Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28
29#include <net/arp.h>
30#include <net/route.h>
31#include <net/sock.h>
32#include <net/pkt_sched.h>
33#include <net/checksum.h>
34#include <net/ip6_checksum.h>
35
36#include "hyperv_net.h"
37
38#define RING_SIZE_MIN 64
39#define RETRY_US_LO 5000
40#define RETRY_US_HI 10000
41#define RETRY_MAX 2000 /* >10 sec */
42
43#define LINKCHANGE_INT (2 * HZ)
44#define VF_TAKEOVER_INT (HZ / 10)
45
46static unsigned int ring_size __ro_after_init = 128;
47module_param(ring_size, uint, 0444);
48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49unsigned int netvsc_ring_bytes __ro_after_init;
50
51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
55
56static int debug = -1;
57module_param(debug, int, 0444);
58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60static LIST_HEAD(netvsc_dev_list);
61
62static void netvsc_change_rx_flags(struct net_device *net, int change)
63{
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
67
68 if (!vf_netdev)
69 return;
70
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
74 }
75
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
79 }
80}
81
82static void netvsc_set_rx_mode(struct net_device *net)
83{
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
87
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
93 }
94
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
99}
100
101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
103{
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
106
107 netif_tx_wake_all_queues(ndev);
108}
109
110static int netvsc_open(struct net_device *net)
111{
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
117
118 netif_carrier_off(net);
119
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
125 }
126
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
131 }
132
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
137 */
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
143 }
144 return 0;
145}
146
147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148{
149 unsigned int retry = 0;
150 int i;
151
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
155
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
159
160 if (!chn)
161 continue;
162
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
165
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
169
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
173 }
174
175 if (aread == 0)
176 return 0;
177
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
180
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
182 }
183}
184
185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
187{
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
191 }
192
193 netif_tx_disable(ndev);
194}
195
196static int netvsc_close(struct net_device *net)
197{
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
203
204 netvsc_tx_disable(nvdev, net);
205
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
209
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
214 }
215
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220 if (vf_netdev)
221 dev_close(vf_netdev);
222
223 return ret;
224}
225
226static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
228{
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
231
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
235
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241 rndis_pkt->per_pkt_info_len += ppi_size;
242
243 return ppi + 1;
244}
245
246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
248 */
249static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
252{
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
256
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
261
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
268
269 break;
270
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
276
277 break;
278 }
279
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
289
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 }
292
293 return hash;
294}
295
296static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
298{
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
302
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
305
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
310
311 return q_idx;
312}
313
314/*
315 * Select queue for transmit.
316 *
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
319 *
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
322 *
323 * TODO support XPS - but get_xps_queue not exported
324 */
325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326{
327 int q_idx = sk_tx_queue_get(skb->sk);
328
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
332 */
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 }
338
339 return q_idx;
340}
341
342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
344{
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
348
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
362 */
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
366 }
367 rcu_read_unlock();
368
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
371
372 return txq;
373}
374
375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
377{
378 int j = 0;
379
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
382 */
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
385
386 while (len > 0) {
387 unsigned long bytes;
388
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
395
396 offset += bytes;
397 len -= bytes;
398
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
403 }
404 }
405
406 return j + 1;
407}
408
409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
412{
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
417
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
422 */
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
426
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
429
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 skb_frag_off(frag),
439 skb_frag_size(frag), &pb[slots_used]);
440 }
441 return slots_used;
442}
443
444static int count_skb_frag_slots(struct sk_buff *skb)
445{
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
448
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = skb_frag_off(frag);
453
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
457 }
458 return pages;
459}
460
461static int netvsc_get_slots(struct sk_buff *skb)
462{
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
468
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
472}
473
474static u32 net_checksum_info(struct sk_buff *skb)
475{
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
478
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
490 }
491
492 return TRANSPORT_INFO_NOT_IP;
493}
494
495/* Send skb on the slave VF device. */
496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
498{
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
502
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
510
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 }
518
519 return rc;
520}
521
522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523{
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
546 */
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
552
553 if (skb_linearize(skb))
554 goto no_memory;
555
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
560 }
561 }
562
563 /*
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
567 */
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
571
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
576
577 packet->q_idx = skb_get_queue_mapping(skb);
578
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
582
583 rndis_msg = (struct rndis_message *)skb->head;
584
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
588
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
593 };
594
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
600
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
605 }
606
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
609
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
613
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
618 }
619
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
622
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
626
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
660
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
667
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
672 }
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
677 }
678 }
679
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
685
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
688
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
692
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
696 }
697
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
700
701drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
704
705 return NETDEV_TX_OK;
706
707no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
710}
711
712/*
713 * netvsc_linkstatus_callback - Link up/down notification
714 */
715void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
717{
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
722
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
726
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
731 }
732
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
738
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
741
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
746
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
752}
753
754static void netvsc_comp_ipcsum(struct sk_buff *skb)
755{
756 struct iphdr *iph = (struct iphdr *)skb->data;
757
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
760}
761
762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
764{
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
771
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
775
776 /*
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
779 */
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783 skb->protocol = eth_type_trans(skb, net);
784
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
787
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
792 */
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
797
798 /* Do L4 checksum offload if enabled and present.
799 */
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
804 }
805
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
812 }
813
814 return skb;
815}
816
817/*
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
820 */
821int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
824{
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
830
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
833
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
836
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 return NVSP_STAT_FAIL;
840 }
841
842 skb_record_rx_queue(skb, q_idx);
843
844 /*
845 * Even if injecting the packet, record the statistics
846 * on the synthetic device because modifying the VF device
847 * statistics will not work correctly.
848 */
849 rx_stats = &nvchan->rx_stats;
850 u64_stats_update_begin(&rx_stats->syncp);
851 rx_stats->packets++;
852 rx_stats->bytes += nvchan->rsc.pktlen;
853
854 if (skb->pkt_type == PACKET_BROADCAST)
855 ++rx_stats->broadcast;
856 else if (skb->pkt_type == PACKET_MULTICAST)
857 ++rx_stats->multicast;
858 u64_stats_update_end(&rx_stats->syncp);
859
860 napi_gro_receive(&nvchan->napi, skb);
861 return NVSP_STAT_SUCCESS;
862}
863
864static void netvsc_get_drvinfo(struct net_device *net,
865 struct ethtool_drvinfo *info)
866{
867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869}
870
871static void netvsc_get_channels(struct net_device *net,
872 struct ethtool_channels *channel)
873{
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876
877 if (nvdev) {
878 channel->max_combined = nvdev->max_chn;
879 channel->combined_count = nvdev->num_chn;
880 }
881}
882
883/* Alloc struct netvsc_device_info, and initialize it from either existing
884 * struct netvsc_device, or from default values.
885 */
886static struct netvsc_device_info *netvsc_devinfo_get
887 (struct netvsc_device *nvdev)
888{
889 struct netvsc_device_info *dev_info;
890
891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892
893 if (!dev_info)
894 return NULL;
895
896 if (nvdev) {
897 dev_info->num_chn = nvdev->num_chn;
898 dev_info->send_sections = nvdev->send_section_cnt;
899 dev_info->send_section_size = nvdev->send_section_size;
900 dev_info->recv_sections = nvdev->recv_section_cnt;
901 dev_info->recv_section_size = nvdev->recv_section_size;
902
903 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 NETVSC_HASH_KEYLEN);
905 } else {
906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 dev_info->send_sections = NETVSC_DEFAULT_TX;
908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 }
912
913 return dev_info;
914}
915
916static int netvsc_detach(struct net_device *ndev,
917 struct netvsc_device *nvdev)
918{
919 struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 struct hv_device *hdev = ndev_ctx->device_ctx;
921 int ret;
922
923 /* Don't try continuing to try and setup sub channels */
924 if (cancel_work_sync(&nvdev->subchan_work))
925 nvdev->num_chn = 1;
926
927 /* If device was up (receiving) then shutdown */
928 if (netif_running(ndev)) {
929 netvsc_tx_disable(nvdev, ndev);
930
931 ret = rndis_filter_close(nvdev);
932 if (ret) {
933 netdev_err(ndev,
934 "unable to close device (ret %d).\n", ret);
935 return ret;
936 }
937
938 ret = netvsc_wait_until_empty(nvdev);
939 if (ret) {
940 netdev_err(ndev,
941 "Ring buffer not empty after closing rndis\n");
942 return ret;
943 }
944 }
945
946 netif_device_detach(ndev);
947
948 rndis_filter_device_remove(hdev, nvdev);
949
950 return 0;
951}
952
953static int netvsc_attach(struct net_device *ndev,
954 struct netvsc_device_info *dev_info)
955{
956 struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 struct hv_device *hdev = ndev_ctx->device_ctx;
958 struct netvsc_device *nvdev;
959 struct rndis_device *rdev;
960 int ret;
961
962 nvdev = rndis_filter_device_add(hdev, dev_info);
963 if (IS_ERR(nvdev))
964 return PTR_ERR(nvdev);
965
966 if (nvdev->num_chn > 1) {
967 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968
969 /* if unavailable, just proceed with one queue */
970 if (ret) {
971 nvdev->max_chn = 1;
972 nvdev->num_chn = 1;
973 }
974 }
975
976 /* In any case device is now ready */
977 netif_device_attach(ndev);
978
979 /* Note: enable and attach happen when sub-channels setup */
980 netif_carrier_off(ndev);
981
982 if (netif_running(ndev)) {
983 ret = rndis_filter_open(nvdev);
984 if (ret)
985 goto err;
986
987 rdev = nvdev->extension;
988 if (!rdev->link_state)
989 netif_carrier_on(ndev);
990 }
991
992 return 0;
993
994err:
995 netif_device_detach(ndev);
996
997 rndis_filter_device_remove(hdev, nvdev);
998
999 return ret;
1000}
1001
1002static int netvsc_set_channels(struct net_device *net,
1003 struct ethtool_channels *channels)
1004{
1005 struct net_device_context *net_device_ctx = netdev_priv(net);
1006 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007 unsigned int orig, count = channels->combined_count;
1008 struct netvsc_device_info *device_info;
1009 int ret;
1010
1011 /* We do not support separate count for rx, tx, or other */
1012 if (count == 0 ||
1013 channels->rx_count || channels->tx_count || channels->other_count)
1014 return -EINVAL;
1015
1016 if (!nvdev || nvdev->destroy)
1017 return -ENODEV;
1018
1019 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020 return -EINVAL;
1021
1022 if (count > nvdev->max_chn)
1023 return -EINVAL;
1024
1025 orig = nvdev->num_chn;
1026
1027 device_info = netvsc_devinfo_get(nvdev);
1028
1029 if (!device_info)
1030 return -ENOMEM;
1031
1032 device_info->num_chn = count;
1033
1034 ret = netvsc_detach(net, nvdev);
1035 if (ret)
1036 goto out;
1037
1038 ret = netvsc_attach(net, device_info);
1039 if (ret) {
1040 device_info->num_chn = orig;
1041 if (netvsc_attach(net, device_info))
1042 netdev_err(net, "restoring channel setting failed\n");
1043 }
1044
1045out:
1046 kfree(device_info);
1047 return ret;
1048}
1049
1050static bool
1051netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052{
1053 struct ethtool_link_ksettings diff1 = *cmd;
1054 struct ethtool_link_ksettings diff2 = {};
1055
1056 diff1.base.speed = 0;
1057 diff1.base.duplex = 0;
1058 /* advertising and cmd are usually set */
1059 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060 diff1.base.cmd = 0;
1061 /* We set port to PORT_OTHER */
1062 diff2.base.port = PORT_OTHER;
1063
1064 return !memcmp(&diff1, &diff2, sizeof(diff1));
1065}
1066
1067static void netvsc_init_settings(struct net_device *dev)
1068{
1069 struct net_device_context *ndc = netdev_priv(dev);
1070
1071 ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073 ndc->speed = SPEED_UNKNOWN;
1074 ndc->duplex = DUPLEX_FULL;
1075
1076 dev->features = NETIF_F_LRO;
1077}
1078
1079static int netvsc_get_link_ksettings(struct net_device *dev,
1080 struct ethtool_link_ksettings *cmd)
1081{
1082 struct net_device_context *ndc = netdev_priv(dev);
1083
1084 cmd->base.speed = ndc->speed;
1085 cmd->base.duplex = ndc->duplex;
1086 cmd->base.port = PORT_OTHER;
1087
1088 return 0;
1089}
1090
1091static int netvsc_set_link_ksettings(struct net_device *dev,
1092 const struct ethtool_link_ksettings *cmd)
1093{
1094 struct net_device_context *ndc = netdev_priv(dev);
1095 u32 speed;
1096
1097 speed = cmd->base.speed;
1098 if (!ethtool_validate_speed(speed) ||
1099 !ethtool_validate_duplex(cmd->base.duplex) ||
1100 !netvsc_validate_ethtool_ss_cmd(cmd))
1101 return -EINVAL;
1102
1103 ndc->speed = speed;
1104 ndc->duplex = cmd->base.duplex;
1105
1106 return 0;
1107}
1108
1109static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110{
1111 struct net_device_context *ndevctx = netdev_priv(ndev);
1112 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114 int orig_mtu = ndev->mtu;
1115 struct netvsc_device_info *device_info;
1116 int ret = 0;
1117
1118 if (!nvdev || nvdev->destroy)
1119 return -ENODEV;
1120
1121 device_info = netvsc_devinfo_get(nvdev);
1122
1123 if (!device_info)
1124 return -ENOMEM;
1125
1126 /* Change MTU of underlying VF netdev first. */
1127 if (vf_netdev) {
1128 ret = dev_set_mtu(vf_netdev, mtu);
1129 if (ret)
1130 goto out;
1131 }
1132
1133 ret = netvsc_detach(ndev, nvdev);
1134 if (ret)
1135 goto rollback_vf;
1136
1137 ndev->mtu = mtu;
1138
1139 ret = netvsc_attach(ndev, device_info);
1140 if (!ret)
1141 goto out;
1142
1143 /* Attempt rollback to original MTU */
1144 ndev->mtu = orig_mtu;
1145
1146 if (netvsc_attach(ndev, device_info))
1147 netdev_err(ndev, "restoring mtu failed\n");
1148rollback_vf:
1149 if (vf_netdev)
1150 dev_set_mtu(vf_netdev, orig_mtu);
1151
1152out:
1153 kfree(device_info);
1154 return ret;
1155}
1156
1157static void netvsc_get_vf_stats(struct net_device *net,
1158 struct netvsc_vf_pcpu_stats *tot)
1159{
1160 struct net_device_context *ndev_ctx = netdev_priv(net);
1161 int i;
1162
1163 memset(tot, 0, sizeof(*tot));
1164
1165 for_each_possible_cpu(i) {
1166 const struct netvsc_vf_pcpu_stats *stats
1167 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1168 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169 unsigned int start;
1170
1171 do {
1172 start = u64_stats_fetch_begin_irq(&stats->syncp);
1173 rx_packets = stats->rx_packets;
1174 tx_packets = stats->tx_packets;
1175 rx_bytes = stats->rx_bytes;
1176 tx_bytes = stats->tx_bytes;
1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179 tot->rx_packets += rx_packets;
1180 tot->tx_packets += tx_packets;
1181 tot->rx_bytes += rx_bytes;
1182 tot->tx_bytes += tx_bytes;
1183 tot->tx_dropped += stats->tx_dropped;
1184 }
1185}
1186
1187static void netvsc_get_pcpu_stats(struct net_device *net,
1188 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189{
1190 struct net_device_context *ndev_ctx = netdev_priv(net);
1191 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192 int i;
1193
1194 /* fetch percpu stats of vf */
1195 for_each_possible_cpu(i) {
1196 const struct netvsc_vf_pcpu_stats *stats =
1197 per_cpu_ptr(ndev_ctx->vf_stats, i);
1198 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199 unsigned int start;
1200
1201 do {
1202 start = u64_stats_fetch_begin_irq(&stats->syncp);
1203 this_tot->vf_rx_packets = stats->rx_packets;
1204 this_tot->vf_tx_packets = stats->tx_packets;
1205 this_tot->vf_rx_bytes = stats->rx_bytes;
1206 this_tot->vf_tx_bytes = stats->tx_bytes;
1207 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208 this_tot->rx_packets = this_tot->vf_rx_packets;
1209 this_tot->tx_packets = this_tot->vf_tx_packets;
1210 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1211 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1212 }
1213
1214 /* fetch percpu stats of netvsc */
1215 for (i = 0; i < nvdev->num_chn; i++) {
1216 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217 const struct netvsc_stats *stats;
1218 struct netvsc_ethtool_pcpu_stats *this_tot =
1219 &pcpu_tot[nvchan->channel->target_cpu];
1220 u64 packets, bytes;
1221 unsigned int start;
1222
1223 stats = &nvchan->tx_stats;
1224 do {
1225 start = u64_stats_fetch_begin_irq(&stats->syncp);
1226 packets = stats->packets;
1227 bytes = stats->bytes;
1228 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230 this_tot->tx_bytes += bytes;
1231 this_tot->tx_packets += packets;
1232
1233 stats = &nvchan->rx_stats;
1234 do {
1235 start = u64_stats_fetch_begin_irq(&stats->syncp);
1236 packets = stats->packets;
1237 bytes = stats->bytes;
1238 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240 this_tot->rx_bytes += bytes;
1241 this_tot->rx_packets += packets;
1242 }
1243}
1244
1245static void netvsc_get_stats64(struct net_device *net,
1246 struct rtnl_link_stats64 *t)
1247{
1248 struct net_device_context *ndev_ctx = netdev_priv(net);
1249 struct netvsc_device *nvdev;
1250 struct netvsc_vf_pcpu_stats vf_tot;
1251 int i;
1252
1253 rcu_read_lock();
1254
1255 nvdev = rcu_dereference(ndev_ctx->nvdev);
1256 if (!nvdev)
1257 goto out;
1258
1259 netdev_stats_to_stats64(t, &net->stats);
1260
1261 netvsc_get_vf_stats(net, &vf_tot);
1262 t->rx_packets += vf_tot.rx_packets;
1263 t->tx_packets += vf_tot.tx_packets;
1264 t->rx_bytes += vf_tot.rx_bytes;
1265 t->tx_bytes += vf_tot.tx_bytes;
1266 t->tx_dropped += vf_tot.tx_dropped;
1267
1268 for (i = 0; i < nvdev->num_chn; i++) {
1269 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270 const struct netvsc_stats *stats;
1271 u64 packets, bytes, multicast;
1272 unsigned int start;
1273
1274 stats = &nvchan->tx_stats;
1275 do {
1276 start = u64_stats_fetch_begin_irq(&stats->syncp);
1277 packets = stats->packets;
1278 bytes = stats->bytes;
1279 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281 t->tx_bytes += bytes;
1282 t->tx_packets += packets;
1283
1284 stats = &nvchan->rx_stats;
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 packets = stats->packets;
1288 bytes = stats->bytes;
1289 multicast = stats->multicast + stats->broadcast;
1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292 t->rx_bytes += bytes;
1293 t->rx_packets += packets;
1294 t->multicast += multicast;
1295 }
1296out:
1297 rcu_read_unlock();
1298}
1299
1300static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301{
1302 struct net_device_context *ndc = netdev_priv(ndev);
1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305 struct sockaddr *addr = p;
1306 int err;
1307
1308 err = eth_prepare_mac_addr_change(ndev, p);
1309 if (err)
1310 return err;
1311
1312 if (!nvdev)
1313 return -ENODEV;
1314
1315 if (vf_netdev) {
1316 err = dev_set_mac_address(vf_netdev, addr, NULL);
1317 if (err)
1318 return err;
1319 }
1320
1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322 if (!err) {
1323 eth_commit_mac_addr_change(ndev, p);
1324 } else if (vf_netdev) {
1325 /* rollback change on VF */
1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327 dev_set_mac_address(vf_netdev, addr, NULL);
1328 }
1329
1330 return err;
1331}
1332
1333static const struct {
1334 char name[ETH_GSTRING_LEN];
1335 u16 offset;
1336} netvsc_stats[] = {
1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347}, pcpu_stats[] = {
1348 { "cpu%u_rx_packets",
1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350 { "cpu%u_rx_bytes",
1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352 { "cpu%u_tx_packets",
1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354 { "cpu%u_tx_bytes",
1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356 { "cpu%u_vf_rx_packets",
1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358 { "cpu%u_vf_rx_bytes",
1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360 { "cpu%u_vf_tx_packets",
1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362 { "cpu%u_vf_tx_bytes",
1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364}, vf_stats[] = {
1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370};
1371
1372#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1373#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1374
1375/* statistics per queue (rx/tx packets/bytes) */
1376#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378/* 4 statistics per queue (rx/tx packets/bytes) */
1379#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
1381static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382{
1383 struct net_device_context *ndc = netdev_priv(dev);
1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386 if (!nvdev)
1387 return -ENODEV;
1388
1389 switch (string_set) {
1390 case ETH_SS_STATS:
1391 return NETVSC_GLOBAL_STATS_LEN
1392 + NETVSC_VF_STATS_LEN
1393 + NETVSC_QUEUE_STATS_LEN(nvdev)
1394 + NETVSC_PCPU_STATS_LEN;
1395 default:
1396 return -EINVAL;
1397 }
1398}
1399
1400static void netvsc_get_ethtool_stats(struct net_device *dev,
1401 struct ethtool_stats *stats, u64 *data)
1402{
1403 struct net_device_context *ndc = netdev_priv(dev);
1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405 const void *nds = &ndc->eth_stats;
1406 const struct netvsc_stats *qstats;
1407 struct netvsc_vf_pcpu_stats sum;
1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409 unsigned int start;
1410 u64 packets, bytes;
1411 int i, j, cpu;
1412
1413 if (!nvdev)
1414 return;
1415
1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419 netvsc_get_vf_stats(dev, &sum);
1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423 for (j = 0; j < nvdev->num_chn; j++) {
1424 qstats = &nvdev->chan_table[j].tx_stats;
1425
1426 do {
1427 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428 packets = qstats->packets;
1429 bytes = qstats->bytes;
1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431 data[i++] = packets;
1432 data[i++] = bytes;
1433
1434 qstats = &nvdev->chan_table[j].rx_stats;
1435 do {
1436 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437 packets = qstats->packets;
1438 bytes = qstats->bytes;
1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440 data[i++] = packets;
1441 data[i++] = bytes;
1442 }
1443
1444 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445 sizeof(struct netvsc_ethtool_pcpu_stats),
1446 GFP_KERNEL);
1447 netvsc_get_pcpu_stats(dev, pcpu_sum);
1448 for_each_present_cpu(cpu) {
1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452 data[i++] = *(u64 *)((void *)this_sum
1453 + pcpu_stats[j].offset);
1454 }
1455 kvfree(pcpu_sum);
1456}
1457
1458static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459{
1460 struct net_device_context *ndc = netdev_priv(dev);
1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462 u8 *p = data;
1463 int i, cpu;
1464
1465 if (!nvdev)
1466 return;
1467
1468 switch (stringset) {
1469 case ETH_SS_STATS:
1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472 p += ETH_GSTRING_LEN;
1473 }
1474
1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477 p += ETH_GSTRING_LEN;
1478 }
1479
1480 for (i = 0; i < nvdev->num_chn; i++) {
1481 sprintf(p, "tx_queue_%u_packets", i);
1482 p += ETH_GSTRING_LEN;
1483 sprintf(p, "tx_queue_%u_bytes", i);
1484 p += ETH_GSTRING_LEN;
1485 sprintf(p, "rx_queue_%u_packets", i);
1486 p += ETH_GSTRING_LEN;
1487 sprintf(p, "rx_queue_%u_bytes", i);
1488 p += ETH_GSTRING_LEN;
1489 }
1490
1491 for_each_present_cpu(cpu) {
1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493 sprintf(p, pcpu_stats[i].name, cpu);
1494 p += ETH_GSTRING_LEN;
1495 }
1496 }
1497
1498 break;
1499 }
1500}
1501
1502static int
1503netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504 struct ethtool_rxnfc *info)
1505{
1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508 info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510 switch (info->flow_type) {
1511 case TCP_V4_FLOW:
1512 if (ndc->l4_hash & HV_TCP4_L4HASH)
1513 info->data |= l4_flag;
1514
1515 break;
1516
1517 case TCP_V6_FLOW:
1518 if (ndc->l4_hash & HV_TCP6_L4HASH)
1519 info->data |= l4_flag;
1520
1521 break;
1522
1523 case UDP_V4_FLOW:
1524 if (ndc->l4_hash & HV_UDP4_L4HASH)
1525 info->data |= l4_flag;
1526
1527 break;
1528
1529 case UDP_V6_FLOW:
1530 if (ndc->l4_hash & HV_UDP6_L4HASH)
1531 info->data |= l4_flag;
1532
1533 break;
1534
1535 case IPV4_FLOW:
1536 case IPV6_FLOW:
1537 break;
1538 default:
1539 info->data = 0;
1540 break;
1541 }
1542
1543 return 0;
1544}
1545
1546static int
1547netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548 u32 *rules)
1549{
1550 struct net_device_context *ndc = netdev_priv(dev);
1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553 if (!nvdev)
1554 return -ENODEV;
1555
1556 switch (info->cmd) {
1557 case ETHTOOL_GRXRINGS:
1558 info->data = nvdev->num_chn;
1559 return 0;
1560
1561 case ETHTOOL_GRXFH:
1562 return netvsc_get_rss_hash_opts(ndc, info);
1563 }
1564 return -EOPNOTSUPP;
1565}
1566
1567static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568 struct ethtool_rxnfc *info)
1569{
1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572 switch (info->flow_type) {
1573 case TCP_V4_FLOW:
1574 ndc->l4_hash |= HV_TCP4_L4HASH;
1575 break;
1576
1577 case TCP_V6_FLOW:
1578 ndc->l4_hash |= HV_TCP6_L4HASH;
1579 break;
1580
1581 case UDP_V4_FLOW:
1582 ndc->l4_hash |= HV_UDP4_L4HASH;
1583 break;
1584
1585 case UDP_V6_FLOW:
1586 ndc->l4_hash |= HV_UDP6_L4HASH;
1587 break;
1588
1589 default:
1590 return -EOPNOTSUPP;
1591 }
1592
1593 return 0;
1594 }
1595
1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597 switch (info->flow_type) {
1598 case TCP_V4_FLOW:
1599 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600 break;
1601
1602 case TCP_V6_FLOW:
1603 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604 break;
1605
1606 case UDP_V4_FLOW:
1607 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608 break;
1609
1610 case UDP_V6_FLOW:
1611 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612 break;
1613
1614 default:
1615 return -EOPNOTSUPP;
1616 }
1617
1618 return 0;
1619 }
1620
1621 return -EOPNOTSUPP;
1622}
1623
1624static int
1625netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626{
1627 struct net_device_context *ndc = netdev_priv(ndev);
1628
1629 if (info->cmd == ETHTOOL_SRXFH)
1630 return netvsc_set_rss_hash_opts(ndc, info);
1631
1632 return -EOPNOTSUPP;
1633}
1634
1635static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636{
1637 return NETVSC_HASH_KEYLEN;
1638}
1639
1640static u32 netvsc_rss_indir_size(struct net_device *dev)
1641{
1642 return ITAB_NUM;
1643}
1644
1645static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646 u8 *hfunc)
1647{
1648 struct net_device_context *ndc = netdev_priv(dev);
1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650 struct rndis_device *rndis_dev;
1651 int i;
1652
1653 if (!ndev)
1654 return -ENODEV;
1655
1656 if (hfunc)
1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1658
1659 rndis_dev = ndev->extension;
1660 if (indir) {
1661 for (i = 0; i < ITAB_NUM; i++)
1662 indir[i] = rndis_dev->rx_table[i];
1663 }
1664
1665 if (key)
1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668 return 0;
1669}
1670
1671static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672 const u8 *key, const u8 hfunc)
1673{
1674 struct net_device_context *ndc = netdev_priv(dev);
1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676 struct rndis_device *rndis_dev;
1677 int i;
1678
1679 if (!ndev)
1680 return -ENODEV;
1681
1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683 return -EOPNOTSUPP;
1684
1685 rndis_dev = ndev->extension;
1686 if (indir) {
1687 for (i = 0; i < ITAB_NUM; i++)
1688 if (indir[i] >= ndev->num_chn)
1689 return -EINVAL;
1690
1691 for (i = 0; i < ITAB_NUM; i++)
1692 rndis_dev->rx_table[i] = indir[i];
1693 }
1694
1695 if (!key) {
1696 if (!indir)
1697 return 0;
1698
1699 key = rndis_dev->rss_key;
1700 }
1701
1702 return rndis_filter_set_rss_param(rndis_dev, key);
1703}
1704
1705/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
1708static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709 struct ethtool_ringparam *ring)
1710{
1711 u32 max_buf_size;
1712
1713 ring->rx_pending = nvdev->recv_section_cnt;
1714 ring->tx_pending = nvdev->send_section_cnt;
1715
1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718 else
1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723 / nvdev->send_section_size;
1724}
1725
1726static void netvsc_get_ringparam(struct net_device *ndev,
1727 struct ethtool_ringparam *ring)
1728{
1729 struct net_device_context *ndevctx = netdev_priv(ndev);
1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732 if (!nvdev)
1733 return;
1734
1735 __netvsc_get_ringparam(nvdev, ring);
1736}
1737
1738static int netvsc_set_ringparam(struct net_device *ndev,
1739 struct ethtool_ringparam *ring)
1740{
1741 struct net_device_context *ndevctx = netdev_priv(ndev);
1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743 struct netvsc_device_info *device_info;
1744 struct ethtool_ringparam orig;
1745 u32 new_tx, new_rx;
1746 int ret = 0;
1747
1748 if (!nvdev || nvdev->destroy)
1749 return -ENODEV;
1750
1751 memset(&orig, 0, sizeof(orig));
1752 __netvsc_get_ringparam(nvdev, &orig);
1753
1754 new_tx = clamp_t(u32, ring->tx_pending,
1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756 new_rx = clamp_t(u32, ring->rx_pending,
1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759 if (new_tx == orig.tx_pending &&
1760 new_rx == orig.rx_pending)
1761 return 0; /* no change */
1762
1763 device_info = netvsc_devinfo_get(nvdev);
1764
1765 if (!device_info)
1766 return -ENOMEM;
1767
1768 device_info->send_sections = new_tx;
1769 device_info->recv_sections = new_rx;
1770
1771 ret = netvsc_detach(ndev, nvdev);
1772 if (ret)
1773 goto out;
1774
1775 ret = netvsc_attach(ndev, device_info);
1776 if (ret) {
1777 device_info->send_sections = orig.tx_pending;
1778 device_info->recv_sections = orig.rx_pending;
1779
1780 if (netvsc_attach(ndev, device_info))
1781 netdev_err(ndev, "restoring ringparam failed");
1782 }
1783
1784out:
1785 kfree(device_info);
1786 return ret;
1787}
1788
1789static int netvsc_set_features(struct net_device *ndev,
1790 netdev_features_t features)
1791{
1792 netdev_features_t change = features ^ ndev->features;
1793 struct net_device_context *ndevctx = netdev_priv(ndev);
1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796 struct ndis_offload_params offloads;
1797 int ret = 0;
1798
1799 if (!nvdev || nvdev->destroy)
1800 return -ENODEV;
1801
1802 if (!(change & NETIF_F_LRO))
1803 goto syncvf;
1804
1805 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807 if (features & NETIF_F_LRO) {
1808 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810 } else {
1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813 }
1814
1815 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817 if (ret) {
1818 features ^= NETIF_F_LRO;
1819 ndev->features = features;
1820 }
1821
1822syncvf:
1823 if (!vf_netdev)
1824 return ret;
1825
1826 vf_netdev->wanted_features = features;
1827 netdev_update_features(vf_netdev);
1828
1829 return ret;
1830}
1831
1832static u32 netvsc_get_msglevel(struct net_device *ndev)
1833{
1834 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836 return ndev_ctx->msg_enable;
1837}
1838
1839static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840{
1841 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843 ndev_ctx->msg_enable = val;
1844}
1845
1846static const struct ethtool_ops ethtool_ops = {
1847 .get_drvinfo = netvsc_get_drvinfo,
1848 .get_msglevel = netvsc_get_msglevel,
1849 .set_msglevel = netvsc_set_msglevel,
1850 .get_link = ethtool_op_get_link,
1851 .get_ethtool_stats = netvsc_get_ethtool_stats,
1852 .get_sset_count = netvsc_get_sset_count,
1853 .get_strings = netvsc_get_strings,
1854 .get_channels = netvsc_get_channels,
1855 .set_channels = netvsc_set_channels,
1856 .get_ts_info = ethtool_op_get_ts_info,
1857 .get_rxnfc = netvsc_get_rxnfc,
1858 .set_rxnfc = netvsc_set_rxnfc,
1859 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860 .get_rxfh_indir_size = netvsc_rss_indir_size,
1861 .get_rxfh = netvsc_get_rxfh,
1862 .set_rxfh = netvsc_set_rxfh,
1863 .get_link_ksettings = netvsc_get_link_ksettings,
1864 .set_link_ksettings = netvsc_set_link_ksettings,
1865 .get_ringparam = netvsc_get_ringparam,
1866 .set_ringparam = netvsc_set_ringparam,
1867};
1868
1869static const struct net_device_ops device_ops = {
1870 .ndo_open = netvsc_open,
1871 .ndo_stop = netvsc_close,
1872 .ndo_start_xmit = netvsc_start_xmit,
1873 .ndo_change_rx_flags = netvsc_change_rx_flags,
1874 .ndo_set_rx_mode = netvsc_set_rx_mode,
1875 .ndo_set_features = netvsc_set_features,
1876 .ndo_change_mtu = netvsc_change_mtu,
1877 .ndo_validate_addr = eth_validate_addr,
1878 .ndo_set_mac_address = netvsc_set_mac_addr,
1879 .ndo_select_queue = netvsc_select_queue,
1880 .ndo_get_stats64 = netvsc_get_stats64,
1881};
1882
1883/*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
1888static void netvsc_link_change(struct work_struct *w)
1889{
1890 struct net_device_context *ndev_ctx =
1891 container_of(w, struct net_device_context, dwork.work);
1892 struct hv_device *device_obj = ndev_ctx->device_ctx;
1893 struct net_device *net = hv_get_drvdata(device_obj);
1894 struct netvsc_device *net_device;
1895 struct rndis_device *rdev;
1896 struct netvsc_reconfig *event = NULL;
1897 bool notify = false, reschedule = false;
1898 unsigned long flags, next_reconfig, delay;
1899
1900 /* if changes are happening, comeback later */
1901 if (!rtnl_trylock()) {
1902 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903 return;
1904 }
1905
1906 net_device = rtnl_dereference(ndev_ctx->nvdev);
1907 if (!net_device)
1908 goto out_unlock;
1909
1910 rdev = net_device->extension;
1911
1912 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913 if (time_is_after_jiffies(next_reconfig)) {
1914 /* link_watch only sends one notification with current state
1915 * per second, avoid doing reconfig more frequently. Handle
1916 * wrap around.
1917 */
1918 delay = next_reconfig - jiffies;
1919 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920 schedule_delayed_work(&ndev_ctx->dwork, delay);
1921 goto out_unlock;
1922 }
1923 ndev_ctx->last_reconfig = jiffies;
1924
1925 spin_lock_irqsave(&ndev_ctx->lock, flags);
1926 if (!list_empty(&ndev_ctx->reconfig_events)) {
1927 event = list_first_entry(&ndev_ctx->reconfig_events,
1928 struct netvsc_reconfig, list);
1929 list_del(&event->list);
1930 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931 }
1932 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934 if (!event)
1935 goto out_unlock;
1936
1937 switch (event->event) {
1938 /* Only the following events are possible due to the check in
1939 * netvsc_linkstatus_callback()
1940 */
1941 case RNDIS_STATUS_MEDIA_CONNECT:
1942 if (rdev->link_state) {
1943 rdev->link_state = false;
1944 netif_carrier_on(net);
1945 netvsc_tx_enable(net_device, net);
1946 } else {
1947 notify = true;
1948 }
1949 kfree(event);
1950 break;
1951 case RNDIS_STATUS_MEDIA_DISCONNECT:
1952 if (!rdev->link_state) {
1953 rdev->link_state = true;
1954 netif_carrier_off(net);
1955 netvsc_tx_disable(net_device, net);
1956 }
1957 kfree(event);
1958 break;
1959 case RNDIS_STATUS_NETWORK_CHANGE:
1960 /* Only makes sense if carrier is present */
1961 if (!rdev->link_state) {
1962 rdev->link_state = true;
1963 netif_carrier_off(net);
1964 netvsc_tx_disable(net_device, net);
1965 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966 spin_lock_irqsave(&ndev_ctx->lock, flags);
1967 list_add(&event->list, &ndev_ctx->reconfig_events);
1968 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969 reschedule = true;
1970 }
1971 break;
1972 }
1973
1974 rtnl_unlock();
1975
1976 if (notify)
1977 netdev_notify_peers(net);
1978
1979 /* link_watch only sends one notification with current state per
1980 * second, handle next reconfig event in 2 seconds.
1981 */
1982 if (reschedule)
1983 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985 return;
1986
1987out_unlock:
1988 rtnl_unlock();
1989}
1990
1991static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992{
1993 struct net_device_context *net_device_ctx;
1994 struct net_device *dev;
1995
1996 dev = netdev_master_upper_dev_get(vf_netdev);
1997 if (!dev || dev->netdev_ops != &device_ops)
1998 return NULL; /* not a netvsc device */
1999
2000 net_device_ctx = netdev_priv(dev);
2001 if (!rtnl_dereference(net_device_ctx->nvdev))
2002 return NULL; /* device is removed */
2003
2004 return dev;
2005}
2006
2007/* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
2011static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012{
2013 struct sk_buff *skb = *pskb;
2014 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016 struct netvsc_vf_pcpu_stats *pcpu_stats
2017 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019 skb = skb_share_check(skb, GFP_ATOMIC);
2020 if (unlikely(!skb))
2021 return RX_HANDLER_CONSUMED;
2022
2023 *pskb = skb;
2024
2025 skb->dev = ndev;
2026
2027 u64_stats_update_begin(&pcpu_stats->syncp);
2028 pcpu_stats->rx_packets++;
2029 pcpu_stats->rx_bytes += skb->len;
2030 u64_stats_update_end(&pcpu_stats->syncp);
2031
2032 return RX_HANDLER_ANOTHER;
2033}
2034
2035static int netvsc_vf_join(struct net_device *vf_netdev,
2036 struct net_device *ndev)
2037{
2038 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039 int ret;
2040
2041 ret = netdev_rx_handler_register(vf_netdev,
2042 netvsc_vf_handle_frame, ndev);
2043 if (ret != 0) {
2044 netdev_err(vf_netdev,
2045 "can not register netvsc VF receive handler (err = %d)\n",
2046 ret);
2047 goto rx_handler_failed;
2048 }
2049
2050 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051 NULL, NULL, NULL);
2052 if (ret != 0) {
2053 netdev_err(vf_netdev,
2054 "can not set master device %s (err = %d)\n",
2055 ndev->name, ret);
2056 goto upper_link_failed;
2057 }
2058
2059 /* set slave flag before open to prevent IPv6 addrconf */
2060 vf_netdev->flags |= IFF_SLAVE;
2061
2062 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063
2064 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067 return 0;
2068
2069upper_link_failed:
2070 netdev_rx_handler_unregister(vf_netdev);
2071rx_handler_failed:
2072 return ret;
2073}
2074
2075static void __netvsc_vf_setup(struct net_device *ndev,
2076 struct net_device *vf_netdev)
2077{
2078 int ret;
2079
2080 /* Align MTU of VF with master */
2081 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082 if (ret)
2083 netdev_warn(vf_netdev,
2084 "unable to change mtu to %u\n", ndev->mtu);
2085
2086 /* set multicast etc flags on VF */
2087 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089 /* sync address list from ndev to VF */
2090 netif_addr_lock_bh(ndev);
2091 dev_uc_sync(vf_netdev, ndev);
2092 dev_mc_sync(vf_netdev, ndev);
2093 netif_addr_unlock_bh(ndev);
2094
2095 if (netif_running(ndev)) {
2096 ret = dev_open(vf_netdev, NULL);
2097 if (ret)
2098 netdev_warn(vf_netdev,
2099 "unable to open: %d\n", ret);
2100 }
2101}
2102
2103/* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
2106static void netvsc_vf_setup(struct work_struct *w)
2107{
2108 struct net_device_context *ndev_ctx
2109 = container_of(w, struct net_device_context, vf_takeover.work);
2110 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111 struct net_device *vf_netdev;
2112
2113 if (!rtnl_trylock()) {
2114 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115 return;
2116 }
2117
2118 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119 if (vf_netdev)
2120 __netvsc_vf_setup(ndev, vf_netdev);
2121
2122 rtnl_unlock();
2123}
2124
2125/* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
2128static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129{
2130 struct device *parent = vf_netdev->dev.parent;
2131 struct net_device_context *ndev_ctx;
2132 struct pci_dev *pdev;
2133 u32 serial;
2134
2135 if (!parent || !dev_is_pci(parent))
2136 return NULL; /* not a PCI device */
2137
2138 pdev = to_pci_dev(parent);
2139 if (!pdev->slot) {
2140 netdev_notice(vf_netdev, "no PCI slot information\n");
2141 return NULL;
2142 }
2143
2144 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146 pci_slot_name(pdev->slot));
2147 return NULL;
2148 }
2149
2150 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151 if (!ndev_ctx->vf_alloc)
2152 continue;
2153
2154 if (ndev_ctx->vf_serial == serial)
2155 return hv_get_drvdata(ndev_ctx->device_ctx);
2156 }
2157
2158 netdev_notice(vf_netdev,
2159 "no netdev found for vf serial:%u\n", serial);
2160 return NULL;
2161}
2162
2163static int netvsc_register_vf(struct net_device *vf_netdev)
2164{
2165 struct net_device_context *net_device_ctx;
2166 struct netvsc_device *netvsc_dev;
2167 struct net_device *ndev;
2168 int ret;
2169
2170 if (vf_netdev->addr_len != ETH_ALEN)
2171 return NOTIFY_DONE;
2172
2173 ndev = get_netvsc_byslot(vf_netdev);
2174 if (!ndev)
2175 return NOTIFY_DONE;
2176
2177 net_device_ctx = netdev_priv(ndev);
2178 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180 return NOTIFY_DONE;
2181
2182 /* if synthetic interface is a different namespace,
2183 * then move the VF to that namespace; join will be
2184 * done again in that context.
2185 */
2186 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187 ret = dev_change_net_namespace(vf_netdev,
2188 dev_net(ndev), "eth%d");
2189 if (ret)
2190 netdev_err(vf_netdev,
2191 "could not move to same namespace as %s: %d\n",
2192 ndev->name, ret);
2193 else
2194 netdev_info(vf_netdev,
2195 "VF moved to namespace with: %s\n",
2196 ndev->name);
2197 return NOTIFY_DONE;
2198 }
2199
2200 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203 return NOTIFY_DONE;
2204
2205 dev_hold(vf_netdev);
2206 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
2208 vf_netdev->wanted_features = ndev->features;
2209 netdev_update_features(vf_netdev);
2210
2211 return NOTIFY_OK;
2212}
2213
2214/* VF up/down change detected, schedule to change data path */
2215static int netvsc_vf_changed(struct net_device *vf_netdev)
2216{
2217 struct net_device_context *net_device_ctx;
2218 struct netvsc_device *netvsc_dev;
2219 struct net_device *ndev;
2220 bool vf_is_up = netif_running(vf_netdev);
2221
2222 ndev = get_netvsc_byref(vf_netdev);
2223 if (!ndev)
2224 return NOTIFY_DONE;
2225
2226 net_device_ctx = netdev_priv(ndev);
2227 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228 if (!netvsc_dev)
2229 return NOTIFY_DONE;
2230
2231 netvsc_switch_datapath(ndev, vf_is_up);
2232 netdev_info(ndev, "Data path switched %s VF: %s\n",
2233 vf_is_up ? "to" : "from", vf_netdev->name);
2234
2235 return NOTIFY_OK;
2236}
2237
2238static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239{
2240 struct net_device *ndev;
2241 struct net_device_context *net_device_ctx;
2242
2243 ndev = get_netvsc_byref(vf_netdev);
2244 if (!ndev)
2245 return NOTIFY_DONE;
2246
2247 net_device_ctx = netdev_priv(ndev);
2248 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
2252 netdev_rx_handler_unregister(vf_netdev);
2253 netdev_upper_dev_unlink(vf_netdev, ndev);
2254 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255 dev_put(vf_netdev);
2256
2257 return NOTIFY_OK;
2258}
2259
2260static int netvsc_probe(struct hv_device *dev,
2261 const struct hv_vmbus_device_id *dev_id)
2262{
2263 struct net_device *net = NULL;
2264 struct net_device_context *net_device_ctx;
2265 struct netvsc_device_info *device_info = NULL;
2266 struct netvsc_device *nvdev;
2267 int ret = -ENOMEM;
2268
2269 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270 VRSS_CHANNEL_MAX);
2271 if (!net)
2272 goto no_net;
2273
2274 netif_carrier_off(net);
2275
2276 netvsc_init_settings(net);
2277
2278 net_device_ctx = netdev_priv(net);
2279 net_device_ctx->device_ctx = dev;
2280 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281 if (netif_msg_probe(net_device_ctx))
2282 netdev_dbg(net, "netvsc msg_enable: %d\n",
2283 net_device_ctx->msg_enable);
2284
2285 hv_set_drvdata(dev, net);
2286
2287 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
2289 spin_lock_init(&net_device_ctx->lock);
2290 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293 net_device_ctx->vf_stats
2294 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295 if (!net_device_ctx->vf_stats)
2296 goto no_stats;
2297
2298 net->netdev_ops = &device_ops;
2299 net->ethtool_ops = ðtool_ops;
2300 SET_NETDEV_DEV(net, &dev->device);
2301
2302 /* We always need headroom for rndis header */
2303 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305 /* Initialize the number of queues to be 1, we may change it if more
2306 * channels are offered later.
2307 */
2308 netif_set_real_num_tx_queues(net, 1);
2309 netif_set_real_num_rx_queues(net, 1);
2310
2311 /* Notify the netvsc driver of the new device */
2312 device_info = netvsc_devinfo_get(NULL);
2313
2314 if (!device_info) {
2315 ret = -ENOMEM;
2316 goto devinfo_failed;
2317 }
2318
2319 nvdev = rndis_filter_device_add(dev, device_info);
2320 if (IS_ERR(nvdev)) {
2321 ret = PTR_ERR(nvdev);
2322 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323 goto rndis_failed;
2324 }
2325
2326 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2329 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330 * all subchannels to show up, but that may not happen because
2331 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333 * the device lock, so all the subchannels can't be processed --
2334 * finally netvsc_subchan_work() hangs forever.
2335 */
2336 rtnl_lock();
2337
2338 if (nvdev->num_chn > 1)
2339 schedule_work(&nvdev->subchan_work);
2340
2341 /* hw_features computed in rndis_netdev_set_hwcaps() */
2342 net->features = net->hw_features |
2343 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344 NETIF_F_HW_VLAN_CTAG_RX;
2345 net->vlan_features = net->features;
2346
2347 /* MTU range: 68 - 1500 or 65521 */
2348 net->min_mtu = NETVSC_MTU_MIN;
2349 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351 else
2352 net->max_mtu = ETH_DATA_LEN;
2353
2354 ret = register_netdevice(net);
2355 if (ret != 0) {
2356 pr_err("Unable to register netdev.\n");
2357 goto register_failed;
2358 }
2359
2360 list_add(&net_device_ctx->list, &netvsc_dev_list);
2361 rtnl_unlock();
2362
2363 kfree(device_info);
2364 return 0;
2365
2366register_failed:
2367 rtnl_unlock();
2368 rndis_filter_device_remove(dev, nvdev);
2369rndis_failed:
2370 kfree(device_info);
2371devinfo_failed:
2372 free_percpu(net_device_ctx->vf_stats);
2373no_stats:
2374 hv_set_drvdata(dev, NULL);
2375 free_netdev(net);
2376no_net:
2377 return ret;
2378}
2379
2380static int netvsc_remove(struct hv_device *dev)
2381{
2382 struct net_device_context *ndev_ctx;
2383 struct net_device *vf_netdev, *net;
2384 struct netvsc_device *nvdev;
2385
2386 net = hv_get_drvdata(dev);
2387 if (net == NULL) {
2388 dev_err(&dev->device, "No net device to remove\n");
2389 return 0;
2390 }
2391
2392 ndev_ctx = netdev_priv(net);
2393
2394 cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396 rtnl_lock();
2397 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398 if (nvdev)
2399 cancel_work_sync(&nvdev->subchan_work);
2400
2401 /*
2402 * Call to the vsc driver to let it know that the device is being
2403 * removed. Also blocks mtu and channel changes.
2404 */
2405 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406 if (vf_netdev)
2407 netvsc_unregister_vf(vf_netdev);
2408
2409 if (nvdev)
2410 rndis_filter_device_remove(dev, nvdev);
2411
2412 unregister_netdevice(net);
2413 list_del(&ndev_ctx->list);
2414
2415 rtnl_unlock();
2416
2417 hv_set_drvdata(dev, NULL);
2418
2419 free_percpu(ndev_ctx->vf_stats);
2420 free_netdev(net);
2421 return 0;
2422}
2423
2424static const struct hv_vmbus_device_id id_table[] = {
2425 /* Network guid */
2426 { HV_NIC_GUID, },
2427 { },
2428};
2429
2430MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432/* The one and only one */
2433static struct hv_driver netvsc_drv = {
2434 .name = KBUILD_MODNAME,
2435 .id_table = id_table,
2436 .probe = netvsc_probe,
2437 .remove = netvsc_remove,
2438 .driver = {
2439 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2440 },
2441};
2442
2443/*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
2449static int netvsc_netdev_event(struct notifier_block *this,
2450 unsigned long event, void *ptr)
2451{
2452 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2453
2454 /* Skip our own events */
2455 if (event_dev->netdev_ops == &device_ops)
2456 return NOTIFY_DONE;
2457
2458 /* Avoid non-Ethernet type devices */
2459 if (event_dev->type != ARPHRD_ETHER)
2460 return NOTIFY_DONE;
2461
2462 /* Avoid Vlan dev with same MAC registering as VF */
2463 if (is_vlan_dev(event_dev))
2464 return NOTIFY_DONE;
2465
2466 /* Avoid Bonding master dev with same MAC registering as VF */
2467 if ((event_dev->priv_flags & IFF_BONDING) &&
2468 (event_dev->flags & IFF_MASTER))
2469 return NOTIFY_DONE;
2470
2471 switch (event) {
2472 case NETDEV_REGISTER:
2473 return netvsc_register_vf(event_dev);
2474 case NETDEV_UNREGISTER:
2475 return netvsc_unregister_vf(event_dev);
2476 case NETDEV_UP:
2477 case NETDEV_DOWN:
2478 return netvsc_vf_changed(event_dev);
2479 default:
2480 return NOTIFY_DONE;
2481 }
2482}
2483
2484static struct notifier_block netvsc_netdev_notifier = {
2485 .notifier_call = netvsc_netdev_event,
2486};
2487
2488static void __exit netvsc_drv_exit(void)
2489{
2490 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491 vmbus_driver_unregister(&netvsc_drv);
2492}
2493
2494static int __init netvsc_drv_init(void)
2495{
2496 int ret;
2497
2498 if (ring_size < RING_SIZE_MIN) {
2499 ring_size = RING_SIZE_MIN;
2500 pr_info("Increased ring_size to %u (min allowed)\n",
2501 ring_size);
2502 }
2503 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2504
2505 ret = vmbus_driver_register(&netvsc_drv);
2506 if (ret)
2507 return ret;
2508
2509 register_netdevice_notifier(&netvsc_netdev_notifier);
2510 return 0;
2511}
2512
2513MODULE_LICENSE("GPL");
2514MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516module_init(netvsc_drv_init);
2517module_exit(netvsc_drv_exit);
1/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/init.h>
23#include <linux/atomic.h>
24#include <linux/module.h>
25#include <linux/highmem.h>
26#include <linux/device.h>
27#include <linux/io.h>
28#include <linux/delay.h>
29#include <linux/netdevice.h>
30#include <linux/inetdevice.h>
31#include <linux/etherdevice.h>
32#include <linux/skbuff.h>
33#include <linux/if_vlan.h>
34#include <linux/in.h>
35#include <linux/slab.h>
36#include <linux/rtnetlink.h>
37#include <linux/netpoll.h>
38#include <linux/reciprocal_div.h>
39
40#include <net/arp.h>
41#include <net/route.h>
42#include <net/sock.h>
43#include <net/pkt_sched.h>
44#include <net/checksum.h>
45#include <net/ip6_checksum.h>
46
47#include "hyperv_net.h"
48
49#define RING_SIZE_MIN 64
50#define RETRY_US_LO 5000
51#define RETRY_US_HI 10000
52#define RETRY_MAX 2000 /* >10 sec */
53
54#define LINKCHANGE_INT (2 * HZ)
55#define VF_TAKEOVER_INT (HZ / 10)
56
57static unsigned int ring_size __ro_after_init = 128;
58module_param(ring_size, uint, 0444);
59MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60unsigned int netvsc_ring_bytes __ro_after_init;
61struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
62
63static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
66 NETIF_MSG_TX_ERR;
67
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72static void netvsc_change_rx_flags(struct net_device *net, int change)
73{
74 struct net_device_context *ndev_ctx = netdev_priv(net);
75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76 int inc;
77
78 if (!vf_netdev)
79 return;
80
81 if (change & IFF_PROMISC) {
82 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83 dev_set_promiscuity(vf_netdev, inc);
84 }
85
86 if (change & IFF_ALLMULTI) {
87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88 dev_set_allmulti(vf_netdev, inc);
89 }
90}
91
92static void netvsc_set_rx_mode(struct net_device *net)
93{
94 struct net_device_context *ndev_ctx = netdev_priv(net);
95 struct net_device *vf_netdev;
96 struct netvsc_device *nvdev;
97
98 rcu_read_lock();
99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100 if (vf_netdev) {
101 dev_uc_sync(vf_netdev, net);
102 dev_mc_sync(vf_netdev, net);
103 }
104
105 nvdev = rcu_dereference(ndev_ctx->nvdev);
106 if (nvdev)
107 rndis_filter_update(nvdev);
108 rcu_read_unlock();
109}
110
111static int netvsc_open(struct net_device *net)
112{
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state)
130 netif_carrier_on(net);
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static int netvsc_close(struct net_device *net)
185{
186 struct net_device_context *net_device_ctx = netdev_priv(net);
187 struct net_device *vf_netdev
188 = rtnl_dereference(net_device_ctx->vf_netdev);
189 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
190 int ret;
191
192 netif_tx_disable(net);
193
194 /* No need to close rndis filter if it is removed already */
195 if (!nvdev)
196 return 0;
197
198 ret = rndis_filter_close(nvdev);
199 if (ret != 0) {
200 netdev_err(net, "unable to close device (ret %d).\n", ret);
201 return ret;
202 }
203
204 ret = netvsc_wait_until_empty(nvdev);
205 if (ret)
206 netdev_err(net, "Ring buffer not empty after closing rndis\n");
207
208 if (vf_netdev)
209 dev_close(vf_netdev);
210
211 return ret;
212}
213
214static inline void *init_ppi_data(struct rndis_message *msg,
215 u32 ppi_size, u32 pkt_type)
216{
217 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
218 struct rndis_per_packet_info *ppi;
219
220 rndis_pkt->data_offset += ppi_size;
221 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
222 + rndis_pkt->per_pkt_info_len;
223
224 ppi->size = ppi_size;
225 ppi->type = pkt_type;
226 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
227
228 rndis_pkt->per_pkt_info_len += ppi_size;
229
230 return ppi + 1;
231}
232
233/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
234 * packets. We can use ethtool to change UDP hash level when necessary.
235 */
236static inline u32 netvsc_get_hash(
237 struct sk_buff *skb,
238 const struct net_device_context *ndc)
239{
240 struct flow_keys flow;
241 u32 hash, pkt_proto = 0;
242 static u32 hashrnd __read_mostly;
243
244 net_get_random_once(&hashrnd, sizeof(hashrnd));
245
246 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
247 return 0;
248
249 switch (flow.basic.ip_proto) {
250 case IPPROTO_TCP:
251 if (flow.basic.n_proto == htons(ETH_P_IP))
252 pkt_proto = HV_TCP4_L4HASH;
253 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
254 pkt_proto = HV_TCP6_L4HASH;
255
256 break;
257
258 case IPPROTO_UDP:
259 if (flow.basic.n_proto == htons(ETH_P_IP))
260 pkt_proto = HV_UDP4_L4HASH;
261 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
262 pkt_proto = HV_UDP6_L4HASH;
263
264 break;
265 }
266
267 if (pkt_proto & ndc->l4_hash) {
268 return skb_get_hash(skb);
269 } else {
270 if (flow.basic.n_proto == htons(ETH_P_IP))
271 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
272 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
273 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
274 else
275 hash = 0;
276
277 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
278 }
279
280 return hash;
281}
282
283static inline int netvsc_get_tx_queue(struct net_device *ndev,
284 struct sk_buff *skb, int old_idx)
285{
286 const struct net_device_context *ndc = netdev_priv(ndev);
287 struct sock *sk = skb->sk;
288 int q_idx;
289
290 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
291 (VRSS_SEND_TAB_SIZE - 1)];
292
293 /* If queue index changed record the new value */
294 if (q_idx != old_idx &&
295 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
296 sk_tx_queue_set(sk, q_idx);
297
298 return q_idx;
299}
300
301/*
302 * Select queue for transmit.
303 *
304 * If a valid queue has already been assigned, then use that.
305 * Otherwise compute tx queue based on hash and the send table.
306 *
307 * This is basically similar to default (__netdev_pick_tx) with the added step
308 * of using the host send_table when no other queue has been assigned.
309 *
310 * TODO support XPS - but get_xps_queue not exported
311 */
312static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
313{
314 int q_idx = sk_tx_queue_get(skb->sk);
315
316 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
317 /* If forwarding a packet, we use the recorded queue when
318 * available for better cache locality.
319 */
320 if (skb_rx_queue_recorded(skb))
321 q_idx = skb_get_rx_queue(skb);
322 else
323 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
324 }
325
326 return q_idx;
327}
328
329static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
330 void *accel_priv,
331 select_queue_fallback_t fallback)
332{
333 struct net_device_context *ndc = netdev_priv(ndev);
334 struct net_device *vf_netdev;
335 u16 txq;
336
337 rcu_read_lock();
338 vf_netdev = rcu_dereference(ndc->vf_netdev);
339 if (vf_netdev) {
340 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
341
342 if (vf_ops->ndo_select_queue)
343 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
344 accel_priv, fallback);
345 else
346 txq = fallback(vf_netdev, skb);
347
348 /* Record the queue selected by VF so that it can be
349 * used for common case where VF has more queues than
350 * the synthetic device.
351 */
352 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
353 } else {
354 txq = netvsc_pick_tx(ndev, skb);
355 }
356 rcu_read_unlock();
357
358 while (unlikely(txq >= ndev->real_num_tx_queues))
359 txq -= ndev->real_num_tx_queues;
360
361 return txq;
362}
363
364static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
365 struct hv_page_buffer *pb)
366{
367 int j = 0;
368
369 /* Deal with compund pages by ignoring unused part
370 * of the page.
371 */
372 page += (offset >> PAGE_SHIFT);
373 offset &= ~PAGE_MASK;
374
375 while (len > 0) {
376 unsigned long bytes;
377
378 bytes = PAGE_SIZE - offset;
379 if (bytes > len)
380 bytes = len;
381 pb[j].pfn = page_to_pfn(page);
382 pb[j].offset = offset;
383 pb[j].len = bytes;
384
385 offset += bytes;
386 len -= bytes;
387
388 if (offset == PAGE_SIZE && len) {
389 page++;
390 offset = 0;
391 j++;
392 }
393 }
394
395 return j + 1;
396}
397
398static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
399 struct hv_netvsc_packet *packet,
400 struct hv_page_buffer *pb)
401{
402 u32 slots_used = 0;
403 char *data = skb->data;
404 int frags = skb_shinfo(skb)->nr_frags;
405 int i;
406
407 /* The packet is laid out thus:
408 * 1. hdr: RNDIS header and PPI
409 * 2. skb linear data
410 * 3. skb fragment data
411 */
412 slots_used += fill_pg_buf(virt_to_page(hdr),
413 offset_in_page(hdr),
414 len, &pb[slots_used]);
415
416 packet->rmsg_size = len;
417 packet->rmsg_pgcnt = slots_used;
418
419 slots_used += fill_pg_buf(virt_to_page(data),
420 offset_in_page(data),
421 skb_headlen(skb), &pb[slots_used]);
422
423 for (i = 0; i < frags; i++) {
424 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
425
426 slots_used += fill_pg_buf(skb_frag_page(frag),
427 frag->page_offset,
428 skb_frag_size(frag), &pb[slots_used]);
429 }
430 return slots_used;
431}
432
433static int count_skb_frag_slots(struct sk_buff *skb)
434{
435 int i, frags = skb_shinfo(skb)->nr_frags;
436 int pages = 0;
437
438 for (i = 0; i < frags; i++) {
439 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
440 unsigned long size = skb_frag_size(frag);
441 unsigned long offset = frag->page_offset;
442
443 /* Skip unused frames from start of page */
444 offset &= ~PAGE_MASK;
445 pages += PFN_UP(offset + size);
446 }
447 return pages;
448}
449
450static int netvsc_get_slots(struct sk_buff *skb)
451{
452 char *data = skb->data;
453 unsigned int offset = offset_in_page(data);
454 unsigned int len = skb_headlen(skb);
455 int slots;
456 int frag_slots;
457
458 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
459 frag_slots = count_skb_frag_slots(skb);
460 return slots + frag_slots;
461}
462
463static u32 net_checksum_info(struct sk_buff *skb)
464{
465 if (skb->protocol == htons(ETH_P_IP)) {
466 struct iphdr *ip = ip_hdr(skb);
467
468 if (ip->protocol == IPPROTO_TCP)
469 return TRANSPORT_INFO_IPV4_TCP;
470 else if (ip->protocol == IPPROTO_UDP)
471 return TRANSPORT_INFO_IPV4_UDP;
472 } else {
473 struct ipv6hdr *ip6 = ipv6_hdr(skb);
474
475 if (ip6->nexthdr == IPPROTO_TCP)
476 return TRANSPORT_INFO_IPV6_TCP;
477 else if (ip6->nexthdr == IPPROTO_UDP)
478 return TRANSPORT_INFO_IPV6_UDP;
479 }
480
481 return TRANSPORT_INFO_NOT_IP;
482}
483
484/* Send skb on the slave VF device. */
485static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
486 struct sk_buff *skb)
487{
488 struct net_device_context *ndev_ctx = netdev_priv(net);
489 unsigned int len = skb->len;
490 int rc;
491
492 skb->dev = vf_netdev;
493 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
494
495 rc = dev_queue_xmit(skb);
496 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
497 struct netvsc_vf_pcpu_stats *pcpu_stats
498 = this_cpu_ptr(ndev_ctx->vf_stats);
499
500 u64_stats_update_begin(&pcpu_stats->syncp);
501 pcpu_stats->tx_packets++;
502 pcpu_stats->tx_bytes += len;
503 u64_stats_update_end(&pcpu_stats->syncp);
504 } else {
505 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
506 }
507
508 return rc;
509}
510
511static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
512{
513 struct net_device_context *net_device_ctx = netdev_priv(net);
514 struct hv_netvsc_packet *packet = NULL;
515 int ret;
516 unsigned int num_data_pgs;
517 struct rndis_message *rndis_msg;
518 struct net_device *vf_netdev;
519 u32 rndis_msg_size;
520 u32 hash;
521 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
522
523 /* if VF is present and up then redirect packets
524 * already called with rcu_read_lock_bh
525 */
526 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
527 if (vf_netdev && netif_running(vf_netdev) &&
528 !netpoll_tx_running(net))
529 return netvsc_vf_xmit(net, vf_netdev, skb);
530
531 /* We will atmost need two pages to describe the rndis
532 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
533 * of pages in a single packet. If skb is scattered around
534 * more pages we try linearizing it.
535 */
536
537 num_data_pgs = netvsc_get_slots(skb) + 2;
538
539 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
540 ++net_device_ctx->eth_stats.tx_scattered;
541
542 if (skb_linearize(skb))
543 goto no_memory;
544
545 num_data_pgs = netvsc_get_slots(skb) + 2;
546 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
547 ++net_device_ctx->eth_stats.tx_too_big;
548 goto drop;
549 }
550 }
551
552 /*
553 * Place the rndis header in the skb head room and
554 * the skb->cb will be used for hv_netvsc_packet
555 * structure.
556 */
557 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
558 if (ret)
559 goto no_memory;
560
561 /* Use the skb control buffer for building up the packet */
562 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
563 FIELD_SIZEOF(struct sk_buff, cb));
564 packet = (struct hv_netvsc_packet *)skb->cb;
565
566 packet->q_idx = skb_get_queue_mapping(skb);
567
568 packet->total_data_buflen = skb->len;
569 packet->total_bytes = skb->len;
570 packet->total_packets = 1;
571
572 rndis_msg = (struct rndis_message *)skb->head;
573
574 /* Add the rndis header */
575 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
576 rndis_msg->msg_len = packet->total_data_buflen;
577
578 rndis_msg->msg.pkt = (struct rndis_packet) {
579 .data_offset = sizeof(struct rndis_packet),
580 .data_len = packet->total_data_buflen,
581 .per_pkt_info_offset = sizeof(struct rndis_packet),
582 };
583
584 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
585
586 hash = skb_get_hash_raw(skb);
587 if (hash != 0 && net->real_num_tx_queues > 1) {
588 u32 *hash_info;
589
590 rndis_msg_size += NDIS_HASH_PPI_SIZE;
591 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
592 NBL_HASH_VALUE);
593 *hash_info = hash;
594 }
595
596 if (skb_vlan_tag_present(skb)) {
597 struct ndis_pkt_8021q_info *vlan;
598
599 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
600 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
601 IEEE_8021Q_INFO);
602
603 vlan->value = 0;
604 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
605 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
606 VLAN_PRIO_SHIFT;
607 }
608
609 if (skb_is_gso(skb)) {
610 struct ndis_tcp_lso_info *lso_info;
611
612 rndis_msg_size += NDIS_LSO_PPI_SIZE;
613 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
614 TCP_LARGESEND_PKTINFO);
615
616 lso_info->value = 0;
617 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
618 if (skb->protocol == htons(ETH_P_IP)) {
619 lso_info->lso_v2_transmit.ip_version =
620 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
621 ip_hdr(skb)->tot_len = 0;
622 ip_hdr(skb)->check = 0;
623 tcp_hdr(skb)->check =
624 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
625 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
626 } else {
627 lso_info->lso_v2_transmit.ip_version =
628 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
629 ipv6_hdr(skb)->payload_len = 0;
630 tcp_hdr(skb)->check =
631 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
632 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
633 }
634 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
635 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
636 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
637 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
638 struct ndis_tcp_ip_checksum_info *csum_info;
639
640 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
641 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
642 TCPIP_CHKSUM_PKTINFO);
643
644 csum_info->value = 0;
645 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
646
647 if (skb->protocol == htons(ETH_P_IP)) {
648 csum_info->transmit.is_ipv4 = 1;
649
650 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
651 csum_info->transmit.tcp_checksum = 1;
652 else
653 csum_info->transmit.udp_checksum = 1;
654 } else {
655 csum_info->transmit.is_ipv6 = 1;
656
657 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
658 csum_info->transmit.tcp_checksum = 1;
659 else
660 csum_info->transmit.udp_checksum = 1;
661 }
662 } else {
663 /* Can't do offload of this type of checksum */
664 if (skb_checksum_help(skb))
665 goto drop;
666 }
667 }
668
669 /* Start filling in the page buffers with the rndis hdr */
670 rndis_msg->msg_len += rndis_msg_size;
671 packet->total_data_buflen = rndis_msg->msg_len;
672 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
673 skb, packet, pb);
674
675 /* timestamp packet in software */
676 skb_tx_timestamp(skb);
677
678 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
679 if (likely(ret == 0))
680 return NETDEV_TX_OK;
681
682 if (ret == -EAGAIN) {
683 ++net_device_ctx->eth_stats.tx_busy;
684 return NETDEV_TX_BUSY;
685 }
686
687 if (ret == -ENOSPC)
688 ++net_device_ctx->eth_stats.tx_no_space;
689
690drop:
691 dev_kfree_skb_any(skb);
692 net->stats.tx_dropped++;
693
694 return NETDEV_TX_OK;
695
696no_memory:
697 ++net_device_ctx->eth_stats.tx_no_memory;
698 goto drop;
699}
700
701/*
702 * netvsc_linkstatus_callback - Link up/down notification
703 */
704void netvsc_linkstatus_callback(struct net_device *net,
705 struct rndis_message *resp)
706{
707 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
708 struct net_device_context *ndev_ctx = netdev_priv(net);
709 struct netvsc_reconfig *event;
710 unsigned long flags;
711
712 /* Update the physical link speed when changing to another vSwitch */
713 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
714 u32 speed;
715
716 speed = *(u32 *)((void *)indicate
717 + indicate->status_buf_offset) / 10000;
718 ndev_ctx->speed = speed;
719 return;
720 }
721
722 /* Handle these link change statuses below */
723 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
724 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
725 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
726 return;
727
728 if (net->reg_state != NETREG_REGISTERED)
729 return;
730
731 event = kzalloc(sizeof(*event), GFP_ATOMIC);
732 if (!event)
733 return;
734 event->event = indicate->status;
735
736 spin_lock_irqsave(&ndev_ctx->lock, flags);
737 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
738 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
739
740 schedule_delayed_work(&ndev_ctx->dwork, 0);
741}
742
743static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
744 struct napi_struct *napi,
745 const struct ndis_tcp_ip_checksum_info *csum_info,
746 const struct ndis_pkt_8021q_info *vlan,
747 void *data, u32 buflen)
748{
749 struct sk_buff *skb;
750
751 skb = napi_alloc_skb(napi, buflen);
752 if (!skb)
753 return skb;
754
755 /*
756 * Copy to skb. This copy is needed here since the memory pointed by
757 * hv_netvsc_packet cannot be deallocated
758 */
759 skb_put_data(skb, data, buflen);
760
761 skb->protocol = eth_type_trans(skb, net);
762
763 /* skb is already created with CHECKSUM_NONE */
764 skb_checksum_none_assert(skb);
765
766 /*
767 * In Linux, the IP checksum is always checked.
768 * Do L4 checksum offload if enabled and present.
769 */
770 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
771 if (csum_info->receive.tcp_checksum_succeeded ||
772 csum_info->receive.udp_checksum_succeeded)
773 skb->ip_summed = CHECKSUM_UNNECESSARY;
774 }
775
776 if (vlan) {
777 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
778
779 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
780 vlan_tci);
781 }
782
783 return skb;
784}
785
786/*
787 * netvsc_recv_callback - Callback when we receive a packet from the
788 * "wire" on the specified device.
789 */
790int netvsc_recv_callback(struct net_device *net,
791 struct netvsc_device *net_device,
792 struct vmbus_channel *channel,
793 void *data, u32 len,
794 const struct ndis_tcp_ip_checksum_info *csum_info,
795 const struct ndis_pkt_8021q_info *vlan)
796{
797 struct net_device_context *net_device_ctx = netdev_priv(net);
798 u16 q_idx = channel->offermsg.offer.sub_channel_index;
799 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
800 struct sk_buff *skb;
801 struct netvsc_stats *rx_stats;
802
803 if (net->reg_state != NETREG_REGISTERED)
804 return NVSP_STAT_FAIL;
805
806 /* Allocate a skb - TODO direct I/O to pages? */
807 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
808 csum_info, vlan, data, len);
809 if (unlikely(!skb)) {
810 ++net_device_ctx->eth_stats.rx_no_memory;
811 rcu_read_unlock();
812 return NVSP_STAT_FAIL;
813 }
814
815 skb_record_rx_queue(skb, q_idx);
816
817 /*
818 * Even if injecting the packet, record the statistics
819 * on the synthetic device because modifying the VF device
820 * statistics will not work correctly.
821 */
822 rx_stats = &nvchan->rx_stats;
823 u64_stats_update_begin(&rx_stats->syncp);
824 rx_stats->packets++;
825 rx_stats->bytes += len;
826
827 if (skb->pkt_type == PACKET_BROADCAST)
828 ++rx_stats->broadcast;
829 else if (skb->pkt_type == PACKET_MULTICAST)
830 ++rx_stats->multicast;
831 u64_stats_update_end(&rx_stats->syncp);
832
833 napi_gro_receive(&nvchan->napi, skb);
834 return NVSP_STAT_SUCCESS;
835}
836
837static void netvsc_get_drvinfo(struct net_device *net,
838 struct ethtool_drvinfo *info)
839{
840 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
841 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
842}
843
844static void netvsc_get_channels(struct net_device *net,
845 struct ethtool_channels *channel)
846{
847 struct net_device_context *net_device_ctx = netdev_priv(net);
848 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
849
850 if (nvdev) {
851 channel->max_combined = nvdev->max_chn;
852 channel->combined_count = nvdev->num_chn;
853 }
854}
855
856static int netvsc_detach(struct net_device *ndev,
857 struct netvsc_device *nvdev)
858{
859 struct net_device_context *ndev_ctx = netdev_priv(ndev);
860 struct hv_device *hdev = ndev_ctx->device_ctx;
861 int ret;
862
863 /* Don't try continuing to try and setup sub channels */
864 if (cancel_work_sync(&nvdev->subchan_work))
865 nvdev->num_chn = 1;
866
867 /* If device was up (receiving) then shutdown */
868 if (netif_running(ndev)) {
869 netif_tx_disable(ndev);
870
871 ret = rndis_filter_close(nvdev);
872 if (ret) {
873 netdev_err(ndev,
874 "unable to close device (ret %d).\n", ret);
875 return ret;
876 }
877
878 ret = netvsc_wait_until_empty(nvdev);
879 if (ret) {
880 netdev_err(ndev,
881 "Ring buffer not empty after closing rndis\n");
882 return ret;
883 }
884 }
885
886 netif_device_detach(ndev);
887
888 rndis_filter_device_remove(hdev, nvdev);
889
890 return 0;
891}
892
893static int netvsc_attach(struct net_device *ndev,
894 struct netvsc_device_info *dev_info)
895{
896 struct net_device_context *ndev_ctx = netdev_priv(ndev);
897 struct hv_device *hdev = ndev_ctx->device_ctx;
898 struct netvsc_device *nvdev;
899 struct rndis_device *rdev;
900 int ret;
901
902 nvdev = rndis_filter_device_add(hdev, dev_info);
903 if (IS_ERR(nvdev))
904 return PTR_ERR(nvdev);
905
906 /* Note: enable and attach happen when sub-channels setup */
907
908 netif_carrier_off(ndev);
909
910 if (netif_running(ndev)) {
911 ret = rndis_filter_open(nvdev);
912 if (ret)
913 return ret;
914
915 rdev = nvdev->extension;
916 if (!rdev->link_state)
917 netif_carrier_on(ndev);
918 }
919
920 return 0;
921}
922
923static int netvsc_set_channels(struct net_device *net,
924 struct ethtool_channels *channels)
925{
926 struct net_device_context *net_device_ctx = netdev_priv(net);
927 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
928 unsigned int orig, count = channels->combined_count;
929 struct netvsc_device_info device_info;
930 int ret;
931
932 /* We do not support separate count for rx, tx, or other */
933 if (count == 0 ||
934 channels->rx_count || channels->tx_count || channels->other_count)
935 return -EINVAL;
936
937 if (!nvdev || nvdev->destroy)
938 return -ENODEV;
939
940 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
941 return -EINVAL;
942
943 if (count > nvdev->max_chn)
944 return -EINVAL;
945
946 orig = nvdev->num_chn;
947
948 memset(&device_info, 0, sizeof(device_info));
949 device_info.num_chn = count;
950 device_info.send_sections = nvdev->send_section_cnt;
951 device_info.send_section_size = nvdev->send_section_size;
952 device_info.recv_sections = nvdev->recv_section_cnt;
953 device_info.recv_section_size = nvdev->recv_section_size;
954
955 ret = netvsc_detach(net, nvdev);
956 if (ret)
957 return ret;
958
959 ret = netvsc_attach(net, &device_info);
960 if (ret) {
961 device_info.num_chn = orig;
962 if (netvsc_attach(net, &device_info))
963 netdev_err(net, "restoring channel setting failed\n");
964 }
965
966 return ret;
967}
968
969static bool
970netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
971{
972 struct ethtool_link_ksettings diff1 = *cmd;
973 struct ethtool_link_ksettings diff2 = {};
974
975 diff1.base.speed = 0;
976 diff1.base.duplex = 0;
977 /* advertising and cmd are usually set */
978 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
979 diff1.base.cmd = 0;
980 /* We set port to PORT_OTHER */
981 diff2.base.port = PORT_OTHER;
982
983 return !memcmp(&diff1, &diff2, sizeof(diff1));
984}
985
986static void netvsc_init_settings(struct net_device *dev)
987{
988 struct net_device_context *ndc = netdev_priv(dev);
989
990 ndc->l4_hash = HV_DEFAULT_L4HASH;
991
992 ndc->speed = SPEED_UNKNOWN;
993 ndc->duplex = DUPLEX_FULL;
994}
995
996static int netvsc_get_link_ksettings(struct net_device *dev,
997 struct ethtool_link_ksettings *cmd)
998{
999 struct net_device_context *ndc = netdev_priv(dev);
1000
1001 cmd->base.speed = ndc->speed;
1002 cmd->base.duplex = ndc->duplex;
1003 cmd->base.port = PORT_OTHER;
1004
1005 return 0;
1006}
1007
1008static int netvsc_set_link_ksettings(struct net_device *dev,
1009 const struct ethtool_link_ksettings *cmd)
1010{
1011 struct net_device_context *ndc = netdev_priv(dev);
1012 u32 speed;
1013
1014 speed = cmd->base.speed;
1015 if (!ethtool_validate_speed(speed) ||
1016 !ethtool_validate_duplex(cmd->base.duplex) ||
1017 !netvsc_validate_ethtool_ss_cmd(cmd))
1018 return -EINVAL;
1019
1020 ndc->speed = speed;
1021 ndc->duplex = cmd->base.duplex;
1022
1023 return 0;
1024}
1025
1026static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027{
1028 struct net_device_context *ndevctx = netdev_priv(ndev);
1029 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031 int orig_mtu = ndev->mtu;
1032 struct netvsc_device_info device_info;
1033 int ret = 0;
1034
1035 if (!nvdev || nvdev->destroy)
1036 return -ENODEV;
1037
1038 /* Change MTU of underlying VF netdev first. */
1039 if (vf_netdev) {
1040 ret = dev_set_mtu(vf_netdev, mtu);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 memset(&device_info, 0, sizeof(device_info));
1046 device_info.num_chn = nvdev->num_chn;
1047 device_info.send_sections = nvdev->send_section_cnt;
1048 device_info.send_section_size = nvdev->send_section_size;
1049 device_info.recv_sections = nvdev->recv_section_cnt;
1050 device_info.recv_section_size = nvdev->recv_section_size;
1051
1052 ret = netvsc_detach(ndev, nvdev);
1053 if (ret)
1054 goto rollback_vf;
1055
1056 ndev->mtu = mtu;
1057
1058 ret = netvsc_attach(ndev, &device_info);
1059 if (ret)
1060 goto rollback;
1061
1062 return 0;
1063
1064rollback:
1065 /* Attempt rollback to original MTU */
1066 ndev->mtu = orig_mtu;
1067
1068 if (netvsc_attach(ndev, &device_info))
1069 netdev_err(ndev, "restoring mtu failed\n");
1070rollback_vf:
1071 if (vf_netdev)
1072 dev_set_mtu(vf_netdev, orig_mtu);
1073
1074 return ret;
1075}
1076
1077static void netvsc_get_vf_stats(struct net_device *net,
1078 struct netvsc_vf_pcpu_stats *tot)
1079{
1080 struct net_device_context *ndev_ctx = netdev_priv(net);
1081 int i;
1082
1083 memset(tot, 0, sizeof(*tot));
1084
1085 for_each_possible_cpu(i) {
1086 const struct netvsc_vf_pcpu_stats *stats
1087 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1088 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089 unsigned int start;
1090
1091 do {
1092 start = u64_stats_fetch_begin_irq(&stats->syncp);
1093 rx_packets = stats->rx_packets;
1094 tx_packets = stats->tx_packets;
1095 rx_bytes = stats->rx_bytes;
1096 tx_bytes = stats->tx_bytes;
1097 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099 tot->rx_packets += rx_packets;
1100 tot->tx_packets += tx_packets;
1101 tot->rx_bytes += rx_bytes;
1102 tot->tx_bytes += tx_bytes;
1103 tot->tx_dropped += stats->tx_dropped;
1104 }
1105}
1106
1107static void netvsc_get_stats64(struct net_device *net,
1108 struct rtnl_link_stats64 *t)
1109{
1110 struct net_device_context *ndev_ctx = netdev_priv(net);
1111 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112 struct netvsc_vf_pcpu_stats vf_tot;
1113 int i;
1114
1115 if (!nvdev)
1116 return;
1117
1118 netdev_stats_to_stats64(t, &net->stats);
1119
1120 netvsc_get_vf_stats(net, &vf_tot);
1121 t->rx_packets += vf_tot.rx_packets;
1122 t->tx_packets += vf_tot.tx_packets;
1123 t->rx_bytes += vf_tot.rx_bytes;
1124 t->tx_bytes += vf_tot.tx_bytes;
1125 t->tx_dropped += vf_tot.tx_dropped;
1126
1127 for (i = 0; i < nvdev->num_chn; i++) {
1128 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129 const struct netvsc_stats *stats;
1130 u64 packets, bytes, multicast;
1131 unsigned int start;
1132
1133 stats = &nvchan->tx_stats;
1134 do {
1135 start = u64_stats_fetch_begin_irq(&stats->syncp);
1136 packets = stats->packets;
1137 bytes = stats->bytes;
1138 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140 t->tx_bytes += bytes;
1141 t->tx_packets += packets;
1142
1143 stats = &nvchan->rx_stats;
1144 do {
1145 start = u64_stats_fetch_begin_irq(&stats->syncp);
1146 packets = stats->packets;
1147 bytes = stats->bytes;
1148 multicast = stats->multicast + stats->broadcast;
1149 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151 t->rx_bytes += bytes;
1152 t->rx_packets += packets;
1153 t->multicast += multicast;
1154 }
1155}
1156
1157static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158{
1159 struct net_device_context *ndc = netdev_priv(ndev);
1160 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162 struct sockaddr *addr = p;
1163 int err;
1164
1165 err = eth_prepare_mac_addr_change(ndev, p);
1166 if (err)
1167 return err;
1168
1169 if (!nvdev)
1170 return -ENODEV;
1171
1172 if (vf_netdev) {
1173 err = dev_set_mac_address(vf_netdev, addr);
1174 if (err)
1175 return err;
1176 }
1177
1178 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179 if (!err) {
1180 eth_commit_mac_addr_change(ndev, p);
1181 } else if (vf_netdev) {
1182 /* rollback change on VF */
1183 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184 dev_set_mac_address(vf_netdev, addr);
1185 }
1186
1187 return err;
1188}
1189
1190static const struct {
1191 char name[ETH_GSTRING_LEN];
1192 u16 offset;
1193} netvsc_stats[] = {
1194 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1204}, vf_stats[] = {
1205 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210};
1211
1212#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1213#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1214
1215/* 4 statistics per queue (rx/tx packets/bytes) */
1216#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1217
1218static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219{
1220 struct net_device_context *ndc = netdev_priv(dev);
1221 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223 if (!nvdev)
1224 return -ENODEV;
1225
1226 switch (string_set) {
1227 case ETH_SS_STATS:
1228 return NETVSC_GLOBAL_STATS_LEN
1229 + NETVSC_VF_STATS_LEN
1230 + NETVSC_QUEUE_STATS_LEN(nvdev);
1231 default:
1232 return -EINVAL;
1233 }
1234}
1235
1236static void netvsc_get_ethtool_stats(struct net_device *dev,
1237 struct ethtool_stats *stats, u64 *data)
1238{
1239 struct net_device_context *ndc = netdev_priv(dev);
1240 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241 const void *nds = &ndc->eth_stats;
1242 const struct netvsc_stats *qstats;
1243 struct netvsc_vf_pcpu_stats sum;
1244 unsigned int start;
1245 u64 packets, bytes;
1246 int i, j;
1247
1248 if (!nvdev)
1249 return;
1250
1251 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254 netvsc_get_vf_stats(dev, &sum);
1255 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258 for (j = 0; j < nvdev->num_chn; j++) {
1259 qstats = &nvdev->chan_table[j].tx_stats;
1260
1261 do {
1262 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263 packets = qstats->packets;
1264 bytes = qstats->bytes;
1265 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1266 data[i++] = packets;
1267 data[i++] = bytes;
1268
1269 qstats = &nvdev->chan_table[j].rx_stats;
1270 do {
1271 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272 packets = qstats->packets;
1273 bytes = qstats->bytes;
1274 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1275 data[i++] = packets;
1276 data[i++] = bytes;
1277 }
1278}
1279
1280static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281{
1282 struct net_device_context *ndc = netdev_priv(dev);
1283 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284 u8 *p = data;
1285 int i;
1286
1287 if (!nvdev)
1288 return;
1289
1290 switch (stringset) {
1291 case ETH_SS_STATS:
1292 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294 p += ETH_GSTRING_LEN;
1295 }
1296
1297 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299 p += ETH_GSTRING_LEN;
1300 }
1301
1302 for (i = 0; i < nvdev->num_chn; i++) {
1303 sprintf(p, "tx_queue_%u_packets", i);
1304 p += ETH_GSTRING_LEN;
1305 sprintf(p, "tx_queue_%u_bytes", i);
1306 p += ETH_GSTRING_LEN;
1307 sprintf(p, "rx_queue_%u_packets", i);
1308 p += ETH_GSTRING_LEN;
1309 sprintf(p, "rx_queue_%u_bytes", i);
1310 p += ETH_GSTRING_LEN;
1311 }
1312
1313 break;
1314 }
1315}
1316
1317static int
1318netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319 struct ethtool_rxnfc *info)
1320{
1321 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323 info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325 switch (info->flow_type) {
1326 case TCP_V4_FLOW:
1327 if (ndc->l4_hash & HV_TCP4_L4HASH)
1328 info->data |= l4_flag;
1329
1330 break;
1331
1332 case TCP_V6_FLOW:
1333 if (ndc->l4_hash & HV_TCP6_L4HASH)
1334 info->data |= l4_flag;
1335
1336 break;
1337
1338 case UDP_V4_FLOW:
1339 if (ndc->l4_hash & HV_UDP4_L4HASH)
1340 info->data |= l4_flag;
1341
1342 break;
1343
1344 case UDP_V6_FLOW:
1345 if (ndc->l4_hash & HV_UDP6_L4HASH)
1346 info->data |= l4_flag;
1347
1348 break;
1349
1350 case IPV4_FLOW:
1351 case IPV6_FLOW:
1352 break;
1353 default:
1354 info->data = 0;
1355 break;
1356 }
1357
1358 return 0;
1359}
1360
1361static int
1362netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363 u32 *rules)
1364{
1365 struct net_device_context *ndc = netdev_priv(dev);
1366 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368 if (!nvdev)
1369 return -ENODEV;
1370
1371 switch (info->cmd) {
1372 case ETHTOOL_GRXRINGS:
1373 info->data = nvdev->num_chn;
1374 return 0;
1375
1376 case ETHTOOL_GRXFH:
1377 return netvsc_get_rss_hash_opts(ndc, info);
1378 }
1379 return -EOPNOTSUPP;
1380}
1381
1382static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383 struct ethtool_rxnfc *info)
1384{
1385 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387 switch (info->flow_type) {
1388 case TCP_V4_FLOW:
1389 ndc->l4_hash |= HV_TCP4_L4HASH;
1390 break;
1391
1392 case TCP_V6_FLOW:
1393 ndc->l4_hash |= HV_TCP6_L4HASH;
1394 break;
1395
1396 case UDP_V4_FLOW:
1397 ndc->l4_hash |= HV_UDP4_L4HASH;
1398 break;
1399
1400 case UDP_V6_FLOW:
1401 ndc->l4_hash |= HV_UDP6_L4HASH;
1402 break;
1403
1404 default:
1405 return -EOPNOTSUPP;
1406 }
1407
1408 return 0;
1409 }
1410
1411 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412 switch (info->flow_type) {
1413 case TCP_V4_FLOW:
1414 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415 break;
1416
1417 case TCP_V6_FLOW:
1418 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419 break;
1420
1421 case UDP_V4_FLOW:
1422 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423 break;
1424
1425 case UDP_V6_FLOW:
1426 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427 break;
1428
1429 default:
1430 return -EOPNOTSUPP;
1431 }
1432
1433 return 0;
1434 }
1435
1436 return -EOPNOTSUPP;
1437}
1438
1439static int
1440netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441{
1442 struct net_device_context *ndc = netdev_priv(ndev);
1443
1444 if (info->cmd == ETHTOOL_SRXFH)
1445 return netvsc_set_rss_hash_opts(ndc, info);
1446
1447 return -EOPNOTSUPP;
1448}
1449
1450#ifdef CONFIG_NET_POLL_CONTROLLER
1451static void netvsc_poll_controller(struct net_device *dev)
1452{
1453 struct net_device_context *ndc = netdev_priv(dev);
1454 struct netvsc_device *ndev;
1455 int i;
1456
1457 rcu_read_lock();
1458 ndev = rcu_dereference(ndc->nvdev);
1459 if (ndev) {
1460 for (i = 0; i < ndev->num_chn; i++) {
1461 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463 napi_schedule(&nvchan->napi);
1464 }
1465 }
1466 rcu_read_unlock();
1467}
1468#endif
1469
1470static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471{
1472 return NETVSC_HASH_KEYLEN;
1473}
1474
1475static u32 netvsc_rss_indir_size(struct net_device *dev)
1476{
1477 return ITAB_NUM;
1478}
1479
1480static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481 u8 *hfunc)
1482{
1483 struct net_device_context *ndc = netdev_priv(dev);
1484 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485 struct rndis_device *rndis_dev;
1486 int i;
1487
1488 if (!ndev)
1489 return -ENODEV;
1490
1491 if (hfunc)
1492 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1493
1494 rndis_dev = ndev->extension;
1495 if (indir) {
1496 for (i = 0; i < ITAB_NUM; i++)
1497 indir[i] = rndis_dev->rx_table[i];
1498 }
1499
1500 if (key)
1501 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503 return 0;
1504}
1505
1506static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507 const u8 *key, const u8 hfunc)
1508{
1509 struct net_device_context *ndc = netdev_priv(dev);
1510 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511 struct rndis_device *rndis_dev;
1512 int i;
1513
1514 if (!ndev)
1515 return -ENODEV;
1516
1517 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1518 return -EOPNOTSUPP;
1519
1520 rndis_dev = ndev->extension;
1521 if (indir) {
1522 for (i = 0; i < ITAB_NUM; i++)
1523 if (indir[i] >= ndev->num_chn)
1524 return -EINVAL;
1525
1526 for (i = 0; i < ITAB_NUM; i++)
1527 rndis_dev->rx_table[i] = indir[i];
1528 }
1529
1530 if (!key) {
1531 if (!indir)
1532 return 0;
1533
1534 key = rndis_dev->rss_key;
1535 }
1536
1537 return rndis_filter_set_rss_param(rndis_dev, key);
1538}
1539
1540/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541 * It does have pre-allocated receive area which is divided into sections.
1542 */
1543static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544 struct ethtool_ringparam *ring)
1545{
1546 u32 max_buf_size;
1547
1548 ring->rx_pending = nvdev->recv_section_cnt;
1549 ring->tx_pending = nvdev->send_section_cnt;
1550
1551 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553 else
1554 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558 / nvdev->send_section_size;
1559}
1560
1561static void netvsc_get_ringparam(struct net_device *ndev,
1562 struct ethtool_ringparam *ring)
1563{
1564 struct net_device_context *ndevctx = netdev_priv(ndev);
1565 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567 if (!nvdev)
1568 return;
1569
1570 __netvsc_get_ringparam(nvdev, ring);
1571}
1572
1573static int netvsc_set_ringparam(struct net_device *ndev,
1574 struct ethtool_ringparam *ring)
1575{
1576 struct net_device_context *ndevctx = netdev_priv(ndev);
1577 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578 struct netvsc_device_info device_info;
1579 struct ethtool_ringparam orig;
1580 u32 new_tx, new_rx;
1581 int ret = 0;
1582
1583 if (!nvdev || nvdev->destroy)
1584 return -ENODEV;
1585
1586 memset(&orig, 0, sizeof(orig));
1587 __netvsc_get_ringparam(nvdev, &orig);
1588
1589 new_tx = clamp_t(u32, ring->tx_pending,
1590 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591 new_rx = clamp_t(u32, ring->rx_pending,
1592 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594 if (new_tx == orig.tx_pending &&
1595 new_rx == orig.rx_pending)
1596 return 0; /* no change */
1597
1598 memset(&device_info, 0, sizeof(device_info));
1599 device_info.num_chn = nvdev->num_chn;
1600 device_info.send_sections = new_tx;
1601 device_info.send_section_size = nvdev->send_section_size;
1602 device_info.recv_sections = new_rx;
1603 device_info.recv_section_size = nvdev->recv_section_size;
1604
1605 ret = netvsc_detach(ndev, nvdev);
1606 if (ret)
1607 return ret;
1608
1609 ret = netvsc_attach(ndev, &device_info);
1610 if (ret) {
1611 device_info.send_sections = orig.tx_pending;
1612 device_info.recv_sections = orig.rx_pending;
1613
1614 if (netvsc_attach(ndev, &device_info))
1615 netdev_err(ndev, "restoring ringparam failed");
1616 }
1617
1618 return ret;
1619}
1620
1621static const struct ethtool_ops ethtool_ops = {
1622 .get_drvinfo = netvsc_get_drvinfo,
1623 .get_link = ethtool_op_get_link,
1624 .get_ethtool_stats = netvsc_get_ethtool_stats,
1625 .get_sset_count = netvsc_get_sset_count,
1626 .get_strings = netvsc_get_strings,
1627 .get_channels = netvsc_get_channels,
1628 .set_channels = netvsc_set_channels,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = netvsc_get_rxnfc,
1631 .set_rxnfc = netvsc_set_rxnfc,
1632 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633 .get_rxfh_indir_size = netvsc_rss_indir_size,
1634 .get_rxfh = netvsc_get_rxfh,
1635 .set_rxfh = netvsc_set_rxfh,
1636 .get_link_ksettings = netvsc_get_link_ksettings,
1637 .set_link_ksettings = netvsc_set_link_ksettings,
1638 .get_ringparam = netvsc_get_ringparam,
1639 .set_ringparam = netvsc_set_ringparam,
1640};
1641
1642static const struct net_device_ops device_ops = {
1643 .ndo_open = netvsc_open,
1644 .ndo_stop = netvsc_close,
1645 .ndo_start_xmit = netvsc_start_xmit,
1646 .ndo_change_rx_flags = netvsc_change_rx_flags,
1647 .ndo_set_rx_mode = netvsc_set_rx_mode,
1648 .ndo_change_mtu = netvsc_change_mtu,
1649 .ndo_validate_addr = eth_validate_addr,
1650 .ndo_set_mac_address = netvsc_set_mac_addr,
1651 .ndo_select_queue = netvsc_select_queue,
1652 .ndo_get_stats64 = netvsc_get_stats64,
1653#ifdef CONFIG_NET_POLL_CONTROLLER
1654 .ndo_poll_controller = netvsc_poll_controller,
1655#endif
1656};
1657
1658/*
1659 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661 * present send GARP packet to network peers with netif_notify_peers().
1662 */
1663static void netvsc_link_change(struct work_struct *w)
1664{
1665 struct net_device_context *ndev_ctx =
1666 container_of(w, struct net_device_context, dwork.work);
1667 struct hv_device *device_obj = ndev_ctx->device_ctx;
1668 struct net_device *net = hv_get_drvdata(device_obj);
1669 struct netvsc_device *net_device;
1670 struct rndis_device *rdev;
1671 struct netvsc_reconfig *event = NULL;
1672 bool notify = false, reschedule = false;
1673 unsigned long flags, next_reconfig, delay;
1674
1675 /* if changes are happening, comeback later */
1676 if (!rtnl_trylock()) {
1677 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678 return;
1679 }
1680
1681 net_device = rtnl_dereference(ndev_ctx->nvdev);
1682 if (!net_device)
1683 goto out_unlock;
1684
1685 rdev = net_device->extension;
1686
1687 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688 if (time_is_after_jiffies(next_reconfig)) {
1689 /* link_watch only sends one notification with current state
1690 * per second, avoid doing reconfig more frequently. Handle
1691 * wrap around.
1692 */
1693 delay = next_reconfig - jiffies;
1694 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695 schedule_delayed_work(&ndev_ctx->dwork, delay);
1696 goto out_unlock;
1697 }
1698 ndev_ctx->last_reconfig = jiffies;
1699
1700 spin_lock_irqsave(&ndev_ctx->lock, flags);
1701 if (!list_empty(&ndev_ctx->reconfig_events)) {
1702 event = list_first_entry(&ndev_ctx->reconfig_events,
1703 struct netvsc_reconfig, list);
1704 list_del(&event->list);
1705 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706 }
1707 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709 if (!event)
1710 goto out_unlock;
1711
1712 switch (event->event) {
1713 /* Only the following events are possible due to the check in
1714 * netvsc_linkstatus_callback()
1715 */
1716 case RNDIS_STATUS_MEDIA_CONNECT:
1717 if (rdev->link_state) {
1718 rdev->link_state = false;
1719 netif_carrier_on(net);
1720 netif_tx_wake_all_queues(net);
1721 } else {
1722 notify = true;
1723 }
1724 kfree(event);
1725 break;
1726 case RNDIS_STATUS_MEDIA_DISCONNECT:
1727 if (!rdev->link_state) {
1728 rdev->link_state = true;
1729 netif_carrier_off(net);
1730 netif_tx_stop_all_queues(net);
1731 }
1732 kfree(event);
1733 break;
1734 case RNDIS_STATUS_NETWORK_CHANGE:
1735 /* Only makes sense if carrier is present */
1736 if (!rdev->link_state) {
1737 rdev->link_state = true;
1738 netif_carrier_off(net);
1739 netif_tx_stop_all_queues(net);
1740 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741 spin_lock_irqsave(&ndev_ctx->lock, flags);
1742 list_add(&event->list, &ndev_ctx->reconfig_events);
1743 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744 reschedule = true;
1745 }
1746 break;
1747 }
1748
1749 rtnl_unlock();
1750
1751 if (notify)
1752 netdev_notify_peers(net);
1753
1754 /* link_watch only sends one notification with current state per
1755 * second, handle next reconfig event in 2 seconds.
1756 */
1757 if (reschedule)
1758 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760 return;
1761
1762out_unlock:
1763 rtnl_unlock();
1764}
1765
1766static struct net_device *get_netvsc_bymac(const u8 *mac)
1767{
1768 struct net_device *dev;
1769
1770 ASSERT_RTNL();
1771
1772 for_each_netdev(&init_net, dev) {
1773 if (dev->netdev_ops != &device_ops)
1774 continue; /* not a netvsc device */
1775
1776 if (ether_addr_equal(mac, dev->perm_addr))
1777 return dev;
1778 }
1779
1780 return NULL;
1781}
1782
1783static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784{
1785 struct net_device *dev;
1786
1787 ASSERT_RTNL();
1788
1789 for_each_netdev(&init_net, dev) {
1790 struct net_device_context *net_device_ctx;
1791
1792 if (dev->netdev_ops != &device_ops)
1793 continue; /* not a netvsc device */
1794
1795 net_device_ctx = netdev_priv(dev);
1796 if (!rtnl_dereference(net_device_ctx->nvdev))
1797 continue; /* device is removed */
1798
1799 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800 return dev; /* a match */
1801 }
1802
1803 return NULL;
1804}
1805
1806/* Called when VF is injecting data into network stack.
1807 * Change the associated network device from VF to netvsc.
1808 * note: already called with rcu_read_lock
1809 */
1810static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811{
1812 struct sk_buff *skb = *pskb;
1813 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815 struct netvsc_vf_pcpu_stats *pcpu_stats
1816 = this_cpu_ptr(ndev_ctx->vf_stats);
1817
1818 skb->dev = ndev;
1819
1820 u64_stats_update_begin(&pcpu_stats->syncp);
1821 pcpu_stats->rx_packets++;
1822 pcpu_stats->rx_bytes += skb->len;
1823 u64_stats_update_end(&pcpu_stats->syncp);
1824
1825 return RX_HANDLER_ANOTHER;
1826}
1827
1828static int netvsc_vf_join(struct net_device *vf_netdev,
1829 struct net_device *ndev)
1830{
1831 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832 int ret;
1833
1834 ret = netdev_rx_handler_register(vf_netdev,
1835 netvsc_vf_handle_frame, ndev);
1836 if (ret != 0) {
1837 netdev_err(vf_netdev,
1838 "can not register netvsc VF receive handler (err = %d)\n",
1839 ret);
1840 goto rx_handler_failed;
1841 }
1842
1843 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1844 NULL, NULL, NULL);
1845 if (ret != 0) {
1846 netdev_err(vf_netdev,
1847 "can not set master device %s (err = %d)\n",
1848 ndev->name, ret);
1849 goto upper_link_failed;
1850 }
1851
1852 /* set slave flag before open to prevent IPv6 addrconf */
1853 vf_netdev->flags |= IFF_SLAVE;
1854
1855 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1856
1857 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1858
1859 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1860 return 0;
1861
1862upper_link_failed:
1863 netdev_rx_handler_unregister(vf_netdev);
1864rx_handler_failed:
1865 return ret;
1866}
1867
1868static void __netvsc_vf_setup(struct net_device *ndev,
1869 struct net_device *vf_netdev)
1870{
1871 int ret;
1872
1873 /* Align MTU of VF with master */
1874 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1875 if (ret)
1876 netdev_warn(vf_netdev,
1877 "unable to change mtu to %u\n", ndev->mtu);
1878
1879 /* set multicast etc flags on VF */
1880 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1881
1882 /* sync address list from ndev to VF */
1883 netif_addr_lock_bh(ndev);
1884 dev_uc_sync(vf_netdev, ndev);
1885 dev_mc_sync(vf_netdev, ndev);
1886 netif_addr_unlock_bh(ndev);
1887
1888 if (netif_running(ndev)) {
1889 ret = dev_open(vf_netdev);
1890 if (ret)
1891 netdev_warn(vf_netdev,
1892 "unable to open: %d\n", ret);
1893 }
1894}
1895
1896/* Setup VF as slave of the synthetic device.
1897 * Runs in workqueue to avoid recursion in netlink callbacks.
1898 */
1899static void netvsc_vf_setup(struct work_struct *w)
1900{
1901 struct net_device_context *ndev_ctx
1902 = container_of(w, struct net_device_context, vf_takeover.work);
1903 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1904 struct net_device *vf_netdev;
1905
1906 if (!rtnl_trylock()) {
1907 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1908 return;
1909 }
1910
1911 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1912 if (vf_netdev)
1913 __netvsc_vf_setup(ndev, vf_netdev);
1914
1915 rtnl_unlock();
1916}
1917
1918static int netvsc_register_vf(struct net_device *vf_netdev)
1919{
1920 struct net_device *ndev;
1921 struct net_device_context *net_device_ctx;
1922 struct netvsc_device *netvsc_dev;
1923
1924 if (vf_netdev->addr_len != ETH_ALEN)
1925 return NOTIFY_DONE;
1926
1927 /*
1928 * We will use the MAC address to locate the synthetic interface to
1929 * associate with the VF interface. If we don't find a matching
1930 * synthetic interface, move on.
1931 */
1932 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1933 if (!ndev)
1934 return NOTIFY_DONE;
1935
1936 net_device_ctx = netdev_priv(ndev);
1937 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1938 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1939 return NOTIFY_DONE;
1940
1941 if (netvsc_vf_join(vf_netdev, ndev) != 0)
1942 return NOTIFY_DONE;
1943
1944 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1945
1946 dev_hold(vf_netdev);
1947 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1948 return NOTIFY_OK;
1949}
1950
1951/* VF up/down change detected, schedule to change data path */
1952static int netvsc_vf_changed(struct net_device *vf_netdev)
1953{
1954 struct net_device_context *net_device_ctx;
1955 struct netvsc_device *netvsc_dev;
1956 struct net_device *ndev;
1957 bool vf_is_up = netif_running(vf_netdev);
1958
1959 ndev = get_netvsc_byref(vf_netdev);
1960 if (!ndev)
1961 return NOTIFY_DONE;
1962
1963 net_device_ctx = netdev_priv(ndev);
1964 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1965 if (!netvsc_dev)
1966 return NOTIFY_DONE;
1967
1968 netvsc_switch_datapath(ndev, vf_is_up);
1969 netdev_info(ndev, "Data path switched %s VF: %s\n",
1970 vf_is_up ? "to" : "from", vf_netdev->name);
1971
1972 return NOTIFY_OK;
1973}
1974
1975static int netvsc_unregister_vf(struct net_device *vf_netdev)
1976{
1977 struct net_device *ndev;
1978 struct net_device_context *net_device_ctx;
1979
1980 ndev = get_netvsc_byref(vf_netdev);
1981 if (!ndev)
1982 return NOTIFY_DONE;
1983
1984 net_device_ctx = netdev_priv(ndev);
1985 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1986
1987 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1988
1989 netdev_rx_handler_unregister(vf_netdev);
1990 netdev_upper_dev_unlink(vf_netdev, ndev);
1991 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1992 dev_put(vf_netdev);
1993
1994 return NOTIFY_OK;
1995}
1996
1997static int netvsc_probe(struct hv_device *dev,
1998 const struct hv_vmbus_device_id *dev_id)
1999{
2000 struct net_device *net = NULL;
2001 struct net_device_context *net_device_ctx;
2002 struct netvsc_device_info device_info;
2003 struct netvsc_device *nvdev;
2004 int ret = -ENOMEM;
2005
2006 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2007 VRSS_CHANNEL_MAX);
2008 if (!net)
2009 goto no_net;
2010
2011 netif_carrier_off(net);
2012
2013 netvsc_init_settings(net);
2014
2015 net_device_ctx = netdev_priv(net);
2016 net_device_ctx->device_ctx = dev;
2017 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2018 if (netif_msg_probe(net_device_ctx))
2019 netdev_dbg(net, "netvsc msg_enable: %d\n",
2020 net_device_ctx->msg_enable);
2021
2022 hv_set_drvdata(dev, net);
2023
2024 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2025
2026 spin_lock_init(&net_device_ctx->lock);
2027 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2028 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2029
2030 net_device_ctx->vf_stats
2031 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2032 if (!net_device_ctx->vf_stats)
2033 goto no_stats;
2034
2035 net->netdev_ops = &device_ops;
2036 net->ethtool_ops = ðtool_ops;
2037 SET_NETDEV_DEV(net, &dev->device);
2038
2039 /* We always need headroom for rndis header */
2040 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2041
2042 /* Initialize the number of queues to be 1, we may change it if more
2043 * channels are offered later.
2044 */
2045 netif_set_real_num_tx_queues(net, 1);
2046 netif_set_real_num_rx_queues(net, 1);
2047
2048 /* Notify the netvsc driver of the new device */
2049 memset(&device_info, 0, sizeof(device_info));
2050 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2051 device_info.send_sections = NETVSC_DEFAULT_TX;
2052 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2053 device_info.recv_sections = NETVSC_DEFAULT_RX;
2054 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2055
2056 nvdev = rndis_filter_device_add(dev, &device_info);
2057 if (IS_ERR(nvdev)) {
2058 ret = PTR_ERR(nvdev);
2059 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2060 goto rndis_failed;
2061 }
2062
2063 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2064
2065 /* hw_features computed in rndis_netdev_set_hwcaps() */
2066 net->features = net->hw_features |
2067 NETIF_F_HIGHDMA | NETIF_F_SG |
2068 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2069 net->vlan_features = net->features;
2070
2071 netdev_lockdep_set_classes(net);
2072
2073 /* MTU range: 68 - 1500 or 65521 */
2074 net->min_mtu = NETVSC_MTU_MIN;
2075 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2076 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2077 else
2078 net->max_mtu = ETH_DATA_LEN;
2079
2080 ret = register_netdev(net);
2081 if (ret != 0) {
2082 pr_err("Unable to register netdev.\n");
2083 goto register_failed;
2084 }
2085
2086 return ret;
2087
2088register_failed:
2089 rndis_filter_device_remove(dev, nvdev);
2090rndis_failed:
2091 free_percpu(net_device_ctx->vf_stats);
2092no_stats:
2093 hv_set_drvdata(dev, NULL);
2094 free_netdev(net);
2095no_net:
2096 return ret;
2097}
2098
2099static int netvsc_remove(struct hv_device *dev)
2100{
2101 struct net_device_context *ndev_ctx;
2102 struct net_device *vf_netdev, *net;
2103 struct netvsc_device *nvdev;
2104
2105 net = hv_get_drvdata(dev);
2106 if (net == NULL) {
2107 dev_err(&dev->device, "No net device to remove\n");
2108 return 0;
2109 }
2110
2111 ndev_ctx = netdev_priv(net);
2112
2113 cancel_delayed_work_sync(&ndev_ctx->dwork);
2114
2115 rcu_read_lock();
2116 nvdev = rcu_dereference(ndev_ctx->nvdev);
2117
2118 if (nvdev)
2119 cancel_work_sync(&nvdev->subchan_work);
2120
2121 /*
2122 * Call to the vsc driver to let it know that the device is being
2123 * removed. Also blocks mtu and channel changes.
2124 */
2125 rtnl_lock();
2126 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2127 if (vf_netdev)
2128 netvsc_unregister_vf(vf_netdev);
2129
2130 if (nvdev)
2131 rndis_filter_device_remove(dev, nvdev);
2132
2133 unregister_netdevice(net);
2134
2135 rtnl_unlock();
2136 rcu_read_unlock();
2137
2138 hv_set_drvdata(dev, NULL);
2139
2140 free_percpu(ndev_ctx->vf_stats);
2141 free_netdev(net);
2142 return 0;
2143}
2144
2145static const struct hv_vmbus_device_id id_table[] = {
2146 /* Network guid */
2147 { HV_NIC_GUID, },
2148 { },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153/* The one and only one */
2154static struct hv_driver netvsc_drv = {
2155 .name = KBUILD_MODNAME,
2156 .id_table = id_table,
2157 .probe = netvsc_probe,
2158 .remove = netvsc_remove,
2159};
2160
2161/*
2162 * On Hyper-V, every VF interface is matched with a corresponding
2163 * synthetic interface. The synthetic interface is presented first
2164 * to the guest. When the corresponding VF instance is registered,
2165 * we will take care of switching the data path.
2166 */
2167static int netvsc_netdev_event(struct notifier_block *this,
2168 unsigned long event, void *ptr)
2169{
2170 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2171
2172 /* Skip our own events */
2173 if (event_dev->netdev_ops == &device_ops)
2174 return NOTIFY_DONE;
2175
2176 /* Avoid non-Ethernet type devices */
2177 if (event_dev->type != ARPHRD_ETHER)
2178 return NOTIFY_DONE;
2179
2180 /* Avoid Vlan dev with same MAC registering as VF */
2181 if (is_vlan_dev(event_dev))
2182 return NOTIFY_DONE;
2183
2184 /* Avoid Bonding master dev with same MAC registering as VF */
2185 if ((event_dev->priv_flags & IFF_BONDING) &&
2186 (event_dev->flags & IFF_MASTER))
2187 return NOTIFY_DONE;
2188
2189 switch (event) {
2190 case NETDEV_REGISTER:
2191 return netvsc_register_vf(event_dev);
2192 case NETDEV_UNREGISTER:
2193 return netvsc_unregister_vf(event_dev);
2194 case NETDEV_UP:
2195 case NETDEV_DOWN:
2196 return netvsc_vf_changed(event_dev);
2197 default:
2198 return NOTIFY_DONE;
2199 }
2200}
2201
2202static struct notifier_block netvsc_netdev_notifier = {
2203 .notifier_call = netvsc_netdev_event,
2204};
2205
2206static void __exit netvsc_drv_exit(void)
2207{
2208 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2209 vmbus_driver_unregister(&netvsc_drv);
2210}
2211
2212static int __init netvsc_drv_init(void)
2213{
2214 int ret;
2215
2216 if (ring_size < RING_SIZE_MIN) {
2217 ring_size = RING_SIZE_MIN;
2218 pr_info("Increased ring_size to %u (min allowed)\n",
2219 ring_size);
2220 }
2221 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2222 netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2223
2224 ret = vmbus_driver_register(&netvsc_drv);
2225 if (ret)
2226 return ret;
2227
2228 register_netdevice_notifier(&netvsc_netdev_notifier);
2229 return 0;
2230}
2231
2232MODULE_LICENSE("GPL");
2233MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2234
2235module_init(netvsc_drv_init);
2236module_exit(netvsc_drv_exit);