Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
  12
  13u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14			  bool may_use_included)
  15{
  16	ASSERT(s_info);
  17	return s_info->bytes_used + s_info->bytes_reserved +
  18		s_info->bytes_pinned + s_info->bytes_readonly +
  19		(may_use_included ? s_info->bytes_may_use : 0);
  20}
  21
  22/*
  23 * after adding space to the filesystem, we need to clear the full flags
  24 * on all the space infos.
  25 */
  26void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  27{
  28	struct list_head *head = &info->space_info;
  29	struct btrfs_space_info *found;
  30
  31	rcu_read_lock();
  32	list_for_each_entry_rcu(found, head, list)
  33		found->full = 0;
  34	rcu_read_unlock();
  35}
  36
  37static int create_space_info(struct btrfs_fs_info *info, u64 flags)
  38{
  39
  40	struct btrfs_space_info *space_info;
  41	int i;
  42	int ret;
  43
  44	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
  45	if (!space_info)
  46		return -ENOMEM;
  47
  48	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
  49				 GFP_KERNEL);
  50	if (ret) {
  51		kfree(space_info);
  52		return ret;
  53	}
  54
  55	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  56		INIT_LIST_HEAD(&space_info->block_groups[i]);
  57	init_rwsem(&space_info->groups_sem);
  58	spin_lock_init(&space_info->lock);
  59	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  60	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  61	init_waitqueue_head(&space_info->wait);
  62	INIT_LIST_HEAD(&space_info->ro_bgs);
  63	INIT_LIST_HEAD(&space_info->tickets);
  64	INIT_LIST_HEAD(&space_info->priority_tickets);
  65
  66	ret = btrfs_sysfs_add_space_info_type(info, space_info);
  67	if (ret)
  68		return ret;
  69
  70	list_add_rcu(&space_info->list, &info->space_info);
  71	if (flags & BTRFS_BLOCK_GROUP_DATA)
  72		info->data_sinfo = space_info;
  73
  74	return ret;
  75}
  76
  77int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  78{
  79	struct btrfs_super_block *disk_super;
  80	u64 features;
  81	u64 flags;
  82	int mixed = 0;
  83	int ret;
  84
  85	disk_super = fs_info->super_copy;
  86	if (!btrfs_super_root(disk_super))
  87		return -EINVAL;
  88
  89	features = btrfs_super_incompat_flags(disk_super);
  90	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  91		mixed = 1;
  92
  93	flags = BTRFS_BLOCK_GROUP_SYSTEM;
  94	ret = create_space_info(fs_info, flags);
  95	if (ret)
  96		goto out;
  97
  98	if (mixed) {
  99		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 100		ret = create_space_info(fs_info, flags);
 101	} else {
 102		flags = BTRFS_BLOCK_GROUP_METADATA;
 103		ret = create_space_info(fs_info, flags);
 104		if (ret)
 105			goto out;
 106
 107		flags = BTRFS_BLOCK_GROUP_DATA;
 108		ret = create_space_info(fs_info, flags);
 109	}
 110out:
 111	return ret;
 112}
 113
 114void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 115			     u64 total_bytes, u64 bytes_used,
 116			     u64 bytes_readonly,
 117			     struct btrfs_space_info **space_info)
 118{
 119	struct btrfs_space_info *found;
 120	int factor;
 121
 122	factor = btrfs_bg_type_to_factor(flags);
 123
 124	found = btrfs_find_space_info(info, flags);
 125	ASSERT(found);
 126	spin_lock(&found->lock);
 127	found->total_bytes += total_bytes;
 128	found->disk_total += total_bytes * factor;
 129	found->bytes_used += bytes_used;
 130	found->disk_used += bytes_used * factor;
 131	found->bytes_readonly += bytes_readonly;
 132	if (total_bytes > 0)
 133		found->full = 0;
 134	btrfs_try_granting_tickets(info, found);
 135	spin_unlock(&found->lock);
 136	*space_info = found;
 137}
 138
 139struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 140					       u64 flags)
 141{
 142	struct list_head *head = &info->space_info;
 143	struct btrfs_space_info *found;
 144
 145	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 146
 147	rcu_read_lock();
 148	list_for_each_entry_rcu(found, head, list) {
 149		if (found->flags & flags) {
 150			rcu_read_unlock();
 151			return found;
 152		}
 153	}
 154	rcu_read_unlock();
 155	return NULL;
 156}
 157
 158static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 159{
 160	return (global->size << 1);
 161}
 162
 163static int can_overcommit(struct btrfs_fs_info *fs_info,
 164			  struct btrfs_space_info *space_info, u64 bytes,
 165			  enum btrfs_reserve_flush_enum flush,
 166			  bool system_chunk)
 167{
 168	u64 profile;
 169	u64 avail;
 170	u64 used;
 171	int factor;
 172
 173	/* Don't overcommit when in mixed mode. */
 174	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 175		return 0;
 176
 177	if (system_chunk)
 178		profile = btrfs_system_alloc_profile(fs_info);
 179	else
 180		profile = btrfs_metadata_alloc_profile(fs_info);
 181
 182	used = btrfs_space_info_used(space_info, true);
 183	avail = atomic64_read(&fs_info->free_chunk_space);
 184
 185	/*
 186	 * If we have dup, raid1 or raid10 then only half of the free
 187	 * space is actually usable.  For raid56, the space info used
 188	 * doesn't include the parity drive, so we don't have to
 189	 * change the math
 190	 */
 191	factor = btrfs_bg_type_to_factor(profile);
 192	avail = div_u64(avail, factor);
 193
 194	/*
 195	 * If we aren't flushing all things, let us overcommit up to
 196	 * 1/2th of the space. If we can flush, don't let us overcommit
 197	 * too much, let it overcommit up to 1/8 of the space.
 198	 */
 199	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 200		avail >>= 3;
 201	else
 202		avail >>= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	if (used + bytes < space_info->total_bytes + avail)
 205		return 1;
 206	return 0;
 207}
 208
 
 
 
 
 
 
 
 
 
 
 209/*
 210 * This is for space we already have accounted in space_info->bytes_may_use, so
 211 * basically when we're returning space from block_rsv's.
 212 */
 213void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 214				struct btrfs_space_info *space_info)
 215{
 216	struct list_head *head;
 217	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 218
 219	lockdep_assert_held(&space_info->lock);
 220
 221	head = &space_info->priority_tickets;
 222again:
 223	while (!list_empty(head)) {
 224		struct reserve_ticket *ticket;
 225		u64 used = btrfs_space_info_used(space_info, true);
 226
 227		ticket = list_first_entry(head, struct reserve_ticket, list);
 228
 229		/* Check and see if our ticket can be satisified now. */
 230		if ((used + ticket->bytes <= space_info->total_bytes) ||
 231		    can_overcommit(fs_info, space_info, ticket->bytes, flush,
 232				   false)) {
 233			btrfs_space_info_update_bytes_may_use(fs_info,
 234							      space_info,
 235							      ticket->bytes);
 236			list_del_init(&ticket->list);
 237			ticket->bytes = 0;
 238			space_info->tickets_id++;
 239			wake_up(&ticket->wait);
 240		} else {
 241			break;
 242		}
 243	}
 244
 245	if (head == &space_info->priority_tickets) {
 246		head = &space_info->tickets;
 247		flush = BTRFS_RESERVE_FLUSH_ALL;
 248		goto again;
 249	}
 250}
 251
 252#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 253do {									\
 254	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 255	spin_lock(&__rsv->lock);					\
 256	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 257		   __rsv->size, __rsv->reserved);			\
 258	spin_unlock(&__rsv->lock);					\
 259} while (0)
 260
 261static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 262				    struct btrfs_space_info *info)
 263{
 264	lockdep_assert_held(&info->lock);
 265
 266	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 267		   info->flags,
 268		   info->total_bytes - btrfs_space_info_used(info, true),
 269		   info->full ? "" : "not ");
 270	btrfs_info(fs_info,
 271		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 272		info->total_bytes, info->bytes_used, info->bytes_pinned,
 273		info->bytes_reserved, info->bytes_may_use,
 274		info->bytes_readonly);
 275
 276	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 277	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 278	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 279	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 280	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 281
 282}
 283
 284void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 285			   struct btrfs_space_info *info, u64 bytes,
 286			   int dump_block_groups)
 287{
 288	struct btrfs_block_group_cache *cache;
 289	int index = 0;
 290
 291	spin_lock(&info->lock);
 292	__btrfs_dump_space_info(fs_info, info);
 293	spin_unlock(&info->lock);
 294
 295	if (!dump_block_groups)
 296		return;
 297
 298	down_read(&info->groups_sem);
 299again:
 300	list_for_each_entry(cache, &info->block_groups[index], list) {
 301		spin_lock(&cache->lock);
 302		btrfs_info(fs_info,
 303			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 304			cache->key.objectid, cache->key.offset,
 305			btrfs_block_group_used(&cache->item), cache->pinned,
 306			cache->reserved, cache->ro ? "[readonly]" : "");
 307		btrfs_dump_free_space(cache, bytes);
 308		spin_unlock(&cache->lock);
 
 309	}
 310	if (++index < BTRFS_NR_RAID_TYPES)
 311		goto again;
 312	up_read(&info->groups_sem);
 313}
 314
 315static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 316					 unsigned long nr_pages, int nr_items)
 317{
 318	struct super_block *sb = fs_info->sb;
 319
 320	if (down_read_trylock(&sb->s_umount)) {
 321		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 322		up_read(&sb->s_umount);
 323	} else {
 324		/*
 325		 * We needn't worry the filesystem going from r/w to r/o though
 326		 * we don't acquire ->s_umount mutex, because the filesystem
 327		 * should guarantee the delalloc inodes list be empty after
 328		 * the filesystem is readonly(all dirty pages are written to
 329		 * the disk).
 330		 */
 331		btrfs_start_delalloc_roots(fs_info, nr_items);
 332		if (!current->journal_info)
 333			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 334	}
 335}
 336
 337static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 338					u64 to_reclaim)
 339{
 340	u64 bytes;
 341	u64 nr;
 342
 343	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 344	nr = div64_u64(to_reclaim, bytes);
 345	if (!nr)
 346		nr = 1;
 347	return nr;
 348}
 349
 350#define EXTENT_SIZE_PER_ITEM	SZ_256K
 351
 352/*
 353 * shrink metadata reservation for delalloc
 354 */
 355static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
 356			    u64 orig, bool wait_ordered)
 357{
 358	struct btrfs_space_info *space_info;
 359	struct btrfs_trans_handle *trans;
 360	u64 delalloc_bytes;
 361	u64 dio_bytes;
 362	u64 async_pages;
 363	u64 items;
 364	long time_left;
 365	unsigned long nr_pages;
 366	int loops;
 367
 368	/* Calc the number of the pages we need flush for space reservation */
 369	items = calc_reclaim_items_nr(fs_info, to_reclaim);
 370	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 371
 372	trans = (struct btrfs_trans_handle *)current->journal_info;
 373	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 374
 375	delalloc_bytes = percpu_counter_sum_positive(
 376						&fs_info->delalloc_bytes);
 377	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 378	if (delalloc_bytes == 0 && dio_bytes == 0) {
 379		if (trans)
 380			return;
 381		if (wait_ordered)
 382			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 383		return;
 384	}
 385
 386	/*
 387	 * If we are doing more ordered than delalloc we need to just wait on
 388	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 389	 * that likely won't give us the space back we need.
 390	 */
 391	if (dio_bytes > delalloc_bytes)
 392		wait_ordered = true;
 393
 394	loops = 0;
 395	while ((delalloc_bytes || dio_bytes) && loops < 3) {
 396		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 397
 398		/*
 399		 * Triggers inode writeback for up to nr_pages. This will invoke
 400		 * ->writepages callback and trigger delalloc filling
 401		 *  (btrfs_run_delalloc_range()).
 402		 */
 403		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 404
 405		/*
 406		 * We need to wait for the compressed pages to start before
 407		 * we continue.
 408		 */
 409		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 410		if (!async_pages)
 411			goto skip_async;
 412
 413		/*
 414		 * Calculate how many compressed pages we want to be written
 415		 * before we continue. I.e if there are more async pages than we
 416		 * require wait_event will wait until nr_pages are written.
 417		 */
 418		if (async_pages <= nr_pages)
 419			async_pages = 0;
 420		else
 421			async_pages -= nr_pages;
 422
 423		wait_event(fs_info->async_submit_wait,
 424			   atomic_read(&fs_info->async_delalloc_pages) <=
 425			   (int)async_pages);
 426skip_async:
 427		spin_lock(&space_info->lock);
 428		if (list_empty(&space_info->tickets) &&
 429		    list_empty(&space_info->priority_tickets)) {
 430			spin_unlock(&space_info->lock);
 431			break;
 432		}
 433		spin_unlock(&space_info->lock);
 434
 435		loops++;
 436		if (wait_ordered && !trans) {
 437			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 438		} else {
 439			time_left = schedule_timeout_killable(1);
 440			if (time_left)
 441				break;
 442		}
 443		delalloc_bytes = percpu_counter_sum_positive(
 444						&fs_info->delalloc_bytes);
 445		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 446	}
 447}
 448
 449/**
 450 * maybe_commit_transaction - possibly commit the transaction if its ok to
 451 * @root - the root we're allocating for
 452 * @bytes - the number of bytes we want to reserve
 453 * @force - force the commit
 454 *
 455 * This will check to make sure that committing the transaction will actually
 456 * get us somewhere and then commit the transaction if it does.  Otherwise it
 457 * will return -ENOSPC.
 458 */
 459static int may_commit_transaction(struct btrfs_fs_info *fs_info,
 460				  struct btrfs_space_info *space_info)
 461{
 462	struct reserve_ticket *ticket = NULL;
 463	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 464	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 
 465	struct btrfs_trans_handle *trans;
 466	u64 bytes_needed;
 467	u64 reclaim_bytes = 0;
 468	u64 cur_free_bytes = 0;
 469
 470	trans = (struct btrfs_trans_handle *)current->journal_info;
 471	if (trans)
 472		return -EAGAIN;
 473
 474	spin_lock(&space_info->lock);
 475	cur_free_bytes = btrfs_space_info_used(space_info, true);
 476	if (cur_free_bytes < space_info->total_bytes)
 477		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
 478	else
 479		cur_free_bytes = 0;
 480
 481	if (!list_empty(&space_info->priority_tickets))
 482		ticket = list_first_entry(&space_info->priority_tickets,
 483					  struct reserve_ticket, list);
 484	else if (!list_empty(&space_info->tickets))
 485		ticket = list_first_entry(&space_info->tickets,
 486					  struct reserve_ticket, list);
 487	bytes_needed = (ticket) ? ticket->bytes : 0;
 488
 489	if (bytes_needed > cur_free_bytes)
 490		bytes_needed -= cur_free_bytes;
 491	else
 492		bytes_needed = 0;
 493	spin_unlock(&space_info->lock);
 494
 495	if (!bytes_needed)
 496		return 0;
 497
 498	trans = btrfs_join_transaction(fs_info->extent_root);
 499	if (IS_ERR(trans))
 500		return PTR_ERR(trans);
 501
 502	/*
 503	 * See if there is enough pinned space to make this reservation, or if
 504	 * we have block groups that are going to be freed, allowing us to
 505	 * possibly do a chunk allocation the next loop through.
 506	 */
 507	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
 508	    __percpu_counter_compare(&space_info->total_bytes_pinned,
 509				     bytes_needed,
 510				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
 511		goto commit;
 512
 513	/*
 514	 * See if there is some space in the delayed insertion reservation for
 515	 * this reservation.
 516	 */
 517	if (space_info != delayed_rsv->space_info)
 518		goto enospc;
 519
 520	spin_lock(&delayed_rsv->lock);
 521	reclaim_bytes += delayed_rsv->reserved;
 522	spin_unlock(&delayed_rsv->lock);
 523
 524	spin_lock(&delayed_refs_rsv->lock);
 525	reclaim_bytes += delayed_refs_rsv->reserved;
 526	spin_unlock(&delayed_refs_rsv->lock);
 
 
 
 
 
 527	if (reclaim_bytes >= bytes_needed)
 528		goto commit;
 529	bytes_needed -= reclaim_bytes;
 530
 531	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
 532				   bytes_needed,
 533				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
 534		goto enospc;
 535
 536commit:
 537	return btrfs_commit_transaction(trans);
 538enospc:
 539	btrfs_end_transaction(trans);
 540	return -ENOSPC;
 541}
 542
 543/*
 544 * Try to flush some data based on policy set by @state. This is only advisory
 545 * and may fail for various reasons. The caller is supposed to examine the
 546 * state of @space_info to detect the outcome.
 547 */
 548static void flush_space(struct btrfs_fs_info *fs_info,
 549		       struct btrfs_space_info *space_info, u64 num_bytes,
 550		       int state)
 551{
 552	struct btrfs_root *root = fs_info->extent_root;
 553	struct btrfs_trans_handle *trans;
 554	int nr;
 555	int ret = 0;
 556
 557	switch (state) {
 558	case FLUSH_DELAYED_ITEMS_NR:
 559	case FLUSH_DELAYED_ITEMS:
 560		if (state == FLUSH_DELAYED_ITEMS_NR)
 561			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 562		else
 563			nr = -1;
 564
 565		trans = btrfs_join_transaction(root);
 566		if (IS_ERR(trans)) {
 567			ret = PTR_ERR(trans);
 568			break;
 569		}
 570		ret = btrfs_run_delayed_items_nr(trans, nr);
 571		btrfs_end_transaction(trans);
 572		break;
 573	case FLUSH_DELALLOC:
 574	case FLUSH_DELALLOC_WAIT:
 575		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
 576				state == FLUSH_DELALLOC_WAIT);
 577		break;
 578	case FLUSH_DELAYED_REFS_NR:
 579	case FLUSH_DELAYED_REFS:
 580		trans = btrfs_join_transaction(root);
 581		if (IS_ERR(trans)) {
 582			ret = PTR_ERR(trans);
 583			break;
 584		}
 585		if (state == FLUSH_DELAYED_REFS_NR)
 586			nr = calc_reclaim_items_nr(fs_info, num_bytes);
 587		else
 588			nr = 0;
 589		btrfs_run_delayed_refs(trans, nr);
 590		btrfs_end_transaction(trans);
 591		break;
 592	case ALLOC_CHUNK:
 593	case ALLOC_CHUNK_FORCE:
 594		trans = btrfs_join_transaction(root);
 595		if (IS_ERR(trans)) {
 596			ret = PTR_ERR(trans);
 597			break;
 598		}
 599		ret = btrfs_chunk_alloc(trans,
 600				btrfs_metadata_alloc_profile(fs_info),
 601				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 602					CHUNK_ALLOC_FORCE);
 603		btrfs_end_transaction(trans);
 604		if (ret > 0 || ret == -ENOSPC)
 605			ret = 0;
 606		break;
 607	case RUN_DELAYED_IPUTS:
 608		/*
 609		 * If we have pending delayed iputs then we could free up a
 610		 * bunch of pinned space, so make sure we run the iputs before
 611		 * we do our pinned bytes check below.
 612		 */
 613		btrfs_run_delayed_iputs(fs_info);
 614		btrfs_wait_on_delayed_iputs(fs_info);
 615		break;
 616	case COMMIT_TRANS:
 617		ret = may_commit_transaction(fs_info, space_info);
 618		break;
 619	default:
 620		ret = -ENOSPC;
 621		break;
 622	}
 623
 624	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 625				ret);
 626	return;
 627}
 628
 629static inline u64
 630btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 631				 struct btrfs_space_info *space_info,
 632				 bool system_chunk)
 633{
 634	struct reserve_ticket *ticket;
 635	u64 used;
 
 636	u64 expected;
 637	u64 to_reclaim = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639	list_for_each_entry(ticket, &space_info->tickets, list)
 640		to_reclaim += ticket->bytes;
 641	list_for_each_entry(ticket, &space_info->priority_tickets, list)
 642		to_reclaim += ticket->bytes;
 643	if (to_reclaim)
 644		return to_reclaim;
 645
 646	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 647	if (can_overcommit(fs_info, space_info, to_reclaim,
 648			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 649		return 0;
 650
 651	used = btrfs_space_info_used(space_info, true);
 652
 653	if (can_overcommit(fs_info, space_info, SZ_1M,
 654			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 655		expected = div_factor_fine(space_info->total_bytes, 95);
 656	else
 657		expected = div_factor_fine(space_info->total_bytes, 90);
 658
 659	if (used > expected)
 660		to_reclaim = used - expected;
 661	else
 662		to_reclaim = 0;
 663	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 664				     space_info->bytes_reserved);
 665	return to_reclaim;
 666}
 667
 668static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
 669					struct btrfs_space_info *space_info,
 670					u64 used, bool system_chunk)
 671{
 672	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 673
 674	/* If we're just plain full then async reclaim just slows us down. */
 675	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 676		return 0;
 677
 678	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 679					      system_chunk))
 680		return 0;
 681
 682	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 683		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 684}
 685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686/*
 687 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 688 * @fs_info - fs_info for this fs
 689 * @space_info - the space info we were flushing
 690 *
 691 * We call this when we've exhausted our flushing ability and haven't made
 692 * progress in satisfying tickets.  The reservation code handles tickets in
 693 * order, so if there is a large ticket first and then smaller ones we could
 694 * very well satisfy the smaller tickets.  This will attempt to wake up any
 695 * tickets in the list to catch this case.
 696 *
 697 * This function returns true if it was able to make progress by clearing out
 698 * other tickets, or if it stumbles across a ticket that was smaller than the
 699 * first ticket.
 700 */
 701static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 702				   struct btrfs_space_info *space_info)
 703{
 704	struct reserve_ticket *ticket;
 705	u64 tickets_id = space_info->tickets_id;
 706	u64 first_ticket_bytes = 0;
 707
 708	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 709		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 710		__btrfs_dump_space_info(fs_info, space_info);
 711	}
 712
 713	while (!list_empty(&space_info->tickets) &&
 714	       tickets_id == space_info->tickets_id) {
 715		ticket = list_first_entry(&space_info->tickets,
 716					  struct reserve_ticket, list);
 717
 
 
 
 
 718		/*
 719		 * may_commit_transaction will avoid committing the transaction
 720		 * if it doesn't feel like the space reclaimed by the commit
 721		 * would result in the ticket succeeding.  However if we have a
 722		 * smaller ticket in the queue it may be small enough to be
 723		 * satisified by committing the transaction, so if any
 724		 * subsequent ticket is smaller than the first ticket go ahead
 725		 * and send us back for another loop through the enospc flushing
 726		 * code.
 727		 */
 728		if (first_ticket_bytes == 0)
 729			first_ticket_bytes = ticket->bytes;
 730		else if (first_ticket_bytes > ticket->bytes)
 731			return true;
 732
 733		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 734			btrfs_info(fs_info, "failing ticket with %llu bytes",
 735				   ticket->bytes);
 736
 737		list_del_init(&ticket->list);
 738		ticket->error = -ENOSPC;
 739		wake_up(&ticket->wait);
 740
 741		/*
 742		 * We're just throwing tickets away, so more flushing may not
 743		 * trip over btrfs_try_granting_tickets, so we need to call it
 744		 * here to see if we can make progress with the next ticket in
 745		 * the list.
 746		 */
 747		btrfs_try_granting_tickets(fs_info, space_info);
 748	}
 749	return (tickets_id != space_info->tickets_id);
 750}
 751
 752/*
 753 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 754 * will loop and continuously try to flush as long as we are making progress.
 755 * We count progress as clearing off tickets each time we have to loop.
 756 */
 757static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 758{
 759	struct btrfs_fs_info *fs_info;
 760	struct btrfs_space_info *space_info;
 761	u64 to_reclaim;
 762	int flush_state;
 763	int commit_cycles = 0;
 764	u64 last_tickets_id;
 765
 766	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 767	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 768
 769	spin_lock(&space_info->lock);
 770	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 771						      false);
 772	if (!to_reclaim) {
 773		space_info->flush = 0;
 774		spin_unlock(&space_info->lock);
 775		return;
 776	}
 777	last_tickets_id = space_info->tickets_id;
 778	spin_unlock(&space_info->lock);
 779
 780	flush_state = FLUSH_DELAYED_ITEMS_NR;
 781	do {
 782		flush_space(fs_info, space_info, to_reclaim, flush_state);
 783		spin_lock(&space_info->lock);
 784		if (list_empty(&space_info->tickets)) {
 785			space_info->flush = 0;
 786			spin_unlock(&space_info->lock);
 787			return;
 788		}
 789		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
 790							      space_info,
 791							      false);
 792		if (last_tickets_id == space_info->tickets_id) {
 793			flush_state++;
 794		} else {
 795			last_tickets_id = space_info->tickets_id;
 796			flush_state = FLUSH_DELAYED_ITEMS_NR;
 797			if (commit_cycles)
 798				commit_cycles--;
 799		}
 800
 801		/*
 802		 * We don't want to force a chunk allocation until we've tried
 803		 * pretty hard to reclaim space.  Think of the case where we
 804		 * freed up a bunch of space and so have a lot of pinned space
 805		 * to reclaim.  We would rather use that than possibly create a
 806		 * underutilized metadata chunk.  So if this is our first run
 807		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
 808		 * commit the transaction.  If nothing has changed the next go
 809		 * around then we can force a chunk allocation.
 810		 */
 811		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
 812			flush_state++;
 813
 814		if (flush_state > COMMIT_TRANS) {
 815			commit_cycles++;
 816			if (commit_cycles > 2) {
 817				if (maybe_fail_all_tickets(fs_info, space_info)) {
 818					flush_state = FLUSH_DELAYED_ITEMS_NR;
 819					commit_cycles--;
 820				} else {
 821					space_info->flush = 0;
 822				}
 823			} else {
 824				flush_state = FLUSH_DELAYED_ITEMS_NR;
 825			}
 826		}
 827		spin_unlock(&space_info->lock);
 828	} while (flush_state <= COMMIT_TRANS);
 829}
 830
 831void btrfs_init_async_reclaim_work(struct work_struct *work)
 832{
 833	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 834}
 835
 836static const enum btrfs_flush_state priority_flush_states[] = {
 837	FLUSH_DELAYED_ITEMS_NR,
 838	FLUSH_DELAYED_ITEMS,
 839	ALLOC_CHUNK,
 840};
 841
 842static const enum btrfs_flush_state evict_flush_states[] = {
 843	FLUSH_DELAYED_ITEMS_NR,
 844	FLUSH_DELAYED_ITEMS,
 845	FLUSH_DELAYED_REFS_NR,
 846	FLUSH_DELAYED_REFS,
 847	FLUSH_DELALLOC,
 848	FLUSH_DELALLOC_WAIT,
 849	ALLOC_CHUNK,
 850	COMMIT_TRANS,
 851};
 852
 853static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
 854				struct btrfs_space_info *space_info,
 855				struct reserve_ticket *ticket,
 856				const enum btrfs_flush_state *states,
 857				int states_nr)
 858{
 859	u64 to_reclaim;
 860	int flush_state;
 861
 862	spin_lock(&space_info->lock);
 863	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 864						      false);
 865	if (!to_reclaim) {
 866		spin_unlock(&space_info->lock);
 867		return;
 868	}
 869	spin_unlock(&space_info->lock);
 870
 871	flush_state = 0;
 872	do {
 873		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
 874		flush_state++;
 875		spin_lock(&space_info->lock);
 876		if (ticket->bytes == 0) {
 877			spin_unlock(&space_info->lock);
 878			return;
 879		}
 880		spin_unlock(&space_info->lock);
 881	} while (flush_state < states_nr);
 882}
 883
 884static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
 885				struct btrfs_space_info *space_info,
 886				struct reserve_ticket *ticket)
 887
 888{
 889	DEFINE_WAIT(wait);
 890	int ret = 0;
 891
 892	spin_lock(&space_info->lock);
 893	while (ticket->bytes > 0 && ticket->error == 0) {
 894		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
 895		if (ret) {
 896			/*
 897			 * Delete us from the list. After we unlock the space
 898			 * info, we don't want the async reclaim job to reserve
 899			 * space for this ticket. If that would happen, then the
 900			 * ticket's task would not known that space was reserved
 901			 * despite getting an error, resulting in a space leak
 902			 * (bytes_may_use counter of our space_info).
 903			 */
 904			list_del_init(&ticket->list);
 905			ticket->error = -EINTR;
 906			break;
 907		}
 908		spin_unlock(&space_info->lock);
 909
 910		schedule();
 911
 912		finish_wait(&ticket->wait, &wait);
 913		spin_lock(&space_info->lock);
 914	}
 915	spin_unlock(&space_info->lock);
 916}
 917
 918/**
 919 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
 920 * @fs_info - the fs
 921 * @space_info - the space_info for the reservation
 922 * @ticket - the ticket for the reservation
 923 * @flush - how much we can flush
 924 *
 925 * This does the work of figuring out how to flush for the ticket, waiting for
 926 * the reservation, and returning the appropriate error if there is one.
 927 */
 928static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
 929				 struct btrfs_space_info *space_info,
 930				 struct reserve_ticket *ticket,
 931				 enum btrfs_reserve_flush_enum flush)
 932{
 933	int ret;
 934
 935	switch (flush) {
 936	case BTRFS_RESERVE_FLUSH_ALL:
 
 937		wait_reserve_ticket(fs_info, space_info, ticket);
 938		break;
 939	case BTRFS_RESERVE_FLUSH_LIMIT:
 940		priority_reclaim_metadata_space(fs_info, space_info, ticket,
 941						priority_flush_states,
 942						ARRAY_SIZE(priority_flush_states));
 943		break;
 944	case BTRFS_RESERVE_FLUSH_EVICT:
 945		priority_reclaim_metadata_space(fs_info, space_info, ticket,
 946						evict_flush_states,
 947						ARRAY_SIZE(evict_flush_states));
 948		break;
 949	default:
 950		ASSERT(0);
 951		break;
 952	}
 953
 954	spin_lock(&space_info->lock);
 955	ret = ticket->error;
 956	if (ticket->bytes || ticket->error) {
 957		/*
 958		 * Need to delete here for priority tickets. For regular tickets
 959		 * either the async reclaim job deletes the ticket from the list
 960		 * or we delete it ourselves at wait_reserve_ticket().
 
 
 961		 */
 962		list_del_init(&ticket->list);
 
 
 
 
 963		if (!ret)
 964			ret = -ENOSPC;
 965	}
 966	spin_unlock(&space_info->lock);
 967	ASSERT(list_empty(&ticket->list));
 968	/*
 969	 * Check that we can't have an error set if the reservation succeeded,
 970	 * as that would confuse tasks and lead them to error out without
 971	 * releasing reserved space (if an error happens the expectation is that
 972	 * space wasn't reserved at all).
 973	 */
 974	ASSERT(!(ticket->bytes == 0 && ticket->error));
 975	return ret;
 976}
 977
 
 
 
 
 
 
 
 
 
 
 978/**
 979 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 980 * @root - the root we're allocating for
 981 * @space_info - the space info we want to allocate from
 982 * @orig_bytes - the number of bytes we want
 983 * @flush - whether or not we can flush to make our reservation
 984 *
 985 * This will reserve orig_bytes number of bytes from the space info associated
 986 * with the block_rsv.  If there is not enough space it will make an attempt to
 987 * flush out space to make room.  It will do this by flushing delalloc if
 988 * possible or committing the transaction.  If flush is 0 then no attempts to
 989 * regain reservations will be made and this will fail if there is not enough
 990 * space already.
 991 */
 992static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
 993				    struct btrfs_space_info *space_info,
 994				    u64 orig_bytes,
 995				    enum btrfs_reserve_flush_enum flush,
 996				    bool system_chunk)
 997{
 998	struct reserve_ticket ticket;
 999	u64 used;
1000	int ret = 0;
1001	bool pending_tickets;
1002
1003	ASSERT(orig_bytes);
1004	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1005
1006	spin_lock(&space_info->lock);
1007	ret = -ENOSPC;
1008	used = btrfs_space_info_used(space_info, true);
1009	pending_tickets = !list_empty(&space_info->tickets) ||
1010		!list_empty(&space_info->priority_tickets);
 
 
 
 
 
 
 
 
 
1011
1012	/*
1013	 * Carry on if we have enough space (short-circuit) OR call
1014	 * can_overcommit() to ensure we can overcommit to continue.
1015	 */
1016	if (!pending_tickets &&
1017	    ((used + orig_bytes <= space_info->total_bytes) ||
1018	     can_overcommit(fs_info, space_info, orig_bytes, flush,
1019			   system_chunk))) {
1020		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1021						      orig_bytes);
1022		ret = 0;
1023	}
1024
1025	/*
1026	 * If we couldn't make a reservation then setup our reservation ticket
1027	 * and kick the async worker if it's not already running.
1028	 *
1029	 * If we are a priority flusher then we just need to add our ticket to
1030	 * the list and we will do our own flushing further down.
1031	 */
1032	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1033		ticket.bytes = orig_bytes;
1034		ticket.error = 0;
 
1035		init_waitqueue_head(&ticket.wait);
1036		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
 
 
1037			list_add_tail(&ticket.list, &space_info->tickets);
1038			if (!space_info->flush) {
1039				space_info->flush = 1;
1040				trace_btrfs_trigger_flush(fs_info,
1041							  space_info->flags,
1042							  orig_bytes, flush,
1043							  "enospc");
1044				queue_work(system_unbound_wq,
1045					   &fs_info->async_reclaim_work);
1046			}
1047		} else {
1048			list_add_tail(&ticket.list,
1049				      &space_info->priority_tickets);
1050		}
1051	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1052		used += orig_bytes;
1053		/*
1054		 * We will do the space reservation dance during log replay,
1055		 * which means we won't have fs_info->fs_root set, so don't do
1056		 * the async reclaim as we will panic.
1057		 */
1058		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1059		    need_do_async_reclaim(fs_info, space_info,
1060					  used, system_chunk) &&
1061		    !work_busy(&fs_info->async_reclaim_work)) {
1062			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1063						  orig_bytes, flush, "preempt");
1064			queue_work(system_unbound_wq,
1065				   &fs_info->async_reclaim_work);
1066		}
1067	}
1068	spin_unlock(&space_info->lock);
1069	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1070		return ret;
1071
1072	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1073}
1074
1075/**
1076 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1077 * @root - the root we're allocating for
1078 * @block_rsv - the block_rsv we're allocating for
1079 * @orig_bytes - the number of bytes we want
1080 * @flush - whether or not we can flush to make our reservation
1081 *
1082 * This will reserve orig_bytes number of bytes from the space info associated
1083 * with the block_rsv.  If there is not enough space it will make an attempt to
1084 * flush out space to make room.  It will do this by flushing delalloc if
1085 * possible or committing the transaction.  If flush is 0 then no attempts to
1086 * regain reservations will be made and this will fail if there is not enough
1087 * space already.
1088 */
1089int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1090				 struct btrfs_block_rsv *block_rsv,
1091				 u64 orig_bytes,
1092				 enum btrfs_reserve_flush_enum flush)
1093{
1094	struct btrfs_fs_info *fs_info = root->fs_info;
1095	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1096	int ret;
1097	bool system_chunk = (root == fs_info->chunk_root);
1098
1099	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1100				       orig_bytes, flush, system_chunk);
1101	if (ret == -ENOSPC &&
1102	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1103		if (block_rsv != global_rsv &&
1104		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1105			ret = 0;
1106	}
1107	if (ret == -ENOSPC) {
1108		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1109					      block_rsv->space_info->flags,
1110					      orig_bytes, 1);
1111
1112		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1113			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1114					      orig_bytes, 0);
1115	}
1116	return ret;
1117}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
  12
  13/*
  14 * HOW DOES SPACE RESERVATION WORK
  15 *
  16 * If you want to know about delalloc specifically, there is a separate comment
  17 * for that with the delalloc code.  This comment is about how the whole system
  18 * works generally.
  19 *
  20 * BASIC CONCEPTS
  21 *
  22 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
  23 *   There's a description of the bytes_ fields with the struct declaration,
  24 *   refer to that for specifics on each field.  Suffice it to say that for
  25 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
  26 *   determining if there is space to make an allocation.  There is a space_info
  27 *   for METADATA, SYSTEM, and DATA areas.
  28 *
  29 *   2) block_rsv's.  These are basically buckets for every different type of
  30 *   metadata reservation we have.  You can see the comment in the block_rsv
  31 *   code on the rules for each type, but generally block_rsv->reserved is how
  32 *   much space is accounted for in space_info->bytes_may_use.
  33 *
  34 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
  35 *   on the number of items we will want to modify.  We have one for changing
  36 *   items, and one for inserting new items.  Generally we use these helpers to
  37 *   determine the size of the block reserves, and then use the actual bytes
  38 *   values to adjust the space_info counters.
  39 *
  40 * MAKING RESERVATIONS, THE NORMAL CASE
  41 *
  42 *   We call into either btrfs_reserve_data_bytes() or
  43 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
  44 *   num_bytes we want to reserve.
  45 *
  46 *   ->reserve
  47 *     space_info->bytes_may_reserve += num_bytes
  48 *
  49 *   ->extent allocation
  50 *     Call btrfs_add_reserved_bytes() which does
  51 *     space_info->bytes_may_reserve -= num_bytes
  52 *     space_info->bytes_reserved += extent_bytes
  53 *
  54 *   ->insert reference
  55 *     Call btrfs_update_block_group() which does
  56 *     space_info->bytes_reserved -= extent_bytes
  57 *     space_info->bytes_used += extent_bytes
  58 *
  59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
  60 *
  61 *   Assume we are unable to simply make the reservation because we do not have
  62 *   enough space
  63 *
  64 *   -> __reserve_bytes
  65 *     create a reserve_ticket with ->bytes set to our reservation, add it to
  66 *     the tail of space_info->tickets, kick async flush thread
  67 *
  68 *   ->handle_reserve_ticket
  69 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
  70 *     on the ticket.
  71 *
  72 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
  73 *     Flushes various things attempting to free up space.
  74 *
  75 *   -> btrfs_try_granting_tickets()
  76 *     This is called by anything that either subtracts space from
  77 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
  78 *     space_info->total_bytes.  This loops through the ->priority_tickets and
  79 *     then the ->tickets list checking to see if the reservation can be
  80 *     completed.  If it can the space is added to space_info->bytes_may_use and
  81 *     the ticket is woken up.
  82 *
  83 *   -> ticket wakeup
  84 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
  85 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
  86 *     were interrupted.)
  87 *
  88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
  89 *
  90 *   Same as the above, except we add ourselves to the
  91 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
  92 *   call flush_space() ourselves for the states that are safe for us to call
  93 *   without deadlocking and hope for the best.
  94 *
  95 * THE FLUSHING STATES
  96 *
  97 *   Generally speaking we will have two cases for each state, a "nice" state
  98 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
  99 *   reduce the locking over head on the various trees, and even to keep from
 100 *   doing any work at all in the case of delayed refs.  Each of these delayed
 101 *   things however hold reservations, and so letting them run allows us to
 102 *   reclaim space so we can make new reservations.
 103 *
 104 *   FLUSH_DELAYED_ITEMS
 105 *     Every inode has a delayed item to update the inode.  Take a simple write
 106 *     for example, we would update the inode item at write time to update the
 107 *     mtime, and then again at finish_ordered_io() time in order to update the
 108 *     isize or bytes.  We keep these delayed items to coalesce these operations
 109 *     into a single operation done on demand.  These are an easy way to reclaim
 110 *     metadata space.
 111 *
 112 *   FLUSH_DELALLOC
 113 *     Look at the delalloc comment to get an idea of how much space is reserved
 114 *     for delayed allocation.  We can reclaim some of this space simply by
 115 *     running delalloc, but usually we need to wait for ordered extents to
 116 *     reclaim the bulk of this space.
 117 *
 118 *   FLUSH_DELAYED_REFS
 119 *     We have a block reserve for the outstanding delayed refs space, and every
 120 *     delayed ref operation holds a reservation.  Running these is a quick way
 121 *     to reclaim space, but we want to hold this until the end because COW can
 122 *     churn a lot and we can avoid making some extent tree modifications if we
 123 *     are able to delay for as long as possible.
 124 *
 125 *   ALLOC_CHUNK
 126 *     We will skip this the first time through space reservation, because of
 127 *     overcommit and we don't want to have a lot of useless metadata space when
 128 *     our worst case reservations will likely never come true.
 129 *
 130 *   RUN_DELAYED_IPUTS
 131 *     If we're freeing inodes we're likely freeing checksums, file extent
 132 *     items, and extent tree items.  Loads of space could be freed up by these
 133 *     operations, however they won't be usable until the transaction commits.
 134 *
 135 *   COMMIT_TRANS
 136 *     may_commit_transaction() is the ultimate arbiter on whether we commit the
 137 *     transaction or not.  In order to avoid constantly churning we do all the
 138 *     above flushing first and then commit the transaction as the last resort.
 139 *     However we need to take into account things like pinned space that would
 140 *     be freed, plus any delayed work we may not have gotten rid of in the case
 141 *     of metadata.
 142 *
 143 * OVERCOMMIT
 144 *
 145 *   Because we hold so many reservations for metadata we will allow you to
 146 *   reserve more space than is currently free in the currently allocate
 147 *   metadata space.  This only happens with metadata, data does not allow
 148 *   overcommitting.
 149 *
 150 *   You can see the current logic for when we allow overcommit in
 151 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
 152 *   is no unallocated space to be had, all reservations are kept within the
 153 *   free space in the allocated metadata chunks.
 154 *
 155 *   Because of overcommitting, you generally want to use the
 156 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
 157 *   thing with or without extra unallocated space.
 158 */
 159
 160u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
 161			  bool may_use_included)
 162{
 163	ASSERT(s_info);
 164	return s_info->bytes_used + s_info->bytes_reserved +
 165		s_info->bytes_pinned + s_info->bytes_readonly +
 166		(may_use_included ? s_info->bytes_may_use : 0);
 167}
 168
 169/*
 170 * after adding space to the filesystem, we need to clear the full flags
 171 * on all the space infos.
 172 */
 173void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 174{
 175	struct list_head *head = &info->space_info;
 176	struct btrfs_space_info *found;
 177
 178	rcu_read_lock();
 179	list_for_each_entry_rcu(found, head, list)
 180		found->full = 0;
 181	rcu_read_unlock();
 182}
 183
 184static int create_space_info(struct btrfs_fs_info *info, u64 flags)
 185{
 186
 187	struct btrfs_space_info *space_info;
 188	int i;
 189	int ret;
 190
 191	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
 192	if (!space_info)
 193		return -ENOMEM;
 194
 195	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
 196				 GFP_KERNEL);
 197	if (ret) {
 198		kfree(space_info);
 199		return ret;
 200	}
 201
 202	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 203		INIT_LIST_HEAD(&space_info->block_groups[i]);
 204	init_rwsem(&space_info->groups_sem);
 205	spin_lock_init(&space_info->lock);
 206	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 207	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 
 208	INIT_LIST_HEAD(&space_info->ro_bgs);
 209	INIT_LIST_HEAD(&space_info->tickets);
 210	INIT_LIST_HEAD(&space_info->priority_tickets);
 211
 212	ret = btrfs_sysfs_add_space_info_type(info, space_info);
 213	if (ret)
 214		return ret;
 215
 216	list_add_rcu(&space_info->list, &info->space_info);
 217	if (flags & BTRFS_BLOCK_GROUP_DATA)
 218		info->data_sinfo = space_info;
 219
 220	return ret;
 221}
 222
 223int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
 224{
 225	struct btrfs_super_block *disk_super;
 226	u64 features;
 227	u64 flags;
 228	int mixed = 0;
 229	int ret;
 230
 231	disk_super = fs_info->super_copy;
 232	if (!btrfs_super_root(disk_super))
 233		return -EINVAL;
 234
 235	features = btrfs_super_incompat_flags(disk_super);
 236	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 237		mixed = 1;
 238
 239	flags = BTRFS_BLOCK_GROUP_SYSTEM;
 240	ret = create_space_info(fs_info, flags);
 241	if (ret)
 242		goto out;
 243
 244	if (mixed) {
 245		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 246		ret = create_space_info(fs_info, flags);
 247	} else {
 248		flags = BTRFS_BLOCK_GROUP_METADATA;
 249		ret = create_space_info(fs_info, flags);
 250		if (ret)
 251			goto out;
 252
 253		flags = BTRFS_BLOCK_GROUP_DATA;
 254		ret = create_space_info(fs_info, flags);
 255	}
 256out:
 257	return ret;
 258}
 259
 260void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 261			     u64 total_bytes, u64 bytes_used,
 262			     u64 bytes_readonly,
 263			     struct btrfs_space_info **space_info)
 264{
 265	struct btrfs_space_info *found;
 266	int factor;
 267
 268	factor = btrfs_bg_type_to_factor(flags);
 269
 270	found = btrfs_find_space_info(info, flags);
 271	ASSERT(found);
 272	spin_lock(&found->lock);
 273	found->total_bytes += total_bytes;
 274	found->disk_total += total_bytes * factor;
 275	found->bytes_used += bytes_used;
 276	found->disk_used += bytes_used * factor;
 277	found->bytes_readonly += bytes_readonly;
 278	if (total_bytes > 0)
 279		found->full = 0;
 280	btrfs_try_granting_tickets(info, found);
 281	spin_unlock(&found->lock);
 282	*space_info = found;
 283}
 284
 285struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 286					       u64 flags)
 287{
 288	struct list_head *head = &info->space_info;
 289	struct btrfs_space_info *found;
 290
 291	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 292
 293	rcu_read_lock();
 294	list_for_each_entry_rcu(found, head, list) {
 295		if (found->flags & flags) {
 296			rcu_read_unlock();
 297			return found;
 298		}
 299	}
 300	rcu_read_unlock();
 301	return NULL;
 302}
 303
 304static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 305{
 306	return (global->size << 1);
 307}
 308
 309static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
 310			  struct btrfs_space_info *space_info,
 311			  enum btrfs_reserve_flush_enum flush)
 
 312{
 313	u64 profile;
 314	u64 avail;
 
 315	int factor;
 316
 317	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
 
 
 
 
 318		profile = btrfs_system_alloc_profile(fs_info);
 319	else
 320		profile = btrfs_metadata_alloc_profile(fs_info);
 321
 
 322	avail = atomic64_read(&fs_info->free_chunk_space);
 323
 324	/*
 325	 * If we have dup, raid1 or raid10 then only half of the free
 326	 * space is actually usable.  For raid56, the space info used
 327	 * doesn't include the parity drive, so we don't have to
 328	 * change the math
 329	 */
 330	factor = btrfs_bg_type_to_factor(profile);
 331	avail = div_u64(avail, factor);
 332
 333	/*
 334	 * If we aren't flushing all things, let us overcommit up to
 335	 * 1/2th of the space. If we can flush, don't let us overcommit
 336	 * too much, let it overcommit up to 1/8 of the space.
 337	 */
 338	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 339		avail >>= 3;
 340	else
 341		avail >>= 1;
 342	return avail;
 343}
 344
 345int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
 346			 struct btrfs_space_info *space_info, u64 bytes,
 347			 enum btrfs_reserve_flush_enum flush)
 348{
 349	u64 avail;
 350	u64 used;
 351
 352	/* Don't overcommit when in mixed mode */
 353	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 354		return 0;
 355
 356	used = btrfs_space_info_used(space_info, true);
 357	avail = calc_available_free_space(fs_info, space_info, flush);
 358
 359	if (used + bytes < space_info->total_bytes + avail)
 360		return 1;
 361	return 0;
 362}
 363
 364static void remove_ticket(struct btrfs_space_info *space_info,
 365			  struct reserve_ticket *ticket)
 366{
 367	if (!list_empty(&ticket->list)) {
 368		list_del_init(&ticket->list);
 369		ASSERT(space_info->reclaim_size >= ticket->bytes);
 370		space_info->reclaim_size -= ticket->bytes;
 371	}
 372}
 373
 374/*
 375 * This is for space we already have accounted in space_info->bytes_may_use, so
 376 * basically when we're returning space from block_rsv's.
 377 */
 378void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 379				struct btrfs_space_info *space_info)
 380{
 381	struct list_head *head;
 382	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 383
 384	lockdep_assert_held(&space_info->lock);
 385
 386	head = &space_info->priority_tickets;
 387again:
 388	while (!list_empty(head)) {
 389		struct reserve_ticket *ticket;
 390		u64 used = btrfs_space_info_used(space_info, true);
 391
 392		ticket = list_first_entry(head, struct reserve_ticket, list);
 393
 394		/* Check and see if our ticket can be satisified now. */
 395		if ((used + ticket->bytes <= space_info->total_bytes) ||
 396		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
 397					 flush)) {
 398			btrfs_space_info_update_bytes_may_use(fs_info,
 399							      space_info,
 400							      ticket->bytes);
 401			remove_ticket(space_info, ticket);
 402			ticket->bytes = 0;
 403			space_info->tickets_id++;
 404			wake_up(&ticket->wait);
 405		} else {
 406			break;
 407		}
 408	}
 409
 410	if (head == &space_info->priority_tickets) {
 411		head = &space_info->tickets;
 412		flush = BTRFS_RESERVE_FLUSH_ALL;
 413		goto again;
 414	}
 415}
 416
 417#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 418do {									\
 419	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 420	spin_lock(&__rsv->lock);					\
 421	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 422		   __rsv->size, __rsv->reserved);			\
 423	spin_unlock(&__rsv->lock);					\
 424} while (0)
 425
 426static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 427				    struct btrfs_space_info *info)
 428{
 429	lockdep_assert_held(&info->lock);
 430
 431	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 432		   info->flags,
 433		   info->total_bytes - btrfs_space_info_used(info, true),
 434		   info->full ? "" : "not ");
 435	btrfs_info(fs_info,
 436		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 437		info->total_bytes, info->bytes_used, info->bytes_pinned,
 438		info->bytes_reserved, info->bytes_may_use,
 439		info->bytes_readonly);
 440
 441	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 442	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 443	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 444	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 445	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 446
 447}
 448
 449void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 450			   struct btrfs_space_info *info, u64 bytes,
 451			   int dump_block_groups)
 452{
 453	struct btrfs_block_group *cache;
 454	int index = 0;
 455
 456	spin_lock(&info->lock);
 457	__btrfs_dump_space_info(fs_info, info);
 458	spin_unlock(&info->lock);
 459
 460	if (!dump_block_groups)
 461		return;
 462
 463	down_read(&info->groups_sem);
 464again:
 465	list_for_each_entry(cache, &info->block_groups[index], list) {
 466		spin_lock(&cache->lock);
 467		btrfs_info(fs_info,
 468			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 469			cache->start, cache->length, cache->used, cache->pinned,
 
 470			cache->reserved, cache->ro ? "[readonly]" : "");
 
 471		spin_unlock(&cache->lock);
 472		btrfs_dump_free_space(cache, bytes);
 473	}
 474	if (++index < BTRFS_NR_RAID_TYPES)
 475		goto again;
 476	up_read(&info->groups_sem);
 477}
 478
 479static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 480					 unsigned long nr_pages, int nr_items)
 481{
 482	struct super_block *sb = fs_info->sb;
 483
 484	if (down_read_trylock(&sb->s_umount)) {
 485		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 486		up_read(&sb->s_umount);
 487	} else {
 488		/*
 489		 * We needn't worry the filesystem going from r/w to r/o though
 490		 * we don't acquire ->s_umount mutex, because the filesystem
 491		 * should guarantee the delalloc inodes list be empty after
 492		 * the filesystem is readonly(all dirty pages are written to
 493		 * the disk).
 494		 */
 495		btrfs_start_delalloc_roots(fs_info, nr_items);
 496		if (!current->journal_info)
 497			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 498	}
 499}
 500
 501static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 502					u64 to_reclaim)
 503{
 504	u64 bytes;
 505	u64 nr;
 506
 507	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 508	nr = div64_u64(to_reclaim, bytes);
 509	if (!nr)
 510		nr = 1;
 511	return nr;
 512}
 513
 514#define EXTENT_SIZE_PER_ITEM	SZ_256K
 515
 516/*
 517 * shrink metadata reservation for delalloc
 518 */
 519static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
 520			    u64 orig, bool wait_ordered)
 521{
 522	struct btrfs_space_info *space_info;
 523	struct btrfs_trans_handle *trans;
 524	u64 delalloc_bytes;
 525	u64 dio_bytes;
 526	u64 async_pages;
 527	u64 items;
 528	long time_left;
 529	unsigned long nr_pages;
 530	int loops;
 531
 532	/* Calc the number of the pages we need flush for space reservation */
 533	items = calc_reclaim_items_nr(fs_info, to_reclaim);
 534	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 535
 536	trans = (struct btrfs_trans_handle *)current->journal_info;
 537	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 538
 539	delalloc_bytes = percpu_counter_sum_positive(
 540						&fs_info->delalloc_bytes);
 541	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 542	if (delalloc_bytes == 0 && dio_bytes == 0) {
 543		if (trans)
 544			return;
 545		if (wait_ordered)
 546			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 547		return;
 548	}
 549
 550	/*
 551	 * If we are doing more ordered than delalloc we need to just wait on
 552	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 553	 * that likely won't give us the space back we need.
 554	 */
 555	if (dio_bytes > delalloc_bytes)
 556		wait_ordered = true;
 557
 558	loops = 0;
 559	while ((delalloc_bytes || dio_bytes) && loops < 3) {
 560		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 561
 562		/*
 563		 * Triggers inode writeback for up to nr_pages. This will invoke
 564		 * ->writepages callback and trigger delalloc filling
 565		 *  (btrfs_run_delalloc_range()).
 566		 */
 567		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 568
 569		/*
 570		 * We need to wait for the compressed pages to start before
 571		 * we continue.
 572		 */
 573		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 574		if (!async_pages)
 575			goto skip_async;
 576
 577		/*
 578		 * Calculate how many compressed pages we want to be written
 579		 * before we continue. I.e if there are more async pages than we
 580		 * require wait_event will wait until nr_pages are written.
 581		 */
 582		if (async_pages <= nr_pages)
 583			async_pages = 0;
 584		else
 585			async_pages -= nr_pages;
 586
 587		wait_event(fs_info->async_submit_wait,
 588			   atomic_read(&fs_info->async_delalloc_pages) <=
 589			   (int)async_pages);
 590skip_async:
 591		spin_lock(&space_info->lock);
 592		if (list_empty(&space_info->tickets) &&
 593		    list_empty(&space_info->priority_tickets)) {
 594			spin_unlock(&space_info->lock);
 595			break;
 596		}
 597		spin_unlock(&space_info->lock);
 598
 599		loops++;
 600		if (wait_ordered && !trans) {
 601			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 602		} else {
 603			time_left = schedule_timeout_killable(1);
 604			if (time_left)
 605				break;
 606		}
 607		delalloc_bytes = percpu_counter_sum_positive(
 608						&fs_info->delalloc_bytes);
 609		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 610	}
 611}
 612
 613/**
 614 * maybe_commit_transaction - possibly commit the transaction if its ok to
 615 * @root - the root we're allocating for
 616 * @bytes - the number of bytes we want to reserve
 617 * @force - force the commit
 618 *
 619 * This will check to make sure that committing the transaction will actually
 620 * get us somewhere and then commit the transaction if it does.  Otherwise it
 621 * will return -ENOSPC.
 622 */
 623static int may_commit_transaction(struct btrfs_fs_info *fs_info,
 624				  struct btrfs_space_info *space_info)
 625{
 626	struct reserve_ticket *ticket = NULL;
 627	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 628	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 629	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
 630	struct btrfs_trans_handle *trans;
 631	u64 bytes_needed;
 632	u64 reclaim_bytes = 0;
 633	u64 cur_free_bytes = 0;
 634
 635	trans = (struct btrfs_trans_handle *)current->journal_info;
 636	if (trans)
 637		return -EAGAIN;
 638
 639	spin_lock(&space_info->lock);
 640	cur_free_bytes = btrfs_space_info_used(space_info, true);
 641	if (cur_free_bytes < space_info->total_bytes)
 642		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
 643	else
 644		cur_free_bytes = 0;
 645
 646	if (!list_empty(&space_info->priority_tickets))
 647		ticket = list_first_entry(&space_info->priority_tickets,
 648					  struct reserve_ticket, list);
 649	else if (!list_empty(&space_info->tickets))
 650		ticket = list_first_entry(&space_info->tickets,
 651					  struct reserve_ticket, list);
 652	bytes_needed = (ticket) ? ticket->bytes : 0;
 653
 654	if (bytes_needed > cur_free_bytes)
 655		bytes_needed -= cur_free_bytes;
 656	else
 657		bytes_needed = 0;
 658	spin_unlock(&space_info->lock);
 659
 660	if (!bytes_needed)
 661		return 0;
 662
 663	trans = btrfs_join_transaction(fs_info->extent_root);
 664	if (IS_ERR(trans))
 665		return PTR_ERR(trans);
 666
 667	/*
 668	 * See if there is enough pinned space to make this reservation, or if
 669	 * we have block groups that are going to be freed, allowing us to
 670	 * possibly do a chunk allocation the next loop through.
 671	 */
 672	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
 673	    __percpu_counter_compare(&space_info->total_bytes_pinned,
 674				     bytes_needed,
 675				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
 676		goto commit;
 677
 678	/*
 679	 * See if there is some space in the delayed insertion reservation for
 680	 * this reservation.
 681	 */
 682	if (space_info != delayed_rsv->space_info)
 683		goto enospc;
 684
 685	spin_lock(&delayed_rsv->lock);
 686	reclaim_bytes += delayed_rsv->reserved;
 687	spin_unlock(&delayed_rsv->lock);
 688
 689	spin_lock(&delayed_refs_rsv->lock);
 690	reclaim_bytes += delayed_refs_rsv->reserved;
 691	spin_unlock(&delayed_refs_rsv->lock);
 692
 693	spin_lock(&trans_rsv->lock);
 694	reclaim_bytes += trans_rsv->reserved;
 695	spin_unlock(&trans_rsv->lock);
 696
 697	if (reclaim_bytes >= bytes_needed)
 698		goto commit;
 699	bytes_needed -= reclaim_bytes;
 700
 701	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
 702				   bytes_needed,
 703				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
 704		goto enospc;
 705
 706commit:
 707	return btrfs_commit_transaction(trans);
 708enospc:
 709	btrfs_end_transaction(trans);
 710	return -ENOSPC;
 711}
 712
 713/*
 714 * Try to flush some data based on policy set by @state. This is only advisory
 715 * and may fail for various reasons. The caller is supposed to examine the
 716 * state of @space_info to detect the outcome.
 717 */
 718static void flush_space(struct btrfs_fs_info *fs_info,
 719		       struct btrfs_space_info *space_info, u64 num_bytes,
 720		       int state)
 721{
 722	struct btrfs_root *root = fs_info->extent_root;
 723	struct btrfs_trans_handle *trans;
 724	int nr;
 725	int ret = 0;
 726
 727	switch (state) {
 728	case FLUSH_DELAYED_ITEMS_NR:
 729	case FLUSH_DELAYED_ITEMS:
 730		if (state == FLUSH_DELAYED_ITEMS_NR)
 731			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 732		else
 733			nr = -1;
 734
 735		trans = btrfs_join_transaction(root);
 736		if (IS_ERR(trans)) {
 737			ret = PTR_ERR(trans);
 738			break;
 739		}
 740		ret = btrfs_run_delayed_items_nr(trans, nr);
 741		btrfs_end_transaction(trans);
 742		break;
 743	case FLUSH_DELALLOC:
 744	case FLUSH_DELALLOC_WAIT:
 745		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
 746				state == FLUSH_DELALLOC_WAIT);
 747		break;
 748	case FLUSH_DELAYED_REFS_NR:
 749	case FLUSH_DELAYED_REFS:
 750		trans = btrfs_join_transaction(root);
 751		if (IS_ERR(trans)) {
 752			ret = PTR_ERR(trans);
 753			break;
 754		}
 755		if (state == FLUSH_DELAYED_REFS_NR)
 756			nr = calc_reclaim_items_nr(fs_info, num_bytes);
 757		else
 758			nr = 0;
 759		btrfs_run_delayed_refs(trans, nr);
 760		btrfs_end_transaction(trans);
 761		break;
 762	case ALLOC_CHUNK:
 763	case ALLOC_CHUNK_FORCE:
 764		trans = btrfs_join_transaction(root);
 765		if (IS_ERR(trans)) {
 766			ret = PTR_ERR(trans);
 767			break;
 768		}
 769		ret = btrfs_chunk_alloc(trans,
 770				btrfs_metadata_alloc_profile(fs_info),
 771				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 772					CHUNK_ALLOC_FORCE);
 773		btrfs_end_transaction(trans);
 774		if (ret > 0 || ret == -ENOSPC)
 775			ret = 0;
 776		break;
 777	case RUN_DELAYED_IPUTS:
 778		/*
 779		 * If we have pending delayed iputs then we could free up a
 780		 * bunch of pinned space, so make sure we run the iputs before
 781		 * we do our pinned bytes check below.
 782		 */
 783		btrfs_run_delayed_iputs(fs_info);
 784		btrfs_wait_on_delayed_iputs(fs_info);
 785		break;
 786	case COMMIT_TRANS:
 787		ret = may_commit_transaction(fs_info, space_info);
 788		break;
 789	default:
 790		ret = -ENOSPC;
 791		break;
 792	}
 793
 794	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 795				ret);
 796	return;
 797}
 798
 799static inline u64
 800btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 801				 struct btrfs_space_info *space_info)
 
 802{
 
 803	u64 used;
 804	u64 avail;
 805	u64 expected;
 806	u64 to_reclaim = space_info->reclaim_size;
 807
 808	lockdep_assert_held(&space_info->lock);
 809
 810	avail = calc_available_free_space(fs_info, space_info,
 811					  BTRFS_RESERVE_FLUSH_ALL);
 812	used = btrfs_space_info_used(space_info, true);
 813
 814	/*
 815	 * We may be flushing because suddenly we have less space than we had
 816	 * before, and now we're well over-committed based on our current free
 817	 * space.  If that's the case add in our overage so we make sure to put
 818	 * appropriate pressure on the flushing state machine.
 819	 */
 820	if (space_info->total_bytes + avail < used)
 821		to_reclaim += used - (space_info->total_bytes + avail);
 822
 
 
 
 
 823	if (to_reclaim)
 824		return to_reclaim;
 825
 826	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 827	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
 828				 BTRFS_RESERVE_FLUSH_ALL))
 829		return 0;
 830
 831	used = btrfs_space_info_used(space_info, true);
 832
 833	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
 834				 BTRFS_RESERVE_FLUSH_ALL))
 835		expected = div_factor_fine(space_info->total_bytes, 95);
 836	else
 837		expected = div_factor_fine(space_info->total_bytes, 90);
 838
 839	if (used > expected)
 840		to_reclaim = used - expected;
 841	else
 842		to_reclaim = 0;
 843	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 844				     space_info->bytes_reserved);
 845	return to_reclaim;
 846}
 847
 848static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
 849					struct btrfs_space_info *space_info,
 850					u64 used)
 851{
 852	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 853
 854	/* If we're just plain full then async reclaim just slows us down. */
 855	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 856		return 0;
 857
 858	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
 
 859		return 0;
 860
 861	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 862		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 863}
 864
 865static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
 866				  struct btrfs_space_info *space_info,
 867				  struct reserve_ticket *ticket)
 868{
 869	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 870	u64 min_bytes;
 871
 872	if (global_rsv->space_info != space_info)
 873		return false;
 874
 875	spin_lock(&global_rsv->lock);
 876	min_bytes = div_factor(global_rsv->size, 1);
 877	if (global_rsv->reserved < min_bytes + ticket->bytes) {
 878		spin_unlock(&global_rsv->lock);
 879		return false;
 880	}
 881	global_rsv->reserved -= ticket->bytes;
 882	remove_ticket(space_info, ticket);
 883	ticket->bytes = 0;
 884	wake_up(&ticket->wait);
 885	space_info->tickets_id++;
 886	if (global_rsv->reserved < global_rsv->size)
 887		global_rsv->full = 0;
 888	spin_unlock(&global_rsv->lock);
 889
 890	return true;
 891}
 892
 893/*
 894 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 895 * @fs_info - fs_info for this fs
 896 * @space_info - the space info we were flushing
 897 *
 898 * We call this when we've exhausted our flushing ability and haven't made
 899 * progress in satisfying tickets.  The reservation code handles tickets in
 900 * order, so if there is a large ticket first and then smaller ones we could
 901 * very well satisfy the smaller tickets.  This will attempt to wake up any
 902 * tickets in the list to catch this case.
 903 *
 904 * This function returns true if it was able to make progress by clearing out
 905 * other tickets, or if it stumbles across a ticket that was smaller than the
 906 * first ticket.
 907 */
 908static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 909				   struct btrfs_space_info *space_info)
 910{
 911	struct reserve_ticket *ticket;
 912	u64 tickets_id = space_info->tickets_id;
 913	u64 first_ticket_bytes = 0;
 914
 915	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 916		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 917		__btrfs_dump_space_info(fs_info, space_info);
 918	}
 919
 920	while (!list_empty(&space_info->tickets) &&
 921	       tickets_id == space_info->tickets_id) {
 922		ticket = list_first_entry(&space_info->tickets,
 923					  struct reserve_ticket, list);
 924
 925		if (ticket->steal &&
 926		    steal_from_global_rsv(fs_info, space_info, ticket))
 927			return true;
 928
 929		/*
 930		 * may_commit_transaction will avoid committing the transaction
 931		 * if it doesn't feel like the space reclaimed by the commit
 932		 * would result in the ticket succeeding.  However if we have a
 933		 * smaller ticket in the queue it may be small enough to be
 934		 * satisified by committing the transaction, so if any
 935		 * subsequent ticket is smaller than the first ticket go ahead
 936		 * and send us back for another loop through the enospc flushing
 937		 * code.
 938		 */
 939		if (first_ticket_bytes == 0)
 940			first_ticket_bytes = ticket->bytes;
 941		else if (first_ticket_bytes > ticket->bytes)
 942			return true;
 943
 944		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 945			btrfs_info(fs_info, "failing ticket with %llu bytes",
 946				   ticket->bytes);
 947
 948		remove_ticket(space_info, ticket);
 949		ticket->error = -ENOSPC;
 950		wake_up(&ticket->wait);
 951
 952		/*
 953		 * We're just throwing tickets away, so more flushing may not
 954		 * trip over btrfs_try_granting_tickets, so we need to call it
 955		 * here to see if we can make progress with the next ticket in
 956		 * the list.
 957		 */
 958		btrfs_try_granting_tickets(fs_info, space_info);
 959	}
 960	return (tickets_id != space_info->tickets_id);
 961}
 962
 963/*
 964 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 965 * will loop and continuously try to flush as long as we are making progress.
 966 * We count progress as clearing off tickets each time we have to loop.
 967 */
 968static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 969{
 970	struct btrfs_fs_info *fs_info;
 971	struct btrfs_space_info *space_info;
 972	u64 to_reclaim;
 973	int flush_state;
 974	int commit_cycles = 0;
 975	u64 last_tickets_id;
 976
 977	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 978	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 979
 980	spin_lock(&space_info->lock);
 981	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
 
 982	if (!to_reclaim) {
 983		space_info->flush = 0;
 984		spin_unlock(&space_info->lock);
 985		return;
 986	}
 987	last_tickets_id = space_info->tickets_id;
 988	spin_unlock(&space_info->lock);
 989
 990	flush_state = FLUSH_DELAYED_ITEMS_NR;
 991	do {
 992		flush_space(fs_info, space_info, to_reclaim, flush_state);
 993		spin_lock(&space_info->lock);
 994		if (list_empty(&space_info->tickets)) {
 995			space_info->flush = 0;
 996			spin_unlock(&space_info->lock);
 997			return;
 998		}
 999		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1000							      space_info);
 
1001		if (last_tickets_id == space_info->tickets_id) {
1002			flush_state++;
1003		} else {
1004			last_tickets_id = space_info->tickets_id;
1005			flush_state = FLUSH_DELAYED_ITEMS_NR;
1006			if (commit_cycles)
1007				commit_cycles--;
1008		}
1009
1010		/*
1011		 * We don't want to force a chunk allocation until we've tried
1012		 * pretty hard to reclaim space.  Think of the case where we
1013		 * freed up a bunch of space and so have a lot of pinned space
1014		 * to reclaim.  We would rather use that than possibly create a
1015		 * underutilized metadata chunk.  So if this is our first run
1016		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1017		 * commit the transaction.  If nothing has changed the next go
1018		 * around then we can force a chunk allocation.
1019		 */
1020		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1021			flush_state++;
1022
1023		if (flush_state > COMMIT_TRANS) {
1024			commit_cycles++;
1025			if (commit_cycles > 2) {
1026				if (maybe_fail_all_tickets(fs_info, space_info)) {
1027					flush_state = FLUSH_DELAYED_ITEMS_NR;
1028					commit_cycles--;
1029				} else {
1030					space_info->flush = 0;
1031				}
1032			} else {
1033				flush_state = FLUSH_DELAYED_ITEMS_NR;
1034			}
1035		}
1036		spin_unlock(&space_info->lock);
1037	} while (flush_state <= COMMIT_TRANS);
1038}
1039
1040void btrfs_init_async_reclaim_work(struct work_struct *work)
1041{
1042	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1043}
1044
1045static const enum btrfs_flush_state priority_flush_states[] = {
1046	FLUSH_DELAYED_ITEMS_NR,
1047	FLUSH_DELAYED_ITEMS,
1048	ALLOC_CHUNK,
1049};
1050
1051static const enum btrfs_flush_state evict_flush_states[] = {
1052	FLUSH_DELAYED_ITEMS_NR,
1053	FLUSH_DELAYED_ITEMS,
1054	FLUSH_DELAYED_REFS_NR,
1055	FLUSH_DELAYED_REFS,
1056	FLUSH_DELALLOC,
1057	FLUSH_DELALLOC_WAIT,
1058	ALLOC_CHUNK,
1059	COMMIT_TRANS,
1060};
1061
1062static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1063				struct btrfs_space_info *space_info,
1064				struct reserve_ticket *ticket,
1065				const enum btrfs_flush_state *states,
1066				int states_nr)
1067{
1068	u64 to_reclaim;
1069	int flush_state;
1070
1071	spin_lock(&space_info->lock);
1072	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
 
1073	if (!to_reclaim) {
1074		spin_unlock(&space_info->lock);
1075		return;
1076	}
1077	spin_unlock(&space_info->lock);
1078
1079	flush_state = 0;
1080	do {
1081		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1082		flush_state++;
1083		spin_lock(&space_info->lock);
1084		if (ticket->bytes == 0) {
1085			spin_unlock(&space_info->lock);
1086			return;
1087		}
1088		spin_unlock(&space_info->lock);
1089	} while (flush_state < states_nr);
1090}
1091
1092static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1093				struct btrfs_space_info *space_info,
1094				struct reserve_ticket *ticket)
1095
1096{
1097	DEFINE_WAIT(wait);
1098	int ret = 0;
1099
1100	spin_lock(&space_info->lock);
1101	while (ticket->bytes > 0 && ticket->error == 0) {
1102		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1103		if (ret) {
1104			/*
1105			 * Delete us from the list. After we unlock the space
1106			 * info, we don't want the async reclaim job to reserve
1107			 * space for this ticket. If that would happen, then the
1108			 * ticket's task would not known that space was reserved
1109			 * despite getting an error, resulting in a space leak
1110			 * (bytes_may_use counter of our space_info).
1111			 */
1112			remove_ticket(space_info, ticket);
1113			ticket->error = -EINTR;
1114			break;
1115		}
1116		spin_unlock(&space_info->lock);
1117
1118		schedule();
1119
1120		finish_wait(&ticket->wait, &wait);
1121		spin_lock(&space_info->lock);
1122	}
1123	spin_unlock(&space_info->lock);
1124}
1125
1126/**
1127 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1128 * @fs_info - the fs
1129 * @space_info - the space_info for the reservation
1130 * @ticket - the ticket for the reservation
1131 * @flush - how much we can flush
1132 *
1133 * This does the work of figuring out how to flush for the ticket, waiting for
1134 * the reservation, and returning the appropriate error if there is one.
1135 */
1136static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1137				 struct btrfs_space_info *space_info,
1138				 struct reserve_ticket *ticket,
1139				 enum btrfs_reserve_flush_enum flush)
1140{
1141	int ret;
1142
1143	switch (flush) {
1144	case BTRFS_RESERVE_FLUSH_ALL:
1145	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1146		wait_reserve_ticket(fs_info, space_info, ticket);
1147		break;
1148	case BTRFS_RESERVE_FLUSH_LIMIT:
1149		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1150						priority_flush_states,
1151						ARRAY_SIZE(priority_flush_states));
1152		break;
1153	case BTRFS_RESERVE_FLUSH_EVICT:
1154		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1155						evict_flush_states,
1156						ARRAY_SIZE(evict_flush_states));
1157		break;
1158	default:
1159		ASSERT(0);
1160		break;
1161	}
1162
1163	spin_lock(&space_info->lock);
1164	ret = ticket->error;
1165	if (ticket->bytes || ticket->error) {
1166		/*
1167		 * We were a priority ticket, so we need to delete ourselves
1168		 * from the list.  Because we could have other priority tickets
1169		 * behind us that require less space, run
1170		 * btrfs_try_granting_tickets() to see if their reservations can
1171		 * now be made.
1172		 */
1173		if (!list_empty(&ticket->list)) {
1174			remove_ticket(space_info, ticket);
1175			btrfs_try_granting_tickets(fs_info, space_info);
1176		}
1177
1178		if (!ret)
1179			ret = -ENOSPC;
1180	}
1181	spin_unlock(&space_info->lock);
1182	ASSERT(list_empty(&ticket->list));
1183	/*
1184	 * Check that we can't have an error set if the reservation succeeded,
1185	 * as that would confuse tasks and lead them to error out without
1186	 * releasing reserved space (if an error happens the expectation is that
1187	 * space wasn't reserved at all).
1188	 */
1189	ASSERT(!(ticket->bytes == 0 && ticket->error));
1190	return ret;
1191}
1192
1193/*
1194 * This returns true if this flush state will go through the ordinary flushing
1195 * code.
1196 */
1197static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1198{
1199	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1200		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1201}
1202
1203/**
1204 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1205 * @root - the root we're allocating for
1206 * @space_info - the space info we want to allocate from
1207 * @orig_bytes - the number of bytes we want
1208 * @flush - whether or not we can flush to make our reservation
1209 *
1210 * This will reserve orig_bytes number of bytes from the space info associated
1211 * with the block_rsv.  If there is not enough space it will make an attempt to
1212 * flush out space to make room.  It will do this by flushing delalloc if
1213 * possible or committing the transaction.  If flush is 0 then no attempts to
1214 * regain reservations will be made and this will fail if there is not enough
1215 * space already.
1216 */
1217static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1218				    struct btrfs_space_info *space_info,
1219				    u64 orig_bytes,
1220				    enum btrfs_reserve_flush_enum flush)
 
1221{
1222	struct reserve_ticket ticket;
1223	u64 used;
1224	int ret = 0;
1225	bool pending_tickets;
1226
1227	ASSERT(orig_bytes);
1228	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1229
1230	spin_lock(&space_info->lock);
1231	ret = -ENOSPC;
1232	used = btrfs_space_info_used(space_info, true);
1233
1234	/*
1235	 * We don't want NO_FLUSH allocations to jump everybody, they can
1236	 * generally handle ENOSPC in a different way, so treat them the same as
1237	 * normal flushers when it comes to skipping pending tickets.
1238	 */
1239	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1240		pending_tickets = !list_empty(&space_info->tickets) ||
1241			!list_empty(&space_info->priority_tickets);
1242	else
1243		pending_tickets = !list_empty(&space_info->priority_tickets);
1244
1245	/*
1246	 * Carry on if we have enough space (short-circuit) OR call
1247	 * can_overcommit() to ensure we can overcommit to continue.
1248	 */
1249	if (!pending_tickets &&
1250	    ((used + orig_bytes <= space_info->total_bytes) ||
1251	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
 
1252		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1253						      orig_bytes);
1254		ret = 0;
1255	}
1256
1257	/*
1258	 * If we couldn't make a reservation then setup our reservation ticket
1259	 * and kick the async worker if it's not already running.
1260	 *
1261	 * If we are a priority flusher then we just need to add our ticket to
1262	 * the list and we will do our own flushing further down.
1263	 */
1264	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1265		ticket.bytes = orig_bytes;
1266		ticket.error = 0;
1267		space_info->reclaim_size += ticket.bytes;
1268		init_waitqueue_head(&ticket.wait);
1269		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1270		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1271		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1272			list_add_tail(&ticket.list, &space_info->tickets);
1273			if (!space_info->flush) {
1274				space_info->flush = 1;
1275				trace_btrfs_trigger_flush(fs_info,
1276							  space_info->flags,
1277							  orig_bytes, flush,
1278							  "enospc");
1279				queue_work(system_unbound_wq,
1280					   &fs_info->async_reclaim_work);
1281			}
1282		} else {
1283			list_add_tail(&ticket.list,
1284				      &space_info->priority_tickets);
1285		}
1286	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1287		used += orig_bytes;
1288		/*
1289		 * We will do the space reservation dance during log replay,
1290		 * which means we won't have fs_info->fs_root set, so don't do
1291		 * the async reclaim as we will panic.
1292		 */
1293		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1294		    need_do_async_reclaim(fs_info, space_info, used) &&
 
1295		    !work_busy(&fs_info->async_reclaim_work)) {
1296			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1297						  orig_bytes, flush, "preempt");
1298			queue_work(system_unbound_wq,
1299				   &fs_info->async_reclaim_work);
1300		}
1301	}
1302	spin_unlock(&space_info->lock);
1303	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1304		return ret;
1305
1306	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1307}
1308
1309/**
1310 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1311 * @root - the root we're allocating for
1312 * @block_rsv - the block_rsv we're allocating for
1313 * @orig_bytes - the number of bytes we want
1314 * @flush - whether or not we can flush to make our reservation
1315 *
1316 * This will reserve orig_bytes number of bytes from the space info associated
1317 * with the block_rsv.  If there is not enough space it will make an attempt to
1318 * flush out space to make room.  It will do this by flushing delalloc if
1319 * possible or committing the transaction.  If flush is 0 then no attempts to
1320 * regain reservations will be made and this will fail if there is not enough
1321 * space already.
1322 */
1323int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1324				 struct btrfs_block_rsv *block_rsv,
1325				 u64 orig_bytes,
1326				 enum btrfs_reserve_flush_enum flush)
1327{
1328	struct btrfs_fs_info *fs_info = root->fs_info;
1329	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1330	int ret;
 
1331
1332	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1333				       orig_bytes, flush);
1334	if (ret == -ENOSPC &&
1335	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1336		if (block_rsv != global_rsv &&
1337		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1338			ret = 0;
1339	}
1340	if (ret == -ENOSPC) {
1341		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1342					      block_rsv->space_info->flags,
1343					      orig_bytes, 1);
1344
1345		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1346			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1347					      orig_bytes, 0);
1348	}
1349	return ret;
1350}