Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * LPDDR flash memory device operations. This module provides read, write,
  4 * erase, lock/unlock support for LPDDR flash memories
  5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  7 * Many thanks to Roman Borisov for initial enabling
  8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 * TODO:
 10 * Implement VPP management
 11 * Implement XIP support
 12 * Implement OTP support
 13 */
 14#include <linux/mtd/pfow.h>
 15#include <linux/mtd/qinfo.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 18
 19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 20					size_t *retlen, u_char *buf);
 21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 22				size_t len, size_t *retlen, const u_char *buf);
 23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 24				unsigned long count, loff_t to, size_t *retlen);
 25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 29			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 33static void put_chip(struct map_info *map, struct flchip *chip);
 34
 35struct mtd_info *lpddr_cmdset(struct map_info *map)
 36{
 37	struct lpddr_private *lpddr = map->fldrv_priv;
 38	struct flchip_shared *shared;
 39	struct flchip *chip;
 40	struct mtd_info *mtd;
 41	int numchips;
 42	int i, j;
 43
 44	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 45	if (!mtd)
 
 46		return NULL;
 
 47	mtd->priv = map;
 48	mtd->type = MTD_NORFLASH;
 49
 50	/* Fill in the default mtd operations */
 51	mtd->_read = lpddr_read;
 52	mtd->type = MTD_NORFLASH;
 53	mtd->flags = MTD_CAP_NORFLASH;
 54	mtd->flags &= ~MTD_BIT_WRITEABLE;
 55	mtd->_erase = lpddr_erase;
 56	mtd->_write = lpddr_write_buffers;
 57	mtd->_writev = lpddr_writev;
 58	mtd->_lock = lpddr_lock;
 59	mtd->_unlock = lpddr_unlock;
 60	if (map_is_linear(map)) {
 61		mtd->_point = lpddr_point;
 62		mtd->_unpoint = lpddr_unpoint;
 63	}
 64	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 65	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 66	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 67
 68	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
 69						GFP_KERNEL);
 70	if (!shared) {
 71		kfree(lpddr);
 72		kfree(mtd);
 73		return NULL;
 74	}
 75
 76	chip = &lpddr->chips[0];
 77	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 78	for (i = 0; i < numchips; i++) {
 79		shared[i].writing = shared[i].erasing = NULL;
 80		mutex_init(&shared[i].lock);
 81		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 82			*chip = lpddr->chips[i];
 83			chip->start += j << lpddr->chipshift;
 84			chip->oldstate = chip->state = FL_READY;
 85			chip->priv = &shared[i];
 86			/* those should be reset too since
 87			   they create memory references. */
 88			init_waitqueue_head(&chip->wq);
 89			mutex_init(&chip->mutex);
 90			chip++;
 91		}
 92	}
 93
 94	return mtd;
 95}
 96EXPORT_SYMBOL(lpddr_cmdset);
 97
 98static int wait_for_ready(struct map_info *map, struct flchip *chip,
 99		unsigned int chip_op_time)
100{
101	unsigned int timeo, reset_timeo, sleep_time;
102	unsigned int dsr;
103	flstate_t chip_state = chip->state;
104	int ret = 0;
105
106	/* set our timeout to 8 times the expected delay */
107	timeo = chip_op_time * 8;
108	if (!timeo)
109		timeo = 500000;
110	reset_timeo = timeo;
111	sleep_time = chip_op_time / 2;
112
113	for (;;) {
114		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115		if (dsr & DSR_READY_STATUS)
116			break;
117		if (!timeo) {
118			printk(KERN_ERR "%s: Flash timeout error state %d \n",
119							map->name, chip_state);
120			ret = -ETIME;
121			break;
122		}
123
124		/* OK Still waiting. Drop the lock, wait a while and retry. */
125		mutex_unlock(&chip->mutex);
126		if (sleep_time >= 1000000/HZ) {
127			/*
128			 * Half of the normal delay still remaining
129			 * can be performed with a sleeping delay instead
130			 * of busy waiting.
131			 */
132			msleep(sleep_time/1000);
133			timeo -= sleep_time;
134			sleep_time = 1000000/HZ;
135		} else {
136			udelay(1);
137			cond_resched();
138			timeo--;
139		}
140		mutex_lock(&chip->mutex);
141
142		while (chip->state != chip_state) {
143			/* Someone's suspended the operation: sleep */
144			DECLARE_WAITQUEUE(wait, current);
145			set_current_state(TASK_UNINTERRUPTIBLE);
146			add_wait_queue(&chip->wq, &wait);
147			mutex_unlock(&chip->mutex);
148			schedule();
149			remove_wait_queue(&chip->wq, &wait);
150			mutex_lock(&chip->mutex);
151		}
152		if (chip->erase_suspended || chip->write_suspended)  {
153			/* Suspend has occurred while sleep: reset timeout */
154			timeo = reset_timeo;
155			chip->erase_suspended = chip->write_suspended = 0;
156		}
157	}
158	/* check status for errors */
159	if (dsr & DSR_ERR) {
160		/* Clear DSR*/
161		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163				map->name, dsr);
164		print_drs_error(dsr);
165		ret = -EIO;
166	}
167	chip->state = FL_READY;
168	return ret;
169}
170
171static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172{
173	int ret;
174	DECLARE_WAITQUEUE(wait, current);
175
176 retry:
177	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178		&& chip->state != FL_SYNCING) {
179		/*
180		 * OK. We have possibility for contension on the write/erase
181		 * operations which are global to the real chip and not per
182		 * partition.  So let's fight it over in the partition which
183		 * currently has authority on the operation.
184		 *
185		 * The rules are as follows:
186		 *
187		 * - any write operation must own shared->writing.
188		 *
189		 * - any erase operation must own _both_ shared->writing and
190		 *   shared->erasing.
191		 *
192		 * - contension arbitration is handled in the owner's context.
193		 *
194		 * The 'shared' struct can be read and/or written only when
195		 * its lock is taken.
196		 */
197		struct flchip_shared *shared = chip->priv;
198		struct flchip *contender;
199		mutex_lock(&shared->lock);
200		contender = shared->writing;
201		if (contender && contender != chip) {
202			/*
203			 * The engine to perform desired operation on this
204			 * partition is already in use by someone else.
205			 * Let's fight over it in the context of the chip
206			 * currently using it.  If it is possible to suspend,
207			 * that other partition will do just that, otherwise
208			 * it'll happily send us to sleep.  In any case, when
209			 * get_chip returns success we're clear to go ahead.
210			 */
211			ret = mutex_trylock(&contender->mutex);
212			mutex_unlock(&shared->lock);
213			if (!ret)
214				goto retry;
215			mutex_unlock(&chip->mutex);
216			ret = chip_ready(map, contender, mode);
217			mutex_lock(&chip->mutex);
218
219			if (ret == -EAGAIN) {
220				mutex_unlock(&contender->mutex);
221				goto retry;
222			}
223			if (ret) {
224				mutex_unlock(&contender->mutex);
225				return ret;
226			}
227			mutex_lock(&shared->lock);
228
229			/* We should not own chip if it is already in FL_SYNCING
230			 * state. Put contender and retry. */
231			if (chip->state == FL_SYNCING) {
232				put_chip(map, contender);
233				mutex_unlock(&contender->mutex);
234				goto retry;
235			}
236			mutex_unlock(&contender->mutex);
237		}
238
239		/* Check if we have suspended erase on this chip.
240		   Must sleep in such a case. */
241		if (mode == FL_ERASING && shared->erasing
242		    && shared->erasing->oldstate == FL_ERASING) {
243			mutex_unlock(&shared->lock);
244			set_current_state(TASK_UNINTERRUPTIBLE);
245			add_wait_queue(&chip->wq, &wait);
246			mutex_unlock(&chip->mutex);
247			schedule();
248			remove_wait_queue(&chip->wq, &wait);
249			mutex_lock(&chip->mutex);
250			goto retry;
251		}
252
253		/* We now own it */
254		shared->writing = chip;
255		if (mode == FL_ERASING)
256			shared->erasing = chip;
257		mutex_unlock(&shared->lock);
258	}
259
260	ret = chip_ready(map, chip, mode);
261	if (ret == -EAGAIN)
262		goto retry;
263
264	return ret;
265}
266
267static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268{
269	struct lpddr_private *lpddr = map->fldrv_priv;
270	int ret = 0;
271	DECLARE_WAITQUEUE(wait, current);
272
273	/* Prevent setting state FL_SYNCING for chip in suspended state. */
274	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275		goto sleep;
276
277	switch (chip->state) {
278	case FL_READY:
279	case FL_JEDEC_QUERY:
280		return 0;
281
282	case FL_ERASING:
283		if (!lpddr->qinfo->SuspEraseSupp ||
284			!(mode == FL_READY || mode == FL_POINT))
285			goto sleep;
286
287		map_write(map, CMD(LPDDR_SUSPEND),
288			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289		chip->oldstate = FL_ERASING;
290		chip->state = FL_ERASE_SUSPENDING;
291		ret = wait_for_ready(map, chip, 0);
292		if (ret) {
293			/* Oops. something got wrong. */
294			/* Resume and pretend we weren't here.  */
295			put_chip(map, chip);
296			printk(KERN_ERR "%s: suspend operation failed."
297					"State may be wrong \n", map->name);
298			return -EIO;
299		}
300		chip->erase_suspended = 1;
301		chip->state = FL_READY;
302		return 0;
303		/* Erase suspend */
304	case FL_POINT:
305		/* Only if there's no operation suspended... */
306		if (mode == FL_READY && chip->oldstate == FL_READY)
307			return 0;
308		/* fall through */
309
310	default:
311sleep:
312		set_current_state(TASK_UNINTERRUPTIBLE);
313		add_wait_queue(&chip->wq, &wait);
314		mutex_unlock(&chip->mutex);
315		schedule();
316		remove_wait_queue(&chip->wq, &wait);
317		mutex_lock(&chip->mutex);
318		return -EAGAIN;
319	}
320}
321
322static void put_chip(struct map_info *map, struct flchip *chip)
323{
324	if (chip->priv) {
325		struct flchip_shared *shared = chip->priv;
326		mutex_lock(&shared->lock);
327		if (shared->writing == chip && chip->oldstate == FL_READY) {
328			/* We own the ability to write, but we're done */
329			shared->writing = shared->erasing;
330			if (shared->writing && shared->writing != chip) {
331				/* give back the ownership */
332				struct flchip *loaner = shared->writing;
333				mutex_lock(&loaner->mutex);
334				mutex_unlock(&shared->lock);
335				mutex_unlock(&chip->mutex);
336				put_chip(map, loaner);
337				mutex_lock(&chip->mutex);
338				mutex_unlock(&loaner->mutex);
339				wake_up(&chip->wq);
340				return;
341			}
342			shared->erasing = NULL;
343			shared->writing = NULL;
344		} else if (shared->erasing == chip && shared->writing != chip) {
345			/*
346			 * We own the ability to erase without the ability
347			 * to write, which means the erase was suspended
348			 * and some other partition is currently writing.
349			 * Don't let the switch below mess things up since
350			 * we don't have ownership to resume anything.
351			 */
352			mutex_unlock(&shared->lock);
353			wake_up(&chip->wq);
354			return;
355		}
356		mutex_unlock(&shared->lock);
357	}
358
359	switch (chip->oldstate) {
360	case FL_ERASING:
361		map_write(map, CMD(LPDDR_RESUME),
362				map->pfow_base + PFOW_COMMAND_CODE);
363		map_write(map, CMD(LPDDR_START_EXECUTION),
364				map->pfow_base + PFOW_COMMAND_EXECUTE);
365		chip->oldstate = FL_READY;
366		chip->state = FL_ERASING;
367		break;
368	case FL_READY:
369		break;
370	default:
371		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372				map->name, chip->oldstate);
373	}
374	wake_up(&chip->wq);
375}
376
377static int do_write_buffer(struct map_info *map, struct flchip *chip,
378			unsigned long adr, const struct kvec **pvec,
379			unsigned long *pvec_seek, int len)
380{
381	struct lpddr_private *lpddr = map->fldrv_priv;
382	map_word datum;
383	int ret, wbufsize, word_gap, words;
384	const struct kvec *vec;
385	unsigned long vec_seek;
386	unsigned long prog_buf_ofs;
387
388	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389
390	mutex_lock(&chip->mutex);
391	ret = get_chip(map, chip, FL_WRITING);
392	if (ret) {
393		mutex_unlock(&chip->mutex);
394		return ret;
395	}
396	/* Figure out the number of words to write */
397	word_gap = (-adr & (map_bankwidth(map)-1));
398	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399	if (!word_gap) {
400		words--;
401	} else {
402		word_gap = map_bankwidth(map) - word_gap;
403		adr -= word_gap;
404		datum = map_word_ff(map);
405	}
406	/* Write data */
407	/* Get the program buffer offset from PFOW register data first*/
408	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410	vec = *pvec;
411	vec_seek = *pvec_seek;
412	do {
413		int n = map_bankwidth(map) - word_gap;
414
415		if (n > vec->iov_len - vec_seek)
416			n = vec->iov_len - vec_seek;
417		if (n > len)
418			n = len;
419
420		if (!word_gap && (len < map_bankwidth(map)))
421			datum = map_word_ff(map);
422
423		datum = map_word_load_partial(map, datum,
424				vec->iov_base + vec_seek, word_gap, n);
425
426		len -= n;
427		word_gap += n;
428		if (!len || word_gap == map_bankwidth(map)) {
429			map_write(map, datum, prog_buf_ofs);
430			prog_buf_ofs += map_bankwidth(map);
431			word_gap = 0;
432		}
433
434		vec_seek += n;
435		if (vec_seek == vec->iov_len) {
436			vec++;
437			vec_seek = 0;
438		}
439	} while (len);
440	*pvec = vec;
441	*pvec_seek = vec_seek;
442
443	/* GO GO GO */
444	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445	chip->state = FL_WRITING;
446	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447	if (ret)	{
448		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449			map->name, ret, adr);
450		goto out;
451	}
452
453 out:	put_chip(map, chip);
454	mutex_unlock(&chip->mutex);
455	return ret;
456}
457
458static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459{
460	struct map_info *map = mtd->priv;
461	struct lpddr_private *lpddr = map->fldrv_priv;
462	int chipnum = adr >> lpddr->chipshift;
463	struct flchip *chip = &lpddr->chips[chipnum];
464	int ret;
465
466	mutex_lock(&chip->mutex);
467	ret = get_chip(map, chip, FL_ERASING);
468	if (ret) {
469		mutex_unlock(&chip->mutex);
470		return ret;
471	}
472	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473	chip->state = FL_ERASING;
474	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475	if (ret) {
476		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477			map->name, ret, adr);
478		goto out;
479	}
480 out:	put_chip(map, chip);
481	mutex_unlock(&chip->mutex);
482	return ret;
483}
484
485static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486			size_t *retlen, u_char *buf)
487{
488	struct map_info *map = mtd->priv;
489	struct lpddr_private *lpddr = map->fldrv_priv;
490	int chipnum = adr >> lpddr->chipshift;
491	struct flchip *chip = &lpddr->chips[chipnum];
492	int ret = 0;
493
494	mutex_lock(&chip->mutex);
495	ret = get_chip(map, chip, FL_READY);
496	if (ret) {
497		mutex_unlock(&chip->mutex);
498		return ret;
499	}
500
501	map_copy_from(map, buf, adr, len);
502	*retlen = len;
503
504	put_chip(map, chip);
505	mutex_unlock(&chip->mutex);
506	return ret;
507}
508
509static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510			size_t *retlen, void **mtdbuf, resource_size_t *phys)
511{
512	struct map_info *map = mtd->priv;
513	struct lpddr_private *lpddr = map->fldrv_priv;
514	int chipnum = adr >> lpddr->chipshift;
515	unsigned long ofs, last_end = 0;
516	struct flchip *chip = &lpddr->chips[chipnum];
517	int ret = 0;
518
519	if (!map->virt)
520		return -EINVAL;
521
522	/* ofs: offset within the first chip that the first read should start */
523	ofs = adr - (chipnum << lpddr->chipshift);
524	*mtdbuf = (void *)map->virt + chip->start + ofs;
525
526	while (len) {
527		unsigned long thislen;
528
529		if (chipnum >= lpddr->numchips)
530			break;
531
532		/* We cannot point across chips that are virtually disjoint */
533		if (!last_end)
534			last_end = chip->start;
535		else if (chip->start != last_end)
536			break;
537
538		if ((len + ofs - 1) >> lpddr->chipshift)
539			thislen = (1<<lpddr->chipshift) - ofs;
540		else
541			thislen = len;
542		/* get the chip */
543		mutex_lock(&chip->mutex);
544		ret = get_chip(map, chip, FL_POINT);
545		mutex_unlock(&chip->mutex);
546		if (ret)
547			break;
548
549		chip->state = FL_POINT;
550		chip->ref_point_counter++;
551		*retlen += thislen;
552		len -= thislen;
553
554		ofs = 0;
555		last_end += 1 << lpddr->chipshift;
556		chipnum++;
557		chip = &lpddr->chips[chipnum];
558	}
559	return 0;
560}
561
562static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563{
564	struct map_info *map = mtd->priv;
565	struct lpddr_private *lpddr = map->fldrv_priv;
566	int chipnum = adr >> lpddr->chipshift, err = 0;
567	unsigned long ofs;
568
569	/* ofs: offset within the first chip that the first read should start */
570	ofs = adr - (chipnum << lpddr->chipshift);
571
572	while (len) {
573		unsigned long thislen;
574		struct flchip *chip;
575
576		chip = &lpddr->chips[chipnum];
577		if (chipnum >= lpddr->numchips)
578			break;
579
580		if ((len + ofs - 1) >> lpddr->chipshift)
581			thislen = (1<<lpddr->chipshift) - ofs;
582		else
583			thislen = len;
584
585		mutex_lock(&chip->mutex);
586		if (chip->state == FL_POINT) {
587			chip->ref_point_counter--;
588			if (chip->ref_point_counter == 0)
589				chip->state = FL_READY;
590		} else {
591			printk(KERN_WARNING "%s: Warning: unpoint called on non"
592					"pointed region\n", map->name);
593			err = -EINVAL;
594		}
595
596		put_chip(map, chip);
597		mutex_unlock(&chip->mutex);
598
599		len -= thislen;
600		ofs = 0;
601		chipnum++;
602	}
603
604	return err;
605}
606
607static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608				size_t *retlen, const u_char *buf)
609{
610	struct kvec vec;
611
612	vec.iov_base = (void *) buf;
613	vec.iov_len = len;
614
615	return lpddr_writev(mtd, &vec, 1, to, retlen);
616}
617
618
619static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620				unsigned long count, loff_t to, size_t *retlen)
621{
622	struct map_info *map = mtd->priv;
623	struct lpddr_private *lpddr = map->fldrv_priv;
624	int ret = 0;
625	int chipnum;
626	unsigned long ofs, vec_seek, i;
627	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
628	size_t len = 0;
629
630	for (i = 0; i < count; i++)
631		len += vecs[i].iov_len;
632
633	if (!len)
634		return 0;
635
636	chipnum = to >> lpddr->chipshift;
637
638	ofs = to;
639	vec_seek = 0;
640
641	do {
642		/* We must not cross write block boundaries */
643		int size = wbufsize - (ofs & (wbufsize-1));
644
645		if (size > len)
646			size = len;
647
648		ret = do_write_buffer(map, &lpddr->chips[chipnum],
649					  ofs, &vecs, &vec_seek, size);
650		if (ret)
651			return ret;
652
653		ofs += size;
654		(*retlen) += size;
655		len -= size;
656
657		/* Be nice and reschedule with the chip in a usable
658		 * state for other processes */
659		cond_resched();
660
661	} while (len);
662
663	return 0;
664}
665
666static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667{
668	unsigned long ofs, len;
669	int ret;
670	struct map_info *map = mtd->priv;
671	struct lpddr_private *lpddr = map->fldrv_priv;
672	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673
674	ofs = instr->addr;
675	len = instr->len;
676
677	while (len > 0) {
678		ret = do_erase_oneblock(mtd, ofs);
679		if (ret)
680			return ret;
681		ofs += size;
682		len -= size;
683	}
 
 
684
685	return 0;
686}
687
688#define DO_XXLOCK_LOCK		1
689#define DO_XXLOCK_UNLOCK	2
690static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691{
692	int ret = 0;
693	struct map_info *map = mtd->priv;
694	struct lpddr_private *lpddr = map->fldrv_priv;
695	int chipnum = adr >> lpddr->chipshift;
696	struct flchip *chip = &lpddr->chips[chipnum];
697
698	mutex_lock(&chip->mutex);
699	ret = get_chip(map, chip, FL_LOCKING);
700	if (ret) {
701		mutex_unlock(&chip->mutex);
702		return ret;
703	}
704
705	if (thunk == DO_XXLOCK_LOCK) {
706		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707		chip->state = FL_LOCKING;
708	} else if (thunk == DO_XXLOCK_UNLOCK) {
709		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710		chip->state = FL_UNLOCKING;
711	} else
712		BUG();
713
714	ret = wait_for_ready(map, chip, 1);
715	if (ret)	{
716		printk(KERN_ERR "%s: block unlock error status %d \n",
717				map->name, ret);
718		goto out;
719	}
720out:	put_chip(map, chip);
721	mutex_unlock(&chip->mutex);
722	return ret;
723}
724
725static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726{
727	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728}
729
730static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731{
732	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733}
734
735MODULE_LICENSE("GPL");
736MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v3.5.6
 
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 30#include <linux/module.h>
 31
 32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 33					size_t *retlen, u_char *buf);
 34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 35				size_t len, size_t *retlen, const u_char *buf);
 36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 37				unsigned long count, loff_t to, size_t *retlen);
 38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 42			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 46static void put_chip(struct map_info *map, struct flchip *chip);
 47
 48struct mtd_info *lpddr_cmdset(struct map_info *map)
 49{
 50	struct lpddr_private *lpddr = map->fldrv_priv;
 51	struct flchip_shared *shared;
 52	struct flchip *chip;
 53	struct mtd_info *mtd;
 54	int numchips;
 55	int i, j;
 56
 57	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 58	if (!mtd) {
 59		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
 60		return NULL;
 61	}
 62	mtd->priv = map;
 63	mtd->type = MTD_NORFLASH;
 64
 65	/* Fill in the default mtd operations */
 66	mtd->_read = lpddr_read;
 67	mtd->type = MTD_NORFLASH;
 68	mtd->flags = MTD_CAP_NORFLASH;
 69	mtd->flags &= ~MTD_BIT_WRITEABLE;
 70	mtd->_erase = lpddr_erase;
 71	mtd->_write = lpddr_write_buffers;
 72	mtd->_writev = lpddr_writev;
 73	mtd->_lock = lpddr_lock;
 74	mtd->_unlock = lpddr_unlock;
 75	if (map_is_linear(map)) {
 76		mtd->_point = lpddr_point;
 77		mtd->_unpoint = lpddr_unpoint;
 78	}
 79	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 80	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 81	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 82
 83	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 84						GFP_KERNEL);
 85	if (!shared) {
 86		kfree(lpddr);
 87		kfree(mtd);
 88		return NULL;
 89	}
 90
 91	chip = &lpddr->chips[0];
 92	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 93	for (i = 0; i < numchips; i++) {
 94		shared[i].writing = shared[i].erasing = NULL;
 95		mutex_init(&shared[i].lock);
 96		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 97			*chip = lpddr->chips[i];
 98			chip->start += j << lpddr->chipshift;
 99			chip->oldstate = chip->state = FL_READY;
100			chip->priv = &shared[i];
101			/* those should be reset too since
102			   they create memory references. */
103			init_waitqueue_head(&chip->wq);
104			mutex_init(&chip->mutex);
105			chip++;
106		}
107	}
108
109	return mtd;
110}
111EXPORT_SYMBOL(lpddr_cmdset);
112
113static int wait_for_ready(struct map_info *map, struct flchip *chip,
114		unsigned int chip_op_time)
115{
116	unsigned int timeo, reset_timeo, sleep_time;
117	unsigned int dsr;
118	flstate_t chip_state = chip->state;
119	int ret = 0;
120
121	/* set our timeout to 8 times the expected delay */
122	timeo = chip_op_time * 8;
123	if (!timeo)
124		timeo = 500000;
125	reset_timeo = timeo;
126	sleep_time = chip_op_time / 2;
127
128	for (;;) {
129		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130		if (dsr & DSR_READY_STATUS)
131			break;
132		if (!timeo) {
133			printk(KERN_ERR "%s: Flash timeout error state %d \n",
134							map->name, chip_state);
135			ret = -ETIME;
136			break;
137		}
138
139		/* OK Still waiting. Drop the lock, wait a while and retry. */
140		mutex_unlock(&chip->mutex);
141		if (sleep_time >= 1000000/HZ) {
142			/*
143			 * Half of the normal delay still remaining
144			 * can be performed with a sleeping delay instead
145			 * of busy waiting.
146			 */
147			msleep(sleep_time/1000);
148			timeo -= sleep_time;
149			sleep_time = 1000000/HZ;
150		} else {
151			udelay(1);
152			cond_resched();
153			timeo--;
154		}
155		mutex_lock(&chip->mutex);
156
157		while (chip->state != chip_state) {
158			/* Someone's suspended the operation: sleep */
159			DECLARE_WAITQUEUE(wait, current);
160			set_current_state(TASK_UNINTERRUPTIBLE);
161			add_wait_queue(&chip->wq, &wait);
162			mutex_unlock(&chip->mutex);
163			schedule();
164			remove_wait_queue(&chip->wq, &wait);
165			mutex_lock(&chip->mutex);
166		}
167		if (chip->erase_suspended || chip->write_suspended)  {
168			/* Suspend has occurred while sleep: reset timeout */
169			timeo = reset_timeo;
170			chip->erase_suspended = chip->write_suspended = 0;
171		}
172	}
173	/* check status for errors */
174	if (dsr & DSR_ERR) {
175		/* Clear DSR*/
176		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178				map->name, dsr);
179		print_drs_error(dsr);
180		ret = -EIO;
181	}
182	chip->state = FL_READY;
183	return ret;
184}
185
186static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187{
188	int ret;
189	DECLARE_WAITQUEUE(wait, current);
190
191 retry:
192	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193		&& chip->state != FL_SYNCING) {
194		/*
195		 * OK. We have possibility for contension on the write/erase
196		 * operations which are global to the real chip and not per
197		 * partition.  So let's fight it over in the partition which
198		 * currently has authority on the operation.
199		 *
200		 * The rules are as follows:
201		 *
202		 * - any write operation must own shared->writing.
203		 *
204		 * - any erase operation must own _both_ shared->writing and
205		 *   shared->erasing.
206		 *
207		 * - contension arbitration is handled in the owner's context.
208		 *
209		 * The 'shared' struct can be read and/or written only when
210		 * its lock is taken.
211		 */
212		struct flchip_shared *shared = chip->priv;
213		struct flchip *contender;
214		mutex_lock(&shared->lock);
215		contender = shared->writing;
216		if (contender && contender != chip) {
217			/*
218			 * The engine to perform desired operation on this
219			 * partition is already in use by someone else.
220			 * Let's fight over it in the context of the chip
221			 * currently using it.  If it is possible to suspend,
222			 * that other partition will do just that, otherwise
223			 * it'll happily send us to sleep.  In any case, when
224			 * get_chip returns success we're clear to go ahead.
225			 */
226			ret = mutex_trylock(&contender->mutex);
227			mutex_unlock(&shared->lock);
228			if (!ret)
229				goto retry;
230			mutex_unlock(&chip->mutex);
231			ret = chip_ready(map, contender, mode);
232			mutex_lock(&chip->mutex);
233
234			if (ret == -EAGAIN) {
235				mutex_unlock(&contender->mutex);
236				goto retry;
237			}
238			if (ret) {
239				mutex_unlock(&contender->mutex);
240				return ret;
241			}
242			mutex_lock(&shared->lock);
243
244			/* We should not own chip if it is already in FL_SYNCING
245			 * state. Put contender and retry. */
246			if (chip->state == FL_SYNCING) {
247				put_chip(map, contender);
248				mutex_unlock(&contender->mutex);
249				goto retry;
250			}
251			mutex_unlock(&contender->mutex);
252		}
253
254		/* Check if we have suspended erase on this chip.
255		   Must sleep in such a case. */
256		if (mode == FL_ERASING && shared->erasing
257		    && shared->erasing->oldstate == FL_ERASING) {
258			mutex_unlock(&shared->lock);
259			set_current_state(TASK_UNINTERRUPTIBLE);
260			add_wait_queue(&chip->wq, &wait);
261			mutex_unlock(&chip->mutex);
262			schedule();
263			remove_wait_queue(&chip->wq, &wait);
264			mutex_lock(&chip->mutex);
265			goto retry;
266		}
267
268		/* We now own it */
269		shared->writing = chip;
270		if (mode == FL_ERASING)
271			shared->erasing = chip;
272		mutex_unlock(&shared->lock);
273	}
274
275	ret = chip_ready(map, chip, mode);
276	if (ret == -EAGAIN)
277		goto retry;
278
279	return ret;
280}
281
282static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283{
284	struct lpddr_private *lpddr = map->fldrv_priv;
285	int ret = 0;
286	DECLARE_WAITQUEUE(wait, current);
287
288	/* Prevent setting state FL_SYNCING for chip in suspended state. */
289	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290		goto sleep;
291
292	switch (chip->state) {
293	case FL_READY:
294	case FL_JEDEC_QUERY:
295		return 0;
296
297	case FL_ERASING:
298		if (!lpddr->qinfo->SuspEraseSupp ||
299			!(mode == FL_READY || mode == FL_POINT))
300			goto sleep;
301
302		map_write(map, CMD(LPDDR_SUSPEND),
303			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304		chip->oldstate = FL_ERASING;
305		chip->state = FL_ERASE_SUSPENDING;
306		ret = wait_for_ready(map, chip, 0);
307		if (ret) {
308			/* Oops. something got wrong. */
309			/* Resume and pretend we weren't here.  */
310			put_chip(map, chip);
311			printk(KERN_ERR "%s: suspend operation failed."
312					"State may be wrong \n", map->name);
313			return -EIO;
314		}
315		chip->erase_suspended = 1;
316		chip->state = FL_READY;
317		return 0;
318		/* Erase suspend */
319	case FL_POINT:
320		/* Only if there's no operation suspended... */
321		if (mode == FL_READY && chip->oldstate == FL_READY)
322			return 0;
 
323
324	default:
325sleep:
326		set_current_state(TASK_UNINTERRUPTIBLE);
327		add_wait_queue(&chip->wq, &wait);
328		mutex_unlock(&chip->mutex);
329		schedule();
330		remove_wait_queue(&chip->wq, &wait);
331		mutex_lock(&chip->mutex);
332		return -EAGAIN;
333	}
334}
335
336static void put_chip(struct map_info *map, struct flchip *chip)
337{
338	if (chip->priv) {
339		struct flchip_shared *shared = chip->priv;
340		mutex_lock(&shared->lock);
341		if (shared->writing == chip && chip->oldstate == FL_READY) {
342			/* We own the ability to write, but we're done */
343			shared->writing = shared->erasing;
344			if (shared->writing && shared->writing != chip) {
345				/* give back the ownership */
346				struct flchip *loaner = shared->writing;
347				mutex_lock(&loaner->mutex);
348				mutex_unlock(&shared->lock);
349				mutex_unlock(&chip->mutex);
350				put_chip(map, loaner);
351				mutex_lock(&chip->mutex);
352				mutex_unlock(&loaner->mutex);
353				wake_up(&chip->wq);
354				return;
355			}
356			shared->erasing = NULL;
357			shared->writing = NULL;
358		} else if (shared->erasing == chip && shared->writing != chip) {
359			/*
360			 * We own the ability to erase without the ability
361			 * to write, which means the erase was suspended
362			 * and some other partition is currently writing.
363			 * Don't let the switch below mess things up since
364			 * we don't have ownership to resume anything.
365			 */
366			mutex_unlock(&shared->lock);
367			wake_up(&chip->wq);
368			return;
369		}
370		mutex_unlock(&shared->lock);
371	}
372
373	switch (chip->oldstate) {
374	case FL_ERASING:
375		map_write(map, CMD(LPDDR_RESUME),
376				map->pfow_base + PFOW_COMMAND_CODE);
377		map_write(map, CMD(LPDDR_START_EXECUTION),
378				map->pfow_base + PFOW_COMMAND_EXECUTE);
379		chip->oldstate = FL_READY;
380		chip->state = FL_ERASING;
381		break;
382	case FL_READY:
383		break;
384	default:
385		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386				map->name, chip->oldstate);
387	}
388	wake_up(&chip->wq);
389}
390
391int do_write_buffer(struct map_info *map, struct flchip *chip,
392			unsigned long adr, const struct kvec **pvec,
393			unsigned long *pvec_seek, int len)
394{
395	struct lpddr_private *lpddr = map->fldrv_priv;
396	map_word datum;
397	int ret, wbufsize, word_gap, words;
398	const struct kvec *vec;
399	unsigned long vec_seek;
400	unsigned long prog_buf_ofs;
401
402	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403
404	mutex_lock(&chip->mutex);
405	ret = get_chip(map, chip, FL_WRITING);
406	if (ret) {
407		mutex_unlock(&chip->mutex);
408		return ret;
409	}
410	/* Figure out the number of words to write */
411	word_gap = (-adr & (map_bankwidth(map)-1));
412	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413	if (!word_gap) {
414		words--;
415	} else {
416		word_gap = map_bankwidth(map) - word_gap;
417		adr -= word_gap;
418		datum = map_word_ff(map);
419	}
420	/* Write data */
421	/* Get the program buffer offset from PFOW register data first*/
422	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
424	vec = *pvec;
425	vec_seek = *pvec_seek;
426	do {
427		int n = map_bankwidth(map) - word_gap;
428
429		if (n > vec->iov_len - vec_seek)
430			n = vec->iov_len - vec_seek;
431		if (n > len)
432			n = len;
433
434		if (!word_gap && (len < map_bankwidth(map)))
435			datum = map_word_ff(map);
436
437		datum = map_word_load_partial(map, datum,
438				vec->iov_base + vec_seek, word_gap, n);
439
440		len -= n;
441		word_gap += n;
442		if (!len || word_gap == map_bankwidth(map)) {
443			map_write(map, datum, prog_buf_ofs);
444			prog_buf_ofs += map_bankwidth(map);
445			word_gap = 0;
446		}
447
448		vec_seek += n;
449		if (vec_seek == vec->iov_len) {
450			vec++;
451			vec_seek = 0;
452		}
453	} while (len);
454	*pvec = vec;
455	*pvec_seek = vec_seek;
456
457	/* GO GO GO */
458	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459	chip->state = FL_WRITING;
460	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461	if (ret)	{
462		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463			map->name, ret, adr);
464		goto out;
465	}
466
467 out:	put_chip(map, chip);
468	mutex_unlock(&chip->mutex);
469	return ret;
470}
471
472int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473{
474	struct map_info *map = mtd->priv;
475	struct lpddr_private *lpddr = map->fldrv_priv;
476	int chipnum = adr >> lpddr->chipshift;
477	struct flchip *chip = &lpddr->chips[chipnum];
478	int ret;
479
480	mutex_lock(&chip->mutex);
481	ret = get_chip(map, chip, FL_ERASING);
482	if (ret) {
483		mutex_unlock(&chip->mutex);
484		return ret;
485	}
486	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487	chip->state = FL_ERASING;
488	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489	if (ret) {
490		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491			map->name, ret, adr);
492		goto out;
493	}
494 out:	put_chip(map, chip);
495	mutex_unlock(&chip->mutex);
496	return ret;
497}
498
499static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500			size_t *retlen, u_char *buf)
501{
502	struct map_info *map = mtd->priv;
503	struct lpddr_private *lpddr = map->fldrv_priv;
504	int chipnum = adr >> lpddr->chipshift;
505	struct flchip *chip = &lpddr->chips[chipnum];
506	int ret = 0;
507
508	mutex_lock(&chip->mutex);
509	ret = get_chip(map, chip, FL_READY);
510	if (ret) {
511		mutex_unlock(&chip->mutex);
512		return ret;
513	}
514
515	map_copy_from(map, buf, adr, len);
516	*retlen = len;
517
518	put_chip(map, chip);
519	mutex_unlock(&chip->mutex);
520	return ret;
521}
522
523static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524			size_t *retlen, void **mtdbuf, resource_size_t *phys)
525{
526	struct map_info *map = mtd->priv;
527	struct lpddr_private *lpddr = map->fldrv_priv;
528	int chipnum = adr >> lpddr->chipshift;
529	unsigned long ofs, last_end = 0;
530	struct flchip *chip = &lpddr->chips[chipnum];
531	int ret = 0;
532
533	if (!map->virt)
534		return -EINVAL;
535
536	/* ofs: offset within the first chip that the first read should start */
537	ofs = adr - (chipnum << lpddr->chipshift);
538	*mtdbuf = (void *)map->virt + chip->start + ofs;
539
540	while (len) {
541		unsigned long thislen;
542
543		if (chipnum >= lpddr->numchips)
544			break;
545
546		/* We cannot point across chips that are virtually disjoint */
547		if (!last_end)
548			last_end = chip->start;
549		else if (chip->start != last_end)
550			break;
551
552		if ((len + ofs - 1) >> lpddr->chipshift)
553			thislen = (1<<lpddr->chipshift) - ofs;
554		else
555			thislen = len;
556		/* get the chip */
557		mutex_lock(&chip->mutex);
558		ret = get_chip(map, chip, FL_POINT);
559		mutex_unlock(&chip->mutex);
560		if (ret)
561			break;
562
563		chip->state = FL_POINT;
564		chip->ref_point_counter++;
565		*retlen += thislen;
566		len -= thislen;
567
568		ofs = 0;
569		last_end += 1 << lpddr->chipshift;
570		chipnum++;
571		chip = &lpddr->chips[chipnum];
572	}
573	return 0;
574}
575
576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577{
578	struct map_info *map = mtd->priv;
579	struct lpddr_private *lpddr = map->fldrv_priv;
580	int chipnum = adr >> lpddr->chipshift, err = 0;
581	unsigned long ofs;
582
583	/* ofs: offset within the first chip that the first read should start */
584	ofs = adr - (chipnum << lpddr->chipshift);
585
586	while (len) {
587		unsigned long thislen;
588		struct flchip *chip;
589
590		chip = &lpddr->chips[chipnum];
591		if (chipnum >= lpddr->numchips)
592			break;
593
594		if ((len + ofs - 1) >> lpddr->chipshift)
595			thislen = (1<<lpddr->chipshift) - ofs;
596		else
597			thislen = len;
598
599		mutex_lock(&chip->mutex);
600		if (chip->state == FL_POINT) {
601			chip->ref_point_counter--;
602			if (chip->ref_point_counter == 0)
603				chip->state = FL_READY;
604		} else {
605			printk(KERN_WARNING "%s: Warning: unpoint called on non"
606					"pointed region\n", map->name);
607			err = -EINVAL;
608		}
609
610		put_chip(map, chip);
611		mutex_unlock(&chip->mutex);
612
613		len -= thislen;
614		ofs = 0;
615		chipnum++;
616	}
617
618	return err;
619}
620
621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622				size_t *retlen, const u_char *buf)
623{
624	struct kvec vec;
625
626	vec.iov_base = (void *) buf;
627	vec.iov_len = len;
628
629	return lpddr_writev(mtd, &vec, 1, to, retlen);
630}
631
632
633static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634				unsigned long count, loff_t to, size_t *retlen)
635{
636	struct map_info *map = mtd->priv;
637	struct lpddr_private *lpddr = map->fldrv_priv;
638	int ret = 0;
639	int chipnum;
640	unsigned long ofs, vec_seek, i;
641	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
642	size_t len = 0;
643
644	for (i = 0; i < count; i++)
645		len += vecs[i].iov_len;
646
647	if (!len)
648		return 0;
649
650	chipnum = to >> lpddr->chipshift;
651
652	ofs = to;
653	vec_seek = 0;
654
655	do {
656		/* We must not cross write block boundaries */
657		int size = wbufsize - (ofs & (wbufsize-1));
658
659		if (size > len)
660			size = len;
661
662		ret = do_write_buffer(map, &lpddr->chips[chipnum],
663					  ofs, &vecs, &vec_seek, size);
664		if (ret)
665			return ret;
666
667		ofs += size;
668		(*retlen) += size;
669		len -= size;
670
671		/* Be nice and reschedule with the chip in a usable
672		 * state for other processes */
673		cond_resched();
674
675	} while (len);
676
677	return 0;
678}
679
680static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681{
682	unsigned long ofs, len;
683	int ret;
684	struct map_info *map = mtd->priv;
685	struct lpddr_private *lpddr = map->fldrv_priv;
686	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687
688	ofs = instr->addr;
689	len = instr->len;
690
691	while (len > 0) {
692		ret = do_erase_oneblock(mtd, ofs);
693		if (ret)
694			return ret;
695		ofs += size;
696		len -= size;
697	}
698	instr->state = MTD_ERASE_DONE;
699	mtd_erase_callback(instr);
700
701	return 0;
702}
703
704#define DO_XXLOCK_LOCK		1
705#define DO_XXLOCK_UNLOCK	2
706int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707{
708	int ret = 0;
709	struct map_info *map = mtd->priv;
710	struct lpddr_private *lpddr = map->fldrv_priv;
711	int chipnum = adr >> lpddr->chipshift;
712	struct flchip *chip = &lpddr->chips[chipnum];
713
714	mutex_lock(&chip->mutex);
715	ret = get_chip(map, chip, FL_LOCKING);
716	if (ret) {
717		mutex_unlock(&chip->mutex);
718		return ret;
719	}
720
721	if (thunk == DO_XXLOCK_LOCK) {
722		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723		chip->state = FL_LOCKING;
724	} else if (thunk == DO_XXLOCK_UNLOCK) {
725		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726		chip->state = FL_UNLOCKING;
727	} else
728		BUG();
729
730	ret = wait_for_ready(map, chip, 1);
731	if (ret)	{
732		printk(KERN_ERR "%s: block unlock error status %d \n",
733				map->name, ret);
734		goto out;
735	}
736out:	put_chip(map, chip);
737	mutex_unlock(&chip->mutex);
738	return ret;
739}
740
741static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742{
743	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744}
745
746static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747{
748	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749}
750
751int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752{
753    int ret;
754	struct lpddr_private *lpddr = map->fldrv_priv;
755	int chipnum = adr >> lpddr->chipshift;
756	struct flchip *chip = &lpddr->chips[chipnum];
757
758	mutex_lock(&chip->mutex);
759	ret = get_chip(map, chip, FL_WRITING);
760	if (ret) {
761		mutex_unlock(&chip->mutex);
762		return ret;
763	}
764
765	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766
767	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768	if (ret)	{
769		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770			map->name, adr, curval);
771		goto out;
772	}
773
774out:	put_chip(map, chip);
775	mutex_unlock(&chip->mutex);
776	return ret;
777}
778
779MODULE_LICENSE("GPL");
780MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");