Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * LPDDR flash memory device operations. This module provides read, write,
  4 * erase, lock/unlock support for LPDDR flash memories
  5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  7 * Many thanks to Roman Borisov for initial enabling
  8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 * TODO:
 10 * Implement VPP management
 11 * Implement XIP support
 12 * Implement OTP support
 13 */
 14#include <linux/mtd/pfow.h>
 15#include <linux/mtd/qinfo.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 18
 19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 20					size_t *retlen, u_char *buf);
 21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 22				size_t len, size_t *retlen, const u_char *buf);
 23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 24				unsigned long count, loff_t to, size_t *retlen);
 25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 29			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 33static void put_chip(struct map_info *map, struct flchip *chip);
 34
 35struct mtd_info *lpddr_cmdset(struct map_info *map)
 36{
 37	struct lpddr_private *lpddr = map->fldrv_priv;
 38	struct flchip_shared *shared;
 39	struct flchip *chip;
 40	struct mtd_info *mtd;
 41	int numchips;
 42	int i, j;
 43
 44	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 45	if (!mtd)
 46		return NULL;
 47	mtd->priv = map;
 48	mtd->type = MTD_NORFLASH;
 49
 50	/* Fill in the default mtd operations */
 51	mtd->_read = lpddr_read;
 52	mtd->type = MTD_NORFLASH;
 53	mtd->flags = MTD_CAP_NORFLASH;
 54	mtd->flags &= ~MTD_BIT_WRITEABLE;
 55	mtd->_erase = lpddr_erase;
 56	mtd->_write = lpddr_write_buffers;
 57	mtd->_writev = lpddr_writev;
 58	mtd->_lock = lpddr_lock;
 59	mtd->_unlock = lpddr_unlock;
 60	if (map_is_linear(map)) {
 61		mtd->_point = lpddr_point;
 62		mtd->_unpoint = lpddr_unpoint;
 63	}
 64	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 65	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 66	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 67
 68	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
 69						GFP_KERNEL);
 70	if (!shared) {
 71		kfree(lpddr);
 72		kfree(mtd);
 73		return NULL;
 74	}
 75
 76	chip = &lpddr->chips[0];
 77	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 78	for (i = 0; i < numchips; i++) {
 79		shared[i].writing = shared[i].erasing = NULL;
 80		mutex_init(&shared[i].lock);
 81		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 82			*chip = lpddr->chips[i];
 83			chip->start += j << lpddr->chipshift;
 84			chip->oldstate = chip->state = FL_READY;
 85			chip->priv = &shared[i];
 86			/* those should be reset too since
 87			   they create memory references. */
 88			init_waitqueue_head(&chip->wq);
 89			mutex_init(&chip->mutex);
 90			chip++;
 91		}
 92	}
 93
 94	return mtd;
 95}
 96EXPORT_SYMBOL(lpddr_cmdset);
 97
 98static int wait_for_ready(struct map_info *map, struct flchip *chip,
 99		unsigned int chip_op_time)
100{
101	unsigned int timeo, reset_timeo, sleep_time;
102	unsigned int dsr;
103	flstate_t chip_state = chip->state;
104	int ret = 0;
105
106	/* set our timeout to 8 times the expected delay */
107	timeo = chip_op_time * 8;
108	if (!timeo)
109		timeo = 500000;
110	reset_timeo = timeo;
111	sleep_time = chip_op_time / 2;
112
113	for (;;) {
114		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115		if (dsr & DSR_READY_STATUS)
116			break;
117		if (!timeo) {
118			printk(KERN_ERR "%s: Flash timeout error state %d \n",
119							map->name, chip_state);
120			ret = -ETIME;
121			break;
122		}
123
124		/* OK Still waiting. Drop the lock, wait a while and retry. */
125		mutex_unlock(&chip->mutex);
126		if (sleep_time >= 1000000/HZ) {
127			/*
128			 * Half of the normal delay still remaining
129			 * can be performed with a sleeping delay instead
130			 * of busy waiting.
131			 */
132			msleep(sleep_time/1000);
133			timeo -= sleep_time;
134			sleep_time = 1000000/HZ;
135		} else {
136			udelay(1);
137			cond_resched();
138			timeo--;
139		}
140		mutex_lock(&chip->mutex);
141
142		while (chip->state != chip_state) {
143			/* Someone's suspended the operation: sleep */
144			DECLARE_WAITQUEUE(wait, current);
145			set_current_state(TASK_UNINTERRUPTIBLE);
146			add_wait_queue(&chip->wq, &wait);
147			mutex_unlock(&chip->mutex);
148			schedule();
149			remove_wait_queue(&chip->wq, &wait);
150			mutex_lock(&chip->mutex);
151		}
152		if (chip->erase_suspended || chip->write_suspended)  {
153			/* Suspend has occurred while sleep: reset timeout */
154			timeo = reset_timeo;
155			chip->erase_suspended = chip->write_suspended = 0;
156		}
157	}
158	/* check status for errors */
159	if (dsr & DSR_ERR) {
160		/* Clear DSR*/
161		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163				map->name, dsr);
164		print_drs_error(dsr);
165		ret = -EIO;
166	}
167	chip->state = FL_READY;
168	return ret;
169}
170
171static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172{
173	int ret;
174	DECLARE_WAITQUEUE(wait, current);
175
176 retry:
177	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178		&& chip->state != FL_SYNCING) {
179		/*
180		 * OK. We have possibility for contension on the write/erase
181		 * operations which are global to the real chip and not per
182		 * partition.  So let's fight it over in the partition which
183		 * currently has authority on the operation.
184		 *
185		 * The rules are as follows:
186		 *
187		 * - any write operation must own shared->writing.
188		 *
189		 * - any erase operation must own _both_ shared->writing and
190		 *   shared->erasing.
191		 *
192		 * - contension arbitration is handled in the owner's context.
193		 *
194		 * The 'shared' struct can be read and/or written only when
195		 * its lock is taken.
196		 */
197		struct flchip_shared *shared = chip->priv;
198		struct flchip *contender;
199		mutex_lock(&shared->lock);
200		contender = shared->writing;
201		if (contender && contender != chip) {
202			/*
203			 * The engine to perform desired operation on this
204			 * partition is already in use by someone else.
205			 * Let's fight over it in the context of the chip
206			 * currently using it.  If it is possible to suspend,
207			 * that other partition will do just that, otherwise
208			 * it'll happily send us to sleep.  In any case, when
209			 * get_chip returns success we're clear to go ahead.
210			 */
211			ret = mutex_trylock(&contender->mutex);
212			mutex_unlock(&shared->lock);
213			if (!ret)
214				goto retry;
215			mutex_unlock(&chip->mutex);
216			ret = chip_ready(map, contender, mode);
217			mutex_lock(&chip->mutex);
218
219			if (ret == -EAGAIN) {
220				mutex_unlock(&contender->mutex);
221				goto retry;
222			}
223			if (ret) {
224				mutex_unlock(&contender->mutex);
225				return ret;
226			}
227			mutex_lock(&shared->lock);
228
229			/* We should not own chip if it is already in FL_SYNCING
230			 * state. Put contender and retry. */
231			if (chip->state == FL_SYNCING) {
232				put_chip(map, contender);
233				mutex_unlock(&contender->mutex);
234				goto retry;
235			}
236			mutex_unlock(&contender->mutex);
237		}
238
239		/* Check if we have suspended erase on this chip.
240		   Must sleep in such a case. */
241		if (mode == FL_ERASING && shared->erasing
242		    && shared->erasing->oldstate == FL_ERASING) {
243			mutex_unlock(&shared->lock);
244			set_current_state(TASK_UNINTERRUPTIBLE);
245			add_wait_queue(&chip->wq, &wait);
246			mutex_unlock(&chip->mutex);
247			schedule();
248			remove_wait_queue(&chip->wq, &wait);
249			mutex_lock(&chip->mutex);
250			goto retry;
251		}
252
253		/* We now own it */
254		shared->writing = chip;
255		if (mode == FL_ERASING)
256			shared->erasing = chip;
257		mutex_unlock(&shared->lock);
258	}
259
260	ret = chip_ready(map, chip, mode);
261	if (ret == -EAGAIN)
262		goto retry;
263
264	return ret;
265}
266
267static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268{
269	struct lpddr_private *lpddr = map->fldrv_priv;
270	int ret = 0;
271	DECLARE_WAITQUEUE(wait, current);
272
273	/* Prevent setting state FL_SYNCING for chip in suspended state. */
274	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275		goto sleep;
276
277	switch (chip->state) {
278	case FL_READY:
279	case FL_JEDEC_QUERY:
280		return 0;
281
282	case FL_ERASING:
283		if (!lpddr->qinfo->SuspEraseSupp ||
284			!(mode == FL_READY || mode == FL_POINT))
285			goto sleep;
286
287		map_write(map, CMD(LPDDR_SUSPEND),
288			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289		chip->oldstate = FL_ERASING;
290		chip->state = FL_ERASE_SUSPENDING;
291		ret = wait_for_ready(map, chip, 0);
292		if (ret) {
293			/* Oops. something got wrong. */
294			/* Resume and pretend we weren't here.  */
295			put_chip(map, chip);
296			printk(KERN_ERR "%s: suspend operation failed."
297					"State may be wrong \n", map->name);
298			return -EIO;
299		}
300		chip->erase_suspended = 1;
301		chip->state = FL_READY;
302		return 0;
303		/* Erase suspend */
304	case FL_POINT:
305		/* Only if there's no operation suspended... */
306		if (mode == FL_READY && chip->oldstate == FL_READY)
307			return 0;
308		/* fall through */
309
310	default:
311sleep:
312		set_current_state(TASK_UNINTERRUPTIBLE);
313		add_wait_queue(&chip->wq, &wait);
314		mutex_unlock(&chip->mutex);
315		schedule();
316		remove_wait_queue(&chip->wq, &wait);
317		mutex_lock(&chip->mutex);
318		return -EAGAIN;
319	}
320}
321
322static void put_chip(struct map_info *map, struct flchip *chip)
323{
324	if (chip->priv) {
325		struct flchip_shared *shared = chip->priv;
326		mutex_lock(&shared->lock);
327		if (shared->writing == chip && chip->oldstate == FL_READY) {
328			/* We own the ability to write, but we're done */
329			shared->writing = shared->erasing;
330			if (shared->writing && shared->writing != chip) {
331				/* give back the ownership */
332				struct flchip *loaner = shared->writing;
333				mutex_lock(&loaner->mutex);
334				mutex_unlock(&shared->lock);
335				mutex_unlock(&chip->mutex);
336				put_chip(map, loaner);
337				mutex_lock(&chip->mutex);
338				mutex_unlock(&loaner->mutex);
339				wake_up(&chip->wq);
340				return;
341			}
342			shared->erasing = NULL;
343			shared->writing = NULL;
344		} else if (shared->erasing == chip && shared->writing != chip) {
345			/*
346			 * We own the ability to erase without the ability
347			 * to write, which means the erase was suspended
348			 * and some other partition is currently writing.
349			 * Don't let the switch below mess things up since
350			 * we don't have ownership to resume anything.
351			 */
352			mutex_unlock(&shared->lock);
353			wake_up(&chip->wq);
354			return;
355		}
356		mutex_unlock(&shared->lock);
357	}
358
359	switch (chip->oldstate) {
360	case FL_ERASING:
361		map_write(map, CMD(LPDDR_RESUME),
362				map->pfow_base + PFOW_COMMAND_CODE);
363		map_write(map, CMD(LPDDR_START_EXECUTION),
364				map->pfow_base + PFOW_COMMAND_EXECUTE);
365		chip->oldstate = FL_READY;
366		chip->state = FL_ERASING;
367		break;
368	case FL_READY:
369		break;
370	default:
371		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372				map->name, chip->oldstate);
373	}
374	wake_up(&chip->wq);
375}
376
377static int do_write_buffer(struct map_info *map, struct flchip *chip,
378			unsigned long adr, const struct kvec **pvec,
379			unsigned long *pvec_seek, int len)
380{
381	struct lpddr_private *lpddr = map->fldrv_priv;
382	map_word datum;
383	int ret, wbufsize, word_gap, words;
384	const struct kvec *vec;
385	unsigned long vec_seek;
386	unsigned long prog_buf_ofs;
387
388	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389
390	mutex_lock(&chip->mutex);
391	ret = get_chip(map, chip, FL_WRITING);
392	if (ret) {
393		mutex_unlock(&chip->mutex);
394		return ret;
395	}
396	/* Figure out the number of words to write */
397	word_gap = (-adr & (map_bankwidth(map)-1));
398	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399	if (!word_gap) {
400		words--;
401	} else {
402		word_gap = map_bankwidth(map) - word_gap;
403		adr -= word_gap;
404		datum = map_word_ff(map);
405	}
406	/* Write data */
407	/* Get the program buffer offset from PFOW register data first*/
408	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410	vec = *pvec;
411	vec_seek = *pvec_seek;
412	do {
413		int n = map_bankwidth(map) - word_gap;
414
415		if (n > vec->iov_len - vec_seek)
416			n = vec->iov_len - vec_seek;
417		if (n > len)
418			n = len;
419
420		if (!word_gap && (len < map_bankwidth(map)))
421			datum = map_word_ff(map);
422
423		datum = map_word_load_partial(map, datum,
424				vec->iov_base + vec_seek, word_gap, n);
425
426		len -= n;
427		word_gap += n;
428		if (!len || word_gap == map_bankwidth(map)) {
429			map_write(map, datum, prog_buf_ofs);
430			prog_buf_ofs += map_bankwidth(map);
431			word_gap = 0;
432		}
433
434		vec_seek += n;
435		if (vec_seek == vec->iov_len) {
436			vec++;
437			vec_seek = 0;
438		}
439	} while (len);
440	*pvec = vec;
441	*pvec_seek = vec_seek;
442
443	/* GO GO GO */
444	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445	chip->state = FL_WRITING;
446	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447	if (ret)	{
448		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449			map->name, ret, adr);
450		goto out;
451	}
452
453 out:	put_chip(map, chip);
454	mutex_unlock(&chip->mutex);
455	return ret;
456}
457
458static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459{
460	struct map_info *map = mtd->priv;
461	struct lpddr_private *lpddr = map->fldrv_priv;
462	int chipnum = adr >> lpddr->chipshift;
463	struct flchip *chip = &lpddr->chips[chipnum];
464	int ret;
465
466	mutex_lock(&chip->mutex);
467	ret = get_chip(map, chip, FL_ERASING);
468	if (ret) {
469		mutex_unlock(&chip->mutex);
470		return ret;
471	}
472	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473	chip->state = FL_ERASING;
474	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475	if (ret) {
476		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477			map->name, ret, adr);
478		goto out;
479	}
480 out:	put_chip(map, chip);
481	mutex_unlock(&chip->mutex);
482	return ret;
483}
484
485static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486			size_t *retlen, u_char *buf)
487{
488	struct map_info *map = mtd->priv;
489	struct lpddr_private *lpddr = map->fldrv_priv;
490	int chipnum = adr >> lpddr->chipshift;
491	struct flchip *chip = &lpddr->chips[chipnum];
492	int ret = 0;
493
494	mutex_lock(&chip->mutex);
495	ret = get_chip(map, chip, FL_READY);
496	if (ret) {
497		mutex_unlock(&chip->mutex);
498		return ret;
499	}
500
501	map_copy_from(map, buf, adr, len);
502	*retlen = len;
503
504	put_chip(map, chip);
505	mutex_unlock(&chip->mutex);
506	return ret;
507}
508
509static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510			size_t *retlen, void **mtdbuf, resource_size_t *phys)
511{
512	struct map_info *map = mtd->priv;
513	struct lpddr_private *lpddr = map->fldrv_priv;
514	int chipnum = adr >> lpddr->chipshift;
515	unsigned long ofs, last_end = 0;
516	struct flchip *chip = &lpddr->chips[chipnum];
517	int ret = 0;
518
519	if (!map->virt)
520		return -EINVAL;
521
522	/* ofs: offset within the first chip that the first read should start */
523	ofs = adr - (chipnum << lpddr->chipshift);
524	*mtdbuf = (void *)map->virt + chip->start + ofs;
525
526	while (len) {
527		unsigned long thislen;
528
529		if (chipnum >= lpddr->numchips)
530			break;
531
532		/* We cannot point across chips that are virtually disjoint */
533		if (!last_end)
534			last_end = chip->start;
535		else if (chip->start != last_end)
536			break;
537
538		if ((len + ofs - 1) >> lpddr->chipshift)
539			thislen = (1<<lpddr->chipshift) - ofs;
540		else
541			thislen = len;
542		/* get the chip */
543		mutex_lock(&chip->mutex);
544		ret = get_chip(map, chip, FL_POINT);
545		mutex_unlock(&chip->mutex);
546		if (ret)
547			break;
548
549		chip->state = FL_POINT;
550		chip->ref_point_counter++;
551		*retlen += thislen;
552		len -= thislen;
553
554		ofs = 0;
555		last_end += 1 << lpddr->chipshift;
556		chipnum++;
557		chip = &lpddr->chips[chipnum];
558	}
559	return 0;
560}
561
562static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563{
564	struct map_info *map = mtd->priv;
565	struct lpddr_private *lpddr = map->fldrv_priv;
566	int chipnum = adr >> lpddr->chipshift, err = 0;
567	unsigned long ofs;
568
569	/* ofs: offset within the first chip that the first read should start */
570	ofs = adr - (chipnum << lpddr->chipshift);
571
572	while (len) {
573		unsigned long thislen;
574		struct flchip *chip;
575
576		chip = &lpddr->chips[chipnum];
577		if (chipnum >= lpddr->numchips)
578			break;
579
580		if ((len + ofs - 1) >> lpddr->chipshift)
581			thislen = (1<<lpddr->chipshift) - ofs;
582		else
583			thislen = len;
584
585		mutex_lock(&chip->mutex);
586		if (chip->state == FL_POINT) {
587			chip->ref_point_counter--;
588			if (chip->ref_point_counter == 0)
589				chip->state = FL_READY;
590		} else {
591			printk(KERN_WARNING "%s: Warning: unpoint called on non"
592					"pointed region\n", map->name);
593			err = -EINVAL;
594		}
595
596		put_chip(map, chip);
597		mutex_unlock(&chip->mutex);
598
599		len -= thislen;
600		ofs = 0;
601		chipnum++;
602	}
603
604	return err;
605}
606
607static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608				size_t *retlen, const u_char *buf)
609{
610	struct kvec vec;
611
612	vec.iov_base = (void *) buf;
613	vec.iov_len = len;
614
615	return lpddr_writev(mtd, &vec, 1, to, retlen);
616}
617
618
619static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620				unsigned long count, loff_t to, size_t *retlen)
621{
622	struct map_info *map = mtd->priv;
623	struct lpddr_private *lpddr = map->fldrv_priv;
624	int ret = 0;
625	int chipnum;
626	unsigned long ofs, vec_seek, i;
627	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
628	size_t len = 0;
629
630	for (i = 0; i < count; i++)
631		len += vecs[i].iov_len;
632
633	if (!len)
634		return 0;
635
636	chipnum = to >> lpddr->chipshift;
637
638	ofs = to;
639	vec_seek = 0;
640
641	do {
642		/* We must not cross write block boundaries */
643		int size = wbufsize - (ofs & (wbufsize-1));
644
645		if (size > len)
646			size = len;
647
648		ret = do_write_buffer(map, &lpddr->chips[chipnum],
649					  ofs, &vecs, &vec_seek, size);
650		if (ret)
651			return ret;
652
653		ofs += size;
654		(*retlen) += size;
655		len -= size;
656
657		/* Be nice and reschedule with the chip in a usable
658		 * state for other processes */
659		cond_resched();
660
661	} while (len);
662
663	return 0;
664}
665
666static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667{
668	unsigned long ofs, len;
669	int ret;
670	struct map_info *map = mtd->priv;
671	struct lpddr_private *lpddr = map->fldrv_priv;
672	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673
674	ofs = instr->addr;
675	len = instr->len;
676
677	while (len > 0) {
678		ret = do_erase_oneblock(mtd, ofs);
679		if (ret)
680			return ret;
681		ofs += size;
682		len -= size;
683	}
684
685	return 0;
686}
687
688#define DO_XXLOCK_LOCK		1
689#define DO_XXLOCK_UNLOCK	2
690static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691{
692	int ret = 0;
693	struct map_info *map = mtd->priv;
694	struct lpddr_private *lpddr = map->fldrv_priv;
695	int chipnum = adr >> lpddr->chipshift;
696	struct flchip *chip = &lpddr->chips[chipnum];
697
698	mutex_lock(&chip->mutex);
699	ret = get_chip(map, chip, FL_LOCKING);
700	if (ret) {
701		mutex_unlock(&chip->mutex);
702		return ret;
703	}
704
705	if (thunk == DO_XXLOCK_LOCK) {
706		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707		chip->state = FL_LOCKING;
708	} else if (thunk == DO_XXLOCK_UNLOCK) {
709		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710		chip->state = FL_UNLOCKING;
711	} else
712		BUG();
713
714	ret = wait_for_ready(map, chip, 1);
715	if (ret)	{
716		printk(KERN_ERR "%s: block unlock error status %d \n",
717				map->name, ret);
718		goto out;
719	}
720out:	put_chip(map, chip);
721	mutex_unlock(&chip->mutex);
722	return ret;
723}
724
725static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726{
727	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728}
729
730static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731{
732	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
733}
734
735MODULE_LICENSE("GPL");
736MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v4.17
 
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 30#include <linux/module.h>
 31
 32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 33					size_t *retlen, u_char *buf);
 34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 35				size_t len, size_t *retlen, const u_char *buf);
 36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 37				unsigned long count, loff_t to, size_t *retlen);
 38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 42			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 46static void put_chip(struct map_info *map, struct flchip *chip);
 47
 48struct mtd_info *lpddr_cmdset(struct map_info *map)
 49{
 50	struct lpddr_private *lpddr = map->fldrv_priv;
 51	struct flchip_shared *shared;
 52	struct flchip *chip;
 53	struct mtd_info *mtd;
 54	int numchips;
 55	int i, j;
 56
 57	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 58	if (!mtd)
 59		return NULL;
 60	mtd->priv = map;
 61	mtd->type = MTD_NORFLASH;
 62
 63	/* Fill in the default mtd operations */
 64	mtd->_read = lpddr_read;
 65	mtd->type = MTD_NORFLASH;
 66	mtd->flags = MTD_CAP_NORFLASH;
 67	mtd->flags &= ~MTD_BIT_WRITEABLE;
 68	mtd->_erase = lpddr_erase;
 69	mtd->_write = lpddr_write_buffers;
 70	mtd->_writev = lpddr_writev;
 71	mtd->_lock = lpddr_lock;
 72	mtd->_unlock = lpddr_unlock;
 73	if (map_is_linear(map)) {
 74		mtd->_point = lpddr_point;
 75		mtd->_unpoint = lpddr_unpoint;
 76	}
 77	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 78	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 79	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 80
 81	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 82						GFP_KERNEL);
 83	if (!shared) {
 84		kfree(lpddr);
 85		kfree(mtd);
 86		return NULL;
 87	}
 88
 89	chip = &lpddr->chips[0];
 90	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 91	for (i = 0; i < numchips; i++) {
 92		shared[i].writing = shared[i].erasing = NULL;
 93		mutex_init(&shared[i].lock);
 94		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 95			*chip = lpddr->chips[i];
 96			chip->start += j << lpddr->chipshift;
 97			chip->oldstate = chip->state = FL_READY;
 98			chip->priv = &shared[i];
 99			/* those should be reset too since
100			   they create memory references. */
101			init_waitqueue_head(&chip->wq);
102			mutex_init(&chip->mutex);
103			chip++;
104		}
105	}
106
107	return mtd;
108}
109EXPORT_SYMBOL(lpddr_cmdset);
110
111static int wait_for_ready(struct map_info *map, struct flchip *chip,
112		unsigned int chip_op_time)
113{
114	unsigned int timeo, reset_timeo, sleep_time;
115	unsigned int dsr;
116	flstate_t chip_state = chip->state;
117	int ret = 0;
118
119	/* set our timeout to 8 times the expected delay */
120	timeo = chip_op_time * 8;
121	if (!timeo)
122		timeo = 500000;
123	reset_timeo = timeo;
124	sleep_time = chip_op_time / 2;
125
126	for (;;) {
127		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
128		if (dsr & DSR_READY_STATUS)
129			break;
130		if (!timeo) {
131			printk(KERN_ERR "%s: Flash timeout error state %d \n",
132							map->name, chip_state);
133			ret = -ETIME;
134			break;
135		}
136
137		/* OK Still waiting. Drop the lock, wait a while and retry. */
138		mutex_unlock(&chip->mutex);
139		if (sleep_time >= 1000000/HZ) {
140			/*
141			 * Half of the normal delay still remaining
142			 * can be performed with a sleeping delay instead
143			 * of busy waiting.
144			 */
145			msleep(sleep_time/1000);
146			timeo -= sleep_time;
147			sleep_time = 1000000/HZ;
148		} else {
149			udelay(1);
150			cond_resched();
151			timeo--;
152		}
153		mutex_lock(&chip->mutex);
154
155		while (chip->state != chip_state) {
156			/* Someone's suspended the operation: sleep */
157			DECLARE_WAITQUEUE(wait, current);
158			set_current_state(TASK_UNINTERRUPTIBLE);
159			add_wait_queue(&chip->wq, &wait);
160			mutex_unlock(&chip->mutex);
161			schedule();
162			remove_wait_queue(&chip->wq, &wait);
163			mutex_lock(&chip->mutex);
164		}
165		if (chip->erase_suspended || chip->write_suspended)  {
166			/* Suspend has occurred while sleep: reset timeout */
167			timeo = reset_timeo;
168			chip->erase_suspended = chip->write_suspended = 0;
169		}
170	}
171	/* check status for errors */
172	if (dsr & DSR_ERR) {
173		/* Clear DSR*/
174		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
175		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
176				map->name, dsr);
177		print_drs_error(dsr);
178		ret = -EIO;
179	}
180	chip->state = FL_READY;
181	return ret;
182}
183
184static int get_chip(struct map_info *map, struct flchip *chip, int mode)
185{
186	int ret;
187	DECLARE_WAITQUEUE(wait, current);
188
189 retry:
190	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
191		&& chip->state != FL_SYNCING) {
192		/*
193		 * OK. We have possibility for contension on the write/erase
194		 * operations which are global to the real chip and not per
195		 * partition.  So let's fight it over in the partition which
196		 * currently has authority on the operation.
197		 *
198		 * The rules are as follows:
199		 *
200		 * - any write operation must own shared->writing.
201		 *
202		 * - any erase operation must own _both_ shared->writing and
203		 *   shared->erasing.
204		 *
205		 * - contension arbitration is handled in the owner's context.
206		 *
207		 * The 'shared' struct can be read and/or written only when
208		 * its lock is taken.
209		 */
210		struct flchip_shared *shared = chip->priv;
211		struct flchip *contender;
212		mutex_lock(&shared->lock);
213		contender = shared->writing;
214		if (contender && contender != chip) {
215			/*
216			 * The engine to perform desired operation on this
217			 * partition is already in use by someone else.
218			 * Let's fight over it in the context of the chip
219			 * currently using it.  If it is possible to suspend,
220			 * that other partition will do just that, otherwise
221			 * it'll happily send us to sleep.  In any case, when
222			 * get_chip returns success we're clear to go ahead.
223			 */
224			ret = mutex_trylock(&contender->mutex);
225			mutex_unlock(&shared->lock);
226			if (!ret)
227				goto retry;
228			mutex_unlock(&chip->mutex);
229			ret = chip_ready(map, contender, mode);
230			mutex_lock(&chip->mutex);
231
232			if (ret == -EAGAIN) {
233				mutex_unlock(&contender->mutex);
234				goto retry;
235			}
236			if (ret) {
237				mutex_unlock(&contender->mutex);
238				return ret;
239			}
240			mutex_lock(&shared->lock);
241
242			/* We should not own chip if it is already in FL_SYNCING
243			 * state. Put contender and retry. */
244			if (chip->state == FL_SYNCING) {
245				put_chip(map, contender);
246				mutex_unlock(&contender->mutex);
247				goto retry;
248			}
249			mutex_unlock(&contender->mutex);
250		}
251
252		/* Check if we have suspended erase on this chip.
253		   Must sleep in such a case. */
254		if (mode == FL_ERASING && shared->erasing
255		    && shared->erasing->oldstate == FL_ERASING) {
256			mutex_unlock(&shared->lock);
257			set_current_state(TASK_UNINTERRUPTIBLE);
258			add_wait_queue(&chip->wq, &wait);
259			mutex_unlock(&chip->mutex);
260			schedule();
261			remove_wait_queue(&chip->wq, &wait);
262			mutex_lock(&chip->mutex);
263			goto retry;
264		}
265
266		/* We now own it */
267		shared->writing = chip;
268		if (mode == FL_ERASING)
269			shared->erasing = chip;
270		mutex_unlock(&shared->lock);
271	}
272
273	ret = chip_ready(map, chip, mode);
274	if (ret == -EAGAIN)
275		goto retry;
276
277	return ret;
278}
279
280static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
281{
282	struct lpddr_private *lpddr = map->fldrv_priv;
283	int ret = 0;
284	DECLARE_WAITQUEUE(wait, current);
285
286	/* Prevent setting state FL_SYNCING for chip in suspended state. */
287	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
288		goto sleep;
289
290	switch (chip->state) {
291	case FL_READY:
292	case FL_JEDEC_QUERY:
293		return 0;
294
295	case FL_ERASING:
296		if (!lpddr->qinfo->SuspEraseSupp ||
297			!(mode == FL_READY || mode == FL_POINT))
298			goto sleep;
299
300		map_write(map, CMD(LPDDR_SUSPEND),
301			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
302		chip->oldstate = FL_ERASING;
303		chip->state = FL_ERASE_SUSPENDING;
304		ret = wait_for_ready(map, chip, 0);
305		if (ret) {
306			/* Oops. something got wrong. */
307			/* Resume and pretend we weren't here.  */
308			put_chip(map, chip);
309			printk(KERN_ERR "%s: suspend operation failed."
310					"State may be wrong \n", map->name);
311			return -EIO;
312		}
313		chip->erase_suspended = 1;
314		chip->state = FL_READY;
315		return 0;
316		/* Erase suspend */
317	case FL_POINT:
318		/* Only if there's no operation suspended... */
319		if (mode == FL_READY && chip->oldstate == FL_READY)
320			return 0;
 
321
322	default:
323sleep:
324		set_current_state(TASK_UNINTERRUPTIBLE);
325		add_wait_queue(&chip->wq, &wait);
326		mutex_unlock(&chip->mutex);
327		schedule();
328		remove_wait_queue(&chip->wq, &wait);
329		mutex_lock(&chip->mutex);
330		return -EAGAIN;
331	}
332}
333
334static void put_chip(struct map_info *map, struct flchip *chip)
335{
336	if (chip->priv) {
337		struct flchip_shared *shared = chip->priv;
338		mutex_lock(&shared->lock);
339		if (shared->writing == chip && chip->oldstate == FL_READY) {
340			/* We own the ability to write, but we're done */
341			shared->writing = shared->erasing;
342			if (shared->writing && shared->writing != chip) {
343				/* give back the ownership */
344				struct flchip *loaner = shared->writing;
345				mutex_lock(&loaner->mutex);
346				mutex_unlock(&shared->lock);
347				mutex_unlock(&chip->mutex);
348				put_chip(map, loaner);
349				mutex_lock(&chip->mutex);
350				mutex_unlock(&loaner->mutex);
351				wake_up(&chip->wq);
352				return;
353			}
354			shared->erasing = NULL;
355			shared->writing = NULL;
356		} else if (shared->erasing == chip && shared->writing != chip) {
357			/*
358			 * We own the ability to erase without the ability
359			 * to write, which means the erase was suspended
360			 * and some other partition is currently writing.
361			 * Don't let the switch below mess things up since
362			 * we don't have ownership to resume anything.
363			 */
364			mutex_unlock(&shared->lock);
365			wake_up(&chip->wq);
366			return;
367		}
368		mutex_unlock(&shared->lock);
369	}
370
371	switch (chip->oldstate) {
372	case FL_ERASING:
373		map_write(map, CMD(LPDDR_RESUME),
374				map->pfow_base + PFOW_COMMAND_CODE);
375		map_write(map, CMD(LPDDR_START_EXECUTION),
376				map->pfow_base + PFOW_COMMAND_EXECUTE);
377		chip->oldstate = FL_READY;
378		chip->state = FL_ERASING;
379		break;
380	case FL_READY:
381		break;
382	default:
383		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
384				map->name, chip->oldstate);
385	}
386	wake_up(&chip->wq);
387}
388
389static int do_write_buffer(struct map_info *map, struct flchip *chip,
390			unsigned long adr, const struct kvec **pvec,
391			unsigned long *pvec_seek, int len)
392{
393	struct lpddr_private *lpddr = map->fldrv_priv;
394	map_word datum;
395	int ret, wbufsize, word_gap, words;
396	const struct kvec *vec;
397	unsigned long vec_seek;
398	unsigned long prog_buf_ofs;
399
400	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
401
402	mutex_lock(&chip->mutex);
403	ret = get_chip(map, chip, FL_WRITING);
404	if (ret) {
405		mutex_unlock(&chip->mutex);
406		return ret;
407	}
408	/* Figure out the number of words to write */
409	word_gap = (-adr & (map_bankwidth(map)-1));
410	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
411	if (!word_gap) {
412		words--;
413	} else {
414		word_gap = map_bankwidth(map) - word_gap;
415		adr -= word_gap;
416		datum = map_word_ff(map);
417	}
418	/* Write data */
419	/* Get the program buffer offset from PFOW register data first*/
420	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
421				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
422	vec = *pvec;
423	vec_seek = *pvec_seek;
424	do {
425		int n = map_bankwidth(map) - word_gap;
426
427		if (n > vec->iov_len - vec_seek)
428			n = vec->iov_len - vec_seek;
429		if (n > len)
430			n = len;
431
432		if (!word_gap && (len < map_bankwidth(map)))
433			datum = map_word_ff(map);
434
435		datum = map_word_load_partial(map, datum,
436				vec->iov_base + vec_seek, word_gap, n);
437
438		len -= n;
439		word_gap += n;
440		if (!len || word_gap == map_bankwidth(map)) {
441			map_write(map, datum, prog_buf_ofs);
442			prog_buf_ofs += map_bankwidth(map);
443			word_gap = 0;
444		}
445
446		vec_seek += n;
447		if (vec_seek == vec->iov_len) {
448			vec++;
449			vec_seek = 0;
450		}
451	} while (len);
452	*pvec = vec;
453	*pvec_seek = vec_seek;
454
455	/* GO GO GO */
456	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
457	chip->state = FL_WRITING;
458	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
459	if (ret)	{
460		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
461			map->name, ret, adr);
462		goto out;
463	}
464
465 out:	put_chip(map, chip);
466	mutex_unlock(&chip->mutex);
467	return ret;
468}
469
470static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
471{
472	struct map_info *map = mtd->priv;
473	struct lpddr_private *lpddr = map->fldrv_priv;
474	int chipnum = adr >> lpddr->chipshift;
475	struct flchip *chip = &lpddr->chips[chipnum];
476	int ret;
477
478	mutex_lock(&chip->mutex);
479	ret = get_chip(map, chip, FL_ERASING);
480	if (ret) {
481		mutex_unlock(&chip->mutex);
482		return ret;
483	}
484	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
485	chip->state = FL_ERASING;
486	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
487	if (ret) {
488		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
489			map->name, ret, adr);
490		goto out;
491	}
492 out:	put_chip(map, chip);
493	mutex_unlock(&chip->mutex);
494	return ret;
495}
496
497static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
498			size_t *retlen, u_char *buf)
499{
500	struct map_info *map = mtd->priv;
501	struct lpddr_private *lpddr = map->fldrv_priv;
502	int chipnum = adr >> lpddr->chipshift;
503	struct flchip *chip = &lpddr->chips[chipnum];
504	int ret = 0;
505
506	mutex_lock(&chip->mutex);
507	ret = get_chip(map, chip, FL_READY);
508	if (ret) {
509		mutex_unlock(&chip->mutex);
510		return ret;
511	}
512
513	map_copy_from(map, buf, adr, len);
514	*retlen = len;
515
516	put_chip(map, chip);
517	mutex_unlock(&chip->mutex);
518	return ret;
519}
520
521static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
522			size_t *retlen, void **mtdbuf, resource_size_t *phys)
523{
524	struct map_info *map = mtd->priv;
525	struct lpddr_private *lpddr = map->fldrv_priv;
526	int chipnum = adr >> lpddr->chipshift;
527	unsigned long ofs, last_end = 0;
528	struct flchip *chip = &lpddr->chips[chipnum];
529	int ret = 0;
530
531	if (!map->virt)
532		return -EINVAL;
533
534	/* ofs: offset within the first chip that the first read should start */
535	ofs = adr - (chipnum << lpddr->chipshift);
536	*mtdbuf = (void *)map->virt + chip->start + ofs;
537
538	while (len) {
539		unsigned long thislen;
540
541		if (chipnum >= lpddr->numchips)
542			break;
543
544		/* We cannot point across chips that are virtually disjoint */
545		if (!last_end)
546			last_end = chip->start;
547		else if (chip->start != last_end)
548			break;
549
550		if ((len + ofs - 1) >> lpddr->chipshift)
551			thislen = (1<<lpddr->chipshift) - ofs;
552		else
553			thislen = len;
554		/* get the chip */
555		mutex_lock(&chip->mutex);
556		ret = get_chip(map, chip, FL_POINT);
557		mutex_unlock(&chip->mutex);
558		if (ret)
559			break;
560
561		chip->state = FL_POINT;
562		chip->ref_point_counter++;
563		*retlen += thislen;
564		len -= thislen;
565
566		ofs = 0;
567		last_end += 1 << lpddr->chipshift;
568		chipnum++;
569		chip = &lpddr->chips[chipnum];
570	}
571	return 0;
572}
573
574static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
575{
576	struct map_info *map = mtd->priv;
577	struct lpddr_private *lpddr = map->fldrv_priv;
578	int chipnum = adr >> lpddr->chipshift, err = 0;
579	unsigned long ofs;
580
581	/* ofs: offset within the first chip that the first read should start */
582	ofs = adr - (chipnum << lpddr->chipshift);
583
584	while (len) {
585		unsigned long thislen;
586		struct flchip *chip;
587
588		chip = &lpddr->chips[chipnum];
589		if (chipnum >= lpddr->numchips)
590			break;
591
592		if ((len + ofs - 1) >> lpddr->chipshift)
593			thislen = (1<<lpddr->chipshift) - ofs;
594		else
595			thislen = len;
596
597		mutex_lock(&chip->mutex);
598		if (chip->state == FL_POINT) {
599			chip->ref_point_counter--;
600			if (chip->ref_point_counter == 0)
601				chip->state = FL_READY;
602		} else {
603			printk(KERN_WARNING "%s: Warning: unpoint called on non"
604					"pointed region\n", map->name);
605			err = -EINVAL;
606		}
607
608		put_chip(map, chip);
609		mutex_unlock(&chip->mutex);
610
611		len -= thislen;
612		ofs = 0;
613		chipnum++;
614	}
615
616	return err;
617}
618
619static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
620				size_t *retlen, const u_char *buf)
621{
622	struct kvec vec;
623
624	vec.iov_base = (void *) buf;
625	vec.iov_len = len;
626
627	return lpddr_writev(mtd, &vec, 1, to, retlen);
628}
629
630
631static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
632				unsigned long count, loff_t to, size_t *retlen)
633{
634	struct map_info *map = mtd->priv;
635	struct lpddr_private *lpddr = map->fldrv_priv;
636	int ret = 0;
637	int chipnum;
638	unsigned long ofs, vec_seek, i;
639	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
640	size_t len = 0;
641
642	for (i = 0; i < count; i++)
643		len += vecs[i].iov_len;
644
645	if (!len)
646		return 0;
647
648	chipnum = to >> lpddr->chipshift;
649
650	ofs = to;
651	vec_seek = 0;
652
653	do {
654		/* We must not cross write block boundaries */
655		int size = wbufsize - (ofs & (wbufsize-1));
656
657		if (size > len)
658			size = len;
659
660		ret = do_write_buffer(map, &lpddr->chips[chipnum],
661					  ofs, &vecs, &vec_seek, size);
662		if (ret)
663			return ret;
664
665		ofs += size;
666		(*retlen) += size;
667		len -= size;
668
669		/* Be nice and reschedule with the chip in a usable
670		 * state for other processes */
671		cond_resched();
672
673	} while (len);
674
675	return 0;
676}
677
678static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
679{
680	unsigned long ofs, len;
681	int ret;
682	struct map_info *map = mtd->priv;
683	struct lpddr_private *lpddr = map->fldrv_priv;
684	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
685
686	ofs = instr->addr;
687	len = instr->len;
688
689	while (len > 0) {
690		ret = do_erase_oneblock(mtd, ofs);
691		if (ret)
692			return ret;
693		ofs += size;
694		len -= size;
695	}
696
697	return 0;
698}
699
700#define DO_XXLOCK_LOCK		1
701#define DO_XXLOCK_UNLOCK	2
702static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
703{
704	int ret = 0;
705	struct map_info *map = mtd->priv;
706	struct lpddr_private *lpddr = map->fldrv_priv;
707	int chipnum = adr >> lpddr->chipshift;
708	struct flchip *chip = &lpddr->chips[chipnum];
709
710	mutex_lock(&chip->mutex);
711	ret = get_chip(map, chip, FL_LOCKING);
712	if (ret) {
713		mutex_unlock(&chip->mutex);
714		return ret;
715	}
716
717	if (thunk == DO_XXLOCK_LOCK) {
718		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
719		chip->state = FL_LOCKING;
720	} else if (thunk == DO_XXLOCK_UNLOCK) {
721		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
722		chip->state = FL_UNLOCKING;
723	} else
724		BUG();
725
726	ret = wait_for_ready(map, chip, 1);
727	if (ret)	{
728		printk(KERN_ERR "%s: block unlock error status %d \n",
729				map->name, ret);
730		goto out;
731	}
732out:	put_chip(map, chip);
733	mutex_unlock(&chip->mutex);
734	return ret;
735}
736
737static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
738{
739	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
740}
741
742static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
743{
744	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
745}
746
747MODULE_LICENSE("GPL");
748MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
749MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");