Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * LPDDR flash memory device operations. This module provides read, write,
4 * erase, lock/unlock support for LPDDR flash memories
5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
7 * Many thanks to Roman Borisov for initial enabling
8 *
9 * TODO:
10 * Implement VPP management
11 * Implement XIP support
12 * Implement OTP support
13 */
14#include <linux/mtd/pfow.h>
15#include <linux/mtd/qinfo.h>
16#include <linux/slab.h>
17#include <linux/module.h>
18
19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
20 size_t *retlen, u_char *buf);
21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
22 size_t len, size_t *retlen, const u_char *buf);
23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
24 unsigned long count, loff_t to, size_t *retlen);
25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
29 size_t *retlen, void **mtdbuf, resource_size_t *phys);
30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
33static void put_chip(struct map_info *map, struct flchip *chip);
34
35struct mtd_info *lpddr_cmdset(struct map_info *map)
36{
37 struct lpddr_private *lpddr = map->fldrv_priv;
38 struct flchip_shared *shared;
39 struct flchip *chip;
40 struct mtd_info *mtd;
41 int numchips;
42 int i, j;
43
44 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
45 if (!mtd)
46 return NULL;
47 mtd->priv = map;
48 mtd->type = MTD_NORFLASH;
49
50 /* Fill in the default mtd operations */
51 mtd->_read = lpddr_read;
52 mtd->type = MTD_NORFLASH;
53 mtd->flags = MTD_CAP_NORFLASH;
54 mtd->flags &= ~MTD_BIT_WRITEABLE;
55 mtd->_erase = lpddr_erase;
56 mtd->_write = lpddr_write_buffers;
57 mtd->_writev = lpddr_writev;
58 mtd->_lock = lpddr_lock;
59 mtd->_unlock = lpddr_unlock;
60 if (map_is_linear(map)) {
61 mtd->_point = lpddr_point;
62 mtd->_unpoint = lpddr_unpoint;
63 }
64 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
65 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
66 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
67
68 shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
69 GFP_KERNEL);
70 if (!shared) {
71 kfree(lpddr);
72 kfree(mtd);
73 return NULL;
74 }
75
76 chip = &lpddr->chips[0];
77 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
78 for (i = 0; i < numchips; i++) {
79 shared[i].writing = shared[i].erasing = NULL;
80 mutex_init(&shared[i].lock);
81 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
82 *chip = lpddr->chips[i];
83 chip->start += j << lpddr->chipshift;
84 chip->oldstate = chip->state = FL_READY;
85 chip->priv = &shared[i];
86 /* those should be reset too since
87 they create memory references. */
88 init_waitqueue_head(&chip->wq);
89 mutex_init(&chip->mutex);
90 chip++;
91 }
92 }
93
94 return mtd;
95}
96EXPORT_SYMBOL(lpddr_cmdset);
97
98static int wait_for_ready(struct map_info *map, struct flchip *chip,
99 unsigned int chip_op_time)
100{
101 unsigned int timeo, reset_timeo, sleep_time;
102 unsigned int dsr;
103 flstate_t chip_state = chip->state;
104 int ret = 0;
105
106 /* set our timeout to 8 times the expected delay */
107 timeo = chip_op_time * 8;
108 if (!timeo)
109 timeo = 500000;
110 reset_timeo = timeo;
111 sleep_time = chip_op_time / 2;
112
113 for (;;) {
114 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115 if (dsr & DSR_READY_STATUS)
116 break;
117 if (!timeo) {
118 printk(KERN_ERR "%s: Flash timeout error state %d \n",
119 map->name, chip_state);
120 ret = -ETIME;
121 break;
122 }
123
124 /* OK Still waiting. Drop the lock, wait a while and retry. */
125 mutex_unlock(&chip->mutex);
126 if (sleep_time >= 1000000/HZ) {
127 /*
128 * Half of the normal delay still remaining
129 * can be performed with a sleeping delay instead
130 * of busy waiting.
131 */
132 msleep(sleep_time/1000);
133 timeo -= sleep_time;
134 sleep_time = 1000000/HZ;
135 } else {
136 udelay(1);
137 cond_resched();
138 timeo--;
139 }
140 mutex_lock(&chip->mutex);
141
142 while (chip->state != chip_state) {
143 /* Someone's suspended the operation: sleep */
144 DECLARE_WAITQUEUE(wait, current);
145 set_current_state(TASK_UNINTERRUPTIBLE);
146 add_wait_queue(&chip->wq, &wait);
147 mutex_unlock(&chip->mutex);
148 schedule();
149 remove_wait_queue(&chip->wq, &wait);
150 mutex_lock(&chip->mutex);
151 }
152 if (chip->erase_suspended || chip->write_suspended) {
153 /* Suspend has occurred while sleep: reset timeout */
154 timeo = reset_timeo;
155 chip->erase_suspended = chip->write_suspended = 0;
156 }
157 }
158 /* check status for errors */
159 if (dsr & DSR_ERR) {
160 /* Clear DSR*/
161 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163 map->name, dsr);
164 print_drs_error(dsr);
165 ret = -EIO;
166 }
167 chip->state = FL_READY;
168 return ret;
169}
170
171static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172{
173 int ret;
174 DECLARE_WAITQUEUE(wait, current);
175
176 retry:
177 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178 && chip->state != FL_SYNCING) {
179 /*
180 * OK. We have possibility for contension on the write/erase
181 * operations which are global to the real chip and not per
182 * partition. So let's fight it over in the partition which
183 * currently has authority on the operation.
184 *
185 * The rules are as follows:
186 *
187 * - any write operation must own shared->writing.
188 *
189 * - any erase operation must own _both_ shared->writing and
190 * shared->erasing.
191 *
192 * - contension arbitration is handled in the owner's context.
193 *
194 * The 'shared' struct can be read and/or written only when
195 * its lock is taken.
196 */
197 struct flchip_shared *shared = chip->priv;
198 struct flchip *contender;
199 mutex_lock(&shared->lock);
200 contender = shared->writing;
201 if (contender && contender != chip) {
202 /*
203 * The engine to perform desired operation on this
204 * partition is already in use by someone else.
205 * Let's fight over it in the context of the chip
206 * currently using it. If it is possible to suspend,
207 * that other partition will do just that, otherwise
208 * it'll happily send us to sleep. In any case, when
209 * get_chip returns success we're clear to go ahead.
210 */
211 ret = mutex_trylock(&contender->mutex);
212 mutex_unlock(&shared->lock);
213 if (!ret)
214 goto retry;
215 mutex_unlock(&chip->mutex);
216 ret = chip_ready(map, contender, mode);
217 mutex_lock(&chip->mutex);
218
219 if (ret == -EAGAIN) {
220 mutex_unlock(&contender->mutex);
221 goto retry;
222 }
223 if (ret) {
224 mutex_unlock(&contender->mutex);
225 return ret;
226 }
227 mutex_lock(&shared->lock);
228
229 /* We should not own chip if it is already in FL_SYNCING
230 * state. Put contender and retry. */
231 if (chip->state == FL_SYNCING) {
232 put_chip(map, contender);
233 mutex_unlock(&contender->mutex);
234 goto retry;
235 }
236 mutex_unlock(&contender->mutex);
237 }
238
239 /* Check if we have suspended erase on this chip.
240 Must sleep in such a case. */
241 if (mode == FL_ERASING && shared->erasing
242 && shared->erasing->oldstate == FL_ERASING) {
243 mutex_unlock(&shared->lock);
244 set_current_state(TASK_UNINTERRUPTIBLE);
245 add_wait_queue(&chip->wq, &wait);
246 mutex_unlock(&chip->mutex);
247 schedule();
248 remove_wait_queue(&chip->wq, &wait);
249 mutex_lock(&chip->mutex);
250 goto retry;
251 }
252
253 /* We now own it */
254 shared->writing = chip;
255 if (mode == FL_ERASING)
256 shared->erasing = chip;
257 mutex_unlock(&shared->lock);
258 }
259
260 ret = chip_ready(map, chip, mode);
261 if (ret == -EAGAIN)
262 goto retry;
263
264 return ret;
265}
266
267static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268{
269 struct lpddr_private *lpddr = map->fldrv_priv;
270 int ret = 0;
271 DECLARE_WAITQUEUE(wait, current);
272
273 /* Prevent setting state FL_SYNCING for chip in suspended state. */
274 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275 goto sleep;
276
277 switch (chip->state) {
278 case FL_READY:
279 case FL_JEDEC_QUERY:
280 return 0;
281
282 case FL_ERASING:
283 if (!lpddr->qinfo->SuspEraseSupp ||
284 !(mode == FL_READY || mode == FL_POINT))
285 goto sleep;
286
287 map_write(map, CMD(LPDDR_SUSPEND),
288 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289 chip->oldstate = FL_ERASING;
290 chip->state = FL_ERASE_SUSPENDING;
291 ret = wait_for_ready(map, chip, 0);
292 if (ret) {
293 /* Oops. something got wrong. */
294 /* Resume and pretend we weren't here. */
295 put_chip(map, chip);
296 printk(KERN_ERR "%s: suspend operation failed."
297 "State may be wrong \n", map->name);
298 return -EIO;
299 }
300 chip->erase_suspended = 1;
301 chip->state = FL_READY;
302 return 0;
303 /* Erase suspend */
304 case FL_POINT:
305 /* Only if there's no operation suspended... */
306 if (mode == FL_READY && chip->oldstate == FL_READY)
307 return 0;
308 /* fall through */
309
310 default:
311sleep:
312 set_current_state(TASK_UNINTERRUPTIBLE);
313 add_wait_queue(&chip->wq, &wait);
314 mutex_unlock(&chip->mutex);
315 schedule();
316 remove_wait_queue(&chip->wq, &wait);
317 mutex_lock(&chip->mutex);
318 return -EAGAIN;
319 }
320}
321
322static void put_chip(struct map_info *map, struct flchip *chip)
323{
324 if (chip->priv) {
325 struct flchip_shared *shared = chip->priv;
326 mutex_lock(&shared->lock);
327 if (shared->writing == chip && chip->oldstate == FL_READY) {
328 /* We own the ability to write, but we're done */
329 shared->writing = shared->erasing;
330 if (shared->writing && shared->writing != chip) {
331 /* give back the ownership */
332 struct flchip *loaner = shared->writing;
333 mutex_lock(&loaner->mutex);
334 mutex_unlock(&shared->lock);
335 mutex_unlock(&chip->mutex);
336 put_chip(map, loaner);
337 mutex_lock(&chip->mutex);
338 mutex_unlock(&loaner->mutex);
339 wake_up(&chip->wq);
340 return;
341 }
342 shared->erasing = NULL;
343 shared->writing = NULL;
344 } else if (shared->erasing == chip && shared->writing != chip) {
345 /*
346 * We own the ability to erase without the ability
347 * to write, which means the erase was suspended
348 * and some other partition is currently writing.
349 * Don't let the switch below mess things up since
350 * we don't have ownership to resume anything.
351 */
352 mutex_unlock(&shared->lock);
353 wake_up(&chip->wq);
354 return;
355 }
356 mutex_unlock(&shared->lock);
357 }
358
359 switch (chip->oldstate) {
360 case FL_ERASING:
361 map_write(map, CMD(LPDDR_RESUME),
362 map->pfow_base + PFOW_COMMAND_CODE);
363 map_write(map, CMD(LPDDR_START_EXECUTION),
364 map->pfow_base + PFOW_COMMAND_EXECUTE);
365 chip->oldstate = FL_READY;
366 chip->state = FL_ERASING;
367 break;
368 case FL_READY:
369 break;
370 default:
371 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372 map->name, chip->oldstate);
373 }
374 wake_up(&chip->wq);
375}
376
377static int do_write_buffer(struct map_info *map, struct flchip *chip,
378 unsigned long adr, const struct kvec **pvec,
379 unsigned long *pvec_seek, int len)
380{
381 struct lpddr_private *lpddr = map->fldrv_priv;
382 map_word datum;
383 int ret, wbufsize, word_gap, words;
384 const struct kvec *vec;
385 unsigned long vec_seek;
386 unsigned long prog_buf_ofs;
387
388 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389
390 mutex_lock(&chip->mutex);
391 ret = get_chip(map, chip, FL_WRITING);
392 if (ret) {
393 mutex_unlock(&chip->mutex);
394 return ret;
395 }
396 /* Figure out the number of words to write */
397 word_gap = (-adr & (map_bankwidth(map)-1));
398 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399 if (!word_gap) {
400 words--;
401 } else {
402 word_gap = map_bankwidth(map) - word_gap;
403 adr -= word_gap;
404 datum = map_word_ff(map);
405 }
406 /* Write data */
407 /* Get the program buffer offset from PFOW register data first*/
408 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410 vec = *pvec;
411 vec_seek = *pvec_seek;
412 do {
413 int n = map_bankwidth(map) - word_gap;
414
415 if (n > vec->iov_len - vec_seek)
416 n = vec->iov_len - vec_seek;
417 if (n > len)
418 n = len;
419
420 if (!word_gap && (len < map_bankwidth(map)))
421 datum = map_word_ff(map);
422
423 datum = map_word_load_partial(map, datum,
424 vec->iov_base + vec_seek, word_gap, n);
425
426 len -= n;
427 word_gap += n;
428 if (!len || word_gap == map_bankwidth(map)) {
429 map_write(map, datum, prog_buf_ofs);
430 prog_buf_ofs += map_bankwidth(map);
431 word_gap = 0;
432 }
433
434 vec_seek += n;
435 if (vec_seek == vec->iov_len) {
436 vec++;
437 vec_seek = 0;
438 }
439 } while (len);
440 *pvec = vec;
441 *pvec_seek = vec_seek;
442
443 /* GO GO GO */
444 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445 chip->state = FL_WRITING;
446 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447 if (ret) {
448 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449 map->name, ret, adr);
450 goto out;
451 }
452
453 out: put_chip(map, chip);
454 mutex_unlock(&chip->mutex);
455 return ret;
456}
457
458static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459{
460 struct map_info *map = mtd->priv;
461 struct lpddr_private *lpddr = map->fldrv_priv;
462 int chipnum = adr >> lpddr->chipshift;
463 struct flchip *chip = &lpddr->chips[chipnum];
464 int ret;
465
466 mutex_lock(&chip->mutex);
467 ret = get_chip(map, chip, FL_ERASING);
468 if (ret) {
469 mutex_unlock(&chip->mutex);
470 return ret;
471 }
472 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473 chip->state = FL_ERASING;
474 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475 if (ret) {
476 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477 map->name, ret, adr);
478 goto out;
479 }
480 out: put_chip(map, chip);
481 mutex_unlock(&chip->mutex);
482 return ret;
483}
484
485static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486 size_t *retlen, u_char *buf)
487{
488 struct map_info *map = mtd->priv;
489 struct lpddr_private *lpddr = map->fldrv_priv;
490 int chipnum = adr >> lpddr->chipshift;
491 struct flchip *chip = &lpddr->chips[chipnum];
492 int ret = 0;
493
494 mutex_lock(&chip->mutex);
495 ret = get_chip(map, chip, FL_READY);
496 if (ret) {
497 mutex_unlock(&chip->mutex);
498 return ret;
499 }
500
501 map_copy_from(map, buf, adr, len);
502 *retlen = len;
503
504 put_chip(map, chip);
505 mutex_unlock(&chip->mutex);
506 return ret;
507}
508
509static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510 size_t *retlen, void **mtdbuf, resource_size_t *phys)
511{
512 struct map_info *map = mtd->priv;
513 struct lpddr_private *lpddr = map->fldrv_priv;
514 int chipnum = adr >> lpddr->chipshift;
515 unsigned long ofs, last_end = 0;
516 struct flchip *chip = &lpddr->chips[chipnum];
517 int ret = 0;
518
519 if (!map->virt)
520 return -EINVAL;
521
522 /* ofs: offset within the first chip that the first read should start */
523 ofs = adr - (chipnum << lpddr->chipshift);
524 *mtdbuf = (void *)map->virt + chip->start + ofs;
525
526 while (len) {
527 unsigned long thislen;
528
529 if (chipnum >= lpddr->numchips)
530 break;
531
532 /* We cannot point across chips that are virtually disjoint */
533 if (!last_end)
534 last_end = chip->start;
535 else if (chip->start != last_end)
536 break;
537
538 if ((len + ofs - 1) >> lpddr->chipshift)
539 thislen = (1<<lpddr->chipshift) - ofs;
540 else
541 thislen = len;
542 /* get the chip */
543 mutex_lock(&chip->mutex);
544 ret = get_chip(map, chip, FL_POINT);
545 mutex_unlock(&chip->mutex);
546 if (ret)
547 break;
548
549 chip->state = FL_POINT;
550 chip->ref_point_counter++;
551 *retlen += thislen;
552 len -= thislen;
553
554 ofs = 0;
555 last_end += 1 << lpddr->chipshift;
556 chipnum++;
557 chip = &lpddr->chips[chipnum];
558 }
559 return 0;
560}
561
562static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563{
564 struct map_info *map = mtd->priv;
565 struct lpddr_private *lpddr = map->fldrv_priv;
566 int chipnum = adr >> lpddr->chipshift, err = 0;
567 unsigned long ofs;
568
569 /* ofs: offset within the first chip that the first read should start */
570 ofs = adr - (chipnum << lpddr->chipshift);
571
572 while (len) {
573 unsigned long thislen;
574 struct flchip *chip;
575
576 chip = &lpddr->chips[chipnum];
577 if (chipnum >= lpddr->numchips)
578 break;
579
580 if ((len + ofs - 1) >> lpddr->chipshift)
581 thislen = (1<<lpddr->chipshift) - ofs;
582 else
583 thislen = len;
584
585 mutex_lock(&chip->mutex);
586 if (chip->state == FL_POINT) {
587 chip->ref_point_counter--;
588 if (chip->ref_point_counter == 0)
589 chip->state = FL_READY;
590 } else {
591 printk(KERN_WARNING "%s: Warning: unpoint called on non"
592 "pointed region\n", map->name);
593 err = -EINVAL;
594 }
595
596 put_chip(map, chip);
597 mutex_unlock(&chip->mutex);
598
599 len -= thislen;
600 ofs = 0;
601 chipnum++;
602 }
603
604 return err;
605}
606
607static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608 size_t *retlen, const u_char *buf)
609{
610 struct kvec vec;
611
612 vec.iov_base = (void *) buf;
613 vec.iov_len = len;
614
615 return lpddr_writev(mtd, &vec, 1, to, retlen);
616}
617
618
619static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620 unsigned long count, loff_t to, size_t *retlen)
621{
622 struct map_info *map = mtd->priv;
623 struct lpddr_private *lpddr = map->fldrv_priv;
624 int ret = 0;
625 int chipnum;
626 unsigned long ofs, vec_seek, i;
627 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
628 size_t len = 0;
629
630 for (i = 0; i < count; i++)
631 len += vecs[i].iov_len;
632
633 if (!len)
634 return 0;
635
636 chipnum = to >> lpddr->chipshift;
637
638 ofs = to;
639 vec_seek = 0;
640
641 do {
642 /* We must not cross write block boundaries */
643 int size = wbufsize - (ofs & (wbufsize-1));
644
645 if (size > len)
646 size = len;
647
648 ret = do_write_buffer(map, &lpddr->chips[chipnum],
649 ofs, &vecs, &vec_seek, size);
650 if (ret)
651 return ret;
652
653 ofs += size;
654 (*retlen) += size;
655 len -= size;
656
657 /* Be nice and reschedule with the chip in a usable
658 * state for other processes */
659 cond_resched();
660
661 } while (len);
662
663 return 0;
664}
665
666static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667{
668 unsigned long ofs, len;
669 int ret;
670 struct map_info *map = mtd->priv;
671 struct lpddr_private *lpddr = map->fldrv_priv;
672 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673
674 ofs = instr->addr;
675 len = instr->len;
676
677 while (len > 0) {
678 ret = do_erase_oneblock(mtd, ofs);
679 if (ret)
680 return ret;
681 ofs += size;
682 len -= size;
683 }
684
685 return 0;
686}
687
688#define DO_XXLOCK_LOCK 1
689#define DO_XXLOCK_UNLOCK 2
690static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691{
692 int ret = 0;
693 struct map_info *map = mtd->priv;
694 struct lpddr_private *lpddr = map->fldrv_priv;
695 int chipnum = adr >> lpddr->chipshift;
696 struct flchip *chip = &lpddr->chips[chipnum];
697
698 mutex_lock(&chip->mutex);
699 ret = get_chip(map, chip, FL_LOCKING);
700 if (ret) {
701 mutex_unlock(&chip->mutex);
702 return ret;
703 }
704
705 if (thunk == DO_XXLOCK_LOCK) {
706 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707 chip->state = FL_LOCKING;
708 } else if (thunk == DO_XXLOCK_UNLOCK) {
709 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710 chip->state = FL_UNLOCKING;
711 } else
712 BUG();
713
714 ret = wait_for_ready(map, chip, 1);
715 if (ret) {
716 printk(KERN_ERR "%s: block unlock error status %d \n",
717 map->name, ret);
718 goto out;
719 }
720out: put_chip(map, chip);
721 mutex_unlock(&chip->mutex);
722 return ret;
723}
724
725static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726{
727 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728}
729
730static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731{
732 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
733}
734
735MODULE_LICENSE("GPL");
736MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * LPDDR flash memory device operations. This module provides read, write,
4 * erase, lock/unlock support for LPDDR flash memories
5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
7 * Many thanks to Roman Borisov for initial enabling
8 *
9 * TODO:
10 * Implement VPP management
11 * Implement XIP support
12 * Implement OTP support
13 */
14#include <linux/mtd/pfow.h>
15#include <linux/mtd/qinfo.h>
16#include <linux/slab.h>
17#include <linux/module.h>
18
19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
20 size_t *retlen, u_char *buf);
21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
22 size_t len, size_t *retlen, const u_char *buf);
23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
24 unsigned long count, loff_t to, size_t *retlen);
25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
29 size_t *retlen, void **mtdbuf, resource_size_t *phys);
30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
33static void put_chip(struct map_info *map, struct flchip *chip);
34
35struct mtd_info *lpddr_cmdset(struct map_info *map)
36{
37 struct lpddr_private *lpddr = map->fldrv_priv;
38 struct flchip_shared *shared;
39 struct flchip *chip;
40 struct mtd_info *mtd;
41 int numchips;
42 int i, j;
43
44 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
45 if (!mtd)
46 return NULL;
47 mtd->priv = map;
48 mtd->type = MTD_NORFLASH;
49
50 /* Fill in the default mtd operations */
51 mtd->_read = lpddr_read;
52 mtd->type = MTD_NORFLASH;
53 mtd->flags = MTD_CAP_NORFLASH;
54 mtd->flags &= ~MTD_BIT_WRITEABLE;
55 mtd->_erase = lpddr_erase;
56 mtd->_write = lpddr_write_buffers;
57 mtd->_writev = lpddr_writev;
58 mtd->_lock = lpddr_lock;
59 mtd->_unlock = lpddr_unlock;
60 if (map_is_linear(map)) {
61 mtd->_point = lpddr_point;
62 mtd->_unpoint = lpddr_unpoint;
63 }
64 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
65 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
66 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
67
68 shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
69 GFP_KERNEL);
70 if (!shared) {
71 kfree(mtd);
72 return NULL;
73 }
74
75 chip = &lpddr->chips[0];
76 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
77 for (i = 0; i < numchips; i++) {
78 shared[i].writing = shared[i].erasing = NULL;
79 mutex_init(&shared[i].lock);
80 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
81 *chip = lpddr->chips[i];
82 chip->start += j << lpddr->chipshift;
83 chip->oldstate = chip->state = FL_READY;
84 chip->priv = &shared[i];
85 /* those should be reset too since
86 they create memory references. */
87 init_waitqueue_head(&chip->wq);
88 mutex_init(&chip->mutex);
89 chip++;
90 }
91 }
92
93 return mtd;
94}
95EXPORT_SYMBOL(lpddr_cmdset);
96
97static int wait_for_ready(struct map_info *map, struct flchip *chip,
98 unsigned int chip_op_time)
99{
100 unsigned int timeo, reset_timeo, sleep_time;
101 unsigned int dsr;
102 flstate_t chip_state = chip->state;
103 int ret = 0;
104
105 /* set our timeout to 8 times the expected delay */
106 timeo = chip_op_time * 8;
107 if (!timeo)
108 timeo = 500000;
109 reset_timeo = timeo;
110 sleep_time = chip_op_time / 2;
111
112 for (;;) {
113 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
114 if (dsr & DSR_READY_STATUS)
115 break;
116 if (!timeo) {
117 printk(KERN_ERR "%s: Flash timeout error state %d \n",
118 map->name, chip_state);
119 ret = -ETIME;
120 break;
121 }
122
123 /* OK Still waiting. Drop the lock, wait a while and retry. */
124 mutex_unlock(&chip->mutex);
125 if (sleep_time >= 1000000/HZ) {
126 /*
127 * Half of the normal delay still remaining
128 * can be performed with a sleeping delay instead
129 * of busy waiting.
130 */
131 msleep(sleep_time/1000);
132 timeo -= sleep_time;
133 sleep_time = 1000000/HZ;
134 } else {
135 udelay(1);
136 cond_resched();
137 timeo--;
138 }
139 mutex_lock(&chip->mutex);
140
141 while (chip->state != chip_state) {
142 /* Someone's suspended the operation: sleep */
143 DECLARE_WAITQUEUE(wait, current);
144 set_current_state(TASK_UNINTERRUPTIBLE);
145 add_wait_queue(&chip->wq, &wait);
146 mutex_unlock(&chip->mutex);
147 schedule();
148 remove_wait_queue(&chip->wq, &wait);
149 mutex_lock(&chip->mutex);
150 }
151 if (chip->erase_suspended || chip->write_suspended) {
152 /* Suspend has occurred while sleep: reset timeout */
153 timeo = reset_timeo;
154 chip->erase_suspended = chip->write_suspended = 0;
155 }
156 }
157 /* check status for errors */
158 if (dsr & DSR_ERR) {
159 /* Clear DSR*/
160 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
161 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
162 map->name, dsr);
163 print_drs_error(dsr);
164 ret = -EIO;
165 }
166 chip->state = FL_READY;
167 return ret;
168}
169
170static int get_chip(struct map_info *map, struct flchip *chip, int mode)
171{
172 int ret;
173 DECLARE_WAITQUEUE(wait, current);
174
175 retry:
176 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
177 && chip->state != FL_SYNCING) {
178 /*
179 * OK. We have possibility for contension on the write/erase
180 * operations which are global to the real chip and not per
181 * partition. So let's fight it over in the partition which
182 * currently has authority on the operation.
183 *
184 * The rules are as follows:
185 *
186 * - any write operation must own shared->writing.
187 *
188 * - any erase operation must own _both_ shared->writing and
189 * shared->erasing.
190 *
191 * - contension arbitration is handled in the owner's context.
192 *
193 * The 'shared' struct can be read and/or written only when
194 * its lock is taken.
195 */
196 struct flchip_shared *shared = chip->priv;
197 struct flchip *contender;
198 mutex_lock(&shared->lock);
199 contender = shared->writing;
200 if (contender && contender != chip) {
201 /*
202 * The engine to perform desired operation on this
203 * partition is already in use by someone else.
204 * Let's fight over it in the context of the chip
205 * currently using it. If it is possible to suspend,
206 * that other partition will do just that, otherwise
207 * it'll happily send us to sleep. In any case, when
208 * get_chip returns success we're clear to go ahead.
209 */
210 ret = mutex_trylock(&contender->mutex);
211 mutex_unlock(&shared->lock);
212 if (!ret)
213 goto retry;
214 mutex_unlock(&chip->mutex);
215 ret = chip_ready(map, contender, mode);
216 mutex_lock(&chip->mutex);
217
218 if (ret == -EAGAIN) {
219 mutex_unlock(&contender->mutex);
220 goto retry;
221 }
222 if (ret) {
223 mutex_unlock(&contender->mutex);
224 return ret;
225 }
226 mutex_lock(&shared->lock);
227
228 /* We should not own chip if it is already in FL_SYNCING
229 * state. Put contender and retry. */
230 if (chip->state == FL_SYNCING) {
231 put_chip(map, contender);
232 mutex_unlock(&contender->mutex);
233 goto retry;
234 }
235 mutex_unlock(&contender->mutex);
236 }
237
238 /* Check if we have suspended erase on this chip.
239 Must sleep in such a case. */
240 if (mode == FL_ERASING && shared->erasing
241 && shared->erasing->oldstate == FL_ERASING) {
242 mutex_unlock(&shared->lock);
243 set_current_state(TASK_UNINTERRUPTIBLE);
244 add_wait_queue(&chip->wq, &wait);
245 mutex_unlock(&chip->mutex);
246 schedule();
247 remove_wait_queue(&chip->wq, &wait);
248 mutex_lock(&chip->mutex);
249 goto retry;
250 }
251
252 /* We now own it */
253 shared->writing = chip;
254 if (mode == FL_ERASING)
255 shared->erasing = chip;
256 mutex_unlock(&shared->lock);
257 }
258
259 ret = chip_ready(map, chip, mode);
260 if (ret == -EAGAIN)
261 goto retry;
262
263 return ret;
264}
265
266static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
267{
268 struct lpddr_private *lpddr = map->fldrv_priv;
269 int ret = 0;
270 DECLARE_WAITQUEUE(wait, current);
271
272 /* Prevent setting state FL_SYNCING for chip in suspended state. */
273 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
274 goto sleep;
275
276 switch (chip->state) {
277 case FL_READY:
278 case FL_JEDEC_QUERY:
279 return 0;
280
281 case FL_ERASING:
282 if (!lpddr->qinfo->SuspEraseSupp ||
283 !(mode == FL_READY || mode == FL_POINT))
284 goto sleep;
285
286 map_write(map, CMD(LPDDR_SUSPEND),
287 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
288 chip->oldstate = FL_ERASING;
289 chip->state = FL_ERASE_SUSPENDING;
290 ret = wait_for_ready(map, chip, 0);
291 if (ret) {
292 /* Oops. something got wrong. */
293 /* Resume and pretend we weren't here. */
294 put_chip(map, chip);
295 printk(KERN_ERR "%s: suspend operation failed."
296 "State may be wrong \n", map->name);
297 return -EIO;
298 }
299 chip->erase_suspended = 1;
300 chip->state = FL_READY;
301 return 0;
302 /* Erase suspend */
303 case FL_POINT:
304 /* Only if there's no operation suspended... */
305 if (mode == FL_READY && chip->oldstate == FL_READY)
306 return 0;
307 fallthrough;
308 default:
309sleep:
310 set_current_state(TASK_UNINTERRUPTIBLE);
311 add_wait_queue(&chip->wq, &wait);
312 mutex_unlock(&chip->mutex);
313 schedule();
314 remove_wait_queue(&chip->wq, &wait);
315 mutex_lock(&chip->mutex);
316 return -EAGAIN;
317 }
318}
319
320static void put_chip(struct map_info *map, struct flchip *chip)
321{
322 if (chip->priv) {
323 struct flchip_shared *shared = chip->priv;
324 mutex_lock(&shared->lock);
325 if (shared->writing == chip && chip->oldstate == FL_READY) {
326 /* We own the ability to write, but we're done */
327 shared->writing = shared->erasing;
328 if (shared->writing && shared->writing != chip) {
329 /* give back the ownership */
330 struct flchip *loaner = shared->writing;
331 mutex_lock(&loaner->mutex);
332 mutex_unlock(&shared->lock);
333 mutex_unlock(&chip->mutex);
334 put_chip(map, loaner);
335 mutex_lock(&chip->mutex);
336 mutex_unlock(&loaner->mutex);
337 wake_up(&chip->wq);
338 return;
339 }
340 shared->erasing = NULL;
341 shared->writing = NULL;
342 } else if (shared->erasing == chip && shared->writing != chip) {
343 /*
344 * We own the ability to erase without the ability
345 * to write, which means the erase was suspended
346 * and some other partition is currently writing.
347 * Don't let the switch below mess things up since
348 * we don't have ownership to resume anything.
349 */
350 mutex_unlock(&shared->lock);
351 wake_up(&chip->wq);
352 return;
353 }
354 mutex_unlock(&shared->lock);
355 }
356
357 switch (chip->oldstate) {
358 case FL_ERASING:
359 map_write(map, CMD(LPDDR_RESUME),
360 map->pfow_base + PFOW_COMMAND_CODE);
361 map_write(map, CMD(LPDDR_START_EXECUTION),
362 map->pfow_base + PFOW_COMMAND_EXECUTE);
363 chip->oldstate = FL_READY;
364 chip->state = FL_ERASING;
365 break;
366 case FL_READY:
367 break;
368 default:
369 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
370 map->name, chip->oldstate);
371 }
372 wake_up(&chip->wq);
373}
374
375static int do_write_buffer(struct map_info *map, struct flchip *chip,
376 unsigned long adr, const struct kvec **pvec,
377 unsigned long *pvec_seek, int len)
378{
379 struct lpddr_private *lpddr = map->fldrv_priv;
380 map_word datum;
381 int ret, wbufsize, word_gap, words;
382 const struct kvec *vec;
383 unsigned long vec_seek;
384 unsigned long prog_buf_ofs;
385
386 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
387
388 mutex_lock(&chip->mutex);
389 ret = get_chip(map, chip, FL_WRITING);
390 if (ret) {
391 mutex_unlock(&chip->mutex);
392 return ret;
393 }
394 /* Figure out the number of words to write */
395 word_gap = (-adr & (map_bankwidth(map)-1));
396 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
397 if (!word_gap) {
398 words--;
399 } else {
400 word_gap = map_bankwidth(map) - word_gap;
401 adr -= word_gap;
402 datum = map_word_ff(map);
403 }
404 /* Write data */
405 /* Get the program buffer offset from PFOW register data first*/
406 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
407 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
408 vec = *pvec;
409 vec_seek = *pvec_seek;
410 do {
411 int n = map_bankwidth(map) - word_gap;
412
413 if (n > vec->iov_len - vec_seek)
414 n = vec->iov_len - vec_seek;
415 if (n > len)
416 n = len;
417
418 if (!word_gap && (len < map_bankwidth(map)))
419 datum = map_word_ff(map);
420
421 datum = map_word_load_partial(map, datum,
422 vec->iov_base + vec_seek, word_gap, n);
423
424 len -= n;
425 word_gap += n;
426 if (!len || word_gap == map_bankwidth(map)) {
427 map_write(map, datum, prog_buf_ofs);
428 prog_buf_ofs += map_bankwidth(map);
429 word_gap = 0;
430 }
431
432 vec_seek += n;
433 if (vec_seek == vec->iov_len) {
434 vec++;
435 vec_seek = 0;
436 }
437 } while (len);
438 *pvec = vec;
439 *pvec_seek = vec_seek;
440
441 /* GO GO GO */
442 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
443 chip->state = FL_WRITING;
444 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
445 if (ret) {
446 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
447 map->name, ret, adr);
448 goto out;
449 }
450
451 out: put_chip(map, chip);
452 mutex_unlock(&chip->mutex);
453 return ret;
454}
455
456static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
457{
458 struct map_info *map = mtd->priv;
459 struct lpddr_private *lpddr = map->fldrv_priv;
460 int chipnum = adr >> lpddr->chipshift;
461 struct flchip *chip = &lpddr->chips[chipnum];
462 int ret;
463
464 mutex_lock(&chip->mutex);
465 ret = get_chip(map, chip, FL_ERASING);
466 if (ret) {
467 mutex_unlock(&chip->mutex);
468 return ret;
469 }
470 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
471 chip->state = FL_ERASING;
472 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
473 if (ret) {
474 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
475 map->name, ret, adr);
476 goto out;
477 }
478 out: put_chip(map, chip);
479 mutex_unlock(&chip->mutex);
480 return ret;
481}
482
483static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
484 size_t *retlen, u_char *buf)
485{
486 struct map_info *map = mtd->priv;
487 struct lpddr_private *lpddr = map->fldrv_priv;
488 int chipnum = adr >> lpddr->chipshift;
489 struct flchip *chip = &lpddr->chips[chipnum];
490 int ret = 0;
491
492 mutex_lock(&chip->mutex);
493 ret = get_chip(map, chip, FL_READY);
494 if (ret) {
495 mutex_unlock(&chip->mutex);
496 return ret;
497 }
498
499 map_copy_from(map, buf, adr, len);
500 *retlen = len;
501
502 put_chip(map, chip);
503 mutex_unlock(&chip->mutex);
504 return ret;
505}
506
507static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
508 size_t *retlen, void **mtdbuf, resource_size_t *phys)
509{
510 struct map_info *map = mtd->priv;
511 struct lpddr_private *lpddr = map->fldrv_priv;
512 int chipnum = adr >> lpddr->chipshift;
513 unsigned long ofs, last_end = 0;
514 struct flchip *chip = &lpddr->chips[chipnum];
515 int ret = 0;
516
517 if (!map->virt)
518 return -EINVAL;
519
520 /* ofs: offset within the first chip that the first read should start */
521 ofs = adr - (chipnum << lpddr->chipshift);
522 *mtdbuf = (void *)map->virt + chip->start + ofs;
523
524 while (len) {
525 unsigned long thislen;
526
527 if (chipnum >= lpddr->numchips)
528 break;
529
530 /* We cannot point across chips that are virtually disjoint */
531 if (!last_end)
532 last_end = chip->start;
533 else if (chip->start != last_end)
534 break;
535
536 if ((len + ofs - 1) >> lpddr->chipshift)
537 thislen = (1<<lpddr->chipshift) - ofs;
538 else
539 thislen = len;
540 /* get the chip */
541 mutex_lock(&chip->mutex);
542 ret = get_chip(map, chip, FL_POINT);
543 mutex_unlock(&chip->mutex);
544 if (ret)
545 break;
546
547 chip->state = FL_POINT;
548 chip->ref_point_counter++;
549 *retlen += thislen;
550 len -= thislen;
551
552 ofs = 0;
553 last_end += 1 << lpddr->chipshift;
554 chipnum++;
555 chip = &lpddr->chips[chipnum];
556 }
557 return 0;
558}
559
560static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
561{
562 struct map_info *map = mtd->priv;
563 struct lpddr_private *lpddr = map->fldrv_priv;
564 int chipnum = adr >> lpddr->chipshift, err = 0;
565 unsigned long ofs;
566
567 /* ofs: offset within the first chip that the first read should start */
568 ofs = adr - (chipnum << lpddr->chipshift);
569
570 while (len) {
571 unsigned long thislen;
572 struct flchip *chip;
573
574 chip = &lpddr->chips[chipnum];
575 if (chipnum >= lpddr->numchips)
576 break;
577
578 if ((len + ofs - 1) >> lpddr->chipshift)
579 thislen = (1<<lpddr->chipshift) - ofs;
580 else
581 thislen = len;
582
583 mutex_lock(&chip->mutex);
584 if (chip->state == FL_POINT) {
585 chip->ref_point_counter--;
586 if (chip->ref_point_counter == 0)
587 chip->state = FL_READY;
588 } else {
589 printk(KERN_WARNING "%s: Warning: unpoint called on non"
590 "pointed region\n", map->name);
591 err = -EINVAL;
592 }
593
594 put_chip(map, chip);
595 mutex_unlock(&chip->mutex);
596
597 len -= thislen;
598 ofs = 0;
599 chipnum++;
600 }
601
602 return err;
603}
604
605static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
606 size_t *retlen, const u_char *buf)
607{
608 struct kvec vec;
609
610 vec.iov_base = (void *) buf;
611 vec.iov_len = len;
612
613 return lpddr_writev(mtd, &vec, 1, to, retlen);
614}
615
616
617static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
618 unsigned long count, loff_t to, size_t *retlen)
619{
620 struct map_info *map = mtd->priv;
621 struct lpddr_private *lpddr = map->fldrv_priv;
622 int ret = 0;
623 int chipnum;
624 unsigned long ofs, vec_seek, i;
625 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
626 size_t len = 0;
627
628 for (i = 0; i < count; i++)
629 len += vecs[i].iov_len;
630
631 if (!len)
632 return 0;
633
634 chipnum = to >> lpddr->chipshift;
635
636 ofs = to;
637 vec_seek = 0;
638
639 do {
640 /* We must not cross write block boundaries */
641 int size = wbufsize - (ofs & (wbufsize-1));
642
643 if (size > len)
644 size = len;
645
646 ret = do_write_buffer(map, &lpddr->chips[chipnum],
647 ofs, &vecs, &vec_seek, size);
648 if (ret)
649 return ret;
650
651 ofs += size;
652 (*retlen) += size;
653 len -= size;
654
655 /* Be nice and reschedule with the chip in a usable
656 * state for other processes */
657 cond_resched();
658
659 } while (len);
660
661 return 0;
662}
663
664static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
665{
666 unsigned long ofs, len;
667 int ret;
668 struct map_info *map = mtd->priv;
669 struct lpddr_private *lpddr = map->fldrv_priv;
670 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
671
672 ofs = instr->addr;
673 len = instr->len;
674
675 while (len > 0) {
676 ret = do_erase_oneblock(mtd, ofs);
677 if (ret)
678 return ret;
679 ofs += size;
680 len -= size;
681 }
682
683 return 0;
684}
685
686#define DO_XXLOCK_LOCK 1
687#define DO_XXLOCK_UNLOCK 2
688static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
689{
690 int ret = 0;
691 struct map_info *map = mtd->priv;
692 struct lpddr_private *lpddr = map->fldrv_priv;
693 int chipnum = adr >> lpddr->chipshift;
694 struct flchip *chip = &lpddr->chips[chipnum];
695
696 mutex_lock(&chip->mutex);
697 ret = get_chip(map, chip, FL_LOCKING);
698 if (ret) {
699 mutex_unlock(&chip->mutex);
700 return ret;
701 }
702
703 if (thunk == DO_XXLOCK_LOCK) {
704 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
705 chip->state = FL_LOCKING;
706 } else if (thunk == DO_XXLOCK_UNLOCK) {
707 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
708 chip->state = FL_UNLOCKING;
709 } else
710 BUG();
711
712 ret = wait_for_ready(map, chip, 1);
713 if (ret) {
714 printk(KERN_ERR "%s: block unlock error status %d \n",
715 map->name, ret);
716 goto out;
717 }
718out: put_chip(map, chip);
719 mutex_unlock(&chip->mutex);
720 return ret;
721}
722
723static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
724{
725 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
726}
727
728static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
729{
730 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
731}
732
733MODULE_LICENSE("GPL");
734MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
735MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");