optimized) kprobe
1764 * (not an aggrprobe). Remove from the hash list.
1765 */
1766 goto disarmed;
1767
1768 /* Following process expects this probe is an aggrprobe */
1769 WARN_ON(!kprobe_aggrprobe(ap));
1770
1771 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1772 /*
1773 * !disarmed could be happen if the probe is under delayed
1774 * unoptimizing.
1775 */
1776 goto disarmed;
1777 else {
1778 /* If disabling probe has special handlers, update aggrprobe */
1779 if (p->post_handler && !kprobe_gone(p)) {
1780 list_for_each_entry(list_p, &ap->list, list) {
1781 if ((list_p != p) && (list_p->post_handler))
1782 goto noclean;
1783 }
1784 /*
1785 * For the kprobe-on-ftrace case, we keep the
1786 * post_handler setting to identify this aggrprobe
1787 * armed with kprobe_ipmodify_ops.
1788 */
1789 if (!kprobe_ftrace(ap))
1790 ap->post_handler = NULL;
1791 }
1792noclean:
1793 /*
1794 * Remove from the aggrprobe: this path will do nothing in
1795 * __unregister_kprobe_bottom().
1796 */
1797 list_del_rcu(&p->list);
1798 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1799 /*
1800 * Try to optimize this probe again, because post
1801 * handler may have been changed.
1802 */
1803 optimize_kprobe(ap);
1804 }
1805 return 0;
1806
1807disarmed:
1808 hlist_del_rcu(&ap->hlist);
1809 return 0;
1810}
1811
1812static void __unregister_kprobe_bottom(struct kprobe *p)
1813{
1814 struct kprobe *ap;
1815
1816 if (list_empty(&p->list))
1817 /* This is an independent kprobe */
1818 arch_remove_kprobe(p);
1819 else if (list_is_singular(&p->list)) {
1820 /* This is the last child of an aggrprobe */
1821 ap = list_entry(p->list.next, struct kprobe, list);
1822 list_del(&p->list);
1823 free_aggr_kprobe(ap);
1824 }
1825 /* Otherwise, do nothing. */
1826}
1827
1828int register_kprobes(struct kprobe **kps, int num)
1829{
1830 int i, ret = 0;
1831
1832 if (num <= 0)
1833 return -EINVAL;
1834 for (i = 0; i < num; i++) {
1835 ret = register_kprobe(kps[i]);
1836 if (ret < 0) {
1837 if (i > 0)
1838 unregister_kprobes(kps, i);
1839 break;
1840 }
1841 }
1842 return ret;
1843}
1844EXPORT_SYMBOL_GPL(register_kprobes);
1845
1846void unregister_kprobe(struct kprobe *p)
1847{
1848 unregister_kprobes(&p, 1);
1849}
1850EXPORT_SYMBOL_GPL(unregister_kprobe);
1851
1852void unregister_kprobes(struct kprobe **kps, int num)
1853{
1854 int i;
1855
1856 if (num <= 0)
1857 return;
1858 mutex_lock(&kprobe_mutex);
1859 for (i = 0; i < num; i++)
1860 if (__unregister_kprobe_top(kps[i]) < 0)
1861 kps[i]->addr = NULL;
1862 mutex_unlock(&kprobe_mutex);
1863
1864 synchronize_rcu();
1865 for (i = 0; i < num; i++)
1866 if (kps[i]->addr)
1867 __unregister_kprobe_bottom(kps[i]);
1868}
1869EXPORT_SYMBOL_GPL(unregister_kprobes);
1870
1871int __weak kprobe_exceptions_notify(struct notifier_block *self,
1872 unsigned long val, void *data)
1873{
1874 return NOTIFY_DONE;
1875}
1876NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1877
1878static struct notifier_block kprobe_exceptions_nb = {
1879 .notifier_call = kprobe_exceptions_notify,
1880 .priority = 0x7fffffff /* we need to be notified first */
1881};
1882
1883#ifdef CONFIG_KRETPROBES
1884
1885#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1886
1887/* callbacks for objpool of kretprobe instances */
1888static int kretprobe_init_inst(void *nod, void *context)
1889{
1890 struct kretprobe_instance *ri = nod;
1891
1892 ri->rph = context;
1893 return 0;
1894}
1895static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1896{
1897 kfree(context);
1898 return 0;
1899}
1900
1901static void free_rp_inst_rcu(struct rcu_head *head)
1902{
1903 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1904 struct kretprobe_holder *rph = ri->rph;
1905
1906 objpool_drop(ri, &rph->pool);
1907}
1908NOKPROBE_SYMBOL(free_rp_inst_rcu);
1909
1910static void recycle_rp_inst(struct kretprobe_instance *ri)
1911{
1912 struct kretprobe *rp = get_kretprobe(ri);
1913
1914 if (likely(rp))
1915 objpool_push(ri, &rp->rph->pool);
1916 else
1917 call_rcu(&ri->rcu, free_rp_inst_rcu);
1918}
1919NOKPROBE_SYMBOL(recycle_rp_inst);
1920
1921/*
1922 * This function is called from delayed_put_task_struct() when a task is
1923 * dead and cleaned up to recycle any kretprobe instances associated with
1924 * this task. These left over instances represent probed functions that
1925 * have been called but will never return.
1926 */
1927void kprobe_flush_task(struct task_struct *tk)
1928{
1929 struct kretprobe_instance *ri;
1930 struct llist_node *node;
1931
1932 /* Early boot, not yet initialized. */
1933 if (unlikely(!kprobes_initialized))
1934 return;
1935
1936 kprobe_busy_begin();
1937
1938 node = __llist_del_all(&tk->kretprobe_instances);
1939 while (node) {
1940 ri = container_of(node, struct kretprobe_instance, llist);
1941 node = node->next;
1942
1943 recycle_rp_inst(ri);
1944 }
1945
1946 kprobe_busy_end();
1947}
1948NOKPROBE_SYMBOL(kprobe_flush_task);
1949
1950static inline void free_rp_inst(struct kretprobe *rp)
1951{
1952 struct kretprobe_holder *rph = rp->rph;
1953
1954 if (!rph)
1955 return;
1956 rp->rph = NULL;
1957 objpool_fini(&rph->pool);
1958}
1959
1960/* This assumes the 'tsk' is the current task or the is not running. */
1961static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1962 struct llist_node **cur)
1963{
1964 struct kretprobe_instance *ri = NULL;
1965 struct llist_node *node = *cur;
1966
1967 if (!node)
1968 node = tsk->kretprobe_instances.first;
1969 else
1970 node = node->next;
1971
1972 while (node) {
1973 ri = container_of(node, struct kretprobe_instance, llist);
1974 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1975 *cur = node;
1976 return ri->ret_addr;
1977 }
1978 node = node->next;
1979 }
1980 return NULL;
1981}
1982NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1983
1984/**
1985 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1986 * @tsk: Target task
1987 * @fp: A frame pointer
1988 * @cur: a storage of the loop cursor llist_node pointer for next call
1989 *
1990 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1991 * long type. If it finds the return address, this returns that address value,
1992 * or this returns 0.
1993 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1994 * to get the currect return address - which is compared with the
1995 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1996 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1997 * first call, but '@cur' itself must NOT NULL.
1998 */
1999unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2000 struct llist_node **cur)
2001{
2002 struct kretprobe_instance *ri;
2003 kprobe_opcode_t *ret;
2004
2005 if (WARN_ON_ONCE(!cur))
2006 return 0;
2007
2008 do {
2009 ret = __kretprobe_find_ret_addr(tsk, cur);
2010 if (!ret)
2011 break;
2012 ri = container_of(*cur, struct kretprobe_instance, llist);
2013 } while (ri->fp != fp);
2014
2015 return (unsigned long)ret;
2016}
2017NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2018
2019void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2020 kprobe_opcode_t *correct_ret_addr)
2021{
2022 /*
2023 * Do nothing by default. Please fill this to update the fake return
2024 * address on the stack with the correct one on each arch if possible.
2025 */
2026}
2027
2028unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2029 void *frame_pointer)
2030{
2031 struct kretprobe_instance *ri = NULL;
2032 struct llist_node *first, *node = NULL;
2033 kprobe_opcode_t *correct_ret_addr;
2034 struct kretprobe *rp;
2035
2036 /* Find correct address and all nodes for this frame. */
2037 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2038 if (!correct_ret_addr) {
2039 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2040 BUG_ON(1);
2041 }
2042
2043 /*
2044 * Set the return address as the instruction pointer, because if the
2045 * user handler calls stack_trace_save_regs() with this 'regs',
2046 * the stack trace will start from the instruction pointer.
2047 */
2048 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2049
2050 /* Run the user handler of the nodes. */
2051 first = current->kretprobe_instances.first;
2052 while (first) {
2053 ri = container_of(first, struct kretprobe_instance, llist);
2054
2055 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2056 break;
2057
2058 rp = get_kretprobe(ri);
2059 if (rp && rp->handler) {
2060 struct kprobe *prev = kprobe_running();
2061
2062 __this_cpu_write(current_kprobe, &rp->kp);
2063 ri->ret_addr = correct_ret_addr;
2064 rp->handler(ri, regs);
2065 __this_cpu_write(current_kprobe, prev);
2066 }
2067 if (first == node)
2068 break;
2069
2070 first = first->next;
2071 }
2072
2073 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2074
2075 /* Unlink all nodes for this frame. */
2076 first = current->kretprobe_instances.first;
2077 current->kretprobe_instances.first = node->next;
2078 node->next = NULL;
2079
2080 /* Recycle free instances. */
2081 while (first) {
2082 ri = container_of(first, struct kretprobe_instance, llist);
2083 first = first->next;
2084
2085 recycle_rp_inst(ri);
2086 }
2087
2088 return (unsigned long)correct_ret_addr;
2089}
2090NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2091
2092/*
2093 * This kprobe pre_handler is registered with every kretprobe. When probe
2094 * hits it will set up the return probe.
2095 */
2096static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2097{
2098 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2099 struct kretprobe_holder *rph = rp->rph;
2100 struct kretprobe_instance *ri;
2101
2102 ri = objpool_pop(&rph->pool);
2103 if (!ri) {
2104 rp->nmissed++;
2105 return 0;
2106 }
2107
2108 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2109 objpool_push(ri, &rph->pool);
2110 return 0;
2111 }
2112
2113 arch_prepare_kretprobe(ri, regs);
2114
2115 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2116
2117 return 0;
2118}
2119NOKPROBE_SYMBOL(pre_handler_kretprobe);
2120#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2121/*
2122 * This kprobe pre_handler is registered with every kretprobe. When probe
2123 * hits it will set up the return probe.
2124 */
2125static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2126{
2127 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2128 struct kretprobe_instance *ri;
2129 struct rethook_node *rhn;
2130
2131 rhn = rethook_try_get(rp->rh);
2132 if (!rhn) {
2133 rp->nmissed++;
2134 return 0;
2135 }
2136
2137 ri = container_of(rhn, struct kretprobe_instance, node);
2138
2139 if (rp->entry_handler && rp->entry_handler(ri, regs))
2140 rethook_recycle(rhn);
2141 else
2142 rethook_hook(rhn, regs, kprobe_ftrace(p));
2143
2144 return 0;
2145}
2146NOKPROBE_SYMBOL(pre_handler_kretprobe);
2147
2148static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2149 unsigned long ret_addr,
2150 struct pt_regs *regs)
2151{
2152 struct kretprobe *rp = (struct kretprobe *)data;
2153 struct kretprobe_instance *ri;
2154 struct kprobe_ctlblk *kcb;
2155
2156 /* The data must NOT be null. This means rethook data structure is broken. */
2157 if (WARN_ON_ONCE(!data) || !rp->handler)
2158 return;
2159
2160 __this_cpu_write(current_kprobe, &rp->kp);
2161 kcb = get_kprobe_ctlblk();
2162 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2163
2164 ri = container_of(rh, struct kretprobe_instance, node);
2165 rp->handler(ri, regs);
2166
2167 __this_cpu_write(current_kprobe, NULL);
2168}
2169NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2170
2171#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2172
2173/**
2174 * kprobe_on_func_entry() -- check whether given address is function entry
2175 * @addr: Target address
2176 * @sym: Target symbol name
2177 * @offset: The offset from the symbol or the address
2178 *
2179 * This checks whether the given @addr+@offset or @sym+@offset is on the
2180 * function entry address or not.
2181 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2182 * And also it returns -ENOENT if it fails the symbol or address lookup.
2183 * Caller must pass @addr or @sym (either one must be NULL), or this
2184 * returns -EINVAL.
2185 */
2186int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2187{
2188 bool on_func_entry;
2189 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2190
2191 if (IS_ERR(kp_addr))
2192 return PTR_ERR(kp_addr);
2193
2194 if (!on_func_entry)
2195 return -EINVAL;
2196
2197 return 0;
2198}
2199
2200int register_kretprobe(struct kretprobe *rp)
2201{
2202 int ret;
2203 int i;
2204 void *addr;
2205
2206 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2207 if (ret)
2208 return ret;
2209
2210 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2211 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2212 return -EINVAL;
2213
2214 if (kretprobe_blacklist_size) {
2215 addr = kprobe_addr(&rp->kp);
2216 if (IS_ERR(addr))
2217 return PTR_ERR(addr);
2218
2219 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2220 if (kretprobe_blacklist[i].addr == addr)
2221 return -EINVAL;
2222 }
2223 }
2224
2225 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2226 return -E2BIG;
2227
2228 rp->kp.pre_handler = pre_handler_kretprobe;
2229 rp->kp.post_handler = NULL;
2230
2231 /* Pre-allocate memory for max kretprobe instances */
2232 if (rp->maxactive <= 0)
2233 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2234
2235#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2236 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2237 sizeof(struct kretprobe_instance) +
2238 rp->data_size, rp->maxactive);
2239 if (IS_ERR(rp->rh))
2240 return PTR_ERR(rp->rh);
2241
2242 rp->nmissed = 0;
2243 /* Establish function entry probe point */
2244 ret = register_kprobe(&rp->kp);
2245 if (ret != 0) {
2246 rethook_free(rp->rh);
2247 rp->rh = NULL;
2248 }
2249#else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2250 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2251 if (!rp->rph)
2252 return -ENOMEM;
2253
2254 if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2255 sizeof(struct kretprobe_instance), GFP_KERNEL,
2256 rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2257 kfree(rp->rph);
2258 rp->rph = NULL;
2259 return -ENOMEM;
2260 }
2261 rcu_assign_pointer(rp->rph->rp, rp);
2262 rp->nmissed = 0;
2263 /* Establish function entry probe point */
2264 ret = register_kprobe(&rp->kp);
2265 if (ret != 0)
2266 free_rp_inst(rp);
2267#endif
2268 return ret;
2269}
2270EXPORT_SYMBOL_GPL(register_kretprobe);
2271
2272int register_kretprobes(struct kretprobe **rps, int num)
2273{
2274 int ret = 0, i;
2275
2276 if (num <= 0)
2277 return -EINVAL;
2278 for (i = 0; i < num; i++) {
2279 ret = register_kretprobe(rps[i]);
2280 if (ret < 0) {
2281 if (i > 0)
2282 unregister_kretprobes(rps, i);
2283 break;
2284 }
2285 }
2286 return ret;
2287}
2288EXPORT_SYMBOL_GPL(register_kretprobes);
2289
2290void unregister_kretprobe(struct kretprobe *rp)
2291{
2292 unregister_kretprobes(&rp, 1);
2293}
2294EXPORT_SYMBOL_GPL(unregister_kretprobe);
2295
2296void unregister_kretprobes(struct kretprobe **rps, int num)
2297{
2298 int i;
2299
2300 if (num <= 0)
2301 return;
2302 mutex_lock(&kprobe_mutex);
2303 for (i = 0; i < num; i++) {
2304 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2305 rps[i]->kp.addr = NULL;
2306#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2307 rethook_free(rps[i]->rh);
2308#else
2309 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2310#endif
2311 }
2312 mutex_unlock(&kprobe_mutex);
2313
2314 synchronize_rcu();
2315 for (i = 0; i < num; i++) {
2316 if (rps[i]->kp.addr) {
2317 __unregister_kprobe_bottom(&rps[i]->kp);
2318#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2319 free_rp_inst(rps[i]);
2320#endif
2321 }
2322 }
2323}
2324EXPORT_SYMBOL_GPL(unregister_kretprobes);
2325
2326#else /* CONFIG_KRETPROBES */
2327int register_kretprobe(struct kretprobe *rp)
2328{
2329 return -EOPNOTSUPP;
2330}
2331EXPORT_SYMBOL_GPL(register_kretprobe);
2332
2333int register_kretprobes(struct kretprobe **rps, int num)
2334{
2335 return -EOPNOTSUPP;
2336}
2337EXPORT_SYMBOL_GPL(register_kretprobes);
2338
2339void unregister_kretprobe(struct kretprobe *rp)
2340{
2341}
2342EXPORT_SYMBOL_GPL(unregister_kretprobe);
2343
2344void unregister_kretprobes(struct kretprobe **rps, int num)
2345{
2346}
2347EXPORT_SYMBOL_GPL(unregister_kretprobes);
2348
2349static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2350{
2351 return 0;
2352}
2353NOKPROBE_SYMBOL(pre_handler_kretprobe);
2354
2355#endif /* CONFIG_KRETPROBES */
2356
2357/* Set the kprobe gone and remove its instruction buffer. */
2358static void kill_kprobe(struct kprobe *p)
2359{
2360 struct kprobe *kp;
2361
2362 lockdep_assert_held(&kprobe_mutex);
2363
2364 /*
2365 * The module is going away. We should disarm the kprobe which
2366 * is using ftrace, because ftrace framework is still available at
2367 * 'MODULE_STATE_GOING' notification.
2368 */
2369 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2370 disarm_kprobe_ftrace(p);
2371
2372 p->flags |= KPROBE_FLAG_GONE;
2373 if (kprobe_aggrprobe(p)) {
2374 /*
2375 * If this is an aggr_kprobe, we have to list all the
2376 * chained probes and mark them GONE.
2377 */
2378 list_for_each_entry(kp, &p->list, list)
2379 kp->flags |= KPROBE_FLAG_GONE;
2380 p->post_handler = NULL;
2381 kill_optimized_kprobe(p);
2382 }
2383 /*
2384 * Here, we can remove insn_slot safely, because no thread calls
2385 * the original probed function (which will be freed soon) any more.
2386 */
2387 arch_remove_kprobe(p);
2388}
2389
2390/* Disable one kprobe */
2391int disable_kprobe(struct kprobe *kp)
2392{
2393 int ret = 0;
2394 struct kprobe *p;
2395
2396 mutex_lock(&kprobe_mutex);
2397
2398 /* Disable this kprobe */
2399 p = __disable_kprobe(kp);
2400 if (IS_ERR(p))
2401 ret = PTR_ERR(p);
2402
2403 mutex_unlock(&kprobe_mutex);
2404 return ret;
2405}
2406EXPORT_SYMBOL_GPL(disable_kprobe);
2407
2408/* Enable one kprobe */
2409int enable_kprobe(struct kprobe *kp)
2410{
2411 int ret = 0;
2412 struct kprobe *p;
2413
2414 mutex_lock(&kprobe_mutex);
2415
2416 /* Check whether specified probe is valid. */
2417 p = __get_valid_kprobe(kp);
2418 if (unlikely(p == NULL)) {
2419 ret = -EINVAL;
2420 goto out;
2421 }
2422
2423 if (kprobe_gone(kp)) {
2424 /* This kprobe has gone, we couldn't enable it. */
2425 ret = -EINVAL;
2426 goto out;
2427 }
2428
2429 if (p != kp)
2430 kp->flags &= ~KPROBE_FLAG_DISABLED;
2431
2432 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2433 p->flags &= ~KPROBE_FLAG_DISABLED;
2434 ret = arm_kprobe(p);
2435 if (ret) {
2436 p->flags |= KPROBE_FLAG_DISABLED;
2437 if (p != kp)
2438 kp->flags |= KPROBE_FLAG_DISABLED;
2439 }
2440 }
2441out:
2442 mutex_unlock(&kprobe_mutex);
2443 return ret;
2444}
2445EXPORT_SYMBOL_GPL(enable_kprobe);
2446
2447/* Caller must NOT call this in usual path. This is only for critical case */
2448void dump_kprobe(struct kprobe *kp)
2449{
2450 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2451 kp->symbol_name, kp->offset, kp->addr);
2452}
2453NOKPROBE_SYMBOL(dump_kprobe);
2454
2455int kprobe_add_ksym_blacklist(unsigned long entry)
2456{
2457 struct kprobe_blacklist_entry *ent;
2458 unsigned long offset = 0, size = 0;
2459
2460 if (!kernel_text_address(entry) ||
2461 !kallsyms_lookup_size_offset(entry, &size, &offset))
2462 return -EINVAL;
2463
2464 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2465 if (!ent)
2466 return -ENOMEM;
2467 ent->start_addr = entry;
2468 ent->end_addr = entry + size;
2469 INIT_LIST_HEAD(&ent->list);
2470 list_add_tail(&ent->list, &kprobe_blacklist);
2471
2472 return (int)size;
2473}
2474
2475/* Add all symbols in given area into kprobe blacklist */
2476int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2477{
2478 unsigned long entry;
2479 int ret = 0;
2480
2481 for (entry = start; entry < end; entry += ret) {
2482 ret = kprobe_add_ksym_blacklist(entry);
2483 if (ret < 0)
2484 return ret;
2485 if (ret == 0) /* In case of alias symbol */
2486 ret = 1;
2487 }
2488 return 0;
2489}
2490
2491/* Remove all symbols in given area from kprobe blacklist */
2492static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2493{
2494 struct kprobe_blacklist_entry *ent, *n;
2495
2496 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2497 if (ent->start_addr < start || ent->start_addr >= end)
2498 continue;
2499 list_del(&ent->list);
2500 kfree(ent);
2501 }
2502}
2503
2504static void kprobe_remove_ksym_blacklist(unsigned long entry)
2505{
2506 kprobe_remove_area_blacklist(entry, entry + 1);
2507}
2508
2509int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2510 char *type, char *sym)
2511{
2512 return -ERANGE;
2513}
2514
2515int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2516 char *sym)
2517{
2518#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2519 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2520 return 0;
2521#ifdef CONFIG_OPTPROBES
2522 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2523 return 0;
2524#endif
2525#endif
2526 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2527 return 0;
2528 return -ERANGE;
2529}
2530
2531int __init __weak arch_populate_kprobe_blacklist(void)
2532{
2533 return 0;
2534}
2535
2536/*
2537 * Lookup and populate the kprobe_blacklist.
2538 *
2539 * Unlike the kretprobe blacklist, we'll need to determine
2540 * the range of addresses that belong to the said functions,
2541 * since a kprobe need not necessarily be at the beginning
2542 * of a function.
2543 */
2544static int __init populate_kprobe_blacklist(unsigned long *start,
2545 unsigned long *end)
2546{
2547 unsigned long entry;
2548 unsigned long *iter;
2549 int ret;
2550
2551 for (iter = start; iter < end; iter++) {
2552 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2553 ret = kprobe_add_ksym_blacklist(entry);
2554 if (ret == -EINVAL)
2555 continue;
2556 if (ret < 0)
2557 return ret;
2558 }
2559
2560 /* Symbols in '__kprobes_text' are blacklisted */
2561 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2562 (unsigned long)__kprobes_text_end);
2563 if (ret)
2564 return ret;
2565
2566 /* Symbols in 'noinstr' section are blacklisted */
2567 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2568 (unsigned long)__noinstr_text_end);
2569
2570 return ret ? : arch_populate_kprobe_blacklist();
2571}
2572
2573static void add_module_kprobe_blacklist(struct module *mod)
2574{
2575 unsigned long start, end;
2576 int i;
2577
2578 if (mod->kprobe_blacklist) {
2579 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2580 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2581 }
2582
2583 start = (unsigned long)mod->kprobes_text_start;
2584 if (start) {
2585 end = start + mod->kprobes_text_size;
2586 kprobe_add_area_blacklist(start, end);
2587 }
2588
2589 start = (unsigned long)mod->noinstr_text_start;
2590 if (start) {
2591 end = start + mod->noinstr_text_size;
2592 kprobe_add_area_blacklist(start, end);
2593 }
2594}
2595
2596static void remove_module_kprobe_blacklist(struct module *mod)
2597{
2598 unsigned long start, end;
2599 int i;
2600
2601 if (mod->kprobe_blacklist) {
2602 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2603 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2604 }
2605
2606 start = (unsigned long)mod->kprobes_text_start;
2607 if (start) {
2608 end = start + mod->kprobes_text_size;
2609 kprobe_remove_area_blacklist(start, end);
2610 }
2611
2612 start = (unsigned long)mod->noinstr_text_start;
2613 if (start) {
2614 end = start + mod->noinstr_text_size;
2615 kprobe_remove_area_blacklist(start, end);
2616 }
2617}
2618
2619/* Module notifier call back, checking kprobes on the module */
2620static int kprobes_module_callback(struct notifier_block *nb,
2621 unsigned long val, void *data)
2622{
2623 struct module *mod = data;
2624 struct hlist_head *head;
2625 struct kprobe *p;
2626 unsigned int i;
2627 int checkcore = (val == MODULE_STATE_GOING);
2628
2629 if (val == MODULE_STATE_COMING) {
2630 mutex_lock(&kprobe_mutex);
2631 add_module_kprobe_blacklist(mod);
2632 mutex_unlock(&kprobe_mutex);
2633 }
2634 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2635 return NOTIFY_DONE;
2636
2637 /*
2638 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2639 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2640 * notified, only '.init.text' section would be freed. We need to
2641 * disable kprobes which have been inserted in the sections.
2642 */
2643 mutex_lock(&kprobe_mutex);
2644 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2645 head = &kprobe_table[i];
2646 hlist_for_each_entry(p, head, hlist)
2647 if (within_module_init((unsigned long)p->addr, mod) ||
2648 (checkcore &&
2649 within_module_core((unsigned long)p->addr, mod))) {
2650 /*
2651 * The vaddr this probe is installed will soon
2652 * be vfreed buy not synced to disk. Hence,
2653 * disarming the breakpoint isn't needed.
2654 *
2655 * Note, this will also move any optimized probes
2656 * that are pending to be removed from their
2657 * corresponding lists to the 'freeing_list' and
2658 * will not be touched by the delayed
2659 * kprobe_optimizer() work handler.
2660 */
2661 kill_kprobe(p);
2662 }
2663 }
2664 if (val == MODULE_STATE_GOING)
2665 remove_module_kprobe_blacklist(mod);
2666 mutex_unlock(&kprobe_mutex);
2667 return NOTIFY_DONE;
2668}
2669
2670static struct notifier_block kprobe_module_nb = {
2671 .notifier_call = kprobes_module_callback,
2672 .priority = 0
2673};
2674
2675void kprobe_free_init_mem(void)
2676{
2677 void *start = (void *)(&__init_begin);
2678 void *end = (void *)(&__init_end);
2679 struct hlist_head *head;
2680 struct kprobe *p;
2681 int i;
2682
2683 mutex_lock(&kprobe_mutex);
2684
2685 /* Kill all kprobes on initmem because the target code has been freed. */
2686 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2687 head = &kprobe_table[i];
2688 hlist_for_each_entry(p, head, hlist) {
2689 if (start <= (void *)p->addr && (void *)p->addr < end)
2690 kill_kprobe(p);
2691 }
2692 }
2693
2694 mutex_unlock(&kprobe_mutex);
2695}
2696
2697static int __init init_kprobes(void)
2698{
2699 int i, err;
2700
2701 /* FIXME allocate the probe table, currently defined statically */
2702 /* initialize all list heads */
2703 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2704 INIT_HLIST_HEAD(&kprobe_table[i]);
2705
2706 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2707 __stop_kprobe_blacklist);
2708 if (err)
2709 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2710
2711 if (kretprobe_blacklist_size) {
2712 /* lookup the function address from its name */
2713 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2714 kretprobe_blacklist[i].addr =
2715 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2716 if (!kretprobe_blacklist[i].addr)
2717 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2718 kretprobe_blacklist[i].name);
2719 }
2720 }
2721
2722 /* By default, kprobes are armed */
2723 kprobes_all_disarmed = false;
2724
2725#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2726 /* Init 'kprobe_optinsn_slots' for allocation */
2727 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2728#endif
2729
2730 err = arch_init_kprobes();
2731 if (!err)
2732 err = register_die_notifier(&kprobe_exceptions_nb);
2733 if (!err)
2734 err = register_module_notifier(&kprobe_module_nb);
2735
2736 kprobes_initialized = (err == 0);
2737 kprobe_sysctls_init();
2738 return err;
2739}
2740early_initcall(init_kprobes);
2741
2742#if defined(CONFIG_OPTPROBES)
2743static int __init init_optprobes(void)
2744{
2745 /*
2746 * Enable kprobe optimization - this kicks the optimizer which
2747 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2748 * not spawned in early initcall. So delay the optimization.
2749 */
2750 optimize_all_kprobes();
2751
2752 return 0;
2753}
2754subsys_initcall(init_optprobes);
2755#endif
2756
2757#ifdef CONFIG_DEBUG_FS
2758static void report_probe(struct seq_file *pi, struct kprobe *p,
2759 const char *sym, int offset, char *modname, struct kprobe *pp)
2760{
2761 char *kprobe_type;
2762 void *addr = p->addr;
2763
2764 if (p->pre_handler == pre_handler_kretprobe)
2765 kprobe_type = "r";
2766 else
2767 kprobe_type = "k";
2768
2769 if (!kallsyms_show_value(pi->file->f_cred))
2770 addr = NULL;
2771
2772 if (sym)
2773 seq_printf(pi, "%px %s %s+0x%x %s ",
2774 addr, kprobe_type, sym, offset,
2775 (modname ? modname : " "));
2776 else /* try to use %pS */
2777 seq_printf(pi, "%px %s %pS ",
2778 addr, kprobe_type, p->addr);
2779
2780 if (!pp)
2781 pp = p;
2782 seq_printf(pi, "%s%s%s%s\n",
2783 (kprobe_gone(p) ? "[GONE]" : ""),
2784 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2785 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2786 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2787}
2788
2789static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2790{
2791 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2792}
2793
2794static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2795{
2796 (*pos)++;
2797 if (*pos >= KPROBE_TABLE_SIZE)
2798 return NULL;
2799 return pos;
2800}
2801
2802static void kprobe_seq_stop(struct seq_file *f, void *v)
2803{
2804 /* Nothing to do */
2805}
2806
2807static int show_kprobe_addr(struct seq_file *pi, void *v)
2808{
2809 struct hlist_head *head;
2810 struct kprobe *p, *kp;
2811 const char *sym;
2812 unsigned int i = *(loff_t *) v;
2813 unsigned long offset = 0;
2814 char *modname, namebuf[KSYM_NAME_LEN];
2815
2816 head = &kprobe_table[i];
2817 preempt_disable();
2818 hlist_for_each_entry_rcu(p, head, hlist) {
2819 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2820 &offset, &modname, namebuf);
2821 if (kprobe_aggrprobe(p)) {
2822 list_for_each_entry_rcu(kp, &p->list, list)
2823 report_probe(pi, kp, sym, offset, modname, p);
2824 } else
2825 report_probe(pi, p, sym, offset, modname, NULL);
2826 }
2827 preempt_enable();
2828 return 0;
2829}
2830
2831static const struct seq_operations kprobes_sops = {
2832 .start = kprobe_seq_start,
2833 .next = kprobe_seq_next,
2834 .stop = kprobe_seq_stop,
2835 .show = show_kprobe_addr
2836};
2837
2838DEFINE_SEQ_ATTRIBUTE(kprobes);
2839
2840/* kprobes/blacklist -- shows which functions can not be probed */
2841static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2842{
2843 mutex_lock(&kprobe_mutex);
2844 return seq_list_start(&kprobe_blacklist, *pos);
2845}
2846
2847static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2848{
2849 return seq_list_next(v, &kprobe_blacklist, pos);
2850}
2851
2852static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2853{
2854 struct kprobe_blacklist_entry *ent =
2855 list_entry(v, struct kprobe_blacklist_entry, list);
2856
2857 /*
2858 * If '/proc/kallsyms' is not showing kernel address, we won't
2859 * show them here either.
2860 */
2861 if (!kallsyms_show_value(m->file->f_cred))
2862 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2863 (void *)ent->start_addr);
2864 else
2865 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2866 (void *)ent->end_addr, (void *)ent->start_addr);
2867 return 0;
2868}
2869
2870static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2871{
2872 mutex_unlock(&kprobe_mutex);
2873}
2874
2875static const struct seq_operations kprobe_blacklist_sops = {
2876 .start = kprobe_blacklist_seq_start,
2877 .next = kprobe_blacklist_seq_next,
2878 .stop = kprobe_blacklist_seq_stop,
2879 .show = kprobe_blacklist_seq_show,
2880};
2881DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2882
2883static int arm_all_kprobes(void)
2884{
2885 struct hlist_head *head;
2886 struct kprobe *p;
2887 unsigned int i, total = 0, errors = 0;
2888 int err, ret = 0;
2889
2890 mutex_lock(&kprobe_mutex);
2891
2892 /* If kprobes are armed, just return */
2893 if (!kprobes_all_disarmed)
2894 goto already_enabled;
2895
2896 /*
2897 * optimize_kprobe() called by arm_kprobe() checks
2898 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2899 * arm_kprobe.
2900 */
2901 kprobes_all_disarmed = false;
2902 /* Arming kprobes doesn't optimize kprobe itself */
2903 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2904 head = &kprobe_table[i];
2905 /* Arm all kprobes on a best-effort basis */
2906 hlist_for_each_entry(p, head, hlist) {
2907 if (!kprobe_disabled(p)) {
2908 err = arm_kprobe(p);
2909 if (err) {
2910 errors++;
2911 ret = err;
2912 }
2913 total++;
2914 }
2915 }
2916 }
2917
2918 if (errors)
2919 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2920 errors, total);
2921 else
2922 pr_info("Kprobes globally enabled\n");
2923
2924already_enabled:
2925 mutex_unlock(&kprobe_mutex);
2926 return ret;
2927}
2928
2929static int disarm_all_kprobes(void)
2930{
2931 struct hlist_head *head;
2932 struct kprobe *p;
2933 unsigned int i, total = 0, errors = 0;
2934 int err, ret = 0;
2935
2936 mutex_lock(&kprobe_mutex);
2937
2938 /* If kprobes are already disarmed, just return */
2939 if (kprobes_all_disarmed) {
2940 mutex_unlock(&kprobe_mutex);
2941 return 0;
2942 }
2943
2944 kprobes_all_disarmed = true;
2945
2946 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2947 head = &kprobe_table[i];
2948 /* Disarm all kprobes on a best-effort basis */
2949 hlist_for_each_entry(p, head, hlist) {
2950 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2951 err = disarm_kprobe(p, false);
2952 if (err) {
2953 errors++;
2954 ret = err;
2955 }
2956 total++;
2957 }
2958 }
2959 }
2960
2961 if (errors)
2962 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2963 errors, total);
2964 else
2965 pr_info("Kprobes globally disabled\n");
2966
2967 mutex_unlock(&kprobe_mutex);
2968
2969 /* Wait for disarming all kprobes by optimizer */
2970 wait_for_kprobe_optimizer();
2971
2972 return ret;
2973}
2974
2975/*
2976 * XXX: The debugfs bool file interface doesn't allow for callbacks
2977 * when the bool state is switched. We can reuse that facility when
2978 * available
2979 */
2980static ssize_t read_enabled_file_bool(struct file *file,
2981 char __user *user_buf, size_t count, loff_t *ppos)
2982{
2983 char buf[3];
2984
2985 if (!kprobes_all_disarmed)
2986 buf[0] = '1';
2987 else
2988 buf[0] = '0';
2989 buf[1] = '\n';
2990 buf[2] = 0x00;
2991 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2992}
2993
2994static ssize_t write_enabled_file_bool(struct file *file,
2995 const char __user *user_buf, size_t count, loff_t *ppos)
2996{
2997 bool enable;
2998 int ret;
2999
3000 ret = kstrtobool_from_user(user_buf, count, &enable);
3001 if (ret)
3002 return ret;
3003
3004 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3005 if (ret)
3006 return ret;
3007
3008 return count;
3009}
3010
3011static const struct file_operations fops_kp = {
3012 .read = read_enabled_file_bool,
3013 .write = write_enabled_file_bool,
3014 .llseek = default_llseek,
3015};
3016
3017static int __init debugfs_kprobe_init(void)
3018{
3019 struct dentry *dir;
3020
3021 dir = debugfs_create_dir("kprobes", NULL);
3022
3023 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3024
3025 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3026
3027 debugfs_create_file("blacklist", 0400, dir, NULL,
3028 &kprobe_blacklist_fops);
3029
3030 return 0;
3031}
3032
3033late_initcall(debugfs_kprobe_init);
3034#endif /* CONFIG_DEBUG_FS */