Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28
29#include <net/arp.h>
30#include <net/route.h>
31#include <net/sock.h>
32#include <net/pkt_sched.h>
33#include <net/checksum.h>
34#include <net/ip6_checksum.h>
35
36#include "hyperv_net.h"
37
38#define RING_SIZE_MIN 64
39#define RETRY_US_LO 5000
40#define RETRY_US_HI 10000
41#define RETRY_MAX 2000 /* >10 sec */
42
43#define LINKCHANGE_INT (2 * HZ)
44#define VF_TAKEOVER_INT (HZ / 10)
45
46static unsigned int ring_size __ro_after_init = 128;
47module_param(ring_size, uint, 0444);
48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49unsigned int netvsc_ring_bytes __ro_after_init;
50
51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
55
56static int debug = -1;
57module_param(debug, int, 0444);
58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60static LIST_HEAD(netvsc_dev_list);
61
62static void netvsc_change_rx_flags(struct net_device *net, int change)
63{
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
67
68 if (!vf_netdev)
69 return;
70
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
74 }
75
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
79 }
80}
81
82static void netvsc_set_rx_mode(struct net_device *net)
83{
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
87
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
93 }
94
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
99}
100
101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
103{
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
106
107 netif_tx_wake_all_queues(ndev);
108}
109
110static int netvsc_open(struct net_device *net)
111{
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
117
118 netif_carrier_off(net);
119
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
125 }
126
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
131 }
132
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
137 */
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
143 }
144 return 0;
145}
146
147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148{
149 unsigned int retry = 0;
150 int i;
151
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
155
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
159
160 if (!chn)
161 continue;
162
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
165
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
169
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
173 }
174
175 if (aread == 0)
176 return 0;
177
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
180
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
182 }
183}
184
185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
187{
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
191 }
192
193 netif_tx_disable(ndev);
194}
195
196static int netvsc_close(struct net_device *net)
197{
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
203
204 netvsc_tx_disable(nvdev, net);
205
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
209
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
214 }
215
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220 if (vf_netdev)
221 dev_close(vf_netdev);
222
223 return ret;
224}
225
226static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
228{
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
231
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
235
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241 rndis_pkt->per_pkt_info_len += ppi_size;
242
243 return ppi + 1;
244}
245
246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
248 */
249static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
252{
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
256
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
261
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
268
269 break;
270
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
276
277 break;
278 }
279
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
289
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 }
292
293 return hash;
294}
295
296static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
298{
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
302
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
305
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
310
311 return q_idx;
312}
313
314/*
315 * Select queue for transmit.
316 *
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
319 *
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
322 *
323 * TODO support XPS - but get_xps_queue not exported
324 */
325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326{
327 int q_idx = sk_tx_queue_get(skb->sk);
328
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
332 */
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 }
338
339 return q_idx;
340}
341
342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
344{
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
348
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
362 */
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
366 }
367 rcu_read_unlock();
368
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
371
372 return txq;
373}
374
375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
377{
378 int j = 0;
379
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
382 */
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
385
386 while (len > 0) {
387 unsigned long bytes;
388
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
395
396 offset += bytes;
397 len -= bytes;
398
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
403 }
404 }
405
406 return j + 1;
407}
408
409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
412{
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
417
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
422 */
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
426
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
429
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 skb_frag_off(frag),
439 skb_frag_size(frag), &pb[slots_used]);
440 }
441 return slots_used;
442}
443
444static int count_skb_frag_slots(struct sk_buff *skb)
445{
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
448
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = skb_frag_off(frag);
453
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
457 }
458 return pages;
459}
460
461static int netvsc_get_slots(struct sk_buff *skb)
462{
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
468
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
472}
473
474static u32 net_checksum_info(struct sk_buff *skb)
475{
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
478
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
490 }
491
492 return TRANSPORT_INFO_NOT_IP;
493}
494
495/* Send skb on the slave VF device. */
496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
498{
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
502
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
510
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 }
518
519 return rc;
520}
521
522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523{
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
546 */
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
552
553 if (skb_linearize(skb))
554 goto no_memory;
555
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
560 }
561 }
562
563 /*
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
567 */
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
571
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
576
577 packet->q_idx = skb_get_queue_mapping(skb);
578
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
582
583 rndis_msg = (struct rndis_message *)skb->head;
584
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
588
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
593 };
594
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
600
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
605 }
606
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
609
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
613
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
618 }
619
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
622
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
626
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
660
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
667
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
672 }
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
677 }
678 }
679
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
685
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
688
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
692
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
696 }
697
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
700
701drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
704
705 return NETDEV_TX_OK;
706
707no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
710}
711
712/*
713 * netvsc_linkstatus_callback - Link up/down notification
714 */
715void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
717{
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
722
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
726
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
731 }
732
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
738
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
741
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
746
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
752}
753
754static void netvsc_comp_ipcsum(struct sk_buff *skb)
755{
756 struct iphdr *iph = (struct iphdr *)skb->data;
757
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
760}
761
762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
764{
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
771
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
775
776 /*
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
779 */
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783 skb->protocol = eth_type_trans(skb, net);
784
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
787
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
792 */
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
797
798 /* Do L4 checksum offload if enabled and present.
799 */
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
804 }
805
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
812 }
813
814 return skb;
815}
816
817/*
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
820 */
821int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
824{
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
830
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
833
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
836
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 return NVSP_STAT_FAIL;
840 }
841
842 skb_record_rx_queue(skb, q_idx);
843
844 /*
845 * Even if injecting the packet, record the statistics
846 * on the synthetic device because modifying the VF device
847 * statistics will not work correctly.
848 */
849 rx_stats = &nvchan->rx_stats;
850 u64_stats_update_begin(&rx_stats->syncp);
851 rx_stats->packets++;
852 rx_stats->bytes += nvchan->rsc.pktlen;
853
854 if (skb->pkt_type == PACKET_BROADCAST)
855 ++rx_stats->broadcast;
856 else if (skb->pkt_type == PACKET_MULTICAST)
857 ++rx_stats->multicast;
858 u64_stats_update_end(&rx_stats->syncp);
859
860 napi_gro_receive(&nvchan->napi, skb);
861 return NVSP_STAT_SUCCESS;
862}
863
864static void netvsc_get_drvinfo(struct net_device *net,
865 struct ethtool_drvinfo *info)
866{
867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869}
870
871static void netvsc_get_channels(struct net_device *net,
872 struct ethtool_channels *channel)
873{
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876
877 if (nvdev) {
878 channel->max_combined = nvdev->max_chn;
879 channel->combined_count = nvdev->num_chn;
880 }
881}
882
883/* Alloc struct netvsc_device_info, and initialize it from either existing
884 * struct netvsc_device, or from default values.
885 */
886static struct netvsc_device_info *netvsc_devinfo_get
887 (struct netvsc_device *nvdev)
888{
889 struct netvsc_device_info *dev_info;
890
891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892
893 if (!dev_info)
894 return NULL;
895
896 if (nvdev) {
897 dev_info->num_chn = nvdev->num_chn;
898 dev_info->send_sections = nvdev->send_section_cnt;
899 dev_info->send_section_size = nvdev->send_section_size;
900 dev_info->recv_sections = nvdev->recv_section_cnt;
901 dev_info->recv_section_size = nvdev->recv_section_size;
902
903 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 NETVSC_HASH_KEYLEN);
905 } else {
906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 dev_info->send_sections = NETVSC_DEFAULT_TX;
908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 }
912
913 return dev_info;
914}
915
916static int netvsc_detach(struct net_device *ndev,
917 struct netvsc_device *nvdev)
918{
919 struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 struct hv_device *hdev = ndev_ctx->device_ctx;
921 int ret;
922
923 /* Don't try continuing to try and setup sub channels */
924 if (cancel_work_sync(&nvdev->subchan_work))
925 nvdev->num_chn = 1;
926
927 /* If device was up (receiving) then shutdown */
928 if (netif_running(ndev)) {
929 netvsc_tx_disable(nvdev, ndev);
930
931 ret = rndis_filter_close(nvdev);
932 if (ret) {
933 netdev_err(ndev,
934 "unable to close device (ret %d).\n", ret);
935 return ret;
936 }
937
938 ret = netvsc_wait_until_empty(nvdev);
939 if (ret) {
940 netdev_err(ndev,
941 "Ring buffer not empty after closing rndis\n");
942 return ret;
943 }
944 }
945
946 netif_device_detach(ndev);
947
948 rndis_filter_device_remove(hdev, nvdev);
949
950 return 0;
951}
952
953static int netvsc_attach(struct net_device *ndev,
954 struct netvsc_device_info *dev_info)
955{
956 struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 struct hv_device *hdev = ndev_ctx->device_ctx;
958 struct netvsc_device *nvdev;
959 struct rndis_device *rdev;
960 int ret;
961
962 nvdev = rndis_filter_device_add(hdev, dev_info);
963 if (IS_ERR(nvdev))
964 return PTR_ERR(nvdev);
965
966 if (nvdev->num_chn > 1) {
967 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968
969 /* if unavailable, just proceed with one queue */
970 if (ret) {
971 nvdev->max_chn = 1;
972 nvdev->num_chn = 1;
973 }
974 }
975
976 /* In any case device is now ready */
977 netif_device_attach(ndev);
978
979 /* Note: enable and attach happen when sub-channels setup */
980 netif_carrier_off(ndev);
981
982 if (netif_running(ndev)) {
983 ret = rndis_filter_open(nvdev);
984 if (ret)
985 goto err;
986
987 rdev = nvdev->extension;
988 if (!rdev->link_state)
989 netif_carrier_on(ndev);
990 }
991
992 return 0;
993
994err:
995 netif_device_detach(ndev);
996
997 rndis_filter_device_remove(hdev, nvdev);
998
999 return ret;
1000}
1001
1002static int netvsc_set_channels(struct net_device *net,
1003 struct ethtool_channels *channels)
1004{
1005 struct net_device_context *net_device_ctx = netdev_priv(net);
1006 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007 unsigned int orig, count = channels->combined_count;
1008 struct netvsc_device_info *device_info;
1009 int ret;
1010
1011 /* We do not support separate count for rx, tx, or other */
1012 if (count == 0 ||
1013 channels->rx_count || channels->tx_count || channels->other_count)
1014 return -EINVAL;
1015
1016 if (!nvdev || nvdev->destroy)
1017 return -ENODEV;
1018
1019 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020 return -EINVAL;
1021
1022 if (count > nvdev->max_chn)
1023 return -EINVAL;
1024
1025 orig = nvdev->num_chn;
1026
1027 device_info = netvsc_devinfo_get(nvdev);
1028
1029 if (!device_info)
1030 return -ENOMEM;
1031
1032 device_info->num_chn = count;
1033
1034 ret = netvsc_detach(net, nvdev);
1035 if (ret)
1036 goto out;
1037
1038 ret = netvsc_attach(net, device_info);
1039 if (ret) {
1040 device_info->num_chn = orig;
1041 if (netvsc_attach(net, device_info))
1042 netdev_err(net, "restoring channel setting failed\n");
1043 }
1044
1045out:
1046 kfree(device_info);
1047 return ret;
1048}
1049
1050static bool
1051netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052{
1053 struct ethtool_link_ksettings diff1 = *cmd;
1054 struct ethtool_link_ksettings diff2 = {};
1055
1056 diff1.base.speed = 0;
1057 diff1.base.duplex = 0;
1058 /* advertising and cmd are usually set */
1059 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060 diff1.base.cmd = 0;
1061 /* We set port to PORT_OTHER */
1062 diff2.base.port = PORT_OTHER;
1063
1064 return !memcmp(&diff1, &diff2, sizeof(diff1));
1065}
1066
1067static void netvsc_init_settings(struct net_device *dev)
1068{
1069 struct net_device_context *ndc = netdev_priv(dev);
1070
1071 ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073 ndc->speed = SPEED_UNKNOWN;
1074 ndc->duplex = DUPLEX_FULL;
1075
1076 dev->features = NETIF_F_LRO;
1077}
1078
1079static int netvsc_get_link_ksettings(struct net_device *dev,
1080 struct ethtool_link_ksettings *cmd)
1081{
1082 struct net_device_context *ndc = netdev_priv(dev);
1083
1084 cmd->base.speed = ndc->speed;
1085 cmd->base.duplex = ndc->duplex;
1086 cmd->base.port = PORT_OTHER;
1087
1088 return 0;
1089}
1090
1091static int netvsc_set_link_ksettings(struct net_device *dev,
1092 const struct ethtool_link_ksettings *cmd)
1093{
1094 struct net_device_context *ndc = netdev_priv(dev);
1095 u32 speed;
1096
1097 speed = cmd->base.speed;
1098 if (!ethtool_validate_speed(speed) ||
1099 !ethtool_validate_duplex(cmd->base.duplex) ||
1100 !netvsc_validate_ethtool_ss_cmd(cmd))
1101 return -EINVAL;
1102
1103 ndc->speed = speed;
1104 ndc->duplex = cmd->base.duplex;
1105
1106 return 0;
1107}
1108
1109static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110{
1111 struct net_device_context *ndevctx = netdev_priv(ndev);
1112 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114 int orig_mtu = ndev->mtu;
1115 struct netvsc_device_info *device_info;
1116 int ret = 0;
1117
1118 if (!nvdev || nvdev->destroy)
1119 return -ENODEV;
1120
1121 device_info = netvsc_devinfo_get(nvdev);
1122
1123 if (!device_info)
1124 return -ENOMEM;
1125
1126 /* Change MTU of underlying VF netdev first. */
1127 if (vf_netdev) {
1128 ret = dev_set_mtu(vf_netdev, mtu);
1129 if (ret)
1130 goto out;
1131 }
1132
1133 ret = netvsc_detach(ndev, nvdev);
1134 if (ret)
1135 goto rollback_vf;
1136
1137 ndev->mtu = mtu;
1138
1139 ret = netvsc_attach(ndev, device_info);
1140 if (!ret)
1141 goto out;
1142
1143 /* Attempt rollback to original MTU */
1144 ndev->mtu = orig_mtu;
1145
1146 if (netvsc_attach(ndev, device_info))
1147 netdev_err(ndev, "restoring mtu failed\n");
1148rollback_vf:
1149 if (vf_netdev)
1150 dev_set_mtu(vf_netdev, orig_mtu);
1151
1152out:
1153 kfree(device_info);
1154 return ret;
1155}
1156
1157static void netvsc_get_vf_stats(struct net_device *net,
1158 struct netvsc_vf_pcpu_stats *tot)
1159{
1160 struct net_device_context *ndev_ctx = netdev_priv(net);
1161 int i;
1162
1163 memset(tot, 0, sizeof(*tot));
1164
1165 for_each_possible_cpu(i) {
1166 const struct netvsc_vf_pcpu_stats *stats
1167 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1168 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169 unsigned int start;
1170
1171 do {
1172 start = u64_stats_fetch_begin_irq(&stats->syncp);
1173 rx_packets = stats->rx_packets;
1174 tx_packets = stats->tx_packets;
1175 rx_bytes = stats->rx_bytes;
1176 tx_bytes = stats->tx_bytes;
1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179 tot->rx_packets += rx_packets;
1180 tot->tx_packets += tx_packets;
1181 tot->rx_bytes += rx_bytes;
1182 tot->tx_bytes += tx_bytes;
1183 tot->tx_dropped += stats->tx_dropped;
1184 }
1185}
1186
1187static void netvsc_get_pcpu_stats(struct net_device *net,
1188 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189{
1190 struct net_device_context *ndev_ctx = netdev_priv(net);
1191 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192 int i;
1193
1194 /* fetch percpu stats of vf */
1195 for_each_possible_cpu(i) {
1196 const struct netvsc_vf_pcpu_stats *stats =
1197 per_cpu_ptr(ndev_ctx->vf_stats, i);
1198 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199 unsigned int start;
1200
1201 do {
1202 start = u64_stats_fetch_begin_irq(&stats->syncp);
1203 this_tot->vf_rx_packets = stats->rx_packets;
1204 this_tot->vf_tx_packets = stats->tx_packets;
1205 this_tot->vf_rx_bytes = stats->rx_bytes;
1206 this_tot->vf_tx_bytes = stats->tx_bytes;
1207 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208 this_tot->rx_packets = this_tot->vf_rx_packets;
1209 this_tot->tx_packets = this_tot->vf_tx_packets;
1210 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1211 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1212 }
1213
1214 /* fetch percpu stats of netvsc */
1215 for (i = 0; i < nvdev->num_chn; i++) {
1216 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217 const struct netvsc_stats *stats;
1218 struct netvsc_ethtool_pcpu_stats *this_tot =
1219 &pcpu_tot[nvchan->channel->target_cpu];
1220 u64 packets, bytes;
1221 unsigned int start;
1222
1223 stats = &nvchan->tx_stats;
1224 do {
1225 start = u64_stats_fetch_begin_irq(&stats->syncp);
1226 packets = stats->packets;
1227 bytes = stats->bytes;
1228 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230 this_tot->tx_bytes += bytes;
1231 this_tot->tx_packets += packets;
1232
1233 stats = &nvchan->rx_stats;
1234 do {
1235 start = u64_stats_fetch_begin_irq(&stats->syncp);
1236 packets = stats->packets;
1237 bytes = stats->bytes;
1238 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240 this_tot->rx_bytes += bytes;
1241 this_tot->rx_packets += packets;
1242 }
1243}
1244
1245static void netvsc_get_stats64(struct net_device *net,
1246 struct rtnl_link_stats64 *t)
1247{
1248 struct net_device_context *ndev_ctx = netdev_priv(net);
1249 struct netvsc_device *nvdev;
1250 struct netvsc_vf_pcpu_stats vf_tot;
1251 int i;
1252
1253 rcu_read_lock();
1254
1255 nvdev = rcu_dereference(ndev_ctx->nvdev);
1256 if (!nvdev)
1257 goto out;
1258
1259 netdev_stats_to_stats64(t, &net->stats);
1260
1261 netvsc_get_vf_stats(net, &vf_tot);
1262 t->rx_packets += vf_tot.rx_packets;
1263 t->tx_packets += vf_tot.tx_packets;
1264 t->rx_bytes += vf_tot.rx_bytes;
1265 t->tx_bytes += vf_tot.tx_bytes;
1266 t->tx_dropped += vf_tot.tx_dropped;
1267
1268 for (i = 0; i < nvdev->num_chn; i++) {
1269 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270 const struct netvsc_stats *stats;
1271 u64 packets, bytes, multicast;
1272 unsigned int start;
1273
1274 stats = &nvchan->tx_stats;
1275 do {
1276 start = u64_stats_fetch_begin_irq(&stats->syncp);
1277 packets = stats->packets;
1278 bytes = stats->bytes;
1279 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281 t->tx_bytes += bytes;
1282 t->tx_packets += packets;
1283
1284 stats = &nvchan->rx_stats;
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 packets = stats->packets;
1288 bytes = stats->bytes;
1289 multicast = stats->multicast + stats->broadcast;
1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292 t->rx_bytes += bytes;
1293 t->rx_packets += packets;
1294 t->multicast += multicast;
1295 }
1296out:
1297 rcu_read_unlock();
1298}
1299
1300static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301{
1302 struct net_device_context *ndc = netdev_priv(ndev);
1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305 struct sockaddr *addr = p;
1306 int err;
1307
1308 err = eth_prepare_mac_addr_change(ndev, p);
1309 if (err)
1310 return err;
1311
1312 if (!nvdev)
1313 return -ENODEV;
1314
1315 if (vf_netdev) {
1316 err = dev_set_mac_address(vf_netdev, addr, NULL);
1317 if (err)
1318 return err;
1319 }
1320
1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322 if (!err) {
1323 eth_commit_mac_addr_change(ndev, p);
1324 } else if (vf_netdev) {
1325 /* rollback change on VF */
1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327 dev_set_mac_address(vf_netdev, addr, NULL);
1328 }
1329
1330 return err;
1331}
1332
1333static const struct {
1334 char name[ETH_GSTRING_LEN];
1335 u16 offset;
1336} netvsc_stats[] = {
1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347}, pcpu_stats[] = {
1348 { "cpu%u_rx_packets",
1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350 { "cpu%u_rx_bytes",
1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352 { "cpu%u_tx_packets",
1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354 { "cpu%u_tx_bytes",
1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356 { "cpu%u_vf_rx_packets",
1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358 { "cpu%u_vf_rx_bytes",
1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360 { "cpu%u_vf_tx_packets",
1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362 { "cpu%u_vf_tx_bytes",
1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364}, vf_stats[] = {
1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370};
1371
1372#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1373#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1374
1375/* statistics per queue (rx/tx packets/bytes) */
1376#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378/* 4 statistics per queue (rx/tx packets/bytes) */
1379#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
1381static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382{
1383 struct net_device_context *ndc = netdev_priv(dev);
1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386 if (!nvdev)
1387 return -ENODEV;
1388
1389 switch (string_set) {
1390 case ETH_SS_STATS:
1391 return NETVSC_GLOBAL_STATS_LEN
1392 + NETVSC_VF_STATS_LEN
1393 + NETVSC_QUEUE_STATS_LEN(nvdev)
1394 + NETVSC_PCPU_STATS_LEN;
1395 default:
1396 return -EINVAL;
1397 }
1398}
1399
1400static void netvsc_get_ethtool_stats(struct net_device *dev,
1401 struct ethtool_stats *stats, u64 *data)
1402{
1403 struct net_device_context *ndc = netdev_priv(dev);
1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405 const void *nds = &ndc->eth_stats;
1406 const struct netvsc_stats *qstats;
1407 struct netvsc_vf_pcpu_stats sum;
1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409 unsigned int start;
1410 u64 packets, bytes;
1411 int i, j, cpu;
1412
1413 if (!nvdev)
1414 return;
1415
1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419 netvsc_get_vf_stats(dev, &sum);
1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423 for (j = 0; j < nvdev->num_chn; j++) {
1424 qstats = &nvdev->chan_table[j].tx_stats;
1425
1426 do {
1427 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428 packets = qstats->packets;
1429 bytes = qstats->bytes;
1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431 data[i++] = packets;
1432 data[i++] = bytes;
1433
1434 qstats = &nvdev->chan_table[j].rx_stats;
1435 do {
1436 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437 packets = qstats->packets;
1438 bytes = qstats->bytes;
1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440 data[i++] = packets;
1441 data[i++] = bytes;
1442 }
1443
1444 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445 sizeof(struct netvsc_ethtool_pcpu_stats),
1446 GFP_KERNEL);
1447 netvsc_get_pcpu_stats(dev, pcpu_sum);
1448 for_each_present_cpu(cpu) {
1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452 data[i++] = *(u64 *)((void *)this_sum
1453 + pcpu_stats[j].offset);
1454 }
1455 kvfree(pcpu_sum);
1456}
1457
1458static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459{
1460 struct net_device_context *ndc = netdev_priv(dev);
1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462 u8 *p = data;
1463 int i, cpu;
1464
1465 if (!nvdev)
1466 return;
1467
1468 switch (stringset) {
1469 case ETH_SS_STATS:
1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472 p += ETH_GSTRING_LEN;
1473 }
1474
1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477 p += ETH_GSTRING_LEN;
1478 }
1479
1480 for (i = 0; i < nvdev->num_chn; i++) {
1481 sprintf(p, "tx_queue_%u_packets", i);
1482 p += ETH_GSTRING_LEN;
1483 sprintf(p, "tx_queue_%u_bytes", i);
1484 p += ETH_GSTRING_LEN;
1485 sprintf(p, "rx_queue_%u_packets", i);
1486 p += ETH_GSTRING_LEN;
1487 sprintf(p, "rx_queue_%u_bytes", i);
1488 p += ETH_GSTRING_LEN;
1489 }
1490
1491 for_each_present_cpu(cpu) {
1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493 sprintf(p, pcpu_stats[i].name, cpu);
1494 p += ETH_GSTRING_LEN;
1495 }
1496 }
1497
1498 break;
1499 }
1500}
1501
1502static int
1503netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504 struct ethtool_rxnfc *info)
1505{
1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508 info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510 switch (info->flow_type) {
1511 case TCP_V4_FLOW:
1512 if (ndc->l4_hash & HV_TCP4_L4HASH)
1513 info->data |= l4_flag;
1514
1515 break;
1516
1517 case TCP_V6_FLOW:
1518 if (ndc->l4_hash & HV_TCP6_L4HASH)
1519 info->data |= l4_flag;
1520
1521 break;
1522
1523 case UDP_V4_FLOW:
1524 if (ndc->l4_hash & HV_UDP4_L4HASH)
1525 info->data |= l4_flag;
1526
1527 break;
1528
1529 case UDP_V6_FLOW:
1530 if (ndc->l4_hash & HV_UDP6_L4HASH)
1531 info->data |= l4_flag;
1532
1533 break;
1534
1535 case IPV4_FLOW:
1536 case IPV6_FLOW:
1537 break;
1538 default:
1539 info->data = 0;
1540 break;
1541 }
1542
1543 return 0;
1544}
1545
1546static int
1547netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548 u32 *rules)
1549{
1550 struct net_device_context *ndc = netdev_priv(dev);
1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553 if (!nvdev)
1554 return -ENODEV;
1555
1556 switch (info->cmd) {
1557 case ETHTOOL_GRXRINGS:
1558 info->data = nvdev->num_chn;
1559 return 0;
1560
1561 case ETHTOOL_GRXFH:
1562 return netvsc_get_rss_hash_opts(ndc, info);
1563 }
1564 return -EOPNOTSUPP;
1565}
1566
1567static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568 struct ethtool_rxnfc *info)
1569{
1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572 switch (info->flow_type) {
1573 case TCP_V4_FLOW:
1574 ndc->l4_hash |= HV_TCP4_L4HASH;
1575 break;
1576
1577 case TCP_V6_FLOW:
1578 ndc->l4_hash |= HV_TCP6_L4HASH;
1579 break;
1580
1581 case UDP_V4_FLOW:
1582 ndc->l4_hash |= HV_UDP4_L4HASH;
1583 break;
1584
1585 case UDP_V6_FLOW:
1586 ndc->l4_hash |= HV_UDP6_L4HASH;
1587 break;
1588
1589 default:
1590 return -EOPNOTSUPP;
1591 }
1592
1593 return 0;
1594 }
1595
1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597 switch (info->flow_type) {
1598 case TCP_V4_FLOW:
1599 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600 break;
1601
1602 case TCP_V6_FLOW:
1603 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604 break;
1605
1606 case UDP_V4_FLOW:
1607 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608 break;
1609
1610 case UDP_V6_FLOW:
1611 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612 break;
1613
1614 default:
1615 return -EOPNOTSUPP;
1616 }
1617
1618 return 0;
1619 }
1620
1621 return -EOPNOTSUPP;
1622}
1623
1624static int
1625netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626{
1627 struct net_device_context *ndc = netdev_priv(ndev);
1628
1629 if (info->cmd == ETHTOOL_SRXFH)
1630 return netvsc_set_rss_hash_opts(ndc, info);
1631
1632 return -EOPNOTSUPP;
1633}
1634
1635static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636{
1637 return NETVSC_HASH_KEYLEN;
1638}
1639
1640static u32 netvsc_rss_indir_size(struct net_device *dev)
1641{
1642 return ITAB_NUM;
1643}
1644
1645static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646 u8 *hfunc)
1647{
1648 struct net_device_context *ndc = netdev_priv(dev);
1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650 struct rndis_device *rndis_dev;
1651 int i;
1652
1653 if (!ndev)
1654 return -ENODEV;
1655
1656 if (hfunc)
1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1658
1659 rndis_dev = ndev->extension;
1660 if (indir) {
1661 for (i = 0; i < ITAB_NUM; i++)
1662 indir[i] = rndis_dev->rx_table[i];
1663 }
1664
1665 if (key)
1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668 return 0;
1669}
1670
1671static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672 const u8 *key, const u8 hfunc)
1673{
1674 struct net_device_context *ndc = netdev_priv(dev);
1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676 struct rndis_device *rndis_dev;
1677 int i;
1678
1679 if (!ndev)
1680 return -ENODEV;
1681
1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683 return -EOPNOTSUPP;
1684
1685 rndis_dev = ndev->extension;
1686 if (indir) {
1687 for (i = 0; i < ITAB_NUM; i++)
1688 if (indir[i] >= ndev->num_chn)
1689 return -EINVAL;
1690
1691 for (i = 0; i < ITAB_NUM; i++)
1692 rndis_dev->rx_table[i] = indir[i];
1693 }
1694
1695 if (!key) {
1696 if (!indir)
1697 return 0;
1698
1699 key = rndis_dev->rss_key;
1700 }
1701
1702 return rndis_filter_set_rss_param(rndis_dev, key);
1703}
1704
1705/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
1708static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709 struct ethtool_ringparam *ring)
1710{
1711 u32 max_buf_size;
1712
1713 ring->rx_pending = nvdev->recv_section_cnt;
1714 ring->tx_pending = nvdev->send_section_cnt;
1715
1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718 else
1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723 / nvdev->send_section_size;
1724}
1725
1726static void netvsc_get_ringparam(struct net_device *ndev,
1727 struct ethtool_ringparam *ring)
1728{
1729 struct net_device_context *ndevctx = netdev_priv(ndev);
1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732 if (!nvdev)
1733 return;
1734
1735 __netvsc_get_ringparam(nvdev, ring);
1736}
1737
1738static int netvsc_set_ringparam(struct net_device *ndev,
1739 struct ethtool_ringparam *ring)
1740{
1741 struct net_device_context *ndevctx = netdev_priv(ndev);
1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743 struct netvsc_device_info *device_info;
1744 struct ethtool_ringparam orig;
1745 u32 new_tx, new_rx;
1746 int ret = 0;
1747
1748 if (!nvdev || nvdev->destroy)
1749 return -ENODEV;
1750
1751 memset(&orig, 0, sizeof(orig));
1752 __netvsc_get_ringparam(nvdev, &orig);
1753
1754 new_tx = clamp_t(u32, ring->tx_pending,
1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756 new_rx = clamp_t(u32, ring->rx_pending,
1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759 if (new_tx == orig.tx_pending &&
1760 new_rx == orig.rx_pending)
1761 return 0; /* no change */
1762
1763 device_info = netvsc_devinfo_get(nvdev);
1764
1765 if (!device_info)
1766 return -ENOMEM;
1767
1768 device_info->send_sections = new_tx;
1769 device_info->recv_sections = new_rx;
1770
1771 ret = netvsc_detach(ndev, nvdev);
1772 if (ret)
1773 goto out;
1774
1775 ret = netvsc_attach(ndev, device_info);
1776 if (ret) {
1777 device_info->send_sections = orig.tx_pending;
1778 device_info->recv_sections = orig.rx_pending;
1779
1780 if (netvsc_attach(ndev, device_info))
1781 netdev_err(ndev, "restoring ringparam failed");
1782 }
1783
1784out:
1785 kfree(device_info);
1786 return ret;
1787}
1788
1789static int netvsc_set_features(struct net_device *ndev,
1790 netdev_features_t features)
1791{
1792 netdev_features_t change = features ^ ndev->features;
1793 struct net_device_context *ndevctx = netdev_priv(ndev);
1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796 struct ndis_offload_params offloads;
1797 int ret = 0;
1798
1799 if (!nvdev || nvdev->destroy)
1800 return -ENODEV;
1801
1802 if (!(change & NETIF_F_LRO))
1803 goto syncvf;
1804
1805 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807 if (features & NETIF_F_LRO) {
1808 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810 } else {
1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813 }
1814
1815 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817 if (ret) {
1818 features ^= NETIF_F_LRO;
1819 ndev->features = features;
1820 }
1821
1822syncvf:
1823 if (!vf_netdev)
1824 return ret;
1825
1826 vf_netdev->wanted_features = features;
1827 netdev_update_features(vf_netdev);
1828
1829 return ret;
1830}
1831
1832static u32 netvsc_get_msglevel(struct net_device *ndev)
1833{
1834 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836 return ndev_ctx->msg_enable;
1837}
1838
1839static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840{
1841 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843 ndev_ctx->msg_enable = val;
1844}
1845
1846static const struct ethtool_ops ethtool_ops = {
1847 .get_drvinfo = netvsc_get_drvinfo,
1848 .get_msglevel = netvsc_get_msglevel,
1849 .set_msglevel = netvsc_set_msglevel,
1850 .get_link = ethtool_op_get_link,
1851 .get_ethtool_stats = netvsc_get_ethtool_stats,
1852 .get_sset_count = netvsc_get_sset_count,
1853 .get_strings = netvsc_get_strings,
1854 .get_channels = netvsc_get_channels,
1855 .set_channels = netvsc_set_channels,
1856 .get_ts_info = ethtool_op_get_ts_info,
1857 .get_rxnfc = netvsc_get_rxnfc,
1858 .set_rxnfc = netvsc_set_rxnfc,
1859 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860 .get_rxfh_indir_size = netvsc_rss_indir_size,
1861 .get_rxfh = netvsc_get_rxfh,
1862 .set_rxfh = netvsc_set_rxfh,
1863 .get_link_ksettings = netvsc_get_link_ksettings,
1864 .set_link_ksettings = netvsc_set_link_ksettings,
1865 .get_ringparam = netvsc_get_ringparam,
1866 .set_ringparam = netvsc_set_ringparam,
1867};
1868
1869static const struct net_device_ops device_ops = {
1870 .ndo_open = netvsc_open,
1871 .ndo_stop = netvsc_close,
1872 .ndo_start_xmit = netvsc_start_xmit,
1873 .ndo_change_rx_flags = netvsc_change_rx_flags,
1874 .ndo_set_rx_mode = netvsc_set_rx_mode,
1875 .ndo_set_features = netvsc_set_features,
1876 .ndo_change_mtu = netvsc_change_mtu,
1877 .ndo_validate_addr = eth_validate_addr,
1878 .ndo_set_mac_address = netvsc_set_mac_addr,
1879 .ndo_select_queue = netvsc_select_queue,
1880 .ndo_get_stats64 = netvsc_get_stats64,
1881};
1882
1883/*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
1888static void netvsc_link_change(struct work_struct *w)
1889{
1890 struct net_device_context *ndev_ctx =
1891 container_of(w, struct net_device_context, dwork.work);
1892 struct hv_device *device_obj = ndev_ctx->device_ctx;
1893 struct net_device *net = hv_get_drvdata(device_obj);
1894 struct netvsc_device *net_device;
1895 struct rndis_device *rdev;
1896 struct netvsc_reconfig *event = NULL;
1897 bool notify = false, reschedule = false;
1898 unsigned long flags, next_reconfig, delay;
1899
1900 /* if changes are happening, comeback later */
1901 if (!rtnl_trylock()) {
1902 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903 return;
1904 }
1905
1906 net_device = rtnl_dereference(ndev_ctx->nvdev);
1907 if (!net_device)
1908 goto out_unlock;
1909
1910 rdev = net_device->extension;
1911
1912 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913 if (time_is_after_jiffies(next_reconfig)) {
1914 /* link_watch only sends one notification with current state
1915 * per second, avoid doing reconfig more frequently. Handle
1916 * wrap around.
1917 */
1918 delay = next_reconfig - jiffies;
1919 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920 schedule_delayed_work(&ndev_ctx->dwork, delay);
1921 goto out_unlock;
1922 }
1923 ndev_ctx->last_reconfig = jiffies;
1924
1925 spin_lock_irqsave(&ndev_ctx->lock, flags);
1926 if (!list_empty(&ndev_ctx->reconfig_events)) {
1927 event = list_first_entry(&ndev_ctx->reconfig_events,
1928 struct netvsc_reconfig, list);
1929 list_del(&event->list);
1930 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931 }
1932 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934 if (!event)
1935 goto out_unlock;
1936
1937 switch (event->event) {
1938 /* Only the following events are possible due to the check in
1939 * netvsc_linkstatus_callback()
1940 */
1941 case RNDIS_STATUS_MEDIA_CONNECT:
1942 if (rdev->link_state) {
1943 rdev->link_state = false;
1944 netif_carrier_on(net);
1945 netvsc_tx_enable(net_device, net);
1946 } else {
1947 notify = true;
1948 }
1949 kfree(event);
1950 break;
1951 case RNDIS_STATUS_MEDIA_DISCONNECT:
1952 if (!rdev->link_state) {
1953 rdev->link_state = true;
1954 netif_carrier_off(net);
1955 netvsc_tx_disable(net_device, net);
1956 }
1957 kfree(event);
1958 break;
1959 case RNDIS_STATUS_NETWORK_CHANGE:
1960 /* Only makes sense if carrier is present */
1961 if (!rdev->link_state) {
1962 rdev->link_state = true;
1963 netif_carrier_off(net);
1964 netvsc_tx_disable(net_device, net);
1965 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966 spin_lock_irqsave(&ndev_ctx->lock, flags);
1967 list_add(&event->list, &ndev_ctx->reconfig_events);
1968 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969 reschedule = true;
1970 }
1971 break;
1972 }
1973
1974 rtnl_unlock();
1975
1976 if (notify)
1977 netdev_notify_peers(net);
1978
1979 /* link_watch only sends one notification with current state per
1980 * second, handle next reconfig event in 2 seconds.
1981 */
1982 if (reschedule)
1983 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985 return;
1986
1987out_unlock:
1988 rtnl_unlock();
1989}
1990
1991static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992{
1993 struct net_device_context *net_device_ctx;
1994 struct net_device *dev;
1995
1996 dev = netdev_master_upper_dev_get(vf_netdev);
1997 if (!dev || dev->netdev_ops != &device_ops)
1998 return NULL; /* not a netvsc device */
1999
2000 net_device_ctx = netdev_priv(dev);
2001 if (!rtnl_dereference(net_device_ctx->nvdev))
2002 return NULL; /* device is removed */
2003
2004 return dev;
2005}
2006
2007/* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
2011static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012{
2013 struct sk_buff *skb = *pskb;
2014 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016 struct netvsc_vf_pcpu_stats *pcpu_stats
2017 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019 skb = skb_share_check(skb, GFP_ATOMIC);
2020 if (unlikely(!skb))
2021 return RX_HANDLER_CONSUMED;
2022
2023 *pskb = skb;
2024
2025 skb->dev = ndev;
2026
2027 u64_stats_update_begin(&pcpu_stats->syncp);
2028 pcpu_stats->rx_packets++;
2029 pcpu_stats->rx_bytes += skb->len;
2030 u64_stats_update_end(&pcpu_stats->syncp);
2031
2032 return RX_HANDLER_ANOTHER;
2033}
2034
2035static int netvsc_vf_join(struct net_device *vf_netdev,
2036 struct net_device *ndev)
2037{
2038 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039 int ret;
2040
2041 ret = netdev_rx_handler_register(vf_netdev,
2042 netvsc_vf_handle_frame, ndev);
2043 if (ret != 0) {
2044 netdev_err(vf_netdev,
2045 "can not register netvsc VF receive handler (err = %d)\n",
2046 ret);
2047 goto rx_handler_failed;
2048 }
2049
2050 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051 NULL, NULL, NULL);
2052 if (ret != 0) {
2053 netdev_err(vf_netdev,
2054 "can not set master device %s (err = %d)\n",
2055 ndev->name, ret);
2056 goto upper_link_failed;
2057 }
2058
2059 /* set slave flag before open to prevent IPv6 addrconf */
2060 vf_netdev->flags |= IFF_SLAVE;
2061
2062 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063
2064 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067 return 0;
2068
2069upper_link_failed:
2070 netdev_rx_handler_unregister(vf_netdev);
2071rx_handler_failed:
2072 return ret;
2073}
2074
2075static void __netvsc_vf_setup(struct net_device *ndev,
2076 struct net_device *vf_netdev)
2077{
2078 int ret;
2079
2080 /* Align MTU of VF with master */
2081 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082 if (ret)
2083 netdev_warn(vf_netdev,
2084 "unable to change mtu to %u\n", ndev->mtu);
2085
2086 /* set multicast etc flags on VF */
2087 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089 /* sync address list from ndev to VF */
2090 netif_addr_lock_bh(ndev);
2091 dev_uc_sync(vf_netdev, ndev);
2092 dev_mc_sync(vf_netdev, ndev);
2093 netif_addr_unlock_bh(ndev);
2094
2095 if (netif_running(ndev)) {
2096 ret = dev_open(vf_netdev, NULL);
2097 if (ret)
2098 netdev_warn(vf_netdev,
2099 "unable to open: %d\n", ret);
2100 }
2101}
2102
2103/* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
2106static void netvsc_vf_setup(struct work_struct *w)
2107{
2108 struct net_device_context *ndev_ctx
2109 = container_of(w, struct net_device_context, vf_takeover.work);
2110 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111 struct net_device *vf_netdev;
2112
2113 if (!rtnl_trylock()) {
2114 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115 return;
2116 }
2117
2118 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119 if (vf_netdev)
2120 __netvsc_vf_setup(ndev, vf_netdev);
2121
2122 rtnl_unlock();
2123}
2124
2125/* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
2128static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129{
2130 struct device *parent = vf_netdev->dev.parent;
2131 struct net_device_context *ndev_ctx;
2132 struct pci_dev *pdev;
2133 u32 serial;
2134
2135 if (!parent || !dev_is_pci(parent))
2136 return NULL; /* not a PCI device */
2137
2138 pdev = to_pci_dev(parent);
2139 if (!pdev->slot) {
2140 netdev_notice(vf_netdev, "no PCI slot information\n");
2141 return NULL;
2142 }
2143
2144 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146 pci_slot_name(pdev->slot));
2147 return NULL;
2148 }
2149
2150 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151 if (!ndev_ctx->vf_alloc)
2152 continue;
2153
2154 if (ndev_ctx->vf_serial == serial)
2155 return hv_get_drvdata(ndev_ctx->device_ctx);
2156 }
2157
2158 netdev_notice(vf_netdev,
2159 "no netdev found for vf serial:%u\n", serial);
2160 return NULL;
2161}
2162
2163static int netvsc_register_vf(struct net_device *vf_netdev)
2164{
2165 struct net_device_context *net_device_ctx;
2166 struct netvsc_device *netvsc_dev;
2167 struct net_device *ndev;
2168 int ret;
2169
2170 if (vf_netdev->addr_len != ETH_ALEN)
2171 return NOTIFY_DONE;
2172
2173 ndev = get_netvsc_byslot(vf_netdev);
2174 if (!ndev)
2175 return NOTIFY_DONE;
2176
2177 net_device_ctx = netdev_priv(ndev);
2178 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180 return NOTIFY_DONE;
2181
2182 /* if synthetic interface is a different namespace,
2183 * then move the VF to that namespace; join will be
2184 * done again in that context.
2185 */
2186 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187 ret = dev_change_net_namespace(vf_netdev,
2188 dev_net(ndev), "eth%d");
2189 if (ret)
2190 netdev_err(vf_netdev,
2191 "could not move to same namespace as %s: %d\n",
2192 ndev->name, ret);
2193 else
2194 netdev_info(vf_netdev,
2195 "VF moved to namespace with: %s\n",
2196 ndev->name);
2197 return NOTIFY_DONE;
2198 }
2199
2200 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203 return NOTIFY_DONE;
2204
2205 dev_hold(vf_netdev);
2206 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
2208 vf_netdev->wanted_features = ndev->features;
2209 netdev_update_features(vf_netdev);
2210
2211 return NOTIFY_OK;
2212}
2213
2214/* VF up/down change detected, schedule to change data path */
2215static int netvsc_vf_changed(struct net_device *vf_netdev)
2216{
2217 struct net_device_context *net_device_ctx;
2218 struct netvsc_device *netvsc_dev;
2219 struct net_device *ndev;
2220 bool vf_is_up = netif_running(vf_netdev);
2221
2222 ndev = get_netvsc_byref(vf_netdev);
2223 if (!ndev)
2224 return NOTIFY_DONE;
2225
2226 net_device_ctx = netdev_priv(ndev);
2227 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228 if (!netvsc_dev)
2229 return NOTIFY_DONE;
2230
2231 netvsc_switch_datapath(ndev, vf_is_up);
2232 netdev_info(ndev, "Data path switched %s VF: %s\n",
2233 vf_is_up ? "to" : "from", vf_netdev->name);
2234
2235 return NOTIFY_OK;
2236}
2237
2238static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239{
2240 struct net_device *ndev;
2241 struct net_device_context *net_device_ctx;
2242
2243 ndev = get_netvsc_byref(vf_netdev);
2244 if (!ndev)
2245 return NOTIFY_DONE;
2246
2247 net_device_ctx = netdev_priv(ndev);
2248 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
2252 netdev_rx_handler_unregister(vf_netdev);
2253 netdev_upper_dev_unlink(vf_netdev, ndev);
2254 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255 dev_put(vf_netdev);
2256
2257 return NOTIFY_OK;
2258}
2259
2260static int netvsc_probe(struct hv_device *dev,
2261 const struct hv_vmbus_device_id *dev_id)
2262{
2263 struct net_device *net = NULL;
2264 struct net_device_context *net_device_ctx;
2265 struct netvsc_device_info *device_info = NULL;
2266 struct netvsc_device *nvdev;
2267 int ret = -ENOMEM;
2268
2269 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270 VRSS_CHANNEL_MAX);
2271 if (!net)
2272 goto no_net;
2273
2274 netif_carrier_off(net);
2275
2276 netvsc_init_settings(net);
2277
2278 net_device_ctx = netdev_priv(net);
2279 net_device_ctx->device_ctx = dev;
2280 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281 if (netif_msg_probe(net_device_ctx))
2282 netdev_dbg(net, "netvsc msg_enable: %d\n",
2283 net_device_ctx->msg_enable);
2284
2285 hv_set_drvdata(dev, net);
2286
2287 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
2289 spin_lock_init(&net_device_ctx->lock);
2290 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293 net_device_ctx->vf_stats
2294 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295 if (!net_device_ctx->vf_stats)
2296 goto no_stats;
2297
2298 net->netdev_ops = &device_ops;
2299 net->ethtool_ops = ðtool_ops;
2300 SET_NETDEV_DEV(net, &dev->device);
2301
2302 /* We always need headroom for rndis header */
2303 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305 /* Initialize the number of queues to be 1, we may change it if more
2306 * channels are offered later.
2307 */
2308 netif_set_real_num_tx_queues(net, 1);
2309 netif_set_real_num_rx_queues(net, 1);
2310
2311 /* Notify the netvsc driver of the new device */
2312 device_info = netvsc_devinfo_get(NULL);
2313
2314 if (!device_info) {
2315 ret = -ENOMEM;
2316 goto devinfo_failed;
2317 }
2318
2319 nvdev = rndis_filter_device_add(dev, device_info);
2320 if (IS_ERR(nvdev)) {
2321 ret = PTR_ERR(nvdev);
2322 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323 goto rndis_failed;
2324 }
2325
2326 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2329 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330 * all subchannels to show up, but that may not happen because
2331 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333 * the device lock, so all the subchannels can't be processed --
2334 * finally netvsc_subchan_work() hangs forever.
2335 */
2336 rtnl_lock();
2337
2338 if (nvdev->num_chn > 1)
2339 schedule_work(&nvdev->subchan_work);
2340
2341 /* hw_features computed in rndis_netdev_set_hwcaps() */
2342 net->features = net->hw_features |
2343 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344 NETIF_F_HW_VLAN_CTAG_RX;
2345 net->vlan_features = net->features;
2346
2347 /* MTU range: 68 - 1500 or 65521 */
2348 net->min_mtu = NETVSC_MTU_MIN;
2349 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351 else
2352 net->max_mtu = ETH_DATA_LEN;
2353
2354 ret = register_netdevice(net);
2355 if (ret != 0) {
2356 pr_err("Unable to register netdev.\n");
2357 goto register_failed;
2358 }
2359
2360 list_add(&net_device_ctx->list, &netvsc_dev_list);
2361 rtnl_unlock();
2362
2363 kfree(device_info);
2364 return 0;
2365
2366register_failed:
2367 rtnl_unlock();
2368 rndis_filter_device_remove(dev, nvdev);
2369rndis_failed:
2370 kfree(device_info);
2371devinfo_failed:
2372 free_percpu(net_device_ctx->vf_stats);
2373no_stats:
2374 hv_set_drvdata(dev, NULL);
2375 free_netdev(net);
2376no_net:
2377 return ret;
2378}
2379
2380static int netvsc_remove(struct hv_device *dev)
2381{
2382 struct net_device_context *ndev_ctx;
2383 struct net_device *vf_netdev, *net;
2384 struct netvsc_device *nvdev;
2385
2386 net = hv_get_drvdata(dev);
2387 if (net == NULL) {
2388 dev_err(&dev->device, "No net device to remove\n");
2389 return 0;
2390 }
2391
2392 ndev_ctx = netdev_priv(net);
2393
2394 cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396 rtnl_lock();
2397 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398 if (nvdev)
2399 cancel_work_sync(&nvdev->subchan_work);
2400
2401 /*
2402 * Call to the vsc driver to let it know that the device is being
2403 * removed. Also blocks mtu and channel changes.
2404 */
2405 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406 if (vf_netdev)
2407 netvsc_unregister_vf(vf_netdev);
2408
2409 if (nvdev)
2410 rndis_filter_device_remove(dev, nvdev);
2411
2412 unregister_netdevice(net);
2413 list_del(&ndev_ctx->list);
2414
2415 rtnl_unlock();
2416
2417 hv_set_drvdata(dev, NULL);
2418
2419 free_percpu(ndev_ctx->vf_stats);
2420 free_netdev(net);
2421 return 0;
2422}
2423
2424static const struct hv_vmbus_device_id id_table[] = {
2425 /* Network guid */
2426 { HV_NIC_GUID, },
2427 { },
2428};
2429
2430MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432/* The one and only one */
2433static struct hv_driver netvsc_drv = {
2434 .name = KBUILD_MODNAME,
2435 .id_table = id_table,
2436 .probe = netvsc_probe,
2437 .remove = netvsc_remove,
2438 .driver = {
2439 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2440 },
2441};
2442
2443/*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
2449static int netvsc_netdev_event(struct notifier_block *this,
2450 unsigned long event, void *ptr)
2451{
2452 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2453
2454 /* Skip our own events */
2455 if (event_dev->netdev_ops == &device_ops)
2456 return NOTIFY_DONE;
2457
2458 /* Avoid non-Ethernet type devices */
2459 if (event_dev->type != ARPHRD_ETHER)
2460 return NOTIFY_DONE;
2461
2462 /* Avoid Vlan dev with same MAC registering as VF */
2463 if (is_vlan_dev(event_dev))
2464 return NOTIFY_DONE;
2465
2466 /* Avoid Bonding master dev with same MAC registering as VF */
2467 if ((event_dev->priv_flags & IFF_BONDING) &&
2468 (event_dev->flags & IFF_MASTER))
2469 return NOTIFY_DONE;
2470
2471 switch (event) {
2472 case NETDEV_REGISTER:
2473 return netvsc_register_vf(event_dev);
2474 case NETDEV_UNREGISTER:
2475 return netvsc_unregister_vf(event_dev);
2476 case NETDEV_UP:
2477 case NETDEV_DOWN:
2478 return netvsc_vf_changed(event_dev);
2479 default:
2480 return NOTIFY_DONE;
2481 }
2482}
2483
2484static struct notifier_block netvsc_netdev_notifier = {
2485 .notifier_call = netvsc_netdev_event,
2486};
2487
2488static void __exit netvsc_drv_exit(void)
2489{
2490 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491 vmbus_driver_unregister(&netvsc_drv);
2492}
2493
2494static int __init netvsc_drv_init(void)
2495{
2496 int ret;
2497
2498 if (ring_size < RING_SIZE_MIN) {
2499 ring_size = RING_SIZE_MIN;
2500 pr_info("Increased ring_size to %u (min allowed)\n",
2501 ring_size);
2502 }
2503 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2504
2505 ret = vmbus_driver_register(&netvsc_drv);
2506 if (ret)
2507 return ret;
2508
2509 register_netdevice_notifier(&netvsc_netdev_notifier);
2510 return 0;
2511}
2512
2513MODULE_LICENSE("GPL");
2514MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516module_init(netvsc_drv_init);
2517module_exit(netvsc_drv_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/ethtool.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/device.h>
17#include <linux/io.h>
18#include <linux/delay.h>
19#include <linux/netdevice.h>
20#include <linux/inetdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/pci.h>
23#include <linux/skbuff.h>
24#include <linux/if_vlan.h>
25#include <linux/in.h>
26#include <linux/slab.h>
27#include <linux/rtnetlink.h>
28#include <linux/netpoll.h>
29#include <linux/bpf.h>
30
31#include <net/arp.h>
32#include <net/route.h>
33#include <net/sock.h>
34#include <net/pkt_sched.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37
38#include "hyperv_net.h"
39
40#define RING_SIZE_MIN 64
41
42#define LINKCHANGE_INT (2 * HZ)
43#define VF_TAKEOVER_INT (HZ / 10)
44
45static unsigned int ring_size __ro_after_init = 128;
46module_param(ring_size, uint, 0444);
47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48unsigned int netvsc_ring_bytes __ro_after_init;
49
50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53 NETIF_MSG_TX_ERR;
54
55static int debug = -1;
56module_param(debug, int, 0444);
57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59static LIST_HEAD(netvsc_dev_list);
60
61static void netvsc_change_rx_flags(struct net_device *net, int change)
62{
63 struct net_device_context *ndev_ctx = netdev_priv(net);
64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65 int inc;
66
67 if (!vf_netdev)
68 return;
69
70 if (change & IFF_PROMISC) {
71 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72 dev_set_promiscuity(vf_netdev, inc);
73 }
74
75 if (change & IFF_ALLMULTI) {
76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77 dev_set_allmulti(vf_netdev, inc);
78 }
79}
80
81static void netvsc_set_rx_mode(struct net_device *net)
82{
83 struct net_device_context *ndev_ctx = netdev_priv(net);
84 struct net_device *vf_netdev;
85 struct netvsc_device *nvdev;
86
87 rcu_read_lock();
88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89 if (vf_netdev) {
90 dev_uc_sync(vf_netdev, net);
91 dev_mc_sync(vf_netdev, net);
92 }
93
94 nvdev = rcu_dereference(ndev_ctx->nvdev);
95 if (nvdev)
96 rndis_filter_update(nvdev);
97 rcu_read_unlock();
98}
99
100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101 struct net_device *ndev)
102{
103 nvscdev->tx_disable = false;
104 virt_wmb(); /* ensure queue wake up mechanism is on */
105
106 netif_tx_wake_all_queues(ndev);
107}
108
109static int netvsc_open(struct net_device *net)
110{
111 struct net_device_context *ndev_ctx = netdev_priv(net);
112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114 struct rndis_device *rdev;
115 int ret = 0;
116
117 netif_carrier_off(net);
118
119 /* Open up the device */
120 ret = rndis_filter_open(nvdev);
121 if (ret != 0) {
122 netdev_err(net, "unable to open device (ret %d).\n", ret);
123 return ret;
124 }
125
126 rdev = nvdev->extension;
127 if (!rdev->link_state) {
128 netif_carrier_on(net);
129 netvsc_tx_enable(nvdev, net);
130 }
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev, NULL);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185 struct net_device *ndev)
186{
187 if (nvscdev) {
188 nvscdev->tx_disable = true;
189 virt_wmb(); /* ensure txq will not wake up after stop */
190 }
191
192 netif_tx_disable(ndev);
193}
194
195static int netvsc_close(struct net_device *net)
196{
197 struct net_device_context *net_device_ctx = netdev_priv(net);
198 struct net_device *vf_netdev
199 = rtnl_dereference(net_device_ctx->vf_netdev);
200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201 int ret;
202
203 netvsc_tx_disable(nvdev, net);
204
205 /* No need to close rndis filter if it is removed already */
206 if (!nvdev)
207 return 0;
208
209 ret = rndis_filter_close(nvdev);
210 if (ret != 0) {
211 netdev_err(net, "unable to close device (ret %d).\n", ret);
212 return ret;
213 }
214
215 ret = netvsc_wait_until_empty(nvdev);
216 if (ret)
217 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219 if (vf_netdev)
220 dev_close(vf_netdev);
221
222 return ret;
223}
224
225static inline void *init_ppi_data(struct rndis_message *msg,
226 u32 ppi_size, u32 pkt_type)
227{
228 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229 struct rndis_per_packet_info *ppi;
230
231 rndis_pkt->data_offset += ppi_size;
232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233 + rndis_pkt->per_pkt_info_len;
234
235 ppi->size = ppi_size;
236 ppi->type = pkt_type;
237 ppi->internal = 0;
238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240 rndis_pkt->per_pkt_info_len += ppi_size;
241
242 return ppi + 1;
243}
244
245/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
246 * packets. We can use ethtool to change UDP hash level when necessary.
247 */
248static inline u32 netvsc_get_hash(
249 struct sk_buff *skb,
250 const struct net_device_context *ndc)
251{
252 struct flow_keys flow;
253 u32 hash, pkt_proto = 0;
254 static u32 hashrnd __read_mostly;
255
256 net_get_random_once(&hashrnd, sizeof(hashrnd));
257
258 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
259 return 0;
260
261 switch (flow.basic.ip_proto) {
262 case IPPROTO_TCP:
263 if (flow.basic.n_proto == htons(ETH_P_IP))
264 pkt_proto = HV_TCP4_L4HASH;
265 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266 pkt_proto = HV_TCP6_L4HASH;
267
268 break;
269
270 case IPPROTO_UDP:
271 if (flow.basic.n_proto == htons(ETH_P_IP))
272 pkt_proto = HV_UDP4_L4HASH;
273 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
274 pkt_proto = HV_UDP6_L4HASH;
275
276 break;
277 }
278
279 if (pkt_proto & ndc->l4_hash) {
280 return skb_get_hash(skb);
281 } else {
282 if (flow.basic.n_proto == htons(ETH_P_IP))
283 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
284 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
285 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
286 else
287 return 0;
288
289 __skb_set_sw_hash(skb, hash, false);
290 }
291
292 return hash;
293}
294
295static inline int netvsc_get_tx_queue(struct net_device *ndev,
296 struct sk_buff *skb, int old_idx)
297{
298 const struct net_device_context *ndc = netdev_priv(ndev);
299 struct sock *sk = skb->sk;
300 int q_idx;
301
302 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
303 (VRSS_SEND_TAB_SIZE - 1)];
304
305 /* If queue index changed record the new value */
306 if (q_idx != old_idx &&
307 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
308 sk_tx_queue_set(sk, q_idx);
309
310 return q_idx;
311}
312
313/*
314 * Select queue for transmit.
315 *
316 * If a valid queue has already been assigned, then use that.
317 * Otherwise compute tx queue based on hash and the send table.
318 *
319 * This is basically similar to default (netdev_pick_tx) with the added step
320 * of using the host send_table when no other queue has been assigned.
321 *
322 * TODO support XPS - but get_xps_queue not exported
323 */
324static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
325{
326 int q_idx = sk_tx_queue_get(skb->sk);
327
328 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
329 /* If forwarding a packet, we use the recorded queue when
330 * available for better cache locality.
331 */
332 if (skb_rx_queue_recorded(skb))
333 q_idx = skb_get_rx_queue(skb);
334 else
335 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
336 }
337
338 return q_idx;
339}
340
341static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
342 struct net_device *sb_dev)
343{
344 struct net_device_context *ndc = netdev_priv(ndev);
345 struct net_device *vf_netdev;
346 u16 txq;
347
348 rcu_read_lock();
349 vf_netdev = rcu_dereference(ndc->vf_netdev);
350 if (vf_netdev) {
351 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
352
353 if (vf_ops->ndo_select_queue)
354 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
355 else
356 txq = netdev_pick_tx(vf_netdev, skb, NULL);
357
358 /* Record the queue selected by VF so that it can be
359 * used for common case where VF has more queues than
360 * the synthetic device.
361 */
362 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
363 } else {
364 txq = netvsc_pick_tx(ndev, skb);
365 }
366 rcu_read_unlock();
367
368 while (txq >= ndev->real_num_tx_queues)
369 txq -= ndev->real_num_tx_queues;
370
371 return txq;
372}
373
374static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
375 struct hv_page_buffer *pb)
376{
377 int j = 0;
378
379 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
380 offset = offset & ~HV_HYP_PAGE_MASK;
381
382 while (len > 0) {
383 unsigned long bytes;
384
385 bytes = HV_HYP_PAGE_SIZE - offset;
386 if (bytes > len)
387 bytes = len;
388 pb[j].pfn = hvpfn;
389 pb[j].offset = offset;
390 pb[j].len = bytes;
391
392 offset += bytes;
393 len -= bytes;
394
395 if (offset == HV_HYP_PAGE_SIZE && len) {
396 hvpfn++;
397 offset = 0;
398 j++;
399 }
400 }
401
402 return j + 1;
403}
404
405static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
406 struct hv_netvsc_packet *packet,
407 struct hv_page_buffer *pb)
408{
409 u32 slots_used = 0;
410 char *data = skb->data;
411 int frags = skb_shinfo(skb)->nr_frags;
412 int i;
413
414 /* The packet is laid out thus:
415 * 1. hdr: RNDIS header and PPI
416 * 2. skb linear data
417 * 3. skb fragment data
418 */
419 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
420 offset_in_hvpage(hdr),
421 len,
422 &pb[slots_used]);
423
424 packet->rmsg_size = len;
425 packet->rmsg_pgcnt = slots_used;
426
427 slots_used += fill_pg_buf(virt_to_hvpfn(data),
428 offset_in_hvpage(data),
429 skb_headlen(skb),
430 &pb[slots_used]);
431
432 for (i = 0; i < frags; i++) {
433 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
434
435 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
436 skb_frag_off(frag),
437 skb_frag_size(frag),
438 &pb[slots_used]);
439 }
440 return slots_used;
441}
442
443static int count_skb_frag_slots(struct sk_buff *skb)
444{
445 int i, frags = skb_shinfo(skb)->nr_frags;
446 int pages = 0;
447
448 for (i = 0; i < frags; i++) {
449 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
450 unsigned long size = skb_frag_size(frag);
451 unsigned long offset = skb_frag_off(frag);
452
453 /* Skip unused frames from start of page */
454 offset &= ~HV_HYP_PAGE_MASK;
455 pages += HVPFN_UP(offset + size);
456 }
457 return pages;
458}
459
460static int netvsc_get_slots(struct sk_buff *skb)
461{
462 char *data = skb->data;
463 unsigned int offset = offset_in_hvpage(data);
464 unsigned int len = skb_headlen(skb);
465 int slots;
466 int frag_slots;
467
468 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
469 frag_slots = count_skb_frag_slots(skb);
470 return slots + frag_slots;
471}
472
473static u32 net_checksum_info(struct sk_buff *skb)
474{
475 if (skb->protocol == htons(ETH_P_IP)) {
476 struct iphdr *ip = ip_hdr(skb);
477
478 if (ip->protocol == IPPROTO_TCP)
479 return TRANSPORT_INFO_IPV4_TCP;
480 else if (ip->protocol == IPPROTO_UDP)
481 return TRANSPORT_INFO_IPV4_UDP;
482 } else {
483 struct ipv6hdr *ip6 = ipv6_hdr(skb);
484
485 if (ip6->nexthdr == IPPROTO_TCP)
486 return TRANSPORT_INFO_IPV6_TCP;
487 else if (ip6->nexthdr == IPPROTO_UDP)
488 return TRANSPORT_INFO_IPV6_UDP;
489 }
490
491 return TRANSPORT_INFO_NOT_IP;
492}
493
494/* Send skb on the slave VF device. */
495static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
496 struct sk_buff *skb)
497{
498 struct net_device_context *ndev_ctx = netdev_priv(net);
499 unsigned int len = skb->len;
500 int rc;
501
502 skb->dev = vf_netdev;
503 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
504
505 rc = dev_queue_xmit(skb);
506 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
507 struct netvsc_vf_pcpu_stats *pcpu_stats
508 = this_cpu_ptr(ndev_ctx->vf_stats);
509
510 u64_stats_update_begin(&pcpu_stats->syncp);
511 pcpu_stats->tx_packets++;
512 pcpu_stats->tx_bytes += len;
513 u64_stats_update_end(&pcpu_stats->syncp);
514 } else {
515 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
516 }
517
518 return rc;
519}
520
521static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
522{
523 struct net_device_context *net_device_ctx = netdev_priv(net);
524 struct hv_netvsc_packet *packet = NULL;
525 int ret;
526 unsigned int num_data_pgs;
527 struct rndis_message *rndis_msg;
528 struct net_device *vf_netdev;
529 u32 rndis_msg_size;
530 u32 hash;
531 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
532
533 /* If VF is present and up then redirect packets to it.
534 * Skip the VF if it is marked down or has no carrier.
535 * If netpoll is in uses, then VF can not be used either.
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
540 net_device_ctx->data_path_is_vf)
541 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543 /* We will atmost need two pages to describe the rndis
544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545 * of pages in a single packet. If skb is scattered around
546 * more pages we try linearizing it.
547 */
548
549 num_data_pgs = netvsc_get_slots(skb) + 2;
550
551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552 ++net_device_ctx->eth_stats.tx_scattered;
553
554 if (skb_linearize(skb))
555 goto no_memory;
556
557 num_data_pgs = netvsc_get_slots(skb) + 2;
558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559 ++net_device_ctx->eth_stats.tx_too_big;
560 goto drop;
561 }
562 }
563
564 /*
565 * Place the rndis header in the skb head room and
566 * the skb->cb will be used for hv_netvsc_packet
567 * structure.
568 */
569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570 if (ret)
571 goto no_memory;
572
573 /* Use the skb control buffer for building up the packet */
574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575 sizeof_field(struct sk_buff, cb));
576 packet = (struct hv_netvsc_packet *)skb->cb;
577
578 packet->q_idx = skb_get_queue_mapping(skb);
579
580 packet->total_data_buflen = skb->len;
581 packet->total_bytes = skb->len;
582 packet->total_packets = 1;
583
584 rndis_msg = (struct rndis_message *)skb->head;
585
586 /* Add the rndis header */
587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588 rndis_msg->msg_len = packet->total_data_buflen;
589
590 rndis_msg->msg.pkt = (struct rndis_packet) {
591 .data_offset = sizeof(struct rndis_packet),
592 .data_len = packet->total_data_buflen,
593 .per_pkt_info_offset = sizeof(struct rndis_packet),
594 };
595
596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598 hash = skb_get_hash_raw(skb);
599 if (hash != 0 && net->real_num_tx_queues > 1) {
600 u32 *hash_info;
601
602 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604 NBL_HASH_VALUE);
605 *hash_info = hash;
606 }
607
608 /* When using AF_PACKET we need to drop VLAN header from
609 * the frame and update the SKB to allow the HOST OS
610 * to transmit the 802.1Q packet
611 */
612 if (skb->protocol == htons(ETH_P_8021Q)) {
613 u16 vlan_tci;
614
615 skb_reset_mac_header(skb);
616 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
617 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
618 ++net_device_ctx->eth_stats.vlan_error;
619 goto drop;
620 }
621
622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
623 /* Update the NDIS header pkt lengths */
624 packet->total_data_buflen -= VLAN_HLEN;
625 packet->total_bytes -= VLAN_HLEN;
626 rndis_msg->msg_len = packet->total_data_buflen;
627 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
628 }
629 }
630
631 if (skb_vlan_tag_present(skb)) {
632 struct ndis_pkt_8021q_info *vlan;
633
634 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
635 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
636 IEEE_8021Q_INFO);
637
638 vlan->value = 0;
639 vlan->vlanid = skb_vlan_tag_get_id(skb);
640 vlan->cfi = skb_vlan_tag_get_cfi(skb);
641 vlan->pri = skb_vlan_tag_get_prio(skb);
642 }
643
644 if (skb_is_gso(skb)) {
645 struct ndis_tcp_lso_info *lso_info;
646
647 rndis_msg_size += NDIS_LSO_PPI_SIZE;
648 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
649 TCP_LARGESEND_PKTINFO);
650
651 lso_info->value = 0;
652 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
653 if (skb->protocol == htons(ETH_P_IP)) {
654 lso_info->lso_v2_transmit.ip_version =
655 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
656 ip_hdr(skb)->tot_len = 0;
657 ip_hdr(skb)->check = 0;
658 tcp_hdr(skb)->check =
659 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
660 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
661 } else {
662 lso_info->lso_v2_transmit.ip_version =
663 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
664 tcp_v6_gso_csum_prep(skb);
665 }
666 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
667 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
668 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
669 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
670 struct ndis_tcp_ip_checksum_info *csum_info;
671
672 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
673 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
674 TCPIP_CHKSUM_PKTINFO);
675
676 csum_info->value = 0;
677 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
678
679 if (skb->protocol == htons(ETH_P_IP)) {
680 csum_info->transmit.is_ipv4 = 1;
681
682 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
683 csum_info->transmit.tcp_checksum = 1;
684 else
685 csum_info->transmit.udp_checksum = 1;
686 } else {
687 csum_info->transmit.is_ipv6 = 1;
688
689 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
690 csum_info->transmit.tcp_checksum = 1;
691 else
692 csum_info->transmit.udp_checksum = 1;
693 }
694 } else {
695 /* Can't do offload of this type of checksum */
696 if (skb_checksum_help(skb))
697 goto drop;
698 }
699 }
700
701 /* Start filling in the page buffers with the rndis hdr */
702 rndis_msg->msg_len += rndis_msg_size;
703 packet->total_data_buflen = rndis_msg->msg_len;
704 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
705 skb, packet, pb);
706
707 /* timestamp packet in software */
708 skb_tx_timestamp(skb);
709
710 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
711 if (likely(ret == 0))
712 return NETDEV_TX_OK;
713
714 if (ret == -EAGAIN) {
715 ++net_device_ctx->eth_stats.tx_busy;
716 return NETDEV_TX_BUSY;
717 }
718
719 if (ret == -ENOSPC)
720 ++net_device_ctx->eth_stats.tx_no_space;
721
722drop:
723 dev_kfree_skb_any(skb);
724 net->stats.tx_dropped++;
725
726 return NETDEV_TX_OK;
727
728no_memory:
729 ++net_device_ctx->eth_stats.tx_no_memory;
730 goto drop;
731}
732
733static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
734 struct net_device *ndev)
735{
736 return netvsc_xmit(skb, ndev, false);
737}
738
739/*
740 * netvsc_linkstatus_callback - Link up/down notification
741 */
742void netvsc_linkstatus_callback(struct net_device *net,
743 struct rndis_message *resp,
744 void *data, u32 data_buflen)
745{
746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747 struct net_device_context *ndev_ctx = netdev_priv(net);
748 struct netvsc_reconfig *event;
749 unsigned long flags;
750
751 /* Ensure the packet is big enough to access its fields */
752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754 resp->msg_len);
755 return;
756 }
757
758 /* Copy the RNDIS indicate status into nvchan->recv_buf */
759 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
760
761 /* Update the physical link speed when changing to another vSwitch */
762 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
763 u32 speed;
764
765 /* Validate status_buf_offset and status_buflen.
766 *
767 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
768 * for the status buffer field in resp->msg_len; perform the validation
769 * using data_buflen (>= resp->msg_len).
770 */
771 if (indicate->status_buflen < sizeof(speed) ||
772 indicate->status_buf_offset < sizeof(*indicate) ||
773 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
774 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
775 < indicate->status_buflen) {
776 netdev_err(net, "invalid rndis_indicate_status packet\n");
777 return;
778 }
779
780 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
781 ndev_ctx->speed = speed;
782 return;
783 }
784
785 /* Handle these link change statuses below */
786 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
787 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
788 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
789 return;
790
791 if (net->reg_state != NETREG_REGISTERED)
792 return;
793
794 event = kzalloc(sizeof(*event), GFP_ATOMIC);
795 if (!event)
796 return;
797 event->event = indicate->status;
798
799 spin_lock_irqsave(&ndev_ctx->lock, flags);
800 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
801 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
802
803 schedule_delayed_work(&ndev_ctx->dwork, 0);
804}
805
806static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
807{
808 int rc;
809
810 skb->queue_mapping = skb_get_rx_queue(skb);
811 __skb_push(skb, ETH_HLEN);
812
813 rc = netvsc_xmit(skb, ndev, true);
814
815 if (dev_xmit_complete(rc))
816 return;
817
818 dev_kfree_skb_any(skb);
819 ndev->stats.tx_dropped++;
820}
821
822static void netvsc_comp_ipcsum(struct sk_buff *skb)
823{
824 struct iphdr *iph = (struct iphdr *)skb->data;
825
826 iph->check = 0;
827 iph->check = ip_fast_csum(iph, iph->ihl);
828}
829
830static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
831 struct netvsc_channel *nvchan,
832 struct xdp_buff *xdp)
833{
834 struct napi_struct *napi = &nvchan->napi;
835 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
836 const struct ndis_tcp_ip_checksum_info *csum_info =
837 &nvchan->rsc.csum_info;
838 const u32 *hash_info = &nvchan->rsc.hash_info;
839 u8 ppi_flags = nvchan->rsc.ppi_flags;
840 struct sk_buff *skb;
841 void *xbuf = xdp->data_hard_start;
842 int i;
843
844 if (xbuf) {
845 unsigned int hdroom = xdp->data - xdp->data_hard_start;
846 unsigned int xlen = xdp->data_end - xdp->data;
847 unsigned int frag_size = xdp->frame_sz;
848
849 skb = build_skb(xbuf, frag_size);
850
851 if (!skb) {
852 __free_page(virt_to_page(xbuf));
853 return NULL;
854 }
855
856 skb_reserve(skb, hdroom);
857 skb_put(skb, xlen);
858 skb->dev = napi->dev;
859 } else {
860 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
861
862 if (!skb)
863 return NULL;
864
865 /* Copy to skb. This copy is needed here since the memory
866 * pointed by hv_netvsc_packet cannot be deallocated.
867 */
868 for (i = 0; i < nvchan->rsc.cnt; i++)
869 skb_put_data(skb, nvchan->rsc.data[i],
870 nvchan->rsc.len[i]);
871 }
872
873 skb->protocol = eth_type_trans(skb, net);
874
875 /* skb is already created with CHECKSUM_NONE */
876 skb_checksum_none_assert(skb);
877
878 /* Incoming packets may have IP header checksum verified by the host.
879 * They may not have IP header checksum computed after coalescing.
880 * We compute it here if the flags are set, because on Linux, the IP
881 * checksum is always checked.
882 */
883 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
884 csum_info->receive.ip_checksum_succeeded &&
885 skb->protocol == htons(ETH_P_IP)) {
886 /* Check that there is enough space to hold the IP header. */
887 if (skb_headlen(skb) < sizeof(struct iphdr)) {
888 kfree_skb(skb);
889 return NULL;
890 }
891 netvsc_comp_ipcsum(skb);
892 }
893
894 /* Do L4 checksum offload if enabled and present. */
895 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
896 if (csum_info->receive.tcp_checksum_succeeded ||
897 csum_info->receive.udp_checksum_succeeded)
898 skb->ip_summed = CHECKSUM_UNNECESSARY;
899 }
900
901 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
902 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
903
904 if (ppi_flags & NVSC_RSC_VLAN) {
905 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
906 (vlan->cfi ? VLAN_CFI_MASK : 0);
907
908 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
909 vlan_tci);
910 }
911
912 return skb;
913}
914
915/*
916 * netvsc_recv_callback - Callback when we receive a packet from the
917 * "wire" on the specified device.
918 */
919int netvsc_recv_callback(struct net_device *net,
920 struct netvsc_device *net_device,
921 struct netvsc_channel *nvchan)
922{
923 struct net_device_context *net_device_ctx = netdev_priv(net);
924 struct vmbus_channel *channel = nvchan->channel;
925 u16 q_idx = channel->offermsg.offer.sub_channel_index;
926 struct sk_buff *skb;
927 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
928 struct xdp_buff xdp;
929 u32 act;
930
931 if (net->reg_state != NETREG_REGISTERED)
932 return NVSP_STAT_FAIL;
933
934 act = netvsc_run_xdp(net, nvchan, &xdp);
935
936 if (act != XDP_PASS && act != XDP_TX) {
937 u64_stats_update_begin(&rx_stats->syncp);
938 rx_stats->xdp_drop++;
939 u64_stats_update_end(&rx_stats->syncp);
940
941 return NVSP_STAT_SUCCESS; /* consumed by XDP */
942 }
943
944 /* Allocate a skb - TODO direct I/O to pages? */
945 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
946
947 if (unlikely(!skb)) {
948 ++net_device_ctx->eth_stats.rx_no_memory;
949 return NVSP_STAT_FAIL;
950 }
951
952 skb_record_rx_queue(skb, q_idx);
953
954 /*
955 * Even if injecting the packet, record the statistics
956 * on the synthetic device because modifying the VF device
957 * statistics will not work correctly.
958 */
959 u64_stats_update_begin(&rx_stats->syncp);
960 rx_stats->packets++;
961 rx_stats->bytes += nvchan->rsc.pktlen;
962
963 if (skb->pkt_type == PACKET_BROADCAST)
964 ++rx_stats->broadcast;
965 else if (skb->pkt_type == PACKET_MULTICAST)
966 ++rx_stats->multicast;
967 u64_stats_update_end(&rx_stats->syncp);
968
969 if (act == XDP_TX) {
970 netvsc_xdp_xmit(skb, net);
971 return NVSP_STAT_SUCCESS;
972 }
973
974 napi_gro_receive(&nvchan->napi, skb);
975 return NVSP_STAT_SUCCESS;
976}
977
978static void netvsc_get_drvinfo(struct net_device *net,
979 struct ethtool_drvinfo *info)
980{
981 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
982 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
983}
984
985static void netvsc_get_channels(struct net_device *net,
986 struct ethtool_channels *channel)
987{
988 struct net_device_context *net_device_ctx = netdev_priv(net);
989 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
990
991 if (nvdev) {
992 channel->max_combined = nvdev->max_chn;
993 channel->combined_count = nvdev->num_chn;
994 }
995}
996
997/* Alloc struct netvsc_device_info, and initialize it from either existing
998 * struct netvsc_device, or from default values.
999 */
1000static
1001struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1002{
1003 struct netvsc_device_info *dev_info;
1004 struct bpf_prog *prog;
1005
1006 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1007
1008 if (!dev_info)
1009 return NULL;
1010
1011 if (nvdev) {
1012 ASSERT_RTNL();
1013
1014 dev_info->num_chn = nvdev->num_chn;
1015 dev_info->send_sections = nvdev->send_section_cnt;
1016 dev_info->send_section_size = nvdev->send_section_size;
1017 dev_info->recv_sections = nvdev->recv_section_cnt;
1018 dev_info->recv_section_size = nvdev->recv_section_size;
1019
1020 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1021 NETVSC_HASH_KEYLEN);
1022
1023 prog = netvsc_xdp_get(nvdev);
1024 if (prog) {
1025 bpf_prog_inc(prog);
1026 dev_info->bprog = prog;
1027 }
1028 } else {
1029 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1030 dev_info->send_sections = NETVSC_DEFAULT_TX;
1031 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1032 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1033 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1034 }
1035
1036 return dev_info;
1037}
1038
1039/* Free struct netvsc_device_info */
1040static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1041{
1042 if (dev_info->bprog) {
1043 ASSERT_RTNL();
1044 bpf_prog_put(dev_info->bprog);
1045 }
1046
1047 kfree(dev_info);
1048}
1049
1050static int netvsc_detach(struct net_device *ndev,
1051 struct netvsc_device *nvdev)
1052{
1053 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054 struct hv_device *hdev = ndev_ctx->device_ctx;
1055 int ret;
1056
1057 /* Don't try continuing to try and setup sub channels */
1058 if (cancel_work_sync(&nvdev->subchan_work))
1059 nvdev->num_chn = 1;
1060
1061 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1062
1063 /* If device was up (receiving) then shutdown */
1064 if (netif_running(ndev)) {
1065 netvsc_tx_disable(nvdev, ndev);
1066
1067 ret = rndis_filter_close(nvdev);
1068 if (ret) {
1069 netdev_err(ndev,
1070 "unable to close device (ret %d).\n", ret);
1071 return ret;
1072 }
1073
1074 ret = netvsc_wait_until_empty(nvdev);
1075 if (ret) {
1076 netdev_err(ndev,
1077 "Ring buffer not empty after closing rndis\n");
1078 return ret;
1079 }
1080 }
1081
1082 netif_device_detach(ndev);
1083
1084 rndis_filter_device_remove(hdev, nvdev);
1085
1086 return 0;
1087}
1088
1089static int netvsc_attach(struct net_device *ndev,
1090 struct netvsc_device_info *dev_info)
1091{
1092 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1093 struct hv_device *hdev = ndev_ctx->device_ctx;
1094 struct netvsc_device *nvdev;
1095 struct rndis_device *rdev;
1096 struct bpf_prog *prog;
1097 int ret = 0;
1098
1099 nvdev = rndis_filter_device_add(hdev, dev_info);
1100 if (IS_ERR(nvdev))
1101 return PTR_ERR(nvdev);
1102
1103 if (nvdev->num_chn > 1) {
1104 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1105
1106 /* if unavailable, just proceed with one queue */
1107 if (ret) {
1108 nvdev->max_chn = 1;
1109 nvdev->num_chn = 1;
1110 }
1111 }
1112
1113 prog = dev_info->bprog;
1114 if (prog) {
1115 bpf_prog_inc(prog);
1116 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1117 if (ret) {
1118 bpf_prog_put(prog);
1119 goto err1;
1120 }
1121 }
1122
1123 /* In any case device is now ready */
1124 nvdev->tx_disable = false;
1125 netif_device_attach(ndev);
1126
1127 /* Note: enable and attach happen when sub-channels setup */
1128 netif_carrier_off(ndev);
1129
1130 if (netif_running(ndev)) {
1131 ret = rndis_filter_open(nvdev);
1132 if (ret)
1133 goto err2;
1134
1135 rdev = nvdev->extension;
1136 if (!rdev->link_state)
1137 netif_carrier_on(ndev);
1138 }
1139
1140 return 0;
1141
1142err2:
1143 netif_device_detach(ndev);
1144
1145err1:
1146 rndis_filter_device_remove(hdev, nvdev);
1147
1148 return ret;
1149}
1150
1151static int netvsc_set_channels(struct net_device *net,
1152 struct ethtool_channels *channels)
1153{
1154 struct net_device_context *net_device_ctx = netdev_priv(net);
1155 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1156 unsigned int orig, count = channels->combined_count;
1157 struct netvsc_device_info *device_info;
1158 int ret;
1159
1160 /* We do not support separate count for rx, tx, or other */
1161 if (count == 0 ||
1162 channels->rx_count || channels->tx_count || channels->other_count)
1163 return -EINVAL;
1164
1165 if (!nvdev || nvdev->destroy)
1166 return -ENODEV;
1167
1168 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1169 return -EINVAL;
1170
1171 if (count > nvdev->max_chn)
1172 return -EINVAL;
1173
1174 orig = nvdev->num_chn;
1175
1176 device_info = netvsc_devinfo_get(nvdev);
1177
1178 if (!device_info)
1179 return -ENOMEM;
1180
1181 device_info->num_chn = count;
1182
1183 ret = netvsc_detach(net, nvdev);
1184 if (ret)
1185 goto out;
1186
1187 ret = netvsc_attach(net, device_info);
1188 if (ret) {
1189 device_info->num_chn = orig;
1190 if (netvsc_attach(net, device_info))
1191 netdev_err(net, "restoring channel setting failed\n");
1192 }
1193
1194out:
1195 netvsc_devinfo_put(device_info);
1196 return ret;
1197}
1198
1199static void netvsc_init_settings(struct net_device *dev)
1200{
1201 struct net_device_context *ndc = netdev_priv(dev);
1202
1203 ndc->l4_hash = HV_DEFAULT_L4HASH;
1204
1205 ndc->speed = SPEED_UNKNOWN;
1206 ndc->duplex = DUPLEX_FULL;
1207
1208 dev->features = NETIF_F_LRO;
1209}
1210
1211static int netvsc_get_link_ksettings(struct net_device *dev,
1212 struct ethtool_link_ksettings *cmd)
1213{
1214 struct net_device_context *ndc = netdev_priv(dev);
1215 struct net_device *vf_netdev;
1216
1217 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1218
1219 if (vf_netdev)
1220 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1221
1222 cmd->base.speed = ndc->speed;
1223 cmd->base.duplex = ndc->duplex;
1224 cmd->base.port = PORT_OTHER;
1225
1226 return 0;
1227}
1228
1229static int netvsc_set_link_ksettings(struct net_device *dev,
1230 const struct ethtool_link_ksettings *cmd)
1231{
1232 struct net_device_context *ndc = netdev_priv(dev);
1233 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234
1235 if (vf_netdev) {
1236 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1237 return -EOPNOTSUPP;
1238
1239 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1240 cmd);
1241 }
1242
1243 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1244 &ndc->speed, &ndc->duplex);
1245}
1246
1247static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1248{
1249 struct net_device_context *ndevctx = netdev_priv(ndev);
1250 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1251 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1252 int orig_mtu = ndev->mtu;
1253 struct netvsc_device_info *device_info;
1254 int ret = 0;
1255
1256 if (!nvdev || nvdev->destroy)
1257 return -ENODEV;
1258
1259 device_info = netvsc_devinfo_get(nvdev);
1260
1261 if (!device_info)
1262 return -ENOMEM;
1263
1264 /* Change MTU of underlying VF netdev first. */
1265 if (vf_netdev) {
1266 ret = dev_set_mtu(vf_netdev, mtu);
1267 if (ret)
1268 goto out;
1269 }
1270
1271 ret = netvsc_detach(ndev, nvdev);
1272 if (ret)
1273 goto rollback_vf;
1274
1275 ndev->mtu = mtu;
1276
1277 ret = netvsc_attach(ndev, device_info);
1278 if (!ret)
1279 goto out;
1280
1281 /* Attempt rollback to original MTU */
1282 ndev->mtu = orig_mtu;
1283
1284 if (netvsc_attach(ndev, device_info))
1285 netdev_err(ndev, "restoring mtu failed\n");
1286rollback_vf:
1287 if (vf_netdev)
1288 dev_set_mtu(vf_netdev, orig_mtu);
1289
1290out:
1291 netvsc_devinfo_put(device_info);
1292 return ret;
1293}
1294
1295static void netvsc_get_vf_stats(struct net_device *net,
1296 struct netvsc_vf_pcpu_stats *tot)
1297{
1298 struct net_device_context *ndev_ctx = netdev_priv(net);
1299 int i;
1300
1301 memset(tot, 0, sizeof(*tot));
1302
1303 for_each_possible_cpu(i) {
1304 const struct netvsc_vf_pcpu_stats *stats
1305 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1306 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1307 unsigned int start;
1308
1309 do {
1310 start = u64_stats_fetch_begin_irq(&stats->syncp);
1311 rx_packets = stats->rx_packets;
1312 tx_packets = stats->tx_packets;
1313 rx_bytes = stats->rx_bytes;
1314 tx_bytes = stats->tx_bytes;
1315 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1316
1317 tot->rx_packets += rx_packets;
1318 tot->tx_packets += tx_packets;
1319 tot->rx_bytes += rx_bytes;
1320 tot->tx_bytes += tx_bytes;
1321 tot->tx_dropped += stats->tx_dropped;
1322 }
1323}
1324
1325static void netvsc_get_pcpu_stats(struct net_device *net,
1326 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1327{
1328 struct net_device_context *ndev_ctx = netdev_priv(net);
1329 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1330 int i;
1331
1332 /* fetch percpu stats of vf */
1333 for_each_possible_cpu(i) {
1334 const struct netvsc_vf_pcpu_stats *stats =
1335 per_cpu_ptr(ndev_ctx->vf_stats, i);
1336 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1337 unsigned int start;
1338
1339 do {
1340 start = u64_stats_fetch_begin_irq(&stats->syncp);
1341 this_tot->vf_rx_packets = stats->rx_packets;
1342 this_tot->vf_tx_packets = stats->tx_packets;
1343 this_tot->vf_rx_bytes = stats->rx_bytes;
1344 this_tot->vf_tx_bytes = stats->tx_bytes;
1345 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1346 this_tot->rx_packets = this_tot->vf_rx_packets;
1347 this_tot->tx_packets = this_tot->vf_tx_packets;
1348 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1349 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1350 }
1351
1352 /* fetch percpu stats of netvsc */
1353 for (i = 0; i < nvdev->num_chn; i++) {
1354 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1355 const struct netvsc_stats *stats;
1356 struct netvsc_ethtool_pcpu_stats *this_tot =
1357 &pcpu_tot[nvchan->channel->target_cpu];
1358 u64 packets, bytes;
1359 unsigned int start;
1360
1361 stats = &nvchan->tx_stats;
1362 do {
1363 start = u64_stats_fetch_begin_irq(&stats->syncp);
1364 packets = stats->packets;
1365 bytes = stats->bytes;
1366 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1367
1368 this_tot->tx_bytes += bytes;
1369 this_tot->tx_packets += packets;
1370
1371 stats = &nvchan->rx_stats;
1372 do {
1373 start = u64_stats_fetch_begin_irq(&stats->syncp);
1374 packets = stats->packets;
1375 bytes = stats->bytes;
1376 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1377
1378 this_tot->rx_bytes += bytes;
1379 this_tot->rx_packets += packets;
1380 }
1381}
1382
1383static void netvsc_get_stats64(struct net_device *net,
1384 struct rtnl_link_stats64 *t)
1385{
1386 struct net_device_context *ndev_ctx = netdev_priv(net);
1387 struct netvsc_device *nvdev;
1388 struct netvsc_vf_pcpu_stats vf_tot;
1389 int i;
1390
1391 rcu_read_lock();
1392
1393 nvdev = rcu_dereference(ndev_ctx->nvdev);
1394 if (!nvdev)
1395 goto out;
1396
1397 netdev_stats_to_stats64(t, &net->stats);
1398
1399 netvsc_get_vf_stats(net, &vf_tot);
1400 t->rx_packets += vf_tot.rx_packets;
1401 t->tx_packets += vf_tot.tx_packets;
1402 t->rx_bytes += vf_tot.rx_bytes;
1403 t->tx_bytes += vf_tot.tx_bytes;
1404 t->tx_dropped += vf_tot.tx_dropped;
1405
1406 for (i = 0; i < nvdev->num_chn; i++) {
1407 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1408 const struct netvsc_stats *stats;
1409 u64 packets, bytes, multicast;
1410 unsigned int start;
1411
1412 stats = &nvchan->tx_stats;
1413 do {
1414 start = u64_stats_fetch_begin_irq(&stats->syncp);
1415 packets = stats->packets;
1416 bytes = stats->bytes;
1417 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1418
1419 t->tx_bytes += bytes;
1420 t->tx_packets += packets;
1421
1422 stats = &nvchan->rx_stats;
1423 do {
1424 start = u64_stats_fetch_begin_irq(&stats->syncp);
1425 packets = stats->packets;
1426 bytes = stats->bytes;
1427 multicast = stats->multicast + stats->broadcast;
1428 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1429
1430 t->rx_bytes += bytes;
1431 t->rx_packets += packets;
1432 t->multicast += multicast;
1433 }
1434out:
1435 rcu_read_unlock();
1436}
1437
1438static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1439{
1440 struct net_device_context *ndc = netdev_priv(ndev);
1441 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1442 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1443 struct sockaddr *addr = p;
1444 int err;
1445
1446 err = eth_prepare_mac_addr_change(ndev, p);
1447 if (err)
1448 return err;
1449
1450 if (!nvdev)
1451 return -ENODEV;
1452
1453 if (vf_netdev) {
1454 err = dev_set_mac_address(vf_netdev, addr, NULL);
1455 if (err)
1456 return err;
1457 }
1458
1459 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1460 if (!err) {
1461 eth_commit_mac_addr_change(ndev, p);
1462 } else if (vf_netdev) {
1463 /* rollback change on VF */
1464 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1465 dev_set_mac_address(vf_netdev, addr, NULL);
1466 }
1467
1468 return err;
1469}
1470
1471static const struct {
1472 char name[ETH_GSTRING_LEN];
1473 u16 offset;
1474} netvsc_stats[] = {
1475 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1476 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1477 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1478 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1479 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1480 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1481 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1482 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1483 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1484 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1485 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1486}, pcpu_stats[] = {
1487 { "cpu%u_rx_packets",
1488 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1489 { "cpu%u_rx_bytes",
1490 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1491 { "cpu%u_tx_packets",
1492 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1493 { "cpu%u_tx_bytes",
1494 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1495 { "cpu%u_vf_rx_packets",
1496 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1497 { "cpu%u_vf_rx_bytes",
1498 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1499 { "cpu%u_vf_tx_packets",
1500 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1501 { "cpu%u_vf_tx_bytes",
1502 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1503}, vf_stats[] = {
1504 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1505 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1506 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1507 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1508 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1509};
1510
1511#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1512#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1513
1514/* statistics per queue (rx/tx packets/bytes) */
1515#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1516
1517/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1518#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1519
1520static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1521{
1522 struct net_device_context *ndc = netdev_priv(dev);
1523 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1524
1525 if (!nvdev)
1526 return -ENODEV;
1527
1528 switch (string_set) {
1529 case ETH_SS_STATS:
1530 return NETVSC_GLOBAL_STATS_LEN
1531 + NETVSC_VF_STATS_LEN
1532 + NETVSC_QUEUE_STATS_LEN(nvdev)
1533 + NETVSC_PCPU_STATS_LEN;
1534 default:
1535 return -EINVAL;
1536 }
1537}
1538
1539static void netvsc_get_ethtool_stats(struct net_device *dev,
1540 struct ethtool_stats *stats, u64 *data)
1541{
1542 struct net_device_context *ndc = netdev_priv(dev);
1543 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1544 const void *nds = &ndc->eth_stats;
1545 const struct netvsc_stats *qstats;
1546 struct netvsc_vf_pcpu_stats sum;
1547 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1548 unsigned int start;
1549 u64 packets, bytes;
1550 u64 xdp_drop;
1551 int i, j, cpu;
1552
1553 if (!nvdev)
1554 return;
1555
1556 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1557 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1558
1559 netvsc_get_vf_stats(dev, &sum);
1560 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1561 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1562
1563 for (j = 0; j < nvdev->num_chn; j++) {
1564 qstats = &nvdev->chan_table[j].tx_stats;
1565
1566 do {
1567 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1568 packets = qstats->packets;
1569 bytes = qstats->bytes;
1570 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1571 data[i++] = packets;
1572 data[i++] = bytes;
1573
1574 qstats = &nvdev->chan_table[j].rx_stats;
1575 do {
1576 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1577 packets = qstats->packets;
1578 bytes = qstats->bytes;
1579 xdp_drop = qstats->xdp_drop;
1580 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1581 data[i++] = packets;
1582 data[i++] = bytes;
1583 data[i++] = xdp_drop;
1584 }
1585
1586 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1587 sizeof(struct netvsc_ethtool_pcpu_stats),
1588 GFP_KERNEL);
1589 netvsc_get_pcpu_stats(dev, pcpu_sum);
1590 for_each_present_cpu(cpu) {
1591 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1592
1593 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1594 data[i++] = *(u64 *)((void *)this_sum
1595 + pcpu_stats[j].offset);
1596 }
1597 kvfree(pcpu_sum);
1598}
1599
1600static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1601{
1602 struct net_device_context *ndc = netdev_priv(dev);
1603 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1604 u8 *p = data;
1605 int i, cpu;
1606
1607 if (!nvdev)
1608 return;
1609
1610 switch (stringset) {
1611 case ETH_SS_STATS:
1612 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1613 ethtool_sprintf(&p, netvsc_stats[i].name);
1614
1615 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1616 ethtool_sprintf(&p, vf_stats[i].name);
1617
1618 for (i = 0; i < nvdev->num_chn; i++) {
1619 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1620 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1621 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1622 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1623 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1624 }
1625
1626 for_each_present_cpu(cpu) {
1627 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1628 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1629 }
1630
1631 break;
1632 }
1633}
1634
1635static int
1636netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1637 struct ethtool_rxnfc *info)
1638{
1639 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1640
1641 info->data = RXH_IP_SRC | RXH_IP_DST;
1642
1643 switch (info->flow_type) {
1644 case TCP_V4_FLOW:
1645 if (ndc->l4_hash & HV_TCP4_L4HASH)
1646 info->data |= l4_flag;
1647
1648 break;
1649
1650 case TCP_V6_FLOW:
1651 if (ndc->l4_hash & HV_TCP6_L4HASH)
1652 info->data |= l4_flag;
1653
1654 break;
1655
1656 case UDP_V4_FLOW:
1657 if (ndc->l4_hash & HV_UDP4_L4HASH)
1658 info->data |= l4_flag;
1659
1660 break;
1661
1662 case UDP_V6_FLOW:
1663 if (ndc->l4_hash & HV_UDP6_L4HASH)
1664 info->data |= l4_flag;
1665
1666 break;
1667
1668 case IPV4_FLOW:
1669 case IPV6_FLOW:
1670 break;
1671 default:
1672 info->data = 0;
1673 break;
1674 }
1675
1676 return 0;
1677}
1678
1679static int
1680netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1681 u32 *rules)
1682{
1683 struct net_device_context *ndc = netdev_priv(dev);
1684 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1685
1686 if (!nvdev)
1687 return -ENODEV;
1688
1689 switch (info->cmd) {
1690 case ETHTOOL_GRXRINGS:
1691 info->data = nvdev->num_chn;
1692 return 0;
1693
1694 case ETHTOOL_GRXFH:
1695 return netvsc_get_rss_hash_opts(ndc, info);
1696 }
1697 return -EOPNOTSUPP;
1698}
1699
1700static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1701 struct ethtool_rxnfc *info)
1702{
1703 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1704 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1705 switch (info->flow_type) {
1706 case TCP_V4_FLOW:
1707 ndc->l4_hash |= HV_TCP4_L4HASH;
1708 break;
1709
1710 case TCP_V6_FLOW:
1711 ndc->l4_hash |= HV_TCP6_L4HASH;
1712 break;
1713
1714 case UDP_V4_FLOW:
1715 ndc->l4_hash |= HV_UDP4_L4HASH;
1716 break;
1717
1718 case UDP_V6_FLOW:
1719 ndc->l4_hash |= HV_UDP6_L4HASH;
1720 break;
1721
1722 default:
1723 return -EOPNOTSUPP;
1724 }
1725
1726 return 0;
1727 }
1728
1729 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1730 switch (info->flow_type) {
1731 case TCP_V4_FLOW:
1732 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1733 break;
1734
1735 case TCP_V6_FLOW:
1736 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1737 break;
1738
1739 case UDP_V4_FLOW:
1740 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1741 break;
1742
1743 case UDP_V6_FLOW:
1744 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1745 break;
1746
1747 default:
1748 return -EOPNOTSUPP;
1749 }
1750
1751 return 0;
1752 }
1753
1754 return -EOPNOTSUPP;
1755}
1756
1757static int
1758netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1759{
1760 struct net_device_context *ndc = netdev_priv(ndev);
1761
1762 if (info->cmd == ETHTOOL_SRXFH)
1763 return netvsc_set_rss_hash_opts(ndc, info);
1764
1765 return -EOPNOTSUPP;
1766}
1767
1768static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1769{
1770 return NETVSC_HASH_KEYLEN;
1771}
1772
1773static u32 netvsc_rss_indir_size(struct net_device *dev)
1774{
1775 return ITAB_NUM;
1776}
1777
1778static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1779 u8 *hfunc)
1780{
1781 struct net_device_context *ndc = netdev_priv(dev);
1782 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1783 struct rndis_device *rndis_dev;
1784 int i;
1785
1786 if (!ndev)
1787 return -ENODEV;
1788
1789 if (hfunc)
1790 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1791
1792 rndis_dev = ndev->extension;
1793 if (indir) {
1794 for (i = 0; i < ITAB_NUM; i++)
1795 indir[i] = ndc->rx_table[i];
1796 }
1797
1798 if (key)
1799 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1800
1801 return 0;
1802}
1803
1804static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1805 const u8 *key, const u8 hfunc)
1806{
1807 struct net_device_context *ndc = netdev_priv(dev);
1808 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1809 struct rndis_device *rndis_dev;
1810 int i;
1811
1812 if (!ndev)
1813 return -ENODEV;
1814
1815 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1816 return -EOPNOTSUPP;
1817
1818 rndis_dev = ndev->extension;
1819 if (indir) {
1820 for (i = 0; i < ITAB_NUM; i++)
1821 if (indir[i] >= ndev->num_chn)
1822 return -EINVAL;
1823
1824 for (i = 0; i < ITAB_NUM; i++)
1825 ndc->rx_table[i] = indir[i];
1826 }
1827
1828 if (!key) {
1829 if (!indir)
1830 return 0;
1831
1832 key = rndis_dev->rss_key;
1833 }
1834
1835 return rndis_filter_set_rss_param(rndis_dev, key);
1836}
1837
1838/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1839 * It does have pre-allocated receive area which is divided into sections.
1840 */
1841static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1842 struct ethtool_ringparam *ring)
1843{
1844 u32 max_buf_size;
1845
1846 ring->rx_pending = nvdev->recv_section_cnt;
1847 ring->tx_pending = nvdev->send_section_cnt;
1848
1849 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1850 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1851 else
1852 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1853
1854 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1855 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1856 / nvdev->send_section_size;
1857}
1858
1859static void netvsc_get_ringparam(struct net_device *ndev,
1860 struct ethtool_ringparam *ring)
1861{
1862 struct net_device_context *ndevctx = netdev_priv(ndev);
1863 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864
1865 if (!nvdev)
1866 return;
1867
1868 __netvsc_get_ringparam(nvdev, ring);
1869}
1870
1871static int netvsc_set_ringparam(struct net_device *ndev,
1872 struct ethtool_ringparam *ring)
1873{
1874 struct net_device_context *ndevctx = netdev_priv(ndev);
1875 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1876 struct netvsc_device_info *device_info;
1877 struct ethtool_ringparam orig;
1878 u32 new_tx, new_rx;
1879 int ret = 0;
1880
1881 if (!nvdev || nvdev->destroy)
1882 return -ENODEV;
1883
1884 memset(&orig, 0, sizeof(orig));
1885 __netvsc_get_ringparam(nvdev, &orig);
1886
1887 new_tx = clamp_t(u32, ring->tx_pending,
1888 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1889 new_rx = clamp_t(u32, ring->rx_pending,
1890 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1891
1892 if (new_tx == orig.tx_pending &&
1893 new_rx == orig.rx_pending)
1894 return 0; /* no change */
1895
1896 device_info = netvsc_devinfo_get(nvdev);
1897
1898 if (!device_info)
1899 return -ENOMEM;
1900
1901 device_info->send_sections = new_tx;
1902 device_info->recv_sections = new_rx;
1903
1904 ret = netvsc_detach(ndev, nvdev);
1905 if (ret)
1906 goto out;
1907
1908 ret = netvsc_attach(ndev, device_info);
1909 if (ret) {
1910 device_info->send_sections = orig.tx_pending;
1911 device_info->recv_sections = orig.rx_pending;
1912
1913 if (netvsc_attach(ndev, device_info))
1914 netdev_err(ndev, "restoring ringparam failed");
1915 }
1916
1917out:
1918 netvsc_devinfo_put(device_info);
1919 return ret;
1920}
1921
1922static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1923 netdev_features_t features)
1924{
1925 struct net_device_context *ndevctx = netdev_priv(ndev);
1926 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1927
1928 if (!nvdev || nvdev->destroy)
1929 return features;
1930
1931 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1932 features ^= NETIF_F_LRO;
1933 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1934 }
1935
1936 return features;
1937}
1938
1939static int netvsc_set_features(struct net_device *ndev,
1940 netdev_features_t features)
1941{
1942 netdev_features_t change = features ^ ndev->features;
1943 struct net_device_context *ndevctx = netdev_priv(ndev);
1944 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1945 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1946 struct ndis_offload_params offloads;
1947 int ret = 0;
1948
1949 if (!nvdev || nvdev->destroy)
1950 return -ENODEV;
1951
1952 if (!(change & NETIF_F_LRO))
1953 goto syncvf;
1954
1955 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1956
1957 if (features & NETIF_F_LRO) {
1958 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1959 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1960 } else {
1961 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1962 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1963 }
1964
1965 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1966
1967 if (ret) {
1968 features ^= NETIF_F_LRO;
1969 ndev->features = features;
1970 }
1971
1972syncvf:
1973 if (!vf_netdev)
1974 return ret;
1975
1976 vf_netdev->wanted_features = features;
1977 netdev_update_features(vf_netdev);
1978
1979 return ret;
1980}
1981
1982static int netvsc_get_regs_len(struct net_device *netdev)
1983{
1984 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1985}
1986
1987static void netvsc_get_regs(struct net_device *netdev,
1988 struct ethtool_regs *regs, void *p)
1989{
1990 struct net_device_context *ndc = netdev_priv(netdev);
1991 u32 *regs_buff = p;
1992
1993 /* increase the version, if buffer format is changed. */
1994 regs->version = 1;
1995
1996 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1997}
1998
1999static u32 netvsc_get_msglevel(struct net_device *ndev)
2000{
2001 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2002
2003 return ndev_ctx->msg_enable;
2004}
2005
2006static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2007{
2008 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2009
2010 ndev_ctx->msg_enable = val;
2011}
2012
2013static const struct ethtool_ops ethtool_ops = {
2014 .get_drvinfo = netvsc_get_drvinfo,
2015 .get_regs_len = netvsc_get_regs_len,
2016 .get_regs = netvsc_get_regs,
2017 .get_msglevel = netvsc_get_msglevel,
2018 .set_msglevel = netvsc_set_msglevel,
2019 .get_link = ethtool_op_get_link,
2020 .get_ethtool_stats = netvsc_get_ethtool_stats,
2021 .get_sset_count = netvsc_get_sset_count,
2022 .get_strings = netvsc_get_strings,
2023 .get_channels = netvsc_get_channels,
2024 .set_channels = netvsc_set_channels,
2025 .get_ts_info = ethtool_op_get_ts_info,
2026 .get_rxnfc = netvsc_get_rxnfc,
2027 .set_rxnfc = netvsc_set_rxnfc,
2028 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2029 .get_rxfh_indir_size = netvsc_rss_indir_size,
2030 .get_rxfh = netvsc_get_rxfh,
2031 .set_rxfh = netvsc_set_rxfh,
2032 .get_link_ksettings = netvsc_get_link_ksettings,
2033 .set_link_ksettings = netvsc_set_link_ksettings,
2034 .get_ringparam = netvsc_get_ringparam,
2035 .set_ringparam = netvsc_set_ringparam,
2036};
2037
2038static const struct net_device_ops device_ops = {
2039 .ndo_open = netvsc_open,
2040 .ndo_stop = netvsc_close,
2041 .ndo_start_xmit = netvsc_start_xmit,
2042 .ndo_change_rx_flags = netvsc_change_rx_flags,
2043 .ndo_set_rx_mode = netvsc_set_rx_mode,
2044 .ndo_fix_features = netvsc_fix_features,
2045 .ndo_set_features = netvsc_set_features,
2046 .ndo_change_mtu = netvsc_change_mtu,
2047 .ndo_validate_addr = eth_validate_addr,
2048 .ndo_set_mac_address = netvsc_set_mac_addr,
2049 .ndo_select_queue = netvsc_select_queue,
2050 .ndo_get_stats64 = netvsc_get_stats64,
2051 .ndo_bpf = netvsc_bpf,
2052};
2053
2054/*
2055 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2056 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2057 * present send GARP packet to network peers with netif_notify_peers().
2058 */
2059static void netvsc_link_change(struct work_struct *w)
2060{
2061 struct net_device_context *ndev_ctx =
2062 container_of(w, struct net_device_context, dwork.work);
2063 struct hv_device *device_obj = ndev_ctx->device_ctx;
2064 struct net_device *net = hv_get_drvdata(device_obj);
2065 unsigned long flags, next_reconfig, delay;
2066 struct netvsc_reconfig *event = NULL;
2067 struct netvsc_device *net_device;
2068 struct rndis_device *rdev;
2069 bool reschedule = false;
2070
2071 /* if changes are happening, comeback later */
2072 if (!rtnl_trylock()) {
2073 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2074 return;
2075 }
2076
2077 net_device = rtnl_dereference(ndev_ctx->nvdev);
2078 if (!net_device)
2079 goto out_unlock;
2080
2081 rdev = net_device->extension;
2082
2083 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2084 if (time_is_after_jiffies(next_reconfig)) {
2085 /* link_watch only sends one notification with current state
2086 * per second, avoid doing reconfig more frequently. Handle
2087 * wrap around.
2088 */
2089 delay = next_reconfig - jiffies;
2090 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2091 schedule_delayed_work(&ndev_ctx->dwork, delay);
2092 goto out_unlock;
2093 }
2094 ndev_ctx->last_reconfig = jiffies;
2095
2096 spin_lock_irqsave(&ndev_ctx->lock, flags);
2097 if (!list_empty(&ndev_ctx->reconfig_events)) {
2098 event = list_first_entry(&ndev_ctx->reconfig_events,
2099 struct netvsc_reconfig, list);
2100 list_del(&event->list);
2101 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2102 }
2103 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2104
2105 if (!event)
2106 goto out_unlock;
2107
2108 switch (event->event) {
2109 /* Only the following events are possible due to the check in
2110 * netvsc_linkstatus_callback()
2111 */
2112 case RNDIS_STATUS_MEDIA_CONNECT:
2113 if (rdev->link_state) {
2114 rdev->link_state = false;
2115 netif_carrier_on(net);
2116 netvsc_tx_enable(net_device, net);
2117 } else {
2118 __netdev_notify_peers(net);
2119 }
2120 kfree(event);
2121 break;
2122 case RNDIS_STATUS_MEDIA_DISCONNECT:
2123 if (!rdev->link_state) {
2124 rdev->link_state = true;
2125 netif_carrier_off(net);
2126 netvsc_tx_disable(net_device, net);
2127 }
2128 kfree(event);
2129 break;
2130 case RNDIS_STATUS_NETWORK_CHANGE:
2131 /* Only makes sense if carrier is present */
2132 if (!rdev->link_state) {
2133 rdev->link_state = true;
2134 netif_carrier_off(net);
2135 netvsc_tx_disable(net_device, net);
2136 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2137 spin_lock_irqsave(&ndev_ctx->lock, flags);
2138 list_add(&event->list, &ndev_ctx->reconfig_events);
2139 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2140 reschedule = true;
2141 }
2142 break;
2143 }
2144
2145 rtnl_unlock();
2146
2147 /* link_watch only sends one notification with current state per
2148 * second, handle next reconfig event in 2 seconds.
2149 */
2150 if (reschedule)
2151 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2152
2153 return;
2154
2155out_unlock:
2156 rtnl_unlock();
2157}
2158
2159static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2160{
2161 struct net_device_context *net_device_ctx;
2162 struct net_device *dev;
2163
2164 dev = netdev_master_upper_dev_get(vf_netdev);
2165 if (!dev || dev->netdev_ops != &device_ops)
2166 return NULL; /* not a netvsc device */
2167
2168 net_device_ctx = netdev_priv(dev);
2169 if (!rtnl_dereference(net_device_ctx->nvdev))
2170 return NULL; /* device is removed */
2171
2172 return dev;
2173}
2174
2175/* Called when VF is injecting data into network stack.
2176 * Change the associated network device from VF to netvsc.
2177 * note: already called with rcu_read_lock
2178 */
2179static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2180{
2181 struct sk_buff *skb = *pskb;
2182 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2183 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2184 struct netvsc_vf_pcpu_stats *pcpu_stats
2185 = this_cpu_ptr(ndev_ctx->vf_stats);
2186
2187 skb = skb_share_check(skb, GFP_ATOMIC);
2188 if (unlikely(!skb))
2189 return RX_HANDLER_CONSUMED;
2190
2191 *pskb = skb;
2192
2193 skb->dev = ndev;
2194
2195 u64_stats_update_begin(&pcpu_stats->syncp);
2196 pcpu_stats->rx_packets++;
2197 pcpu_stats->rx_bytes += skb->len;
2198 u64_stats_update_end(&pcpu_stats->syncp);
2199
2200 return RX_HANDLER_ANOTHER;
2201}
2202
2203static int netvsc_vf_join(struct net_device *vf_netdev,
2204 struct net_device *ndev)
2205{
2206 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2207 int ret;
2208
2209 ret = netdev_rx_handler_register(vf_netdev,
2210 netvsc_vf_handle_frame, ndev);
2211 if (ret != 0) {
2212 netdev_err(vf_netdev,
2213 "can not register netvsc VF receive handler (err = %d)\n",
2214 ret);
2215 goto rx_handler_failed;
2216 }
2217
2218 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2219 NULL, NULL, NULL);
2220 if (ret != 0) {
2221 netdev_err(vf_netdev,
2222 "can not set master device %s (err = %d)\n",
2223 ndev->name, ret);
2224 goto upper_link_failed;
2225 }
2226
2227 /* set slave flag before open to prevent IPv6 addrconf */
2228 vf_netdev->flags |= IFF_SLAVE;
2229
2230 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2231
2232 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2233
2234 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2235 return 0;
2236
2237upper_link_failed:
2238 netdev_rx_handler_unregister(vf_netdev);
2239rx_handler_failed:
2240 return ret;
2241}
2242
2243static void __netvsc_vf_setup(struct net_device *ndev,
2244 struct net_device *vf_netdev)
2245{
2246 int ret;
2247
2248 /* Align MTU of VF with master */
2249 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2250 if (ret)
2251 netdev_warn(vf_netdev,
2252 "unable to change mtu to %u\n", ndev->mtu);
2253
2254 /* set multicast etc flags on VF */
2255 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2256
2257 /* sync address list from ndev to VF */
2258 netif_addr_lock_bh(ndev);
2259 dev_uc_sync(vf_netdev, ndev);
2260 dev_mc_sync(vf_netdev, ndev);
2261 netif_addr_unlock_bh(ndev);
2262
2263 if (netif_running(ndev)) {
2264 ret = dev_open(vf_netdev, NULL);
2265 if (ret)
2266 netdev_warn(vf_netdev,
2267 "unable to open: %d\n", ret);
2268 }
2269}
2270
2271/* Setup VF as slave of the synthetic device.
2272 * Runs in workqueue to avoid recursion in netlink callbacks.
2273 */
2274static void netvsc_vf_setup(struct work_struct *w)
2275{
2276 struct net_device_context *ndev_ctx
2277 = container_of(w, struct net_device_context, vf_takeover.work);
2278 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2279 struct net_device *vf_netdev;
2280
2281 if (!rtnl_trylock()) {
2282 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2283 return;
2284 }
2285
2286 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2287 if (vf_netdev)
2288 __netvsc_vf_setup(ndev, vf_netdev);
2289
2290 rtnl_unlock();
2291}
2292
2293/* Find netvsc by VF serial number.
2294 * The PCI hyperv controller records the serial number as the slot kobj name.
2295 */
2296static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2297{
2298 struct device *parent = vf_netdev->dev.parent;
2299 struct net_device_context *ndev_ctx;
2300 struct net_device *ndev;
2301 struct pci_dev *pdev;
2302 u32 serial;
2303
2304 if (!parent || !dev_is_pci(parent))
2305 return NULL; /* not a PCI device */
2306
2307 pdev = to_pci_dev(parent);
2308 if (!pdev->slot) {
2309 netdev_notice(vf_netdev, "no PCI slot information\n");
2310 return NULL;
2311 }
2312
2313 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2314 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2315 pci_slot_name(pdev->slot));
2316 return NULL;
2317 }
2318
2319 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320 if (!ndev_ctx->vf_alloc)
2321 continue;
2322
2323 if (ndev_ctx->vf_serial != serial)
2324 continue;
2325
2326 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2327 if (ndev->addr_len != vf_netdev->addr_len ||
2328 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2329 ndev->addr_len) != 0)
2330 continue;
2331
2332 return ndev;
2333
2334 }
2335
2336 netdev_notice(vf_netdev,
2337 "no netdev found for vf serial:%u\n", serial);
2338 return NULL;
2339}
2340
2341static int netvsc_register_vf(struct net_device *vf_netdev)
2342{
2343 struct net_device_context *net_device_ctx;
2344 struct netvsc_device *netvsc_dev;
2345 struct bpf_prog *prog;
2346 struct net_device *ndev;
2347 int ret;
2348
2349 if (vf_netdev->addr_len != ETH_ALEN)
2350 return NOTIFY_DONE;
2351
2352 ndev = get_netvsc_byslot(vf_netdev);
2353 if (!ndev)
2354 return NOTIFY_DONE;
2355
2356 net_device_ctx = netdev_priv(ndev);
2357 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2358 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2359 return NOTIFY_DONE;
2360
2361 /* if synthetic interface is a different namespace,
2362 * then move the VF to that namespace; join will be
2363 * done again in that context.
2364 */
2365 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2366 ret = dev_change_net_namespace(vf_netdev,
2367 dev_net(ndev), "eth%d");
2368 if (ret)
2369 netdev_err(vf_netdev,
2370 "could not move to same namespace as %s: %d\n",
2371 ndev->name, ret);
2372 else
2373 netdev_info(vf_netdev,
2374 "VF moved to namespace with: %s\n",
2375 ndev->name);
2376 return NOTIFY_DONE;
2377 }
2378
2379 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2380
2381 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2382 return NOTIFY_DONE;
2383
2384 dev_hold(vf_netdev);
2385 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2386
2387 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2388 ndev->needed_headroom = vf_netdev->needed_headroom;
2389
2390 vf_netdev->wanted_features = ndev->features;
2391 netdev_update_features(vf_netdev);
2392
2393 prog = netvsc_xdp_get(netvsc_dev);
2394 netvsc_vf_setxdp(vf_netdev, prog);
2395
2396 return NOTIFY_OK;
2397}
2398
2399/* Change the data path when VF UP/DOWN/CHANGE are detected.
2400 *
2401 * Typically a UP or DOWN event is followed by a CHANGE event, so
2402 * net_device_ctx->data_path_is_vf is used to cache the current data path
2403 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2404 * message.
2405 *
2406 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2407 * interface, there is only the CHANGE event and no UP or DOWN event.
2408 */
2409static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2410{
2411 struct net_device_context *net_device_ctx;
2412 struct netvsc_device *netvsc_dev;
2413 struct net_device *ndev;
2414 bool vf_is_up = false;
2415 int ret;
2416
2417 if (event != NETDEV_GOING_DOWN)
2418 vf_is_up = netif_running(vf_netdev);
2419
2420 ndev = get_netvsc_byref(vf_netdev);
2421 if (!ndev)
2422 return NOTIFY_DONE;
2423
2424 net_device_ctx = netdev_priv(ndev);
2425 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2426 if (!netvsc_dev)
2427 return NOTIFY_DONE;
2428
2429 if (net_device_ctx->data_path_is_vf == vf_is_up)
2430 return NOTIFY_OK;
2431
2432 ret = netvsc_switch_datapath(ndev, vf_is_up);
2433
2434 if (ret) {
2435 netdev_err(ndev,
2436 "Data path failed to switch %s VF: %s, err: %d\n",
2437 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2438 return NOTIFY_DONE;
2439 } else {
2440 netdev_info(ndev, "Data path switched %s VF: %s\n",
2441 vf_is_up ? "to" : "from", vf_netdev->name);
2442 }
2443
2444 return NOTIFY_OK;
2445}
2446
2447static int netvsc_unregister_vf(struct net_device *vf_netdev)
2448{
2449 struct net_device *ndev;
2450 struct net_device_context *net_device_ctx;
2451
2452 ndev = get_netvsc_byref(vf_netdev);
2453 if (!ndev)
2454 return NOTIFY_DONE;
2455
2456 net_device_ctx = netdev_priv(ndev);
2457 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2458
2459 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2460
2461 netvsc_vf_setxdp(vf_netdev, NULL);
2462
2463 netdev_rx_handler_unregister(vf_netdev);
2464 netdev_upper_dev_unlink(vf_netdev, ndev);
2465 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2466 dev_put(vf_netdev);
2467
2468 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2469
2470 return NOTIFY_OK;
2471}
2472
2473static int netvsc_probe(struct hv_device *dev,
2474 const struct hv_vmbus_device_id *dev_id)
2475{
2476 struct net_device *net = NULL;
2477 struct net_device_context *net_device_ctx;
2478 struct netvsc_device_info *device_info = NULL;
2479 struct netvsc_device *nvdev;
2480 int ret = -ENOMEM;
2481
2482 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2483 VRSS_CHANNEL_MAX);
2484 if (!net)
2485 goto no_net;
2486
2487 netif_carrier_off(net);
2488
2489 netvsc_init_settings(net);
2490
2491 net_device_ctx = netdev_priv(net);
2492 net_device_ctx->device_ctx = dev;
2493 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2494 if (netif_msg_probe(net_device_ctx))
2495 netdev_dbg(net, "netvsc msg_enable: %d\n",
2496 net_device_ctx->msg_enable);
2497
2498 hv_set_drvdata(dev, net);
2499
2500 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2501
2502 spin_lock_init(&net_device_ctx->lock);
2503 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2504 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2505
2506 net_device_ctx->vf_stats
2507 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2508 if (!net_device_ctx->vf_stats)
2509 goto no_stats;
2510
2511 net->netdev_ops = &device_ops;
2512 net->ethtool_ops = ðtool_ops;
2513 SET_NETDEV_DEV(net, &dev->device);
2514
2515 /* We always need headroom for rndis header */
2516 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518 /* Initialize the number of queues to be 1, we may change it if more
2519 * channels are offered later.
2520 */
2521 netif_set_real_num_tx_queues(net, 1);
2522 netif_set_real_num_rx_queues(net, 1);
2523
2524 /* Notify the netvsc driver of the new device */
2525 device_info = netvsc_devinfo_get(NULL);
2526
2527 if (!device_info) {
2528 ret = -ENOMEM;
2529 goto devinfo_failed;
2530 }
2531
2532 nvdev = rndis_filter_device_add(dev, device_info);
2533 if (IS_ERR(nvdev)) {
2534 ret = PTR_ERR(nvdev);
2535 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536 goto rndis_failed;
2537 }
2538
2539 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2540
2541 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2542 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543 * all subchannels to show up, but that may not happen because
2544 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546 * the device lock, so all the subchannels can't be processed --
2547 * finally netvsc_subchan_work() hangs forever.
2548 */
2549 rtnl_lock();
2550
2551 if (nvdev->num_chn > 1)
2552 schedule_work(&nvdev->subchan_work);
2553
2554 /* hw_features computed in rndis_netdev_set_hwcaps() */
2555 net->features = net->hw_features |
2556 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557 NETIF_F_HW_VLAN_CTAG_RX;
2558 net->vlan_features = net->features;
2559
2560 netdev_lockdep_set_classes(net);
2561
2562 /* MTU range: 68 - 1500 or 65521 */
2563 net->min_mtu = NETVSC_MTU_MIN;
2564 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566 else
2567 net->max_mtu = ETH_DATA_LEN;
2568
2569 nvdev->tx_disable = false;
2570
2571 ret = register_netdevice(net);
2572 if (ret != 0) {
2573 pr_err("Unable to register netdev.\n");
2574 goto register_failed;
2575 }
2576
2577 list_add(&net_device_ctx->list, &netvsc_dev_list);
2578 rtnl_unlock();
2579
2580 netvsc_devinfo_put(device_info);
2581 return 0;
2582
2583register_failed:
2584 rtnl_unlock();
2585 rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587 netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589 free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591 hv_set_drvdata(dev, NULL);
2592 free_netdev(net);
2593no_net:
2594 return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599 struct net_device_context *ndev_ctx;
2600 struct net_device *vf_netdev, *net;
2601 struct netvsc_device *nvdev;
2602
2603 net = hv_get_drvdata(dev);
2604 if (net == NULL) {
2605 dev_err(&dev->device, "No net device to remove\n");
2606 return 0;
2607 }
2608
2609 ndev_ctx = netdev_priv(net);
2610
2611 cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613 rtnl_lock();
2614 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615 if (nvdev) {
2616 cancel_work_sync(&nvdev->subchan_work);
2617 netvsc_xdp_set(net, NULL, NULL, nvdev);
2618 }
2619
2620 /*
2621 * Call to the vsc driver to let it know that the device is being
2622 * removed. Also blocks mtu and channel changes.
2623 */
2624 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625 if (vf_netdev)
2626 netvsc_unregister_vf(vf_netdev);
2627
2628 if (nvdev)
2629 rndis_filter_device_remove(dev, nvdev);
2630
2631 unregister_netdevice(net);
2632 list_del(&ndev_ctx->list);
2633
2634 rtnl_unlock();
2635
2636 hv_set_drvdata(dev, NULL);
2637
2638 free_percpu(ndev_ctx->vf_stats);
2639 free_netdev(net);
2640 return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645 struct net_device_context *ndev_ctx;
2646 struct netvsc_device *nvdev;
2647 struct net_device *net;
2648 int ret;
2649
2650 net = hv_get_drvdata(dev);
2651
2652 ndev_ctx = netdev_priv(net);
2653 cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655 rtnl_lock();
2656
2657 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658 if (nvdev == NULL) {
2659 ret = -ENODEV;
2660 goto out;
2661 }
2662
2663 /* Save the current config info */
2664 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665
2666 ret = netvsc_detach(net, nvdev);
2667out:
2668 rtnl_unlock();
2669
2670 return ret;
2671}
2672
2673static int netvsc_resume(struct hv_device *dev)
2674{
2675 struct net_device *net = hv_get_drvdata(dev);
2676 struct net_device_context *net_device_ctx;
2677 struct netvsc_device_info *device_info;
2678 int ret;
2679
2680 rtnl_lock();
2681
2682 net_device_ctx = netdev_priv(net);
2683
2684 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2685 * channel. Later netvsc_netdev_event() will switch the data path to
2686 * the VF upon the UP or CHANGE event.
2687 */
2688 net_device_ctx->data_path_is_vf = false;
2689 device_info = net_device_ctx->saved_netvsc_dev_info;
2690
2691 ret = netvsc_attach(net, device_info);
2692
2693 netvsc_devinfo_put(device_info);
2694 net_device_ctx->saved_netvsc_dev_info = NULL;
2695
2696 rtnl_unlock();
2697
2698 return ret;
2699}
2700static const struct hv_vmbus_device_id id_table[] = {
2701 /* Network guid */
2702 { HV_NIC_GUID, },
2703 { },
2704};
2705
2706MODULE_DEVICE_TABLE(vmbus, id_table);
2707
2708/* The one and only one */
2709static struct hv_driver netvsc_drv = {
2710 .name = KBUILD_MODNAME,
2711 .id_table = id_table,
2712 .probe = netvsc_probe,
2713 .remove = netvsc_remove,
2714 .suspend = netvsc_suspend,
2715 .resume = netvsc_resume,
2716 .driver = {
2717 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2718 },
2719};
2720
2721/*
2722 * On Hyper-V, every VF interface is matched with a corresponding
2723 * synthetic interface. The synthetic interface is presented first
2724 * to the guest. When the corresponding VF instance is registered,
2725 * we will take care of switching the data path.
2726 */
2727static int netvsc_netdev_event(struct notifier_block *this,
2728 unsigned long event, void *ptr)
2729{
2730 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2731
2732 /* Skip our own events */
2733 if (event_dev->netdev_ops == &device_ops)
2734 return NOTIFY_DONE;
2735
2736 /* Avoid non-Ethernet type devices */
2737 if (event_dev->type != ARPHRD_ETHER)
2738 return NOTIFY_DONE;
2739
2740 /* Avoid Vlan dev with same MAC registering as VF */
2741 if (is_vlan_dev(event_dev))
2742 return NOTIFY_DONE;
2743
2744 /* Avoid Bonding master dev with same MAC registering as VF */
2745 if ((event_dev->priv_flags & IFF_BONDING) &&
2746 (event_dev->flags & IFF_MASTER))
2747 return NOTIFY_DONE;
2748
2749 switch (event) {
2750 case NETDEV_REGISTER:
2751 return netvsc_register_vf(event_dev);
2752 case NETDEV_UNREGISTER:
2753 return netvsc_unregister_vf(event_dev);
2754 case NETDEV_UP:
2755 case NETDEV_DOWN:
2756 case NETDEV_CHANGE:
2757 case NETDEV_GOING_DOWN:
2758 return netvsc_vf_changed(event_dev, event);
2759 default:
2760 return NOTIFY_DONE;
2761 }
2762}
2763
2764static struct notifier_block netvsc_netdev_notifier = {
2765 .notifier_call = netvsc_netdev_event,
2766};
2767
2768static void __exit netvsc_drv_exit(void)
2769{
2770 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2771 vmbus_driver_unregister(&netvsc_drv);
2772}
2773
2774static int __init netvsc_drv_init(void)
2775{
2776 int ret;
2777
2778 if (ring_size < RING_SIZE_MIN) {
2779 ring_size = RING_SIZE_MIN;
2780 pr_info("Increased ring_size to %u (min allowed)\n",
2781 ring_size);
2782 }
2783 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2784
2785 ret = vmbus_driver_register(&netvsc_drv);
2786 if (ret)
2787 return ret;
2788
2789 register_netdevice_notifier(&netvsc_netdev_notifier);
2790 return 0;
2791}
2792
2793MODULE_LICENSE("GPL");
2794MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2795
2796module_init(netvsc_drv_init);
2797module_exit(netvsc_drv_exit);