Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * LPDDR flash memory device operations. This module provides read, write,
  4 * erase, lock/unlock support for LPDDR flash memories
  5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  7 * Many thanks to Roman Borisov for initial enabling
  8 *
  9 * TODO:
 10 * Implement VPP management
 11 * Implement XIP support
 12 * Implement OTP support
 13 */
 14#include <linux/mtd/pfow.h>
 15#include <linux/mtd/qinfo.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 18
 19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 20					size_t *retlen, u_char *buf);
 21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 22				size_t len, size_t *retlen, const u_char *buf);
 23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 24				unsigned long count, loff_t to, size_t *retlen);
 25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 29			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 33static void put_chip(struct map_info *map, struct flchip *chip);
 34
 35struct mtd_info *lpddr_cmdset(struct map_info *map)
 36{
 37	struct lpddr_private *lpddr = map->fldrv_priv;
 38	struct flchip_shared *shared;
 39	struct flchip *chip;
 40	struct mtd_info *mtd;
 41	int numchips;
 42	int i, j;
 43
 44	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 45	if (!mtd)
 46		return NULL;
 47	mtd->priv = map;
 48	mtd->type = MTD_NORFLASH;
 49
 50	/* Fill in the default mtd operations */
 51	mtd->_read = lpddr_read;
 52	mtd->type = MTD_NORFLASH;
 53	mtd->flags = MTD_CAP_NORFLASH;
 54	mtd->flags &= ~MTD_BIT_WRITEABLE;
 55	mtd->_erase = lpddr_erase;
 56	mtd->_write = lpddr_write_buffers;
 57	mtd->_writev = lpddr_writev;
 58	mtd->_lock = lpddr_lock;
 59	mtd->_unlock = lpddr_unlock;
 60	if (map_is_linear(map)) {
 61		mtd->_point = lpddr_point;
 62		mtd->_unpoint = lpddr_unpoint;
 63	}
 64	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 65	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 66	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 67
 68	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
 69						GFP_KERNEL);
 70	if (!shared) {
 71		kfree(lpddr);
 72		kfree(mtd);
 73		return NULL;
 74	}
 75
 76	chip = &lpddr->chips[0];
 77	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 78	for (i = 0; i < numchips; i++) {
 79		shared[i].writing = shared[i].erasing = NULL;
 80		mutex_init(&shared[i].lock);
 81		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 82			*chip = lpddr->chips[i];
 83			chip->start += j << lpddr->chipshift;
 84			chip->oldstate = chip->state = FL_READY;
 85			chip->priv = &shared[i];
 86			/* those should be reset too since
 87			   they create memory references. */
 88			init_waitqueue_head(&chip->wq);
 89			mutex_init(&chip->mutex);
 90			chip++;
 91		}
 92	}
 93
 94	return mtd;
 95}
 96EXPORT_SYMBOL(lpddr_cmdset);
 97
 98static int wait_for_ready(struct map_info *map, struct flchip *chip,
 99		unsigned int chip_op_time)
100{
101	unsigned int timeo, reset_timeo, sleep_time;
102	unsigned int dsr;
103	flstate_t chip_state = chip->state;
104	int ret = 0;
105
106	/* set our timeout to 8 times the expected delay */
107	timeo = chip_op_time * 8;
108	if (!timeo)
109		timeo = 500000;
110	reset_timeo = timeo;
111	sleep_time = chip_op_time / 2;
112
113	for (;;) {
114		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115		if (dsr & DSR_READY_STATUS)
116			break;
117		if (!timeo) {
118			printk(KERN_ERR "%s: Flash timeout error state %d \n",
119							map->name, chip_state);
120			ret = -ETIME;
121			break;
122		}
123
124		/* OK Still waiting. Drop the lock, wait a while and retry. */
125		mutex_unlock(&chip->mutex);
126		if (sleep_time >= 1000000/HZ) {
127			/*
128			 * Half of the normal delay still remaining
129			 * can be performed with a sleeping delay instead
130			 * of busy waiting.
131			 */
132			msleep(sleep_time/1000);
133			timeo -= sleep_time;
134			sleep_time = 1000000/HZ;
135		} else {
136			udelay(1);
137			cond_resched();
138			timeo--;
139		}
140		mutex_lock(&chip->mutex);
141
142		while (chip->state != chip_state) {
143			/* Someone's suspended the operation: sleep */
144			DECLARE_WAITQUEUE(wait, current);
145			set_current_state(TASK_UNINTERRUPTIBLE);
146			add_wait_queue(&chip->wq, &wait);
147			mutex_unlock(&chip->mutex);
148			schedule();
149			remove_wait_queue(&chip->wq, &wait);
150			mutex_lock(&chip->mutex);
151		}
152		if (chip->erase_suspended || chip->write_suspended)  {
153			/* Suspend has occurred while sleep: reset timeout */
154			timeo = reset_timeo;
155			chip->erase_suspended = chip->write_suspended = 0;
156		}
157	}
158	/* check status for errors */
159	if (dsr & DSR_ERR) {
160		/* Clear DSR*/
161		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163				map->name, dsr);
164		print_drs_error(dsr);
165		ret = -EIO;
166	}
167	chip->state = FL_READY;
168	return ret;
169}
170
171static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172{
173	int ret;
174	DECLARE_WAITQUEUE(wait, current);
175
176 retry:
177	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178		&& chip->state != FL_SYNCING) {
179		/*
180		 * OK. We have possibility for contension on the write/erase
181		 * operations which are global to the real chip and not per
182		 * partition.  So let's fight it over in the partition which
183		 * currently has authority on the operation.
184		 *
185		 * The rules are as follows:
186		 *
187		 * - any write operation must own shared->writing.
188		 *
189		 * - any erase operation must own _both_ shared->writing and
190		 *   shared->erasing.
191		 *
192		 * - contension arbitration is handled in the owner's context.
193		 *
194		 * The 'shared' struct can be read and/or written only when
195		 * its lock is taken.
196		 */
197		struct flchip_shared *shared = chip->priv;
198		struct flchip *contender;
199		mutex_lock(&shared->lock);
200		contender = shared->writing;
201		if (contender && contender != chip) {
202			/*
203			 * The engine to perform desired operation on this
204			 * partition is already in use by someone else.
205			 * Let's fight over it in the context of the chip
206			 * currently using it.  If it is possible to suspend,
207			 * that other partition will do just that, otherwise
208			 * it'll happily send us to sleep.  In any case, when
209			 * get_chip returns success we're clear to go ahead.
210			 */
211			ret = mutex_trylock(&contender->mutex);
212			mutex_unlock(&shared->lock);
213			if (!ret)
214				goto retry;
215			mutex_unlock(&chip->mutex);
216			ret = chip_ready(map, contender, mode);
217			mutex_lock(&chip->mutex);
218
219			if (ret == -EAGAIN) {
220				mutex_unlock(&contender->mutex);
221				goto retry;
222			}
223			if (ret) {
224				mutex_unlock(&contender->mutex);
225				return ret;
226			}
227			mutex_lock(&shared->lock);
228
229			/* We should not own chip if it is already in FL_SYNCING
230			 * state. Put contender and retry. */
231			if (chip->state == FL_SYNCING) {
232				put_chip(map, contender);
233				mutex_unlock(&contender->mutex);
234				goto retry;
235			}
236			mutex_unlock(&contender->mutex);
237		}
238
239		/* Check if we have suspended erase on this chip.
240		   Must sleep in such a case. */
241		if (mode == FL_ERASING && shared->erasing
242		    && shared->erasing->oldstate == FL_ERASING) {
243			mutex_unlock(&shared->lock);
244			set_current_state(TASK_UNINTERRUPTIBLE);
245			add_wait_queue(&chip->wq, &wait);
246			mutex_unlock(&chip->mutex);
247			schedule();
248			remove_wait_queue(&chip->wq, &wait);
249			mutex_lock(&chip->mutex);
250			goto retry;
251		}
252
253		/* We now own it */
254		shared->writing = chip;
255		if (mode == FL_ERASING)
256			shared->erasing = chip;
257		mutex_unlock(&shared->lock);
258	}
259
260	ret = chip_ready(map, chip, mode);
261	if (ret == -EAGAIN)
262		goto retry;
263
264	return ret;
265}
266
267static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268{
269	struct lpddr_private *lpddr = map->fldrv_priv;
270	int ret = 0;
271	DECLARE_WAITQUEUE(wait, current);
272
273	/* Prevent setting state FL_SYNCING for chip in suspended state. */
274	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275		goto sleep;
276
277	switch (chip->state) {
278	case FL_READY:
279	case FL_JEDEC_QUERY:
280		return 0;
281
282	case FL_ERASING:
283		if (!lpddr->qinfo->SuspEraseSupp ||
284			!(mode == FL_READY || mode == FL_POINT))
285			goto sleep;
286
287		map_write(map, CMD(LPDDR_SUSPEND),
288			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289		chip->oldstate = FL_ERASING;
290		chip->state = FL_ERASE_SUSPENDING;
291		ret = wait_for_ready(map, chip, 0);
292		if (ret) {
293			/* Oops. something got wrong. */
294			/* Resume and pretend we weren't here.  */
295			put_chip(map, chip);
296			printk(KERN_ERR "%s: suspend operation failed."
297					"State may be wrong \n", map->name);
298			return -EIO;
299		}
300		chip->erase_suspended = 1;
301		chip->state = FL_READY;
302		return 0;
303		/* Erase suspend */
304	case FL_POINT:
305		/* Only if there's no operation suspended... */
306		if (mode == FL_READY && chip->oldstate == FL_READY)
307			return 0;
308		/* fall through */
309
310	default:
311sleep:
312		set_current_state(TASK_UNINTERRUPTIBLE);
313		add_wait_queue(&chip->wq, &wait);
314		mutex_unlock(&chip->mutex);
315		schedule();
316		remove_wait_queue(&chip->wq, &wait);
317		mutex_lock(&chip->mutex);
318		return -EAGAIN;
319	}
320}
321
322static void put_chip(struct map_info *map, struct flchip *chip)
323{
324	if (chip->priv) {
325		struct flchip_shared *shared = chip->priv;
326		mutex_lock(&shared->lock);
327		if (shared->writing == chip && chip->oldstate == FL_READY) {
328			/* We own the ability to write, but we're done */
329			shared->writing = shared->erasing;
330			if (shared->writing && shared->writing != chip) {
331				/* give back the ownership */
332				struct flchip *loaner = shared->writing;
333				mutex_lock(&loaner->mutex);
334				mutex_unlock(&shared->lock);
335				mutex_unlock(&chip->mutex);
336				put_chip(map, loaner);
337				mutex_lock(&chip->mutex);
338				mutex_unlock(&loaner->mutex);
339				wake_up(&chip->wq);
340				return;
341			}
342			shared->erasing = NULL;
343			shared->writing = NULL;
344		} else if (shared->erasing == chip && shared->writing != chip) {
345			/*
346			 * We own the ability to erase without the ability
347			 * to write, which means the erase was suspended
348			 * and some other partition is currently writing.
349			 * Don't let the switch below mess things up since
350			 * we don't have ownership to resume anything.
351			 */
352			mutex_unlock(&shared->lock);
353			wake_up(&chip->wq);
354			return;
355		}
356		mutex_unlock(&shared->lock);
357	}
358
359	switch (chip->oldstate) {
360	case FL_ERASING:
361		map_write(map, CMD(LPDDR_RESUME),
362				map->pfow_base + PFOW_COMMAND_CODE);
363		map_write(map, CMD(LPDDR_START_EXECUTION),
364				map->pfow_base + PFOW_COMMAND_EXECUTE);
365		chip->oldstate = FL_READY;
366		chip->state = FL_ERASING;
367		break;
368	case FL_READY:
369		break;
370	default:
371		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372				map->name, chip->oldstate);
373	}
374	wake_up(&chip->wq);
375}
376
377static int do_write_buffer(struct map_info *map, struct flchip *chip,
378			unsigned long adr, const struct kvec **pvec,
379			unsigned long *pvec_seek, int len)
380{
381	struct lpddr_private *lpddr = map->fldrv_priv;
382	map_word datum;
383	int ret, wbufsize, word_gap, words;
384	const struct kvec *vec;
385	unsigned long vec_seek;
386	unsigned long prog_buf_ofs;
387
388	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389
390	mutex_lock(&chip->mutex);
391	ret = get_chip(map, chip, FL_WRITING);
392	if (ret) {
393		mutex_unlock(&chip->mutex);
394		return ret;
395	}
396	/* Figure out the number of words to write */
397	word_gap = (-adr & (map_bankwidth(map)-1));
398	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399	if (!word_gap) {
400		words--;
401	} else {
402		word_gap = map_bankwidth(map) - word_gap;
403		adr -= word_gap;
404		datum = map_word_ff(map);
405	}
406	/* Write data */
407	/* Get the program buffer offset from PFOW register data first*/
408	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410	vec = *pvec;
411	vec_seek = *pvec_seek;
412	do {
413		int n = map_bankwidth(map) - word_gap;
414
415		if (n > vec->iov_len - vec_seek)
416			n = vec->iov_len - vec_seek;
417		if (n > len)
418			n = len;
419
420		if (!word_gap && (len < map_bankwidth(map)))
421			datum = map_word_ff(map);
422
423		datum = map_word_load_partial(map, datum,
424				vec->iov_base + vec_seek, word_gap, n);
425
426		len -= n;
427		word_gap += n;
428		if (!len || word_gap == map_bankwidth(map)) {
429			map_write(map, datum, prog_buf_ofs);
430			prog_buf_ofs += map_bankwidth(map);
431			word_gap = 0;
432		}
433
434		vec_seek += n;
435		if (vec_seek == vec->iov_len) {
436			vec++;
437			vec_seek = 0;
438		}
439	} while (len);
440	*pvec = vec;
441	*pvec_seek = vec_seek;
442
443	/* GO GO GO */
444	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445	chip->state = FL_WRITING;
446	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447	if (ret)	{
448		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449			map->name, ret, adr);
450		goto out;
451	}
452
453 out:	put_chip(map, chip);
454	mutex_unlock(&chip->mutex);
455	return ret;
456}
457
458static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459{
460	struct map_info *map = mtd->priv;
461	struct lpddr_private *lpddr = map->fldrv_priv;
462	int chipnum = adr >> lpddr->chipshift;
463	struct flchip *chip = &lpddr->chips[chipnum];
464	int ret;
465
466	mutex_lock(&chip->mutex);
467	ret = get_chip(map, chip, FL_ERASING);
468	if (ret) {
469		mutex_unlock(&chip->mutex);
470		return ret;
471	}
472	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473	chip->state = FL_ERASING;
474	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475	if (ret) {
476		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477			map->name, ret, adr);
478		goto out;
479	}
480 out:	put_chip(map, chip);
481	mutex_unlock(&chip->mutex);
482	return ret;
483}
484
485static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486			size_t *retlen, u_char *buf)
487{
488	struct map_info *map = mtd->priv;
489	struct lpddr_private *lpddr = map->fldrv_priv;
490	int chipnum = adr >> lpddr->chipshift;
491	struct flchip *chip = &lpddr->chips[chipnum];
492	int ret = 0;
493
494	mutex_lock(&chip->mutex);
495	ret = get_chip(map, chip, FL_READY);
496	if (ret) {
497		mutex_unlock(&chip->mutex);
498		return ret;
499	}
500
501	map_copy_from(map, buf, adr, len);
502	*retlen = len;
503
504	put_chip(map, chip);
505	mutex_unlock(&chip->mutex);
506	return ret;
507}
508
509static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510			size_t *retlen, void **mtdbuf, resource_size_t *phys)
511{
512	struct map_info *map = mtd->priv;
513	struct lpddr_private *lpddr = map->fldrv_priv;
514	int chipnum = adr >> lpddr->chipshift;
515	unsigned long ofs, last_end = 0;
516	struct flchip *chip = &lpddr->chips[chipnum];
517	int ret = 0;
518
519	if (!map->virt)
520		return -EINVAL;
521
522	/* ofs: offset within the first chip that the first read should start */
523	ofs = adr - (chipnum << lpddr->chipshift);
524	*mtdbuf = (void *)map->virt + chip->start + ofs;
525
526	while (len) {
527		unsigned long thislen;
528
529		if (chipnum >= lpddr->numchips)
530			break;
531
532		/* We cannot point across chips that are virtually disjoint */
533		if (!last_end)
534			last_end = chip->start;
535		else if (chip->start != last_end)
536			break;
537
538		if ((len + ofs - 1) >> lpddr->chipshift)
539			thislen = (1<<lpddr->chipshift) - ofs;
540		else
541			thislen = len;
542		/* get the chip */
543		mutex_lock(&chip->mutex);
544		ret = get_chip(map, chip, FL_POINT);
545		mutex_unlock(&chip->mutex);
546		if (ret)
547			break;
548
549		chip->state = FL_POINT;
550		chip->ref_point_counter++;
551		*retlen += thislen;
552		len -= thislen;
553
554		ofs = 0;
555		last_end += 1 << lpddr->chipshift;
556		chipnum++;
557		chip = &lpddr->chips[chipnum];
558	}
559	return 0;
560}
561
562static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563{
564	struct map_info *map = mtd->priv;
565	struct lpddr_private *lpddr = map->fldrv_priv;
566	int chipnum = adr >> lpddr->chipshift, err = 0;
567	unsigned long ofs;
568
569	/* ofs: offset within the first chip that the first read should start */
570	ofs = adr - (chipnum << lpddr->chipshift);
571
572	while (len) {
573		unsigned long thislen;
574		struct flchip *chip;
575
576		chip = &lpddr->chips[chipnum];
577		if (chipnum >= lpddr->numchips)
578			break;
579
580		if ((len + ofs - 1) >> lpddr->chipshift)
581			thislen = (1<<lpddr->chipshift) - ofs;
582		else
583			thislen = len;
584
585		mutex_lock(&chip->mutex);
586		if (chip->state == FL_POINT) {
587			chip->ref_point_counter--;
588			if (chip->ref_point_counter == 0)
589				chip->state = FL_READY;
590		} else {
591			printk(KERN_WARNING "%s: Warning: unpoint called on non"
592					"pointed region\n", map->name);
593			err = -EINVAL;
594		}
595
596		put_chip(map, chip);
597		mutex_unlock(&chip->mutex);
598
599		len -= thislen;
600		ofs = 0;
601		chipnum++;
602	}
603
604	return err;
605}
606
607static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608				size_t *retlen, const u_char *buf)
609{
610	struct kvec vec;
611
612	vec.iov_base = (void *) buf;
613	vec.iov_len = len;
614
615	return lpddr_writev(mtd, &vec, 1, to, retlen);
616}
617
618
619static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620				unsigned long count, loff_t to, size_t *retlen)
621{
622	struct map_info *map = mtd->priv;
623	struct lpddr_private *lpddr = map->fldrv_priv;
624	int ret = 0;
625	int chipnum;
626	unsigned long ofs, vec_seek, i;
627	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
628	size_t len = 0;
629
630	for (i = 0; i < count; i++)
631		len += vecs[i].iov_len;
632
633	if (!len)
634		return 0;
635
636	chipnum = to >> lpddr->chipshift;
637
638	ofs = to;
639	vec_seek = 0;
640
641	do {
642		/* We must not cross write block boundaries */
643		int size = wbufsize - (ofs & (wbufsize-1));
644
645		if (size > len)
646			size = len;
647
648		ret = do_write_buffer(map, &lpddr->chips[chipnum],
649					  ofs, &vecs, &vec_seek, size);
650		if (ret)
651			return ret;
652
653		ofs += size;
654		(*retlen) += size;
655		len -= size;
656
657		/* Be nice and reschedule with the chip in a usable
658		 * state for other processes */
659		cond_resched();
660
661	} while (len);
662
663	return 0;
664}
665
666static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667{
668	unsigned long ofs, len;
669	int ret;
670	struct map_info *map = mtd->priv;
671	struct lpddr_private *lpddr = map->fldrv_priv;
672	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673
674	ofs = instr->addr;
675	len = instr->len;
676
677	while (len > 0) {
678		ret = do_erase_oneblock(mtd, ofs);
679		if (ret)
680			return ret;
681		ofs += size;
682		len -= size;
683	}
684
685	return 0;
686}
687
688#define DO_XXLOCK_LOCK		1
689#define DO_XXLOCK_UNLOCK	2
690static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691{
692	int ret = 0;
693	struct map_info *map = mtd->priv;
694	struct lpddr_private *lpddr = map->fldrv_priv;
695	int chipnum = adr >> lpddr->chipshift;
696	struct flchip *chip = &lpddr->chips[chipnum];
697
698	mutex_lock(&chip->mutex);
699	ret = get_chip(map, chip, FL_LOCKING);
700	if (ret) {
701		mutex_unlock(&chip->mutex);
702		return ret;
703	}
704
705	if (thunk == DO_XXLOCK_LOCK) {
706		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707		chip->state = FL_LOCKING;
708	} else if (thunk == DO_XXLOCK_UNLOCK) {
709		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710		chip->state = FL_UNLOCKING;
711	} else
712		BUG();
713
714	ret = wait_for_ready(map, chip, 1);
715	if (ret)	{
716		printk(KERN_ERR "%s: block unlock error status %d \n",
717				map->name, ret);
718		goto out;
719	}
720out:	put_chip(map, chip);
721	mutex_unlock(&chip->mutex);
722	return ret;
723}
724
725static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726{
727	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728}
729
730static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731{
732	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
733}
734
735MODULE_LICENSE("GPL");
736MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * LPDDR flash memory device operations. This module provides read, write,
  4 * erase, lock/unlock support for LPDDR flash memories
  5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  7 * Many thanks to Roman Borisov for initial enabling
  8 *
  9 * TODO:
 10 * Implement VPP management
 11 * Implement XIP support
 12 * Implement OTP support
 13 */
 14#include <linux/mtd/pfow.h>
 15#include <linux/mtd/qinfo.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 18
 19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 20					size_t *retlen, u_char *buf);
 21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 22				size_t len, size_t *retlen, const u_char *buf);
 23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 24				unsigned long count, loff_t to, size_t *retlen);
 25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 29			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 33static void put_chip(struct map_info *map, struct flchip *chip);
 34
 35struct mtd_info *lpddr_cmdset(struct map_info *map)
 36{
 37	struct lpddr_private *lpddr = map->fldrv_priv;
 38	struct flchip_shared *shared;
 39	struct flchip *chip;
 40	struct mtd_info *mtd;
 41	int numchips;
 42	int i, j;
 43
 44	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 45	if (!mtd)
 46		return NULL;
 47	mtd->priv = map;
 48	mtd->type = MTD_NORFLASH;
 49
 50	/* Fill in the default mtd operations */
 51	mtd->_read = lpddr_read;
 52	mtd->type = MTD_NORFLASH;
 53	mtd->flags = MTD_CAP_NORFLASH;
 54	mtd->flags &= ~MTD_BIT_WRITEABLE;
 55	mtd->_erase = lpddr_erase;
 56	mtd->_write = lpddr_write_buffers;
 57	mtd->_writev = lpddr_writev;
 58	mtd->_lock = lpddr_lock;
 59	mtd->_unlock = lpddr_unlock;
 60	if (map_is_linear(map)) {
 61		mtd->_point = lpddr_point;
 62		mtd->_unpoint = lpddr_unpoint;
 63	}
 64	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 65	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 66	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 67
 68	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
 69						GFP_KERNEL);
 70	if (!shared) {
 
 71		kfree(mtd);
 72		return NULL;
 73	}
 74
 75	chip = &lpddr->chips[0];
 76	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 77	for (i = 0; i < numchips; i++) {
 78		shared[i].writing = shared[i].erasing = NULL;
 79		mutex_init(&shared[i].lock);
 80		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 81			*chip = lpddr->chips[i];
 82			chip->start += j << lpddr->chipshift;
 83			chip->oldstate = chip->state = FL_READY;
 84			chip->priv = &shared[i];
 85			/* those should be reset too since
 86			   they create memory references. */
 87			init_waitqueue_head(&chip->wq);
 88			mutex_init(&chip->mutex);
 89			chip++;
 90		}
 91	}
 92
 93	return mtd;
 94}
 95EXPORT_SYMBOL(lpddr_cmdset);
 96
 97static int wait_for_ready(struct map_info *map, struct flchip *chip,
 98		unsigned int chip_op_time)
 99{
100	unsigned int timeo, reset_timeo, sleep_time;
101	unsigned int dsr;
102	flstate_t chip_state = chip->state;
103	int ret = 0;
104
105	/* set our timeout to 8 times the expected delay */
106	timeo = chip_op_time * 8;
107	if (!timeo)
108		timeo = 500000;
109	reset_timeo = timeo;
110	sleep_time = chip_op_time / 2;
111
112	for (;;) {
113		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
114		if (dsr & DSR_READY_STATUS)
115			break;
116		if (!timeo) {
117			printk(KERN_ERR "%s: Flash timeout error state %d \n",
118							map->name, chip_state);
119			ret = -ETIME;
120			break;
121		}
122
123		/* OK Still waiting. Drop the lock, wait a while and retry. */
124		mutex_unlock(&chip->mutex);
125		if (sleep_time >= 1000000/HZ) {
126			/*
127			 * Half of the normal delay still remaining
128			 * can be performed with a sleeping delay instead
129			 * of busy waiting.
130			 */
131			msleep(sleep_time/1000);
132			timeo -= sleep_time;
133			sleep_time = 1000000/HZ;
134		} else {
135			udelay(1);
136			cond_resched();
137			timeo--;
138		}
139		mutex_lock(&chip->mutex);
140
141		while (chip->state != chip_state) {
142			/* Someone's suspended the operation: sleep */
143			DECLARE_WAITQUEUE(wait, current);
144			set_current_state(TASK_UNINTERRUPTIBLE);
145			add_wait_queue(&chip->wq, &wait);
146			mutex_unlock(&chip->mutex);
147			schedule();
148			remove_wait_queue(&chip->wq, &wait);
149			mutex_lock(&chip->mutex);
150		}
151		if (chip->erase_suspended || chip->write_suspended)  {
152			/* Suspend has occurred while sleep: reset timeout */
153			timeo = reset_timeo;
154			chip->erase_suspended = chip->write_suspended = 0;
155		}
156	}
157	/* check status for errors */
158	if (dsr & DSR_ERR) {
159		/* Clear DSR*/
160		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
161		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
162				map->name, dsr);
163		print_drs_error(dsr);
164		ret = -EIO;
165	}
166	chip->state = FL_READY;
167	return ret;
168}
169
170static int get_chip(struct map_info *map, struct flchip *chip, int mode)
171{
172	int ret;
173	DECLARE_WAITQUEUE(wait, current);
174
175 retry:
176	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
177		&& chip->state != FL_SYNCING) {
178		/*
179		 * OK. We have possibility for contension on the write/erase
180		 * operations which are global to the real chip and not per
181		 * partition.  So let's fight it over in the partition which
182		 * currently has authority on the operation.
183		 *
184		 * The rules are as follows:
185		 *
186		 * - any write operation must own shared->writing.
187		 *
188		 * - any erase operation must own _both_ shared->writing and
189		 *   shared->erasing.
190		 *
191		 * - contension arbitration is handled in the owner's context.
192		 *
193		 * The 'shared' struct can be read and/or written only when
194		 * its lock is taken.
195		 */
196		struct flchip_shared *shared = chip->priv;
197		struct flchip *contender;
198		mutex_lock(&shared->lock);
199		contender = shared->writing;
200		if (contender && contender != chip) {
201			/*
202			 * The engine to perform desired operation on this
203			 * partition is already in use by someone else.
204			 * Let's fight over it in the context of the chip
205			 * currently using it.  If it is possible to suspend,
206			 * that other partition will do just that, otherwise
207			 * it'll happily send us to sleep.  In any case, when
208			 * get_chip returns success we're clear to go ahead.
209			 */
210			ret = mutex_trylock(&contender->mutex);
211			mutex_unlock(&shared->lock);
212			if (!ret)
213				goto retry;
214			mutex_unlock(&chip->mutex);
215			ret = chip_ready(map, contender, mode);
216			mutex_lock(&chip->mutex);
217
218			if (ret == -EAGAIN) {
219				mutex_unlock(&contender->mutex);
220				goto retry;
221			}
222			if (ret) {
223				mutex_unlock(&contender->mutex);
224				return ret;
225			}
226			mutex_lock(&shared->lock);
227
228			/* We should not own chip if it is already in FL_SYNCING
229			 * state. Put contender and retry. */
230			if (chip->state == FL_SYNCING) {
231				put_chip(map, contender);
232				mutex_unlock(&contender->mutex);
233				goto retry;
234			}
235			mutex_unlock(&contender->mutex);
236		}
237
238		/* Check if we have suspended erase on this chip.
239		   Must sleep in such a case. */
240		if (mode == FL_ERASING && shared->erasing
241		    && shared->erasing->oldstate == FL_ERASING) {
242			mutex_unlock(&shared->lock);
243			set_current_state(TASK_UNINTERRUPTIBLE);
244			add_wait_queue(&chip->wq, &wait);
245			mutex_unlock(&chip->mutex);
246			schedule();
247			remove_wait_queue(&chip->wq, &wait);
248			mutex_lock(&chip->mutex);
249			goto retry;
250		}
251
252		/* We now own it */
253		shared->writing = chip;
254		if (mode == FL_ERASING)
255			shared->erasing = chip;
256		mutex_unlock(&shared->lock);
257	}
258
259	ret = chip_ready(map, chip, mode);
260	if (ret == -EAGAIN)
261		goto retry;
262
263	return ret;
264}
265
266static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
267{
268	struct lpddr_private *lpddr = map->fldrv_priv;
269	int ret = 0;
270	DECLARE_WAITQUEUE(wait, current);
271
272	/* Prevent setting state FL_SYNCING for chip in suspended state. */
273	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
274		goto sleep;
275
276	switch (chip->state) {
277	case FL_READY:
278	case FL_JEDEC_QUERY:
279		return 0;
280
281	case FL_ERASING:
282		if (!lpddr->qinfo->SuspEraseSupp ||
283			!(mode == FL_READY || mode == FL_POINT))
284			goto sleep;
285
286		map_write(map, CMD(LPDDR_SUSPEND),
287			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
288		chip->oldstate = FL_ERASING;
289		chip->state = FL_ERASE_SUSPENDING;
290		ret = wait_for_ready(map, chip, 0);
291		if (ret) {
292			/* Oops. something got wrong. */
293			/* Resume and pretend we weren't here.  */
294			put_chip(map, chip);
295			printk(KERN_ERR "%s: suspend operation failed."
296					"State may be wrong \n", map->name);
297			return -EIO;
298		}
299		chip->erase_suspended = 1;
300		chip->state = FL_READY;
301		return 0;
302		/* Erase suspend */
303	case FL_POINT:
304		/* Only if there's no operation suspended... */
305		if (mode == FL_READY && chip->oldstate == FL_READY)
306			return 0;
307		fallthrough;
 
308	default:
309sleep:
310		set_current_state(TASK_UNINTERRUPTIBLE);
311		add_wait_queue(&chip->wq, &wait);
312		mutex_unlock(&chip->mutex);
313		schedule();
314		remove_wait_queue(&chip->wq, &wait);
315		mutex_lock(&chip->mutex);
316		return -EAGAIN;
317	}
318}
319
320static void put_chip(struct map_info *map, struct flchip *chip)
321{
322	if (chip->priv) {
323		struct flchip_shared *shared = chip->priv;
324		mutex_lock(&shared->lock);
325		if (shared->writing == chip && chip->oldstate == FL_READY) {
326			/* We own the ability to write, but we're done */
327			shared->writing = shared->erasing;
328			if (shared->writing && shared->writing != chip) {
329				/* give back the ownership */
330				struct flchip *loaner = shared->writing;
331				mutex_lock(&loaner->mutex);
332				mutex_unlock(&shared->lock);
333				mutex_unlock(&chip->mutex);
334				put_chip(map, loaner);
335				mutex_lock(&chip->mutex);
336				mutex_unlock(&loaner->mutex);
337				wake_up(&chip->wq);
338				return;
339			}
340			shared->erasing = NULL;
341			shared->writing = NULL;
342		} else if (shared->erasing == chip && shared->writing != chip) {
343			/*
344			 * We own the ability to erase without the ability
345			 * to write, which means the erase was suspended
346			 * and some other partition is currently writing.
347			 * Don't let the switch below mess things up since
348			 * we don't have ownership to resume anything.
349			 */
350			mutex_unlock(&shared->lock);
351			wake_up(&chip->wq);
352			return;
353		}
354		mutex_unlock(&shared->lock);
355	}
356
357	switch (chip->oldstate) {
358	case FL_ERASING:
359		map_write(map, CMD(LPDDR_RESUME),
360				map->pfow_base + PFOW_COMMAND_CODE);
361		map_write(map, CMD(LPDDR_START_EXECUTION),
362				map->pfow_base + PFOW_COMMAND_EXECUTE);
363		chip->oldstate = FL_READY;
364		chip->state = FL_ERASING;
365		break;
366	case FL_READY:
367		break;
368	default:
369		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
370				map->name, chip->oldstate);
371	}
372	wake_up(&chip->wq);
373}
374
375static int do_write_buffer(struct map_info *map, struct flchip *chip,
376			unsigned long adr, const struct kvec **pvec,
377			unsigned long *pvec_seek, int len)
378{
379	struct lpddr_private *lpddr = map->fldrv_priv;
380	map_word datum;
381	int ret, wbufsize, word_gap, words;
382	const struct kvec *vec;
383	unsigned long vec_seek;
384	unsigned long prog_buf_ofs;
385
386	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
387
388	mutex_lock(&chip->mutex);
389	ret = get_chip(map, chip, FL_WRITING);
390	if (ret) {
391		mutex_unlock(&chip->mutex);
392		return ret;
393	}
394	/* Figure out the number of words to write */
395	word_gap = (-adr & (map_bankwidth(map)-1));
396	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
397	if (!word_gap) {
398		words--;
399	} else {
400		word_gap = map_bankwidth(map) - word_gap;
401		adr -= word_gap;
402		datum = map_word_ff(map);
403	}
404	/* Write data */
405	/* Get the program buffer offset from PFOW register data first*/
406	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
407				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
408	vec = *pvec;
409	vec_seek = *pvec_seek;
410	do {
411		int n = map_bankwidth(map) - word_gap;
412
413		if (n > vec->iov_len - vec_seek)
414			n = vec->iov_len - vec_seek;
415		if (n > len)
416			n = len;
417
418		if (!word_gap && (len < map_bankwidth(map)))
419			datum = map_word_ff(map);
420
421		datum = map_word_load_partial(map, datum,
422				vec->iov_base + vec_seek, word_gap, n);
423
424		len -= n;
425		word_gap += n;
426		if (!len || word_gap == map_bankwidth(map)) {
427			map_write(map, datum, prog_buf_ofs);
428			prog_buf_ofs += map_bankwidth(map);
429			word_gap = 0;
430		}
431
432		vec_seek += n;
433		if (vec_seek == vec->iov_len) {
434			vec++;
435			vec_seek = 0;
436		}
437	} while (len);
438	*pvec = vec;
439	*pvec_seek = vec_seek;
440
441	/* GO GO GO */
442	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
443	chip->state = FL_WRITING;
444	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
445	if (ret)	{
446		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
447			map->name, ret, adr);
448		goto out;
449	}
450
451 out:	put_chip(map, chip);
452	mutex_unlock(&chip->mutex);
453	return ret;
454}
455
456static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
457{
458	struct map_info *map = mtd->priv;
459	struct lpddr_private *lpddr = map->fldrv_priv;
460	int chipnum = adr >> lpddr->chipshift;
461	struct flchip *chip = &lpddr->chips[chipnum];
462	int ret;
463
464	mutex_lock(&chip->mutex);
465	ret = get_chip(map, chip, FL_ERASING);
466	if (ret) {
467		mutex_unlock(&chip->mutex);
468		return ret;
469	}
470	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
471	chip->state = FL_ERASING;
472	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
473	if (ret) {
474		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
475			map->name, ret, adr);
476		goto out;
477	}
478 out:	put_chip(map, chip);
479	mutex_unlock(&chip->mutex);
480	return ret;
481}
482
483static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
484			size_t *retlen, u_char *buf)
485{
486	struct map_info *map = mtd->priv;
487	struct lpddr_private *lpddr = map->fldrv_priv;
488	int chipnum = adr >> lpddr->chipshift;
489	struct flchip *chip = &lpddr->chips[chipnum];
490	int ret = 0;
491
492	mutex_lock(&chip->mutex);
493	ret = get_chip(map, chip, FL_READY);
494	if (ret) {
495		mutex_unlock(&chip->mutex);
496		return ret;
497	}
498
499	map_copy_from(map, buf, adr, len);
500	*retlen = len;
501
502	put_chip(map, chip);
503	mutex_unlock(&chip->mutex);
504	return ret;
505}
506
507static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
508			size_t *retlen, void **mtdbuf, resource_size_t *phys)
509{
510	struct map_info *map = mtd->priv;
511	struct lpddr_private *lpddr = map->fldrv_priv;
512	int chipnum = adr >> lpddr->chipshift;
513	unsigned long ofs, last_end = 0;
514	struct flchip *chip = &lpddr->chips[chipnum];
515	int ret = 0;
516
517	if (!map->virt)
518		return -EINVAL;
519
520	/* ofs: offset within the first chip that the first read should start */
521	ofs = adr - (chipnum << lpddr->chipshift);
522	*mtdbuf = (void *)map->virt + chip->start + ofs;
523
524	while (len) {
525		unsigned long thislen;
526
527		if (chipnum >= lpddr->numchips)
528			break;
529
530		/* We cannot point across chips that are virtually disjoint */
531		if (!last_end)
532			last_end = chip->start;
533		else if (chip->start != last_end)
534			break;
535
536		if ((len + ofs - 1) >> lpddr->chipshift)
537			thislen = (1<<lpddr->chipshift) - ofs;
538		else
539			thislen = len;
540		/* get the chip */
541		mutex_lock(&chip->mutex);
542		ret = get_chip(map, chip, FL_POINT);
543		mutex_unlock(&chip->mutex);
544		if (ret)
545			break;
546
547		chip->state = FL_POINT;
548		chip->ref_point_counter++;
549		*retlen += thislen;
550		len -= thislen;
551
552		ofs = 0;
553		last_end += 1 << lpddr->chipshift;
554		chipnum++;
555		chip = &lpddr->chips[chipnum];
556	}
557	return 0;
558}
559
560static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
561{
562	struct map_info *map = mtd->priv;
563	struct lpddr_private *lpddr = map->fldrv_priv;
564	int chipnum = adr >> lpddr->chipshift, err = 0;
565	unsigned long ofs;
566
567	/* ofs: offset within the first chip that the first read should start */
568	ofs = adr - (chipnum << lpddr->chipshift);
569
570	while (len) {
571		unsigned long thislen;
572		struct flchip *chip;
573
574		chip = &lpddr->chips[chipnum];
575		if (chipnum >= lpddr->numchips)
576			break;
577
578		if ((len + ofs - 1) >> lpddr->chipshift)
579			thislen = (1<<lpddr->chipshift) - ofs;
580		else
581			thislen = len;
582
583		mutex_lock(&chip->mutex);
584		if (chip->state == FL_POINT) {
585			chip->ref_point_counter--;
586			if (chip->ref_point_counter == 0)
587				chip->state = FL_READY;
588		} else {
589			printk(KERN_WARNING "%s: Warning: unpoint called on non"
590					"pointed region\n", map->name);
591			err = -EINVAL;
592		}
593
594		put_chip(map, chip);
595		mutex_unlock(&chip->mutex);
596
597		len -= thislen;
598		ofs = 0;
599		chipnum++;
600	}
601
602	return err;
603}
604
605static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
606				size_t *retlen, const u_char *buf)
607{
608	struct kvec vec;
609
610	vec.iov_base = (void *) buf;
611	vec.iov_len = len;
612
613	return lpddr_writev(mtd, &vec, 1, to, retlen);
614}
615
616
617static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
618				unsigned long count, loff_t to, size_t *retlen)
619{
620	struct map_info *map = mtd->priv;
621	struct lpddr_private *lpddr = map->fldrv_priv;
622	int ret = 0;
623	int chipnum;
624	unsigned long ofs, vec_seek, i;
625	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
626	size_t len = 0;
627
628	for (i = 0; i < count; i++)
629		len += vecs[i].iov_len;
630
631	if (!len)
632		return 0;
633
634	chipnum = to >> lpddr->chipshift;
635
636	ofs = to;
637	vec_seek = 0;
638
639	do {
640		/* We must not cross write block boundaries */
641		int size = wbufsize - (ofs & (wbufsize-1));
642
643		if (size > len)
644			size = len;
645
646		ret = do_write_buffer(map, &lpddr->chips[chipnum],
647					  ofs, &vecs, &vec_seek, size);
648		if (ret)
649			return ret;
650
651		ofs += size;
652		(*retlen) += size;
653		len -= size;
654
655		/* Be nice and reschedule with the chip in a usable
656		 * state for other processes */
657		cond_resched();
658
659	} while (len);
660
661	return 0;
662}
663
664static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
665{
666	unsigned long ofs, len;
667	int ret;
668	struct map_info *map = mtd->priv;
669	struct lpddr_private *lpddr = map->fldrv_priv;
670	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
671
672	ofs = instr->addr;
673	len = instr->len;
674
675	while (len > 0) {
676		ret = do_erase_oneblock(mtd, ofs);
677		if (ret)
678			return ret;
679		ofs += size;
680		len -= size;
681	}
682
683	return 0;
684}
685
686#define DO_XXLOCK_LOCK		1
687#define DO_XXLOCK_UNLOCK	2
688static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
689{
690	int ret = 0;
691	struct map_info *map = mtd->priv;
692	struct lpddr_private *lpddr = map->fldrv_priv;
693	int chipnum = adr >> lpddr->chipshift;
694	struct flchip *chip = &lpddr->chips[chipnum];
695
696	mutex_lock(&chip->mutex);
697	ret = get_chip(map, chip, FL_LOCKING);
698	if (ret) {
699		mutex_unlock(&chip->mutex);
700		return ret;
701	}
702
703	if (thunk == DO_XXLOCK_LOCK) {
704		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
705		chip->state = FL_LOCKING;
706	} else if (thunk == DO_XXLOCK_UNLOCK) {
707		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
708		chip->state = FL_UNLOCKING;
709	} else
710		BUG();
711
712	ret = wait_for_ready(map, chip, 1);
713	if (ret)	{
714		printk(KERN_ERR "%s: block unlock error status %d \n",
715				map->name, ret);
716		goto out;
717	}
718out:	put_chip(map, chip);
719	mutex_unlock(&chip->mutex);
720	return ret;
721}
722
723static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
724{
725	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
726}
727
728static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
729{
730	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
731}
732
733MODULE_LICENSE("GPL");
734MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
735MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");