Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file is part of STM32 ADC driver
  4 *
  5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
  7 *
  8 * Inspired from: fsl-imx25-tsadc
  9 *
 10 */
 11
 12#include <linux/clk.h>
 13#include <linux/interrupt.h>
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/irqdesc.h>
 16#include <linux/irqdomain.h>
 17#include <linux/mfd/syscon.h>
 18#include <linux/module.h>
 19#include <linux/of_device.h>
 20#include <linux/pm_runtime.h>
 21#include <linux/regmap.h>
 22#include <linux/regulator/consumer.h>
 23#include <linux/slab.h>
 24
 25#include "stm32-adc-core.h"
 26
 27#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
 28
 29/* SYSCFG registers */
 30#define STM32MP1_SYSCFG_PMCSETR		0x04
 31#define STM32MP1_SYSCFG_PMCCLRR		0x44
 32
 33/* SYSCFG bit fields */
 34#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
 35
 36/* SYSCFG capability flags */
 37#define HAS_VBOOSTER		BIT(0)
 38#define HAS_ANASWVDD		BIT(1)
 39
 40/**
 41 * stm32_adc_common_regs - stm32 common registers, compatible dependent data
 42 * @csr:	common status register offset
 43 * @ccr:	common control register offset
 44 * @eoc1:	adc1 end of conversion flag in @csr
 45 * @eoc2:	adc2 end of conversion flag in @csr
 46 * @eoc3:	adc3 end of conversion flag in @csr
 47 * @ier:	interrupt enable register offset for each adc
 48 * @eocie_msk:	end of conversion interrupt enable mask in @ier
 49 */
 50struct stm32_adc_common_regs {
 51	u32 csr;
 52	u32 ccr;
 53	u32 eoc1_msk;
 54	u32 eoc2_msk;
 55	u32 eoc3_msk;
 56	u32 ier;
 57	u32 eocie_msk;
 58};
 59
 60struct stm32_adc_priv;
 61
 62/**
 63 * stm32_adc_priv_cfg - stm32 core compatible configuration data
 64 * @regs:	common registers for all instances
 65 * @clk_sel:	clock selection routine
 66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
 67 * @has_syscfg: SYSCFG capability flags
 
 68 */
 69struct stm32_adc_priv_cfg {
 70	const struct stm32_adc_common_regs *regs;
 71	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
 72	u32 max_clk_rate_hz;
 73	unsigned int has_syscfg;
 
 74};
 75
 76/**
 77 * struct stm32_adc_priv - stm32 ADC core private data
 78 * @irq:		irq(s) for ADC block
 79 * @domain:		irq domain reference
 80 * @aclk:		clock reference for the analog circuitry
 81 * @bclk:		bus clock common for all ADCs, depends on part used
 
 82 * @booster:		booster supply reference
 83 * @vdd:		vdd supply reference
 84 * @vdda:		vdda analog supply reference
 85 * @vref:		regulator reference
 86 * @vdd_uv:		vdd supply voltage (microvolts)
 87 * @vdda_uv:		vdda supply voltage (microvolts)
 88 * @cfg:		compatible configuration data
 89 * @common:		common data for all ADC instances
 90 * @ccr_bak:		backup CCR in low power mode
 91 * @syscfg:		reference to syscon, system control registers
 92 */
 93struct stm32_adc_priv {
 94	int				irq[STM32_ADC_MAX_ADCS];
 95	struct irq_domain		*domain;
 96	struct clk			*aclk;
 97	struct clk			*bclk;
 
 98	struct regulator		*booster;
 99	struct regulator		*vdd;
100	struct regulator		*vdda;
101	struct regulator		*vref;
102	int				vdd_uv;
103	int				vdda_uv;
104	const struct stm32_adc_priv_cfg	*cfg;
105	struct stm32_adc_common		common;
106	u32				ccr_bak;
107	struct regmap			*syscfg;
108};
109
110static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
111{
112	return container_of(com, struct stm32_adc_priv, common);
113}
114
115/* STM32F4 ADC internal common clock prescaler division ratios */
116static int stm32f4_pclk_div[] = {2, 4, 6, 8};
117
118/**
119 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
 
120 * @priv: stm32 ADC core private data
121 * Select clock prescaler used for analog conversions, before using ADC.
122 */
123static int stm32f4_adc_clk_sel(struct platform_device *pdev,
124			       struct stm32_adc_priv *priv)
125{
126	unsigned long rate;
127	u32 val;
128	int i;
129
130	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
131	if (!priv->aclk) {
132		dev_err(&pdev->dev, "No 'adc' clock found\n");
133		return -ENOENT;
134	}
135
136	rate = clk_get_rate(priv->aclk);
137	if (!rate) {
138		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
139		return -EINVAL;
140	}
141
142	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
143		if ((rate / stm32f4_pclk_div[i]) <= priv->cfg->max_clk_rate_hz)
144			break;
145	}
146	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
147		dev_err(&pdev->dev, "adc clk selection failed\n");
148		return -EINVAL;
149	}
150
151	priv->common.rate = rate / stm32f4_pclk_div[i];
152	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
153	val &= ~STM32F4_ADC_ADCPRE_MASK;
154	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
155	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
156
157	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
158		priv->common.rate / 1000);
159
160	return 0;
161}
162
163/**
164 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
165 * @ckmode: ADC clock mode, Async or sync with prescaler.
166 * @presc: prescaler bitfield for async clock mode
167 * @div: prescaler division ratio
168 */
169struct stm32h7_adc_ck_spec {
170	u32 ckmode;
171	u32 presc;
172	int div;
173};
174
175static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
176	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
177	{ 0, 0, 1 },
178	{ 0, 1, 2 },
179	{ 0, 2, 4 },
180	{ 0, 3, 6 },
181	{ 0, 4, 8 },
182	{ 0, 5, 10 },
183	{ 0, 6, 12 },
184	{ 0, 7, 16 },
185	{ 0, 8, 32 },
186	{ 0, 9, 64 },
187	{ 0, 10, 128 },
188	{ 0, 11, 256 },
189	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
190	{ 1, 0, 1 },
191	{ 2, 0, 2 },
192	{ 3, 0, 4 },
193};
194
195static int stm32h7_adc_clk_sel(struct platform_device *pdev,
196			       struct stm32_adc_priv *priv)
197{
198	u32 ckmode, presc, val;
199	unsigned long rate;
200	int i, div;
201
202	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
203	if (!priv->bclk) {
204		dev_err(&pdev->dev, "No 'bus' clock found\n");
205		return -ENOENT;
206	}
207
208	/*
209	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
210	 * So, choice is to have bus clock mandatory and adc clock optional.
211	 * If optional 'adc' clock has been found, then try to use it first.
212	 */
213	if (priv->aclk) {
214		/*
215		 * Asynchronous clock modes (e.g. ckmode == 0)
216		 * From spec: PLL output musn't exceed max rate
217		 */
218		rate = clk_get_rate(priv->aclk);
219		if (!rate) {
220			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
221			return -EINVAL;
222		}
223
224		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
225			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
226			presc = stm32h7_adc_ckmodes_spec[i].presc;
227			div = stm32h7_adc_ckmodes_spec[i].div;
228
229			if (ckmode)
230				continue;
231
232			if ((rate / div) <= priv->cfg->max_clk_rate_hz)
233				goto out;
234		}
235	}
236
237	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
238	rate = clk_get_rate(priv->bclk);
239	if (!rate) {
240		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
241		return -EINVAL;
242	}
243
244	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
245		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
246		presc = stm32h7_adc_ckmodes_spec[i].presc;
247		div = stm32h7_adc_ckmodes_spec[i].div;
248
249		if (!ckmode)
250			continue;
251
252		if ((rate / div) <= priv->cfg->max_clk_rate_hz)
253			goto out;
254	}
255
256	dev_err(&pdev->dev, "adc clk selection failed\n");
257	return -EINVAL;
258
259out:
260	/* rate used later by each ADC instance to control BOOST mode */
261	priv->common.rate = rate / div;
262
263	/* Set common clock mode and prescaler */
264	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
265	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
266	val |= ckmode << STM32H7_CKMODE_SHIFT;
267	val |= presc << STM32H7_PRESC_SHIFT;
268	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
269
270	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
271		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
272
273	return 0;
274}
275
276/* STM32F4 common registers definitions */
277static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
278	.csr = STM32F4_ADC_CSR,
279	.ccr = STM32F4_ADC_CCR,
280	.eoc1_msk = STM32F4_EOC1,
281	.eoc2_msk = STM32F4_EOC2,
282	.eoc3_msk = STM32F4_EOC3,
283	.ier = STM32F4_ADC_CR1,
284	.eocie_msk = STM32F4_EOCIE,
285};
286
287/* STM32H7 common registers definitions */
288static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
289	.csr = STM32H7_ADC_CSR,
290	.ccr = STM32H7_ADC_CCR,
291	.eoc1_msk = STM32H7_EOC_MST,
292	.eoc2_msk = STM32H7_EOC_SLV,
293	.ier = STM32H7_ADC_IER,
294	.eocie_msk = STM32H7_EOCIE,
295};
296
297static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
298	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
299};
300
301static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
302					  unsigned int adc)
303{
304	u32 ier, offset = stm32_adc_offset[adc];
305
306	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
307
308	return ier & priv->cfg->regs->eocie_msk;
309}
310
311/* ADC common interrupt for all instances */
312static void stm32_adc_irq_handler(struct irq_desc *desc)
313{
314	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
315	struct irq_chip *chip = irq_desc_get_chip(desc);
316	u32 status;
317
318	chained_irq_enter(chip, desc);
319	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
320
321	/*
322	 * End of conversion may be handled by using IRQ or DMA. There may be a
323	 * race here when two conversions complete at the same time on several
324	 * ADCs. EOC may be read 'set' for several ADCs, with:
325	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
326	 *   is then automatically cleared by DR read in hardware)
327	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
328	 *   be called in this case)
329	 * So both EOC status bit in CSR and EOCIE control bit must be checked
330	 * before invoking the interrupt handler (e.g. call ISR only for
331	 * IRQ-enabled ADCs).
332	 */
333	if (status & priv->cfg->regs->eoc1_msk &&
334	    stm32_adc_eoc_enabled(priv, 0))
335		generic_handle_irq(irq_find_mapping(priv->domain, 0));
336
337	if (status & priv->cfg->regs->eoc2_msk &&
338	    stm32_adc_eoc_enabled(priv, 1))
339		generic_handle_irq(irq_find_mapping(priv->domain, 1));
340
341	if (status & priv->cfg->regs->eoc3_msk &&
342	    stm32_adc_eoc_enabled(priv, 2))
343		generic_handle_irq(irq_find_mapping(priv->domain, 2));
344
345	chained_irq_exit(chip, desc);
346};
347
348static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
349				irq_hw_number_t hwirq)
350{
351	irq_set_chip_data(irq, d->host_data);
352	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
353
354	return 0;
355}
356
357static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
358{
359	irq_set_chip_and_handler(irq, NULL, NULL);
360	irq_set_chip_data(irq, NULL);
361}
362
363static const struct irq_domain_ops stm32_adc_domain_ops = {
364	.map = stm32_adc_domain_map,
365	.unmap  = stm32_adc_domain_unmap,
366	.xlate = irq_domain_xlate_onecell,
367};
368
369static int stm32_adc_irq_probe(struct platform_device *pdev,
370			       struct stm32_adc_priv *priv)
371{
372	struct device_node *np = pdev->dev.of_node;
373	unsigned int i;
374
375	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
 
 
 
 
 
376		priv->irq[i] = platform_get_irq(pdev, i);
377		if (priv->irq[i] < 0) {
378			/*
379			 * At least one interrupt must be provided, make others
380			 * optional:
381			 * - stm32f4/h7 shares a common interrupt.
382			 * - stm32mp1, has one line per ADC (either for ADC1,
383			 *   ADC2 or both).
384			 */
385			if (i && priv->irq[i] == -ENXIO)
386				continue;
387
388			return priv->irq[i];
389		}
390	}
391
392	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
393					     &stm32_adc_domain_ops,
394					     priv);
395	if (!priv->domain) {
396		dev_err(&pdev->dev, "Failed to add irq domain\n");
397		return -ENOMEM;
398	}
399
400	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
401		if (priv->irq[i] < 0)
402			continue;
403		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
404		irq_set_handler_data(priv->irq[i], priv);
405	}
406
407	return 0;
408}
409
410static void stm32_adc_irq_remove(struct platform_device *pdev,
411				 struct stm32_adc_priv *priv)
412{
413	int hwirq;
414	unsigned int i;
415
416	for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
417		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
418	irq_domain_remove(priv->domain);
419
420	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
421		if (priv->irq[i] < 0)
422			continue;
423		irq_set_chained_handler(priv->irq[i], NULL);
424	}
425}
426
427static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
428					     struct device *dev)
429{
430	int ret;
431
432	/*
433	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
434	 * switches (via PCSEL) which have reduced performances when their
435	 * supply is below 2.7V (vdda by default):
436	 * - Voltage booster can be used, to get full ADC performances
437	 *   (increases power consumption).
438	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
439	 *
440	 * Recommended settings for ANASWVDD and EN_BOOSTER:
441	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
442	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
443	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
444	 */
445	if (priv->vdda_uv < 2700000) {
446		if (priv->syscfg && priv->vdd_uv > 2700000) {
447			ret = regulator_enable(priv->vdd);
448			if (ret < 0) {
449				dev_err(dev, "vdd enable failed %d\n", ret);
450				return ret;
451			}
452
453			ret = regmap_write(priv->syscfg,
454					   STM32MP1_SYSCFG_PMCSETR,
455					   STM32MP1_SYSCFG_ANASWVDD_MASK);
456			if (ret < 0) {
457				regulator_disable(priv->vdd);
458				dev_err(dev, "vdd select failed, %d\n", ret);
459				return ret;
460			}
461			dev_dbg(dev, "analog switches supplied by vdd\n");
462
463			return 0;
464		}
465
466		if (priv->booster) {
467			/*
468			 * This is optional, as this is a trade-off between
469			 * analog performance and power consumption.
470			 */
471			ret = regulator_enable(priv->booster);
472			if (ret < 0) {
473				dev_err(dev, "booster enable failed %d\n", ret);
474				return ret;
475			}
476			dev_dbg(dev, "analog switches supplied by booster\n");
477
478			return 0;
479		}
480	}
481
482	/* Fallback using vdda (default), nothing to do */
483	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
484		priv->vdda_uv);
485
486	return 0;
487}
488
489static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
490{
491	if (priv->vdda_uv < 2700000) {
492		if (priv->syscfg && priv->vdd_uv > 2700000) {
493			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
494				     STM32MP1_SYSCFG_ANASWVDD_MASK);
495			regulator_disable(priv->vdd);
496			return;
497		}
498		if (priv->booster)
499			regulator_disable(priv->booster);
500	}
501}
502
503static int stm32_adc_core_hw_start(struct device *dev)
504{
505	struct stm32_adc_common *common = dev_get_drvdata(dev);
506	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
507	int ret;
508
509	ret = regulator_enable(priv->vdda);
510	if (ret < 0) {
511		dev_err(dev, "vdda enable failed %d\n", ret);
512		return ret;
513	}
514
515	ret = regulator_get_voltage(priv->vdda);
516	if (ret < 0) {
517		dev_err(dev, "vdda get voltage failed, %d\n", ret);
518		goto err_vdda_disable;
519	}
520	priv->vdda_uv = ret;
521
522	ret = stm32_adc_core_switches_supply_en(priv, dev);
523	if (ret < 0)
524		goto err_vdda_disable;
525
526	ret = regulator_enable(priv->vref);
527	if (ret < 0) {
528		dev_err(dev, "vref enable failed\n");
529		goto err_switches_dis;
530	}
531
532	if (priv->bclk) {
533		ret = clk_prepare_enable(priv->bclk);
534		if (ret < 0) {
535			dev_err(dev, "bus clk enable failed\n");
536			goto err_regulator_disable;
537		}
538	}
539
540	if (priv->aclk) {
541		ret = clk_prepare_enable(priv->aclk);
542		if (ret < 0) {
543			dev_err(dev, "adc clk enable failed\n");
544			goto err_bclk_disable;
545		}
546	}
547
548	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
549
550	return 0;
551
552err_bclk_disable:
553	if (priv->bclk)
554		clk_disable_unprepare(priv->bclk);
555err_regulator_disable:
556	regulator_disable(priv->vref);
557err_switches_dis:
558	stm32_adc_core_switches_supply_dis(priv);
559err_vdda_disable:
560	regulator_disable(priv->vdda);
561
562	return ret;
563}
564
565static void stm32_adc_core_hw_stop(struct device *dev)
566{
567	struct stm32_adc_common *common = dev_get_drvdata(dev);
568	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
569
570	/* Backup CCR that may be lost (depends on power state to achieve) */
571	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
572	if (priv->aclk)
573		clk_disable_unprepare(priv->aclk);
574	if (priv->bclk)
575		clk_disable_unprepare(priv->bclk);
576	regulator_disable(priv->vref);
577	stm32_adc_core_switches_supply_dis(priv);
578	regulator_disable(priv->vdda);
579}
580
581static int stm32_adc_core_switches_probe(struct device *dev,
582					 struct stm32_adc_priv *priv)
583{
584	struct device_node *np = dev->of_node;
585	int ret;
586
587	/* Analog switches supply can be controlled by syscfg (optional) */
588	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
589	if (IS_ERR(priv->syscfg)) {
590		ret = PTR_ERR(priv->syscfg);
591		if (ret != -ENODEV) {
592			if (ret != -EPROBE_DEFER)
593				dev_err(dev, "Can't probe syscfg: %d\n", ret);
594			return ret;
595		}
596		priv->syscfg = NULL;
597	}
598
599	/* Booster can be used to supply analog switches (optional) */
600	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
601	    of_property_read_bool(np, "booster-supply")) {
602		priv->booster = devm_regulator_get_optional(dev, "booster");
603		if (IS_ERR(priv->booster)) {
604			ret = PTR_ERR(priv->booster);
605			if (ret != -ENODEV) {
606				if (ret != -EPROBE_DEFER)
607					dev_err(dev, "can't get booster %d\n",
608						ret);
609				return ret;
610			}
611			priv->booster = NULL;
612		}
613	}
614
615	/* Vdd can be used to supply analog switches (optional) */
616	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
617	    of_property_read_bool(np, "vdd-supply")) {
618		priv->vdd = devm_regulator_get_optional(dev, "vdd");
619		if (IS_ERR(priv->vdd)) {
620			ret = PTR_ERR(priv->vdd);
621			if (ret != -ENODEV) {
622				if (ret != -EPROBE_DEFER)
623					dev_err(dev, "can't get vdd %d\n", ret);
624				return ret;
625			}
626			priv->vdd = NULL;
627		}
628	}
629
630	if (priv->vdd) {
631		ret = regulator_enable(priv->vdd);
632		if (ret < 0) {
633			dev_err(dev, "vdd enable failed %d\n", ret);
634			return ret;
635		}
636
637		ret = regulator_get_voltage(priv->vdd);
638		if (ret < 0) {
639			dev_err(dev, "vdd get voltage failed %d\n", ret);
640			regulator_disable(priv->vdd);
641			return ret;
642		}
643		priv->vdd_uv = ret;
644
645		regulator_disable(priv->vdd);
646	}
647
648	return 0;
649}
650
651static int stm32_adc_probe(struct platform_device *pdev)
652{
653	struct stm32_adc_priv *priv;
654	struct device *dev = &pdev->dev;
655	struct device_node *np = pdev->dev.of_node;
656	struct resource *res;
 
657	int ret;
658
659	if (!pdev->dev.of_node)
660		return -ENODEV;
661
662	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
663	if (!priv)
664		return -ENOMEM;
665	platform_set_drvdata(pdev, &priv->common);
666
667	priv->cfg = (const struct stm32_adc_priv_cfg *)
668		of_match_device(dev->driver->of_match_table, dev)->data;
669
670	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
671	priv->common.base = devm_ioremap_resource(&pdev->dev, res);
672	if (IS_ERR(priv->common.base))
673		return PTR_ERR(priv->common.base);
674	priv->common.phys_base = res->start;
675
676	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
677	if (IS_ERR(priv->vdda)) {
678		ret = PTR_ERR(priv->vdda);
679		if (ret != -EPROBE_DEFER)
680			dev_err(&pdev->dev, "vdda get failed, %d\n", ret);
681		return ret;
682	}
683
684	priv->vref = devm_regulator_get(&pdev->dev, "vref");
685	if (IS_ERR(priv->vref)) {
686		ret = PTR_ERR(priv->vref);
687		dev_err(&pdev->dev, "vref get failed, %d\n", ret);
 
688		return ret;
689	}
690
691	priv->aclk = devm_clk_get(&pdev->dev, "adc");
692	if (IS_ERR(priv->aclk)) {
693		ret = PTR_ERR(priv->aclk);
694		if (ret != -ENOENT) {
695			dev_err(&pdev->dev, "Can't get 'adc' clock\n");
 
696			return ret;
697		}
698		priv->aclk = NULL;
699	}
700
701	priv->bclk = devm_clk_get(&pdev->dev, "bus");
702	if (IS_ERR(priv->bclk)) {
703		ret = PTR_ERR(priv->bclk);
704		if (ret != -ENOENT) {
705			dev_err(&pdev->dev, "Can't get 'bus' clock\n");
 
706			return ret;
707		}
708		priv->bclk = NULL;
709	}
710
711	ret = stm32_adc_core_switches_probe(dev, priv);
712	if (ret)
713		return ret;
714
715	pm_runtime_get_noresume(dev);
716	pm_runtime_set_active(dev);
717	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
718	pm_runtime_use_autosuspend(dev);
719	pm_runtime_enable(dev);
720
721	ret = stm32_adc_core_hw_start(dev);
722	if (ret)
723		goto err_pm_stop;
724
725	ret = regulator_get_voltage(priv->vref);
726	if (ret < 0) {
727		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
728		goto err_hw_stop;
729	}
730	priv->common.vref_mv = ret / 1000;
731	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
732
 
 
 
 
 
 
 
733	ret = priv->cfg->clk_sel(pdev, priv);
734	if (ret < 0)
735		goto err_hw_stop;
736
737	ret = stm32_adc_irq_probe(pdev, priv);
738	if (ret < 0)
739		goto err_hw_stop;
740
741	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
742	if (ret < 0) {
743		dev_err(&pdev->dev, "failed to populate DT children\n");
744		goto err_irq_remove;
745	}
746
747	pm_runtime_mark_last_busy(dev);
748	pm_runtime_put_autosuspend(dev);
749
750	return 0;
751
752err_irq_remove:
753	stm32_adc_irq_remove(pdev, priv);
754err_hw_stop:
755	stm32_adc_core_hw_stop(dev);
756err_pm_stop:
757	pm_runtime_disable(dev);
758	pm_runtime_set_suspended(dev);
759	pm_runtime_put_noidle(dev);
760
761	return ret;
762}
763
764static int stm32_adc_remove(struct platform_device *pdev)
765{
766	struct stm32_adc_common *common = platform_get_drvdata(pdev);
767	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
768
769	pm_runtime_get_sync(&pdev->dev);
770	of_platform_depopulate(&pdev->dev);
771	stm32_adc_irq_remove(pdev, priv);
772	stm32_adc_core_hw_stop(&pdev->dev);
773	pm_runtime_disable(&pdev->dev);
774	pm_runtime_set_suspended(&pdev->dev);
775	pm_runtime_put_noidle(&pdev->dev);
776
777	return 0;
778}
779
780#if defined(CONFIG_PM)
781static int stm32_adc_core_runtime_suspend(struct device *dev)
782{
783	stm32_adc_core_hw_stop(dev);
784
785	return 0;
786}
787
788static int stm32_adc_core_runtime_resume(struct device *dev)
789{
790	return stm32_adc_core_hw_start(dev);
791}
792#endif
793
794static const struct dev_pm_ops stm32_adc_core_pm_ops = {
795	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
796				pm_runtime_force_resume)
797	SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
798			   stm32_adc_core_runtime_resume,
799			   NULL)
800};
801
802static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
803	.regs = &stm32f4_adc_common_regs,
804	.clk_sel = stm32f4_adc_clk_sel,
805	.max_clk_rate_hz = 36000000,
 
806};
807
808static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
809	.regs = &stm32h7_adc_common_regs,
810	.clk_sel = stm32h7_adc_clk_sel,
811	.max_clk_rate_hz = 36000000,
812	.has_syscfg = HAS_VBOOSTER,
 
813};
814
815static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
816	.regs = &stm32h7_adc_common_regs,
817	.clk_sel = stm32h7_adc_clk_sel,
818	.max_clk_rate_hz = 40000000,
819	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
 
820};
821
822static const struct of_device_id stm32_adc_of_match[] = {
823	{
824		.compatible = "st,stm32f4-adc-core",
825		.data = (void *)&stm32f4_adc_priv_cfg
826	}, {
827		.compatible = "st,stm32h7-adc-core",
828		.data = (void *)&stm32h7_adc_priv_cfg
829	}, {
830		.compatible = "st,stm32mp1-adc-core",
831		.data = (void *)&stm32mp1_adc_priv_cfg
832	}, {
833	},
834};
835MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
836
837static struct platform_driver stm32_adc_driver = {
838	.probe = stm32_adc_probe,
839	.remove = stm32_adc_remove,
840	.driver = {
841		.name = "stm32-adc-core",
842		.of_match_table = stm32_adc_of_match,
843		.pm = &stm32_adc_core_pm_ops,
844	},
845};
846module_platform_driver(stm32_adc_driver);
847
848MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
849MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
850MODULE_LICENSE("GPL v2");
851MODULE_ALIAS("platform:stm32-adc-core");
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file is part of STM32 ADC driver
  4 *
  5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
  7 *
  8 * Inspired from: fsl-imx25-tsadc
  9 *
 10 */
 11
 12#include <linux/clk.h>
 13#include <linux/interrupt.h>
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/irqdesc.h>
 16#include <linux/irqdomain.h>
 17#include <linux/mfd/syscon.h>
 18#include <linux/module.h>
 19#include <linux/of_device.h>
 20#include <linux/pm_runtime.h>
 21#include <linux/regmap.h>
 22#include <linux/regulator/consumer.h>
 23#include <linux/slab.h>
 24
 25#include "stm32-adc-core.h"
 26
 27#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
 28
 29/* SYSCFG registers */
 30#define STM32MP1_SYSCFG_PMCSETR		0x04
 31#define STM32MP1_SYSCFG_PMCCLRR		0x44
 32
 33/* SYSCFG bit fields */
 34#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
 35
 36/* SYSCFG capability flags */
 37#define HAS_VBOOSTER		BIT(0)
 38#define HAS_ANASWVDD		BIT(1)
 39
 40/**
 41 * struct stm32_adc_common_regs - stm32 common registers
 42 * @csr:	common status register offset
 43 * @ccr:	common control register offset
 44 * @eoc1_msk:	adc1 end of conversion flag in @csr
 45 * @eoc2_msk:	adc2 end of conversion flag in @csr
 46 * @eoc3_msk:	adc3 end of conversion flag in @csr
 47 * @ier:	interrupt enable register offset for each adc
 48 * @eocie_msk:	end of conversion interrupt enable mask in @ier
 49 */
 50struct stm32_adc_common_regs {
 51	u32 csr;
 52	u32 ccr;
 53	u32 eoc1_msk;
 54	u32 eoc2_msk;
 55	u32 eoc3_msk;
 56	u32 ier;
 57	u32 eocie_msk;
 58};
 59
 60struct stm32_adc_priv;
 61
 62/**
 63 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data
 64 * @regs:	common registers for all instances
 65 * @clk_sel:	clock selection routine
 66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
 67 * @has_syscfg: SYSCFG capability flags
 68 * @num_irqs:	number of interrupt lines
 69 */
 70struct stm32_adc_priv_cfg {
 71	const struct stm32_adc_common_regs *regs;
 72	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
 73	u32 max_clk_rate_hz;
 74	unsigned int has_syscfg;
 75	unsigned int num_irqs;
 76};
 77
 78/**
 79 * struct stm32_adc_priv - stm32 ADC core private data
 80 * @irq:		irq(s) for ADC block
 81 * @domain:		irq domain reference
 82 * @aclk:		clock reference for the analog circuitry
 83 * @bclk:		bus clock common for all ADCs, depends on part used
 84 * @max_clk_rate:	desired maximum clock rate
 85 * @booster:		booster supply reference
 86 * @vdd:		vdd supply reference
 87 * @vdda:		vdda analog supply reference
 88 * @vref:		regulator reference
 89 * @vdd_uv:		vdd supply voltage (microvolts)
 90 * @vdda_uv:		vdda supply voltage (microvolts)
 91 * @cfg:		compatible configuration data
 92 * @common:		common data for all ADC instances
 93 * @ccr_bak:		backup CCR in low power mode
 94 * @syscfg:		reference to syscon, system control registers
 95 */
 96struct stm32_adc_priv {
 97	int				irq[STM32_ADC_MAX_ADCS];
 98	struct irq_domain		*domain;
 99	struct clk			*aclk;
100	struct clk			*bclk;
101	u32				max_clk_rate;
102	struct regulator		*booster;
103	struct regulator		*vdd;
104	struct regulator		*vdda;
105	struct regulator		*vref;
106	int				vdd_uv;
107	int				vdda_uv;
108	const struct stm32_adc_priv_cfg	*cfg;
109	struct stm32_adc_common		common;
110	u32				ccr_bak;
111	struct regmap			*syscfg;
112};
113
114static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
115{
116	return container_of(com, struct stm32_adc_priv, common);
117}
118
119/* STM32F4 ADC internal common clock prescaler division ratios */
120static int stm32f4_pclk_div[] = {2, 4, 6, 8};
121
122/**
123 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
124 * @pdev: platform device
125 * @priv: stm32 ADC core private data
126 * Select clock prescaler used for analog conversions, before using ADC.
127 */
128static int stm32f4_adc_clk_sel(struct platform_device *pdev,
129			       struct stm32_adc_priv *priv)
130{
131	unsigned long rate;
132	u32 val;
133	int i;
134
135	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
136	if (!priv->aclk) {
137		dev_err(&pdev->dev, "No 'adc' clock found\n");
138		return -ENOENT;
139	}
140
141	rate = clk_get_rate(priv->aclk);
142	if (!rate) {
143		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
144		return -EINVAL;
145	}
146
147	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
148		if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
149			break;
150	}
151	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
152		dev_err(&pdev->dev, "adc clk selection failed\n");
153		return -EINVAL;
154	}
155
156	priv->common.rate = rate / stm32f4_pclk_div[i];
157	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
158	val &= ~STM32F4_ADC_ADCPRE_MASK;
159	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
160	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
161
162	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
163		priv->common.rate / 1000);
164
165	return 0;
166}
167
168/**
169 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
170 * @ckmode: ADC clock mode, Async or sync with prescaler.
171 * @presc: prescaler bitfield for async clock mode
172 * @div: prescaler division ratio
173 */
174struct stm32h7_adc_ck_spec {
175	u32 ckmode;
176	u32 presc;
177	int div;
178};
179
180static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
181	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
182	{ 0, 0, 1 },
183	{ 0, 1, 2 },
184	{ 0, 2, 4 },
185	{ 0, 3, 6 },
186	{ 0, 4, 8 },
187	{ 0, 5, 10 },
188	{ 0, 6, 12 },
189	{ 0, 7, 16 },
190	{ 0, 8, 32 },
191	{ 0, 9, 64 },
192	{ 0, 10, 128 },
193	{ 0, 11, 256 },
194	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
195	{ 1, 0, 1 },
196	{ 2, 0, 2 },
197	{ 3, 0, 4 },
198};
199
200static int stm32h7_adc_clk_sel(struct platform_device *pdev,
201			       struct stm32_adc_priv *priv)
202{
203	u32 ckmode, presc, val;
204	unsigned long rate;
205	int i, div;
206
207	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
208	if (!priv->bclk) {
209		dev_err(&pdev->dev, "No 'bus' clock found\n");
210		return -ENOENT;
211	}
212
213	/*
214	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
215	 * So, choice is to have bus clock mandatory and adc clock optional.
216	 * If optional 'adc' clock has been found, then try to use it first.
217	 */
218	if (priv->aclk) {
219		/*
220		 * Asynchronous clock modes (e.g. ckmode == 0)
221		 * From spec: PLL output musn't exceed max rate
222		 */
223		rate = clk_get_rate(priv->aclk);
224		if (!rate) {
225			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
226			return -EINVAL;
227		}
228
229		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
230			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
231			presc = stm32h7_adc_ckmodes_spec[i].presc;
232			div = stm32h7_adc_ckmodes_spec[i].div;
233
234			if (ckmode)
235				continue;
236
237			if ((rate / div) <= priv->max_clk_rate)
238				goto out;
239		}
240	}
241
242	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
243	rate = clk_get_rate(priv->bclk);
244	if (!rate) {
245		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
246		return -EINVAL;
247	}
248
249	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
250		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
251		presc = stm32h7_adc_ckmodes_spec[i].presc;
252		div = stm32h7_adc_ckmodes_spec[i].div;
253
254		if (!ckmode)
255			continue;
256
257		if ((rate / div) <= priv->max_clk_rate)
258			goto out;
259	}
260
261	dev_err(&pdev->dev, "adc clk selection failed\n");
262	return -EINVAL;
263
264out:
265	/* rate used later by each ADC instance to control BOOST mode */
266	priv->common.rate = rate / div;
267
268	/* Set common clock mode and prescaler */
269	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
270	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
271	val |= ckmode << STM32H7_CKMODE_SHIFT;
272	val |= presc << STM32H7_PRESC_SHIFT;
273	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
274
275	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
276		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
277
278	return 0;
279}
280
281/* STM32F4 common registers definitions */
282static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
283	.csr = STM32F4_ADC_CSR,
284	.ccr = STM32F4_ADC_CCR,
285	.eoc1_msk = STM32F4_EOC1 | STM32F4_OVR1,
286	.eoc2_msk = STM32F4_EOC2 | STM32F4_OVR2,
287	.eoc3_msk = STM32F4_EOC3 | STM32F4_OVR3,
288	.ier = STM32F4_ADC_CR1,
289	.eocie_msk = STM32F4_EOCIE | STM32F4_OVRIE,
290};
291
292/* STM32H7 common registers definitions */
293static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
294	.csr = STM32H7_ADC_CSR,
295	.ccr = STM32H7_ADC_CCR,
296	.eoc1_msk = STM32H7_EOC_MST | STM32H7_OVR_MST,
297	.eoc2_msk = STM32H7_EOC_SLV | STM32H7_OVR_SLV,
298	.ier = STM32H7_ADC_IER,
299	.eocie_msk = STM32H7_EOCIE | STM32H7_OVRIE,
300};
301
302static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
303	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
304};
305
306static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
307					  unsigned int adc)
308{
309	u32 ier, offset = stm32_adc_offset[adc];
310
311	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
312
313	return ier & priv->cfg->regs->eocie_msk;
314}
315
316/* ADC common interrupt for all instances */
317static void stm32_adc_irq_handler(struct irq_desc *desc)
318{
319	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
320	struct irq_chip *chip = irq_desc_get_chip(desc);
321	u32 status;
322
323	chained_irq_enter(chip, desc);
324	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
325
326	/*
327	 * End of conversion may be handled by using IRQ or DMA. There may be a
328	 * race here when two conversions complete at the same time on several
329	 * ADCs. EOC may be read 'set' for several ADCs, with:
330	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
331	 *   is then automatically cleared by DR read in hardware)
332	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
333	 *   be called in this case)
334	 * So both EOC status bit in CSR and EOCIE control bit must be checked
335	 * before invoking the interrupt handler (e.g. call ISR only for
336	 * IRQ-enabled ADCs).
337	 */
338	if (status & priv->cfg->regs->eoc1_msk &&
339	    stm32_adc_eoc_enabled(priv, 0))
340		generic_handle_irq(irq_find_mapping(priv->domain, 0));
341
342	if (status & priv->cfg->regs->eoc2_msk &&
343	    stm32_adc_eoc_enabled(priv, 1))
344		generic_handle_irq(irq_find_mapping(priv->domain, 1));
345
346	if (status & priv->cfg->regs->eoc3_msk &&
347	    stm32_adc_eoc_enabled(priv, 2))
348		generic_handle_irq(irq_find_mapping(priv->domain, 2));
349
350	chained_irq_exit(chip, desc);
351};
352
353static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
354				irq_hw_number_t hwirq)
355{
356	irq_set_chip_data(irq, d->host_data);
357	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
358
359	return 0;
360}
361
362static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
363{
364	irq_set_chip_and_handler(irq, NULL, NULL);
365	irq_set_chip_data(irq, NULL);
366}
367
368static const struct irq_domain_ops stm32_adc_domain_ops = {
369	.map = stm32_adc_domain_map,
370	.unmap  = stm32_adc_domain_unmap,
371	.xlate = irq_domain_xlate_onecell,
372};
373
374static int stm32_adc_irq_probe(struct platform_device *pdev,
375			       struct stm32_adc_priv *priv)
376{
377	struct device_node *np = pdev->dev.of_node;
378	unsigned int i;
379
380	/*
381	 * Interrupt(s) must be provided, depending on the compatible:
382	 * - stm32f4/h7 shares a common interrupt line.
383	 * - stm32mp1, has one line per ADC
384	 */
385	for (i = 0; i < priv->cfg->num_irqs; i++) {
386		priv->irq[i] = platform_get_irq(pdev, i);
387		if (priv->irq[i] < 0)
 
 
 
 
 
 
 
 
 
 
388			return priv->irq[i];
 
389	}
390
391	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
392					     &stm32_adc_domain_ops,
393					     priv);
394	if (!priv->domain) {
395		dev_err(&pdev->dev, "Failed to add irq domain\n");
396		return -ENOMEM;
397	}
398
399	for (i = 0; i < priv->cfg->num_irqs; i++) {
 
 
400		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
401		irq_set_handler_data(priv->irq[i], priv);
402	}
403
404	return 0;
405}
406
407static void stm32_adc_irq_remove(struct platform_device *pdev,
408				 struct stm32_adc_priv *priv)
409{
410	int hwirq;
411	unsigned int i;
412
413	for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
414		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
415	irq_domain_remove(priv->domain);
416
417	for (i = 0; i < priv->cfg->num_irqs; i++)
 
 
418		irq_set_chained_handler(priv->irq[i], NULL);
 
419}
420
421static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
422					     struct device *dev)
423{
424	int ret;
425
426	/*
427	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
428	 * switches (via PCSEL) which have reduced performances when their
429	 * supply is below 2.7V (vdda by default):
430	 * - Voltage booster can be used, to get full ADC performances
431	 *   (increases power consumption).
432	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
433	 *
434	 * Recommended settings for ANASWVDD and EN_BOOSTER:
435	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
436	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
437	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
438	 */
439	if (priv->vdda_uv < 2700000) {
440		if (priv->syscfg && priv->vdd_uv > 2700000) {
441			ret = regulator_enable(priv->vdd);
442			if (ret < 0) {
443				dev_err(dev, "vdd enable failed %d\n", ret);
444				return ret;
445			}
446
447			ret = regmap_write(priv->syscfg,
448					   STM32MP1_SYSCFG_PMCSETR,
449					   STM32MP1_SYSCFG_ANASWVDD_MASK);
450			if (ret < 0) {
451				regulator_disable(priv->vdd);
452				dev_err(dev, "vdd select failed, %d\n", ret);
453				return ret;
454			}
455			dev_dbg(dev, "analog switches supplied by vdd\n");
456
457			return 0;
458		}
459
460		if (priv->booster) {
461			/*
462			 * This is optional, as this is a trade-off between
463			 * analog performance and power consumption.
464			 */
465			ret = regulator_enable(priv->booster);
466			if (ret < 0) {
467				dev_err(dev, "booster enable failed %d\n", ret);
468				return ret;
469			}
470			dev_dbg(dev, "analog switches supplied by booster\n");
471
472			return 0;
473		}
474	}
475
476	/* Fallback using vdda (default), nothing to do */
477	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
478		priv->vdda_uv);
479
480	return 0;
481}
482
483static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
484{
485	if (priv->vdda_uv < 2700000) {
486		if (priv->syscfg && priv->vdd_uv > 2700000) {
487			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
488				     STM32MP1_SYSCFG_ANASWVDD_MASK);
489			regulator_disable(priv->vdd);
490			return;
491		}
492		if (priv->booster)
493			regulator_disable(priv->booster);
494	}
495}
496
497static int stm32_adc_core_hw_start(struct device *dev)
498{
499	struct stm32_adc_common *common = dev_get_drvdata(dev);
500	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
501	int ret;
502
503	ret = regulator_enable(priv->vdda);
504	if (ret < 0) {
505		dev_err(dev, "vdda enable failed %d\n", ret);
506		return ret;
507	}
508
509	ret = regulator_get_voltage(priv->vdda);
510	if (ret < 0) {
511		dev_err(dev, "vdda get voltage failed, %d\n", ret);
512		goto err_vdda_disable;
513	}
514	priv->vdda_uv = ret;
515
516	ret = stm32_adc_core_switches_supply_en(priv, dev);
517	if (ret < 0)
518		goto err_vdda_disable;
519
520	ret = regulator_enable(priv->vref);
521	if (ret < 0) {
522		dev_err(dev, "vref enable failed\n");
523		goto err_switches_dis;
524	}
525
526	if (priv->bclk) {
527		ret = clk_prepare_enable(priv->bclk);
528		if (ret < 0) {
529			dev_err(dev, "bus clk enable failed\n");
530			goto err_regulator_disable;
531		}
532	}
533
534	if (priv->aclk) {
535		ret = clk_prepare_enable(priv->aclk);
536		if (ret < 0) {
537			dev_err(dev, "adc clk enable failed\n");
538			goto err_bclk_disable;
539		}
540	}
541
542	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
543
544	return 0;
545
546err_bclk_disable:
547	if (priv->bclk)
548		clk_disable_unprepare(priv->bclk);
549err_regulator_disable:
550	regulator_disable(priv->vref);
551err_switches_dis:
552	stm32_adc_core_switches_supply_dis(priv);
553err_vdda_disable:
554	regulator_disable(priv->vdda);
555
556	return ret;
557}
558
559static void stm32_adc_core_hw_stop(struct device *dev)
560{
561	struct stm32_adc_common *common = dev_get_drvdata(dev);
562	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
563
564	/* Backup CCR that may be lost (depends on power state to achieve) */
565	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
566	if (priv->aclk)
567		clk_disable_unprepare(priv->aclk);
568	if (priv->bclk)
569		clk_disable_unprepare(priv->bclk);
570	regulator_disable(priv->vref);
571	stm32_adc_core_switches_supply_dis(priv);
572	regulator_disable(priv->vdda);
573}
574
575static int stm32_adc_core_switches_probe(struct device *dev,
576					 struct stm32_adc_priv *priv)
577{
578	struct device_node *np = dev->of_node;
579	int ret;
580
581	/* Analog switches supply can be controlled by syscfg (optional) */
582	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
583	if (IS_ERR(priv->syscfg)) {
584		ret = PTR_ERR(priv->syscfg);
585		if (ret != -ENODEV) {
586			if (ret != -EPROBE_DEFER)
587				dev_err(dev, "Can't probe syscfg: %d\n", ret);
588			return ret;
589		}
590		priv->syscfg = NULL;
591	}
592
593	/* Booster can be used to supply analog switches (optional) */
594	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
595	    of_property_read_bool(np, "booster-supply")) {
596		priv->booster = devm_regulator_get_optional(dev, "booster");
597		if (IS_ERR(priv->booster)) {
598			ret = PTR_ERR(priv->booster);
599			if (ret != -ENODEV) {
600				if (ret != -EPROBE_DEFER)
601					dev_err(dev, "can't get booster %d\n",
602						ret);
603				return ret;
604			}
605			priv->booster = NULL;
606		}
607	}
608
609	/* Vdd can be used to supply analog switches (optional) */
610	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
611	    of_property_read_bool(np, "vdd-supply")) {
612		priv->vdd = devm_regulator_get_optional(dev, "vdd");
613		if (IS_ERR(priv->vdd)) {
614			ret = PTR_ERR(priv->vdd);
615			if (ret != -ENODEV) {
616				if (ret != -EPROBE_DEFER)
617					dev_err(dev, "can't get vdd %d\n", ret);
618				return ret;
619			}
620			priv->vdd = NULL;
621		}
622	}
623
624	if (priv->vdd) {
625		ret = regulator_enable(priv->vdd);
626		if (ret < 0) {
627			dev_err(dev, "vdd enable failed %d\n", ret);
628			return ret;
629		}
630
631		ret = regulator_get_voltage(priv->vdd);
632		if (ret < 0) {
633			dev_err(dev, "vdd get voltage failed %d\n", ret);
634			regulator_disable(priv->vdd);
635			return ret;
636		}
637		priv->vdd_uv = ret;
638
639		regulator_disable(priv->vdd);
640	}
641
642	return 0;
643}
644
645static int stm32_adc_probe(struct platform_device *pdev)
646{
647	struct stm32_adc_priv *priv;
648	struct device *dev = &pdev->dev;
649	struct device_node *np = pdev->dev.of_node;
650	struct resource *res;
651	u32 max_rate;
652	int ret;
653
654	if (!pdev->dev.of_node)
655		return -ENODEV;
656
657	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
658	if (!priv)
659		return -ENOMEM;
660	platform_set_drvdata(pdev, &priv->common);
661
662	priv->cfg = (const struct stm32_adc_priv_cfg *)
663		of_match_device(dev->driver->of_match_table, dev)->data;
664
665	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
666	priv->common.base = devm_ioremap_resource(&pdev->dev, res);
667	if (IS_ERR(priv->common.base))
668		return PTR_ERR(priv->common.base);
669	priv->common.phys_base = res->start;
670
671	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
672	if (IS_ERR(priv->vdda)) {
673		ret = PTR_ERR(priv->vdda);
674		if (ret != -EPROBE_DEFER)
675			dev_err(&pdev->dev, "vdda get failed, %d\n", ret);
676		return ret;
677	}
678
679	priv->vref = devm_regulator_get(&pdev->dev, "vref");
680	if (IS_ERR(priv->vref)) {
681		ret = PTR_ERR(priv->vref);
682		if (ret != -EPROBE_DEFER)
683			dev_err(&pdev->dev, "vref get failed, %d\n", ret);
684		return ret;
685	}
686
687	priv->aclk = devm_clk_get(&pdev->dev, "adc");
688	if (IS_ERR(priv->aclk)) {
689		ret = PTR_ERR(priv->aclk);
690		if (ret != -ENOENT) {
691			if (ret != -EPROBE_DEFER)
692				dev_err(&pdev->dev, "Can't get 'adc' clock\n");
693			return ret;
694		}
695		priv->aclk = NULL;
696	}
697
698	priv->bclk = devm_clk_get(&pdev->dev, "bus");
699	if (IS_ERR(priv->bclk)) {
700		ret = PTR_ERR(priv->bclk);
701		if (ret != -ENOENT) {
702			if (ret != -EPROBE_DEFER)
703				dev_err(&pdev->dev, "Can't get 'bus' clock\n");
704			return ret;
705		}
706		priv->bclk = NULL;
707	}
708
709	ret = stm32_adc_core_switches_probe(dev, priv);
710	if (ret)
711		return ret;
712
713	pm_runtime_get_noresume(dev);
714	pm_runtime_set_active(dev);
715	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
716	pm_runtime_use_autosuspend(dev);
717	pm_runtime_enable(dev);
718
719	ret = stm32_adc_core_hw_start(dev);
720	if (ret)
721		goto err_pm_stop;
722
723	ret = regulator_get_voltage(priv->vref);
724	if (ret < 0) {
725		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
726		goto err_hw_stop;
727	}
728	priv->common.vref_mv = ret / 1000;
729	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
730
731	ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
732				   &max_rate);
733	if (!ret)
734		priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
735	else
736		priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
737
738	ret = priv->cfg->clk_sel(pdev, priv);
739	if (ret < 0)
740		goto err_hw_stop;
741
742	ret = stm32_adc_irq_probe(pdev, priv);
743	if (ret < 0)
744		goto err_hw_stop;
745
746	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
747	if (ret < 0) {
748		dev_err(&pdev->dev, "failed to populate DT children\n");
749		goto err_irq_remove;
750	}
751
752	pm_runtime_mark_last_busy(dev);
753	pm_runtime_put_autosuspend(dev);
754
755	return 0;
756
757err_irq_remove:
758	stm32_adc_irq_remove(pdev, priv);
759err_hw_stop:
760	stm32_adc_core_hw_stop(dev);
761err_pm_stop:
762	pm_runtime_disable(dev);
763	pm_runtime_set_suspended(dev);
764	pm_runtime_put_noidle(dev);
765
766	return ret;
767}
768
769static int stm32_adc_remove(struct platform_device *pdev)
770{
771	struct stm32_adc_common *common = platform_get_drvdata(pdev);
772	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
773
774	pm_runtime_get_sync(&pdev->dev);
775	of_platform_depopulate(&pdev->dev);
776	stm32_adc_irq_remove(pdev, priv);
777	stm32_adc_core_hw_stop(&pdev->dev);
778	pm_runtime_disable(&pdev->dev);
779	pm_runtime_set_suspended(&pdev->dev);
780	pm_runtime_put_noidle(&pdev->dev);
781
782	return 0;
783}
784
785#if defined(CONFIG_PM)
786static int stm32_adc_core_runtime_suspend(struct device *dev)
787{
788	stm32_adc_core_hw_stop(dev);
789
790	return 0;
791}
792
793static int stm32_adc_core_runtime_resume(struct device *dev)
794{
795	return stm32_adc_core_hw_start(dev);
796}
797#endif
798
799static const struct dev_pm_ops stm32_adc_core_pm_ops = {
800	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
801				pm_runtime_force_resume)
802	SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
803			   stm32_adc_core_runtime_resume,
804			   NULL)
805};
806
807static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
808	.regs = &stm32f4_adc_common_regs,
809	.clk_sel = stm32f4_adc_clk_sel,
810	.max_clk_rate_hz = 36000000,
811	.num_irqs = 1,
812};
813
814static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
815	.regs = &stm32h7_adc_common_regs,
816	.clk_sel = stm32h7_adc_clk_sel,
817	.max_clk_rate_hz = 36000000,
818	.has_syscfg = HAS_VBOOSTER,
819	.num_irqs = 1,
820};
821
822static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
823	.regs = &stm32h7_adc_common_regs,
824	.clk_sel = stm32h7_adc_clk_sel,
825	.max_clk_rate_hz = 40000000,
826	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
827	.num_irqs = 2,
828};
829
830static const struct of_device_id stm32_adc_of_match[] = {
831	{
832		.compatible = "st,stm32f4-adc-core",
833		.data = (void *)&stm32f4_adc_priv_cfg
834	}, {
835		.compatible = "st,stm32h7-adc-core",
836		.data = (void *)&stm32h7_adc_priv_cfg
837	}, {
838		.compatible = "st,stm32mp1-adc-core",
839		.data = (void *)&stm32mp1_adc_priv_cfg
840	}, {
841	},
842};
843MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
844
845static struct platform_driver stm32_adc_driver = {
846	.probe = stm32_adc_probe,
847	.remove = stm32_adc_remove,
848	.driver = {
849		.name = "stm32-adc-core",
850		.of_match_table = stm32_adc_of_match,
851		.pm = &stm32_adc_core_pm_ops,
852	},
853};
854module_platform_driver(stm32_adc_driver);
855
856MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
857MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
858MODULE_LICENSE("GPL v2");
859MODULE_ALIAS("platform:stm32-adc-core");