Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
  12
  13u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
  14			  bool may_use_included)
  15{
  16	ASSERT(s_info);
  17	return s_info->bytes_used + s_info->bytes_reserved +
  18		s_info->bytes_pinned + s_info->bytes_readonly +
  19		(may_use_included ? s_info->bytes_may_use : 0);
  20}
  21
  22/*
  23 * after adding space to the filesystem, we need to clear the full flags
  24 * on all the space infos.
  25 */
  26void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  27{
  28	struct list_head *head = &info->space_info;
  29	struct btrfs_space_info *found;
  30
  31	rcu_read_lock();
  32	list_for_each_entry_rcu(found, head, list)
  33		found->full = 0;
  34	rcu_read_unlock();
  35}
  36
  37static int create_space_info(struct btrfs_fs_info *info, u64 flags)
  38{
  39
  40	struct btrfs_space_info *space_info;
  41	int i;
  42	int ret;
  43
  44	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
  45	if (!space_info)
  46		return -ENOMEM;
  47
  48	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
  49				 GFP_KERNEL);
  50	if (ret) {
  51		kfree(space_info);
  52		return ret;
  53	}
  54
  55	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  56		INIT_LIST_HEAD(&space_info->block_groups[i]);
  57	init_rwsem(&space_info->groups_sem);
  58	spin_lock_init(&space_info->lock);
  59	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  60	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  61	init_waitqueue_head(&space_info->wait);
  62	INIT_LIST_HEAD(&space_info->ro_bgs);
  63	INIT_LIST_HEAD(&space_info->tickets);
  64	INIT_LIST_HEAD(&space_info->priority_tickets);
  65
  66	ret = btrfs_sysfs_add_space_info_type(info, space_info);
  67	if (ret)
  68		return ret;
  69
  70	list_add_rcu(&space_info->list, &info->space_info);
  71	if (flags & BTRFS_BLOCK_GROUP_DATA)
  72		info->data_sinfo = space_info;
  73
  74	return ret;
  75}
  76
  77int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  78{
  79	struct btrfs_super_block *disk_super;
  80	u64 features;
  81	u64 flags;
  82	int mixed = 0;
  83	int ret;
  84
  85	disk_super = fs_info->super_copy;
  86	if (!btrfs_super_root(disk_super))
  87		return -EINVAL;
  88
  89	features = btrfs_super_incompat_flags(disk_super);
  90	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  91		mixed = 1;
  92
  93	flags = BTRFS_BLOCK_GROUP_SYSTEM;
  94	ret = create_space_info(fs_info, flags);
  95	if (ret)
  96		goto out;
  97
  98	if (mixed) {
  99		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 100		ret = create_space_info(fs_info, flags);
 101	} else {
 102		flags = BTRFS_BLOCK_GROUP_METADATA;
 103		ret = create_space_info(fs_info, flags);
 104		if (ret)
 105			goto out;
 106
 107		flags = BTRFS_BLOCK_GROUP_DATA;
 108		ret = create_space_info(fs_info, flags);
 109	}
 110out:
 111	return ret;
 112}
 113
 114void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 115			     u64 total_bytes, u64 bytes_used,
 116			     u64 bytes_readonly,
 117			     struct btrfs_space_info **space_info)
 118{
 119	struct btrfs_space_info *found;
 120	int factor;
 121
 122	factor = btrfs_bg_type_to_factor(flags);
 123
 124	found = btrfs_find_space_info(info, flags);
 125	ASSERT(found);
 126	spin_lock(&found->lock);
 127	found->total_bytes += total_bytes;
 128	found->disk_total += total_bytes * factor;
 129	found->bytes_used += bytes_used;
 130	found->disk_used += bytes_used * factor;
 131	found->bytes_readonly += bytes_readonly;
 132	if (total_bytes > 0)
 133		found->full = 0;
 134	btrfs_try_granting_tickets(info, found);
 135	spin_unlock(&found->lock);
 136	*space_info = found;
 137}
 138
 139struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 140					       u64 flags)
 141{
 142	struct list_head *head = &info->space_info;
 143	struct btrfs_space_info *found;
 144
 145	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 146
 147	rcu_read_lock();
 148	list_for_each_entry_rcu(found, head, list) {
 149		if (found->flags & flags) {
 150			rcu_read_unlock();
 151			return found;
 152		}
 153	}
 154	rcu_read_unlock();
 155	return NULL;
 156}
 157
 158static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 159{
 160	return (global->size << 1);
 161}
 162
 163static int can_overcommit(struct btrfs_fs_info *fs_info,
 164			  struct btrfs_space_info *space_info, u64 bytes,
 165			  enum btrfs_reserve_flush_enum flush,
 166			  bool system_chunk)
 167{
 168	u64 profile;
 169	u64 avail;
 170	u64 used;
 171	int factor;
 172
 173	/* Don't overcommit when in mixed mode. */
 174	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 175		return 0;
 176
 177	if (system_chunk)
 178		profile = btrfs_system_alloc_profile(fs_info);
 179	else
 180		profile = btrfs_metadata_alloc_profile(fs_info);
 181
 182	used = btrfs_space_info_used(space_info, true);
 183	avail = atomic64_read(&fs_info->free_chunk_space);
 184
 185	/*
 186	 * If we have dup, raid1 or raid10 then only half of the free
 187	 * space is actually usable.  For raid56, the space info used
 188	 * doesn't include the parity drive, so we don't have to
 189	 * change the math
 190	 */
 191	factor = btrfs_bg_type_to_factor(profile);
 192	avail = div_u64(avail, factor);
 193
 194	/*
 195	 * If we aren't flushing all things, let us overcommit up to
 196	 * 1/2th of the space. If we can flush, don't let us overcommit
 197	 * too much, let it overcommit up to 1/8 of the space.
 198	 */
 199	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 200		avail >>= 3;
 201	else
 202		avail >>= 1;
 203
 204	if (used + bytes < space_info->total_bytes + avail)
 205		return 1;
 206	return 0;
 207}
 208
 209/*
 210 * This is for space we already have accounted in space_info->bytes_may_use, so
 211 * basically when we're returning space from block_rsv's.
 212 */
 213void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 214				struct btrfs_space_info *space_info)
 215{
 216	struct list_head *head;
 217	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 218
 219	lockdep_assert_held(&space_info->lock);
 220
 221	head = &space_info->priority_tickets;
 222again:
 223	while (!list_empty(head)) {
 224		struct reserve_ticket *ticket;
 225		u64 used = btrfs_space_info_used(space_info, true);
 226
 227		ticket = list_first_entry(head, struct reserve_ticket, list);
 228
 229		/* Check and see if our ticket can be satisified now. */
 230		if ((used + ticket->bytes <= space_info->total_bytes) ||
 231		    can_overcommit(fs_info, space_info, ticket->bytes, flush,
 232				   false)) {
 233			btrfs_space_info_update_bytes_may_use(fs_info,
 234							      space_info,
 235							      ticket->bytes);
 236			list_del_init(&ticket->list);
 237			ticket->bytes = 0;
 238			space_info->tickets_id++;
 239			wake_up(&ticket->wait);
 240		} else {
 241			break;
 242		}
 243	}
 244
 245	if (head == &space_info->priority_tickets) {
 246		head = &space_info->tickets;
 247		flush = BTRFS_RESERVE_FLUSH_ALL;
 248		goto again;
 249	}
 250}
 251
 252#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 253do {									\
 254	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 255	spin_lock(&__rsv->lock);					\
 256	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 257		   __rsv->size, __rsv->reserved);			\
 258	spin_unlock(&__rsv->lock);					\
 259} while (0)
 260
 261static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 262				    struct btrfs_space_info *info)
 263{
 264	lockdep_assert_held(&info->lock);
 265
 266	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 267		   info->flags,
 268		   info->total_bytes - btrfs_space_info_used(info, true),
 269		   info->full ? "" : "not ");
 270	btrfs_info(fs_info,
 271		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 272		info->total_bytes, info->bytes_used, info->bytes_pinned,
 273		info->bytes_reserved, info->bytes_may_use,
 274		info->bytes_readonly);
 275
 276	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 277	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 278	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 279	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 280	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 281
 282}
 283
 284void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 285			   struct btrfs_space_info *info, u64 bytes,
 286			   int dump_block_groups)
 287{
 288	struct btrfs_block_group_cache *cache;
 289	int index = 0;
 290
 291	spin_lock(&info->lock);
 292	__btrfs_dump_space_info(fs_info, info);
 293	spin_unlock(&info->lock);
 294
 295	if (!dump_block_groups)
 296		return;
 297
 298	down_read(&info->groups_sem);
 299again:
 300	list_for_each_entry(cache, &info->block_groups[index], list) {
 301		spin_lock(&cache->lock);
 302		btrfs_info(fs_info,
 303			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 304			cache->key.objectid, cache->key.offset,
 305			btrfs_block_group_used(&cache->item), cache->pinned,
 306			cache->reserved, cache->ro ? "[readonly]" : "");
 307		btrfs_dump_free_space(cache, bytes);
 308		spin_unlock(&cache->lock);
 309	}
 310	if (++index < BTRFS_NR_RAID_TYPES)
 311		goto again;
 312	up_read(&info->groups_sem);
 313}
 314
 315static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 316					 unsigned long nr_pages, int nr_items)
 317{
 318	struct super_block *sb = fs_info->sb;
 319
 320	if (down_read_trylock(&sb->s_umount)) {
 321		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 322		up_read(&sb->s_umount);
 323	} else {
 324		/*
 325		 * We needn't worry the filesystem going from r/w to r/o though
 326		 * we don't acquire ->s_umount mutex, because the filesystem
 327		 * should guarantee the delalloc inodes list be empty after
 328		 * the filesystem is readonly(all dirty pages are written to
 329		 * the disk).
 330		 */
 331		btrfs_start_delalloc_roots(fs_info, nr_items);
 332		if (!current->journal_info)
 333			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 334	}
 335}
 336
 337static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 338					u64 to_reclaim)
 339{
 340	u64 bytes;
 341	u64 nr;
 342
 343	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 344	nr = div64_u64(to_reclaim, bytes);
 345	if (!nr)
 346		nr = 1;
 347	return nr;
 348}
 349
 350#define EXTENT_SIZE_PER_ITEM	SZ_256K
 351
 352/*
 353 * shrink metadata reservation for delalloc
 354 */
 355static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
 356			    u64 orig, bool wait_ordered)
 357{
 358	struct btrfs_space_info *space_info;
 359	struct btrfs_trans_handle *trans;
 360	u64 delalloc_bytes;
 361	u64 dio_bytes;
 362	u64 async_pages;
 363	u64 items;
 364	long time_left;
 365	unsigned long nr_pages;
 366	int loops;
 367
 368	/* Calc the number of the pages we need flush for space reservation */
 369	items = calc_reclaim_items_nr(fs_info, to_reclaim);
 370	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 371
 372	trans = (struct btrfs_trans_handle *)current->journal_info;
 373	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 374
 375	delalloc_bytes = percpu_counter_sum_positive(
 376						&fs_info->delalloc_bytes);
 377	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 378	if (delalloc_bytes == 0 && dio_bytes == 0) {
 379		if (trans)
 380			return;
 381		if (wait_ordered)
 382			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 383		return;
 384	}
 385
 386	/*
 387	 * If we are doing more ordered than delalloc we need to just wait on
 388	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 389	 * that likely won't give us the space back we need.
 390	 */
 391	if (dio_bytes > delalloc_bytes)
 392		wait_ordered = true;
 393
 394	loops = 0;
 395	while ((delalloc_bytes || dio_bytes) && loops < 3) {
 396		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 397
 398		/*
 399		 * Triggers inode writeback for up to nr_pages. This will invoke
 400		 * ->writepages callback and trigger delalloc filling
 401		 *  (btrfs_run_delalloc_range()).
 402		 */
 403		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 404
 405		/*
 406		 * We need to wait for the compressed pages to start before
 407		 * we continue.
 408		 */
 409		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 410		if (!async_pages)
 411			goto skip_async;
 412
 413		/*
 414		 * Calculate how many compressed pages we want to be written
 415		 * before we continue. I.e if there are more async pages than we
 416		 * require wait_event will wait until nr_pages are written.
 417		 */
 418		if (async_pages <= nr_pages)
 419			async_pages = 0;
 420		else
 421			async_pages -= nr_pages;
 422
 423		wait_event(fs_info->async_submit_wait,
 424			   atomic_read(&fs_info->async_delalloc_pages) <=
 425			   (int)async_pages);
 426skip_async:
 427		spin_lock(&space_info->lock);
 428		if (list_empty(&space_info->tickets) &&
 429		    list_empty(&space_info->priority_tickets)) {
 430			spin_unlock(&space_info->lock);
 431			break;
 432		}
 433		spin_unlock(&space_info->lock);
 434
 435		loops++;
 436		if (wait_ordered && !trans) {
 437			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 438		} else {
 439			time_left = schedule_timeout_killable(1);
 440			if (time_left)
 441				break;
 442		}
 443		delalloc_bytes = percpu_counter_sum_positive(
 444						&fs_info->delalloc_bytes);
 445		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 446	}
 447}
 448
 449/**
 450 * maybe_commit_transaction - possibly commit the transaction if its ok to
 451 * @root - the root we're allocating for
 452 * @bytes - the number of bytes we want to reserve
 453 * @force - force the commit
 454 *
 455 * This will check to make sure that committing the transaction will actually
 456 * get us somewhere and then commit the transaction if it does.  Otherwise it
 457 * will return -ENOSPC.
 458 */
 459static int may_commit_transaction(struct btrfs_fs_info *fs_info,
 460				  struct btrfs_space_info *space_info)
 461{
 462	struct reserve_ticket *ticket = NULL;
 463	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 464	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 465	struct btrfs_trans_handle *trans;
 466	u64 bytes_needed;
 467	u64 reclaim_bytes = 0;
 468	u64 cur_free_bytes = 0;
 469
 470	trans = (struct btrfs_trans_handle *)current->journal_info;
 471	if (trans)
 472		return -EAGAIN;
 473
 474	spin_lock(&space_info->lock);
 475	cur_free_bytes = btrfs_space_info_used(space_info, true);
 476	if (cur_free_bytes < space_info->total_bytes)
 477		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
 478	else
 479		cur_free_bytes = 0;
 480
 481	if (!list_empty(&space_info->priority_tickets))
 482		ticket = list_first_entry(&space_info->priority_tickets,
 483					  struct reserve_ticket, list);
 484	else if (!list_empty(&space_info->tickets))
 485		ticket = list_first_entry(&space_info->tickets,
 486					  struct reserve_ticket, list);
 487	bytes_needed = (ticket) ? ticket->bytes : 0;
 488
 489	if (bytes_needed > cur_free_bytes)
 490		bytes_needed -= cur_free_bytes;
 491	else
 492		bytes_needed = 0;
 493	spin_unlock(&space_info->lock);
 494
 495	if (!bytes_needed)
 496		return 0;
 497
 498	trans = btrfs_join_transaction(fs_info->extent_root);
 499	if (IS_ERR(trans))
 500		return PTR_ERR(trans);
 501
 502	/*
 503	 * See if there is enough pinned space to make this reservation, or if
 504	 * we have block groups that are going to be freed, allowing us to
 505	 * possibly do a chunk allocation the next loop through.
 506	 */
 507	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
 508	    __percpu_counter_compare(&space_info->total_bytes_pinned,
 509				     bytes_needed,
 510				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
 511		goto commit;
 512
 513	/*
 514	 * See if there is some space in the delayed insertion reservation for
 515	 * this reservation.
 516	 */
 517	if (space_info != delayed_rsv->space_info)
 518		goto enospc;
 519
 520	spin_lock(&delayed_rsv->lock);
 521	reclaim_bytes += delayed_rsv->reserved;
 522	spin_unlock(&delayed_rsv->lock);
 523
 524	spin_lock(&delayed_refs_rsv->lock);
 525	reclaim_bytes += delayed_refs_rsv->reserved;
 526	spin_unlock(&delayed_refs_rsv->lock);
 527	if (reclaim_bytes >= bytes_needed)
 528		goto commit;
 529	bytes_needed -= reclaim_bytes;
 530
 531	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
 532				   bytes_needed,
 533				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
 534		goto enospc;
 535
 536commit:
 537	return btrfs_commit_transaction(trans);
 538enospc:
 539	btrfs_end_transaction(trans);
 540	return -ENOSPC;
 541}
 542
 543/*
 544 * Try to flush some data based on policy set by @state. This is only advisory
 545 * and may fail for various reasons. The caller is supposed to examine the
 546 * state of @space_info to detect the outcome.
 547 */
 548static void flush_space(struct btrfs_fs_info *fs_info,
 549		       struct btrfs_space_info *space_info, u64 num_bytes,
 550		       int state)
 551{
 552	struct btrfs_root *root = fs_info->extent_root;
 553	struct btrfs_trans_handle *trans;
 554	int nr;
 555	int ret = 0;
 556
 557	switch (state) {
 558	case FLUSH_DELAYED_ITEMS_NR:
 559	case FLUSH_DELAYED_ITEMS:
 560		if (state == FLUSH_DELAYED_ITEMS_NR)
 561			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 562		else
 563			nr = -1;
 564
 565		trans = btrfs_join_transaction(root);
 566		if (IS_ERR(trans)) {
 567			ret = PTR_ERR(trans);
 568			break;
 569		}
 570		ret = btrfs_run_delayed_items_nr(trans, nr);
 571		btrfs_end_transaction(trans);
 572		break;
 573	case FLUSH_DELALLOC:
 574	case FLUSH_DELALLOC_WAIT:
 575		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
 576				state == FLUSH_DELALLOC_WAIT);
 577		break;
 578	case FLUSH_DELAYED_REFS_NR:
 579	case FLUSH_DELAYED_REFS:
 580		trans = btrfs_join_transaction(root);
 581		if (IS_ERR(trans)) {
 582			ret = PTR_ERR(trans);
 583			break;
 584		}
 585		if (state == FLUSH_DELAYED_REFS_NR)
 586			nr = calc_reclaim_items_nr(fs_info, num_bytes);
 587		else
 588			nr = 0;
 589		btrfs_run_delayed_refs(trans, nr);
 590		btrfs_end_transaction(trans);
 591		break;
 592	case ALLOC_CHUNK:
 593	case ALLOC_CHUNK_FORCE:
 594		trans = btrfs_join_transaction(root);
 595		if (IS_ERR(trans)) {
 596			ret = PTR_ERR(trans);
 597			break;
 598		}
 599		ret = btrfs_chunk_alloc(trans,
 600				btrfs_metadata_alloc_profile(fs_info),
 601				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 602					CHUNK_ALLOC_FORCE);
 603		btrfs_end_transaction(trans);
 604		if (ret > 0 || ret == -ENOSPC)
 605			ret = 0;
 606		break;
 607	case RUN_DELAYED_IPUTS:
 608		/*
 609		 * If we have pending delayed iputs then we could free up a
 610		 * bunch of pinned space, so make sure we run the iputs before
 611		 * we do our pinned bytes check below.
 612		 */
 613		btrfs_run_delayed_iputs(fs_info);
 614		btrfs_wait_on_delayed_iputs(fs_info);
 615		break;
 616	case COMMIT_TRANS:
 617		ret = may_commit_transaction(fs_info, space_info);
 618		break;
 619	default:
 620		ret = -ENOSPC;
 621		break;
 622	}
 623
 624	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 625				ret);
 626	return;
 627}
 628
 629static inline u64
 630btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 631				 struct btrfs_space_info *space_info,
 632				 bool system_chunk)
 633{
 634	struct reserve_ticket *ticket;
 635	u64 used;
 636	u64 expected;
 637	u64 to_reclaim = 0;
 638
 639	list_for_each_entry(ticket, &space_info->tickets, list)
 640		to_reclaim += ticket->bytes;
 641	list_for_each_entry(ticket, &space_info->priority_tickets, list)
 642		to_reclaim += ticket->bytes;
 643	if (to_reclaim)
 644		return to_reclaim;
 645
 646	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 647	if (can_overcommit(fs_info, space_info, to_reclaim,
 648			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 649		return 0;
 650
 651	used = btrfs_space_info_used(space_info, true);
 652
 653	if (can_overcommit(fs_info, space_info, SZ_1M,
 654			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
 655		expected = div_factor_fine(space_info->total_bytes, 95);
 656	else
 657		expected = div_factor_fine(space_info->total_bytes, 90);
 658
 659	if (used > expected)
 660		to_reclaim = used - expected;
 661	else
 662		to_reclaim = 0;
 663	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 664				     space_info->bytes_reserved);
 665	return to_reclaim;
 666}
 667
 668static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
 669					struct btrfs_space_info *space_info,
 670					u64 used, bool system_chunk)
 671{
 672	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 673
 674	/* If we're just plain full then async reclaim just slows us down. */
 675	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 676		return 0;
 677
 678	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 679					      system_chunk))
 680		return 0;
 681
 682	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 683		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 684}
 685
 686/*
 687 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 688 * @fs_info - fs_info for this fs
 689 * @space_info - the space info we were flushing
 690 *
 691 * We call this when we've exhausted our flushing ability and haven't made
 692 * progress in satisfying tickets.  The reservation code handles tickets in
 693 * order, so if there is a large ticket first and then smaller ones we could
 694 * very well satisfy the smaller tickets.  This will attempt to wake up any
 695 * tickets in the list to catch this case.
 696 *
 697 * This function returns true if it was able to make progress by clearing out
 698 * other tickets, or if it stumbles across a ticket that was smaller than the
 699 * first ticket.
 700 */
 701static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 702				   struct btrfs_space_info *space_info)
 703{
 704	struct reserve_ticket *ticket;
 705	u64 tickets_id = space_info->tickets_id;
 706	u64 first_ticket_bytes = 0;
 707
 708	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 709		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 710		__btrfs_dump_space_info(fs_info, space_info);
 711	}
 712
 713	while (!list_empty(&space_info->tickets) &&
 714	       tickets_id == space_info->tickets_id) {
 715		ticket = list_first_entry(&space_info->tickets,
 716					  struct reserve_ticket, list);
 717
 718		/*
 719		 * may_commit_transaction will avoid committing the transaction
 720		 * if it doesn't feel like the space reclaimed by the commit
 721		 * would result in the ticket succeeding.  However if we have a
 722		 * smaller ticket in the queue it may be small enough to be
 723		 * satisified by committing the transaction, so if any
 724		 * subsequent ticket is smaller than the first ticket go ahead
 725		 * and send us back for another loop through the enospc flushing
 726		 * code.
 727		 */
 728		if (first_ticket_bytes == 0)
 729			first_ticket_bytes = ticket->bytes;
 730		else if (first_ticket_bytes > ticket->bytes)
 731			return true;
 732
 733		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 734			btrfs_info(fs_info, "failing ticket with %llu bytes",
 735				   ticket->bytes);
 736
 737		list_del_init(&ticket->list);
 738		ticket->error = -ENOSPC;
 739		wake_up(&ticket->wait);
 740
 741		/*
 742		 * We're just throwing tickets away, so more flushing may not
 743		 * trip over btrfs_try_granting_tickets, so we need to call it
 744		 * here to see if we can make progress with the next ticket in
 745		 * the list.
 746		 */
 747		btrfs_try_granting_tickets(fs_info, space_info);
 748	}
 749	return (tickets_id != space_info->tickets_id);
 750}
 751
 752/*
 753 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 754 * will loop and continuously try to flush as long as we are making progress.
 755 * We count progress as clearing off tickets each time we have to loop.
 756 */
 757static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 758{
 759	struct btrfs_fs_info *fs_info;
 760	struct btrfs_space_info *space_info;
 761	u64 to_reclaim;
 762	int flush_state;
 763	int commit_cycles = 0;
 764	u64 last_tickets_id;
 765
 766	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 767	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 768
 769	spin_lock(&space_info->lock);
 770	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 771						      false);
 772	if (!to_reclaim) {
 773		space_info->flush = 0;
 774		spin_unlock(&space_info->lock);
 775		return;
 776	}
 777	last_tickets_id = space_info->tickets_id;
 778	spin_unlock(&space_info->lock);
 779
 780	flush_state = FLUSH_DELAYED_ITEMS_NR;
 781	do {
 782		flush_space(fs_info, space_info, to_reclaim, flush_state);
 783		spin_lock(&space_info->lock);
 784		if (list_empty(&space_info->tickets)) {
 785			space_info->flush = 0;
 786			spin_unlock(&space_info->lock);
 787			return;
 788		}
 789		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
 790							      space_info,
 791							      false);
 792		if (last_tickets_id == space_info->tickets_id) {
 793			flush_state++;
 794		} else {
 795			last_tickets_id = space_info->tickets_id;
 796			flush_state = FLUSH_DELAYED_ITEMS_NR;
 797			if (commit_cycles)
 798				commit_cycles--;
 799		}
 800
 801		/*
 802		 * We don't want to force a chunk allocation until we've tried
 803		 * pretty hard to reclaim space.  Think of the case where we
 804		 * freed up a bunch of space and so have a lot of pinned space
 805		 * to reclaim.  We would rather use that than possibly create a
 806		 * underutilized metadata chunk.  So if this is our first run
 807		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
 808		 * commit the transaction.  If nothing has changed the next go
 809		 * around then we can force a chunk allocation.
 810		 */
 811		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
 812			flush_state++;
 813
 814		if (flush_state > COMMIT_TRANS) {
 815			commit_cycles++;
 816			if (commit_cycles > 2) {
 817				if (maybe_fail_all_tickets(fs_info, space_info)) {
 818					flush_state = FLUSH_DELAYED_ITEMS_NR;
 819					commit_cycles--;
 820				} else {
 821					space_info->flush = 0;
 822				}
 823			} else {
 824				flush_state = FLUSH_DELAYED_ITEMS_NR;
 825			}
 826		}
 827		spin_unlock(&space_info->lock);
 828	} while (flush_state <= COMMIT_TRANS);
 829}
 830
 831void btrfs_init_async_reclaim_work(struct work_struct *work)
 832{
 833	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 834}
 835
 836static const enum btrfs_flush_state priority_flush_states[] = {
 837	FLUSH_DELAYED_ITEMS_NR,
 838	FLUSH_DELAYED_ITEMS,
 839	ALLOC_CHUNK,
 840};
 841
 842static const enum btrfs_flush_state evict_flush_states[] = {
 843	FLUSH_DELAYED_ITEMS_NR,
 844	FLUSH_DELAYED_ITEMS,
 845	FLUSH_DELAYED_REFS_NR,
 846	FLUSH_DELAYED_REFS,
 847	FLUSH_DELALLOC,
 848	FLUSH_DELALLOC_WAIT,
 849	ALLOC_CHUNK,
 850	COMMIT_TRANS,
 851};
 852
 853static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
 854				struct btrfs_space_info *space_info,
 855				struct reserve_ticket *ticket,
 856				const enum btrfs_flush_state *states,
 857				int states_nr)
 858{
 859	u64 to_reclaim;
 860	int flush_state;
 861
 862	spin_lock(&space_info->lock);
 863	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
 864						      false);
 865	if (!to_reclaim) {
 866		spin_unlock(&space_info->lock);
 867		return;
 868	}
 869	spin_unlock(&space_info->lock);
 870
 871	flush_state = 0;
 872	do {
 873		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
 874		flush_state++;
 875		spin_lock(&space_info->lock);
 876		if (ticket->bytes == 0) {
 877			spin_unlock(&space_info->lock);
 878			return;
 879		}
 880		spin_unlock(&space_info->lock);
 881	} while (flush_state < states_nr);
 882}
 883
 884static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
 885				struct btrfs_space_info *space_info,
 886				struct reserve_ticket *ticket)
 887
 888{
 889	DEFINE_WAIT(wait);
 890	int ret = 0;
 891
 892	spin_lock(&space_info->lock);
 893	while (ticket->bytes > 0 && ticket->error == 0) {
 894		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
 895		if (ret) {
 896			/*
 897			 * Delete us from the list. After we unlock the space
 898			 * info, we don't want the async reclaim job to reserve
 899			 * space for this ticket. If that would happen, then the
 900			 * ticket's task would not known that space was reserved
 901			 * despite getting an error, resulting in a space leak
 902			 * (bytes_may_use counter of our space_info).
 903			 */
 904			list_del_init(&ticket->list);
 905			ticket->error = -EINTR;
 906			break;
 907		}
 908		spin_unlock(&space_info->lock);
 909
 910		schedule();
 911
 912		finish_wait(&ticket->wait, &wait);
 913		spin_lock(&space_info->lock);
 914	}
 915	spin_unlock(&space_info->lock);
 916}
 917
 918/**
 919 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
 920 * @fs_info - the fs
 921 * @space_info - the space_info for the reservation
 922 * @ticket - the ticket for the reservation
 923 * @flush - how much we can flush
 924 *
 925 * This does the work of figuring out how to flush for the ticket, waiting for
 926 * the reservation, and returning the appropriate error if there is one.
 927 */
 928static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
 929				 struct btrfs_space_info *space_info,
 930				 struct reserve_ticket *ticket,
 931				 enum btrfs_reserve_flush_enum flush)
 932{
 933	int ret;
 934
 935	switch (flush) {
 936	case BTRFS_RESERVE_FLUSH_ALL:
 937		wait_reserve_ticket(fs_info, space_info, ticket);
 938		break;
 939	case BTRFS_RESERVE_FLUSH_LIMIT:
 940		priority_reclaim_metadata_space(fs_info, space_info, ticket,
 941						priority_flush_states,
 942						ARRAY_SIZE(priority_flush_states));
 943		break;
 944	case BTRFS_RESERVE_FLUSH_EVICT:
 945		priority_reclaim_metadata_space(fs_info, space_info, ticket,
 946						evict_flush_states,
 947						ARRAY_SIZE(evict_flush_states));
 948		break;
 949	default:
 950		ASSERT(0);
 951		break;
 952	}
 953
 954	spin_lock(&space_info->lock);
 955	ret = ticket->error;
 956	if (ticket->bytes || ticket->error) {
 957		/*
 958		 * Need to delete here for priority tickets. For regular tickets
 959		 * either the async reclaim job deletes the ticket from the list
 960		 * or we delete it ourselves at wait_reserve_ticket().
 961		 */
 962		list_del_init(&ticket->list);
 963		if (!ret)
 964			ret = -ENOSPC;
 965	}
 966	spin_unlock(&space_info->lock);
 967	ASSERT(list_empty(&ticket->list));
 968	/*
 969	 * Check that we can't have an error set if the reservation succeeded,
 970	 * as that would confuse tasks and lead them to error out without
 971	 * releasing reserved space (if an error happens the expectation is that
 972	 * space wasn't reserved at all).
 973	 */
 974	ASSERT(!(ticket->bytes == 0 && ticket->error));
 975	return ret;
 976}
 977
 978/**
 979 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 980 * @root - the root we're allocating for
 981 * @space_info - the space info we want to allocate from
 982 * @orig_bytes - the number of bytes we want
 983 * @flush - whether or not we can flush to make our reservation
 984 *
 985 * This will reserve orig_bytes number of bytes from the space info associated
 986 * with the block_rsv.  If there is not enough space it will make an attempt to
 987 * flush out space to make room.  It will do this by flushing delalloc if
 988 * possible or committing the transaction.  If flush is 0 then no attempts to
 989 * regain reservations will be made and this will fail if there is not enough
 990 * space already.
 991 */
 992static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
 993				    struct btrfs_space_info *space_info,
 994				    u64 orig_bytes,
 995				    enum btrfs_reserve_flush_enum flush,
 996				    bool system_chunk)
 997{
 998	struct reserve_ticket ticket;
 999	u64 used;
1000	int ret = 0;
1001	bool pending_tickets;
1002
1003	ASSERT(orig_bytes);
1004	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1005
1006	spin_lock(&space_info->lock);
1007	ret = -ENOSPC;
1008	used = btrfs_space_info_used(space_info, true);
1009	pending_tickets = !list_empty(&space_info->tickets) ||
1010		!list_empty(&space_info->priority_tickets);
1011
1012	/*
1013	 * Carry on if we have enough space (short-circuit) OR call
1014	 * can_overcommit() to ensure we can overcommit to continue.
1015	 */
1016	if (!pending_tickets &&
1017	    ((used + orig_bytes <= space_info->total_bytes) ||
1018	     can_overcommit(fs_info, space_info, orig_bytes, flush,
1019			   system_chunk))) {
1020		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1021						      orig_bytes);
1022		ret = 0;
1023	}
1024
1025	/*
1026	 * If we couldn't make a reservation then setup our reservation ticket
1027	 * and kick the async worker if it's not already running.
1028	 *
1029	 * If we are a priority flusher then we just need to add our ticket to
1030	 * the list and we will do our own flushing further down.
1031	 */
1032	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1033		ticket.bytes = orig_bytes;
1034		ticket.error = 0;
1035		init_waitqueue_head(&ticket.wait);
1036		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1037			list_add_tail(&ticket.list, &space_info->tickets);
1038			if (!space_info->flush) {
1039				space_info->flush = 1;
1040				trace_btrfs_trigger_flush(fs_info,
1041							  space_info->flags,
1042							  orig_bytes, flush,
1043							  "enospc");
1044				queue_work(system_unbound_wq,
1045					   &fs_info->async_reclaim_work);
1046			}
1047		} else {
1048			list_add_tail(&ticket.list,
1049				      &space_info->priority_tickets);
1050		}
1051	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1052		used += orig_bytes;
1053		/*
1054		 * We will do the space reservation dance during log replay,
1055		 * which means we won't have fs_info->fs_root set, so don't do
1056		 * the async reclaim as we will panic.
1057		 */
1058		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1059		    need_do_async_reclaim(fs_info, space_info,
1060					  used, system_chunk) &&
1061		    !work_busy(&fs_info->async_reclaim_work)) {
1062			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1063						  orig_bytes, flush, "preempt");
1064			queue_work(system_unbound_wq,
1065				   &fs_info->async_reclaim_work);
1066		}
1067	}
1068	spin_unlock(&space_info->lock);
1069	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1070		return ret;
1071
1072	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1073}
1074
1075/**
1076 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1077 * @root - the root we're allocating for
1078 * @block_rsv - the block_rsv we're allocating for
1079 * @orig_bytes - the number of bytes we want
1080 * @flush - whether or not we can flush to make our reservation
1081 *
1082 * This will reserve orig_bytes number of bytes from the space info associated
1083 * with the block_rsv.  If there is not enough space it will make an attempt to
1084 * flush out space to make room.  It will do this by flushing delalloc if
1085 * possible or committing the transaction.  If flush is 0 then no attempts to
1086 * regain reservations will be made and this will fail if there is not enough
1087 * space already.
1088 */
1089int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1090				 struct btrfs_block_rsv *block_rsv,
1091				 u64 orig_bytes,
1092				 enum btrfs_reserve_flush_enum flush)
1093{
1094	struct btrfs_fs_info *fs_info = root->fs_info;
1095	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1096	int ret;
1097	bool system_chunk = (root == fs_info->chunk_root);
1098
1099	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1100				       orig_bytes, flush, system_chunk);
1101	if (ret == -ENOSPC &&
1102	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1103		if (block_rsv != global_rsv &&
1104		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1105			ret = 0;
1106	}
1107	if (ret == -ENOSPC) {
1108		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1109					      block_rsv->space_info->flags,
1110					      orig_bytes, 1);
1111
1112		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1113			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1114					      orig_bytes, 0);
1115	}
1116	return ret;
1117}