Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28
29#include <net/arp.h>
30#include <net/route.h>
31#include <net/sock.h>
32#include <net/pkt_sched.h>
33#include <net/checksum.h>
34#include <net/ip6_checksum.h>
35
36#include "hyperv_net.h"
37
38#define RING_SIZE_MIN 64
39#define RETRY_US_LO 5000
40#define RETRY_US_HI 10000
41#define RETRY_MAX 2000 /* >10 sec */
42
43#define LINKCHANGE_INT (2 * HZ)
44#define VF_TAKEOVER_INT (HZ / 10)
45
46static unsigned int ring_size __ro_after_init = 128;
47module_param(ring_size, uint, 0444);
48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49unsigned int netvsc_ring_bytes __ro_after_init;
50
51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
55
56static int debug = -1;
57module_param(debug, int, 0444);
58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60static LIST_HEAD(netvsc_dev_list);
61
62static void netvsc_change_rx_flags(struct net_device *net, int change)
63{
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
67
68 if (!vf_netdev)
69 return;
70
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
74 }
75
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
79 }
80}
81
82static void netvsc_set_rx_mode(struct net_device *net)
83{
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
87
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
93 }
94
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
99}
100
101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
103{
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
106
107 netif_tx_wake_all_queues(ndev);
108}
109
110static int netvsc_open(struct net_device *net)
111{
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
117
118 netif_carrier_off(net);
119
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
125 }
126
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
131 }
132
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
137 */
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
143 }
144 return 0;
145}
146
147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148{
149 unsigned int retry = 0;
150 int i;
151
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
155
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
159
160 if (!chn)
161 continue;
162
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
165
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
169
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
173 }
174
175 if (aread == 0)
176 return 0;
177
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
180
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
182 }
183}
184
185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
187{
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
191 }
192
193 netif_tx_disable(ndev);
194}
195
196static int netvsc_close(struct net_device *net)
197{
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
203
204 netvsc_tx_disable(nvdev, net);
205
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
209
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
214 }
215
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220 if (vf_netdev)
221 dev_close(vf_netdev);
222
223 return ret;
224}
225
226static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
228{
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
231
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
235
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241 rndis_pkt->per_pkt_info_len += ppi_size;
242
243 return ppi + 1;
244}
245
246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
248 */
249static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
252{
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
256
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
261
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
268
269 break;
270
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
276
277 break;
278 }
279
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
289
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 }
292
293 return hash;
294}
295
296static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
298{
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
302
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
305
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
310
311 return q_idx;
312}
313
314/*
315 * Select queue for transmit.
316 *
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
319 *
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
322 *
323 * TODO support XPS - but get_xps_queue not exported
324 */
325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326{
327 int q_idx = sk_tx_queue_get(skb->sk);
328
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
332 */
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 }
338
339 return q_idx;
340}
341
342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
344{
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
348
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
362 */
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
366 }
367 rcu_read_unlock();
368
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
371
372 return txq;
373}
374
375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
377{
378 int j = 0;
379
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
382 */
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
385
386 while (len > 0) {
387 unsigned long bytes;
388
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
395
396 offset += bytes;
397 len -= bytes;
398
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
403 }
404 }
405
406 return j + 1;
407}
408
409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
412{
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
417
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
422 */
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
426
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
429
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 skb_frag_off(frag),
439 skb_frag_size(frag), &pb[slots_used]);
440 }
441 return slots_used;
442}
443
444static int count_skb_frag_slots(struct sk_buff *skb)
445{
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
448
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = skb_frag_off(frag);
453
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
457 }
458 return pages;
459}
460
461static int netvsc_get_slots(struct sk_buff *skb)
462{
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
468
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
472}
473
474static u32 net_checksum_info(struct sk_buff *skb)
475{
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
478
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
490 }
491
492 return TRANSPORT_INFO_NOT_IP;
493}
494
495/* Send skb on the slave VF device. */
496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
498{
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
502
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
510
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 }
518
519 return rc;
520}
521
522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523{
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
546 */
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
552
553 if (skb_linearize(skb))
554 goto no_memory;
555
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
560 }
561 }
562
563 /*
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
567 */
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
571
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
576
577 packet->q_idx = skb_get_queue_mapping(skb);
578
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
582
583 rndis_msg = (struct rndis_message *)skb->head;
584
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
588
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
593 };
594
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
600
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
605 }
606
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
609
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
613
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
618 }
619
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
622
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
626
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
660
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
667
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
672 }
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
677 }
678 }
679
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
685
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
688
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
692
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
696 }
697
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
700
701drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
704
705 return NETDEV_TX_OK;
706
707no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
710}
711
712/*
713 * netvsc_linkstatus_callback - Link up/down notification
714 */
715void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
717{
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
722
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
726
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
731 }
732
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
738
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
741
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
746
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
752}
753
754static void netvsc_comp_ipcsum(struct sk_buff *skb)
755{
756 struct iphdr *iph = (struct iphdr *)skb->data;
757
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
760}
761
762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
764{
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
771
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
775
776 /*
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
779 */
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783 skb->protocol = eth_type_trans(skb, net);
784
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
787
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
792 */
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
797
798 /* Do L4 checksum offload if enabled and present.
799 */
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
804 }
805
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
812 }
813
814 return skb;
815}
816
817/*
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
820 */
821int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
824{
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
830
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
833
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
836
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 return NVSP_STAT_FAIL;
840 }
841
842 skb_record_rx_queue(skb, q_idx);
843
844 /*
845 * Even if injecting the packet, record the statistics
846 * on the synthetic device because modifying the VF device
847 * statistics will not work correctly.
848 */
849 rx_stats = &nvchan->rx_stats;
850 u64_stats_update_begin(&rx_stats->syncp);
851 rx_stats->packets++;
852 rx_stats->bytes += nvchan->rsc.pktlen;
853
854 if (skb->pkt_type == PACKET_BROADCAST)
855 ++rx_stats->broadcast;
856 else if (skb->pkt_type == PACKET_MULTICAST)
857 ++rx_stats->multicast;
858 u64_stats_update_end(&rx_stats->syncp);
859
860 napi_gro_receive(&nvchan->napi, skb);
861 return NVSP_STAT_SUCCESS;
862}
863
864static void netvsc_get_drvinfo(struct net_device *net,
865 struct ethtool_drvinfo *info)
866{
867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869}
870
871static void netvsc_get_channels(struct net_device *net,
872 struct ethtool_channels *channel)
873{
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876
877 if (nvdev) {
878 channel->max_combined = nvdev->max_chn;
879 channel->combined_count = nvdev->num_chn;
880 }
881}
882
883/* Alloc struct netvsc_device_info, and initialize it from either existing
884 * struct netvsc_device, or from default values.
885 */
886static struct netvsc_device_info *netvsc_devinfo_get
887 (struct netvsc_device *nvdev)
888{
889 struct netvsc_device_info *dev_info;
890
891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892
893 if (!dev_info)
894 return NULL;
895
896 if (nvdev) {
897 dev_info->num_chn = nvdev->num_chn;
898 dev_info->send_sections = nvdev->send_section_cnt;
899 dev_info->send_section_size = nvdev->send_section_size;
900 dev_info->recv_sections = nvdev->recv_section_cnt;
901 dev_info->recv_section_size = nvdev->recv_section_size;
902
903 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 NETVSC_HASH_KEYLEN);
905 } else {
906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 dev_info->send_sections = NETVSC_DEFAULT_TX;
908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 }
912
913 return dev_info;
914}
915
916static int netvsc_detach(struct net_device *ndev,
917 struct netvsc_device *nvdev)
918{
919 struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 struct hv_device *hdev = ndev_ctx->device_ctx;
921 int ret;
922
923 /* Don't try continuing to try and setup sub channels */
924 if (cancel_work_sync(&nvdev->subchan_work))
925 nvdev->num_chn = 1;
926
927 /* If device was up (receiving) then shutdown */
928 if (netif_running(ndev)) {
929 netvsc_tx_disable(nvdev, ndev);
930
931 ret = rndis_filter_close(nvdev);
932 if (ret) {
933 netdev_err(ndev,
934 "unable to close device (ret %d).\n", ret);
935 return ret;
936 }
937
938 ret = netvsc_wait_until_empty(nvdev);
939 if (ret) {
940 netdev_err(ndev,
941 "Ring buffer not empty after closing rndis\n");
942 return ret;
943 }
944 }
945
946 netif_device_detach(ndev);
947
948 rndis_filter_device_remove(hdev, nvdev);
949
950 return 0;
951}
952
953static int netvsc_attach(struct net_device *ndev,
954 struct netvsc_device_info *dev_info)
955{
956 struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 struct hv_device *hdev = ndev_ctx->device_ctx;
958 struct netvsc_device *nvdev;
959 struct rndis_device *rdev;
960 int ret;
961
962 nvdev = rndis_filter_device_add(hdev, dev_info);
963 if (IS_ERR(nvdev))
964 return PTR_ERR(nvdev);
965
966 if (nvdev->num_chn > 1) {
967 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968
969 /* if unavailable, just proceed with one queue */
970 if (ret) {
971 nvdev->max_chn = 1;
972 nvdev->num_chn = 1;
973 }
974 }
975
976 /* In any case device is now ready */
977 netif_device_attach(ndev);
978
979 /* Note: enable and attach happen when sub-channels setup */
980 netif_carrier_off(ndev);
981
982 if (netif_running(ndev)) {
983 ret = rndis_filter_open(nvdev);
984 if (ret)
985 goto err;
986
987 rdev = nvdev->extension;
988 if (!rdev->link_state)
989 netif_carrier_on(ndev);
990 }
991
992 return 0;
993
994err:
995 netif_device_detach(ndev);
996
997 rndis_filter_device_remove(hdev, nvdev);
998
999 return ret;
1000}
1001
1002static int netvsc_set_channels(struct net_device *net,
1003 struct ethtool_channels *channels)
1004{
1005 struct net_device_context *net_device_ctx = netdev_priv(net);
1006 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007 unsigned int orig, count = channels->combined_count;
1008 struct netvsc_device_info *device_info;
1009 int ret;
1010
1011 /* We do not support separate count for rx, tx, or other */
1012 if (count == 0 ||
1013 channels->rx_count || channels->tx_count || channels->other_count)
1014 return -EINVAL;
1015
1016 if (!nvdev || nvdev->destroy)
1017 return -ENODEV;
1018
1019 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020 return -EINVAL;
1021
1022 if (count > nvdev->max_chn)
1023 return -EINVAL;
1024
1025 orig = nvdev->num_chn;
1026
1027 device_info = netvsc_devinfo_get(nvdev);
1028
1029 if (!device_info)
1030 return -ENOMEM;
1031
1032 device_info->num_chn = count;
1033
1034 ret = netvsc_detach(net, nvdev);
1035 if (ret)
1036 goto out;
1037
1038 ret = netvsc_attach(net, device_info);
1039 if (ret) {
1040 device_info->num_chn = orig;
1041 if (netvsc_attach(net, device_info))
1042 netdev_err(net, "restoring channel setting failed\n");
1043 }
1044
1045out:
1046 kfree(device_info);
1047 return ret;
1048}
1049
1050static bool
1051netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052{
1053 struct ethtool_link_ksettings diff1 = *cmd;
1054 struct ethtool_link_ksettings diff2 = {};
1055
1056 diff1.base.speed = 0;
1057 diff1.base.duplex = 0;
1058 /* advertising and cmd are usually set */
1059 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060 diff1.base.cmd = 0;
1061 /* We set port to PORT_OTHER */
1062 diff2.base.port = PORT_OTHER;
1063
1064 return !memcmp(&diff1, &diff2, sizeof(diff1));
1065}
1066
1067static void netvsc_init_settings(struct net_device *dev)
1068{
1069 struct net_device_context *ndc = netdev_priv(dev);
1070
1071 ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073 ndc->speed = SPEED_UNKNOWN;
1074 ndc->duplex = DUPLEX_FULL;
1075
1076 dev->features = NETIF_F_LRO;
1077}
1078
1079static int netvsc_get_link_ksettings(struct net_device *dev,
1080 struct ethtool_link_ksettings *cmd)
1081{
1082 struct net_device_context *ndc = netdev_priv(dev);
1083
1084 cmd->base.speed = ndc->speed;
1085 cmd->base.duplex = ndc->duplex;
1086 cmd->base.port = PORT_OTHER;
1087
1088 return 0;
1089}
1090
1091static int netvsc_set_link_ksettings(struct net_device *dev,
1092 const struct ethtool_link_ksettings *cmd)
1093{
1094 struct net_device_context *ndc = netdev_priv(dev);
1095 u32 speed;
1096
1097 speed = cmd->base.speed;
1098 if (!ethtool_validate_speed(speed) ||
1099 !ethtool_validate_duplex(cmd->base.duplex) ||
1100 !netvsc_validate_ethtool_ss_cmd(cmd))
1101 return -EINVAL;
1102
1103 ndc->speed = speed;
1104 ndc->duplex = cmd->base.duplex;
1105
1106 return 0;
1107}
1108
1109static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110{
1111 struct net_device_context *ndevctx = netdev_priv(ndev);
1112 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114 int orig_mtu = ndev->mtu;
1115 struct netvsc_device_info *device_info;
1116 int ret = 0;
1117
1118 if (!nvdev || nvdev->destroy)
1119 return -ENODEV;
1120
1121 device_info = netvsc_devinfo_get(nvdev);
1122
1123 if (!device_info)
1124 return -ENOMEM;
1125
1126 /* Change MTU of underlying VF netdev first. */
1127 if (vf_netdev) {
1128 ret = dev_set_mtu(vf_netdev, mtu);
1129 if (ret)
1130 goto out;
1131 }
1132
1133 ret = netvsc_detach(ndev, nvdev);
1134 if (ret)
1135 goto rollback_vf;
1136
1137 ndev->mtu = mtu;
1138
1139 ret = netvsc_attach(ndev, device_info);
1140 if (!ret)
1141 goto out;
1142
1143 /* Attempt rollback to original MTU */
1144 ndev->mtu = orig_mtu;
1145
1146 if (netvsc_attach(ndev, device_info))
1147 netdev_err(ndev, "restoring mtu failed\n");
1148rollback_vf:
1149 if (vf_netdev)
1150 dev_set_mtu(vf_netdev, orig_mtu);
1151
1152out:
1153 kfree(device_info);
1154 return ret;
1155}
1156
1157static void netvsc_get_vf_stats(struct net_device *net,
1158 struct netvsc_vf_pcpu_stats *tot)
1159{
1160 struct net_device_context *ndev_ctx = netdev_priv(net);
1161 int i;
1162
1163 memset(tot, 0, sizeof(*tot));
1164
1165 for_each_possible_cpu(i) {
1166 const struct netvsc_vf_pcpu_stats *stats
1167 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1168 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169 unsigned int start;
1170
1171 do {
1172 start = u64_stats_fetch_begin_irq(&stats->syncp);
1173 rx_packets = stats->rx_packets;
1174 tx_packets = stats->tx_packets;
1175 rx_bytes = stats->rx_bytes;
1176 tx_bytes = stats->tx_bytes;
1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179 tot->rx_packets += rx_packets;
1180 tot->tx_packets += tx_packets;
1181 tot->rx_bytes += rx_bytes;
1182 tot->tx_bytes += tx_bytes;
1183 tot->tx_dropped += stats->tx_dropped;
1184 }
1185}
1186
1187static void netvsc_get_pcpu_stats(struct net_device *net,
1188 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189{
1190 struct net_device_context *ndev_ctx = netdev_priv(net);
1191 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192 int i;
1193
1194 /* fetch percpu stats of vf */
1195 for_each_possible_cpu(i) {
1196 const struct netvsc_vf_pcpu_stats *stats =
1197 per_cpu_ptr(ndev_ctx->vf_stats, i);
1198 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199 unsigned int start;
1200
1201 do {
1202 start = u64_stats_fetch_begin_irq(&stats->syncp);
1203 this_tot->vf_rx_packets = stats->rx_packets;
1204 this_tot->vf_tx_packets = stats->tx_packets;
1205 this_tot->vf_rx_bytes = stats->rx_bytes;
1206 this_tot->vf_tx_bytes = stats->tx_bytes;
1207 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208 this_tot->rx_packets = this_tot->vf_rx_packets;
1209 this_tot->tx_packets = this_tot->vf_tx_packets;
1210 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1211 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1212 }
1213
1214 /* fetch percpu stats of netvsc */
1215 for (i = 0; i < nvdev->num_chn; i++) {
1216 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217 const struct netvsc_stats *stats;
1218 struct netvsc_ethtool_pcpu_stats *this_tot =
1219 &pcpu_tot[nvchan->channel->target_cpu];
1220 u64 packets, bytes;
1221 unsigned int start;
1222
1223 stats = &nvchan->tx_stats;
1224 do {
1225 start = u64_stats_fetch_begin_irq(&stats->syncp);
1226 packets = stats->packets;
1227 bytes = stats->bytes;
1228 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230 this_tot->tx_bytes += bytes;
1231 this_tot->tx_packets += packets;
1232
1233 stats = &nvchan->rx_stats;
1234 do {
1235 start = u64_stats_fetch_begin_irq(&stats->syncp);
1236 packets = stats->packets;
1237 bytes = stats->bytes;
1238 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240 this_tot->rx_bytes += bytes;
1241 this_tot->rx_packets += packets;
1242 }
1243}
1244
1245static void netvsc_get_stats64(struct net_device *net,
1246 struct rtnl_link_stats64 *t)
1247{
1248 struct net_device_context *ndev_ctx = netdev_priv(net);
1249 struct netvsc_device *nvdev;
1250 struct netvsc_vf_pcpu_stats vf_tot;
1251 int i;
1252
1253 rcu_read_lock();
1254
1255 nvdev = rcu_dereference(ndev_ctx->nvdev);
1256 if (!nvdev)
1257 goto out;
1258
1259 netdev_stats_to_stats64(t, &net->stats);
1260
1261 netvsc_get_vf_stats(net, &vf_tot);
1262 t->rx_packets += vf_tot.rx_packets;
1263 t->tx_packets += vf_tot.tx_packets;
1264 t->rx_bytes += vf_tot.rx_bytes;
1265 t->tx_bytes += vf_tot.tx_bytes;
1266 t->tx_dropped += vf_tot.tx_dropped;
1267
1268 for (i = 0; i < nvdev->num_chn; i++) {
1269 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270 const struct netvsc_stats *stats;
1271 u64 packets, bytes, multicast;
1272 unsigned int start;
1273
1274 stats = &nvchan->tx_stats;
1275 do {
1276 start = u64_stats_fetch_begin_irq(&stats->syncp);
1277 packets = stats->packets;
1278 bytes = stats->bytes;
1279 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281 t->tx_bytes += bytes;
1282 t->tx_packets += packets;
1283
1284 stats = &nvchan->rx_stats;
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 packets = stats->packets;
1288 bytes = stats->bytes;
1289 multicast = stats->multicast + stats->broadcast;
1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292 t->rx_bytes += bytes;
1293 t->rx_packets += packets;
1294 t->multicast += multicast;
1295 }
1296out:
1297 rcu_read_unlock();
1298}
1299
1300static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301{
1302 struct net_device_context *ndc = netdev_priv(ndev);
1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305 struct sockaddr *addr = p;
1306 int err;
1307
1308 err = eth_prepare_mac_addr_change(ndev, p);
1309 if (err)
1310 return err;
1311
1312 if (!nvdev)
1313 return -ENODEV;
1314
1315 if (vf_netdev) {
1316 err = dev_set_mac_address(vf_netdev, addr, NULL);
1317 if (err)
1318 return err;
1319 }
1320
1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322 if (!err) {
1323 eth_commit_mac_addr_change(ndev, p);
1324 } else if (vf_netdev) {
1325 /* rollback change on VF */
1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327 dev_set_mac_address(vf_netdev, addr, NULL);
1328 }
1329
1330 return err;
1331}
1332
1333static const struct {
1334 char name[ETH_GSTRING_LEN];
1335 u16 offset;
1336} netvsc_stats[] = {
1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347}, pcpu_stats[] = {
1348 { "cpu%u_rx_packets",
1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350 { "cpu%u_rx_bytes",
1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352 { "cpu%u_tx_packets",
1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354 { "cpu%u_tx_bytes",
1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356 { "cpu%u_vf_rx_packets",
1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358 { "cpu%u_vf_rx_bytes",
1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360 { "cpu%u_vf_tx_packets",
1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362 { "cpu%u_vf_tx_bytes",
1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364}, vf_stats[] = {
1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370};
1371
1372#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1373#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1374
1375/* statistics per queue (rx/tx packets/bytes) */
1376#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378/* 4 statistics per queue (rx/tx packets/bytes) */
1379#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
1381static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382{
1383 struct net_device_context *ndc = netdev_priv(dev);
1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386 if (!nvdev)
1387 return -ENODEV;
1388
1389 switch (string_set) {
1390 case ETH_SS_STATS:
1391 return NETVSC_GLOBAL_STATS_LEN
1392 + NETVSC_VF_STATS_LEN
1393 + NETVSC_QUEUE_STATS_LEN(nvdev)
1394 + NETVSC_PCPU_STATS_LEN;
1395 default:
1396 return -EINVAL;
1397 }
1398}
1399
1400static void netvsc_get_ethtool_stats(struct net_device *dev,
1401 struct ethtool_stats *stats, u64 *data)
1402{
1403 struct net_device_context *ndc = netdev_priv(dev);
1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405 const void *nds = &ndc->eth_stats;
1406 const struct netvsc_stats *qstats;
1407 struct netvsc_vf_pcpu_stats sum;
1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409 unsigned int start;
1410 u64 packets, bytes;
1411 int i, j, cpu;
1412
1413 if (!nvdev)
1414 return;
1415
1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419 netvsc_get_vf_stats(dev, &sum);
1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423 for (j = 0; j < nvdev->num_chn; j++) {
1424 qstats = &nvdev->chan_table[j].tx_stats;
1425
1426 do {
1427 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428 packets = qstats->packets;
1429 bytes = qstats->bytes;
1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431 data[i++] = packets;
1432 data[i++] = bytes;
1433
1434 qstats = &nvdev->chan_table[j].rx_stats;
1435 do {
1436 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437 packets = qstats->packets;
1438 bytes = qstats->bytes;
1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440 data[i++] = packets;
1441 data[i++] = bytes;
1442 }
1443
1444 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445 sizeof(struct netvsc_ethtool_pcpu_stats),
1446 GFP_KERNEL);
1447 netvsc_get_pcpu_stats(dev, pcpu_sum);
1448 for_each_present_cpu(cpu) {
1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452 data[i++] = *(u64 *)((void *)this_sum
1453 + pcpu_stats[j].offset);
1454 }
1455 kvfree(pcpu_sum);
1456}
1457
1458static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459{
1460 struct net_device_context *ndc = netdev_priv(dev);
1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462 u8 *p = data;
1463 int i, cpu;
1464
1465 if (!nvdev)
1466 return;
1467
1468 switch (stringset) {
1469 case ETH_SS_STATS:
1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472 p += ETH_GSTRING_LEN;
1473 }
1474
1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477 p += ETH_GSTRING_LEN;
1478 }
1479
1480 for (i = 0; i < nvdev->num_chn; i++) {
1481 sprintf(p, "tx_queue_%u_packets", i);
1482 p += ETH_GSTRING_LEN;
1483 sprintf(p, "tx_queue_%u_bytes", i);
1484 p += ETH_GSTRING_LEN;
1485 sprintf(p, "rx_queue_%u_packets", i);
1486 p += ETH_GSTRING_LEN;
1487 sprintf(p, "rx_queue_%u_bytes", i);
1488 p += ETH_GSTRING_LEN;
1489 }
1490
1491 for_each_present_cpu(cpu) {
1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493 sprintf(p, pcpu_stats[i].name, cpu);
1494 p += ETH_GSTRING_LEN;
1495 }
1496 }
1497
1498 break;
1499 }
1500}
1501
1502static int
1503netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504 struct ethtool_rxnfc *info)
1505{
1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508 info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510 switch (info->flow_type) {
1511 case TCP_V4_FLOW:
1512 if (ndc->l4_hash & HV_TCP4_L4HASH)
1513 info->data |= l4_flag;
1514
1515 break;
1516
1517 case TCP_V6_FLOW:
1518 if (ndc->l4_hash & HV_TCP6_L4HASH)
1519 info->data |= l4_flag;
1520
1521 break;
1522
1523 case UDP_V4_FLOW:
1524 if (ndc->l4_hash & HV_UDP4_L4HASH)
1525 info->data |= l4_flag;
1526
1527 break;
1528
1529 case UDP_V6_FLOW:
1530 if (ndc->l4_hash & HV_UDP6_L4HASH)
1531 info->data |= l4_flag;
1532
1533 break;
1534
1535 case IPV4_FLOW:
1536 case IPV6_FLOW:
1537 break;
1538 default:
1539 info->data = 0;
1540 break;
1541 }
1542
1543 return 0;
1544}
1545
1546static int
1547netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548 u32 *rules)
1549{
1550 struct net_device_context *ndc = netdev_priv(dev);
1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553 if (!nvdev)
1554 return -ENODEV;
1555
1556 switch (info->cmd) {
1557 case ETHTOOL_GRXRINGS:
1558 info->data = nvdev->num_chn;
1559 return 0;
1560
1561 case ETHTOOL_GRXFH:
1562 return netvsc_get_rss_hash_opts(ndc, info);
1563 }
1564 return -EOPNOTSUPP;
1565}
1566
1567static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568 struct ethtool_rxnfc *info)
1569{
1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572 switch (info->flow_type) {
1573 case TCP_V4_FLOW:
1574 ndc->l4_hash |= HV_TCP4_L4HASH;
1575 break;
1576
1577 case TCP_V6_FLOW:
1578 ndc->l4_hash |= HV_TCP6_L4HASH;
1579 break;
1580
1581 case UDP_V4_FLOW:
1582 ndc->l4_hash |= HV_UDP4_L4HASH;
1583 break;
1584
1585 case UDP_V6_FLOW:
1586 ndc->l4_hash |= HV_UDP6_L4HASH;
1587 break;
1588
1589 default:
1590 return -EOPNOTSUPP;
1591 }
1592
1593 return 0;
1594 }
1595
1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597 switch (info->flow_type) {
1598 case TCP_V4_FLOW:
1599 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600 break;
1601
1602 case TCP_V6_FLOW:
1603 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604 break;
1605
1606 case UDP_V4_FLOW:
1607 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608 break;
1609
1610 case UDP_V6_FLOW:
1611 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612 break;
1613
1614 default:
1615 return -EOPNOTSUPP;
1616 }
1617
1618 return 0;
1619 }
1620
1621 return -EOPNOTSUPP;
1622}
1623
1624static int
1625netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626{
1627 struct net_device_context *ndc = netdev_priv(ndev);
1628
1629 if (info->cmd == ETHTOOL_SRXFH)
1630 return netvsc_set_rss_hash_opts(ndc, info);
1631
1632 return -EOPNOTSUPP;
1633}
1634
1635static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636{
1637 return NETVSC_HASH_KEYLEN;
1638}
1639
1640static u32 netvsc_rss_indir_size(struct net_device *dev)
1641{
1642 return ITAB_NUM;
1643}
1644
1645static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646 u8 *hfunc)
1647{
1648 struct net_device_context *ndc = netdev_priv(dev);
1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650 struct rndis_device *rndis_dev;
1651 int i;
1652
1653 if (!ndev)
1654 return -ENODEV;
1655
1656 if (hfunc)
1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1658
1659 rndis_dev = ndev->extension;
1660 if (indir) {
1661 for (i = 0; i < ITAB_NUM; i++)
1662 indir[i] = rndis_dev->rx_table[i];
1663 }
1664
1665 if (key)
1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668 return 0;
1669}
1670
1671static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672 const u8 *key, const u8 hfunc)
1673{
1674 struct net_device_context *ndc = netdev_priv(dev);
1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676 struct rndis_device *rndis_dev;
1677 int i;
1678
1679 if (!ndev)
1680 return -ENODEV;
1681
1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683 return -EOPNOTSUPP;
1684
1685 rndis_dev = ndev->extension;
1686 if (indir) {
1687 for (i = 0; i < ITAB_NUM; i++)
1688 if (indir[i] >= ndev->num_chn)
1689 return -EINVAL;
1690
1691 for (i = 0; i < ITAB_NUM; i++)
1692 rndis_dev->rx_table[i] = indir[i];
1693 }
1694
1695 if (!key) {
1696 if (!indir)
1697 return 0;
1698
1699 key = rndis_dev->rss_key;
1700 }
1701
1702 return rndis_filter_set_rss_param(rndis_dev, key);
1703}
1704
1705/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
1708static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709 struct ethtool_ringparam *ring)
1710{
1711 u32 max_buf_size;
1712
1713 ring->rx_pending = nvdev->recv_section_cnt;
1714 ring->tx_pending = nvdev->send_section_cnt;
1715
1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718 else
1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723 / nvdev->send_section_size;
1724}
1725
1726static void netvsc_get_ringparam(struct net_device *ndev,
1727 struct ethtool_ringparam *ring)
1728{
1729 struct net_device_context *ndevctx = netdev_priv(ndev);
1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732 if (!nvdev)
1733 return;
1734
1735 __netvsc_get_ringparam(nvdev, ring);
1736}
1737
1738static int netvsc_set_ringparam(struct net_device *ndev,
1739 struct ethtool_ringparam *ring)
1740{
1741 struct net_device_context *ndevctx = netdev_priv(ndev);
1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743 struct netvsc_device_info *device_info;
1744 struct ethtool_ringparam orig;
1745 u32 new_tx, new_rx;
1746 int ret = 0;
1747
1748 if (!nvdev || nvdev->destroy)
1749 return -ENODEV;
1750
1751 memset(&orig, 0, sizeof(orig));
1752 __netvsc_get_ringparam(nvdev, &orig);
1753
1754 new_tx = clamp_t(u32, ring->tx_pending,
1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756 new_rx = clamp_t(u32, ring->rx_pending,
1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759 if (new_tx == orig.tx_pending &&
1760 new_rx == orig.rx_pending)
1761 return 0; /* no change */
1762
1763 device_info = netvsc_devinfo_get(nvdev);
1764
1765 if (!device_info)
1766 return -ENOMEM;
1767
1768 device_info->send_sections = new_tx;
1769 device_info->recv_sections = new_rx;
1770
1771 ret = netvsc_detach(ndev, nvdev);
1772 if (ret)
1773 goto out;
1774
1775 ret = netvsc_attach(ndev, device_info);
1776 if (ret) {
1777 device_info->send_sections = orig.tx_pending;
1778 device_info->recv_sections = orig.rx_pending;
1779
1780 if (netvsc_attach(ndev, device_info))
1781 netdev_err(ndev, "restoring ringparam failed");
1782 }
1783
1784out:
1785 kfree(device_info);
1786 return ret;
1787}
1788
1789static int netvsc_set_features(struct net_device *ndev,
1790 netdev_features_t features)
1791{
1792 netdev_features_t change = features ^ ndev->features;
1793 struct net_device_context *ndevctx = netdev_priv(ndev);
1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796 struct ndis_offload_params offloads;
1797 int ret = 0;
1798
1799 if (!nvdev || nvdev->destroy)
1800 return -ENODEV;
1801
1802 if (!(change & NETIF_F_LRO))
1803 goto syncvf;
1804
1805 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807 if (features & NETIF_F_LRO) {
1808 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810 } else {
1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813 }
1814
1815 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817 if (ret) {
1818 features ^= NETIF_F_LRO;
1819 ndev->features = features;
1820 }
1821
1822syncvf:
1823 if (!vf_netdev)
1824 return ret;
1825
1826 vf_netdev->wanted_features = features;
1827 netdev_update_features(vf_netdev);
1828
1829 return ret;
1830}
1831
1832static u32 netvsc_get_msglevel(struct net_device *ndev)
1833{
1834 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836 return ndev_ctx->msg_enable;
1837}
1838
1839static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840{
1841 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843 ndev_ctx->msg_enable = val;
1844}
1845
1846static const struct ethtool_ops ethtool_ops = {
1847 .get_drvinfo = netvsc_get_drvinfo,
1848 .get_msglevel = netvsc_get_msglevel,
1849 .set_msglevel = netvsc_set_msglevel,
1850 .get_link = ethtool_op_get_link,
1851 .get_ethtool_stats = netvsc_get_ethtool_stats,
1852 .get_sset_count = netvsc_get_sset_count,
1853 .get_strings = netvsc_get_strings,
1854 .get_channels = netvsc_get_channels,
1855 .set_channels = netvsc_set_channels,
1856 .get_ts_info = ethtool_op_get_ts_info,
1857 .get_rxnfc = netvsc_get_rxnfc,
1858 .set_rxnfc = netvsc_set_rxnfc,
1859 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860 .get_rxfh_indir_size = netvsc_rss_indir_size,
1861 .get_rxfh = netvsc_get_rxfh,
1862 .set_rxfh = netvsc_set_rxfh,
1863 .get_link_ksettings = netvsc_get_link_ksettings,
1864 .set_link_ksettings = netvsc_set_link_ksettings,
1865 .get_ringparam = netvsc_get_ringparam,
1866 .set_ringparam = netvsc_set_ringparam,
1867};
1868
1869static const struct net_device_ops device_ops = {
1870 .ndo_open = netvsc_open,
1871 .ndo_stop = netvsc_close,
1872 .ndo_start_xmit = netvsc_start_xmit,
1873 .ndo_change_rx_flags = netvsc_change_rx_flags,
1874 .ndo_set_rx_mode = netvsc_set_rx_mode,
1875 .ndo_set_features = netvsc_set_features,
1876 .ndo_change_mtu = netvsc_change_mtu,
1877 .ndo_validate_addr = eth_validate_addr,
1878 .ndo_set_mac_address = netvsc_set_mac_addr,
1879 .ndo_select_queue = netvsc_select_queue,
1880 .ndo_get_stats64 = netvsc_get_stats64,
1881};
1882
1883/*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
1888static void netvsc_link_change(struct work_struct *w)
1889{
1890 struct net_device_context *ndev_ctx =
1891 container_of(w, struct net_device_context, dwork.work);
1892 struct hv_device *device_obj = ndev_ctx->device_ctx;
1893 struct net_device *net = hv_get_drvdata(device_obj);
1894 struct netvsc_device *net_device;
1895 struct rndis_device *rdev;
1896 struct netvsc_reconfig *event = NULL;
1897 bool notify = false, reschedule = false;
1898 unsigned long flags, next_reconfig, delay;
1899
1900 /* if changes are happening, comeback later */
1901 if (!rtnl_trylock()) {
1902 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903 return;
1904 }
1905
1906 net_device = rtnl_dereference(ndev_ctx->nvdev);
1907 if (!net_device)
1908 goto out_unlock;
1909
1910 rdev = net_device->extension;
1911
1912 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913 if (time_is_after_jiffies(next_reconfig)) {
1914 /* link_watch only sends one notification with current state
1915 * per second, avoid doing reconfig more frequently. Handle
1916 * wrap around.
1917 */
1918 delay = next_reconfig - jiffies;
1919 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920 schedule_delayed_work(&ndev_ctx->dwork, delay);
1921 goto out_unlock;
1922 }
1923 ndev_ctx->last_reconfig = jiffies;
1924
1925 spin_lock_irqsave(&ndev_ctx->lock, flags);
1926 if (!list_empty(&ndev_ctx->reconfig_events)) {
1927 event = list_first_entry(&ndev_ctx->reconfig_events,
1928 struct netvsc_reconfig, list);
1929 list_del(&event->list);
1930 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931 }
1932 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934 if (!event)
1935 goto out_unlock;
1936
1937 switch (event->event) {
1938 /* Only the following events are possible due to the check in
1939 * netvsc_linkstatus_callback()
1940 */
1941 case RNDIS_STATUS_MEDIA_CONNECT:
1942 if (rdev->link_state) {
1943 rdev->link_state = false;
1944 netif_carrier_on(net);
1945 netvsc_tx_enable(net_device, net);
1946 } else {
1947 notify = true;
1948 }
1949 kfree(event);
1950 break;
1951 case RNDIS_STATUS_MEDIA_DISCONNECT:
1952 if (!rdev->link_state) {
1953 rdev->link_state = true;
1954 netif_carrier_off(net);
1955 netvsc_tx_disable(net_device, net);
1956 }
1957 kfree(event);
1958 break;
1959 case RNDIS_STATUS_NETWORK_CHANGE:
1960 /* Only makes sense if carrier is present */
1961 if (!rdev->link_state) {
1962 rdev->link_state = true;
1963 netif_carrier_off(net);
1964 netvsc_tx_disable(net_device, net);
1965 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966 spin_lock_irqsave(&ndev_ctx->lock, flags);
1967 list_add(&event->list, &ndev_ctx->reconfig_events);
1968 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969 reschedule = true;
1970 }
1971 break;
1972 }
1973
1974 rtnl_unlock();
1975
1976 if (notify)
1977 netdev_notify_peers(net);
1978
1979 /* link_watch only sends one notification with current state per
1980 * second, handle next reconfig event in 2 seconds.
1981 */
1982 if (reschedule)
1983 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985 return;
1986
1987out_unlock:
1988 rtnl_unlock();
1989}
1990
1991static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992{
1993 struct net_device_context *net_device_ctx;
1994 struct net_device *dev;
1995
1996 dev = netdev_master_upper_dev_get(vf_netdev);
1997 if (!dev || dev->netdev_ops != &device_ops)
1998 return NULL; /* not a netvsc device */
1999
2000 net_device_ctx = netdev_priv(dev);
2001 if (!rtnl_dereference(net_device_ctx->nvdev))
2002 return NULL; /* device is removed */
2003
2004 return dev;
2005}
2006
2007/* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
2011static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012{
2013 struct sk_buff *skb = *pskb;
2014 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016 struct netvsc_vf_pcpu_stats *pcpu_stats
2017 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019 skb = skb_share_check(skb, GFP_ATOMIC);
2020 if (unlikely(!skb))
2021 return RX_HANDLER_CONSUMED;
2022
2023 *pskb = skb;
2024
2025 skb->dev = ndev;
2026
2027 u64_stats_update_begin(&pcpu_stats->syncp);
2028 pcpu_stats->rx_packets++;
2029 pcpu_stats->rx_bytes += skb->len;
2030 u64_stats_update_end(&pcpu_stats->syncp);
2031
2032 return RX_HANDLER_ANOTHER;
2033}
2034
2035static int netvsc_vf_join(struct net_device *vf_netdev,
2036 struct net_device *ndev)
2037{
2038 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039 int ret;
2040
2041 ret = netdev_rx_handler_register(vf_netdev,
2042 netvsc_vf_handle_frame, ndev);
2043 if (ret != 0) {
2044 netdev_err(vf_netdev,
2045 "can not register netvsc VF receive handler (err = %d)\n",
2046 ret);
2047 goto rx_handler_failed;
2048 }
2049
2050 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051 NULL, NULL, NULL);
2052 if (ret != 0) {
2053 netdev_err(vf_netdev,
2054 "can not set master device %s (err = %d)\n",
2055 ndev->name, ret);
2056 goto upper_link_failed;
2057 }
2058
2059 /* set slave flag before open to prevent IPv6 addrconf */
2060 vf_netdev->flags |= IFF_SLAVE;
2061
2062 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063
2064 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067 return 0;
2068
2069upper_link_failed:
2070 netdev_rx_handler_unregister(vf_netdev);
2071rx_handler_failed:
2072 return ret;
2073}
2074
2075static void __netvsc_vf_setup(struct net_device *ndev,
2076 struct net_device *vf_netdev)
2077{
2078 int ret;
2079
2080 /* Align MTU of VF with master */
2081 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082 if (ret)
2083 netdev_warn(vf_netdev,
2084 "unable to change mtu to %u\n", ndev->mtu);
2085
2086 /* set multicast etc flags on VF */
2087 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089 /* sync address list from ndev to VF */
2090 netif_addr_lock_bh(ndev);
2091 dev_uc_sync(vf_netdev, ndev);
2092 dev_mc_sync(vf_netdev, ndev);
2093 netif_addr_unlock_bh(ndev);
2094
2095 if (netif_running(ndev)) {
2096 ret = dev_open(vf_netdev, NULL);
2097 if (ret)
2098 netdev_warn(vf_netdev,
2099 "unable to open: %d\n", ret);
2100 }
2101}
2102
2103/* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
2106static void netvsc_vf_setup(struct work_struct *w)
2107{
2108 struct net_device_context *ndev_ctx
2109 = container_of(w, struct net_device_context, vf_takeover.work);
2110 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111 struct net_device *vf_netdev;
2112
2113 if (!rtnl_trylock()) {
2114 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115 return;
2116 }
2117
2118 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119 if (vf_netdev)
2120 __netvsc_vf_setup(ndev, vf_netdev);
2121
2122 rtnl_unlock();
2123}
2124
2125/* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
2128static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129{
2130 struct device *parent = vf_netdev->dev.parent;
2131 struct net_device_context *ndev_ctx;
2132 struct pci_dev *pdev;
2133 u32 serial;
2134
2135 if (!parent || !dev_is_pci(parent))
2136 return NULL; /* not a PCI device */
2137
2138 pdev = to_pci_dev(parent);
2139 if (!pdev->slot) {
2140 netdev_notice(vf_netdev, "no PCI slot information\n");
2141 return NULL;
2142 }
2143
2144 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146 pci_slot_name(pdev->slot));
2147 return NULL;
2148 }
2149
2150 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151 if (!ndev_ctx->vf_alloc)
2152 continue;
2153
2154 if (ndev_ctx->vf_serial == serial)
2155 return hv_get_drvdata(ndev_ctx->device_ctx);
2156 }
2157
2158 netdev_notice(vf_netdev,
2159 "no netdev found for vf serial:%u\n", serial);
2160 return NULL;
2161}
2162
2163static int netvsc_register_vf(struct net_device *vf_netdev)
2164{
2165 struct net_device_context *net_device_ctx;
2166 struct netvsc_device *netvsc_dev;
2167 struct net_device *ndev;
2168 int ret;
2169
2170 if (vf_netdev->addr_len != ETH_ALEN)
2171 return NOTIFY_DONE;
2172
2173 ndev = get_netvsc_byslot(vf_netdev);
2174 if (!ndev)
2175 return NOTIFY_DONE;
2176
2177 net_device_ctx = netdev_priv(ndev);
2178 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180 return NOTIFY_DONE;
2181
2182 /* if synthetic interface is a different namespace,
2183 * then move the VF to that namespace; join will be
2184 * done again in that context.
2185 */
2186 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187 ret = dev_change_net_namespace(vf_netdev,
2188 dev_net(ndev), "eth%d");
2189 if (ret)
2190 netdev_err(vf_netdev,
2191 "could not move to same namespace as %s: %d\n",
2192 ndev->name, ret);
2193 else
2194 netdev_info(vf_netdev,
2195 "VF moved to namespace with: %s\n",
2196 ndev->name);
2197 return NOTIFY_DONE;
2198 }
2199
2200 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203 return NOTIFY_DONE;
2204
2205 dev_hold(vf_netdev);
2206 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
2208 vf_netdev->wanted_features = ndev->features;
2209 netdev_update_features(vf_netdev);
2210
2211 return NOTIFY_OK;
2212}
2213
2214/* VF up/down change detected, schedule to change data path */
2215static int netvsc_vf_changed(struct net_device *vf_netdev)
2216{
2217 struct net_device_context *net_device_ctx;
2218 struct netvsc_device *netvsc_dev;
2219 struct net_device *ndev;
2220 bool vf_is_up = netif_running(vf_netdev);
2221
2222 ndev = get_netvsc_byref(vf_netdev);
2223 if (!ndev)
2224 return NOTIFY_DONE;
2225
2226 net_device_ctx = netdev_priv(ndev);
2227 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228 if (!netvsc_dev)
2229 return NOTIFY_DONE;
2230
2231 netvsc_switch_datapath(ndev, vf_is_up);
2232 netdev_info(ndev, "Data path switched %s VF: %s\n",
2233 vf_is_up ? "to" : "from", vf_netdev->name);
2234
2235 return NOTIFY_OK;
2236}
2237
2238static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239{
2240 struct net_device *ndev;
2241 struct net_device_context *net_device_ctx;
2242
2243 ndev = get_netvsc_byref(vf_netdev);
2244 if (!ndev)
2245 return NOTIFY_DONE;
2246
2247 net_device_ctx = netdev_priv(ndev);
2248 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
2252 netdev_rx_handler_unregister(vf_netdev);
2253 netdev_upper_dev_unlink(vf_netdev, ndev);
2254 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255 dev_put(vf_netdev);
2256
2257 return NOTIFY_OK;
2258}
2259
2260static int netvsc_probe(struct hv_device *dev,
2261 const struct hv_vmbus_device_id *dev_id)
2262{
2263 struct net_device *net = NULL;
2264 struct net_device_context *net_device_ctx;
2265 struct netvsc_device_info *device_info = NULL;
2266 struct netvsc_device *nvdev;
2267 int ret = -ENOMEM;
2268
2269 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270 VRSS_CHANNEL_MAX);
2271 if (!net)
2272 goto no_net;
2273
2274 netif_carrier_off(net);
2275
2276 netvsc_init_settings(net);
2277
2278 net_device_ctx = netdev_priv(net);
2279 net_device_ctx->device_ctx = dev;
2280 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281 if (netif_msg_probe(net_device_ctx))
2282 netdev_dbg(net, "netvsc msg_enable: %d\n",
2283 net_device_ctx->msg_enable);
2284
2285 hv_set_drvdata(dev, net);
2286
2287 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
2289 spin_lock_init(&net_device_ctx->lock);
2290 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293 net_device_ctx->vf_stats
2294 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295 if (!net_device_ctx->vf_stats)
2296 goto no_stats;
2297
2298 net->netdev_ops = &device_ops;
2299 net->ethtool_ops = ðtool_ops;
2300 SET_NETDEV_DEV(net, &dev->device);
2301
2302 /* We always need headroom for rndis header */
2303 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305 /* Initialize the number of queues to be 1, we may change it if more
2306 * channels are offered later.
2307 */
2308 netif_set_real_num_tx_queues(net, 1);
2309 netif_set_real_num_rx_queues(net, 1);
2310
2311 /* Notify the netvsc driver of the new device */
2312 device_info = netvsc_devinfo_get(NULL);
2313
2314 if (!device_info) {
2315 ret = -ENOMEM;
2316 goto devinfo_failed;
2317 }
2318
2319 nvdev = rndis_filter_device_add(dev, device_info);
2320 if (IS_ERR(nvdev)) {
2321 ret = PTR_ERR(nvdev);
2322 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323 goto rndis_failed;
2324 }
2325
2326 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2329 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330 * all subchannels to show up, but that may not happen because
2331 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333 * the device lock, so all the subchannels can't be processed --
2334 * finally netvsc_subchan_work() hangs forever.
2335 */
2336 rtnl_lock();
2337
2338 if (nvdev->num_chn > 1)
2339 schedule_work(&nvdev->subchan_work);
2340
2341 /* hw_features computed in rndis_netdev_set_hwcaps() */
2342 net->features = net->hw_features |
2343 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344 NETIF_F_HW_VLAN_CTAG_RX;
2345 net->vlan_features = net->features;
2346
2347 /* MTU range: 68 - 1500 or 65521 */
2348 net->min_mtu = NETVSC_MTU_MIN;
2349 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351 else
2352 net->max_mtu = ETH_DATA_LEN;
2353
2354 ret = register_netdevice(net);
2355 if (ret != 0) {
2356 pr_err("Unable to register netdev.\n");
2357 goto register_failed;
2358 }
2359
2360 list_add(&net_device_ctx->list, &netvsc_dev_list);
2361 rtnl_unlock();
2362
2363 kfree(device_info);
2364 return 0;
2365
2366register_failed:
2367 rtnl_unlock();
2368 rndis_filter_device_remove(dev, nvdev);
2369rndis_failed:
2370 kfree(device_info);
2371devinfo_failed:
2372 free_percpu(net_device_ctx->vf_stats);
2373no_stats:
2374 hv_set_drvdata(dev, NULL);
2375 free_netdev(net);
2376no_net:
2377 return ret;
2378}
2379
2380static int netvsc_remove(struct hv_device *dev)
2381{
2382 struct net_device_context *ndev_ctx;
2383 struct net_device *vf_netdev, *net;
2384 struct netvsc_device *nvdev;
2385
2386 net = hv_get_drvdata(dev);
2387 if (net == NULL) {
2388 dev_err(&dev->device, "No net device to remove\n");
2389 return 0;
2390 }
2391
2392 ndev_ctx = netdev_priv(net);
2393
2394 cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396 rtnl_lock();
2397 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398 if (nvdev)
2399 cancel_work_sync(&nvdev->subchan_work);
2400
2401 /*
2402 * Call to the vsc driver to let it know that the device is being
2403 * removed. Also blocks mtu and channel changes.
2404 */
2405 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406 if (vf_netdev)
2407 netvsc_unregister_vf(vf_netdev);
2408
2409 if (nvdev)
2410 rndis_filter_device_remove(dev, nvdev);
2411
2412 unregister_netdevice(net);
2413 list_del(&ndev_ctx->list);
2414
2415 rtnl_unlock();
2416
2417 hv_set_drvdata(dev, NULL);
2418
2419 free_percpu(ndev_ctx->vf_stats);
2420 free_netdev(net);
2421 return 0;
2422}
2423
2424static const struct hv_vmbus_device_id id_table[] = {
2425 /* Network guid */
2426 { HV_NIC_GUID, },
2427 { },
2428};
2429
2430MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432/* The one and only one */
2433static struct hv_driver netvsc_drv = {
2434 .name = KBUILD_MODNAME,
2435 .id_table = id_table,
2436 .probe = netvsc_probe,
2437 .remove = netvsc_remove,
2438 .driver = {
2439 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2440 },
2441};
2442
2443/*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
2449static int netvsc_netdev_event(struct notifier_block *this,
2450 unsigned long event, void *ptr)
2451{
2452 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2453
2454 /* Skip our own events */
2455 if (event_dev->netdev_ops == &device_ops)
2456 return NOTIFY_DONE;
2457
2458 /* Avoid non-Ethernet type devices */
2459 if (event_dev->type != ARPHRD_ETHER)
2460 return NOTIFY_DONE;
2461
2462 /* Avoid Vlan dev with same MAC registering as VF */
2463 if (is_vlan_dev(event_dev))
2464 return NOTIFY_DONE;
2465
2466 /* Avoid Bonding master dev with same MAC registering as VF */
2467 if ((event_dev->priv_flags & IFF_BONDING) &&
2468 (event_dev->flags & IFF_MASTER))
2469 return NOTIFY_DONE;
2470
2471 switch (event) {
2472 case NETDEV_REGISTER:
2473 return netvsc_register_vf(event_dev);
2474 case NETDEV_UNREGISTER:
2475 return netvsc_unregister_vf(event_dev);
2476 case NETDEV_UP:
2477 case NETDEV_DOWN:
2478 return netvsc_vf_changed(event_dev);
2479 default:
2480 return NOTIFY_DONE;
2481 }
2482}
2483
2484static struct notifier_block netvsc_netdev_notifier = {
2485 .notifier_call = netvsc_netdev_event,
2486};
2487
2488static void __exit netvsc_drv_exit(void)
2489{
2490 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491 vmbus_driver_unregister(&netvsc_drv);
2492}
2493
2494static int __init netvsc_drv_init(void)
2495{
2496 int ret;
2497
2498 if (ring_size < RING_SIZE_MIN) {
2499 ring_size = RING_SIZE_MIN;
2500 pr_info("Increased ring_size to %u (min allowed)\n",
2501 ring_size);
2502 }
2503 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2504
2505 ret = vmbus_driver_register(&netvsc_drv);
2506 if (ret)
2507 return ret;
2508
2509 register_netdevice_notifier(&netvsc_netdev_notifier);
2510 return 0;
2511}
2512
2513MODULE_LICENSE("GPL");
2514MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516module_init(netvsc_drv_init);
2517module_exit(netvsc_drv_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28#include <linux/bpf.h>
29
30#include <net/arp.h>
31#include <net/route.h>
32#include <net/sock.h>
33#include <net/pkt_sched.h>
34#include <net/checksum.h>
35#include <net/ip6_checksum.h>
36
37#include "hyperv_net.h"
38
39#define RING_SIZE_MIN 64
40#define RETRY_US_LO 5000
41#define RETRY_US_HI 10000
42#define RETRY_MAX 2000 /* >10 sec */
43
44#define LINKCHANGE_INT (2 * HZ)
45#define VF_TAKEOVER_INT (HZ / 10)
46
47static unsigned int ring_size __ro_after_init = 128;
48module_param(ring_size, uint, 0444);
49MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50unsigned int netvsc_ring_bytes __ro_after_init;
51
52static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57static int debug = -1;
58module_param(debug, int, 0444);
59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61static LIST_HEAD(netvsc_dev_list);
62
63static void netvsc_change_rx_flags(struct net_device *net, int change)
64{
65 struct net_device_context *ndev_ctx = netdev_priv(net);
66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67 int inc;
68
69 if (!vf_netdev)
70 return;
71
72 if (change & IFF_PROMISC) {
73 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74 dev_set_promiscuity(vf_netdev, inc);
75 }
76
77 if (change & IFF_ALLMULTI) {
78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79 dev_set_allmulti(vf_netdev, inc);
80 }
81}
82
83static void netvsc_set_rx_mode(struct net_device *net)
84{
85 struct net_device_context *ndev_ctx = netdev_priv(net);
86 struct net_device *vf_netdev;
87 struct netvsc_device *nvdev;
88
89 rcu_read_lock();
90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91 if (vf_netdev) {
92 dev_uc_sync(vf_netdev, net);
93 dev_mc_sync(vf_netdev, net);
94 }
95
96 nvdev = rcu_dereference(ndev_ctx->nvdev);
97 if (nvdev)
98 rndis_filter_update(nvdev);
99 rcu_read_unlock();
100}
101
102static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103 struct net_device *ndev)
104{
105 nvscdev->tx_disable = false;
106 virt_wmb(); /* ensure queue wake up mechanism is on */
107
108 netif_tx_wake_all_queues(ndev);
109}
110
111static int netvsc_open(struct net_device *net)
112{
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state) {
130 netif_carrier_on(net);
131 netvsc_tx_enable(nvdev, net);
132 }
133
134 if (vf_netdev) {
135 /* Setting synthetic device up transparently sets
136 * slave as up. If open fails, then slave will be
137 * still be offline (and not used).
138 */
139 ret = dev_open(vf_netdev, NULL);
140 if (ret)
141 netdev_warn(net,
142 "unable to open slave: %s: %d\n",
143 vf_netdev->name, ret);
144 }
145 return 0;
146}
147
148static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149{
150 unsigned int retry = 0;
151 int i;
152
153 /* Ensure pending bytes in ring are read */
154 for (;;) {
155 u32 aread = 0;
156
157 for (i = 0; i < nvdev->num_chn; i++) {
158 struct vmbus_channel *chn
159 = nvdev->chan_table[i].channel;
160
161 if (!chn)
162 continue;
163
164 /* make sure receive not running now */
165 napi_synchronize(&nvdev->chan_table[i].napi);
166
167 aread = hv_get_bytes_to_read(&chn->inbound);
168 if (aread)
169 break;
170
171 aread = hv_get_bytes_to_read(&chn->outbound);
172 if (aread)
173 break;
174 }
175
176 if (aread == 0)
177 return 0;
178
179 if (++retry > RETRY_MAX)
180 return -ETIMEDOUT;
181
182 usleep_range(RETRY_US_LO, RETRY_US_HI);
183 }
184}
185
186static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187 struct net_device *ndev)
188{
189 if (nvscdev) {
190 nvscdev->tx_disable = true;
191 virt_wmb(); /* ensure txq will not wake up after stop */
192 }
193
194 netif_tx_disable(ndev);
195}
196
197static int netvsc_close(struct net_device *net)
198{
199 struct net_device_context *net_device_ctx = netdev_priv(net);
200 struct net_device *vf_netdev
201 = rtnl_dereference(net_device_ctx->vf_netdev);
202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203 int ret;
204
205 netvsc_tx_disable(nvdev, net);
206
207 /* No need to close rndis filter if it is removed already */
208 if (!nvdev)
209 return 0;
210
211 ret = rndis_filter_close(nvdev);
212 if (ret != 0) {
213 netdev_err(net, "unable to close device (ret %d).\n", ret);
214 return ret;
215 }
216
217 ret = netvsc_wait_until_empty(nvdev);
218 if (ret)
219 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221 if (vf_netdev)
222 dev_close(vf_netdev);
223
224 return ret;
225}
226
227static inline void *init_ppi_data(struct rndis_message *msg,
228 u32 ppi_size, u32 pkt_type)
229{
230 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231 struct rndis_per_packet_info *ppi;
232
233 rndis_pkt->data_offset += ppi_size;
234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235 + rndis_pkt->per_pkt_info_len;
236
237 ppi->size = ppi_size;
238 ppi->type = pkt_type;
239 ppi->internal = 0;
240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242 rndis_pkt->per_pkt_info_len += ppi_size;
243
244 return ppi + 1;
245}
246
247/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248 * packets. We can use ethtool to change UDP hash level when necessary.
249 */
250static inline u32 netvsc_get_hash(
251 struct sk_buff *skb,
252 const struct net_device_context *ndc)
253{
254 struct flow_keys flow;
255 u32 hash, pkt_proto = 0;
256 static u32 hashrnd __read_mostly;
257
258 net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261 return 0;
262
263 switch (flow.basic.ip_proto) {
264 case IPPROTO_TCP:
265 if (flow.basic.n_proto == htons(ETH_P_IP))
266 pkt_proto = HV_TCP4_L4HASH;
267 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268 pkt_proto = HV_TCP6_L4HASH;
269
270 break;
271
272 case IPPROTO_UDP:
273 if (flow.basic.n_proto == htons(ETH_P_IP))
274 pkt_proto = HV_UDP4_L4HASH;
275 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 pkt_proto = HV_UDP6_L4HASH;
277
278 break;
279 }
280
281 if (pkt_proto & ndc->l4_hash) {
282 return skb_get_hash(skb);
283 } else {
284 if (flow.basic.n_proto == htons(ETH_P_IP))
285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288 else
289 return 0;
290
291 __skb_set_sw_hash(skb, hash, false);
292 }
293
294 return hash;
295}
296
297static inline int netvsc_get_tx_queue(struct net_device *ndev,
298 struct sk_buff *skb, int old_idx)
299{
300 const struct net_device_context *ndc = netdev_priv(ndev);
301 struct sock *sk = skb->sk;
302 int q_idx;
303
304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305 (VRSS_SEND_TAB_SIZE - 1)];
306
307 /* If queue index changed record the new value */
308 if (q_idx != old_idx &&
309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310 sk_tx_queue_set(sk, q_idx);
311
312 return q_idx;
313}
314
315/*
316 * Select queue for transmit.
317 *
318 * If a valid queue has already been assigned, then use that.
319 * Otherwise compute tx queue based on hash and the send table.
320 *
321 * This is basically similar to default (netdev_pick_tx) with the added step
322 * of using the host send_table when no other queue has been assigned.
323 *
324 * TODO support XPS - but get_xps_queue not exported
325 */
326static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327{
328 int q_idx = sk_tx_queue_get(skb->sk);
329
330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331 /* If forwarding a packet, we use the recorded queue when
332 * available for better cache locality.
333 */
334 if (skb_rx_queue_recorded(skb))
335 q_idx = skb_get_rx_queue(skb);
336 else
337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338 }
339
340 return q_idx;
341}
342
343static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344 struct net_device *sb_dev)
345{
346 struct net_device_context *ndc = netdev_priv(ndev);
347 struct net_device *vf_netdev;
348 u16 txq;
349
350 rcu_read_lock();
351 vf_netdev = rcu_dereference(ndc->vf_netdev);
352 if (vf_netdev) {
353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355 if (vf_ops->ndo_select_queue)
356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357 else
358 txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360 /* Record the queue selected by VF so that it can be
361 * used for common case where VF has more queues than
362 * the synthetic device.
363 */
364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365 } else {
366 txq = netvsc_pick_tx(ndev, skb);
367 }
368 rcu_read_unlock();
369
370 while (txq >= ndev->real_num_tx_queues)
371 txq -= ndev->real_num_tx_queues;
372
373 return txq;
374}
375
376static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
377 struct hv_page_buffer *pb)
378{
379 int j = 0;
380
381 /* Deal with compound pages by ignoring unused part
382 * of the page.
383 */
384 page += (offset >> PAGE_SHIFT);
385 offset &= ~PAGE_MASK;
386
387 while (len > 0) {
388 unsigned long bytes;
389
390 bytes = PAGE_SIZE - offset;
391 if (bytes > len)
392 bytes = len;
393 pb[j].pfn = page_to_pfn(page);
394 pb[j].offset = offset;
395 pb[j].len = bytes;
396
397 offset += bytes;
398 len -= bytes;
399
400 if (offset == PAGE_SIZE && len) {
401 page++;
402 offset = 0;
403 j++;
404 }
405 }
406
407 return j + 1;
408}
409
410static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
411 struct hv_netvsc_packet *packet,
412 struct hv_page_buffer *pb)
413{
414 u32 slots_used = 0;
415 char *data = skb->data;
416 int frags = skb_shinfo(skb)->nr_frags;
417 int i;
418
419 /* The packet is laid out thus:
420 * 1. hdr: RNDIS header and PPI
421 * 2. skb linear data
422 * 3. skb fragment data
423 */
424 slots_used += fill_pg_buf(virt_to_page(hdr),
425 offset_in_page(hdr),
426 len, &pb[slots_used]);
427
428 packet->rmsg_size = len;
429 packet->rmsg_pgcnt = slots_used;
430
431 slots_used += fill_pg_buf(virt_to_page(data),
432 offset_in_page(data),
433 skb_headlen(skb), &pb[slots_used]);
434
435 for (i = 0; i < frags; i++) {
436 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437
438 slots_used += fill_pg_buf(skb_frag_page(frag),
439 skb_frag_off(frag),
440 skb_frag_size(frag), &pb[slots_used]);
441 }
442 return slots_used;
443}
444
445static int count_skb_frag_slots(struct sk_buff *skb)
446{
447 int i, frags = skb_shinfo(skb)->nr_frags;
448 int pages = 0;
449
450 for (i = 0; i < frags; i++) {
451 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452 unsigned long size = skb_frag_size(frag);
453 unsigned long offset = skb_frag_off(frag);
454
455 /* Skip unused frames from start of page */
456 offset &= ~PAGE_MASK;
457 pages += PFN_UP(offset + size);
458 }
459 return pages;
460}
461
462static int netvsc_get_slots(struct sk_buff *skb)
463{
464 char *data = skb->data;
465 unsigned int offset = offset_in_page(data);
466 unsigned int len = skb_headlen(skb);
467 int slots;
468 int frag_slots;
469
470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
471 frag_slots = count_skb_frag_slots(skb);
472 return slots + frag_slots;
473}
474
475static u32 net_checksum_info(struct sk_buff *skb)
476{
477 if (skb->protocol == htons(ETH_P_IP)) {
478 struct iphdr *ip = ip_hdr(skb);
479
480 if (ip->protocol == IPPROTO_TCP)
481 return TRANSPORT_INFO_IPV4_TCP;
482 else if (ip->protocol == IPPROTO_UDP)
483 return TRANSPORT_INFO_IPV4_UDP;
484 } else {
485 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487 if (ip6->nexthdr == IPPROTO_TCP)
488 return TRANSPORT_INFO_IPV6_TCP;
489 else if (ip6->nexthdr == IPPROTO_UDP)
490 return TRANSPORT_INFO_IPV6_UDP;
491 }
492
493 return TRANSPORT_INFO_NOT_IP;
494}
495
496/* Send skb on the slave VF device. */
497static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498 struct sk_buff *skb)
499{
500 struct net_device_context *ndev_ctx = netdev_priv(net);
501 unsigned int len = skb->len;
502 int rc;
503
504 skb->dev = vf_netdev;
505 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
506
507 rc = dev_queue_xmit(skb);
508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509 struct netvsc_vf_pcpu_stats *pcpu_stats
510 = this_cpu_ptr(ndev_ctx->vf_stats);
511
512 u64_stats_update_begin(&pcpu_stats->syncp);
513 pcpu_stats->tx_packets++;
514 pcpu_stats->tx_bytes += len;
515 u64_stats_update_end(&pcpu_stats->syncp);
516 } else {
517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518 }
519
520 return rc;
521}
522
523static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524{
525 struct net_device_context *net_device_ctx = netdev_priv(net);
526 struct hv_netvsc_packet *packet = NULL;
527 int ret;
528 unsigned int num_data_pgs;
529 struct rndis_message *rndis_msg;
530 struct net_device *vf_netdev;
531 u32 rndis_msg_size;
532 u32 hash;
533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535 /* If VF is present and up then redirect packets to it.
536 * Skip the VF if it is marked down or has no carrier.
537 * If netpoll is in uses, then VF can not be used either.
538 */
539 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
540 if (vf_netdev && netif_running(vf_netdev) &&
541 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
542 return netvsc_vf_xmit(net, vf_netdev, skb);
543
544 /* We will atmost need two pages to describe the rndis
545 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
546 * of pages in a single packet. If skb is scattered around
547 * more pages we try linearizing it.
548 */
549
550 num_data_pgs = netvsc_get_slots(skb) + 2;
551
552 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
553 ++net_device_ctx->eth_stats.tx_scattered;
554
555 if (skb_linearize(skb))
556 goto no_memory;
557
558 num_data_pgs = netvsc_get_slots(skb) + 2;
559 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
560 ++net_device_ctx->eth_stats.tx_too_big;
561 goto drop;
562 }
563 }
564
565 /*
566 * Place the rndis header in the skb head room and
567 * the skb->cb will be used for hv_netvsc_packet
568 * structure.
569 */
570 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
571 if (ret)
572 goto no_memory;
573
574 /* Use the skb control buffer for building up the packet */
575 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
576 sizeof_field(struct sk_buff, cb));
577 packet = (struct hv_netvsc_packet *)skb->cb;
578
579 packet->q_idx = skb_get_queue_mapping(skb);
580
581 packet->total_data_buflen = skb->len;
582 packet->total_bytes = skb->len;
583 packet->total_packets = 1;
584
585 rndis_msg = (struct rndis_message *)skb->head;
586
587 /* Add the rndis header */
588 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
589 rndis_msg->msg_len = packet->total_data_buflen;
590
591 rndis_msg->msg.pkt = (struct rndis_packet) {
592 .data_offset = sizeof(struct rndis_packet),
593 .data_len = packet->total_data_buflen,
594 .per_pkt_info_offset = sizeof(struct rndis_packet),
595 };
596
597 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
598
599 hash = skb_get_hash_raw(skb);
600 if (hash != 0 && net->real_num_tx_queues > 1) {
601 u32 *hash_info;
602
603 rndis_msg_size += NDIS_HASH_PPI_SIZE;
604 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
605 NBL_HASH_VALUE);
606 *hash_info = hash;
607 }
608
609 /* When using AF_PACKET we need to drop VLAN header from
610 * the frame and update the SKB to allow the HOST OS
611 * to transmit the 802.1Q packet
612 */
613 if (skb->protocol == htons(ETH_P_8021Q)) {
614 u16 vlan_tci;
615
616 skb_reset_mac_header(skb);
617 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
618 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
619 ++net_device_ctx->eth_stats.vlan_error;
620 goto drop;
621 }
622
623 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
624 /* Update the NDIS header pkt lengths */
625 packet->total_data_buflen -= VLAN_HLEN;
626 packet->total_bytes -= VLAN_HLEN;
627 rndis_msg->msg_len = packet->total_data_buflen;
628 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
629 }
630 }
631
632 if (skb_vlan_tag_present(skb)) {
633 struct ndis_pkt_8021q_info *vlan;
634
635 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
636 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
637 IEEE_8021Q_INFO);
638
639 vlan->value = 0;
640 vlan->vlanid = skb_vlan_tag_get_id(skb);
641 vlan->cfi = skb_vlan_tag_get_cfi(skb);
642 vlan->pri = skb_vlan_tag_get_prio(skb);
643 }
644
645 if (skb_is_gso(skb)) {
646 struct ndis_tcp_lso_info *lso_info;
647
648 rndis_msg_size += NDIS_LSO_PPI_SIZE;
649 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
650 TCP_LARGESEND_PKTINFO);
651
652 lso_info->value = 0;
653 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
654 if (skb->protocol == htons(ETH_P_IP)) {
655 lso_info->lso_v2_transmit.ip_version =
656 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
657 ip_hdr(skb)->tot_len = 0;
658 ip_hdr(skb)->check = 0;
659 tcp_hdr(skb)->check =
660 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
661 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
662 } else {
663 lso_info->lso_v2_transmit.ip_version =
664 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
665 tcp_v6_gso_csum_prep(skb);
666 }
667 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
668 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
669 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
670 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
671 struct ndis_tcp_ip_checksum_info *csum_info;
672
673 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
674 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
675 TCPIP_CHKSUM_PKTINFO);
676
677 csum_info->value = 0;
678 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
679
680 if (skb->protocol == htons(ETH_P_IP)) {
681 csum_info->transmit.is_ipv4 = 1;
682
683 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
684 csum_info->transmit.tcp_checksum = 1;
685 else
686 csum_info->transmit.udp_checksum = 1;
687 } else {
688 csum_info->transmit.is_ipv6 = 1;
689
690 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
691 csum_info->transmit.tcp_checksum = 1;
692 else
693 csum_info->transmit.udp_checksum = 1;
694 }
695 } else {
696 /* Can't do offload of this type of checksum */
697 if (skb_checksum_help(skb))
698 goto drop;
699 }
700 }
701
702 /* Start filling in the page buffers with the rndis hdr */
703 rndis_msg->msg_len += rndis_msg_size;
704 packet->total_data_buflen = rndis_msg->msg_len;
705 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
706 skb, packet, pb);
707
708 /* timestamp packet in software */
709 skb_tx_timestamp(skb);
710
711 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
712 if (likely(ret == 0))
713 return NETDEV_TX_OK;
714
715 if (ret == -EAGAIN) {
716 ++net_device_ctx->eth_stats.tx_busy;
717 return NETDEV_TX_BUSY;
718 }
719
720 if (ret == -ENOSPC)
721 ++net_device_ctx->eth_stats.tx_no_space;
722
723drop:
724 dev_kfree_skb_any(skb);
725 net->stats.tx_dropped++;
726
727 return NETDEV_TX_OK;
728
729no_memory:
730 ++net_device_ctx->eth_stats.tx_no_memory;
731 goto drop;
732}
733
734static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
735 struct net_device *ndev)
736{
737 return netvsc_xmit(skb, ndev, false);
738}
739
740/*
741 * netvsc_linkstatus_callback - Link up/down notification
742 */
743void netvsc_linkstatus_callback(struct net_device *net,
744 struct rndis_message *resp)
745{
746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747 struct net_device_context *ndev_ctx = netdev_priv(net);
748 struct netvsc_reconfig *event;
749 unsigned long flags;
750
751 /* Ensure the packet is big enough to access its fields */
752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754 resp->msg_len);
755 return;
756 }
757
758 /* Update the physical link speed when changing to another vSwitch */
759 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
760 u32 speed;
761
762 speed = *(u32 *)((void *)indicate
763 + indicate->status_buf_offset) / 10000;
764 ndev_ctx->speed = speed;
765 return;
766 }
767
768 /* Handle these link change statuses below */
769 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
770 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
771 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
772 return;
773
774 if (net->reg_state != NETREG_REGISTERED)
775 return;
776
777 event = kzalloc(sizeof(*event), GFP_ATOMIC);
778 if (!event)
779 return;
780 event->event = indicate->status;
781
782 spin_lock_irqsave(&ndev_ctx->lock, flags);
783 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
784 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
785
786 schedule_delayed_work(&ndev_ctx->dwork, 0);
787}
788
789static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
790{
791 int rc;
792
793 skb->queue_mapping = skb_get_rx_queue(skb);
794 __skb_push(skb, ETH_HLEN);
795
796 rc = netvsc_xmit(skb, ndev, true);
797
798 if (dev_xmit_complete(rc))
799 return;
800
801 dev_kfree_skb_any(skb);
802 ndev->stats.tx_dropped++;
803}
804
805static void netvsc_comp_ipcsum(struct sk_buff *skb)
806{
807 struct iphdr *iph = (struct iphdr *)skb->data;
808
809 iph->check = 0;
810 iph->check = ip_fast_csum(iph, iph->ihl);
811}
812
813static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
814 struct netvsc_channel *nvchan,
815 struct xdp_buff *xdp)
816{
817 struct napi_struct *napi = &nvchan->napi;
818 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
819 const struct ndis_tcp_ip_checksum_info *csum_info =
820 nvchan->rsc.csum_info;
821 const u32 *hash_info = nvchan->rsc.hash_info;
822 struct sk_buff *skb;
823 void *xbuf = xdp->data_hard_start;
824 int i;
825
826 if (xbuf) {
827 unsigned int hdroom = xdp->data - xdp->data_hard_start;
828 unsigned int xlen = xdp->data_end - xdp->data;
829 unsigned int frag_size = xdp->frame_sz;
830
831 skb = build_skb(xbuf, frag_size);
832
833 if (!skb) {
834 __free_page(virt_to_page(xbuf));
835 return NULL;
836 }
837
838 skb_reserve(skb, hdroom);
839 skb_put(skb, xlen);
840 skb->dev = napi->dev;
841 } else {
842 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
843
844 if (!skb)
845 return NULL;
846
847 /* Copy to skb. This copy is needed here since the memory
848 * pointed by hv_netvsc_packet cannot be deallocated.
849 */
850 for (i = 0; i < nvchan->rsc.cnt; i++)
851 skb_put_data(skb, nvchan->rsc.data[i],
852 nvchan->rsc.len[i]);
853 }
854
855 skb->protocol = eth_type_trans(skb, net);
856
857 /* skb is already created with CHECKSUM_NONE */
858 skb_checksum_none_assert(skb);
859
860 /* Incoming packets may have IP header checksum verified by the host.
861 * They may not have IP header checksum computed after coalescing.
862 * We compute it here if the flags are set, because on Linux, the IP
863 * checksum is always checked.
864 */
865 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
866 csum_info->receive.ip_checksum_succeeded &&
867 skb->protocol == htons(ETH_P_IP))
868 netvsc_comp_ipcsum(skb);
869
870 /* Do L4 checksum offload if enabled and present. */
871 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
872 if (csum_info->receive.tcp_checksum_succeeded ||
873 csum_info->receive.udp_checksum_succeeded)
874 skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876
877 if (hash_info && (net->features & NETIF_F_RXHASH))
878 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
879
880 if (vlan) {
881 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
882 (vlan->cfi ? VLAN_CFI_MASK : 0);
883
884 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
885 vlan_tci);
886 }
887
888 return skb;
889}
890
891/*
892 * netvsc_recv_callback - Callback when we receive a packet from the
893 * "wire" on the specified device.
894 */
895int netvsc_recv_callback(struct net_device *net,
896 struct netvsc_device *net_device,
897 struct netvsc_channel *nvchan)
898{
899 struct net_device_context *net_device_ctx = netdev_priv(net);
900 struct vmbus_channel *channel = nvchan->channel;
901 u16 q_idx = channel->offermsg.offer.sub_channel_index;
902 struct sk_buff *skb;
903 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
904 struct xdp_buff xdp;
905 u32 act;
906
907 if (net->reg_state != NETREG_REGISTERED)
908 return NVSP_STAT_FAIL;
909
910 act = netvsc_run_xdp(net, nvchan, &xdp);
911
912 if (act != XDP_PASS && act != XDP_TX) {
913 u64_stats_update_begin(&rx_stats->syncp);
914 rx_stats->xdp_drop++;
915 u64_stats_update_end(&rx_stats->syncp);
916
917 return NVSP_STAT_SUCCESS; /* consumed by XDP */
918 }
919
920 /* Allocate a skb - TODO direct I/O to pages? */
921 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
922
923 if (unlikely(!skb)) {
924 ++net_device_ctx->eth_stats.rx_no_memory;
925 return NVSP_STAT_FAIL;
926 }
927
928 skb_record_rx_queue(skb, q_idx);
929
930 /*
931 * Even if injecting the packet, record the statistics
932 * on the synthetic device because modifying the VF device
933 * statistics will not work correctly.
934 */
935 u64_stats_update_begin(&rx_stats->syncp);
936 rx_stats->packets++;
937 rx_stats->bytes += nvchan->rsc.pktlen;
938
939 if (skb->pkt_type == PACKET_BROADCAST)
940 ++rx_stats->broadcast;
941 else if (skb->pkt_type == PACKET_MULTICAST)
942 ++rx_stats->multicast;
943 u64_stats_update_end(&rx_stats->syncp);
944
945 if (act == XDP_TX) {
946 netvsc_xdp_xmit(skb, net);
947 return NVSP_STAT_SUCCESS;
948 }
949
950 napi_gro_receive(&nvchan->napi, skb);
951 return NVSP_STAT_SUCCESS;
952}
953
954static void netvsc_get_drvinfo(struct net_device *net,
955 struct ethtool_drvinfo *info)
956{
957 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
958 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
959}
960
961static void netvsc_get_channels(struct net_device *net,
962 struct ethtool_channels *channel)
963{
964 struct net_device_context *net_device_ctx = netdev_priv(net);
965 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
966
967 if (nvdev) {
968 channel->max_combined = nvdev->max_chn;
969 channel->combined_count = nvdev->num_chn;
970 }
971}
972
973/* Alloc struct netvsc_device_info, and initialize it from either existing
974 * struct netvsc_device, or from default values.
975 */
976static
977struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
978{
979 struct netvsc_device_info *dev_info;
980 struct bpf_prog *prog;
981
982 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
983
984 if (!dev_info)
985 return NULL;
986
987 if (nvdev) {
988 ASSERT_RTNL();
989
990 dev_info->num_chn = nvdev->num_chn;
991 dev_info->send_sections = nvdev->send_section_cnt;
992 dev_info->send_section_size = nvdev->send_section_size;
993 dev_info->recv_sections = nvdev->recv_section_cnt;
994 dev_info->recv_section_size = nvdev->recv_section_size;
995
996 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
997 NETVSC_HASH_KEYLEN);
998
999 prog = netvsc_xdp_get(nvdev);
1000 if (prog) {
1001 bpf_prog_inc(prog);
1002 dev_info->bprog = prog;
1003 }
1004 } else {
1005 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1006 dev_info->send_sections = NETVSC_DEFAULT_TX;
1007 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1008 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1009 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1010 }
1011
1012 return dev_info;
1013}
1014
1015/* Free struct netvsc_device_info */
1016static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1017{
1018 if (dev_info->bprog) {
1019 ASSERT_RTNL();
1020 bpf_prog_put(dev_info->bprog);
1021 }
1022
1023 kfree(dev_info);
1024}
1025
1026static int netvsc_detach(struct net_device *ndev,
1027 struct netvsc_device *nvdev)
1028{
1029 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1030 struct hv_device *hdev = ndev_ctx->device_ctx;
1031 int ret;
1032
1033 /* Don't try continuing to try and setup sub channels */
1034 if (cancel_work_sync(&nvdev->subchan_work))
1035 nvdev->num_chn = 1;
1036
1037 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1038
1039 /* If device was up (receiving) then shutdown */
1040 if (netif_running(ndev)) {
1041 netvsc_tx_disable(nvdev, ndev);
1042
1043 ret = rndis_filter_close(nvdev);
1044 if (ret) {
1045 netdev_err(ndev,
1046 "unable to close device (ret %d).\n", ret);
1047 return ret;
1048 }
1049
1050 ret = netvsc_wait_until_empty(nvdev);
1051 if (ret) {
1052 netdev_err(ndev,
1053 "Ring buffer not empty after closing rndis\n");
1054 return ret;
1055 }
1056 }
1057
1058 netif_device_detach(ndev);
1059
1060 rndis_filter_device_remove(hdev, nvdev);
1061
1062 return 0;
1063}
1064
1065static int netvsc_attach(struct net_device *ndev,
1066 struct netvsc_device_info *dev_info)
1067{
1068 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1069 struct hv_device *hdev = ndev_ctx->device_ctx;
1070 struct netvsc_device *nvdev;
1071 struct rndis_device *rdev;
1072 struct bpf_prog *prog;
1073 int ret = 0;
1074
1075 nvdev = rndis_filter_device_add(hdev, dev_info);
1076 if (IS_ERR(nvdev))
1077 return PTR_ERR(nvdev);
1078
1079 if (nvdev->num_chn > 1) {
1080 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1081
1082 /* if unavailable, just proceed with one queue */
1083 if (ret) {
1084 nvdev->max_chn = 1;
1085 nvdev->num_chn = 1;
1086 }
1087 }
1088
1089 prog = dev_info->bprog;
1090 if (prog) {
1091 bpf_prog_inc(prog);
1092 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1093 if (ret) {
1094 bpf_prog_put(prog);
1095 goto err1;
1096 }
1097 }
1098
1099 /* In any case device is now ready */
1100 nvdev->tx_disable = false;
1101 netif_device_attach(ndev);
1102
1103 /* Note: enable and attach happen when sub-channels setup */
1104 netif_carrier_off(ndev);
1105
1106 if (netif_running(ndev)) {
1107 ret = rndis_filter_open(nvdev);
1108 if (ret)
1109 goto err2;
1110
1111 rdev = nvdev->extension;
1112 if (!rdev->link_state)
1113 netif_carrier_on(ndev);
1114 }
1115
1116 return 0;
1117
1118err2:
1119 netif_device_detach(ndev);
1120
1121err1:
1122 rndis_filter_device_remove(hdev, nvdev);
1123
1124 return ret;
1125}
1126
1127static int netvsc_set_channels(struct net_device *net,
1128 struct ethtool_channels *channels)
1129{
1130 struct net_device_context *net_device_ctx = netdev_priv(net);
1131 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1132 unsigned int orig, count = channels->combined_count;
1133 struct netvsc_device_info *device_info;
1134 int ret;
1135
1136 /* We do not support separate count for rx, tx, or other */
1137 if (count == 0 ||
1138 channels->rx_count || channels->tx_count || channels->other_count)
1139 return -EINVAL;
1140
1141 if (!nvdev || nvdev->destroy)
1142 return -ENODEV;
1143
1144 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1145 return -EINVAL;
1146
1147 if (count > nvdev->max_chn)
1148 return -EINVAL;
1149
1150 orig = nvdev->num_chn;
1151
1152 device_info = netvsc_devinfo_get(nvdev);
1153
1154 if (!device_info)
1155 return -ENOMEM;
1156
1157 device_info->num_chn = count;
1158
1159 ret = netvsc_detach(net, nvdev);
1160 if (ret)
1161 goto out;
1162
1163 ret = netvsc_attach(net, device_info);
1164 if (ret) {
1165 device_info->num_chn = orig;
1166 if (netvsc_attach(net, device_info))
1167 netdev_err(net, "restoring channel setting failed\n");
1168 }
1169
1170out:
1171 netvsc_devinfo_put(device_info);
1172 return ret;
1173}
1174
1175static void netvsc_init_settings(struct net_device *dev)
1176{
1177 struct net_device_context *ndc = netdev_priv(dev);
1178
1179 ndc->l4_hash = HV_DEFAULT_L4HASH;
1180
1181 ndc->speed = SPEED_UNKNOWN;
1182 ndc->duplex = DUPLEX_FULL;
1183
1184 dev->features = NETIF_F_LRO;
1185}
1186
1187static int netvsc_get_link_ksettings(struct net_device *dev,
1188 struct ethtool_link_ksettings *cmd)
1189{
1190 struct net_device_context *ndc = netdev_priv(dev);
1191 struct net_device *vf_netdev;
1192
1193 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1194
1195 if (vf_netdev)
1196 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1197
1198 cmd->base.speed = ndc->speed;
1199 cmd->base.duplex = ndc->duplex;
1200 cmd->base.port = PORT_OTHER;
1201
1202 return 0;
1203}
1204
1205static int netvsc_set_link_ksettings(struct net_device *dev,
1206 const struct ethtool_link_ksettings *cmd)
1207{
1208 struct net_device_context *ndc = netdev_priv(dev);
1209 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1210
1211 if (vf_netdev) {
1212 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1213 return -EOPNOTSUPP;
1214
1215 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1216 cmd);
1217 }
1218
1219 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1220 &ndc->speed, &ndc->duplex);
1221}
1222
1223static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1224{
1225 struct net_device_context *ndevctx = netdev_priv(ndev);
1226 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1227 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1228 int orig_mtu = ndev->mtu;
1229 struct netvsc_device_info *device_info;
1230 int ret = 0;
1231
1232 if (!nvdev || nvdev->destroy)
1233 return -ENODEV;
1234
1235 device_info = netvsc_devinfo_get(nvdev);
1236
1237 if (!device_info)
1238 return -ENOMEM;
1239
1240 /* Change MTU of underlying VF netdev first. */
1241 if (vf_netdev) {
1242 ret = dev_set_mtu(vf_netdev, mtu);
1243 if (ret)
1244 goto out;
1245 }
1246
1247 ret = netvsc_detach(ndev, nvdev);
1248 if (ret)
1249 goto rollback_vf;
1250
1251 ndev->mtu = mtu;
1252
1253 ret = netvsc_attach(ndev, device_info);
1254 if (!ret)
1255 goto out;
1256
1257 /* Attempt rollback to original MTU */
1258 ndev->mtu = orig_mtu;
1259
1260 if (netvsc_attach(ndev, device_info))
1261 netdev_err(ndev, "restoring mtu failed\n");
1262rollback_vf:
1263 if (vf_netdev)
1264 dev_set_mtu(vf_netdev, orig_mtu);
1265
1266out:
1267 netvsc_devinfo_put(device_info);
1268 return ret;
1269}
1270
1271static void netvsc_get_vf_stats(struct net_device *net,
1272 struct netvsc_vf_pcpu_stats *tot)
1273{
1274 struct net_device_context *ndev_ctx = netdev_priv(net);
1275 int i;
1276
1277 memset(tot, 0, sizeof(*tot));
1278
1279 for_each_possible_cpu(i) {
1280 const struct netvsc_vf_pcpu_stats *stats
1281 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1282 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1283 unsigned int start;
1284
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 rx_packets = stats->rx_packets;
1288 tx_packets = stats->tx_packets;
1289 rx_bytes = stats->rx_bytes;
1290 tx_bytes = stats->tx_bytes;
1291 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1292
1293 tot->rx_packets += rx_packets;
1294 tot->tx_packets += tx_packets;
1295 tot->rx_bytes += rx_bytes;
1296 tot->tx_bytes += tx_bytes;
1297 tot->tx_dropped += stats->tx_dropped;
1298 }
1299}
1300
1301static void netvsc_get_pcpu_stats(struct net_device *net,
1302 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1303{
1304 struct net_device_context *ndev_ctx = netdev_priv(net);
1305 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1306 int i;
1307
1308 /* fetch percpu stats of vf */
1309 for_each_possible_cpu(i) {
1310 const struct netvsc_vf_pcpu_stats *stats =
1311 per_cpu_ptr(ndev_ctx->vf_stats, i);
1312 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1313 unsigned int start;
1314
1315 do {
1316 start = u64_stats_fetch_begin_irq(&stats->syncp);
1317 this_tot->vf_rx_packets = stats->rx_packets;
1318 this_tot->vf_tx_packets = stats->tx_packets;
1319 this_tot->vf_rx_bytes = stats->rx_bytes;
1320 this_tot->vf_tx_bytes = stats->tx_bytes;
1321 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1322 this_tot->rx_packets = this_tot->vf_rx_packets;
1323 this_tot->tx_packets = this_tot->vf_tx_packets;
1324 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1325 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1326 }
1327
1328 /* fetch percpu stats of netvsc */
1329 for (i = 0; i < nvdev->num_chn; i++) {
1330 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1331 const struct netvsc_stats *stats;
1332 struct netvsc_ethtool_pcpu_stats *this_tot =
1333 &pcpu_tot[nvchan->channel->target_cpu];
1334 u64 packets, bytes;
1335 unsigned int start;
1336
1337 stats = &nvchan->tx_stats;
1338 do {
1339 start = u64_stats_fetch_begin_irq(&stats->syncp);
1340 packets = stats->packets;
1341 bytes = stats->bytes;
1342 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1343
1344 this_tot->tx_bytes += bytes;
1345 this_tot->tx_packets += packets;
1346
1347 stats = &nvchan->rx_stats;
1348 do {
1349 start = u64_stats_fetch_begin_irq(&stats->syncp);
1350 packets = stats->packets;
1351 bytes = stats->bytes;
1352 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1353
1354 this_tot->rx_bytes += bytes;
1355 this_tot->rx_packets += packets;
1356 }
1357}
1358
1359static void netvsc_get_stats64(struct net_device *net,
1360 struct rtnl_link_stats64 *t)
1361{
1362 struct net_device_context *ndev_ctx = netdev_priv(net);
1363 struct netvsc_device *nvdev;
1364 struct netvsc_vf_pcpu_stats vf_tot;
1365 int i;
1366
1367 rcu_read_lock();
1368
1369 nvdev = rcu_dereference(ndev_ctx->nvdev);
1370 if (!nvdev)
1371 goto out;
1372
1373 netdev_stats_to_stats64(t, &net->stats);
1374
1375 netvsc_get_vf_stats(net, &vf_tot);
1376 t->rx_packets += vf_tot.rx_packets;
1377 t->tx_packets += vf_tot.tx_packets;
1378 t->rx_bytes += vf_tot.rx_bytes;
1379 t->tx_bytes += vf_tot.tx_bytes;
1380 t->tx_dropped += vf_tot.tx_dropped;
1381
1382 for (i = 0; i < nvdev->num_chn; i++) {
1383 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1384 const struct netvsc_stats *stats;
1385 u64 packets, bytes, multicast;
1386 unsigned int start;
1387
1388 stats = &nvchan->tx_stats;
1389 do {
1390 start = u64_stats_fetch_begin_irq(&stats->syncp);
1391 packets = stats->packets;
1392 bytes = stats->bytes;
1393 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1394
1395 t->tx_bytes += bytes;
1396 t->tx_packets += packets;
1397
1398 stats = &nvchan->rx_stats;
1399 do {
1400 start = u64_stats_fetch_begin_irq(&stats->syncp);
1401 packets = stats->packets;
1402 bytes = stats->bytes;
1403 multicast = stats->multicast + stats->broadcast;
1404 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1405
1406 t->rx_bytes += bytes;
1407 t->rx_packets += packets;
1408 t->multicast += multicast;
1409 }
1410out:
1411 rcu_read_unlock();
1412}
1413
1414static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1415{
1416 struct net_device_context *ndc = netdev_priv(ndev);
1417 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1418 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1419 struct sockaddr *addr = p;
1420 int err;
1421
1422 err = eth_prepare_mac_addr_change(ndev, p);
1423 if (err)
1424 return err;
1425
1426 if (!nvdev)
1427 return -ENODEV;
1428
1429 if (vf_netdev) {
1430 err = dev_set_mac_address(vf_netdev, addr, NULL);
1431 if (err)
1432 return err;
1433 }
1434
1435 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1436 if (!err) {
1437 eth_commit_mac_addr_change(ndev, p);
1438 } else if (vf_netdev) {
1439 /* rollback change on VF */
1440 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1441 dev_set_mac_address(vf_netdev, addr, NULL);
1442 }
1443
1444 return err;
1445}
1446
1447static const struct {
1448 char name[ETH_GSTRING_LEN];
1449 u16 offset;
1450} netvsc_stats[] = {
1451 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1452 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1453 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1454 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1455 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1456 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1457 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1458 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1459 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1460 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1461 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1462}, pcpu_stats[] = {
1463 { "cpu%u_rx_packets",
1464 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1465 { "cpu%u_rx_bytes",
1466 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1467 { "cpu%u_tx_packets",
1468 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1469 { "cpu%u_tx_bytes",
1470 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1471 { "cpu%u_vf_rx_packets",
1472 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1473 { "cpu%u_vf_rx_bytes",
1474 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1475 { "cpu%u_vf_tx_packets",
1476 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1477 { "cpu%u_vf_tx_bytes",
1478 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1479}, vf_stats[] = {
1480 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1481 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1482 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1483 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1484 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1485};
1486
1487#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1488#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1489
1490/* statistics per queue (rx/tx packets/bytes) */
1491#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1492
1493/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1494#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1495
1496static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1497{
1498 struct net_device_context *ndc = netdev_priv(dev);
1499 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1500
1501 if (!nvdev)
1502 return -ENODEV;
1503
1504 switch (string_set) {
1505 case ETH_SS_STATS:
1506 return NETVSC_GLOBAL_STATS_LEN
1507 + NETVSC_VF_STATS_LEN
1508 + NETVSC_QUEUE_STATS_LEN(nvdev)
1509 + NETVSC_PCPU_STATS_LEN;
1510 default:
1511 return -EINVAL;
1512 }
1513}
1514
1515static void netvsc_get_ethtool_stats(struct net_device *dev,
1516 struct ethtool_stats *stats, u64 *data)
1517{
1518 struct net_device_context *ndc = netdev_priv(dev);
1519 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1520 const void *nds = &ndc->eth_stats;
1521 const struct netvsc_stats *qstats;
1522 struct netvsc_vf_pcpu_stats sum;
1523 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1524 unsigned int start;
1525 u64 packets, bytes;
1526 u64 xdp_drop;
1527 int i, j, cpu;
1528
1529 if (!nvdev)
1530 return;
1531
1532 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1533 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1534
1535 netvsc_get_vf_stats(dev, &sum);
1536 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1537 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1538
1539 for (j = 0; j < nvdev->num_chn; j++) {
1540 qstats = &nvdev->chan_table[j].tx_stats;
1541
1542 do {
1543 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1544 packets = qstats->packets;
1545 bytes = qstats->bytes;
1546 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1547 data[i++] = packets;
1548 data[i++] = bytes;
1549
1550 qstats = &nvdev->chan_table[j].rx_stats;
1551 do {
1552 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1553 packets = qstats->packets;
1554 bytes = qstats->bytes;
1555 xdp_drop = qstats->xdp_drop;
1556 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1557 data[i++] = packets;
1558 data[i++] = bytes;
1559 data[i++] = xdp_drop;
1560 }
1561
1562 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1563 sizeof(struct netvsc_ethtool_pcpu_stats),
1564 GFP_KERNEL);
1565 netvsc_get_pcpu_stats(dev, pcpu_sum);
1566 for_each_present_cpu(cpu) {
1567 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570 data[i++] = *(u64 *)((void *)this_sum
1571 + pcpu_stats[j].offset);
1572 }
1573 kvfree(pcpu_sum);
1574}
1575
1576static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577{
1578 struct net_device_context *ndc = netdev_priv(dev);
1579 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580 u8 *p = data;
1581 int i, cpu;
1582
1583 if (!nvdev)
1584 return;
1585
1586 switch (stringset) {
1587 case ETH_SS_STATS:
1588 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1589 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1590 p += ETH_GSTRING_LEN;
1591 }
1592
1593 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1594 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1595 p += ETH_GSTRING_LEN;
1596 }
1597
1598 for (i = 0; i < nvdev->num_chn; i++) {
1599 sprintf(p, "tx_queue_%u_packets", i);
1600 p += ETH_GSTRING_LEN;
1601 sprintf(p, "tx_queue_%u_bytes", i);
1602 p += ETH_GSTRING_LEN;
1603 sprintf(p, "rx_queue_%u_packets", i);
1604 p += ETH_GSTRING_LEN;
1605 sprintf(p, "rx_queue_%u_bytes", i);
1606 p += ETH_GSTRING_LEN;
1607 sprintf(p, "rx_queue_%u_xdp_drop", i);
1608 p += ETH_GSTRING_LEN;
1609 }
1610
1611 for_each_present_cpu(cpu) {
1612 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1613 sprintf(p, pcpu_stats[i].name, cpu);
1614 p += ETH_GSTRING_LEN;
1615 }
1616 }
1617
1618 break;
1619 }
1620}
1621
1622static int
1623netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1624 struct ethtool_rxnfc *info)
1625{
1626 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1627
1628 info->data = RXH_IP_SRC | RXH_IP_DST;
1629
1630 switch (info->flow_type) {
1631 case TCP_V4_FLOW:
1632 if (ndc->l4_hash & HV_TCP4_L4HASH)
1633 info->data |= l4_flag;
1634
1635 break;
1636
1637 case TCP_V6_FLOW:
1638 if (ndc->l4_hash & HV_TCP6_L4HASH)
1639 info->data |= l4_flag;
1640
1641 break;
1642
1643 case UDP_V4_FLOW:
1644 if (ndc->l4_hash & HV_UDP4_L4HASH)
1645 info->data |= l4_flag;
1646
1647 break;
1648
1649 case UDP_V6_FLOW:
1650 if (ndc->l4_hash & HV_UDP6_L4HASH)
1651 info->data |= l4_flag;
1652
1653 break;
1654
1655 case IPV4_FLOW:
1656 case IPV6_FLOW:
1657 break;
1658 default:
1659 info->data = 0;
1660 break;
1661 }
1662
1663 return 0;
1664}
1665
1666static int
1667netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1668 u32 *rules)
1669{
1670 struct net_device_context *ndc = netdev_priv(dev);
1671 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1672
1673 if (!nvdev)
1674 return -ENODEV;
1675
1676 switch (info->cmd) {
1677 case ETHTOOL_GRXRINGS:
1678 info->data = nvdev->num_chn;
1679 return 0;
1680
1681 case ETHTOOL_GRXFH:
1682 return netvsc_get_rss_hash_opts(ndc, info);
1683 }
1684 return -EOPNOTSUPP;
1685}
1686
1687static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1688 struct ethtool_rxnfc *info)
1689{
1690 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1691 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1692 switch (info->flow_type) {
1693 case TCP_V4_FLOW:
1694 ndc->l4_hash |= HV_TCP4_L4HASH;
1695 break;
1696
1697 case TCP_V6_FLOW:
1698 ndc->l4_hash |= HV_TCP6_L4HASH;
1699 break;
1700
1701 case UDP_V4_FLOW:
1702 ndc->l4_hash |= HV_UDP4_L4HASH;
1703 break;
1704
1705 case UDP_V6_FLOW:
1706 ndc->l4_hash |= HV_UDP6_L4HASH;
1707 break;
1708
1709 default:
1710 return -EOPNOTSUPP;
1711 }
1712
1713 return 0;
1714 }
1715
1716 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1717 switch (info->flow_type) {
1718 case TCP_V4_FLOW:
1719 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1720 break;
1721
1722 case TCP_V6_FLOW:
1723 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1724 break;
1725
1726 case UDP_V4_FLOW:
1727 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1728 break;
1729
1730 case UDP_V6_FLOW:
1731 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1732 break;
1733
1734 default:
1735 return -EOPNOTSUPP;
1736 }
1737
1738 return 0;
1739 }
1740
1741 return -EOPNOTSUPP;
1742}
1743
1744static int
1745netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1746{
1747 struct net_device_context *ndc = netdev_priv(ndev);
1748
1749 if (info->cmd == ETHTOOL_SRXFH)
1750 return netvsc_set_rss_hash_opts(ndc, info);
1751
1752 return -EOPNOTSUPP;
1753}
1754
1755static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1756{
1757 return NETVSC_HASH_KEYLEN;
1758}
1759
1760static u32 netvsc_rss_indir_size(struct net_device *dev)
1761{
1762 return ITAB_NUM;
1763}
1764
1765static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1766 u8 *hfunc)
1767{
1768 struct net_device_context *ndc = netdev_priv(dev);
1769 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1770 struct rndis_device *rndis_dev;
1771 int i;
1772
1773 if (!ndev)
1774 return -ENODEV;
1775
1776 if (hfunc)
1777 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1778
1779 rndis_dev = ndev->extension;
1780 if (indir) {
1781 for (i = 0; i < ITAB_NUM; i++)
1782 indir[i] = ndc->rx_table[i];
1783 }
1784
1785 if (key)
1786 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1787
1788 return 0;
1789}
1790
1791static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1792 const u8 *key, const u8 hfunc)
1793{
1794 struct net_device_context *ndc = netdev_priv(dev);
1795 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1796 struct rndis_device *rndis_dev;
1797 int i;
1798
1799 if (!ndev)
1800 return -ENODEV;
1801
1802 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1803 return -EOPNOTSUPP;
1804
1805 rndis_dev = ndev->extension;
1806 if (indir) {
1807 for (i = 0; i < ITAB_NUM; i++)
1808 if (indir[i] >= ndev->num_chn)
1809 return -EINVAL;
1810
1811 for (i = 0; i < ITAB_NUM; i++)
1812 ndc->rx_table[i] = indir[i];
1813 }
1814
1815 if (!key) {
1816 if (!indir)
1817 return 0;
1818
1819 key = rndis_dev->rss_key;
1820 }
1821
1822 return rndis_filter_set_rss_param(rndis_dev, key);
1823}
1824
1825/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1826 * It does have pre-allocated receive area which is divided into sections.
1827 */
1828static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1829 struct ethtool_ringparam *ring)
1830{
1831 u32 max_buf_size;
1832
1833 ring->rx_pending = nvdev->recv_section_cnt;
1834 ring->tx_pending = nvdev->send_section_cnt;
1835
1836 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1837 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1838 else
1839 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1840
1841 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1842 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1843 / nvdev->send_section_size;
1844}
1845
1846static void netvsc_get_ringparam(struct net_device *ndev,
1847 struct ethtool_ringparam *ring)
1848{
1849 struct net_device_context *ndevctx = netdev_priv(ndev);
1850 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1851
1852 if (!nvdev)
1853 return;
1854
1855 __netvsc_get_ringparam(nvdev, ring);
1856}
1857
1858static int netvsc_set_ringparam(struct net_device *ndev,
1859 struct ethtool_ringparam *ring)
1860{
1861 struct net_device_context *ndevctx = netdev_priv(ndev);
1862 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863 struct netvsc_device_info *device_info;
1864 struct ethtool_ringparam orig;
1865 u32 new_tx, new_rx;
1866 int ret = 0;
1867
1868 if (!nvdev || nvdev->destroy)
1869 return -ENODEV;
1870
1871 memset(&orig, 0, sizeof(orig));
1872 __netvsc_get_ringparam(nvdev, &orig);
1873
1874 new_tx = clamp_t(u32, ring->tx_pending,
1875 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876 new_rx = clamp_t(u32, ring->rx_pending,
1877 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879 if (new_tx == orig.tx_pending &&
1880 new_rx == orig.rx_pending)
1881 return 0; /* no change */
1882
1883 device_info = netvsc_devinfo_get(nvdev);
1884
1885 if (!device_info)
1886 return -ENOMEM;
1887
1888 device_info->send_sections = new_tx;
1889 device_info->recv_sections = new_rx;
1890
1891 ret = netvsc_detach(ndev, nvdev);
1892 if (ret)
1893 goto out;
1894
1895 ret = netvsc_attach(ndev, device_info);
1896 if (ret) {
1897 device_info->send_sections = orig.tx_pending;
1898 device_info->recv_sections = orig.rx_pending;
1899
1900 if (netvsc_attach(ndev, device_info))
1901 netdev_err(ndev, "restoring ringparam failed");
1902 }
1903
1904out:
1905 netvsc_devinfo_put(device_info);
1906 return ret;
1907}
1908
1909static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910 netdev_features_t features)
1911{
1912 struct net_device_context *ndevctx = netdev_priv(ndev);
1913 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915 if (!nvdev || nvdev->destroy)
1916 return features;
1917
1918 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919 features ^= NETIF_F_LRO;
1920 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921 }
1922
1923 return features;
1924}
1925
1926static int netvsc_set_features(struct net_device *ndev,
1927 netdev_features_t features)
1928{
1929 netdev_features_t change = features ^ ndev->features;
1930 struct net_device_context *ndevctx = netdev_priv(ndev);
1931 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933 struct ndis_offload_params offloads;
1934 int ret = 0;
1935
1936 if (!nvdev || nvdev->destroy)
1937 return -ENODEV;
1938
1939 if (!(change & NETIF_F_LRO))
1940 goto syncvf;
1941
1942 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944 if (features & NETIF_F_LRO) {
1945 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 } else {
1948 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 }
1951
1952 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954 if (ret) {
1955 features ^= NETIF_F_LRO;
1956 ndev->features = features;
1957 }
1958
1959syncvf:
1960 if (!vf_netdev)
1961 return ret;
1962
1963 vf_netdev->wanted_features = features;
1964 netdev_update_features(vf_netdev);
1965
1966 return ret;
1967}
1968
1969static int netvsc_get_regs_len(struct net_device *netdev)
1970{
1971 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972}
1973
1974static void netvsc_get_regs(struct net_device *netdev,
1975 struct ethtool_regs *regs, void *p)
1976{
1977 struct net_device_context *ndc = netdev_priv(netdev);
1978 u32 *regs_buff = p;
1979
1980 /* increase the version, if buffer format is changed. */
1981 regs->version = 1;
1982
1983 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984}
1985
1986static u32 netvsc_get_msglevel(struct net_device *ndev)
1987{
1988 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990 return ndev_ctx->msg_enable;
1991}
1992
1993static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994{
1995 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997 ndev_ctx->msg_enable = val;
1998}
1999
2000static const struct ethtool_ops ethtool_ops = {
2001 .get_drvinfo = netvsc_get_drvinfo,
2002 .get_regs_len = netvsc_get_regs_len,
2003 .get_regs = netvsc_get_regs,
2004 .get_msglevel = netvsc_get_msglevel,
2005 .set_msglevel = netvsc_set_msglevel,
2006 .get_link = ethtool_op_get_link,
2007 .get_ethtool_stats = netvsc_get_ethtool_stats,
2008 .get_sset_count = netvsc_get_sset_count,
2009 .get_strings = netvsc_get_strings,
2010 .get_channels = netvsc_get_channels,
2011 .set_channels = netvsc_set_channels,
2012 .get_ts_info = ethtool_op_get_ts_info,
2013 .get_rxnfc = netvsc_get_rxnfc,
2014 .set_rxnfc = netvsc_set_rxnfc,
2015 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016 .get_rxfh_indir_size = netvsc_rss_indir_size,
2017 .get_rxfh = netvsc_get_rxfh,
2018 .set_rxfh = netvsc_set_rxfh,
2019 .get_link_ksettings = netvsc_get_link_ksettings,
2020 .set_link_ksettings = netvsc_set_link_ksettings,
2021 .get_ringparam = netvsc_get_ringparam,
2022 .set_ringparam = netvsc_set_ringparam,
2023};
2024
2025static const struct net_device_ops device_ops = {
2026 .ndo_open = netvsc_open,
2027 .ndo_stop = netvsc_close,
2028 .ndo_start_xmit = netvsc_start_xmit,
2029 .ndo_change_rx_flags = netvsc_change_rx_flags,
2030 .ndo_set_rx_mode = netvsc_set_rx_mode,
2031 .ndo_fix_features = netvsc_fix_features,
2032 .ndo_set_features = netvsc_set_features,
2033 .ndo_change_mtu = netvsc_change_mtu,
2034 .ndo_validate_addr = eth_validate_addr,
2035 .ndo_set_mac_address = netvsc_set_mac_addr,
2036 .ndo_select_queue = netvsc_select_queue,
2037 .ndo_get_stats64 = netvsc_get_stats64,
2038 .ndo_bpf = netvsc_bpf,
2039};
2040
2041/*
2042 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2043 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2044 * present send GARP packet to network peers with netif_notify_peers().
2045 */
2046static void netvsc_link_change(struct work_struct *w)
2047{
2048 struct net_device_context *ndev_ctx =
2049 container_of(w, struct net_device_context, dwork.work);
2050 struct hv_device *device_obj = ndev_ctx->device_ctx;
2051 struct net_device *net = hv_get_drvdata(device_obj);
2052 struct netvsc_device *net_device;
2053 struct rndis_device *rdev;
2054 struct netvsc_reconfig *event = NULL;
2055 bool notify = false, reschedule = false;
2056 unsigned long flags, next_reconfig, delay;
2057
2058 /* if changes are happening, comeback later */
2059 if (!rtnl_trylock()) {
2060 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2061 return;
2062 }
2063
2064 net_device = rtnl_dereference(ndev_ctx->nvdev);
2065 if (!net_device)
2066 goto out_unlock;
2067
2068 rdev = net_device->extension;
2069
2070 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2071 if (time_is_after_jiffies(next_reconfig)) {
2072 /* link_watch only sends one notification with current state
2073 * per second, avoid doing reconfig more frequently. Handle
2074 * wrap around.
2075 */
2076 delay = next_reconfig - jiffies;
2077 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2078 schedule_delayed_work(&ndev_ctx->dwork, delay);
2079 goto out_unlock;
2080 }
2081 ndev_ctx->last_reconfig = jiffies;
2082
2083 spin_lock_irqsave(&ndev_ctx->lock, flags);
2084 if (!list_empty(&ndev_ctx->reconfig_events)) {
2085 event = list_first_entry(&ndev_ctx->reconfig_events,
2086 struct netvsc_reconfig, list);
2087 list_del(&event->list);
2088 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2089 }
2090 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2091
2092 if (!event)
2093 goto out_unlock;
2094
2095 switch (event->event) {
2096 /* Only the following events are possible due to the check in
2097 * netvsc_linkstatus_callback()
2098 */
2099 case RNDIS_STATUS_MEDIA_CONNECT:
2100 if (rdev->link_state) {
2101 rdev->link_state = false;
2102 netif_carrier_on(net);
2103 netvsc_tx_enable(net_device, net);
2104 } else {
2105 notify = true;
2106 }
2107 kfree(event);
2108 break;
2109 case RNDIS_STATUS_MEDIA_DISCONNECT:
2110 if (!rdev->link_state) {
2111 rdev->link_state = true;
2112 netif_carrier_off(net);
2113 netvsc_tx_disable(net_device, net);
2114 }
2115 kfree(event);
2116 break;
2117 case RNDIS_STATUS_NETWORK_CHANGE:
2118 /* Only makes sense if carrier is present */
2119 if (!rdev->link_state) {
2120 rdev->link_state = true;
2121 netif_carrier_off(net);
2122 netvsc_tx_disable(net_device, net);
2123 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2124 spin_lock_irqsave(&ndev_ctx->lock, flags);
2125 list_add(&event->list, &ndev_ctx->reconfig_events);
2126 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2127 reschedule = true;
2128 }
2129 break;
2130 }
2131
2132 rtnl_unlock();
2133
2134 if (notify)
2135 netdev_notify_peers(net);
2136
2137 /* link_watch only sends one notification with current state per
2138 * second, handle next reconfig event in 2 seconds.
2139 */
2140 if (reschedule)
2141 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2142
2143 return;
2144
2145out_unlock:
2146 rtnl_unlock();
2147}
2148
2149static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2150{
2151 struct net_device_context *net_device_ctx;
2152 struct net_device *dev;
2153
2154 dev = netdev_master_upper_dev_get(vf_netdev);
2155 if (!dev || dev->netdev_ops != &device_ops)
2156 return NULL; /* not a netvsc device */
2157
2158 net_device_ctx = netdev_priv(dev);
2159 if (!rtnl_dereference(net_device_ctx->nvdev))
2160 return NULL; /* device is removed */
2161
2162 return dev;
2163}
2164
2165/* Called when VF is injecting data into network stack.
2166 * Change the associated network device from VF to netvsc.
2167 * note: already called with rcu_read_lock
2168 */
2169static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2170{
2171 struct sk_buff *skb = *pskb;
2172 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2173 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2174 struct netvsc_vf_pcpu_stats *pcpu_stats
2175 = this_cpu_ptr(ndev_ctx->vf_stats);
2176
2177 skb = skb_share_check(skb, GFP_ATOMIC);
2178 if (unlikely(!skb))
2179 return RX_HANDLER_CONSUMED;
2180
2181 *pskb = skb;
2182
2183 skb->dev = ndev;
2184
2185 u64_stats_update_begin(&pcpu_stats->syncp);
2186 pcpu_stats->rx_packets++;
2187 pcpu_stats->rx_bytes += skb->len;
2188 u64_stats_update_end(&pcpu_stats->syncp);
2189
2190 return RX_HANDLER_ANOTHER;
2191}
2192
2193static int netvsc_vf_join(struct net_device *vf_netdev,
2194 struct net_device *ndev)
2195{
2196 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2197 int ret;
2198
2199 ret = netdev_rx_handler_register(vf_netdev,
2200 netvsc_vf_handle_frame, ndev);
2201 if (ret != 0) {
2202 netdev_err(vf_netdev,
2203 "can not register netvsc VF receive handler (err = %d)\n",
2204 ret);
2205 goto rx_handler_failed;
2206 }
2207
2208 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2209 NULL, NULL, NULL);
2210 if (ret != 0) {
2211 netdev_err(vf_netdev,
2212 "can not set master device %s (err = %d)\n",
2213 ndev->name, ret);
2214 goto upper_link_failed;
2215 }
2216
2217 /* set slave flag before open to prevent IPv6 addrconf */
2218 vf_netdev->flags |= IFF_SLAVE;
2219
2220 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225 return 0;
2226
2227upper_link_failed:
2228 netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230 return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234 struct net_device *vf_netdev)
2235{
2236 int ret;
2237
2238 /* Align MTU of VF with master */
2239 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240 if (ret)
2241 netdev_warn(vf_netdev,
2242 "unable to change mtu to %u\n", ndev->mtu);
2243
2244 /* set multicast etc flags on VF */
2245 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247 /* sync address list from ndev to VF */
2248 netif_addr_lock_bh(ndev);
2249 dev_uc_sync(vf_netdev, ndev);
2250 dev_mc_sync(vf_netdev, ndev);
2251 netif_addr_unlock_bh(ndev);
2252
2253 if (netif_running(ndev)) {
2254 ret = dev_open(vf_netdev, NULL);
2255 if (ret)
2256 netdev_warn(vf_netdev,
2257 "unable to open: %d\n", ret);
2258 }
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266 struct net_device_context *ndev_ctx
2267 = container_of(w, struct net_device_context, vf_takeover.work);
2268 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269 struct net_device *vf_netdev;
2270
2271 if (!rtnl_trylock()) {
2272 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273 return;
2274 }
2275
2276 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277 if (vf_netdev)
2278 __netvsc_vf_setup(ndev, vf_netdev);
2279
2280 rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288 struct device *parent = vf_netdev->dev.parent;
2289 struct net_device_context *ndev_ctx;
2290 struct pci_dev *pdev;
2291 u32 serial;
2292
2293 if (!parent || !dev_is_pci(parent))
2294 return NULL; /* not a PCI device */
2295
2296 pdev = to_pci_dev(parent);
2297 if (!pdev->slot) {
2298 netdev_notice(vf_netdev, "no PCI slot information\n");
2299 return NULL;
2300 }
2301
2302 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304 pci_slot_name(pdev->slot));
2305 return NULL;
2306 }
2307
2308 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309 if (!ndev_ctx->vf_alloc)
2310 continue;
2311
2312 if (ndev_ctx->vf_serial == serial)
2313 return hv_get_drvdata(ndev_ctx->device_ctx);
2314 }
2315
2316 netdev_notice(vf_netdev,
2317 "no netdev found for vf serial:%u\n", serial);
2318 return NULL;
2319}
2320
2321static int netvsc_register_vf(struct net_device *vf_netdev)
2322{
2323 struct net_device_context *net_device_ctx;
2324 struct netvsc_device *netvsc_dev;
2325 struct bpf_prog *prog;
2326 struct net_device *ndev;
2327 int ret;
2328
2329 if (vf_netdev->addr_len != ETH_ALEN)
2330 return NOTIFY_DONE;
2331
2332 ndev = get_netvsc_byslot(vf_netdev);
2333 if (!ndev)
2334 return NOTIFY_DONE;
2335
2336 net_device_ctx = netdev_priv(ndev);
2337 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2339 return NOTIFY_DONE;
2340
2341 /* if synthetic interface is a different namespace,
2342 * then move the VF to that namespace; join will be
2343 * done again in that context.
2344 */
2345 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2346 ret = dev_change_net_namespace(vf_netdev,
2347 dev_net(ndev), "eth%d");
2348 if (ret)
2349 netdev_err(vf_netdev,
2350 "could not move to same namespace as %s: %d\n",
2351 ndev->name, ret);
2352 else
2353 netdev_info(vf_netdev,
2354 "VF moved to namespace with: %s\n",
2355 ndev->name);
2356 return NOTIFY_DONE;
2357 }
2358
2359 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2360
2361 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2362 return NOTIFY_DONE;
2363
2364 dev_hold(vf_netdev);
2365 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2366
2367 vf_netdev->wanted_features = ndev->features;
2368 netdev_update_features(vf_netdev);
2369
2370 prog = netvsc_xdp_get(netvsc_dev);
2371 netvsc_vf_setxdp(vf_netdev, prog);
2372
2373 return NOTIFY_OK;
2374}
2375
2376/* Change the data path when VF UP/DOWN/CHANGE are detected.
2377 *
2378 * Typically a UP or DOWN event is followed by a CHANGE event, so
2379 * net_device_ctx->data_path_is_vf is used to cache the current data path
2380 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2381 * message.
2382 *
2383 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2384 * interface, there is only the CHANGE event and no UP or DOWN event.
2385 */
2386static int netvsc_vf_changed(struct net_device *vf_netdev)
2387{
2388 struct net_device_context *net_device_ctx;
2389 struct netvsc_device *netvsc_dev;
2390 struct net_device *ndev;
2391 bool vf_is_up = netif_running(vf_netdev);
2392
2393 ndev = get_netvsc_byref(vf_netdev);
2394 if (!ndev)
2395 return NOTIFY_DONE;
2396
2397 net_device_ctx = netdev_priv(ndev);
2398 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2399 if (!netvsc_dev)
2400 return NOTIFY_DONE;
2401
2402 if (net_device_ctx->data_path_is_vf == vf_is_up)
2403 return NOTIFY_OK;
2404 net_device_ctx->data_path_is_vf = vf_is_up;
2405
2406 netvsc_switch_datapath(ndev, vf_is_up);
2407 netdev_info(ndev, "Data path switched %s VF: %s\n",
2408 vf_is_up ? "to" : "from", vf_netdev->name);
2409
2410 return NOTIFY_OK;
2411}
2412
2413static int netvsc_unregister_vf(struct net_device *vf_netdev)
2414{
2415 struct net_device *ndev;
2416 struct net_device_context *net_device_ctx;
2417
2418 ndev = get_netvsc_byref(vf_netdev);
2419 if (!ndev)
2420 return NOTIFY_DONE;
2421
2422 net_device_ctx = netdev_priv(ndev);
2423 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2424
2425 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2426
2427 netvsc_vf_setxdp(vf_netdev, NULL);
2428
2429 netdev_rx_handler_unregister(vf_netdev);
2430 netdev_upper_dev_unlink(vf_netdev, ndev);
2431 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2432 dev_put(vf_netdev);
2433
2434 return NOTIFY_OK;
2435}
2436
2437static int netvsc_probe(struct hv_device *dev,
2438 const struct hv_vmbus_device_id *dev_id)
2439{
2440 struct net_device *net = NULL;
2441 struct net_device_context *net_device_ctx;
2442 struct netvsc_device_info *device_info = NULL;
2443 struct netvsc_device *nvdev;
2444 int ret = -ENOMEM;
2445
2446 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2447 VRSS_CHANNEL_MAX);
2448 if (!net)
2449 goto no_net;
2450
2451 netif_carrier_off(net);
2452
2453 netvsc_init_settings(net);
2454
2455 net_device_ctx = netdev_priv(net);
2456 net_device_ctx->device_ctx = dev;
2457 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2458 if (netif_msg_probe(net_device_ctx))
2459 netdev_dbg(net, "netvsc msg_enable: %d\n",
2460 net_device_ctx->msg_enable);
2461
2462 hv_set_drvdata(dev, net);
2463
2464 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2465
2466 spin_lock_init(&net_device_ctx->lock);
2467 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2468 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2469
2470 net_device_ctx->vf_stats
2471 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2472 if (!net_device_ctx->vf_stats)
2473 goto no_stats;
2474
2475 net->netdev_ops = &device_ops;
2476 net->ethtool_ops = ðtool_ops;
2477 SET_NETDEV_DEV(net, &dev->device);
2478
2479 /* We always need headroom for rndis header */
2480 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2481
2482 /* Initialize the number of queues to be 1, we may change it if more
2483 * channels are offered later.
2484 */
2485 netif_set_real_num_tx_queues(net, 1);
2486 netif_set_real_num_rx_queues(net, 1);
2487
2488 /* Notify the netvsc driver of the new device */
2489 device_info = netvsc_devinfo_get(NULL);
2490
2491 if (!device_info) {
2492 ret = -ENOMEM;
2493 goto devinfo_failed;
2494 }
2495
2496 nvdev = rndis_filter_device_add(dev, device_info);
2497 if (IS_ERR(nvdev)) {
2498 ret = PTR_ERR(nvdev);
2499 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2500 goto rndis_failed;
2501 }
2502
2503 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2504
2505 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2506 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2507 * all subchannels to show up, but that may not happen because
2508 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2509 * -> ... -> device_add() -> ... -> __device_attach() can't get
2510 * the device lock, so all the subchannels can't be processed --
2511 * finally netvsc_subchan_work() hangs forever.
2512 */
2513 rtnl_lock();
2514
2515 if (nvdev->num_chn > 1)
2516 schedule_work(&nvdev->subchan_work);
2517
2518 /* hw_features computed in rndis_netdev_set_hwcaps() */
2519 net->features = net->hw_features |
2520 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_HW_VLAN_CTAG_RX;
2522 net->vlan_features = net->features;
2523
2524 netdev_lockdep_set_classes(net);
2525
2526 /* MTU range: 68 - 1500 or 65521 */
2527 net->min_mtu = NETVSC_MTU_MIN;
2528 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2529 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2530 else
2531 net->max_mtu = ETH_DATA_LEN;
2532
2533 nvdev->tx_disable = false;
2534
2535 ret = register_netdevice(net);
2536 if (ret != 0) {
2537 pr_err("Unable to register netdev.\n");
2538 goto register_failed;
2539 }
2540
2541 list_add(&net_device_ctx->list, &netvsc_dev_list);
2542 rtnl_unlock();
2543
2544 netvsc_devinfo_put(device_info);
2545 return 0;
2546
2547register_failed:
2548 rtnl_unlock();
2549 rndis_filter_device_remove(dev, nvdev);
2550rndis_failed:
2551 netvsc_devinfo_put(device_info);
2552devinfo_failed:
2553 free_percpu(net_device_ctx->vf_stats);
2554no_stats:
2555 hv_set_drvdata(dev, NULL);
2556 free_netdev(net);
2557no_net:
2558 return ret;
2559}
2560
2561static int netvsc_remove(struct hv_device *dev)
2562{
2563 struct net_device_context *ndev_ctx;
2564 struct net_device *vf_netdev, *net;
2565 struct netvsc_device *nvdev;
2566
2567 net = hv_get_drvdata(dev);
2568 if (net == NULL) {
2569 dev_err(&dev->device, "No net device to remove\n");
2570 return 0;
2571 }
2572
2573 ndev_ctx = netdev_priv(net);
2574
2575 cancel_delayed_work_sync(&ndev_ctx->dwork);
2576
2577 rtnl_lock();
2578 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2579 if (nvdev) {
2580 cancel_work_sync(&nvdev->subchan_work);
2581 netvsc_xdp_set(net, NULL, NULL, nvdev);
2582 }
2583
2584 /*
2585 * Call to the vsc driver to let it know that the device is being
2586 * removed. Also blocks mtu and channel changes.
2587 */
2588 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2589 if (vf_netdev)
2590 netvsc_unregister_vf(vf_netdev);
2591
2592 if (nvdev)
2593 rndis_filter_device_remove(dev, nvdev);
2594
2595 unregister_netdevice(net);
2596 list_del(&ndev_ctx->list);
2597
2598 rtnl_unlock();
2599
2600 hv_set_drvdata(dev, NULL);
2601
2602 free_percpu(ndev_ctx->vf_stats);
2603 free_netdev(net);
2604 return 0;
2605}
2606
2607static int netvsc_suspend(struct hv_device *dev)
2608{
2609 struct net_device_context *ndev_ctx;
2610 struct netvsc_device *nvdev;
2611 struct net_device *net;
2612 int ret;
2613
2614 net = hv_get_drvdata(dev);
2615
2616 ndev_ctx = netdev_priv(net);
2617 cancel_delayed_work_sync(&ndev_ctx->dwork);
2618
2619 rtnl_lock();
2620
2621 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2622 if (nvdev == NULL) {
2623 ret = -ENODEV;
2624 goto out;
2625 }
2626
2627 /* Save the current config info */
2628 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2629
2630 ret = netvsc_detach(net, nvdev);
2631out:
2632 rtnl_unlock();
2633
2634 return ret;
2635}
2636
2637static int netvsc_resume(struct hv_device *dev)
2638{
2639 struct net_device *net = hv_get_drvdata(dev);
2640 struct net_device_context *net_device_ctx;
2641 struct netvsc_device_info *device_info;
2642 int ret;
2643
2644 rtnl_lock();
2645
2646 net_device_ctx = netdev_priv(net);
2647
2648 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2649 * channel. Later netvsc_netdev_event() will switch the data path to
2650 * the VF upon the UP or CHANGE event.
2651 */
2652 net_device_ctx->data_path_is_vf = false;
2653 device_info = net_device_ctx->saved_netvsc_dev_info;
2654
2655 ret = netvsc_attach(net, device_info);
2656
2657 netvsc_devinfo_put(device_info);
2658 net_device_ctx->saved_netvsc_dev_info = NULL;
2659
2660 rtnl_unlock();
2661
2662 return ret;
2663}
2664static const struct hv_vmbus_device_id id_table[] = {
2665 /* Network guid */
2666 { HV_NIC_GUID, },
2667 { },
2668};
2669
2670MODULE_DEVICE_TABLE(vmbus, id_table);
2671
2672/* The one and only one */
2673static struct hv_driver netvsc_drv = {
2674 .name = KBUILD_MODNAME,
2675 .id_table = id_table,
2676 .probe = netvsc_probe,
2677 .remove = netvsc_remove,
2678 .suspend = netvsc_suspend,
2679 .resume = netvsc_resume,
2680 .driver = {
2681 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2682 },
2683};
2684
2685/*
2686 * On Hyper-V, every VF interface is matched with a corresponding
2687 * synthetic interface. The synthetic interface is presented first
2688 * to the guest. When the corresponding VF instance is registered,
2689 * we will take care of switching the data path.
2690 */
2691static int netvsc_netdev_event(struct notifier_block *this,
2692 unsigned long event, void *ptr)
2693{
2694 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2695
2696 /* Skip our own events */
2697 if (event_dev->netdev_ops == &device_ops)
2698 return NOTIFY_DONE;
2699
2700 /* Avoid non-Ethernet type devices */
2701 if (event_dev->type != ARPHRD_ETHER)
2702 return NOTIFY_DONE;
2703
2704 /* Avoid Vlan dev with same MAC registering as VF */
2705 if (is_vlan_dev(event_dev))
2706 return NOTIFY_DONE;
2707
2708 /* Avoid Bonding master dev with same MAC registering as VF */
2709 if ((event_dev->priv_flags & IFF_BONDING) &&
2710 (event_dev->flags & IFF_MASTER))
2711 return NOTIFY_DONE;
2712
2713 switch (event) {
2714 case NETDEV_REGISTER:
2715 return netvsc_register_vf(event_dev);
2716 case NETDEV_UNREGISTER:
2717 return netvsc_unregister_vf(event_dev);
2718 case NETDEV_UP:
2719 case NETDEV_DOWN:
2720 case NETDEV_CHANGE:
2721 return netvsc_vf_changed(event_dev);
2722 default:
2723 return NOTIFY_DONE;
2724 }
2725}
2726
2727static struct notifier_block netvsc_netdev_notifier = {
2728 .notifier_call = netvsc_netdev_event,
2729};
2730
2731static void __exit netvsc_drv_exit(void)
2732{
2733 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2734 vmbus_driver_unregister(&netvsc_drv);
2735}
2736
2737static int __init netvsc_drv_init(void)
2738{
2739 int ret;
2740
2741 if (ring_size < RING_SIZE_MIN) {
2742 ring_size = RING_SIZE_MIN;
2743 pr_info("Increased ring_size to %u (min allowed)\n",
2744 ring_size);
2745 }
2746 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2747
2748 ret = vmbus_driver_register(&netvsc_drv);
2749 if (ret)
2750 return ret;
2751
2752 register_netdevice_notifier(&netvsc_netdev_notifier);
2753 return 0;
2754}
2755
2756MODULE_LICENSE("GPL");
2757MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2758
2759module_init(netvsc_drv_init);
2760module_exit(netvsc_drv_exit);