Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
  12
  13u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14			  bool may_use_included)
  15{
  16	ASSERT(s_info);
  17	return s_info->bytes_used + s_info->bytes_reserved +
  18		s_info->bytes_pinned + s_info->bytes_readonly +
 
  19		(may_use_included ? s_info->bytes_may_use : 0);
  20}
  21
  22/*
  23 * after adding space to the filesystem, we need to clear the full flags
  24 * on all the space infos.
  25 */
  26void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  27{
  28	struct list_head *head = &info->space_info;
  29	struct btrfs_space_info *found;
  30
  31	rcu_read_lock();
  32	list_for_each_entry_rcu(found, head, list)
  33		found->full = 0;
  34	rcu_read_unlock();
  35}
  36
  37static int create_space_info(struct btrfs_fs_info *info, u64 flags)
  38{
  39
  40	struct btrfs_space_info *space_info;
  41	int i;
  42	int ret;
  43
  44	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
  45	if (!space_info)
  46		return -ENOMEM;
  47
  48	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
  49				 GFP_KERNEL);
  50	if (ret) {
  51		kfree(space_info);
  52		return ret;
  53	}
  54
  55	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  56		INIT_LIST_HEAD(&space_info->block_groups[i]);
  57	init_rwsem(&space_info->groups_sem);
  58	spin_lock_init(&space_info->lock);
  59	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  60	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  61	init_waitqueue_head(&space_info->wait);
  62	INIT_LIST_HEAD(&space_info->ro_bgs);
  63	INIT_LIST_HEAD(&space_info->tickets);
  64	INIT_LIST_HEAD(&space_info->priority_tickets);
 
  65
  66	ret = btrfs_sysfs_add_space_info_type(info, space_info);
  67	if (ret)
  68		return ret;
  69
  70	list_add_rcu(&space_info->list, &info->space_info);
  71	if (flags & BTRFS_BLOCK_GROUP_DATA)
  72		info->data_sinfo = space_info;
  73
  74	return ret;
  75}
  76
  77int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  78{
  79	struct btrfs_super_block *disk_super;
  80	u64 features;
  81	u64 flags;
  82	int mixed = 0;
  83	int ret;
  84
  85	disk_super = fs_info->super_copy;
  86	if (!btrfs_super_root(disk_super))
  87		return -EINVAL;
  88
  89	features = btrfs_super_incompat_flags(disk_super);
  90	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  91		mixed = 1;
  92
  93	flags = BTRFS_BLOCK_GROUP_SYSTEM;
  94	ret = create_space_info(fs_info, flags);
  95	if (ret)
  96		goto out;
  97
  98	if (mixed) {
  99		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 100		ret = create_space_info(fs_info, flags);
 101	} else {
 102		flags = BTRFS_BLOCK_GROUP_METADATA;
 103		ret = create_space_info(fs_info, flags);
 104		if (ret)
 105			goto out;
 106
 107		flags = BTRFS_BLOCK_GROUP_DATA;
 108		ret = create_space_info(fs_info, flags);
 109	}
 110out:
 111	return ret;
 112}
 113
 114void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 115			     u64 total_bytes, u64 bytes_used,
 116			     u64 bytes_readonly,
 117			     struct btrfs_space_info **space_info)
 118{
 119	struct btrfs_space_info *found;
 120	int factor;
 121
 122	factor = btrfs_bg_type_to_factor(flags);
 123
 124	found = btrfs_find_space_info(info, flags);
 125	ASSERT(found);
 126	spin_lock(&found->lock);
 127	found->total_bytes += total_bytes;
 128	found->disk_total += total_bytes * factor;
 129	found->bytes_used += bytes_used;
 130	found->disk_used += bytes_used * factor;
 131	found->bytes_readonly += bytes_readonly;
 
 132	if (total_bytes > 0)
 133		found->full = 0;
 134	btrfs_try_granting_tickets(info, found);
 135	spin_unlock(&found->lock);
 136	*space_info = found;
 137}
 138
 139struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 140					       u64 flags)
 141{
 142	struct list_head *head = &info->space_info;
 143	struct btrfs_space_info *found;
 144
 145	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 146
 147	rcu_read_lock();
 148	list_for_each_entry_rcu(found, head, list) {
 149		if (found->flags & flags) {
 150			rcu_read_unlock();
 151			return found;
 152		}
 153	}
 154	rcu_read_unlock();
 155	return NULL;
 156}
 157
 158static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 159{
 160	return (global->size << 1);
 161}
 162
 163static int can_overcommit(struct btrfs_fs_info *fs_info,
 164			  struct btrfs_space_info *space_info, u64 bytes,
 165			  enum btrfs_reserve_flush_enum flush,
 166			  bool system_chunk)
 167{
 168	u64 profile;
 169	u64 avail;
 170	u64 used;
 171	int factor;
 172
 173	/* Don't overcommit when in mixed mode. */
 174	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 175		return 0;
 176
 177	if (system_chunk)
 178		profile = btrfs_system_alloc_profile(fs_info);
 179	else
 180		profile = btrfs_metadata_alloc_profile(fs_info);
 181
 182	used = btrfs_space_info_used(space_info, true);
 183	avail = atomic64_read(&fs_info->free_chunk_space);
 184
 185	/*
 186	 * If we have dup, raid1 or raid10 then only half of the free
 187	 * space is actually usable.  For raid56, the space info used
 188	 * doesn't include the parity drive, so we don't have to
 189	 * change the math
 190	 */
 191	factor = btrfs_bg_type_to_factor(profile);
 192	avail = div_u64(avail, factor);
 193
 194	/*
 195	 * If we aren't flushing all things, let us overcommit up to
 196	 * 1/2th of the space. If we can flush, don't let us overcommit
 197	 * too much, let it overcommit up to 1/8 of the space.
 198	 */
 199	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 200		avail >>= 3;
 201	else
 202		avail >>= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	if (used + bytes < space_info->total_bytes + avail)
 205		return 1;
 206	return 0;
 207}
 208
 
 
 
 
 
 
 
 
 
 
 209/*
 210 * This is for space we already have accounted in space_info->bytes_may_use, so
 211 * basically when we're returning space from block_rsv's.
 212 */
 213void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 214				struct btrfs_space_info *space_info)
 215{
 216	struct list_head *head;
 217	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 218
 219	lockdep_assert_held(&space_info->lock);
 220
 221	head = &space_info->priority_tickets;
 222again:
 223	while (!list_empty(head)) {
 224		struct reserve_ticket *ticket;
 225		u64 used = btrfs_space_info_used(space_info, true);
 226
 227		ticket = list_first_entry(head, struct reserve_ticket, list);
 228
 229		/* Check and see if our ticket can be satisified now. */
 230		if ((used + ticket->bytes <= space_info->total_bytes) ||
 231		    can_overcommit(fs_info, space_info, ticket->bytes, flush,
 232				   false)) {
 233			btrfs_space_info_update_bytes_may_use(fs_info,
 234							      space_info,
 235							      ticket->bytes);
 236			list_del_init(&ticket->list);
 237			ticket->bytes = 0;
 238			space_info->tickets_id++;
 239			wake_up(&ticket->wait);
 240		} else {
 241			break;
 242		}
 243	}
 244
 245	if (head == &space_info->priority_tickets) {
 246		head = &space_info->tickets;
 247		flush = BTRFS_RESERVE_FLUSH_ALL;
 248		goto again;
 249	}
 250}
 251
 252#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 253do {									\
 254	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 255	spin_lock(&__rsv->lock);					\
 256	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 257		   __rsv->size, __rsv->reserved);			\
 258	spin_unlock(&__rsv->lock);					\
 259} while (0)
 260
 261static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 262				    struct btrfs_space_info *info)
 263{
 264	lockdep_assert_held(&info->lock);
 265
 266	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 
 267		   info->flags,
 268		   info->total_bytes - btrfs_space_info_used(info, true),
 269		   info->full ? "" : "not ");
 270	btrfs_info(fs_info,
 271		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 272		info->total_bytes, info->bytes_used, info->bytes_pinned,
 273		info->bytes_reserved, info->bytes_may_use,
 274		info->bytes_readonly);
 275
 276	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 277	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 278	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 279	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 280	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 281
 282}
 283
 284void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 285			   struct btrfs_space_info *info, u64 bytes,
 286			   int dump_block_groups)
 287{
 288	struct btrfs_block_group_cache *cache;
 289	int index = 0;
 290
 291	spin_lock(&info->lock);
 292	__btrfs_dump_space_info(fs_info, info);
 293	spin_unlock(&info->lock);
 294
 295	if (!dump_block_groups)
 296		return;
 297
 298	down_read(&info->groups_sem);
 299again:
 300	list_for_each_entry(cache, &info->block_groups[index], list) {
 301		spin_lock(&cache->lock);
 302		btrfs_info(fs_info,
 303			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 304			cache->key.objectid, cache->key.offset,
 305			btrfs_block_group_used(&cache->item), cache->pinned,
 306			cache->reserved, cache->ro ? "[readonly]" : "");
 307		btrfs_dump_free_space(cache, bytes);
 308		spin_unlock(&cache->lock);
 
 309	}
 310	if (++index < BTRFS_NR_RAID_TYPES)
 311		goto again;
 312	up_read(&info->groups_sem);
 313}
 314
 315static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 316					 unsigned long nr_pages, int nr_items)
 317{
 318	struct super_block *sb = fs_info->sb;
 319
 320	if (down_read_trylock(&sb->s_umount)) {
 321		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 322		up_read(&sb->s_umount);
 323	} else {
 324		/*
 325		 * We needn't worry the filesystem going from r/w to r/o though
 326		 * we don't acquire ->s_umount mutex, because the filesystem
 327		 * should guarantee the delalloc inodes list be empty after
 328		 * the filesystem is readonly(all dirty pages are written to
 329		 * the disk).
 330		 */
 331		btrfs_start_delalloc_roots(fs_info, nr_items);
 332		if (!current->journal_info)
 333			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 334	}
 335}
 336
 337static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 338					u64 to_reclaim)
 339{
 340	u64 bytes;
 341	u64 nr;
 342
 343	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 344	nr = div64_u64(to_reclaim, bytes);
 345	if (!nr)
 346		nr = 1;
 347	return nr;
 348}
 349
 350#define EXTENT_SIZE_PER_ITEM	SZ_256K
 351
 352/*
 353 * shrink metadata reservation for delalloc
 354 */
 355static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
 356			    u64 orig, bool wait_ordered)
 
 
 357{
 358	struct btrfs_space_info *space_info;
 359	struct btrfs_trans_handle *trans;
 360	u64 delalloc_bytes;
 361	u64 dio_bytes;
 362	u64 async_pages;
 363	u64 items;
 364	long time_left;
 365	unsigned long nr_pages;
 366	int loops;
 367
 
 
 
 
 
 368	/* Calc the number of the pages we need flush for space reservation */
 369	items = calc_reclaim_items_nr(fs_info, to_reclaim);
 370	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371
 372	trans = (struct btrfs_trans_handle *)current->journal_info;
 373	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 374
 375	delalloc_bytes = percpu_counter_sum_positive(
 376						&fs_info->delalloc_bytes);
 377	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 378	if (delalloc_bytes == 0 && dio_bytes == 0) {
 379		if (trans)
 380			return;
 381		if (wait_ordered)
 382			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 383		return;
 384	}
 385
 386	/*
 387	 * If we are doing more ordered than delalloc we need to just wait on
 388	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 389	 * that likely won't give us the space back we need.
 390	 */
 391	if (dio_bytes > delalloc_bytes)
 392		wait_ordered = true;
 393
 394	loops = 0;
 395	while ((delalloc_bytes || dio_bytes) && loops < 3) {
 396		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 
 
 397
 398		/*
 399		 * Triggers inode writeback for up to nr_pages. This will invoke
 400		 * ->writepages callback and trigger delalloc filling
 401		 *  (btrfs_run_delalloc_range()).
 402		 */
 403		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 404
 405		/*
 406		 * We need to wait for the compressed pages to start before
 407		 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408		 */
 409		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 410		if (!async_pages)
 411			goto skip_async;
 412
 413		/*
 414		 * Calculate how many compressed pages we want to be written
 415		 * before we continue. I.e if there are more async pages than we
 416		 * require wait_event will wait until nr_pages are written.
 
 417		 */
 418		if (async_pages <= nr_pages)
 419			async_pages = 0;
 420		else
 421			async_pages -= nr_pages;
 422
 
 423		wait_event(fs_info->async_submit_wait,
 424			   atomic_read(&fs_info->async_delalloc_pages) <=
 425			   (int)async_pages);
 426skip_async:
 427		spin_lock(&space_info->lock);
 428		if (list_empty(&space_info->tickets) &&
 429		    list_empty(&space_info->priority_tickets)) {
 430			spin_unlock(&space_info->lock);
 431			break;
 432		}
 433		spin_unlock(&space_info->lock);
 434
 435		loops++;
 436		if (wait_ordered && !trans) {
 437			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 438		} else {
 439			time_left = schedule_timeout_killable(1);
 440			if (time_left)
 441				break;
 442		}
 443		delalloc_bytes = percpu_counter_sum_positive(
 444						&fs_info->delalloc_bytes);
 445		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 446	}
 447}
 448
 449/**
 450 * maybe_commit_transaction - possibly commit the transaction if its ok to
 451 * @root - the root we're allocating for
 452 * @bytes - the number of bytes we want to reserve
 453 * @force - force the commit
 454 *
 455 * This will check to make sure that committing the transaction will actually
 456 * get us somewhere and then commit the transaction if it does.  Otherwise it
 457 * will return -ENOSPC.
 458 */
 459static int may_commit_transaction(struct btrfs_fs_info *fs_info,
 460				  struct btrfs_space_info *space_info)
 461{
 462	struct reserve_ticket *ticket = NULL;
 463	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 464	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 465	struct btrfs_trans_handle *trans;
 466	u64 bytes_needed;
 467	u64 reclaim_bytes = 0;
 468	u64 cur_free_bytes = 0;
 469
 470	trans = (struct btrfs_trans_handle *)current->journal_info;
 471	if (trans)
 472		return -EAGAIN;
 473
 474	spin_lock(&space_info->lock);
 475	cur_free_bytes = btrfs_space_info_used(space_info, true);
 476	if (cur_free_bytes < space_info->total_bytes)
 477		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
 478	else
 479		cur_free_bytes = 0;
 480
 481	if (!list_empty(&space_info->priority_tickets))
 482		ticket = list_first_entry(&space_info->priority_tickets,
 483					  struct reserve_ticket, list);
 484	else if (!list_empty(&space_info->tickets))
 485		ticket = list_first_entry(&space_info->tickets,
 486					  struct reserve_ticket, list);
 487	bytes_needed = (ticket) ? ticket->bytes : 0;
 488
 489	if (bytes_needed > cur_free_bytes)
 490		bytes_needed -= cur_free_bytes;
 491	else
 492		bytes_needed = 0;
 493	spin_unlock(&space_info->lock);
 494
 495	if (!bytes_needed)
 496		return 0;
 497
 498	trans = btrfs_join_transaction(fs_info->extent_root);
 499	if (IS_ERR(trans))
 500		return PTR_ERR(trans);
 501
 502	/*
 503	 * See if there is enough pinned space to make this reservation, or if
 504	 * we have block groups that are going to be freed, allowing us to
 505	 * possibly do a chunk allocation the next loop through.
 506	 */
 507	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
 508	    __percpu_counter_compare(&space_info->total_bytes_pinned,
 509				     bytes_needed,
 510				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
 511		goto commit;
 512
 513	/*
 514	 * See if there is some space in the delayed insertion reservation for
 515	 * this reservation.
 516	 */
 517	if (space_info != delayed_rsv->space_info)
 518		goto enospc;
 
 519
 520	spin_lock(&delayed_rsv->lock);
 521	reclaim_bytes += delayed_rsv->reserved;
 522	spin_unlock(&delayed_rsv->lock);
 523
 524	spin_lock(&delayed_refs_rsv->lock);
 525	reclaim_bytes += delayed_refs_rsv->reserved;
 526	spin_unlock(&delayed_refs_rsv->lock);
 527	if (reclaim_bytes >= bytes_needed)
 528		goto commit;
 529	bytes_needed -= reclaim_bytes;
 530
 531	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
 532				   bytes_needed,
 533				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
 534		goto enospc;
 535
 536commit:
 537	return btrfs_commit_transaction(trans);
 538enospc:
 539	btrfs_end_transaction(trans);
 540	return -ENOSPC;
 541}
 542
 543/*
 544 * Try to flush some data based on policy set by @state. This is only advisory
 545 * and may fail for various reasons. The caller is supposed to examine the
 546 * state of @space_info to detect the outcome.
 547 */
 548static void flush_space(struct btrfs_fs_info *fs_info,
 549		       struct btrfs_space_info *space_info, u64 num_bytes,
 550		       int state)
 551{
 552	struct btrfs_root *root = fs_info->extent_root;
 553	struct btrfs_trans_handle *trans;
 554	int nr;
 555	int ret = 0;
 556
 557	switch (state) {
 558	case FLUSH_DELAYED_ITEMS_NR:
 559	case FLUSH_DELAYED_ITEMS:
 560		if (state == FLUSH_DELAYED_ITEMS_NR)
 561			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 562		else
 563			nr = -1;
 564
 565		trans = btrfs_join_transaction(root);
 566		if (IS_ERR(trans)) {
 567			ret = PTR_ERR(trans);
 568			break;
 569		}
 570		ret = btrfs_run_delayed_items_nr(trans, nr);
 571		btrfs_end_transaction(trans);
 572		break;
 573	case FLUSH_DELALLOC:
 574	case FLUSH_DELALLOC_WAIT:
 575		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
 576				state == FLUSH_DELALLOC_WAIT);
 
 
 
 577		break;
 578	case FLUSH_DELAYED_REFS_NR:
 579	case FLUSH_DELAYED_REFS:
 580		trans = btrfs_join_transaction(root);
 581		if (IS_ERR(trans)) {
 582			ret = PTR_ERR(trans);
 583			break;
 584		}
 585		if (state == FLUSH_DELAYED_REFS_NR)
 586			nr = calc_reclaim_items_nr(fs_info, num_bytes);
 587		else
 588			nr = 0;
 589		btrfs_run_delayed_refs(trans, nr);
 590		btrfs_end_transaction(trans);
 591		break;
 592	case ALLOC_CHUNK:
 593	case ALLOC_CHUNK_FORCE:
 594		trans = btrfs_join_transaction(root);
 595		if (IS_ERR(trans)) {
 596			ret = PTR_ERR(trans);
 597			break;
 598		}
 599		ret = btrfs_chunk_alloc(trans,
 600				btrfs_metadata_alloc_profile(fs_info),
 601				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 602					CHUNK_ALLOC_FORCE);
 603		btrfs_end_transaction(trans);
 604		if (ret > 0 || ret == -ENOSPC)
 605			ret = 0;
 606		break;
 607	case RUN_DELAYED_IPUTS:
 608		/*
 609		 * If we have pending delayed iputs then we could free up a
 610		 * bunch of pinned space, so make sure we run the iputs before
 611		 * we do our pinned bytes check below.
 612		 */
 613		btrfs_run_delayed_iputs(fs_info);
 614		btrfs_wait_on_delayed_iputs(fs_info);
 615		break;
 616	case COMMIT_TRANS:
 617		ret = may_commit_transaction(fs_info, space_info);
 
 
 
 
 
 
 618		break;
 619	default:
 620		ret = -ENOSPC;
 621		break;
 622	}
 623
 624	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 625				ret);
 626	return;
 627}
 628
 629static inline u64
 630btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 631				 struct btrfs_space_info *space_info,
 632				 bool system_chunk)
 633{
 634	struct reserve_ticket *ticket;
 635	u64 used;
 636	u64 expected;
 637	u64 to_reclaim = 0;
 638
 639	list_for_each_entry(ticket, &space_info->tickets, list)
 640		to_reclaim += ticket->bytes;
 641	list_for_each_entry(ticket, &space_info->priority_tickets, list)
 642		to_reclaim += ticket->bytes;
 643	if (to_reclaim)
 644		return to_reclaim;
 645
 646	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 647	if (can_overcommit(fs_info, space_info, to_reclaim,
 648			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 649		return 0;
 650
 
 
 651	used = btrfs_space_info_used(space_info, true);
 652
 653	if (can_overcommit(fs_info, space_info, SZ_1M,
 654			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 655		expected = div_factor_fine(space_info->total_bytes, 95);
 656	else
 657		expected = div_factor_fine(space_info->total_bytes, 90);
 
 
 
 658
 659	if (used > expected)
 660		to_reclaim = used - expected;
 661	else
 662		to_reclaim = 0;
 663	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 664				     space_info->bytes_reserved);
 665	return to_reclaim;
 666}
 667
 668static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
 669					struct btrfs_space_info *space_info,
 670					u64 used, bool system_chunk)
 671{
 672	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 
 
 
 673
 674	/* If we're just plain full then async reclaim just slows us down. */
 675	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 676		return 0;
 
 
 
 
 
 
 
 677
 678	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 679					      system_chunk))
 680		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 683		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 684}
 685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686/*
 687 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 688 * @fs_info - fs_info for this fs
 689 * @space_info - the space info we were flushing
 690 *
 691 * We call this when we've exhausted our flushing ability and haven't made
 692 * progress in satisfying tickets.  The reservation code handles tickets in
 693 * order, so if there is a large ticket first and then smaller ones we could
 694 * very well satisfy the smaller tickets.  This will attempt to wake up any
 695 * tickets in the list to catch this case.
 696 *
 697 * This function returns true if it was able to make progress by clearing out
 698 * other tickets, or if it stumbles across a ticket that was smaller than the
 699 * first ticket.
 700 */
 701static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 702				   struct btrfs_space_info *space_info)
 703{
 704	struct reserve_ticket *ticket;
 705	u64 tickets_id = space_info->tickets_id;
 706	u64 first_ticket_bytes = 0;
 707
 708	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 709		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 710		__btrfs_dump_space_info(fs_info, space_info);
 711	}
 712
 713	while (!list_empty(&space_info->tickets) &&
 714	       tickets_id == space_info->tickets_id) {
 715		ticket = list_first_entry(&space_info->tickets,
 716					  struct reserve_ticket, list);
 717
 718		/*
 719		 * may_commit_transaction will avoid committing the transaction
 720		 * if it doesn't feel like the space reclaimed by the commit
 721		 * would result in the ticket succeeding.  However if we have a
 722		 * smaller ticket in the queue it may be small enough to be
 723		 * satisified by committing the transaction, so if any
 724		 * subsequent ticket is smaller than the first ticket go ahead
 725		 * and send us back for another loop through the enospc flushing
 726		 * code.
 727		 */
 728		if (first_ticket_bytes == 0)
 729			first_ticket_bytes = ticket->bytes;
 730		else if (first_ticket_bytes > ticket->bytes)
 731			return true;
 732
 733		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 734			btrfs_info(fs_info, "failing ticket with %llu bytes",
 735				   ticket->bytes);
 736
 737		list_del_init(&ticket->list);
 738		ticket->error = -ENOSPC;
 739		wake_up(&ticket->wait);
 740
 741		/*
 742		 * We're just throwing tickets away, so more flushing may not
 743		 * trip over btrfs_try_granting_tickets, so we need to call it
 744		 * here to see if we can make progress with the next ticket in
 745		 * the list.
 746		 */
 747		btrfs_try_granting_tickets(fs_info, space_info);
 748	}
 749	return (tickets_id != space_info->tickets_id);
 750}
 751
 752/*
 753 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 754 * will loop and continuously try to flush as long as we are making progress.
 755 * We count progress as clearing off tickets each time we have to loop.
 756 */
 757static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 758{
 759	struct btrfs_fs_info *fs_info;
 760	struct btrfs_space_info *space_info;
 761	u64 to_reclaim;
 762	int flush_state;
 763	int commit_cycles = 0;
 764	u64 last_tickets_id;
 765
 766	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 767	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 768
 769	spin_lock(&space_info->lock);
 770	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 771						      false);
 772	if (!to_reclaim) {
 773		space_info->flush = 0;
 774		spin_unlock(&space_info->lock);
 775		return;
 776	}
 777	last_tickets_id = space_info->tickets_id;
 778	spin_unlock(&space_info->lock);
 779
 780	flush_state = FLUSH_DELAYED_ITEMS_NR;
 781	do {
 782		flush_space(fs_info, space_info, to_reclaim, flush_state);
 783		spin_lock(&space_info->lock);
 784		if (list_empty(&space_info->tickets)) {
 785			space_info->flush = 0;
 786			spin_unlock(&space_info->lock);
 787			return;
 788		}
 789		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
 790							      space_info,
 791							      false);
 792		if (last_tickets_id == space_info->tickets_id) {
 793			flush_state++;
 794		} else {
 795			last_tickets_id = space_info->tickets_id;
 796			flush_state = FLUSH_DELAYED_ITEMS_NR;
 797			if (commit_cycles)
 798				commit_cycles--;
 799		}
 800
 801		/*
 
 
 
 
 
 
 
 
 802		 * We don't want to force a chunk allocation until we've tried
 803		 * pretty hard to reclaim space.  Think of the case where we
 804		 * freed up a bunch of space and so have a lot of pinned space
 805		 * to reclaim.  We would rather use that than possibly create a
 806		 * underutilized metadata chunk.  So if this is our first run
 807		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
 808		 * commit the transaction.  If nothing has changed the next go
 809		 * around then we can force a chunk allocation.
 810		 */
 811		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
 812			flush_state++;
 813
 814		if (flush_state > COMMIT_TRANS) {
 815			commit_cycles++;
 816			if (commit_cycles > 2) {
 817				if (maybe_fail_all_tickets(fs_info, space_info)) {
 818					flush_state = FLUSH_DELAYED_ITEMS_NR;
 819					commit_cycles--;
 820				} else {
 821					space_info->flush = 0;
 822				}
 823			} else {
 824				flush_state = FLUSH_DELAYED_ITEMS_NR;
 825			}
 826		}
 827		spin_unlock(&space_info->lock);
 828	} while (flush_state <= COMMIT_TRANS);
 829}
 830
 831void btrfs_init_async_reclaim_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832{
 833	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 
 
 
 834}
 835
 836static const enum btrfs_flush_state priority_flush_states[] = {
 837	FLUSH_DELAYED_ITEMS_NR,
 838	FLUSH_DELAYED_ITEMS,
 839	ALLOC_CHUNK,
 840};
 841
 842static const enum btrfs_flush_state evict_flush_states[] = {
 843	FLUSH_DELAYED_ITEMS_NR,
 844	FLUSH_DELAYED_ITEMS,
 845	FLUSH_DELAYED_REFS_NR,
 846	FLUSH_DELAYED_REFS,
 847	FLUSH_DELALLOC,
 848	FLUSH_DELALLOC_WAIT,
 
 849	ALLOC_CHUNK,
 850	COMMIT_TRANS,
 851};
 852
 853static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
 854				struct btrfs_space_info *space_info,
 855				struct reserve_ticket *ticket,
 856				const enum btrfs_flush_state *states,
 857				int states_nr)
 858{
 859	u64 to_reclaim;
 860	int flush_state;
 861
 862	spin_lock(&space_info->lock);
 863	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 864						      false);
 865	if (!to_reclaim) {
 866		spin_unlock(&space_info->lock);
 867		return;
 868	}
 869	spin_unlock(&space_info->lock);
 870
 871	flush_state = 0;
 872	do {
 873		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
 
 874		flush_state++;
 875		spin_lock(&space_info->lock);
 876		if (ticket->bytes == 0) {
 877			spin_unlock(&space_info->lock);
 878			return;
 879		}
 880		spin_unlock(&space_info->lock);
 881	} while (flush_state < states_nr);
 882}
 883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
 885				struct btrfs_space_info *space_info,
 886				struct reserve_ticket *ticket)
 887
 888{
 889	DEFINE_WAIT(wait);
 890	int ret = 0;
 891
 892	spin_lock(&space_info->lock);
 893	while (ticket->bytes > 0 && ticket->error == 0) {
 894		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
 895		if (ret) {
 896			/*
 897			 * Delete us from the list. After we unlock the space
 898			 * info, we don't want the async reclaim job to reserve
 899			 * space for this ticket. If that would happen, then the
 900			 * ticket's task would not known that space was reserved
 901			 * despite getting an error, resulting in a space leak
 902			 * (bytes_may_use counter of our space_info).
 903			 */
 904			list_del_init(&ticket->list);
 905			ticket->error = -EINTR;
 906			break;
 907		}
 908		spin_unlock(&space_info->lock);
 909
 910		schedule();
 911
 912		finish_wait(&ticket->wait, &wait);
 913		spin_lock(&space_info->lock);
 914	}
 915	spin_unlock(&space_info->lock);
 916}
 917
 918/**
 919 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
 920 * @fs_info - the fs
 921 * @space_info - the space_info for the reservation
 922 * @ticket - the ticket for the reservation
 923 * @flush - how much we can flush
 
 
 
 924 *
 925 * This does the work of figuring out how to flush for the ticket, waiting for
 926 * the reservation, and returning the appropriate error if there is one.
 927 */
 928static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
 929				 struct btrfs_space_info *space_info,
 930				 struct reserve_ticket *ticket,
 
 931				 enum btrfs_reserve_flush_enum flush)
 932{
 933	int ret;
 934
 935	switch (flush) {
 
 936	case BTRFS_RESERVE_FLUSH_ALL:
 
 937		wait_reserve_ticket(fs_info, space_info, ticket);
 938		break;
 939	case BTRFS_RESERVE_FLUSH_LIMIT:
 940		priority_reclaim_metadata_space(fs_info, space_info, ticket,
 941						priority_flush_states,
 942						ARRAY_SIZE(priority_flush_states));
 943		break;
 944	case BTRFS_RESERVE_FLUSH_EVICT:
 945		priority_reclaim_metadata_space(fs_info, space_info, ticket,
 946						evict_flush_states,
 947						ARRAY_SIZE(evict_flush_states));
 948		break;
 
 
 
 949	default:
 950		ASSERT(0);
 951		break;
 952	}
 953
 954	spin_lock(&space_info->lock);
 955	ret = ticket->error;
 956	if (ticket->bytes || ticket->error) {
 957		/*
 958		 * Need to delete here for priority tickets. For regular tickets
 959		 * either the async reclaim job deletes the ticket from the list
 960		 * or we delete it ourselves at wait_reserve_ticket().
 
 
 961		 */
 962		list_del_init(&ticket->list);
 
 
 
 
 963		if (!ret)
 964			ret = -ENOSPC;
 965	}
 966	spin_unlock(&space_info->lock);
 967	ASSERT(list_empty(&ticket->list));
 968	/*
 969	 * Check that we can't have an error set if the reservation succeeded,
 970	 * as that would confuse tasks and lead them to error out without
 971	 * releasing reserved space (if an error happens the expectation is that
 972	 * space wasn't reserved at all).
 973	 */
 974	ASSERT(!(ticket->bytes == 0 && ticket->error));
 
 
 975	return ret;
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978/**
 979 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 980 * @root - the root we're allocating for
 981 * @space_info - the space info we want to allocate from
 982 * @orig_bytes - the number of bytes we want
 983 * @flush - whether or not we can flush to make our reservation
 
 984 *
 985 * This will reserve orig_bytes number of bytes from the space info associated
 986 * with the block_rsv.  If there is not enough space it will make an attempt to
 987 * flush out space to make room.  It will do this by flushing delalloc if
 988 * possible or committing the transaction.  If flush is 0 then no attempts to
 989 * regain reservations will be made and this will fail if there is not enough
 990 * space already.
 991 */
 992static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
 993				    struct btrfs_space_info *space_info,
 994				    u64 orig_bytes,
 995				    enum btrfs_reserve_flush_enum flush,
 996				    bool system_chunk)
 997{
 
 998	struct reserve_ticket ticket;
 
 999	u64 used;
1000	int ret = 0;
1001	bool pending_tickets;
1002
1003	ASSERT(orig_bytes);
1004	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1005
 
 
 
 
 
1006	spin_lock(&space_info->lock);
1007	ret = -ENOSPC;
1008	used = btrfs_space_info_used(space_info, true);
1009	pending_tickets = !list_empty(&space_info->tickets) ||
1010		!list_empty(&space_info->priority_tickets);
 
 
 
 
 
 
 
 
 
1011
1012	/*
1013	 * Carry on if we have enough space (short-circuit) OR call
1014	 * can_overcommit() to ensure we can overcommit to continue.
1015	 */
1016	if (!pending_tickets &&
1017	    ((used + orig_bytes <= space_info->total_bytes) ||
1018	     can_overcommit(fs_info, space_info, orig_bytes, flush,
1019			   system_chunk))) {
1020		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1021						      orig_bytes);
1022		ret = 0;
1023	}
1024
1025	/*
1026	 * If we couldn't make a reservation then setup our reservation ticket
1027	 * and kick the async worker if it's not already running.
1028	 *
1029	 * If we are a priority flusher then we just need to add our ticket to
1030	 * the list and we will do our own flushing further down.
1031	 */
1032	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1033		ticket.bytes = orig_bytes;
1034		ticket.error = 0;
 
1035		init_waitqueue_head(&ticket.wait);
1036		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
 
 
 
 
 
 
1037			list_add_tail(&ticket.list, &space_info->tickets);
1038			if (!space_info->flush) {
 
 
 
 
 
 
 
 
 
1039				space_info->flush = 1;
1040				trace_btrfs_trigger_flush(fs_info,
1041							  space_info->flags,
1042							  orig_bytes, flush,
1043							  "enospc");
1044				queue_work(system_unbound_wq,
1045					   &fs_info->async_reclaim_work);
1046			}
1047		} else {
1048			list_add_tail(&ticket.list,
1049				      &space_info->priority_tickets);
1050		}
1051	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1052		used += orig_bytes;
1053		/*
1054		 * We will do the space reservation dance during log replay,
1055		 * which means we won't have fs_info->fs_root set, so don't do
1056		 * the async reclaim as we will panic.
1057		 */
1058		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1059		    need_do_async_reclaim(fs_info, space_info,
1060					  used, system_chunk) &&
1061		    !work_busy(&fs_info->async_reclaim_work)) {
1062			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1063						  orig_bytes, flush, "preempt");
1064			queue_work(system_unbound_wq,
1065				   &fs_info->async_reclaim_work);
1066		}
1067	}
1068	spin_unlock(&space_info->lock);
1069	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1070		return ret;
1071
1072	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
 
1073}
1074
1075/**
1076 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1077 * @root - the root we're allocating for
1078 * @block_rsv - the block_rsv we're allocating for
1079 * @orig_bytes - the number of bytes we want
1080 * @flush - whether or not we can flush to make our reservation
 
1081 *
1082 * This will reserve orig_bytes number of bytes from the space info associated
1083 * with the block_rsv.  If there is not enough space it will make an attempt to
1084 * flush out space to make room.  It will do this by flushing delalloc if
1085 * possible or committing the transaction.  If flush is 0 then no attempts to
1086 * regain reservations will be made and this will fail if there is not enough
1087 * space already.
1088 */
1089int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1090				 struct btrfs_block_rsv *block_rsv,
1091				 u64 orig_bytes,
1092				 enum btrfs_reserve_flush_enum flush)
1093{
1094	struct btrfs_fs_info *fs_info = root->fs_info;
1095	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1096	int ret;
1097	bool system_chunk = (root == fs_info->chunk_root);
1098
1099	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1100				       orig_bytes, flush, system_chunk);
1101	if (ret == -ENOSPC &&
1102	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1103		if (block_rsv != global_rsv &&
1104		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1105			ret = 0;
1106	}
1107	if (ret == -ENOSPC) {
1108		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1109					      block_rsv->space_info->flags,
1110					      orig_bytes, 1);
1111
1112		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1113			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1114					      orig_bytes, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115	}
1116	return ret;
1117}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
  12
  13/*
  14 * HOW DOES SPACE RESERVATION WORK
  15 *
  16 * If you want to know about delalloc specifically, there is a separate comment
  17 * for that with the delalloc code.  This comment is about how the whole system
  18 * works generally.
  19 *
  20 * BASIC CONCEPTS
  21 *
  22 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
  23 *   There's a description of the bytes_ fields with the struct declaration,
  24 *   refer to that for specifics on each field.  Suffice it to say that for
  25 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
  26 *   determining if there is space to make an allocation.  There is a space_info
  27 *   for METADATA, SYSTEM, and DATA areas.
  28 *
  29 *   2) block_rsv's.  These are basically buckets for every different type of
  30 *   metadata reservation we have.  You can see the comment in the block_rsv
  31 *   code on the rules for each type, but generally block_rsv->reserved is how
  32 *   much space is accounted for in space_info->bytes_may_use.
  33 *
  34 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
  35 *   on the number of items we will want to modify.  We have one for changing
  36 *   items, and one for inserting new items.  Generally we use these helpers to
  37 *   determine the size of the block reserves, and then use the actual bytes
  38 *   values to adjust the space_info counters.
  39 *
  40 * MAKING RESERVATIONS, THE NORMAL CASE
  41 *
  42 *   We call into either btrfs_reserve_data_bytes() or
  43 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
  44 *   num_bytes we want to reserve.
  45 *
  46 *   ->reserve
  47 *     space_info->bytes_may_reserve += num_bytes
  48 *
  49 *   ->extent allocation
  50 *     Call btrfs_add_reserved_bytes() which does
  51 *     space_info->bytes_may_reserve -= num_bytes
  52 *     space_info->bytes_reserved += extent_bytes
  53 *
  54 *   ->insert reference
  55 *     Call btrfs_update_block_group() which does
  56 *     space_info->bytes_reserved -= extent_bytes
  57 *     space_info->bytes_used += extent_bytes
  58 *
  59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
  60 *
  61 *   Assume we are unable to simply make the reservation because we do not have
  62 *   enough space
  63 *
  64 *   -> __reserve_bytes
  65 *     create a reserve_ticket with ->bytes set to our reservation, add it to
  66 *     the tail of space_info->tickets, kick async flush thread
  67 *
  68 *   ->handle_reserve_ticket
  69 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
  70 *     on the ticket.
  71 *
  72 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
  73 *     Flushes various things attempting to free up space.
  74 *
  75 *   -> btrfs_try_granting_tickets()
  76 *     This is called by anything that either subtracts space from
  77 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
  78 *     space_info->total_bytes.  This loops through the ->priority_tickets and
  79 *     then the ->tickets list checking to see if the reservation can be
  80 *     completed.  If it can the space is added to space_info->bytes_may_use and
  81 *     the ticket is woken up.
  82 *
  83 *   -> ticket wakeup
  84 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
  85 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
  86 *     were interrupted.)
  87 *
  88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
  89 *
  90 *   Same as the above, except we add ourselves to the
  91 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
  92 *   call flush_space() ourselves for the states that are safe for us to call
  93 *   without deadlocking and hope for the best.
  94 *
  95 * THE FLUSHING STATES
  96 *
  97 *   Generally speaking we will have two cases for each state, a "nice" state
  98 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
  99 *   reduce the locking over head on the various trees, and even to keep from
 100 *   doing any work at all in the case of delayed refs.  Each of these delayed
 101 *   things however hold reservations, and so letting them run allows us to
 102 *   reclaim space so we can make new reservations.
 103 *
 104 *   FLUSH_DELAYED_ITEMS
 105 *     Every inode has a delayed item to update the inode.  Take a simple write
 106 *     for example, we would update the inode item at write time to update the
 107 *     mtime, and then again at finish_ordered_io() time in order to update the
 108 *     isize or bytes.  We keep these delayed items to coalesce these operations
 109 *     into a single operation done on demand.  These are an easy way to reclaim
 110 *     metadata space.
 111 *
 112 *   FLUSH_DELALLOC
 113 *     Look at the delalloc comment to get an idea of how much space is reserved
 114 *     for delayed allocation.  We can reclaim some of this space simply by
 115 *     running delalloc, but usually we need to wait for ordered extents to
 116 *     reclaim the bulk of this space.
 117 *
 118 *   FLUSH_DELAYED_REFS
 119 *     We have a block reserve for the outstanding delayed refs space, and every
 120 *     delayed ref operation holds a reservation.  Running these is a quick way
 121 *     to reclaim space, but we want to hold this until the end because COW can
 122 *     churn a lot and we can avoid making some extent tree modifications if we
 123 *     are able to delay for as long as possible.
 124 *
 125 *   ALLOC_CHUNK
 126 *     We will skip this the first time through space reservation, because of
 127 *     overcommit and we don't want to have a lot of useless metadata space when
 128 *     our worst case reservations will likely never come true.
 129 *
 130 *   RUN_DELAYED_IPUTS
 131 *     If we're freeing inodes we're likely freeing checksums, file extent
 132 *     items, and extent tree items.  Loads of space could be freed up by these
 133 *     operations, however they won't be usable until the transaction commits.
 134 *
 135 *   COMMIT_TRANS
 136 *     This will commit the transaction.  Historically we had a lot of logic
 137 *     surrounding whether or not we'd commit the transaction, but this waits born
 138 *     out of a pre-tickets era where we could end up committing the transaction
 139 *     thousands of times in a row without making progress.  Now thanks to our
 140 *     ticketing system we know if we're not making progress and can error
 141 *     everybody out after a few commits rather than burning the disk hoping for
 142 *     a different answer.
 143 *
 144 * OVERCOMMIT
 145 *
 146 *   Because we hold so many reservations for metadata we will allow you to
 147 *   reserve more space than is currently free in the currently allocate
 148 *   metadata space.  This only happens with metadata, data does not allow
 149 *   overcommitting.
 150 *
 151 *   You can see the current logic for when we allow overcommit in
 152 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
 153 *   is no unallocated space to be had, all reservations are kept within the
 154 *   free space in the allocated metadata chunks.
 155 *
 156 *   Because of overcommitting, you generally want to use the
 157 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
 158 *   thing with or without extra unallocated space.
 159 */
 160
 161u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
 162			  bool may_use_included)
 163{
 164	ASSERT(s_info);
 165	return s_info->bytes_used + s_info->bytes_reserved +
 166		s_info->bytes_pinned + s_info->bytes_readonly +
 167		s_info->bytes_zone_unusable +
 168		(may_use_included ? s_info->bytes_may_use : 0);
 169}
 170
 171/*
 172 * after adding space to the filesystem, we need to clear the full flags
 173 * on all the space infos.
 174 */
 175void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 176{
 177	struct list_head *head = &info->space_info;
 178	struct btrfs_space_info *found;
 179
 180	list_for_each_entry(found, head, list)
 
 181		found->full = 0;
 
 182}
 183
 184static int create_space_info(struct btrfs_fs_info *info, u64 flags)
 185{
 186
 187	struct btrfs_space_info *space_info;
 188	int i;
 189	int ret;
 190
 191	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
 192	if (!space_info)
 193		return -ENOMEM;
 194
 
 
 
 
 
 
 
 195	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 196		INIT_LIST_HEAD(&space_info->block_groups[i]);
 197	init_rwsem(&space_info->groups_sem);
 198	spin_lock_init(&space_info->lock);
 199	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 200	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 
 201	INIT_LIST_HEAD(&space_info->ro_bgs);
 202	INIT_LIST_HEAD(&space_info->tickets);
 203	INIT_LIST_HEAD(&space_info->priority_tickets);
 204	space_info->clamp = 1;
 205
 206	ret = btrfs_sysfs_add_space_info_type(info, space_info);
 207	if (ret)
 208		return ret;
 209
 210	list_add(&space_info->list, &info->space_info);
 211	if (flags & BTRFS_BLOCK_GROUP_DATA)
 212		info->data_sinfo = space_info;
 213
 214	return ret;
 215}
 216
 217int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
 218{
 219	struct btrfs_super_block *disk_super;
 220	u64 features;
 221	u64 flags;
 222	int mixed = 0;
 223	int ret;
 224
 225	disk_super = fs_info->super_copy;
 226	if (!btrfs_super_root(disk_super))
 227		return -EINVAL;
 228
 229	features = btrfs_super_incompat_flags(disk_super);
 230	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 231		mixed = 1;
 232
 233	flags = BTRFS_BLOCK_GROUP_SYSTEM;
 234	ret = create_space_info(fs_info, flags);
 235	if (ret)
 236		goto out;
 237
 238	if (mixed) {
 239		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 240		ret = create_space_info(fs_info, flags);
 241	} else {
 242		flags = BTRFS_BLOCK_GROUP_METADATA;
 243		ret = create_space_info(fs_info, flags);
 244		if (ret)
 245			goto out;
 246
 247		flags = BTRFS_BLOCK_GROUP_DATA;
 248		ret = create_space_info(fs_info, flags);
 249	}
 250out:
 251	return ret;
 252}
 253
 254void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 255			     u64 total_bytes, u64 bytes_used,
 256			     u64 bytes_readonly, u64 bytes_zone_unusable,
 257			     struct btrfs_space_info **space_info)
 258{
 259	struct btrfs_space_info *found;
 260	int factor;
 261
 262	factor = btrfs_bg_type_to_factor(flags);
 263
 264	found = btrfs_find_space_info(info, flags);
 265	ASSERT(found);
 266	spin_lock(&found->lock);
 267	found->total_bytes += total_bytes;
 268	found->disk_total += total_bytes * factor;
 269	found->bytes_used += bytes_used;
 270	found->disk_used += bytes_used * factor;
 271	found->bytes_readonly += bytes_readonly;
 272	found->bytes_zone_unusable += bytes_zone_unusable;
 273	if (total_bytes > 0)
 274		found->full = 0;
 275	btrfs_try_granting_tickets(info, found);
 276	spin_unlock(&found->lock);
 277	*space_info = found;
 278}
 279
 280struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 281					       u64 flags)
 282{
 283	struct list_head *head = &info->space_info;
 284	struct btrfs_space_info *found;
 285
 286	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 287
 288	list_for_each_entry(found, head, list) {
 289		if (found->flags & flags)
 
 
 290			return found;
 
 291	}
 
 292	return NULL;
 293}
 294
 295static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
 296			  struct btrfs_space_info *space_info,
 297			  enum btrfs_reserve_flush_enum flush)
 
 
 
 
 
 
 298{
 299	u64 profile;
 300	u64 avail;
 
 301	int factor;
 302
 303	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
 
 
 
 
 304		profile = btrfs_system_alloc_profile(fs_info);
 305	else
 306		profile = btrfs_metadata_alloc_profile(fs_info);
 307
 
 308	avail = atomic64_read(&fs_info->free_chunk_space);
 309
 310	/*
 311	 * If we have dup, raid1 or raid10 then only half of the free
 312	 * space is actually usable.  For raid56, the space info used
 313	 * doesn't include the parity drive, so we don't have to
 314	 * change the math
 315	 */
 316	factor = btrfs_bg_type_to_factor(profile);
 317	avail = div_u64(avail, factor);
 318
 319	/*
 320	 * If we aren't flushing all things, let us overcommit up to
 321	 * 1/2th of the space. If we can flush, don't let us overcommit
 322	 * too much, let it overcommit up to 1/8 of the space.
 323	 */
 324	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 325		avail >>= 3;
 326	else
 327		avail >>= 1;
 328	return avail;
 329}
 330
 331int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
 332			 struct btrfs_space_info *space_info, u64 bytes,
 333			 enum btrfs_reserve_flush_enum flush)
 334{
 335	u64 avail;
 336	u64 used;
 337
 338	/* Don't overcommit when in mixed mode */
 339	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 340		return 0;
 341
 342	used = btrfs_space_info_used(space_info, true);
 343	avail = calc_available_free_space(fs_info, space_info, flush);
 344
 345	if (used + bytes < space_info->total_bytes + avail)
 346		return 1;
 347	return 0;
 348}
 349
 350static void remove_ticket(struct btrfs_space_info *space_info,
 351			  struct reserve_ticket *ticket)
 352{
 353	if (!list_empty(&ticket->list)) {
 354		list_del_init(&ticket->list);
 355		ASSERT(space_info->reclaim_size >= ticket->bytes);
 356		space_info->reclaim_size -= ticket->bytes;
 357	}
 358}
 359
 360/*
 361 * This is for space we already have accounted in space_info->bytes_may_use, so
 362 * basically when we're returning space from block_rsv's.
 363 */
 364void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 365				struct btrfs_space_info *space_info)
 366{
 367	struct list_head *head;
 368	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 369
 370	lockdep_assert_held(&space_info->lock);
 371
 372	head = &space_info->priority_tickets;
 373again:
 374	while (!list_empty(head)) {
 375		struct reserve_ticket *ticket;
 376		u64 used = btrfs_space_info_used(space_info, true);
 377
 378		ticket = list_first_entry(head, struct reserve_ticket, list);
 379
 380		/* Check and see if our ticket can be satisfied now. */
 381		if ((used + ticket->bytes <= space_info->total_bytes) ||
 382		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
 383					 flush)) {
 384			btrfs_space_info_update_bytes_may_use(fs_info,
 385							      space_info,
 386							      ticket->bytes);
 387			remove_ticket(space_info, ticket);
 388			ticket->bytes = 0;
 389			space_info->tickets_id++;
 390			wake_up(&ticket->wait);
 391		} else {
 392			break;
 393		}
 394	}
 395
 396	if (head == &space_info->priority_tickets) {
 397		head = &space_info->tickets;
 398		flush = BTRFS_RESERVE_FLUSH_ALL;
 399		goto again;
 400	}
 401}
 402
 403#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 404do {									\
 405	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 406	spin_lock(&__rsv->lock);					\
 407	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 408		   __rsv->size, __rsv->reserved);			\
 409	spin_unlock(&__rsv->lock);					\
 410} while (0)
 411
 412static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 413				    struct btrfs_space_info *info)
 414{
 415	lockdep_assert_held(&info->lock);
 416
 417	/* The free space could be negative in case of overcommit */
 418	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
 419		   info->flags,
 420		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
 421		   info->full ? "" : "not ");
 422	btrfs_info(fs_info,
 423		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
 424		info->total_bytes, info->bytes_used, info->bytes_pinned,
 425		info->bytes_reserved, info->bytes_may_use,
 426		info->bytes_readonly, info->bytes_zone_unusable);
 427
 428	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 429	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 430	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 431	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 432	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 433
 434}
 435
 436void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 437			   struct btrfs_space_info *info, u64 bytes,
 438			   int dump_block_groups)
 439{
 440	struct btrfs_block_group *cache;
 441	int index = 0;
 442
 443	spin_lock(&info->lock);
 444	__btrfs_dump_space_info(fs_info, info);
 445	spin_unlock(&info->lock);
 446
 447	if (!dump_block_groups)
 448		return;
 449
 450	down_read(&info->groups_sem);
 451again:
 452	list_for_each_entry(cache, &info->block_groups[index], list) {
 453		spin_lock(&cache->lock);
 454		btrfs_info(fs_info,
 455			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
 456			cache->start, cache->length, cache->used, cache->pinned,
 457			cache->reserved, cache->zone_unusable,
 458			cache->ro ? "[readonly]" : "");
 
 459		spin_unlock(&cache->lock);
 460		btrfs_dump_free_space(cache, bytes);
 461	}
 462	if (++index < BTRFS_NR_RAID_TYPES)
 463		goto again;
 464	up_read(&info->groups_sem);
 465}
 466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 468					u64 to_reclaim)
 469{
 470	u64 bytes;
 471	u64 nr;
 472
 473	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 474	nr = div64_u64(to_reclaim, bytes);
 475	if (!nr)
 476		nr = 1;
 477	return nr;
 478}
 479
 480#define EXTENT_SIZE_PER_ITEM	SZ_256K
 481
 482/*
 483 * shrink metadata reservation for delalloc
 484 */
 485static void shrink_delalloc(struct btrfs_fs_info *fs_info,
 486			    struct btrfs_space_info *space_info,
 487			    u64 to_reclaim, bool wait_ordered,
 488			    bool for_preempt)
 489{
 
 490	struct btrfs_trans_handle *trans;
 491	u64 delalloc_bytes;
 492	u64 ordered_bytes;
 
 493	u64 items;
 494	long time_left;
 
 495	int loops;
 496
 497	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
 498	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
 499	if (delalloc_bytes == 0 && ordered_bytes == 0)
 500		return;
 501
 502	/* Calc the number of the pages we need flush for space reservation */
 503	if (to_reclaim == U64_MAX) {
 504		items = U64_MAX;
 505	} else {
 506		/*
 507		 * to_reclaim is set to however much metadata we need to
 508		 * reclaim, but reclaiming that much data doesn't really track
 509		 * exactly.  What we really want to do is reclaim full inode's
 510		 * worth of reservations, however that's not available to us
 511		 * here.  We will take a fraction of the delalloc bytes for our
 512		 * flushing loops and hope for the best.  Delalloc will expand
 513		 * the amount we write to cover an entire dirty extent, which
 514		 * will reclaim the metadata reservation for that range.  If
 515		 * it's not enough subsequent flush stages will be more
 516		 * aggressive.
 517		 */
 518		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
 519		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
 520	}
 521
 522	trans = (struct btrfs_trans_handle *)current->journal_info;
 
 
 
 
 
 
 
 
 
 
 
 
 523
 524	/*
 525	 * If we are doing more ordered than delalloc we need to just wait on
 526	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 527	 * that likely won't give us the space back we need.
 528	 */
 529	if (ordered_bytes > delalloc_bytes && !for_preempt)
 530		wait_ordered = true;
 531
 532	loops = 0;
 533	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
 534		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 535		long nr_pages = min_t(u64, temp, LONG_MAX);
 536		int async_pages;
 537
 538		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
 
 
 
 
 
 539
 540		/*
 541		 * We need to make sure any outstanding async pages are now
 542		 * processed before we continue.  This is because things like
 543		 * sync_inode() try to be smart and skip writing if the inode is
 544		 * marked clean.  We don't use filemap_fwrite for flushing
 545		 * because we want to control how many pages we write out at a
 546		 * time, thus this is the only safe way to make sure we've
 547		 * waited for outstanding compressed workers to have started
 548		 * their jobs and thus have ordered extents set up properly.
 549		 *
 550		 * This exists because we do not want to wait for each
 551		 * individual inode to finish its async work, we simply want to
 552		 * start the IO on everybody, and then come back here and wait
 553		 * for all of the async work to catch up.  Once we're done with
 554		 * that we know we'll have ordered extents for everything and we
 555		 * can decide if we wait for that or not.
 556		 *
 557		 * If we choose to replace this in the future, make absolutely
 558		 * sure that the proper waiting is being done in the async case,
 559		 * as there have been bugs in that area before.
 560		 */
 561		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 562		if (!async_pages)
 563			goto skip_async;
 564
 565		/*
 566		 * We don't want to wait forever, if we wrote less pages in this
 567		 * loop than we have outstanding, only wait for that number of
 568		 * pages, otherwise we can wait for all async pages to finish
 569		 * before continuing.
 570		 */
 571		if (async_pages > nr_pages)
 
 
 572			async_pages -= nr_pages;
 573		else
 574			async_pages = 0;
 575		wait_event(fs_info->async_submit_wait,
 576			   atomic_read(&fs_info->async_delalloc_pages) <=
 577			   async_pages);
 578skip_async:
 
 
 
 
 
 
 
 
 579		loops++;
 580		if (wait_ordered && !trans) {
 581			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 582		} else {
 583			time_left = schedule_timeout_killable(1);
 584			if (time_left)
 585				break;
 586		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587
 588		/*
 589		 * If we are for preemption we just want a one-shot of delalloc
 590		 * flushing so we can stop flushing if we decide we don't need
 591		 * to anymore.
 592		 */
 593		if (for_preempt)
 594			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596		spin_lock(&space_info->lock);
 597		if (list_empty(&space_info->tickets) &&
 598		    list_empty(&space_info->priority_tickets)) {
 599			spin_unlock(&space_info->lock);
 600			break;
 601		}
 602		spin_unlock(&space_info->lock);
 603
 604		delalloc_bytes = percpu_counter_sum_positive(
 605						&fs_info->delalloc_bytes);
 606		ordered_bytes = percpu_counter_sum_positive(
 607						&fs_info->ordered_bytes);
 608	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609}
 610
 611/*
 612 * Try to flush some data based on policy set by @state. This is only advisory
 613 * and may fail for various reasons. The caller is supposed to examine the
 614 * state of @space_info to detect the outcome.
 615 */
 616static void flush_space(struct btrfs_fs_info *fs_info,
 617		       struct btrfs_space_info *space_info, u64 num_bytes,
 618		       enum btrfs_flush_state state, bool for_preempt)
 619{
 620	struct btrfs_root *root = fs_info->extent_root;
 621	struct btrfs_trans_handle *trans;
 622	int nr;
 623	int ret = 0;
 624
 625	switch (state) {
 626	case FLUSH_DELAYED_ITEMS_NR:
 627	case FLUSH_DELAYED_ITEMS:
 628		if (state == FLUSH_DELAYED_ITEMS_NR)
 629			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 630		else
 631			nr = -1;
 632
 633		trans = btrfs_join_transaction(root);
 634		if (IS_ERR(trans)) {
 635			ret = PTR_ERR(trans);
 636			break;
 637		}
 638		ret = btrfs_run_delayed_items_nr(trans, nr);
 639		btrfs_end_transaction(trans);
 640		break;
 641	case FLUSH_DELALLOC:
 642	case FLUSH_DELALLOC_WAIT:
 643	case FLUSH_DELALLOC_FULL:
 644		if (state == FLUSH_DELALLOC_FULL)
 645			num_bytes = U64_MAX;
 646		shrink_delalloc(fs_info, space_info, num_bytes,
 647				state != FLUSH_DELALLOC, for_preempt);
 648		break;
 649	case FLUSH_DELAYED_REFS_NR:
 650	case FLUSH_DELAYED_REFS:
 651		trans = btrfs_join_transaction(root);
 652		if (IS_ERR(trans)) {
 653			ret = PTR_ERR(trans);
 654			break;
 655		}
 656		if (state == FLUSH_DELAYED_REFS_NR)
 657			nr = calc_reclaim_items_nr(fs_info, num_bytes);
 658		else
 659			nr = 0;
 660		btrfs_run_delayed_refs(trans, nr);
 661		btrfs_end_transaction(trans);
 662		break;
 663	case ALLOC_CHUNK:
 664	case ALLOC_CHUNK_FORCE:
 665		trans = btrfs_join_transaction(root);
 666		if (IS_ERR(trans)) {
 667			ret = PTR_ERR(trans);
 668			break;
 669		}
 670		ret = btrfs_chunk_alloc(trans,
 671				btrfs_get_alloc_profile(fs_info, space_info->flags),
 672				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 673					CHUNK_ALLOC_FORCE);
 674		btrfs_end_transaction(trans);
 675		if (ret > 0 || ret == -ENOSPC)
 676			ret = 0;
 677		break;
 678	case RUN_DELAYED_IPUTS:
 679		/*
 680		 * If we have pending delayed iputs then we could free up a
 681		 * bunch of pinned space, so make sure we run the iputs before
 682		 * we do our pinned bytes check below.
 683		 */
 684		btrfs_run_delayed_iputs(fs_info);
 685		btrfs_wait_on_delayed_iputs(fs_info);
 686		break;
 687	case COMMIT_TRANS:
 688		ASSERT(current->journal_info == NULL);
 689		trans = btrfs_join_transaction(root);
 690		if (IS_ERR(trans)) {
 691			ret = PTR_ERR(trans);
 692			break;
 693		}
 694		ret = btrfs_commit_transaction(trans);
 695		break;
 696	default:
 697		ret = -ENOSPC;
 698		break;
 699	}
 700
 701	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 702				ret, for_preempt);
 703	return;
 704}
 705
 706static inline u64
 707btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 708				 struct btrfs_space_info *space_info)
 
 709{
 
 710	u64 used;
 711	u64 avail;
 712	u64 to_reclaim = space_info->reclaim_size;
 713
 714	lockdep_assert_held(&space_info->lock);
 
 
 
 
 
 
 
 
 
 
 715
 716	avail = calc_available_free_space(fs_info, space_info,
 717					  BTRFS_RESERVE_FLUSH_ALL);
 718	used = btrfs_space_info_used(space_info, true);
 719
 720	/*
 721	 * We may be flushing because suddenly we have less space than we had
 722	 * before, and now we're well over-committed based on our current free
 723	 * space.  If that's the case add in our overage so we make sure to put
 724	 * appropriate pressure on the flushing state machine.
 725	 */
 726	if (space_info->total_bytes + avail < used)
 727		to_reclaim += used - (space_info->total_bytes + avail);
 728
 
 
 
 
 
 
 729	return to_reclaim;
 730}
 731
 732static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
 733				    struct btrfs_space_info *space_info)
 
 734{
 735	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
 736	u64 ordered, delalloc;
 737	u64 thresh = div_factor_fine(space_info->total_bytes, 90);
 738	u64 used;
 739
 740	/* If we're just plain full then async reclaim just slows us down. */
 741	if ((space_info->bytes_used + space_info->bytes_reserved +
 742	     global_rsv_size) >= thresh)
 743		return false;
 744
 745	used = space_info->bytes_may_use + space_info->bytes_pinned;
 746
 747	/* The total flushable belongs to the global rsv, don't flush. */
 748	if (global_rsv_size >= used)
 749		return false;
 750
 751	/*
 752	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
 753	 * that devoted to other reservations then there's no sense in flushing,
 754	 * we don't have a lot of things that need flushing.
 755	 */
 756	if (used - global_rsv_size <= SZ_128M)
 757		return false;
 758
 759	/*
 760	 * We have tickets queued, bail so we don't compete with the async
 761	 * flushers.
 762	 */
 763	if (space_info->reclaim_size)
 764		return false;
 765
 766	/*
 767	 * If we have over half of the free space occupied by reservations or
 768	 * pinned then we want to start flushing.
 769	 *
 770	 * We do not do the traditional thing here, which is to say
 771	 *
 772	 *   if (used >= ((total_bytes + avail) / 2))
 773	 *     return 1;
 774	 *
 775	 * because this doesn't quite work how we want.  If we had more than 50%
 776	 * of the space_info used by bytes_used and we had 0 available we'd just
 777	 * constantly run the background flusher.  Instead we want it to kick in
 778	 * if our reclaimable space exceeds our clamped free space.
 779	 *
 780	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
 781	 * the following:
 782	 *
 783	 * Amount of RAM        Minimum threshold       Maximum threshold
 784	 *
 785	 *        256GiB                     1GiB                  128GiB
 786	 *        128GiB                   512MiB                   64GiB
 787	 *         64GiB                   256MiB                   32GiB
 788	 *         32GiB                   128MiB                   16GiB
 789	 *         16GiB                    64MiB                    8GiB
 790	 *
 791	 * These are the range our thresholds will fall in, corresponding to how
 792	 * much delalloc we need for the background flusher to kick in.
 793	 */
 794
 795	thresh = calc_available_free_space(fs_info, space_info,
 796					   BTRFS_RESERVE_FLUSH_ALL);
 797	used = space_info->bytes_used + space_info->bytes_reserved +
 798	       space_info->bytes_readonly + global_rsv_size;
 799	if (used < space_info->total_bytes)
 800		thresh += space_info->total_bytes - used;
 801	thresh >>= space_info->clamp;
 802
 803	used = space_info->bytes_pinned;
 804
 805	/*
 806	 * If we have more ordered bytes than delalloc bytes then we're either
 807	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
 808	 * around.  Preemptive flushing is only useful in that it can free up
 809	 * space before tickets need to wait for things to finish.  In the case
 810	 * of ordered extents, preemptively waiting on ordered extents gets us
 811	 * nothing, if our reservations are tied up in ordered extents we'll
 812	 * simply have to slow down writers by forcing them to wait on ordered
 813	 * extents.
 814	 *
 815	 * In the case that ordered is larger than delalloc, only include the
 816	 * block reserves that we would actually be able to directly reclaim
 817	 * from.  In this case if we're heavy on metadata operations this will
 818	 * clearly be heavy enough to warrant preemptive flushing.  In the case
 819	 * of heavy DIO or ordered reservations, preemptive flushing will just
 820	 * waste time and cause us to slow down.
 821	 *
 822	 * We want to make sure we truly are maxed out on ordered however, so
 823	 * cut ordered in half, and if it's still higher than delalloc then we
 824	 * can keep flushing.  This is to avoid the case where we start
 825	 * flushing, and now delalloc == ordered and we stop preemptively
 826	 * flushing when we could still have several gigs of delalloc to flush.
 827	 */
 828	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
 829	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
 830	if (ordered >= delalloc)
 831		used += fs_info->delayed_refs_rsv.reserved +
 832			fs_info->delayed_block_rsv.reserved;
 833	else
 834		used += space_info->bytes_may_use - global_rsv_size;
 835
 836	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 837		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 838}
 839
 840static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
 841				  struct btrfs_space_info *space_info,
 842				  struct reserve_ticket *ticket)
 843{
 844	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 845	u64 min_bytes;
 846
 847	if (global_rsv->space_info != space_info)
 848		return false;
 849
 850	spin_lock(&global_rsv->lock);
 851	min_bytes = div_factor(global_rsv->size, 1);
 852	if (global_rsv->reserved < min_bytes + ticket->bytes) {
 853		spin_unlock(&global_rsv->lock);
 854		return false;
 855	}
 856	global_rsv->reserved -= ticket->bytes;
 857	remove_ticket(space_info, ticket);
 858	ticket->bytes = 0;
 859	wake_up(&ticket->wait);
 860	space_info->tickets_id++;
 861	if (global_rsv->reserved < global_rsv->size)
 862		global_rsv->full = 0;
 863	spin_unlock(&global_rsv->lock);
 864
 865	return true;
 866}
 867
 868/*
 869 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 870 * @fs_info - fs_info for this fs
 871 * @space_info - the space info we were flushing
 872 *
 873 * We call this when we've exhausted our flushing ability and haven't made
 874 * progress in satisfying tickets.  The reservation code handles tickets in
 875 * order, so if there is a large ticket first and then smaller ones we could
 876 * very well satisfy the smaller tickets.  This will attempt to wake up any
 877 * tickets in the list to catch this case.
 878 *
 879 * This function returns true if it was able to make progress by clearing out
 880 * other tickets, or if it stumbles across a ticket that was smaller than the
 881 * first ticket.
 882 */
 883static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 884				   struct btrfs_space_info *space_info)
 885{
 886	struct reserve_ticket *ticket;
 887	u64 tickets_id = space_info->tickets_id;
 
 888
 889	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 890		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 891		__btrfs_dump_space_info(fs_info, space_info);
 892	}
 893
 894	while (!list_empty(&space_info->tickets) &&
 895	       tickets_id == space_info->tickets_id) {
 896		ticket = list_first_entry(&space_info->tickets,
 897					  struct reserve_ticket, list);
 898
 899		if (ticket->steal &&
 900		    steal_from_global_rsv(fs_info, space_info, ticket))
 
 
 
 
 
 
 
 
 
 
 
 901			return true;
 902
 903		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 904			btrfs_info(fs_info, "failing ticket with %llu bytes",
 905				   ticket->bytes);
 906
 907		remove_ticket(space_info, ticket);
 908		ticket->error = -ENOSPC;
 909		wake_up(&ticket->wait);
 910
 911		/*
 912		 * We're just throwing tickets away, so more flushing may not
 913		 * trip over btrfs_try_granting_tickets, so we need to call it
 914		 * here to see if we can make progress with the next ticket in
 915		 * the list.
 916		 */
 917		btrfs_try_granting_tickets(fs_info, space_info);
 918	}
 919	return (tickets_id != space_info->tickets_id);
 920}
 921
 922/*
 923 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 924 * will loop and continuously try to flush as long as we are making progress.
 925 * We count progress as clearing off tickets each time we have to loop.
 926 */
 927static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 928{
 929	struct btrfs_fs_info *fs_info;
 930	struct btrfs_space_info *space_info;
 931	u64 to_reclaim;
 932	enum btrfs_flush_state flush_state;
 933	int commit_cycles = 0;
 934	u64 last_tickets_id;
 935
 936	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 937	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 938
 939	spin_lock(&space_info->lock);
 940	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
 
 941	if (!to_reclaim) {
 942		space_info->flush = 0;
 943		spin_unlock(&space_info->lock);
 944		return;
 945	}
 946	last_tickets_id = space_info->tickets_id;
 947	spin_unlock(&space_info->lock);
 948
 949	flush_state = FLUSH_DELAYED_ITEMS_NR;
 950	do {
 951		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
 952		spin_lock(&space_info->lock);
 953		if (list_empty(&space_info->tickets)) {
 954			space_info->flush = 0;
 955			spin_unlock(&space_info->lock);
 956			return;
 957		}
 958		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
 959							      space_info);
 
 960		if (last_tickets_id == space_info->tickets_id) {
 961			flush_state++;
 962		} else {
 963			last_tickets_id = space_info->tickets_id;
 964			flush_state = FLUSH_DELAYED_ITEMS_NR;
 965			if (commit_cycles)
 966				commit_cycles--;
 967		}
 968
 969		/*
 970		 * We do not want to empty the system of delalloc unless we're
 971		 * under heavy pressure, so allow one trip through the flushing
 972		 * logic before we start doing a FLUSH_DELALLOC_FULL.
 973		 */
 974		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
 975			flush_state++;
 976
 977		/*
 978		 * We don't want to force a chunk allocation until we've tried
 979		 * pretty hard to reclaim space.  Think of the case where we
 980		 * freed up a bunch of space and so have a lot of pinned space
 981		 * to reclaim.  We would rather use that than possibly create a
 982		 * underutilized metadata chunk.  So if this is our first run
 983		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
 984		 * commit the transaction.  If nothing has changed the next go
 985		 * around then we can force a chunk allocation.
 986		 */
 987		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
 988			flush_state++;
 989
 990		if (flush_state > COMMIT_TRANS) {
 991			commit_cycles++;
 992			if (commit_cycles > 2) {
 993				if (maybe_fail_all_tickets(fs_info, space_info)) {
 994					flush_state = FLUSH_DELAYED_ITEMS_NR;
 995					commit_cycles--;
 996				} else {
 997					space_info->flush = 0;
 998				}
 999			} else {
1000				flush_state = FLUSH_DELAYED_ITEMS_NR;
1001			}
1002		}
1003		spin_unlock(&space_info->lock);
1004	} while (flush_state <= COMMIT_TRANS);
1005}
1006
1007/*
1008 * This handles pre-flushing of metadata space before we get to the point that
1009 * we need to start blocking threads on tickets.  The logic here is different
1010 * from the other flush paths because it doesn't rely on tickets to tell us how
1011 * much we need to flush, instead it attempts to keep us below the 80% full
1012 * watermark of space by flushing whichever reservation pool is currently the
1013 * largest.
1014 */
1015static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1016{
1017	struct btrfs_fs_info *fs_info;
1018	struct btrfs_space_info *space_info;
1019	struct btrfs_block_rsv *delayed_block_rsv;
1020	struct btrfs_block_rsv *delayed_refs_rsv;
1021	struct btrfs_block_rsv *global_rsv;
1022	struct btrfs_block_rsv *trans_rsv;
1023	int loops = 0;
1024
1025	fs_info = container_of(work, struct btrfs_fs_info,
1026			       preempt_reclaim_work);
1027	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1028	delayed_block_rsv = &fs_info->delayed_block_rsv;
1029	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1030	global_rsv = &fs_info->global_block_rsv;
1031	trans_rsv = &fs_info->trans_block_rsv;
1032
1033	spin_lock(&space_info->lock);
1034	while (need_preemptive_reclaim(fs_info, space_info)) {
1035		enum btrfs_flush_state flush;
1036		u64 delalloc_size = 0;
1037		u64 to_reclaim, block_rsv_size;
1038		u64 global_rsv_size = global_rsv->reserved;
1039
1040		loops++;
1041
1042		/*
1043		 * We don't have a precise counter for the metadata being
1044		 * reserved for delalloc, so we'll approximate it by subtracting
1045		 * out the block rsv's space from the bytes_may_use.  If that
1046		 * amount is higher than the individual reserves, then we can
1047		 * assume it's tied up in delalloc reservations.
1048		 */
1049		block_rsv_size = global_rsv_size +
1050			delayed_block_rsv->reserved +
1051			delayed_refs_rsv->reserved +
1052			trans_rsv->reserved;
1053		if (block_rsv_size < space_info->bytes_may_use)
1054			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1055		spin_unlock(&space_info->lock);
1056
1057		/*
1058		 * We don't want to include the global_rsv in our calculation,
1059		 * because that's space we can't touch.  Subtract it from the
1060		 * block_rsv_size for the next checks.
1061		 */
1062		block_rsv_size -= global_rsv_size;
1063
1064		/*
1065		 * We really want to avoid flushing delalloc too much, as it
1066		 * could result in poor allocation patterns, so only flush it if
1067		 * it's larger than the rest of the pools combined.
1068		 */
1069		if (delalloc_size > block_rsv_size) {
1070			to_reclaim = delalloc_size;
1071			flush = FLUSH_DELALLOC;
1072		} else if (space_info->bytes_pinned >
1073			   (delayed_block_rsv->reserved +
1074			    delayed_refs_rsv->reserved)) {
1075			to_reclaim = space_info->bytes_pinned;
1076			flush = COMMIT_TRANS;
1077		} else if (delayed_block_rsv->reserved >
1078			   delayed_refs_rsv->reserved) {
1079			to_reclaim = delayed_block_rsv->reserved;
1080			flush = FLUSH_DELAYED_ITEMS_NR;
1081		} else {
1082			to_reclaim = delayed_refs_rsv->reserved;
1083			flush = FLUSH_DELAYED_REFS_NR;
1084		}
1085
1086		/*
1087		 * We don't want to reclaim everything, just a portion, so scale
1088		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1089		 * reclaim 1 items worth.
1090		 */
1091		to_reclaim >>= 2;
1092		if (!to_reclaim)
1093			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1094		flush_space(fs_info, space_info, to_reclaim, flush, true);
1095		cond_resched();
1096		spin_lock(&space_info->lock);
1097	}
1098
1099	/* We only went through once, back off our clamping. */
1100	if (loops == 1 && !space_info->reclaim_size)
1101		space_info->clamp = max(1, space_info->clamp - 1);
1102	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1103	spin_unlock(&space_info->lock);
1104}
1105
1106/*
1107 * FLUSH_DELALLOC_WAIT:
1108 *   Space is freed from flushing delalloc in one of two ways.
1109 *
1110 *   1) compression is on and we allocate less space than we reserved
1111 *   2) we are overwriting existing space
1112 *
1113 *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1114 *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1115 *   length to ->bytes_reserved, and subtracts the reserved space from
1116 *   ->bytes_may_use.
1117 *
1118 *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1119 *   extent in the range we are overwriting, which creates a delayed ref for
1120 *   that freed extent.  This however is not reclaimed until the transaction
1121 *   commits, thus the next stages.
1122 *
1123 * RUN_DELAYED_IPUTS
1124 *   If we are freeing inodes, we want to make sure all delayed iputs have
1125 *   completed, because they could have been on an inode with i_nlink == 0, and
1126 *   thus have been truncated and freed up space.  But again this space is not
1127 *   immediately re-usable, it comes in the form of a delayed ref, which must be
1128 *   run and then the transaction must be committed.
1129 *
1130 * COMMIT_TRANS
1131 *   This is where we reclaim all of the pinned space generated by running the
1132 *   iputs
1133 *
1134 * ALLOC_CHUNK_FORCE
1135 *   For data we start with alloc chunk force, however we could have been full
1136 *   before, and then the transaction commit could have freed new block groups,
1137 *   so if we now have space to allocate do the force chunk allocation.
1138 */
1139static const enum btrfs_flush_state data_flush_states[] = {
1140	FLUSH_DELALLOC_FULL,
1141	RUN_DELAYED_IPUTS,
1142	COMMIT_TRANS,
1143	ALLOC_CHUNK_FORCE,
1144};
1145
1146static void btrfs_async_reclaim_data_space(struct work_struct *work)
1147{
1148	struct btrfs_fs_info *fs_info;
1149	struct btrfs_space_info *space_info;
1150	u64 last_tickets_id;
1151	enum btrfs_flush_state flush_state = 0;
1152
1153	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1154	space_info = fs_info->data_sinfo;
1155
1156	spin_lock(&space_info->lock);
1157	if (list_empty(&space_info->tickets)) {
1158		space_info->flush = 0;
1159		spin_unlock(&space_info->lock);
1160		return;
1161	}
1162	last_tickets_id = space_info->tickets_id;
1163	spin_unlock(&space_info->lock);
1164
1165	while (!space_info->full) {
1166		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1167		spin_lock(&space_info->lock);
1168		if (list_empty(&space_info->tickets)) {
1169			space_info->flush = 0;
1170			spin_unlock(&space_info->lock);
1171			return;
1172		}
1173		last_tickets_id = space_info->tickets_id;
1174		spin_unlock(&space_info->lock);
1175	}
1176
1177	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1178		flush_space(fs_info, space_info, U64_MAX,
1179			    data_flush_states[flush_state], false);
1180		spin_lock(&space_info->lock);
1181		if (list_empty(&space_info->tickets)) {
1182			space_info->flush = 0;
1183			spin_unlock(&space_info->lock);
1184			return;
1185		}
1186
1187		if (last_tickets_id == space_info->tickets_id) {
1188			flush_state++;
1189		} else {
1190			last_tickets_id = space_info->tickets_id;
1191			flush_state = 0;
1192		}
1193
1194		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1195			if (space_info->full) {
1196				if (maybe_fail_all_tickets(fs_info, space_info))
1197					flush_state = 0;
1198				else
1199					space_info->flush = 0;
1200			} else {
1201				flush_state = 0;
1202			}
1203		}
1204		spin_unlock(&space_info->lock);
1205	}
1206}
1207
1208void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1209{
1210	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1211	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1212	INIT_WORK(&fs_info->preempt_reclaim_work,
1213		  btrfs_preempt_reclaim_metadata_space);
1214}
1215
1216static const enum btrfs_flush_state priority_flush_states[] = {
1217	FLUSH_DELAYED_ITEMS_NR,
1218	FLUSH_DELAYED_ITEMS,
1219	ALLOC_CHUNK,
1220};
1221
1222static const enum btrfs_flush_state evict_flush_states[] = {
1223	FLUSH_DELAYED_ITEMS_NR,
1224	FLUSH_DELAYED_ITEMS,
1225	FLUSH_DELAYED_REFS_NR,
1226	FLUSH_DELAYED_REFS,
1227	FLUSH_DELALLOC,
1228	FLUSH_DELALLOC_WAIT,
1229	FLUSH_DELALLOC_FULL,
1230	ALLOC_CHUNK,
1231	COMMIT_TRANS,
1232};
1233
1234static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1235				struct btrfs_space_info *space_info,
1236				struct reserve_ticket *ticket,
1237				const enum btrfs_flush_state *states,
1238				int states_nr)
1239{
1240	u64 to_reclaim;
1241	int flush_state;
1242
1243	spin_lock(&space_info->lock);
1244	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
 
1245	if (!to_reclaim) {
1246		spin_unlock(&space_info->lock);
1247		return;
1248	}
1249	spin_unlock(&space_info->lock);
1250
1251	flush_state = 0;
1252	do {
1253		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1254			    false);
1255		flush_state++;
1256		spin_lock(&space_info->lock);
1257		if (ticket->bytes == 0) {
1258			spin_unlock(&space_info->lock);
1259			return;
1260		}
1261		spin_unlock(&space_info->lock);
1262	} while (flush_state < states_nr);
1263}
1264
1265static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1266					struct btrfs_space_info *space_info,
1267					struct reserve_ticket *ticket)
1268{
1269	while (!space_info->full) {
1270		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1271		spin_lock(&space_info->lock);
1272		if (ticket->bytes == 0) {
1273			spin_unlock(&space_info->lock);
1274			return;
1275		}
1276		spin_unlock(&space_info->lock);
1277	}
1278}
1279
1280static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1281				struct btrfs_space_info *space_info,
1282				struct reserve_ticket *ticket)
1283
1284{
1285	DEFINE_WAIT(wait);
1286	int ret = 0;
1287
1288	spin_lock(&space_info->lock);
1289	while (ticket->bytes > 0 && ticket->error == 0) {
1290		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1291		if (ret) {
1292			/*
1293			 * Delete us from the list. After we unlock the space
1294			 * info, we don't want the async reclaim job to reserve
1295			 * space for this ticket. If that would happen, then the
1296			 * ticket's task would not known that space was reserved
1297			 * despite getting an error, resulting in a space leak
1298			 * (bytes_may_use counter of our space_info).
1299			 */
1300			remove_ticket(space_info, ticket);
1301			ticket->error = -EINTR;
1302			break;
1303		}
1304		spin_unlock(&space_info->lock);
1305
1306		schedule();
1307
1308		finish_wait(&ticket->wait, &wait);
1309		spin_lock(&space_info->lock);
1310	}
1311	spin_unlock(&space_info->lock);
1312}
1313
1314/**
1315 * Do the appropriate flushing and waiting for a ticket
1316 *
1317 * @fs_info:    the filesystem
1318 * @space_info: space info for the reservation
1319 * @ticket:     ticket for the reservation
1320 * @start_ns:   timestamp when the reservation started
1321 * @orig_bytes: amount of bytes originally reserved
1322 * @flush:      how much we can flush
1323 *
1324 * This does the work of figuring out how to flush for the ticket, waiting for
1325 * the reservation, and returning the appropriate error if there is one.
1326 */
1327static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1328				 struct btrfs_space_info *space_info,
1329				 struct reserve_ticket *ticket,
1330				 u64 start_ns, u64 orig_bytes,
1331				 enum btrfs_reserve_flush_enum flush)
1332{
1333	int ret;
1334
1335	switch (flush) {
1336	case BTRFS_RESERVE_FLUSH_DATA:
1337	case BTRFS_RESERVE_FLUSH_ALL:
1338	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1339		wait_reserve_ticket(fs_info, space_info, ticket);
1340		break;
1341	case BTRFS_RESERVE_FLUSH_LIMIT:
1342		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1343						priority_flush_states,
1344						ARRAY_SIZE(priority_flush_states));
1345		break;
1346	case BTRFS_RESERVE_FLUSH_EVICT:
1347		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1348						evict_flush_states,
1349						ARRAY_SIZE(evict_flush_states));
1350		break;
1351	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1352		priority_reclaim_data_space(fs_info, space_info, ticket);
1353		break;
1354	default:
1355		ASSERT(0);
1356		break;
1357	}
1358
1359	spin_lock(&space_info->lock);
1360	ret = ticket->error;
1361	if (ticket->bytes || ticket->error) {
1362		/*
1363		 * We were a priority ticket, so we need to delete ourselves
1364		 * from the list.  Because we could have other priority tickets
1365		 * behind us that require less space, run
1366		 * btrfs_try_granting_tickets() to see if their reservations can
1367		 * now be made.
1368		 */
1369		if (!list_empty(&ticket->list)) {
1370			remove_ticket(space_info, ticket);
1371			btrfs_try_granting_tickets(fs_info, space_info);
1372		}
1373
1374		if (!ret)
1375			ret = -ENOSPC;
1376	}
1377	spin_unlock(&space_info->lock);
1378	ASSERT(list_empty(&ticket->list));
1379	/*
1380	 * Check that we can't have an error set if the reservation succeeded,
1381	 * as that would confuse tasks and lead them to error out without
1382	 * releasing reserved space (if an error happens the expectation is that
1383	 * space wasn't reserved at all).
1384	 */
1385	ASSERT(!(ticket->bytes == 0 && ticket->error));
1386	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1387				   start_ns, flush, ticket->error);
1388	return ret;
1389}
1390
1391/*
1392 * This returns true if this flush state will go through the ordinary flushing
1393 * code.
1394 */
1395static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1396{
1397	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1398		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1399}
1400
1401static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1402				       struct btrfs_space_info *space_info)
1403{
1404	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1405	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1406
1407	/*
1408	 * If we're heavy on ordered operations then clamping won't help us.  We
1409	 * need to clamp specifically to keep up with dirty'ing buffered
1410	 * writers, because there's not a 1:1 correlation of writing delalloc
1411	 * and freeing space, like there is with flushing delayed refs or
1412	 * delayed nodes.  If we're already more ordered than delalloc then
1413	 * we're keeping up, otherwise we aren't and should probably clamp.
1414	 */
1415	if (ordered < delalloc)
1416		space_info->clamp = min(space_info->clamp + 1, 8);
1417}
1418
1419/**
1420 * Try to reserve bytes from the block_rsv's space
1421 *
1422 * @fs_info:    the filesystem
1423 * @space_info: space info we want to allocate from
1424 * @orig_bytes: number of bytes we want
1425 * @flush:      whether or not we can flush to make our reservation
1426 *
1427 * This will reserve orig_bytes number of bytes from the space info associated
1428 * with the block_rsv.  If there is not enough space it will make an attempt to
1429 * flush out space to make room.  It will do this by flushing delalloc if
1430 * possible or committing the transaction.  If flush is 0 then no attempts to
1431 * regain reservations will be made and this will fail if there is not enough
1432 * space already.
1433 */
1434static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1435			   struct btrfs_space_info *space_info, u64 orig_bytes,
1436			   enum btrfs_reserve_flush_enum flush)
 
 
1437{
1438	struct work_struct *async_work;
1439	struct reserve_ticket ticket;
1440	u64 start_ns = 0;
1441	u64 used;
1442	int ret = 0;
1443	bool pending_tickets;
1444
1445	ASSERT(orig_bytes);
1446	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1447
1448	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1449		async_work = &fs_info->async_data_reclaim_work;
1450	else
1451		async_work = &fs_info->async_reclaim_work;
1452
1453	spin_lock(&space_info->lock);
1454	ret = -ENOSPC;
1455	used = btrfs_space_info_used(space_info, true);
1456
1457	/*
1458	 * We don't want NO_FLUSH allocations to jump everybody, they can
1459	 * generally handle ENOSPC in a different way, so treat them the same as
1460	 * normal flushers when it comes to skipping pending tickets.
1461	 */
1462	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1463		pending_tickets = !list_empty(&space_info->tickets) ||
1464			!list_empty(&space_info->priority_tickets);
1465	else
1466		pending_tickets = !list_empty(&space_info->priority_tickets);
1467
1468	/*
1469	 * Carry on if we have enough space (short-circuit) OR call
1470	 * can_overcommit() to ensure we can overcommit to continue.
1471	 */
1472	if (!pending_tickets &&
1473	    ((used + orig_bytes <= space_info->total_bytes) ||
1474	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
 
1475		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1476						      orig_bytes);
1477		ret = 0;
1478	}
1479
1480	/*
1481	 * If we couldn't make a reservation then setup our reservation ticket
1482	 * and kick the async worker if it's not already running.
1483	 *
1484	 * If we are a priority flusher then we just need to add our ticket to
1485	 * the list and we will do our own flushing further down.
1486	 */
1487	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1488		ticket.bytes = orig_bytes;
1489		ticket.error = 0;
1490		space_info->reclaim_size += ticket.bytes;
1491		init_waitqueue_head(&ticket.wait);
1492		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1493		if (trace_btrfs_reserve_ticket_enabled())
1494			start_ns = ktime_get_ns();
1495
1496		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1497		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1498		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1499			list_add_tail(&ticket.list, &space_info->tickets);
1500			if (!space_info->flush) {
1501				/*
1502				 * We were forced to add a reserve ticket, so
1503				 * our preemptive flushing is unable to keep
1504				 * up.  Clamp down on the threshold for the
1505				 * preemptive flushing in order to keep up with
1506				 * the workload.
1507				 */
1508				maybe_clamp_preempt(fs_info, space_info);
1509
1510				space_info->flush = 1;
1511				trace_btrfs_trigger_flush(fs_info,
1512							  space_info->flags,
1513							  orig_bytes, flush,
1514							  "enospc");
1515				queue_work(system_unbound_wq, async_work);
 
1516			}
1517		} else {
1518			list_add_tail(&ticket.list,
1519				      &space_info->priority_tickets);
1520		}
1521	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1522		used += orig_bytes;
1523		/*
1524		 * We will do the space reservation dance during log replay,
1525		 * which means we won't have fs_info->fs_root set, so don't do
1526		 * the async reclaim as we will panic.
1527		 */
1528		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1529		    !work_busy(&fs_info->preempt_reclaim_work) &&
1530		    need_preemptive_reclaim(fs_info, space_info)) {
 
1531			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1532						  orig_bytes, flush, "preempt");
1533			queue_work(system_unbound_wq,
1534				   &fs_info->preempt_reclaim_work);
1535		}
1536	}
1537	spin_unlock(&space_info->lock);
1538	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1539		return ret;
1540
1541	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1542				     orig_bytes, flush);
1543}
1544
1545/**
1546 * Trye to reserve metadata bytes from the block_rsv's space
1547 *
1548 * @root:       the root we're allocating for
1549 * @block_rsv:  block_rsv we're allocating for
1550 * @orig_bytes: number of bytes we want
1551 * @flush:      whether or not we can flush to make our reservation
1552 *
1553 * This will reserve orig_bytes number of bytes from the space info associated
1554 * with the block_rsv.  If there is not enough space it will make an attempt to
1555 * flush out space to make room.  It will do this by flushing delalloc if
1556 * possible or committing the transaction.  If flush is 0 then no attempts to
1557 * regain reservations will be made and this will fail if there is not enough
1558 * space already.
1559 */
1560int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1561				 struct btrfs_block_rsv *block_rsv,
1562				 u64 orig_bytes,
1563				 enum btrfs_reserve_flush_enum flush)
1564{
1565	struct btrfs_fs_info *fs_info = root->fs_info;
1566	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1567	int ret;
 
1568
1569	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
 
1570	if (ret == -ENOSPC &&
1571	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1572		if (block_rsv != global_rsv &&
1573		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1574			ret = 0;
1575	}
1576	if (ret == -ENOSPC) {
1577		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1578					      block_rsv->space_info->flags,
1579					      orig_bytes, 1);
1580
1581		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1582			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1583					      orig_bytes, 0);
1584	}
1585	return ret;
1586}
1587
1588/**
1589 * Try to reserve data bytes for an allocation
1590 *
1591 * @fs_info: the filesystem
1592 * @bytes:   number of bytes we need
1593 * @flush:   how we are allowed to flush
1594 *
1595 * This will reserve bytes from the data space info.  If there is not enough
1596 * space then we will attempt to flush space as specified by flush.
1597 */
1598int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1599			     enum btrfs_reserve_flush_enum flush)
1600{
1601	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1602	int ret;
1603
1604	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1605	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1606	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1607
1608	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1609	if (ret == -ENOSPC) {
1610		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1611					      data_sinfo->flags, bytes, 1);
1612		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1613			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1614	}
1615	return ret;
1616}