Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_sb.h"
  15#include "xfs_mount.h"
  16#include "xfs_defer.h"
  17#include "xfs_inode.h"
  18#include "xfs_dir2.h"
  19#include "xfs_attr.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
 
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
  47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
 
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56	struct xfs_inode	*ip)
  57{
  58	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  59		return ip->i_d.di_extsize;
 
 
 
 
 
 
  60	if (XFS_IS_REALTIME_INODE(ip))
  61		return ip->i_mount->m_sb.sb_rextsize;
  62	return 0;
  63}
  64
  65/*
  66 * Helper function to extract CoW extent size hint from inode.
  67 * Between the extent size hint and the CoW extent size hint, we
  68 * return the greater of the two.  If the value is zero (automatic),
  69 * use the default size.
  70 */
  71xfs_extlen_t
  72xfs_get_cowextsz_hint(
  73	struct xfs_inode	*ip)
  74{
  75	xfs_extlen_t		a, b;
  76
  77	a = 0;
  78	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  79		a = ip->i_d.di_cowextsize;
  80	b = xfs_get_extsz_hint(ip);
  81
  82	a = max(a, b);
  83	if (a == 0)
  84		return XFS_DEFAULT_COWEXTSZ_HINT;
  85	return a;
  86}
  87
  88/*
  89 * These two are wrapper routines around the xfs_ilock() routine used to
  90 * centralize some grungy code.  They are used in places that wish to lock the
  91 * inode solely for reading the extents.  The reason these places can't just
  92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  93 * bringing in of the extents from disk for a file in b-tree format.  If the
  94 * inode is in b-tree format, then we need to lock the inode exclusively until
  95 * the extents are read in.  Locking it exclusively all the time would limit
  96 * our parallelism unnecessarily, though.  What we do instead is check to see
  97 * if the extents have been read in yet, and only lock the inode exclusively
  98 * if they have not.
  99 *
 100 * The functions return a value which should be given to the corresponding
 101 * xfs_iunlock() call.
 102 */
 103uint
 104xfs_ilock_data_map_shared(
 105	struct xfs_inode	*ip)
 106{
 107	uint			lock_mode = XFS_ILOCK_SHARED;
 108
 109	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 110	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 111		lock_mode = XFS_ILOCK_EXCL;
 112	xfs_ilock(ip, lock_mode);
 113	return lock_mode;
 114}
 115
 116uint
 117xfs_ilock_attr_map_shared(
 118	struct xfs_inode	*ip)
 119{
 120	uint			lock_mode = XFS_ILOCK_SHARED;
 121
 122	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 123	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 124		lock_mode = XFS_ILOCK_EXCL;
 125	xfs_ilock(ip, lock_mode);
 126	return lock_mode;
 127}
 128
 129/*
 130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 131 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 132 * various combinations of the locks to be obtained.
 133 *
 134 * The 3 locks should always be ordered so that the IO lock is obtained first,
 135 * the mmap lock second and the ilock last in order to prevent deadlock.
 136 *
 137 * Basic locking order:
 138 *
 139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 140 *
 141 * mmap_sem locking order:
 142 *
 143 * i_rwsem -> page lock -> mmap_sem
 144 * mmap_sem -> i_mmap_lock -> page_lock
 145 *
 146 * The difference in mmap_sem locking order mean that we cannot hold the
 147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 149 * in get_user_pages() to map the user pages into the kernel address space for
 150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 151 * page faults already hold the mmap_sem.
 152 *
 153 * Hence to serialise fully against both syscall and mmap based IO, we need to
 154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 155 * taken in places where we need to invalidate the page cache in a race
 156 * free manner (e.g. truncate, hole punch and other extent manipulation
 157 * functions).
 158 */
 159void
 160xfs_ilock(
 161	xfs_inode_t		*ip,
 162	uint			lock_flags)
 163{
 164	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 165
 166	/*
 167	 * You can't set both SHARED and EXCL for the same lock,
 168	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 169	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 170	 */
 171	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 172	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 173	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 174	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 175	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 176	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 177	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 178
 179	if (lock_flags & XFS_IOLOCK_EXCL) {
 180		down_write_nested(&VFS_I(ip)->i_rwsem,
 181				  XFS_IOLOCK_DEP(lock_flags));
 182	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 183		down_read_nested(&VFS_I(ip)->i_rwsem,
 184				 XFS_IOLOCK_DEP(lock_flags));
 185	}
 186
 187	if (lock_flags & XFS_MMAPLOCK_EXCL)
 188		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 189	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 190		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 191
 192	if (lock_flags & XFS_ILOCK_EXCL)
 193		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 194	else if (lock_flags & XFS_ILOCK_SHARED)
 195		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 196}
 197
 198/*
 199 * This is just like xfs_ilock(), except that the caller
 200 * is guaranteed not to sleep.  It returns 1 if it gets
 201 * the requested locks and 0 otherwise.  If the IO lock is
 202 * obtained but the inode lock cannot be, then the IO lock
 203 * is dropped before returning.
 204 *
 205 * ip -- the inode being locked
 206 * lock_flags -- this parameter indicates the inode's locks to be
 207 *       to be locked.  See the comment for xfs_ilock() for a list
 208 *	 of valid values.
 209 */
 210int
 211xfs_ilock_nowait(
 212	xfs_inode_t		*ip,
 213	uint			lock_flags)
 214{
 215	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 216
 217	/*
 218	 * You can't set both SHARED and EXCL for the same lock,
 219	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 220	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 221	 */
 222	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 223	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 224	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 225	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 226	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 227	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 228	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 229
 230	if (lock_flags & XFS_IOLOCK_EXCL) {
 231		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 232			goto out;
 233	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 234		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 235			goto out;
 236	}
 237
 238	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 239		if (!mrtryupdate(&ip->i_mmaplock))
 240			goto out_undo_iolock;
 241	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 242		if (!mrtryaccess(&ip->i_mmaplock))
 243			goto out_undo_iolock;
 244	}
 245
 246	if (lock_flags & XFS_ILOCK_EXCL) {
 247		if (!mrtryupdate(&ip->i_lock))
 248			goto out_undo_mmaplock;
 249	} else if (lock_flags & XFS_ILOCK_SHARED) {
 250		if (!mrtryaccess(&ip->i_lock))
 251			goto out_undo_mmaplock;
 252	}
 253	return 1;
 254
 255out_undo_mmaplock:
 256	if (lock_flags & XFS_MMAPLOCK_EXCL)
 257		mrunlock_excl(&ip->i_mmaplock);
 258	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 259		mrunlock_shared(&ip->i_mmaplock);
 260out_undo_iolock:
 261	if (lock_flags & XFS_IOLOCK_EXCL)
 262		up_write(&VFS_I(ip)->i_rwsem);
 263	else if (lock_flags & XFS_IOLOCK_SHARED)
 264		up_read(&VFS_I(ip)->i_rwsem);
 265out:
 266	return 0;
 267}
 268
 269/*
 270 * xfs_iunlock() is used to drop the inode locks acquired with
 271 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 273 * that we know which locks to drop.
 274 *
 275 * ip -- the inode being unlocked
 276 * lock_flags -- this parameter indicates the inode's locks to be
 277 *       to be unlocked.  See the comment for xfs_ilock() for a list
 278 *	 of valid values for this parameter.
 279 *
 280 */
 281void
 282xfs_iunlock(
 283	xfs_inode_t		*ip,
 284	uint			lock_flags)
 285{
 286	/*
 287	 * You can't set both SHARED and EXCL for the same lock,
 288	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 289	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 290	 */
 291	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 292	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 293	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 294	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 295	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 296	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 297	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 298	ASSERT(lock_flags != 0);
 299
 300	if (lock_flags & XFS_IOLOCK_EXCL)
 301		up_write(&VFS_I(ip)->i_rwsem);
 302	else if (lock_flags & XFS_IOLOCK_SHARED)
 303		up_read(&VFS_I(ip)->i_rwsem);
 304
 305	if (lock_flags & XFS_MMAPLOCK_EXCL)
 306		mrunlock_excl(&ip->i_mmaplock);
 307	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 308		mrunlock_shared(&ip->i_mmaplock);
 309
 310	if (lock_flags & XFS_ILOCK_EXCL)
 311		mrunlock_excl(&ip->i_lock);
 312	else if (lock_flags & XFS_ILOCK_SHARED)
 313		mrunlock_shared(&ip->i_lock);
 314
 315	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 316}
 317
 318/*
 319 * give up write locks.  the i/o lock cannot be held nested
 320 * if it is being demoted.
 321 */
 322void
 323xfs_ilock_demote(
 324	xfs_inode_t		*ip,
 325	uint			lock_flags)
 326{
 327	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 328	ASSERT((lock_flags &
 329		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 330
 331	if (lock_flags & XFS_ILOCK_EXCL)
 332		mrdemote(&ip->i_lock);
 333	if (lock_flags & XFS_MMAPLOCK_EXCL)
 334		mrdemote(&ip->i_mmaplock);
 335	if (lock_flags & XFS_IOLOCK_EXCL)
 336		downgrade_write(&VFS_I(ip)->i_rwsem);
 337
 338	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 339}
 340
 341#if defined(DEBUG) || defined(XFS_WARN)
 342int
 343xfs_isilocked(
 344	xfs_inode_t		*ip,
 345	uint			lock_flags)
 346{
 347	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 348		if (!(lock_flags & XFS_ILOCK_SHARED))
 349			return !!ip->i_lock.mr_writer;
 350		return rwsem_is_locked(&ip->i_lock.mr_lock);
 351	}
 352
 353	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 354		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 355			return !!ip->i_mmaplock.mr_writer;
 356		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 357	}
 358
 359	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 360		if (!(lock_flags & XFS_IOLOCK_SHARED))
 361			return !debug_locks ||
 362				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 363		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 364	}
 365
 366	ASSERT(0);
 367	return 0;
 368}
 369#endif
 370
 371/*
 372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 375 * errors and warnings.
 376 */
 377#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 378static bool
 379xfs_lockdep_subclass_ok(
 380	int subclass)
 381{
 382	return subclass < MAX_LOCKDEP_SUBCLASSES;
 383}
 384#else
 385#define xfs_lockdep_subclass_ok(subclass)	(true)
 386#endif
 387
 388/*
 389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 390 * value. This can be called for any type of inode lock combination, including
 391 * parent locking. Care must be taken to ensure we don't overrun the subclass
 392 * storage fields in the class mask we build.
 393 */
 394static inline int
 395xfs_lock_inumorder(int lock_mode, int subclass)
 396{
 397	int	class = 0;
 398
 399	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 400			      XFS_ILOCK_RTSUM)));
 401	ASSERT(xfs_lockdep_subclass_ok(subclass));
 402
 403	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 404		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 405		class += subclass << XFS_IOLOCK_SHIFT;
 406	}
 407
 408	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 409		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 410		class += subclass << XFS_MMAPLOCK_SHIFT;
 411	}
 412
 413	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 414		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 415		class += subclass << XFS_ILOCK_SHIFT;
 416	}
 417
 418	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 419}
 420
 421/*
 422 * The following routine will lock n inodes in exclusive mode.  We assume the
 423 * caller calls us with the inodes in i_ino order.
 424 *
 425 * We need to detect deadlock where an inode that we lock is in the AIL and we
 426 * start waiting for another inode that is locked by a thread in a long running
 427 * transaction (such as truncate). This can result in deadlock since the long
 428 * running trans might need to wait for the inode we just locked in order to
 429 * push the tail and free space in the log.
 430 *
 431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 433 * lock more than one at a time, lockdep will report false positives saying we
 434 * have violated locking orders.
 435 */
 436static void
 437xfs_lock_inodes(
 438	struct xfs_inode	**ips,
 439	int			inodes,
 440	uint			lock_mode)
 441{
 442	int			attempts = 0, i, j, try_lock;
 443	struct xfs_log_item	*lp;
 444
 445	/*
 446	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 447	 * support an arbitrary depth of locking here, but absolute limits on
 448	 * inodes depend on the the type of locking and the limits placed by
 449	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 450	 * the asserts.
 451	 */
 452	ASSERT(ips && inodes >= 2 && inodes <= 5);
 453	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 454			    XFS_ILOCK_EXCL));
 455	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 456			      XFS_ILOCK_SHARED)));
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467	try_lock = 0;
 468	i = 0;
 469again:
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = &ips[j]->i_itemp->ili_item;
 483				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 484					try_lock++;
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 497		}
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523		}
 524		i = 0;
 525		try_lock = 0;
 526		goto again;
 527	}
 528}
 529
 530/*
 531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 532 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 533 * more than one at a time, lockdep will report false positives saying we have
 534 * violated locking orders.  The iolock must be double-locked separately since
 535 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 536 * SHARED.
 537 */
 538void
 539xfs_lock_two_inodes(
 540	struct xfs_inode	*ip0,
 541	uint			ip0_mode,
 542	struct xfs_inode	*ip1,
 543	uint			ip1_mode)
 544{
 545	struct xfs_inode	*temp;
 546	uint			mode_temp;
 547	int			attempts = 0;
 548	struct xfs_log_item	*lp;
 549
 550	ASSERT(hweight32(ip0_mode) == 1);
 551	ASSERT(hweight32(ip1_mode) == 1);
 552	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 553	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 554	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 555	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 556	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 557	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 558	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562
 563	ASSERT(ip0->i_ino != ip1->i_ino);
 564
 565	if (ip0->i_ino > ip1->i_ino) {
 566		temp = ip0;
 567		ip0 = ip1;
 568		ip1 = temp;
 569		mode_temp = ip0_mode;
 570		ip0_mode = ip1_mode;
 571		ip1_mode = mode_temp;
 572	}
 573
 574 again:
 575	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 576
 577	/*
 578	 * If the first lock we have locked is in the AIL, we must TRY to get
 579	 * the second lock. If we can't get it, we must release the first one
 580	 * and try again.
 581	 */
 582	lp = &ip0->i_itemp->ili_item;
 583	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 584		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 585			xfs_iunlock(ip0, ip0_mode);
 586			if ((++attempts % 5) == 0)
 587				delay(1); /* Don't just spin the CPU */
 588			goto again;
 589		}
 590	} else {
 591		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 592	}
 593}
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wq_entry);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 653		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 654			flags |= FS_XFLAG_COWEXTSIZE;
 655	}
 656
 657	if (has_attr)
 658		flags |= FS_XFLAG_HASATTR;
 659
 660	return flags;
 661}
 662
 663uint
 664xfs_ip2xflags(
 665	struct xfs_inode	*ip)
 666{
 667	struct xfs_icdinode	*dic = &ip->i_d;
 668
 669	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 670}
 671
 672/*
 673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 675 * ci_name->name will point to a the actual name (caller must free) or
 676 * will be set to NULL if an exact match is found.
 677 */
 678int
 679xfs_lookup(
 680	xfs_inode_t		*dp,
 681	struct xfs_name		*name,
 682	xfs_inode_t		**ipp,
 683	struct xfs_name		*ci_name)
 684{
 685	xfs_ino_t		inum;
 686	int			error;
 687
 688	trace_xfs_lookup(dp, name);
 689
 690	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 691		return -EIO;
 692
 693	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 694	if (error)
 695		goto out_unlock;
 696
 697	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 698	if (error)
 699		goto out_free_name;
 700
 701	return 0;
 702
 703out_free_name:
 704	if (ci_name)
 705		kmem_free(ci_name->name);
 706out_unlock:
 707	*ipp = NULL;
 708	return error;
 709}
 710
 711/*
 712 * Allocate an inode on disk and return a copy of its in-core version.
 713 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 714 * appropriately within the inode.  The uid and gid for the inode are
 715 * set according to the contents of the given cred structure.
 716 *
 717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 718 * has a free inode available, call xfs_iget() to obtain the in-core
 719 * version of the allocated inode.  Finally, fill in the inode and
 720 * log its initial contents.  In this case, ialloc_context would be
 721 * set to NULL.
 722 *
 723 * If xfs_dialloc() does not have an available inode, it will replenish
 724 * its supply by doing an allocation. Since we can only do one
 725 * allocation within a transaction without deadlocks, we must commit
 726 * the current transaction before returning the inode itself.
 727 * In this case, therefore, we will set ialloc_context and return.
 728 * The caller should then commit the current transaction, start a new
 729 * transaction, and call xfs_ialloc() again to actually get the inode.
 730 *
 731 * To ensure that some other process does not grab the inode that
 732 * was allocated during the first call to xfs_ialloc(), this routine
 733 * also returns the [locked] bp pointing to the head of the freelist
 734 * as ialloc_context.  The caller should hold this buffer across
 735 * the commit and pass it back into this routine on the second call.
 736 *
 737 * If we are allocating quota inodes, we do not have a parent inode
 738 * to attach to or associate with (i.e. pip == NULL) because they
 739 * are not linked into the directory structure - they are attached
 740 * directly to the superblock - and so have no parent.
 741 */
 742static int
 743xfs_ialloc(
 744	xfs_trans_t	*tp,
 745	xfs_inode_t	*pip,
 746	umode_t		mode,
 747	xfs_nlink_t	nlink,
 748	dev_t		rdev,
 749	prid_t		prid,
 750	xfs_buf_t	**ialloc_context,
 751	xfs_inode_t	**ipp)
 752{
 753	struct xfs_mount *mp = tp->t_mountp;
 754	xfs_ino_t	ino;
 755	xfs_inode_t	*ip;
 756	uint		flags;
 757	int		error;
 758	struct timespec64 tv;
 759	struct inode	*inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760
 761	/*
 762	 * Call the space management code to pick
 763	 * the on-disk inode to be allocated.
 764	 */
 765	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 766			    ialloc_context, &ino);
 767	if (error)
 768		return error;
 769	if (*ialloc_context || ino == NULLFSINO) {
 770		*ipp = NULL;
 771		return 0;
 772	}
 773	ASSERT(*ialloc_context == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774
 775	/*
 776	 * Protect against obviously corrupt allocation btree records. Later
 777	 * xfs_iget checks will catch re-allocation of other active in-memory
 778	 * and on-disk inodes. If we don't catch reallocating the parent inode
 779	 * here we will deadlock in xfs_iget() so we have to do these checks
 780	 * first.
 781	 */
 782	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 783		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 784		return -EFSCORRUPTED;
 785	}
 786
 787	/*
 788	 * Get the in-core inode with the lock held exclusively.
 789	 * This is because we're setting fields here we need
 790	 * to prevent others from looking at until we're done.
 791	 */
 792	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 793			 XFS_ILOCK_EXCL, &ip);
 794	if (error)
 795		return error;
 
 796	ASSERT(ip != NULL);
 797	inode = VFS_I(ip);
 798
 799	/*
 800	 * We always convert v1 inodes to v2 now - we only support filesystems
 801	 * with >= v2 inode capability, so there is no reason for ever leaving
 802	 * an inode in v1 format.
 803	 */
 804	if (ip->i_d.di_version == 1)
 805		ip->i_d.di_version = 2;
 806
 807	inode->i_mode = mode;
 808	set_nlink(inode, nlink);
 809	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 810	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 811	inode->i_rdev = rdev;
 812	xfs_set_projid(ip, prid);
 813
 814	if (pip && XFS_INHERIT_GID(pip)) {
 815		ip->i_d.di_gid = pip->i_d.di_gid;
 816		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 817			inode->i_mode |= S_ISGID;
 
 
 
 818	}
 819
 820	/*
 821	 * If the group ID of the new file does not match the effective group
 822	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 823	 * (and only if the irix_sgid_inherit compatibility variable is set).
 824	 */
 825	if ((irix_sgid_inherit) &&
 826	    (inode->i_mode & S_ISGID) &&
 827	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 828		inode->i_mode &= ~S_ISGID;
 829
 830	ip->i_d.di_size = 0;
 831	ip->i_d.di_nextents = 0;
 832	ASSERT(ip->i_d.di_nblocks == 0);
 833
 834	tv = current_time(inode);
 835	inode->i_mtime = tv;
 836	inode->i_atime = tv;
 837	inode->i_ctime = tv;
 838
 839	ip->i_d.di_extsize = 0;
 840	ip->i_d.di_dmevmask = 0;
 841	ip->i_d.di_dmstate = 0;
 842	ip->i_d.di_flags = 0;
 843
 844	if (ip->i_d.di_version == 3) {
 845		inode_set_iversion(inode, 1);
 846		ip->i_d.di_flags2 = 0;
 847		ip->i_d.di_cowextsize = 0;
 848		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 849		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 850	}
 851
 852
 853	flags = XFS_ILOG_CORE;
 854	switch (mode & S_IFMT) {
 855	case S_IFIFO:
 856	case S_IFCHR:
 857	case S_IFBLK:
 858	case S_IFSOCK:
 859		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 860		ip->i_df.if_flags = 0;
 861		flags |= XFS_ILOG_DEV;
 862		break;
 863	case S_IFREG:
 864	case S_IFDIR:
 865		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 866			uint		di_flags = 0;
 867
 868			if (S_ISDIR(mode)) {
 869				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 870					di_flags |= XFS_DIFLAG_RTINHERIT;
 871				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 872					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 873					ip->i_d.di_extsize = pip->i_d.di_extsize;
 874				}
 875				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 876					di_flags |= XFS_DIFLAG_PROJINHERIT;
 877			} else if (S_ISREG(mode)) {
 878				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 879					di_flags |= XFS_DIFLAG_REALTIME;
 880				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 881					di_flags |= XFS_DIFLAG_EXTSIZE;
 882					ip->i_d.di_extsize = pip->i_d.di_extsize;
 883				}
 884			}
 885			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 886			    xfs_inherit_noatime)
 887				di_flags |= XFS_DIFLAG_NOATIME;
 888			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 889			    xfs_inherit_nodump)
 890				di_flags |= XFS_DIFLAG_NODUMP;
 891			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 892			    xfs_inherit_sync)
 893				di_flags |= XFS_DIFLAG_SYNC;
 894			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 895			    xfs_inherit_nosymlinks)
 896				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 897			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 898			    xfs_inherit_nodefrag)
 899				di_flags |= XFS_DIFLAG_NODEFRAG;
 900			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 901				di_flags |= XFS_DIFLAG_FILESTREAM;
 902
 903			ip->i_d.di_flags |= di_flags;
 904		}
 905		if (pip &&
 906		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 907		    pip->i_d.di_version == 3 &&
 908		    ip->i_d.di_version == 3) {
 909			uint64_t	di_flags2 = 0;
 910
 911			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 912				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 913				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 914			}
 915			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 916				di_flags2 |= XFS_DIFLAG2_DAX;
 917
 918			ip->i_d.di_flags2 |= di_flags2;
 919		}
 920		/* FALLTHROUGH */
 921	case S_IFLNK:
 922		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 923		ip->i_df.if_flags = XFS_IFEXTENTS;
 924		ip->i_df.if_bytes = 0;
 925		ip->i_df.if_u1.if_root = NULL;
 926		break;
 927	default:
 928		ASSERT(0);
 929	}
 
 930	/*
 931	 * Attribute fork settings for new inode.
 932	 */
 933	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 934	ip->i_d.di_anextents = 0;
 
 
 
 
 
 
 
 
 935
 936	/*
 937	 * Log the new values stuffed into the inode.
 938	 */
 939	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 940	xfs_trans_log_inode(tp, ip, flags);
 941
 942	/* now that we have an i_mode we can setup the inode structure */
 943	xfs_setup_inode(ip);
 944
 945	*ipp = ip;
 946	return 0;
 947}
 948
 949/*
 950 * Allocates a new inode from disk and return a pointer to the
 951 * incore copy. This routine will internally commit the current
 952 * transaction and allocate a new one if the Space Manager needed
 953 * to do an allocation to replenish the inode free-list.
 954 *
 955 * This routine is designed to be called from xfs_create and
 956 * xfs_create_dir.
 957 *
 958 */
 959int
 960xfs_dir_ialloc(
 961	xfs_trans_t	**tpp,		/* input: current transaction;
 962					   output: may be a new transaction. */
 963	xfs_inode_t	*dp,		/* directory within whose allocate
 964					   the inode. */
 965	umode_t		mode,
 966	xfs_nlink_t	nlink,
 967	dev_t		rdev,
 968	prid_t		prid,		/* project id */
 969	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 970					   locked. */
 971{
 972	xfs_trans_t	*tp;
 973	xfs_inode_t	*ip;
 974	xfs_buf_t	*ialloc_context = NULL;
 975	int		code;
 976	void		*dqinfo;
 977	uint		tflags;
 978
 979	tp = *tpp;
 980	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 981
 982	/*
 983	 * xfs_ialloc will return a pointer to an incore inode if
 984	 * the Space Manager has an available inode on the free
 985	 * list. Otherwise, it will do an allocation and replenish
 986	 * the freelist.  Since we can only do one allocation per
 987	 * transaction without deadlocks, we will need to commit the
 988	 * current transaction and start a new one.  We will then
 989	 * need to call xfs_ialloc again to get the inode.
 990	 *
 991	 * If xfs_ialloc did an allocation to replenish the freelist,
 992	 * it returns the bp containing the head of the freelist as
 993	 * ialloc_context. We will hold a lock on it across the
 994	 * transaction commit so that no other process can steal
 995	 * the inode(s) that we've just allocated.
 996	 */
 997	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
 998			&ip);
 999
1000	/*
1001	 * Return an error if we were unable to allocate a new inode.
1002	 * This should only happen if we run out of space on disk or
1003	 * encounter a disk error.
1004	 */
1005	if (code) {
1006		*ipp = NULL;
1007		return code;
1008	}
1009	if (!ialloc_context && !ip) {
1010		*ipp = NULL;
1011		return -ENOSPC;
1012	}
1013
1014	/*
1015	 * If the AGI buffer is non-NULL, then we were unable to get an
1016	 * inode in one operation.  We need to commit the current
1017	 * transaction and call xfs_ialloc() again.  It is guaranteed
1018	 * to succeed the second time.
1019	 */
1020	if (ialloc_context) {
1021		/*
1022		 * Normally, xfs_trans_commit releases all the locks.
1023		 * We call bhold to hang on to the ialloc_context across
1024		 * the commit.  Holding this buffer prevents any other
1025		 * processes from doing any allocations in this
1026		 * allocation group.
1027		 */
1028		xfs_trans_bhold(tp, ialloc_context);
1029
1030		/*
1031		 * We want the quota changes to be associated with the next
1032		 * transaction, NOT this one. So, detach the dqinfo from this
1033		 * and attach it to the next transaction.
1034		 */
1035		dqinfo = NULL;
1036		tflags = 0;
1037		if (tp->t_dqinfo) {
1038			dqinfo = (void *)tp->t_dqinfo;
1039			tp->t_dqinfo = NULL;
1040			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042		}
1043
1044		code = xfs_trans_roll(&tp);
1045
1046		/*
1047		 * Re-attach the quota info that we detached from prev trx.
1048		 */
1049		if (dqinfo) {
1050			tp->t_dqinfo = dqinfo;
1051			tp->t_flags |= tflags;
1052		}
1053
1054		if (code) {
1055			xfs_buf_relse(ialloc_context);
1056			*tpp = tp;
1057			*ipp = NULL;
1058			return code;
1059		}
1060		xfs_trans_bjoin(tp, ialloc_context);
1061
1062		/*
1063		 * Call ialloc again. Since we've locked out all
1064		 * other allocations in this allocation group,
1065		 * this call should always succeed.
1066		 */
1067		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1068				  &ialloc_context, &ip);
1069
1070		/*
1071		 * If we get an error at this point, return to the caller
1072		 * so that the current transaction can be aborted.
1073		 */
1074		if (code) {
1075			*tpp = tp;
1076			*ipp = NULL;
1077			return code;
1078		}
1079		ASSERT(!ialloc_context && ip);
1080
1081	}
1082
1083	*ipp = ip;
1084	*tpp = tp;
1085
1086	return 0;
1087}
1088
1089/*
1090 * Decrement the link count on an inode & log the change.  If this causes the
1091 * link count to go to zero, move the inode to AGI unlinked list so that it can
1092 * be freed when the last active reference goes away via xfs_inactive().
1093 */
1094static int			/* error */
1095xfs_droplink(
1096	xfs_trans_t *tp,
1097	xfs_inode_t *ip)
1098{
1099	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100
1101	drop_nlink(VFS_I(ip));
1102	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103
1104	if (VFS_I(ip)->i_nlink)
1105		return 0;
1106
1107	return xfs_iunlink(tp, ip);
1108}
1109
1110/*
1111 * Increment the link count on an inode & log the change.
1112 */
1113static void
1114xfs_bumplink(
1115	xfs_trans_t *tp,
1116	xfs_inode_t *ip)
1117{
1118	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
1120	ASSERT(ip->i_d.di_version > 1);
1121	inc_nlink(VFS_I(ip));
1122	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1123}
1124
1125int
1126xfs_create(
 
1127	xfs_inode_t		*dp,
1128	struct xfs_name		*name,
1129	umode_t			mode,
1130	dev_t			rdev,
 
1131	xfs_inode_t		**ipp)
1132{
1133	int			is_dir = S_ISDIR(mode);
1134	struct xfs_mount	*mp = dp->i_mount;
1135	struct xfs_inode	*ip = NULL;
1136	struct xfs_trans	*tp = NULL;
1137	int			error;
1138	bool                    unlock_dp_on_error = false;
1139	prid_t			prid;
1140	struct xfs_dquot	*udqp = NULL;
1141	struct xfs_dquot	*gdqp = NULL;
1142	struct xfs_dquot	*pdqp = NULL;
1143	struct xfs_trans_res	*tres;
1144	uint			resblks;
 
1145
1146	trace_xfs_create(dp, name);
1147
1148	if (XFS_FORCED_SHUTDOWN(mp))
1149		return -EIO;
1150
1151	prid = xfs_get_initial_prid(dp);
1152
1153	/*
1154	 * Make sure that we have allocated dquot(s) on disk.
1155	 */
1156	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157					xfs_kgid_to_gid(current_fsgid()), prid,
1158					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159					&udqp, &gdqp, &pdqp);
1160	if (error)
1161		return error;
1162
1163	if (is_dir) {
1164		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165		tres = &M_RES(mp)->tr_mkdir;
1166	} else {
1167		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168		tres = &M_RES(mp)->tr_create;
1169	}
1170
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1182	}
1183	if (error)
1184		goto out_release_inode;
1185
1186	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187	unlock_dp_on_error = true;
1188
1189	/*
1190	 * Reserve disk quota and the inode.
1191	 */
1192	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193						pdqp, resblks, 1, 0);
1194	if (error)
1195		goto out_trans_cancel;
1196
1197	/*
1198	 * A newly created regular or special file just has one directory
1199	 * entry pointing to them, but a directory also the "." entry
1200	 * pointing to itself.
1201	 */
1202	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
 
 
 
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	/*
1207	 * Now we join the directory inode to the transaction.  We do not do it
1208	 * earlier because xfs_dir_ialloc might commit the previous transaction
1209	 * (and release all the locks).  An error from here on will result in
1210	 * the transaction cancel unlocking dp so don't do it explicitly in the
1211	 * error path.
1212	 */
1213	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1214	unlock_dp_on_error = false;
1215
1216	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1217				   resblks ?
1218					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219	if (error) {
1220		ASSERT(error != -ENOSPC);
1221		goto out_trans_cancel;
1222	}
1223	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225
1226	if (is_dir) {
1227		error = xfs_dir_init(tp, ip, dp);
1228		if (error)
1229			goto out_trans_cancel;
1230
1231		xfs_bumplink(tp, dp);
1232	}
1233
1234	/*
1235	 * If this is a synchronous mount, make sure that the
1236	 * create transaction goes to disk before returning to
1237	 * the user.
1238	 */
1239	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240		xfs_trans_set_sync(tp);
1241
1242	/*
1243	 * Attach the dquot(s) to the inodes and modify them incore.
1244	 * These ids of the inode couldn't have changed since the new
1245	 * inode has been locked ever since it was created.
1246	 */
1247	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248
1249	error = xfs_trans_commit(tp);
1250	if (error)
1251		goto out_release_inode;
1252
1253	xfs_qm_dqrele(udqp);
1254	xfs_qm_dqrele(gdqp);
1255	xfs_qm_dqrele(pdqp);
1256
1257	*ipp = ip;
1258	return 0;
1259
1260 out_trans_cancel:
1261	xfs_trans_cancel(tp);
1262 out_release_inode:
1263	/*
1264	 * Wait until after the current transaction is aborted to finish the
1265	 * setup of the inode and release the inode.  This prevents recursive
1266	 * transactions and deadlocks from xfs_inactive.
1267	 */
1268	if (ip) {
1269		xfs_finish_inode_setup(ip);
1270		xfs_irele(ip);
1271	}
1272
1273	xfs_qm_dqrele(udqp);
1274	xfs_qm_dqrele(gdqp);
1275	xfs_qm_dqrele(pdqp);
1276
1277	if (unlock_dp_on_error)
1278		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1279	return error;
1280}
1281
1282int
1283xfs_create_tmpfile(
 
1284	struct xfs_inode	*dp,
1285	umode_t			mode,
1286	struct xfs_inode	**ipp)
1287{
1288	struct xfs_mount	*mp = dp->i_mount;
1289	struct xfs_inode	*ip = NULL;
1290	struct xfs_trans	*tp = NULL;
1291	int			error;
1292	prid_t                  prid;
1293	struct xfs_dquot	*udqp = NULL;
1294	struct xfs_dquot	*gdqp = NULL;
1295	struct xfs_dquot	*pdqp = NULL;
1296	struct xfs_trans_res	*tres;
1297	uint			resblks;
 
1298
1299	if (XFS_FORCED_SHUTDOWN(mp))
1300		return -EIO;
1301
1302	prid = xfs_get_initial_prid(dp);
1303
1304	/*
1305	 * Make sure that we have allocated dquot(s) on disk.
1306	 */
1307	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308				xfs_kgid_to_gid(current_fsgid()), prid,
1309				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310				&udqp, &gdqp, &pdqp);
1311	if (error)
1312		return error;
1313
1314	resblks = XFS_IALLOC_SPACE_RES(mp);
1315	tres = &M_RES(mp)->tr_create_tmpfile;
1316
1317	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1318	if (error)
1319		goto out_release_inode;
1320
1321	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322						pdqp, resblks, 1, 0);
1323	if (error)
1324		goto out_trans_cancel;
1325
1326	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
 
 
 
1327	if (error)
1328		goto out_trans_cancel;
1329
1330	if (mp->m_flags & XFS_MOUNT_WSYNC)
1331		xfs_trans_set_sync(tp);
1332
1333	/*
1334	 * Attach the dquot(s) to the inodes and modify them incore.
1335	 * These ids of the inode couldn't have changed since the new
1336	 * inode has been locked ever since it was created.
1337	 */
1338	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339
1340	error = xfs_iunlink(tp, ip);
1341	if (error)
1342		goto out_trans_cancel;
1343
1344	error = xfs_trans_commit(tp);
1345	if (error)
1346		goto out_release_inode;
1347
1348	xfs_qm_dqrele(udqp);
1349	xfs_qm_dqrele(gdqp);
1350	xfs_qm_dqrele(pdqp);
1351
1352	*ipp = ip;
1353	return 0;
1354
1355 out_trans_cancel:
1356	xfs_trans_cancel(tp);
1357 out_release_inode:
1358	/*
1359	 * Wait until after the current transaction is aborted to finish the
1360	 * setup of the inode and release the inode.  This prevents recursive
1361	 * transactions and deadlocks from xfs_inactive.
1362	 */
1363	if (ip) {
1364		xfs_finish_inode_setup(ip);
1365		xfs_irele(ip);
1366	}
1367
1368	xfs_qm_dqrele(udqp);
1369	xfs_qm_dqrele(gdqp);
1370	xfs_qm_dqrele(pdqp);
1371
1372	return error;
1373}
1374
1375int
1376xfs_link(
1377	xfs_inode_t		*tdp,
1378	xfs_inode_t		*sip,
1379	struct xfs_name		*target_name)
1380{
1381	xfs_mount_t		*mp = tdp->i_mount;
1382	xfs_trans_t		*tp;
1383	int			error;
1384	int			resblks;
1385
1386	trace_xfs_link(tdp, target_name);
1387
1388	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1389
1390	if (XFS_FORCED_SHUTDOWN(mp))
1391		return -EIO;
1392
1393	error = xfs_qm_dqattach(sip);
1394	if (error)
1395		goto std_return;
1396
1397	error = xfs_qm_dqattach(tdp);
1398	if (error)
1399		goto std_return;
1400
1401	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1402	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1403	if (error == -ENOSPC) {
1404		resblks = 0;
1405		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1406	}
1407	if (error)
1408		goto std_return;
1409
1410	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1411
1412	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1414
 
 
 
 
 
1415	/*
1416	 * If we are using project inheritance, we only allow hard link
1417	 * creation in our tree when the project IDs are the same; else
1418	 * the tree quota mechanism could be circumvented.
1419	 */
1420	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422		error = -EXDEV;
1423		goto error_return;
1424	}
1425
1426	if (!resblks) {
1427		error = xfs_dir_canenter(tp, tdp, target_name);
1428		if (error)
1429			goto error_return;
1430	}
1431
1432	/*
1433	 * Handle initial link state of O_TMPFILE inode
1434	 */
1435	if (VFS_I(sip)->i_nlink == 0) {
1436		error = xfs_iunlink_remove(tp, sip);
 
 
 
 
1437		if (error)
1438			goto error_return;
1439	}
1440
1441	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1442				   resblks);
1443	if (error)
1444		goto error_return;
1445	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447
1448	xfs_bumplink(tp, sip);
1449
1450	/*
1451	 * If this is a synchronous mount, make sure that the
1452	 * link transaction goes to disk before returning to
1453	 * the user.
1454	 */
1455	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1456		xfs_trans_set_sync(tp);
1457
1458	return xfs_trans_commit(tp);
1459
1460 error_return:
1461	xfs_trans_cancel(tp);
1462 std_return:
1463	return error;
1464}
1465
1466/* Clear the reflink flag and the cowblocks tag if possible. */
1467static void
1468xfs_itruncate_clear_reflink_flags(
1469	struct xfs_inode	*ip)
1470{
1471	struct xfs_ifork	*dfork;
1472	struct xfs_ifork	*cfork;
1473
1474	if (!xfs_is_reflink_inode(ip))
1475		return;
1476	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480	if (cfork->if_bytes == 0)
1481		xfs_inode_clear_cowblocks_tag(ip);
1482}
1483
1484/*
1485 * Free up the underlying blocks past new_size.  The new size must be smaller
1486 * than the current size.  This routine can be used both for the attribute and
1487 * data fork, and does not modify the inode size, which is left to the caller.
1488 *
1489 * The transaction passed to this routine must have made a permanent log
1490 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1491 * given transaction and start new ones, so make sure everything involved in
1492 * the transaction is tidy before calling here.  Some transaction will be
1493 * returned to the caller to be committed.  The incoming transaction must
1494 * already include the inode, and both inode locks must be held exclusively.
1495 * The inode must also be "held" within the transaction.  On return the inode
1496 * will be "held" within the returned transaction.  This routine does NOT
1497 * require any disk space to be reserved for it within the transaction.
1498 *
1499 * If we get an error, we must return with the inode locked and linked into the
1500 * current transaction. This keeps things simple for the higher level code,
1501 * because it always knows that the inode is locked and held in the transaction
1502 * that returns to it whether errors occur or not.  We don't mark the inode
1503 * dirty on error so that transactions can be easily aborted if possible.
1504 */
1505int
1506xfs_itruncate_extents_flags(
1507	struct xfs_trans	**tpp,
1508	struct xfs_inode	*ip,
1509	int			whichfork,
1510	xfs_fsize_t		new_size,
1511	int			flags)
1512{
1513	struct xfs_mount	*mp = ip->i_mount;
1514	struct xfs_trans	*tp = *tpp;
1515	xfs_fileoff_t		first_unmap_block;
1516	xfs_fileoff_t		last_block;
1517	xfs_filblks_t		unmap_len;
1518	int			error = 0;
1519	int			done = 0;
1520
1521	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1524	ASSERT(new_size <= XFS_ISIZE(ip));
1525	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1526	ASSERT(ip->i_itemp != NULL);
1527	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1528	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1529
1530	trace_xfs_itruncate_extents_start(ip, new_size);
1531
1532	flags |= xfs_bmapi_aflag(whichfork);
1533
1534	/*
1535	 * Since it is possible for space to become allocated beyond
1536	 * the end of the file (in a crash where the space is allocated
1537	 * but the inode size is not yet updated), simply remove any
1538	 * blocks which show up between the new EOF and the maximum
1539	 * possible file size.  If the first block to be removed is
1540	 * beyond the maximum file size (ie it is the same as last_block),
1541	 * then there is nothing to do.
 
1542	 */
1543	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1544	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1545	if (first_unmap_block == last_block)
1546		return 0;
 
1547
1548	ASSERT(first_unmap_block < last_block);
1549	unmap_len = last_block - first_unmap_block + 1;
1550	while (!done) {
1551		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1552		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1553				    XFS_ITRUNC_MAX_EXTENTS, &done);
1554		if (error)
1555			goto out;
1556
1557		/*
1558		 * Duplicate the transaction that has the permanent
1559		 * reservation and commit the old transaction.
1560		 */
1561		error = xfs_defer_finish(&tp);
1562		if (error)
1563			goto out;
1564
1565		error = xfs_trans_roll_inode(&tp, ip);
1566		if (error)
1567			goto out;
1568	}
1569
1570	if (whichfork == XFS_DATA_FORK) {
1571		/* Remove all pending CoW reservations. */
1572		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573				first_unmap_block, last_block, true);
1574		if (error)
1575			goto out;
1576
1577		xfs_itruncate_clear_reflink_flags(ip);
1578	}
1579
1580	/*
1581	 * Always re-log the inode so that our permanent transaction can keep
1582	 * on rolling it forward in the log.
1583	 */
1584	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586	trace_xfs_itruncate_extents_end(ip, new_size);
1587
1588out:
1589	*tpp = tp;
1590	return error;
1591}
1592
1593int
1594xfs_release(
1595	xfs_inode_t	*ip)
1596{
1597	xfs_mount_t	*mp = ip->i_mount;
1598	int		error;
1599
1600	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1601		return 0;
1602
1603	/* If this is a read-only mount, don't do this (would generate I/O) */
1604	if (mp->m_flags & XFS_MOUNT_RDONLY)
1605		return 0;
1606
1607	if (!XFS_FORCED_SHUTDOWN(mp)) {
1608		int truncated;
1609
1610		/*
1611		 * If we previously truncated this file and removed old data
1612		 * in the process, we want to initiate "early" writeout on
1613		 * the last close.  This is an attempt to combat the notorious
1614		 * NULL files problem which is particularly noticeable from a
1615		 * truncate down, buffered (re-)write (delalloc), followed by
1616		 * a crash.  What we are effectively doing here is
1617		 * significantly reducing the time window where we'd otherwise
1618		 * be exposed to that problem.
1619		 */
1620		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621		if (truncated) {
1622			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1623			if (ip->i_delayed_blks > 0) {
1624				error = filemap_flush(VFS_I(ip)->i_mapping);
1625				if (error)
1626					return error;
1627			}
1628		}
1629	}
1630
1631	if (VFS_I(ip)->i_nlink == 0)
1632		return 0;
1633
1634	if (xfs_can_free_eofblocks(ip, false)) {
 
 
 
 
 
 
 
1635
 
1636		/*
1637		 * Check if the inode is being opened, written and closed
1638		 * frequently and we have delayed allocation blocks outstanding
1639		 * (e.g. streaming writes from the NFS server), truncating the
1640		 * blocks past EOF will cause fragmentation to occur.
1641		 *
1642		 * In this case don't do the truncation, but we have to be
1643		 * careful how we detect this case. Blocks beyond EOF show up as
1644		 * i_delayed_blks even when the inode is clean, so we need to
1645		 * truncate them away first before checking for a dirty release.
1646		 * Hence on the first dirty close we will still remove the
1647		 * speculative allocation, but after that we will leave it in
1648		 * place.
1649		 */
1650		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651			return 0;
1652		/*
1653		 * If we can't get the iolock just skip truncating the blocks
1654		 * past EOF because we could deadlock with the mmap_sem
1655		 * otherwise. We'll get another chance to drop them once the
1656		 * last reference to the inode is dropped, so we'll never leak
1657		 * blocks permanently.
1658		 */
1659		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660			error = xfs_free_eofblocks(ip);
1661			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662			if (error)
1663				return error;
1664		}
1665
1666		/* delalloc blocks after truncation means it really is dirty */
1667		if (ip->i_delayed_blks)
1668			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669	}
1670	return 0;
 
 
 
1671}
1672
1673/*
1674 * xfs_inactive_truncate
1675 *
1676 * Called to perform a truncate when an inode becomes unlinked.
1677 */
1678STATIC int
1679xfs_inactive_truncate(
1680	struct xfs_inode *ip)
1681{
1682	struct xfs_mount	*mp = ip->i_mount;
1683	struct xfs_trans	*tp;
1684	int			error;
1685
1686	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1687	if (error) {
1688		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1689		return error;
1690	}
1691	xfs_ilock(ip, XFS_ILOCK_EXCL);
1692	xfs_trans_ijoin(tp, ip, 0);
1693
1694	/*
1695	 * Log the inode size first to prevent stale data exposure in the event
1696	 * of a system crash before the truncate completes. See the related
1697	 * comment in xfs_vn_setattr_size() for details.
1698	 */
1699	ip->i_d.di_size = 0;
1700	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701
1702	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703	if (error)
1704		goto error_trans_cancel;
1705
1706	ASSERT(ip->i_d.di_nextents == 0);
1707
1708	error = xfs_trans_commit(tp);
1709	if (error)
1710		goto error_unlock;
1711
1712	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713	return 0;
1714
1715error_trans_cancel:
1716	xfs_trans_cancel(tp);
1717error_unlock:
1718	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719	return error;
1720}
1721
1722/*
1723 * xfs_inactive_ifree()
1724 *
1725 * Perform the inode free when an inode is unlinked.
1726 */
1727STATIC int
1728xfs_inactive_ifree(
1729	struct xfs_inode *ip)
1730{
1731	struct xfs_mount	*mp = ip->i_mount;
1732	struct xfs_trans	*tp;
1733	int			error;
1734
1735	/*
1736	 * We try to use a per-AG reservation for any block needed by the finobt
1737	 * tree, but as the finobt feature predates the per-AG reservation
1738	 * support a degraded file system might not have enough space for the
1739	 * reservation at mount time.  In that case try to dip into the reserved
1740	 * pool and pray.
1741	 *
1742	 * Send a warning if the reservation does happen to fail, as the inode
1743	 * now remains allocated and sits on the unlinked list until the fs is
1744	 * repaired.
1745	 */
1746	if (unlikely(mp->m_finobt_nores)) {
1747		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749				&tp);
1750	} else {
1751		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752	}
1753	if (error) {
1754		if (error == -ENOSPC) {
1755			xfs_warn_ratelimited(mp,
1756			"Failed to remove inode(s) from unlinked list. "
1757			"Please free space, unmount and run xfs_repair.");
1758		} else {
1759			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760		}
1761		return error;
1762	}
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	xfs_ilock(ip, XFS_ILOCK_EXCL);
1765	xfs_trans_ijoin(tp, ip, 0);
1766
1767	error = xfs_ifree(tp, ip);
 
1768	if (error) {
1769		/*
1770		 * If we fail to free the inode, shut down.  The cancel
1771		 * might do that, we need to make sure.  Otherwise the
1772		 * inode might be lost for a long time or forever.
1773		 */
1774		if (!XFS_FORCED_SHUTDOWN(mp)) {
1775			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776				__func__, error);
1777			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778		}
1779		xfs_trans_cancel(tp);
1780		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781		return error;
1782	}
1783
1784	/*
1785	 * Credit the quota account(s). The inode is gone.
1786	 */
1787	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1788
1789	/*
1790	 * Just ignore errors at this point.  There is nothing we can do except
1791	 * to try to keep going. Make sure it's not a silent error.
1792	 */
1793	error = xfs_trans_commit(tp);
1794	if (error)
1795		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1796			__func__, error);
1797
1798	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799	return 0;
1800}
1801
1802/*
1803 * xfs_inactive
1804 *
1805 * This is called when the vnode reference count for the vnode
1806 * goes to zero.  If the file has been unlinked, then it must
1807 * now be truncated.  Also, we clear all of the read-ahead state
1808 * kept for the inode here since the file is now closed.
1809 */
1810void
1811xfs_inactive(
1812	xfs_inode_t	*ip)
1813{
1814	struct xfs_mount	*mp;
1815	int			error;
1816	int			truncate = 0;
1817
1818	/*
1819	 * If the inode is already free, then there can be nothing
1820	 * to clean up here.
1821	 */
1822	if (VFS_I(ip)->i_mode == 0) {
1823		ASSERT(ip->i_df.if_broot_bytes == 0);
1824		return;
1825	}
1826
1827	mp = ip->i_mount;
1828	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1829
1830	/* If this is a read-only mount, don't do this (would generate I/O) */
1831	if (mp->m_flags & XFS_MOUNT_RDONLY)
1832		return;
 
 
 
 
1833
1834	/* Try to clean out the cow blocks if there are any. */
1835	if (xfs_inode_has_cow_data(ip))
1836		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1837
1838	if (VFS_I(ip)->i_nlink != 0) {
1839		/*
1840		 * force is true because we are evicting an inode from the
1841		 * cache. Post-eof blocks must be freed, lest we end up with
1842		 * broken free space accounting.
1843		 *
1844		 * Note: don't bother with iolock here since lockdep complains
1845		 * about acquiring it in reclaim context. We have the only
1846		 * reference to the inode at this point anyways.
1847		 */
1848		if (xfs_can_free_eofblocks(ip, true))
1849			xfs_free_eofblocks(ip);
1850
1851		return;
1852	}
1853
1854	if (S_ISREG(VFS_I(ip)->i_mode) &&
1855	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1856	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1857		truncate = 1;
1858
1859	error = xfs_qm_dqattach(ip);
1860	if (error)
1861		return;
1862
1863	if (S_ISLNK(VFS_I(ip)->i_mode))
1864		error = xfs_inactive_symlink(ip);
1865	else if (truncate)
1866		error = xfs_inactive_truncate(ip);
1867	if (error)
1868		return;
1869
1870	/*
1871	 * If there are attributes associated with the file then blow them away
1872	 * now.  The code calls a routine that recursively deconstructs the
1873	 * attribute fork. If also blows away the in-core attribute fork.
1874	 */
1875	if (XFS_IFORK_Q(ip)) {
1876		error = xfs_attr_inactive(ip);
1877		if (error)
1878			return;
1879	}
1880
1881	ASSERT(!ip->i_afp);
1882	ASSERT(ip->i_d.di_anextents == 0);
1883	ASSERT(ip->i_d.di_forkoff == 0);
1884
1885	/*
1886	 * Free the inode.
1887	 */
1888	error = xfs_inactive_ifree(ip);
1889	if (error)
1890		return;
1891
 
1892	/*
1893	 * Release the dquots held by inode, if any.
 
1894	 */
1895	xfs_qm_dqdetach(ip);
1896}
1897
1898/*
1899 * In-Core Unlinked List Lookups
1900 * =============================
1901 *
1902 * Every inode is supposed to be reachable from some other piece of metadata
1903 * with the exception of the root directory.  Inodes with a connection to a
1904 * file descriptor but not linked from anywhere in the on-disk directory tree
1905 * are collectively known as unlinked inodes, though the filesystem itself
1906 * maintains links to these inodes so that on-disk metadata are consistent.
1907 *
1908 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1909 * header contains a number of buckets that point to an inode, and each inode
1910 * record has a pointer to the next inode in the hash chain.  This
1911 * singly-linked list causes scaling problems in the iunlink remove function
1912 * because we must walk that list to find the inode that points to the inode
1913 * being removed from the unlinked hash bucket list.
1914 *
1915 * What if we modelled the unlinked list as a collection of records capturing
1916 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1917 * have a fast way to look up unlinked list predecessors, which avoids the
1918 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1919 * rhashtable.
1920 *
1921 * Because this is a backref cache, we ignore operational failures since the
1922 * iunlink code can fall back to the slow bucket walk.  The only errors that
1923 * should bubble out are for obviously incorrect situations.
1924 *
1925 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1926 * access or have otherwise provided for concurrency control.
1927 */
1928
1929/* Capture a "X.next_unlinked = Y" relationship. */
1930struct xfs_iunlink {
1931	struct rhash_head	iu_rhash_head;
1932	xfs_agino_t		iu_agino;		/* X */
1933	xfs_agino_t		iu_next_unlinked;	/* Y */
1934};
1935
1936/* Unlinked list predecessor lookup hashtable construction */
1937static int
1938xfs_iunlink_obj_cmpfn(
1939	struct rhashtable_compare_arg	*arg,
1940	const void			*obj)
1941{
1942	const xfs_agino_t		*key = arg->key;
1943	const struct xfs_iunlink	*iu = obj;
1944
1945	if (iu->iu_next_unlinked != *key)
1946		return 1;
1947	return 0;
1948}
1949
1950static const struct rhashtable_params xfs_iunlink_hash_params = {
1951	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1952	.key_len		= sizeof(xfs_agino_t),
1953	.key_offset		= offsetof(struct xfs_iunlink,
1954					   iu_next_unlinked),
1955	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1956	.automatic_shrinking	= true,
1957	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1958};
1959
1960/*
1961 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1962 * relation is found.
1963 */
1964static xfs_agino_t
1965xfs_iunlink_lookup_backref(
1966	struct xfs_perag	*pag,
1967	xfs_agino_t		agino)
1968{
1969	struct xfs_iunlink	*iu;
1970
1971	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1972			xfs_iunlink_hash_params);
1973	return iu ? iu->iu_agino : NULLAGINO;
1974}
1975
1976/*
1977 * Take ownership of an iunlink cache entry and insert it into the hash table.
1978 * If successful, the entry will be owned by the cache; if not, it is freed.
1979 * Either way, the caller does not own @iu after this call.
1980 */
1981static int
1982xfs_iunlink_insert_backref(
1983	struct xfs_perag	*pag,
1984	struct xfs_iunlink	*iu)
1985{
1986	int			error;
1987
1988	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1989			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1990	/*
1991	 * Fail loudly if there already was an entry because that's a sign of
1992	 * corruption of in-memory data.  Also fail loudly if we see an error
1993	 * code we didn't anticipate from the rhashtable code.  Currently we
1994	 * only anticipate ENOMEM.
1995	 */
1996	if (error) {
1997		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1998		kmem_free(iu);
1999	}
2000	/*
2001	 * Absorb any runtime errors that aren't a result of corruption because
2002	 * this is a cache and we can always fall back to bucket list scanning.
2003	 */
2004	if (error != 0 && error != -EEXIST)
2005		error = 0;
2006	return error;
2007}
2008
2009/* Remember that @prev_agino.next_unlinked = @this_agino. */
2010static int
2011xfs_iunlink_add_backref(
2012	struct xfs_perag	*pag,
2013	xfs_agino_t		prev_agino,
2014	xfs_agino_t		this_agino)
2015{
2016	struct xfs_iunlink	*iu;
2017
2018	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2019		return 0;
2020
2021	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2022	iu->iu_agino = prev_agino;
2023	iu->iu_next_unlinked = this_agino;
2024
2025	return xfs_iunlink_insert_backref(pag, iu);
2026}
2027
2028/*
2029 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2030 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2031 * wasn't any such entry then we don't bother.
2032 */
2033static int
2034xfs_iunlink_change_backref(
2035	struct xfs_perag	*pag,
2036	xfs_agino_t		agino,
2037	xfs_agino_t		next_unlinked)
2038{
2039	struct xfs_iunlink	*iu;
2040	int			error;
2041
2042	/* Look up the old entry; if there wasn't one then exit. */
2043	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2044			xfs_iunlink_hash_params);
2045	if (!iu)
2046		return 0;
2047
2048	/*
2049	 * Remove the entry.  This shouldn't ever return an error, but if we
2050	 * couldn't remove the old entry we don't want to add it again to the
2051	 * hash table, and if the entry disappeared on us then someone's
2052	 * violated the locking rules and we need to fail loudly.  Either way
2053	 * we cannot remove the inode because internal state is or would have
2054	 * been corrupt.
2055	 */
2056	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2057			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2058	if (error)
2059		return error;
2060
2061	/* If there is no new next entry just free our item and return. */
2062	if (next_unlinked == NULLAGINO) {
2063		kmem_free(iu);
2064		return 0;
2065	}
2066
2067	/* Update the entry and re-add it to the hash table. */
2068	iu->iu_next_unlinked = next_unlinked;
2069	return xfs_iunlink_insert_backref(pag, iu);
2070}
2071
2072/* Set up the in-core predecessor structures. */
2073int
2074xfs_iunlink_init(
2075	struct xfs_perag	*pag)
2076{
2077	return rhashtable_init(&pag->pagi_unlinked_hash,
2078			&xfs_iunlink_hash_params);
2079}
2080
2081/* Free the in-core predecessor structures. */
2082static void
2083xfs_iunlink_free_item(
2084	void			*ptr,
2085	void			*arg)
2086{
2087	struct xfs_iunlink	*iu = ptr;
2088	bool			*freed_anything = arg;
2089
2090	*freed_anything = true;
2091	kmem_free(iu);
2092}
2093
2094void
2095xfs_iunlink_destroy(
2096	struct xfs_perag	*pag)
2097{
2098	bool			freed_anything = false;
2099
2100	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2101			xfs_iunlink_free_item, &freed_anything);
2102
2103	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2104}
2105
2106/*
2107 * Point the AGI unlinked bucket at an inode and log the results.  The caller
2108 * is responsible for validating the old value.
2109 */
2110STATIC int
2111xfs_iunlink_update_bucket(
2112	struct xfs_trans	*tp,
2113	xfs_agnumber_t		agno,
2114	struct xfs_buf		*agibp,
2115	unsigned int		bucket_index,
2116	xfs_agino_t		new_agino)
2117{
2118	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2119	xfs_agino_t		old_value;
2120	int			offset;
2121
2122	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2123
2124	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2125	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2126			old_value, new_agino);
2127
2128	/*
2129	 * We should never find the head of the list already set to the value
2130	 * passed in because either we're adding or removing ourselves from the
2131	 * head of the list.
2132	 */
2133	if (old_value == new_agino)
 
2134		return -EFSCORRUPTED;
 
2135
2136	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137	offset = offsetof(struct xfs_agi, agi_unlinked) +
2138			(sizeof(xfs_agino_t) * bucket_index);
2139	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140	return 0;
2141}
2142
2143/* Set an on-disk inode's next_unlinked pointer. */
2144STATIC void
2145xfs_iunlink_update_dinode(
2146	struct xfs_trans	*tp,
2147	xfs_agnumber_t		agno,
2148	xfs_agino_t		agino,
2149	struct xfs_buf		*ibp,
2150	struct xfs_dinode	*dip,
2151	struct xfs_imap		*imap,
2152	xfs_agino_t		next_agino)
2153{
2154	struct xfs_mount	*mp = tp->t_mountp;
2155	int			offset;
2156
2157	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158
2159	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160			be32_to_cpu(dip->di_next_unlinked), next_agino);
2161
2162	dip->di_next_unlinked = cpu_to_be32(next_agino);
2163	offset = imap->im_boffset +
2164			offsetof(struct xfs_dinode, di_next_unlinked);
2165
2166	/* need to recalc the inode CRC if appropriate */
2167	xfs_dinode_calc_crc(mp, dip);
2168	xfs_trans_inode_buf(tp, ibp);
2169	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170	xfs_inobp_check(mp, ibp);
2171}
2172
2173/* Set an in-core inode's unlinked pointer and return the old value. */
2174STATIC int
2175xfs_iunlink_update_inode(
2176	struct xfs_trans	*tp,
2177	struct xfs_inode	*ip,
2178	xfs_agnumber_t		agno,
2179	xfs_agino_t		next_agino,
2180	xfs_agino_t		*old_next_agino)
2181{
2182	struct xfs_mount	*mp = tp->t_mountp;
2183	struct xfs_dinode	*dip;
2184	struct xfs_buf		*ibp;
2185	xfs_agino_t		old_value;
2186	int			error;
2187
2188	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189
2190	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191	if (error)
2192		return error;
 
2193
2194	/* Make sure the old pointer isn't garbage. */
2195	old_value = be32_to_cpu(dip->di_next_unlinked);
2196	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
 
 
2197		error = -EFSCORRUPTED;
2198		goto out;
2199	}
2200
2201	/*
2202	 * Since we're updating a linked list, we should never find that the
2203	 * current pointer is the same as the new value, unless we're
2204	 * terminating the list.
2205	 */
2206	*old_next_agino = old_value;
2207	if (old_value == next_agino) {
2208		if (next_agino != NULLAGINO)
 
 
2209			error = -EFSCORRUPTED;
 
2210		goto out;
2211	}
2212
2213	/* Ok, update the new pointer. */
2214	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2215			ibp, dip, &ip->i_imap, next_agino);
2216	return 0;
2217out:
2218	xfs_trans_brelse(tp, ibp);
2219	return error;
2220}
2221
2222/*
2223 * This is called when the inode's link count has gone to 0 or we are creating
2224 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2225 *
2226 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2227 * list when the inode is freed.
2228 */
2229STATIC int
2230xfs_iunlink(
2231	struct xfs_trans	*tp,
2232	struct xfs_inode	*ip)
2233{
2234	struct xfs_mount	*mp = tp->t_mountp;
 
2235	struct xfs_agi		*agi;
2236	struct xfs_buf		*agibp;
2237	xfs_agino_t		next_agino;
2238	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2239	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2240	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2241	int			error;
2242
2243	ASSERT(VFS_I(ip)->i_nlink == 0);
2244	ASSERT(VFS_I(ip)->i_mode != 0);
2245	trace_xfs_iunlink(ip);
2246
 
 
2247	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2248	error = xfs_read_agi(mp, tp, agno, &agibp);
2249	if (error)
2250		return error;
2251	agi = XFS_BUF_TO_AGI(agibp);
2252
2253	/*
2254	 * Get the index into the agi hash table for the list this inode will
2255	 * go on.  Make sure the pointer isn't garbage and that this inode
2256	 * isn't already on the list.
2257	 */
2258	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2259	if (next_agino == agino ||
2260	    !xfs_verify_agino_or_null(mp, agno, next_agino))
2261		return -EFSCORRUPTED;
 
 
 
2262
2263	if (next_agino != NULLAGINO) {
2264		struct xfs_perag	*pag;
2265		xfs_agino_t		old_agino;
2266
2267		/*
2268		 * There is already another inode in the bucket, so point this
2269		 * inode to the current head of the list.
2270		 */
2271		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2272				&old_agino);
2273		if (error)
2274			return error;
2275		ASSERT(old_agino == NULLAGINO);
2276
2277		/*
2278		 * agino has been unlinked, add a backref from the next inode
2279		 * back to agino.
2280		 */
2281		pag = xfs_perag_get(mp, agno);
2282		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2283		xfs_perag_put(pag);
2284		if (error)
2285			return error;
2286	}
2287
2288	/* Point the head of the list to point to this inode. */
2289	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
 
 
 
2290}
2291
2292/* Return the imap, dinode pointer, and buffer for an inode. */
2293STATIC int
2294xfs_iunlink_map_ino(
2295	struct xfs_trans	*tp,
2296	xfs_agnumber_t		agno,
2297	xfs_agino_t		agino,
2298	struct xfs_imap		*imap,
2299	struct xfs_dinode	**dipp,
2300	struct xfs_buf		**bpp)
2301{
2302	struct xfs_mount	*mp = tp->t_mountp;
2303	int			error;
2304
2305	imap->im_blkno = 0;
2306	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2307	if (error) {
2308		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2309				__func__, error);
2310		return error;
2311	}
2312
2313	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2314	if (error) {
2315		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2316				__func__, error);
2317		return error;
2318	}
2319
 
2320	return 0;
2321}
2322
2323/*
2324 * Walk the unlinked chain from @head_agino until we find the inode that
2325 * points to @target_agino.  Return the inode number, map, dinode pointer,
2326 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2327 *
2328 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2329 * @agino, @imap, @dipp, and @bpp are all output parameters.
2330 *
2331 * Do not call this function if @target_agino is the head of the list.
2332 */
2333STATIC int
2334xfs_iunlink_map_prev(
2335	struct xfs_trans	*tp,
2336	xfs_agnumber_t		agno,
2337	xfs_agino_t		head_agino,
2338	xfs_agino_t		target_agino,
2339	xfs_agino_t		*agino,
2340	struct xfs_imap		*imap,
2341	struct xfs_dinode	**dipp,
2342	struct xfs_buf		**bpp,
2343	struct xfs_perag	*pag)
2344{
2345	struct xfs_mount	*mp = tp->t_mountp;
2346	xfs_agino_t		next_agino;
2347	int			error;
2348
2349	ASSERT(head_agino != target_agino);
2350	*bpp = NULL;
2351
2352	/* See if our backref cache can find it faster. */
2353	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2354	if (*agino != NULLAGINO) {
2355		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
 
2356		if (error)
2357			return error;
2358
2359		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2360			return 0;
2361
2362		/*
2363		 * If we get here the cache contents were corrupt, so drop the
2364		 * buffer and fall back to walking the bucket list.
2365		 */
2366		xfs_trans_brelse(tp, *bpp);
2367		*bpp = NULL;
2368		WARN_ON_ONCE(1);
2369	}
2370
2371	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2372
2373	/* Otherwise, walk the entire bucket until we find it. */
2374	next_agino = head_agino;
2375	while (next_agino != target_agino) {
2376		xfs_agino_t	unlinked_agino;
2377
2378		if (*bpp)
2379			xfs_trans_brelse(tp, *bpp);
2380
2381		*agino = next_agino;
2382		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2383				bpp);
2384		if (error)
2385			return error;
2386
2387		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2388		/*
2389		 * Make sure this pointer is valid and isn't an obvious
2390		 * infinite loop.
2391		 */
2392		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2393		    next_agino == unlinked_agino) {
2394			XFS_CORRUPTION_ERROR(__func__,
2395					XFS_ERRLEVEL_LOW, mp,
2396					*dipp, sizeof(**dipp));
2397			error = -EFSCORRUPTED;
2398			return error;
2399		}
2400		next_agino = unlinked_agino;
2401	}
2402
2403	return 0;
2404}
2405
2406/*
2407 * Pull the on-disk inode from the AGI unlinked list.
2408 */
2409STATIC int
2410xfs_iunlink_remove(
2411	struct xfs_trans	*tp,
 
2412	struct xfs_inode	*ip)
2413{
2414	struct xfs_mount	*mp = tp->t_mountp;
2415	struct xfs_agi		*agi;
2416	struct xfs_buf		*agibp;
2417	struct xfs_buf		*last_ibp;
2418	struct xfs_dinode	*last_dip = NULL;
2419	struct xfs_perag	*pag = NULL;
2420	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422	xfs_agino_t		next_agino;
2423	xfs_agino_t		head_agino;
2424	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425	int			error;
2426
2427	trace_xfs_iunlink_remove(ip);
2428
2429	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2430	error = xfs_read_agi(mp, tp, agno, &agibp);
2431	if (error)
2432		return error;
2433	agi = XFS_BUF_TO_AGI(agibp);
2434
2435	/*
2436	 * Get the index into the agi hash table for the list this inode will
2437	 * go on.  Make sure the head pointer isn't garbage.
2438	 */
2439	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440	if (!xfs_verify_agino(mp, agno, head_agino)) {
2441		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442				agi, sizeof(*agi));
2443		return -EFSCORRUPTED;
2444	}
2445
2446	/*
2447	 * Set our inode's next_unlinked pointer to NULL and then return
2448	 * the old pointer value so that we can update whatever was previous
2449	 * to us in the list to point to whatever was next in the list.
2450	 */
2451	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452	if (error)
2453		return error;
2454
2455	/*
2456	 * If there was a backref pointing from the next inode back to this
2457	 * one, remove it because we've removed this inode from the list.
2458	 *
2459	 * Later, if this inode was in the middle of the list we'll update
2460	 * this inode's backref to point from the next inode.
2461	 */
2462	if (next_agino != NULLAGINO) {
2463		pag = xfs_perag_get(mp, agno);
2464		error = xfs_iunlink_change_backref(pag, next_agino,
2465				NULLAGINO);
2466		if (error)
2467			goto out;
2468	}
2469
2470	if (head_agino == agino) {
2471		/* Point the head of the list to the next unlinked inode. */
2472		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2473				next_agino);
2474		if (error)
2475			goto out;
2476	} else {
2477		struct xfs_imap	imap;
2478		xfs_agino_t	prev_agino;
2479
2480		if (!pag)
2481			pag = xfs_perag_get(mp, agno);
2482
2483		/* We need to search the list for the inode being freed. */
2484		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2485				&prev_agino, &imap, &last_dip, &last_ibp,
2486				pag);
2487		if (error)
2488			goto out;
2489
2490		/* Point the previous inode on the list to the next inode. */
2491		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2492				last_dip, &imap, next_agino);
2493
2494		/*
2495		 * Now we deal with the backref for this inode.  If this inode
2496		 * pointed at a real inode, change the backref that pointed to
2497		 * us to point to our old next.  If this inode was the end of
2498		 * the list, delete the backref that pointed to us.  Note that
2499		 * change_backref takes care of deleting the backref if
2500		 * next_agino is NULLAGINO.
2501		 */
2502		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2503		if (error)
2504			goto out;
2505	}
2506
2507out:
2508	if (pag)
2509		xfs_perag_put(pag);
2510	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511}
2512
2513/*
2514 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2515 * inodes that are in memory - they all must be marked stale and attached to
2516 * the cluster buffer.
2517 */
2518STATIC int
2519xfs_ifree_cluster(
2520	xfs_inode_t		*free_ip,
2521	xfs_trans_t		*tp,
 
2522	struct xfs_icluster	*xic)
2523{
2524	xfs_mount_t		*mp = free_ip->i_mount;
 
 
 
 
2525	int			nbufs;
2526	int			i, j;
2527	int			ioffset;
2528	xfs_daddr_t		blkno;
2529	xfs_buf_t		*bp;
2530	xfs_inode_t		*ip;
2531	xfs_inode_log_item_t	*iip;
2532	struct xfs_log_item	*lip;
2533	struct xfs_perag	*pag;
2534	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2535	xfs_ino_t		inum;
2536
2537	inum = xic->first_ino;
2538	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2539	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2540
2541	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2542		/*
2543		 * The allocation bitmap tells us which inodes of the chunk were
2544		 * physically allocated. Skip the cluster if an inode falls into
2545		 * a sparse region.
2546		 */
2547		ioffset = inum - xic->first_ino;
2548		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2549			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2550			continue;
2551		}
2552
2553		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554					 XFS_INO_TO_AGBNO(mp, inum));
2555
2556		/*
2557		 * We obtain and lock the backing buffer first in the process
2558		 * here, as we have to ensure that any dirty inode that we
2559		 * can't get the flush lock on is attached to the buffer.
 
2560		 * If we scan the in-memory inodes first, then buffer IO can
2561		 * complete before we get a lock on it, and hence we may fail
2562		 * to mark all the active inodes on the buffer stale.
2563		 */
2564		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2565					mp->m_bsize * igeo->blocks_per_cluster,
2566					XBF_UNMAPPED);
2567
2568		if (!bp)
2569			return -ENOMEM;
2570
2571		/*
2572		 * This buffer may not have been correctly initialised as we
2573		 * didn't read it from disk. That's not important because we are
2574		 * only using to mark the buffer as stale in the log, and to
2575		 * attach stale cached inodes on it. That means it will never be
2576		 * dispatched for IO. If it is, we want to know about it, and we
2577		 * want it to fail. We can acheive this by adding a write
2578		 * verifier to the buffer.
2579		 */
2580		bp->b_ops = &xfs_inode_buf_ops;
2581
2582		/*
2583		 * Walk the inodes already attached to the buffer and mark them
2584		 * stale. These will all have the flush locks held, so an
2585		 * in-memory inode walk can't lock them. By marking them all
2586		 * stale first, we will not attempt to lock them in the loop
2587		 * below as the XFS_ISTALE flag will be set.
2588		 */
2589		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2590			if (lip->li_type == XFS_LI_INODE) {
2591				iip = (xfs_inode_log_item_t *)lip;
2592				ASSERT(iip->ili_logged == 1);
2593				lip->li_cb = xfs_istale_done;
2594				xfs_trans_ail_copy_lsn(mp->m_ail,
2595							&iip->ili_flush_lsn,
2596							&iip->ili_item.li_lsn);
2597				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2598			}
2599		}
2600
2601
2602		/*
2603		 * For each inode in memory attempt to add it to the inode
2604		 * buffer and set it up for being staled on buffer IO
2605		 * completion.  This is safe as we've locked out tail pushing
2606		 * and flushing by locking the buffer.
2607		 *
2608		 * We have already marked every inode that was part of a
2609		 * transaction stale above, which means there is no point in
2610		 * even trying to lock them.
2611		 */
2612		for (i = 0; i < igeo->inodes_per_cluster; i++) {
2613retry:
2614			rcu_read_lock();
2615			ip = radix_tree_lookup(&pag->pag_ici_root,
2616					XFS_INO_TO_AGINO(mp, (inum + i)));
2617
2618			/* Inode not in memory, nothing to do */
2619			if (!ip) {
2620				rcu_read_unlock();
2621				continue;
2622			}
2623
2624			/*
2625			 * because this is an RCU protected lookup, we could
2626			 * find a recently freed or even reallocated inode
2627			 * during the lookup. We need to check under the
2628			 * i_flags_lock for a valid inode here. Skip it if it
2629			 * is not valid, the wrong inode or stale.
2630			 */
2631			spin_lock(&ip->i_flags_lock);
2632			if (ip->i_ino != inum + i ||
2633			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2634				spin_unlock(&ip->i_flags_lock);
2635				rcu_read_unlock();
2636				continue;
2637			}
2638			spin_unlock(&ip->i_flags_lock);
2639
2640			/*
2641			 * Don't try to lock/unlock the current inode, but we
2642			 * _cannot_ skip the other inodes that we did not find
2643			 * in the list attached to the buffer and are not
2644			 * already marked stale. If we can't lock it, back off
2645			 * and retry.
2646			 */
2647			if (ip != free_ip) {
2648				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2649					rcu_read_unlock();
2650					delay(1);
2651					goto retry;
2652				}
2653
2654				/*
2655				 * Check the inode number again in case we're
2656				 * racing with freeing in xfs_reclaim_inode().
2657				 * See the comments in that function for more
2658				 * information as to why the initial check is
2659				 * not sufficient.
2660				 */
2661				if (ip->i_ino != inum + i) {
2662					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2663					rcu_read_unlock();
2664					continue;
2665				}
2666			}
2667			rcu_read_unlock();
2668
2669			xfs_iflock(ip);
2670			xfs_iflags_set(ip, XFS_ISTALE);
2671
2672			/*
2673			 * we don't need to attach clean inodes or those only
2674			 * with unlogged changes (which we throw away, anyway).
2675			 */
2676			iip = ip->i_itemp;
2677			if (!iip || xfs_inode_clean(ip)) {
2678				ASSERT(ip != free_ip);
2679				xfs_ifunlock(ip);
2680				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2681				continue;
2682			}
2683
2684			iip->ili_last_fields = iip->ili_fields;
2685			iip->ili_fields = 0;
2686			iip->ili_fsync_fields = 0;
2687			iip->ili_logged = 1;
2688			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2689						&iip->ili_item.li_lsn);
2690
2691			xfs_buf_attach_iodone(bp, xfs_istale_done,
2692						  &iip->ili_item);
2693
2694			if (ip != free_ip)
2695				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2696		}
2697
2698		xfs_trans_stale_inode_buf(tp, bp);
2699		xfs_trans_binval(tp, bp);
2700	}
2701
2702	xfs_perag_put(pag);
2703	return 0;
2704}
2705
2706/*
2707 * Free any local-format buffers sitting around before we reset to
2708 * extents format.
2709 */
2710static inline void
2711xfs_ifree_local_data(
2712	struct xfs_inode	*ip,
2713	int			whichfork)
2714{
2715	struct xfs_ifork	*ifp;
2716
2717	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2718		return;
2719
2720	ifp = XFS_IFORK_PTR(ip, whichfork);
2721	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2722}
2723
2724/*
2725 * This is called to return an inode to the inode free list.
2726 * The inode should already be truncated to 0 length and have
2727 * no pages associated with it.  This routine also assumes that
2728 * the inode is already a part of the transaction.
2729 *
2730 * The on-disk copy of the inode will have been added to the list
2731 * of unlinked inodes in the AGI. We need to remove the inode from
2732 * that list atomically with respect to freeing it here.
2733 */
2734int
2735xfs_ifree(
2736	struct xfs_trans	*tp,
2737	struct xfs_inode	*ip)
2738{
2739	int			error;
 
2740	struct xfs_icluster	xic = { 0 };
 
 
2741
2742	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2743	ASSERT(VFS_I(ip)->i_nlink == 0);
2744	ASSERT(ip->i_d.di_nextents == 0);
2745	ASSERT(ip->i_d.di_anextents == 0);
2746	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2747	ASSERT(ip->i_d.di_nblocks == 0);
 
2748
2749	/*
2750	 * Pull the on-disk inode from the AGI unlinked list.
2751	 */
2752	error = xfs_iunlink_remove(tp, ip);
2753	if (error)
2754		return error;
2755
2756	error = xfs_difree(tp, ip->i_ino, &xic);
2757	if (error)
2758		return error;
2759
2760	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2761	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
 
 
 
 
 
 
 
 
2762
2763	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2764	ip->i_d.di_flags = 0;
2765	ip->i_d.di_flags2 = 0;
2766	ip->i_d.di_dmevmask = 0;
2767	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2768	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2769	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2770
2771	/* Don't attempt to replay owner changes for a deleted inode */
2772	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
 
 
2773
2774	/*
2775	 * Bump the generation count so no one will be confused
2776	 * by reincarnations of this inode.
2777	 */
2778	VFS_I(ip)->i_generation++;
2779	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2780
2781	if (xic.deleted)
2782		error = xfs_ifree_cluster(ip, tp, &xic);
2783
 
2784	return error;
2785}
2786
2787/*
2788 * This is called to unpin an inode.  The caller must have the inode locked
2789 * in at least shared mode so that the buffer cannot be subsequently pinned
2790 * once someone is waiting for it to be unpinned.
2791 */
2792static void
2793xfs_iunpin(
2794	struct xfs_inode	*ip)
2795{
2796	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2797
2798	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2799
2800	/* Give the log a push to start the unpinning I/O */
2801	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2802
2803}
2804
2805static void
2806__xfs_iunpin_wait(
2807	struct xfs_inode	*ip)
2808{
2809	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2810	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2811
2812	xfs_iunpin(ip);
2813
2814	do {
2815		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2816		if (xfs_ipincount(ip))
2817			io_schedule();
2818	} while (xfs_ipincount(ip));
2819	finish_wait(wq, &wait.wq_entry);
2820}
2821
2822void
2823xfs_iunpin_wait(
2824	struct xfs_inode	*ip)
2825{
2826	if (xfs_ipincount(ip))
2827		__xfs_iunpin_wait(ip);
2828}
2829
2830/*
2831 * Removing an inode from the namespace involves removing the directory entry
2832 * and dropping the link count on the inode. Removing the directory entry can
2833 * result in locking an AGF (directory blocks were freed) and removing a link
2834 * count can result in placing the inode on an unlinked list which results in
2835 * locking an AGI.
2836 *
2837 * The big problem here is that we have an ordering constraint on AGF and AGI
2838 * locking - inode allocation locks the AGI, then can allocate a new extent for
2839 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2840 * removes the inode from the unlinked list, requiring that we lock the AGI
2841 * first, and then freeing the inode can result in an inode chunk being freed
2842 * and hence freeing disk space requiring that we lock an AGF.
2843 *
2844 * Hence the ordering that is imposed by other parts of the code is AGI before
2845 * AGF. This means we cannot remove the directory entry before we drop the inode
2846 * reference count and put it on the unlinked list as this results in a lock
2847 * order of AGF then AGI, and this can deadlock against inode allocation and
2848 * freeing. Therefore we must drop the link counts before we remove the
2849 * directory entry.
2850 *
2851 * This is still safe from a transactional point of view - it is not until we
2852 * get to xfs_defer_finish() that we have the possibility of multiple
2853 * transactions in this operation. Hence as long as we remove the directory
2854 * entry and drop the link count in the first transaction of the remove
2855 * operation, there are no transactional constraints on the ordering here.
2856 */
2857int
2858xfs_remove(
2859	xfs_inode_t             *dp,
2860	struct xfs_name		*name,
2861	xfs_inode_t		*ip)
2862{
2863	xfs_mount_t		*mp = dp->i_mount;
2864	xfs_trans_t             *tp = NULL;
2865	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2866	int                     error = 0;
2867	uint			resblks;
2868
2869	trace_xfs_remove(dp, name);
2870
2871	if (XFS_FORCED_SHUTDOWN(mp))
2872		return -EIO;
2873
2874	error = xfs_qm_dqattach(dp);
2875	if (error)
2876		goto std_return;
2877
2878	error = xfs_qm_dqattach(ip);
2879	if (error)
2880		goto std_return;
2881
2882	/*
2883	 * We try to get the real space reservation first,
2884	 * allowing for directory btree deletion(s) implying
2885	 * possible bmap insert(s).  If we can't get the space
2886	 * reservation then we use 0 instead, and avoid the bmap
2887	 * btree insert(s) in the directory code by, if the bmap
2888	 * insert tries to happen, instead trimming the LAST
2889	 * block from the directory.
2890	 */
2891	resblks = XFS_REMOVE_SPACE_RES(mp);
2892	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2893	if (error == -ENOSPC) {
2894		resblks = 0;
2895		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2896				&tp);
2897	}
2898	if (error) {
2899		ASSERT(error != -ENOSPC);
2900		goto std_return;
2901	}
2902
2903	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2904
2905	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2906	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2907
2908	/*
2909	 * If we're removing a directory perform some additional validation.
2910	 */
2911	if (is_dir) {
2912		ASSERT(VFS_I(ip)->i_nlink >= 2);
2913		if (VFS_I(ip)->i_nlink != 2) {
2914			error = -ENOTEMPTY;
2915			goto out_trans_cancel;
2916		}
2917		if (!xfs_dir_isempty(ip)) {
2918			error = -ENOTEMPTY;
2919			goto out_trans_cancel;
2920		}
2921
2922		/* Drop the link from ip's "..".  */
2923		error = xfs_droplink(tp, dp);
2924		if (error)
2925			goto out_trans_cancel;
2926
2927		/* Drop the "." link from ip to self.  */
2928		error = xfs_droplink(tp, ip);
2929		if (error)
2930			goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
2931	} else {
2932		/*
2933		 * When removing a non-directory we need to log the parent
2934		 * inode here.  For a directory this is done implicitly
2935		 * by the xfs_droplink call for the ".." entry.
2936		 */
2937		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2938	}
2939	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2940
2941	/* Drop the link from dp to ip. */
2942	error = xfs_droplink(tp, ip);
2943	if (error)
2944		goto out_trans_cancel;
2945
2946	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2947	if (error) {
2948		ASSERT(error != -ENOENT);
2949		goto out_trans_cancel;
2950	}
2951
2952	/*
2953	 * If this is a synchronous mount, make sure that the
2954	 * remove transaction goes to disk before returning to
2955	 * the user.
2956	 */
2957	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2958		xfs_trans_set_sync(tp);
2959
2960	error = xfs_trans_commit(tp);
2961	if (error)
2962		goto std_return;
2963
2964	if (is_dir && xfs_inode_is_filestream(ip))
2965		xfs_filestream_deassociate(ip);
2966
2967	return 0;
2968
2969 out_trans_cancel:
2970	xfs_trans_cancel(tp);
2971 std_return:
2972	return error;
2973}
2974
2975/*
2976 * Enter all inodes for a rename transaction into a sorted array.
2977 */
2978#define __XFS_SORT_INODES	5
2979STATIC void
2980xfs_sort_for_rename(
2981	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2982	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2983	struct xfs_inode	*ip1,	/* in: inode of old entry */
2984	struct xfs_inode	*ip2,	/* in: inode of new entry */
2985	struct xfs_inode	*wip,	/* in: whiteout inode */
2986	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2987	int			*num_inodes)  /* in/out: inodes in array */
2988{
2989	int			i, j;
2990
2991	ASSERT(*num_inodes == __XFS_SORT_INODES);
2992	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2993
2994	/*
2995	 * i_tab contains a list of pointers to inodes.  We initialize
2996	 * the table here & we'll sort it.  We will then use it to
2997	 * order the acquisition of the inode locks.
2998	 *
2999	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3000	 */
3001	i = 0;
3002	i_tab[i++] = dp1;
3003	i_tab[i++] = dp2;
3004	i_tab[i++] = ip1;
3005	if (ip2)
3006		i_tab[i++] = ip2;
3007	if (wip)
3008		i_tab[i++] = wip;
3009	*num_inodes = i;
3010
3011	/*
3012	 * Sort the elements via bubble sort.  (Remember, there are at
3013	 * most 5 elements to sort, so this is adequate.)
3014	 */
3015	for (i = 0; i < *num_inodes; i++) {
3016		for (j = 1; j < *num_inodes; j++) {
3017			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3018				struct xfs_inode *temp = i_tab[j];
3019				i_tab[j] = i_tab[j-1];
3020				i_tab[j-1] = temp;
3021			}
3022		}
3023	}
3024}
3025
3026static int
3027xfs_finish_rename(
3028	struct xfs_trans	*tp)
3029{
3030	/*
3031	 * If this is a synchronous mount, make sure that the rename transaction
3032	 * goes to disk before returning to the user.
3033	 */
3034	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3035		xfs_trans_set_sync(tp);
3036
3037	return xfs_trans_commit(tp);
3038}
3039
3040/*
3041 * xfs_cross_rename()
3042 *
3043 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3044 */
3045STATIC int
3046xfs_cross_rename(
3047	struct xfs_trans	*tp,
3048	struct xfs_inode	*dp1,
3049	struct xfs_name		*name1,
3050	struct xfs_inode	*ip1,
3051	struct xfs_inode	*dp2,
3052	struct xfs_name		*name2,
3053	struct xfs_inode	*ip2,
3054	int			spaceres)
3055{
3056	int		error = 0;
3057	int		ip1_flags = 0;
3058	int		ip2_flags = 0;
3059	int		dp2_flags = 0;
3060
3061	/* Swap inode number for dirent in first parent */
3062	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3063	if (error)
3064		goto out_trans_abort;
3065
3066	/* Swap inode number for dirent in second parent */
3067	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3068	if (error)
3069		goto out_trans_abort;
3070
3071	/*
3072	 * If we're renaming one or more directories across different parents,
3073	 * update the respective ".." entries (and link counts) to match the new
3074	 * parents.
3075	 */
3076	if (dp1 != dp2) {
3077		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3078
3079		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3080			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3081						dp1->i_ino, spaceres);
3082			if (error)
3083				goto out_trans_abort;
3084
3085			/* transfer ip2 ".." reference to dp1 */
3086			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3087				error = xfs_droplink(tp, dp2);
3088				if (error)
3089					goto out_trans_abort;
3090				xfs_bumplink(tp, dp1);
3091			}
3092
3093			/*
3094			 * Although ip1 isn't changed here, userspace needs
3095			 * to be warned about the change, so that applications
3096			 * relying on it (like backup ones), will properly
3097			 * notify the change
3098			 */
3099			ip1_flags |= XFS_ICHGTIME_CHG;
3100			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3101		}
3102
3103		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3104			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3105						dp2->i_ino, spaceres);
3106			if (error)
3107				goto out_trans_abort;
3108
3109			/* transfer ip1 ".." reference to dp2 */
3110			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3111				error = xfs_droplink(tp, dp1);
3112				if (error)
3113					goto out_trans_abort;
3114				xfs_bumplink(tp, dp2);
3115			}
3116
3117			/*
3118			 * Although ip2 isn't changed here, userspace needs
3119			 * to be warned about the change, so that applications
3120			 * relying on it (like backup ones), will properly
3121			 * notify the change
3122			 */
3123			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3124			ip2_flags |= XFS_ICHGTIME_CHG;
3125		}
3126	}
3127
3128	if (ip1_flags) {
3129		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3130		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3131	}
3132	if (ip2_flags) {
3133		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3134		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3135	}
3136	if (dp2_flags) {
3137		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3138		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3139	}
3140	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3141	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3142	return xfs_finish_rename(tp);
3143
3144out_trans_abort:
3145	xfs_trans_cancel(tp);
3146	return error;
3147}
3148
3149/*
3150 * xfs_rename_alloc_whiteout()
3151 *
3152 * Return a referenced, unlinked, unlocked inode that that can be used as a
3153 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3154 * crash between allocating the inode and linking it into the rename transaction
3155 * recovery will free the inode and we won't leak it.
3156 */
3157static int
3158xfs_rename_alloc_whiteout(
 
3159	struct xfs_inode	*dp,
3160	struct xfs_inode	**wip)
3161{
3162	struct xfs_inode	*tmpfile;
3163	int			error;
3164
3165	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
 
3166	if (error)
3167		return error;
3168
3169	/*
3170	 * Prepare the tmpfile inode as if it were created through the VFS.
3171	 * Complete the inode setup and flag it as linkable.  nlink is already
3172	 * zero, so we can skip the drop_nlink.
3173	 */
3174	xfs_setup_iops(tmpfile);
3175	xfs_finish_inode_setup(tmpfile);
3176	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3177
3178	*wip = tmpfile;
3179	return 0;
3180}
3181
3182/*
3183 * xfs_rename
3184 */
3185int
3186xfs_rename(
 
3187	struct xfs_inode	*src_dp,
3188	struct xfs_name		*src_name,
3189	struct xfs_inode	*src_ip,
3190	struct xfs_inode	*target_dp,
3191	struct xfs_name		*target_name,
3192	struct xfs_inode	*target_ip,
3193	unsigned int		flags)
3194{
3195	struct xfs_mount	*mp = src_dp->i_mount;
3196	struct xfs_trans	*tp;
3197	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3198	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 
3199	int			num_inodes = __XFS_SORT_INODES;
3200	bool			new_parent = (src_dp != target_dp);
3201	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3202	int			spaceres;
3203	int			error;
3204
3205	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3206
3207	if ((flags & RENAME_EXCHANGE) && !target_ip)
3208		return -EINVAL;
3209
3210	/*
3211	 * If we are doing a whiteout operation, allocate the whiteout inode
3212	 * we will be placing at the target and ensure the type is set
3213	 * appropriately.
3214	 */
3215	if (flags & RENAME_WHITEOUT) {
3216		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3217		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3218		if (error)
3219			return error;
3220
3221		/* setup target dirent info as whiteout */
3222		src_name->type = XFS_DIR3_FT_CHRDEV;
3223	}
3224
3225	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3226				inodes, &num_inodes);
3227
3228	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3229	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3230	if (error == -ENOSPC) {
3231		spaceres = 0;
3232		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3233				&tp);
3234	}
3235	if (error)
3236		goto out_release_wip;
3237
3238	/*
3239	 * Attach the dquots to the inodes
3240	 */
3241	error = xfs_qm_vop_rename_dqattach(inodes);
3242	if (error)
3243		goto out_trans_cancel;
3244
3245	/*
3246	 * Lock all the participating inodes. Depending upon whether
3247	 * the target_name exists in the target directory, and
3248	 * whether the target directory is the same as the source
3249	 * directory, we can lock from 2 to 4 inodes.
3250	 */
3251	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3252
3253	/*
3254	 * Join all the inodes to the transaction. From this point on,
3255	 * we can rely on either trans_commit or trans_cancel to unlock
3256	 * them.
3257	 */
3258	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3259	if (new_parent)
3260		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3261	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3262	if (target_ip)
3263		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3264	if (wip)
3265		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3266
3267	/*
3268	 * If we are using project inheritance, we only allow renames
3269	 * into our tree when the project IDs are the same; else the
3270	 * tree quota mechanism would be circumvented.
3271	 */
3272	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3273		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3274		error = -EXDEV;
3275		goto out_trans_cancel;
3276	}
3277
3278	/* RENAME_EXCHANGE is unique from here on. */
3279	if (flags & RENAME_EXCHANGE)
3280		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3281					target_dp, target_name, target_ip,
3282					spaceres);
3283
3284	/*
3285	 * Check for expected errors before we dirty the transaction
3286	 * so we can return an error without a transaction abort.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287	 */
3288	if (target_ip == NULL) {
3289		/*
3290		 * If there's no space reservation, check the entry will
3291		 * fit before actually inserting it.
3292		 */
3293		if (!spaceres) {
3294			error = xfs_dir_canenter(tp, target_dp, target_name);
3295			if (error)
3296				goto out_trans_cancel;
 
 
 
 
 
 
3297		}
3298	} else {
3299		/*
3300		 * If target exists and it's a directory, check that whether
3301		 * it can be destroyed.
3302		 */
3303		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3304		    (!xfs_dir_isempty(target_ip) ||
3305		     (VFS_I(target_ip)->i_nlink > 2))) {
3306			error = -EEXIST;
3307			goto out_trans_cancel;
3308		}
3309	}
3310
3311	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312	 * Directory entry creation below may acquire the AGF. Remove
3313	 * the whiteout from the unlinked list first to preserve correct
3314	 * AGI/AGF locking order. This dirties the transaction so failures
3315	 * after this point will abort and log recovery will clean up the
3316	 * mess.
3317	 *
3318	 * For whiteouts, we need to bump the link count on the whiteout
3319	 * inode. After this point, we have a real link, clear the tmpfile
3320	 * state flag from the inode so it doesn't accidentally get misused
3321	 * in future.
3322	 */
3323	if (wip) {
 
 
3324		ASSERT(VFS_I(wip)->i_nlink == 0);
3325		error = xfs_iunlink_remove(tp, wip);
 
 
 
3326		if (error)
3327			goto out_trans_cancel;
3328
3329		xfs_bumplink(tp, wip);
3330		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3331		VFS_I(wip)->i_state &= ~I_LINKABLE;
3332	}
3333
3334	/*
3335	 * Set up the target.
3336	 */
3337	if (target_ip == NULL) {
3338		/*
3339		 * If target does not exist and the rename crosses
3340		 * directories, adjust the target directory link count
3341		 * to account for the ".." reference from the new entry.
3342		 */
3343		error = xfs_dir_createname(tp, target_dp, target_name,
3344					   src_ip->i_ino, spaceres);
3345		if (error)
3346			goto out_trans_cancel;
3347
3348		xfs_trans_ichgtime(tp, target_dp,
3349					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3350
3351		if (new_parent && src_is_directory) {
3352			xfs_bumplink(tp, target_dp);
3353		}
3354	} else { /* target_ip != NULL */
3355		/*
3356		 * Link the source inode under the target name.
3357		 * If the source inode is a directory and we are moving
3358		 * it across directories, its ".." entry will be
3359		 * inconsistent until we replace that down below.
3360		 *
3361		 * In case there is already an entry with the same
3362		 * name at the destination directory, remove it first.
3363		 */
3364		error = xfs_dir_replace(tp, target_dp, target_name,
3365					src_ip->i_ino, spaceres);
3366		if (error)
3367			goto out_trans_cancel;
3368
3369		xfs_trans_ichgtime(tp, target_dp,
3370					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3371
3372		/*
3373		 * Decrement the link count on the target since the target
3374		 * dir no longer points to it.
3375		 */
3376		error = xfs_droplink(tp, target_ip);
3377		if (error)
3378			goto out_trans_cancel;
3379
3380		if (src_is_directory) {
3381			/*
3382			 * Drop the link from the old "." entry.
3383			 */
3384			error = xfs_droplink(tp, target_ip);
3385			if (error)
3386				goto out_trans_cancel;
3387		}
3388	} /* target_ip != NULL */
3389
3390	/*
3391	 * Remove the source.
3392	 */
3393	if (new_parent && src_is_directory) {
3394		/*
3395		 * Rewrite the ".." entry to point to the new
3396		 * directory.
3397		 */
3398		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3399					target_dp->i_ino, spaceres);
3400		ASSERT(error != -EEXIST);
3401		if (error)
3402			goto out_trans_cancel;
3403	}
3404
3405	/*
3406	 * We always want to hit the ctime on the source inode.
3407	 *
3408	 * This isn't strictly required by the standards since the source
3409	 * inode isn't really being changed, but old unix file systems did
3410	 * it and some incremental backup programs won't work without it.
3411	 */
3412	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3413	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3414
3415	/*
3416	 * Adjust the link count on src_dp.  This is necessary when
3417	 * renaming a directory, either within one parent when
3418	 * the target existed, or across two parent directories.
3419	 */
3420	if (src_is_directory && (new_parent || target_ip != NULL)) {
3421
3422		/*
3423		 * Decrement link count on src_directory since the
3424		 * entry that's moved no longer points to it.
3425		 */
3426		error = xfs_droplink(tp, src_dp);
3427		if (error)
3428			goto out_trans_cancel;
3429	}
3430
3431	/*
3432	 * For whiteouts, we only need to update the source dirent with the
3433	 * inode number of the whiteout inode rather than removing it
3434	 * altogether.
3435	 */
3436	if (wip) {
3437		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3438					spaceres);
3439	} else
 
 
 
 
 
3440		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3441					   spaceres);
 
 
3442	if (error)
3443		goto out_trans_cancel;
3444
3445	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3446	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3447	if (new_parent)
3448		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3449
3450	error = xfs_finish_rename(tp);
3451	if (wip)
3452		xfs_irele(wip);
3453	return error;
3454
3455out_trans_cancel:
3456	xfs_trans_cancel(tp);
3457out_release_wip:
3458	if (wip)
3459		xfs_irele(wip);
3460	return error;
3461}
3462
3463STATIC int
3464xfs_iflush_cluster(
3465	struct xfs_inode	*ip,
3466	struct xfs_buf		*bp)
3467{
3468	struct xfs_mount	*mp = ip->i_mount;
3469	struct xfs_perag	*pag;
3470	unsigned long		first_index, mask;
3471	int			cilist_size;
3472	struct xfs_inode	**cilist;
3473	struct xfs_inode	*cip;
3474	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3475	int			nr_found;
3476	int			clcount = 0;
3477	int			i;
3478
3479	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3480
3481	cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3482	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3483	if (!cilist)
3484		goto out_put;
3485
3486	mask = ~(igeo->inodes_per_cluster - 1);
3487	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3488	rcu_read_lock();
3489	/* really need a gang lookup range call here */
3490	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3491					first_index, igeo->inodes_per_cluster);
3492	if (nr_found == 0)
3493		goto out_free;
3494
3495	for (i = 0; i < nr_found; i++) {
3496		cip = cilist[i];
3497		if (cip == ip)
3498			continue;
3499
3500		/*
3501		 * because this is an RCU protected lookup, we could find a
3502		 * recently freed or even reallocated inode during the lookup.
3503		 * We need to check under the i_flags_lock for a valid inode
3504		 * here. Skip it if it is not valid or the wrong inode.
3505		 */
3506		spin_lock(&cip->i_flags_lock);
3507		if (!cip->i_ino ||
3508		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3509			spin_unlock(&cip->i_flags_lock);
3510			continue;
3511		}
3512
3513		/*
3514		 * Once we fall off the end of the cluster, no point checking
3515		 * any more inodes in the list because they will also all be
3516		 * outside the cluster.
3517		 */
3518		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3519			spin_unlock(&cip->i_flags_lock);
3520			break;
3521		}
3522		spin_unlock(&cip->i_flags_lock);
3523
3524		/*
3525		 * Do an un-protected check to see if the inode is dirty and
3526		 * is a candidate for flushing.  These checks will be repeated
3527		 * later after the appropriate locks are acquired.
3528		 */
3529		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3530			continue;
3531
3532		/*
3533		 * Try to get locks.  If any are unavailable or it is pinned,
3534		 * then this inode cannot be flushed and is skipped.
3535		 */
3536
3537		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3538			continue;
3539		if (!xfs_iflock_nowait(cip)) {
3540			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3541			continue;
3542		}
3543		if (xfs_ipincount(cip)) {
3544			xfs_ifunlock(cip);
3545			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3546			continue;
3547		}
3548
3549
3550		/*
3551		 * Check the inode number again, just to be certain we are not
3552		 * racing with freeing in xfs_reclaim_inode(). See the comments
3553		 * in that function for more information as to why the initial
3554		 * check is not sufficient.
3555		 */
3556		if (!cip->i_ino) {
3557			xfs_ifunlock(cip);
3558			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3559			continue;
3560		}
3561
3562		/*
3563		 * arriving here means that this inode can be flushed.  First
3564		 * re-check that it's dirty before flushing.
3565		 */
3566		if (!xfs_inode_clean(cip)) {
3567			int	error;
3568			error = xfs_iflush_int(cip, bp);
3569			if (error) {
3570				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3571				goto cluster_corrupt_out;
3572			}
3573			clcount++;
3574		} else {
3575			xfs_ifunlock(cip);
3576		}
3577		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3578	}
3579
3580	if (clcount) {
3581		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3582		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3583	}
3584
3585out_free:
3586	rcu_read_unlock();
3587	kmem_free(cilist);
3588out_put:
3589	xfs_perag_put(pag);
3590	return 0;
3591
3592
3593cluster_corrupt_out:
3594	/*
3595	 * Corruption detected in the clustering loop.  Invalidate the
3596	 * inode buffer and shut down the filesystem.
3597	 */
3598	rcu_read_unlock();
3599
3600	/*
3601	 * We'll always have an inode attached to the buffer for completion
3602	 * process by the time we are called from xfs_iflush(). Hence we have
3603	 * always need to do IO completion processing to abort the inodes
3604	 * attached to the buffer.  handle them just like the shutdown case in
3605	 * xfs_buf_submit().
3606	 */
3607	ASSERT(bp->b_iodone);
3608	bp->b_flags |= XBF_ASYNC;
3609	bp->b_flags &= ~XBF_DONE;
3610	xfs_buf_stale(bp);
3611	xfs_buf_ioerror(bp, -EIO);
3612	xfs_buf_ioend(bp);
3613
3614	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3615
3616	/* abort the corrupt inode, as it was not attached to the buffer */
3617	xfs_iflush_abort(cip, false);
3618	kmem_free(cilist);
3619	xfs_perag_put(pag);
3620	return -EFSCORRUPTED;
3621}
3622
3623/*
3624 * Flush dirty inode metadata into the backing buffer.
3625 *
3626 * The caller must have the inode lock and the inode flush lock held.  The
3627 * inode lock will still be held upon return to the caller, and the inode
3628 * flush lock will be released after the inode has reached the disk.
3629 *
3630 * The caller must write out the buffer returned in *bpp and release it.
3631 */
3632int
3633xfs_iflush(
3634	struct xfs_inode	*ip,
3635	struct xfs_buf		**bpp)
3636{
3637	struct xfs_mount	*mp = ip->i_mount;
3638	struct xfs_buf		*bp = NULL;
3639	struct xfs_dinode	*dip;
3640	int			error;
3641
3642	XFS_STATS_INC(mp, xs_iflush_count);
3643
3644	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3645	ASSERT(xfs_isiflocked(ip));
3646	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3647	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3648
3649	*bpp = NULL;
3650
3651	xfs_iunpin_wait(ip);
3652
3653	/*
3654	 * For stale inodes we cannot rely on the backing buffer remaining
3655	 * stale in cache for the remaining life of the stale inode and so
3656	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3657	 * inodes below. We have to check this after ensuring the inode is
3658	 * unpinned so that it is safe to reclaim the stale inode after the
3659	 * flush call.
3660	 */
3661	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3662		xfs_ifunlock(ip);
3663		return 0;
3664	}
3665
3666	/*
3667	 * This may have been unpinned because the filesystem is shutting
3668	 * down forcibly. If that's the case we must not write this inode
3669	 * to disk, because the log record didn't make it to disk.
3670	 *
3671	 * We also have to remove the log item from the AIL in this case,
3672	 * as we wait for an empty AIL as part of the unmount process.
3673	 */
3674	if (XFS_FORCED_SHUTDOWN(mp)) {
3675		error = -EIO;
3676		goto abort_out;
3677	}
3678
3679	/*
3680	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3681	 * operation here, so we may get  an EAGAIN error. In that case, we
3682	 * simply want to return with the inode still dirty.
3683	 *
3684	 * If we get any other error, we effectively have a corruption situation
3685	 * and we cannot flush the inode, so we treat it the same as failing
3686	 * xfs_iflush_int().
3687	 */
3688	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3689			       0);
3690	if (error == -EAGAIN) {
3691		xfs_ifunlock(ip);
3692		return error;
3693	}
3694	if (error)
3695		goto corrupt_out;
3696
3697	/*
3698	 * First flush out the inode that xfs_iflush was called with.
3699	 */
3700	error = xfs_iflush_int(ip, bp);
3701	if (error)
3702		goto corrupt_out;
3703
3704	/*
3705	 * If the buffer is pinned then push on the log now so we won't
3706	 * get stuck waiting in the write for too long.
3707	 */
3708	if (xfs_buf_ispinned(bp))
3709		xfs_log_force(mp, 0);
3710
3711	/*
3712	 * inode clustering: try to gather other inodes into this write
3713	 *
3714	 * Note: Any error during clustering will result in the filesystem
3715	 * being shut down and completion callbacks run on the cluster buffer.
3716	 * As we have already flushed and attached this inode to the buffer,
3717	 * it has already been aborted and released by xfs_iflush_cluster() and
3718	 * so we have no further error handling to do here.
3719	 */
3720	error = xfs_iflush_cluster(ip, bp);
3721	if (error)
3722		return error;
3723
3724	*bpp = bp;
3725	return 0;
3726
3727corrupt_out:
3728	if (bp)
3729		xfs_buf_relse(bp);
3730	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3731abort_out:
3732	/* abort the corrupt inode, as it was not attached to the buffer */
3733	xfs_iflush_abort(ip, false);
3734	return error;
3735}
3736
3737/*
3738 * If there are inline format data / attr forks attached to this inode,
3739 * make sure they're not corrupt.
3740 */
3741bool
3742xfs_inode_verify_forks(
3743	struct xfs_inode	*ip)
3744{
3745	struct xfs_ifork	*ifp;
3746	xfs_failaddr_t		fa;
3747
3748	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3749	if (fa) {
3750		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3751		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3752				ifp->if_u1.if_data, ifp->if_bytes, fa);
3753		return false;
3754	}
3755
3756	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3757	if (fa) {
3758		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3759		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3760				ifp ? ifp->if_u1.if_data : NULL,
3761				ifp ? ifp->if_bytes : 0, fa);
3762		return false;
3763	}
3764	return true;
3765}
3766
3767STATIC int
3768xfs_iflush_int(
3769	struct xfs_inode	*ip,
3770	struct xfs_buf		*bp)
3771{
3772	struct xfs_inode_log_item *iip = ip->i_itemp;
3773	struct xfs_dinode	*dip;
3774	struct xfs_mount	*mp = ip->i_mount;
 
3775
3776	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3777	ASSERT(xfs_isiflocked(ip));
3778	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3779	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3780	ASSERT(iip != NULL && iip->ili_fields != 0);
3781	ASSERT(ip->i_d.di_version > 1);
3782
3783	/* set *dip = inode's place in the buffer */
3784	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3785
 
 
 
 
 
 
 
3786	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3787			       mp, XFS_ERRTAG_IFLUSH_1)) {
3788		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3789			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3790			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3791		goto corrupt_out;
3792	}
3793	if (S_ISREG(VFS_I(ip)->i_mode)) {
3794		if (XFS_TEST_ERROR(
3795		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3796		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3797		    mp, XFS_ERRTAG_IFLUSH_3)) {
3798			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3799				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3800				__func__, ip->i_ino, ip);
3801			goto corrupt_out;
3802		}
3803	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3804		if (XFS_TEST_ERROR(
3805		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3806		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3807		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3808		    mp, XFS_ERRTAG_IFLUSH_4)) {
3809			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3810				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3811				__func__, ip->i_ino, ip);
3812			goto corrupt_out;
3813		}
3814	}
3815	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3816				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3817		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818			"%s: detected corrupt incore inode %Lu, "
3819			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3820			__func__, ip->i_ino,
3821			ip->i_d.di_nextents + ip->i_d.di_anextents,
3822			ip->i_d.di_nblocks, ip);
3823		goto corrupt_out;
3824	}
3825	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3826				mp, XFS_ERRTAG_IFLUSH_6)) {
3827		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3828			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3829			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3830		goto corrupt_out;
3831	}
3832
3833	/*
3834	 * Inode item log recovery for v2 inodes are dependent on the
3835	 * di_flushiter count for correct sequencing. We bump the flush
3836	 * iteration count so we can detect flushes which postdate a log record
3837	 * during recovery. This is redundant as we now log every change and
3838	 * hence this can't happen but we need to still do it to ensure
3839	 * backwards compatibility with old kernels that predate logging all
3840	 * inode changes.
3841	 */
3842	if (ip->i_d.di_version < 3)
3843		ip->i_d.di_flushiter++;
3844
3845	/* Check the inline fork data before we write out. */
3846	if (!xfs_inode_verify_forks(ip))
3847		goto corrupt_out;
 
 
 
 
 
 
 
3848
3849	/*
3850	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3851	 * copy out the core of the inode, because if the inode is dirty at all
3852	 * the core must be.
3853	 */
3854	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3855
3856	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3857	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3858		ip->i_d.di_flushiter = 0;
 
 
3859
3860	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3861	if (XFS_IFORK_Q(ip))
3862		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3863	xfs_inobp_check(mp, bp);
3864
3865	/*
3866	 * We've recorded everything logged in the inode, so we'd like to clear
3867	 * the ili_fields bits so we don't log and flush things unnecessarily.
3868	 * However, we can't stop logging all this information until the data
3869	 * we've copied into the disk buffer is written to disk.  If we did we
3870	 * might overwrite the copy of the inode in the log with all the data
3871	 * after re-logging only part of it, and in the face of a crash we
3872	 * wouldn't have all the data we need to recover.
3873	 *
3874	 * What we do is move the bits to the ili_last_fields field.  When
3875	 * logging the inode, these bits are moved back to the ili_fields field.
3876	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3877	 * know that the information those bits represent is permanently on
3878	 * disk.  As long as the flush completes before the inode is logged
3879	 * again, then both ili_fields and ili_last_fields will be cleared.
3880	 *
3881	 * We can play with the ili_fields bits here, because the inode lock
3882	 * must be held exclusively in order to set bits there and the flush
3883	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3884	 * done routine can tell whether or not to look in the AIL.  Also, store
3885	 * the current LSN of the inode so that we can tell whether the item has
3886	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3887	 * need the AIL lock, because it is a 64 bit value that cannot be read
3888	 * atomically.
3889	 */
 
 
 
3890	iip->ili_last_fields = iip->ili_fields;
3891	iip->ili_fields = 0;
3892	iip->ili_fsync_fields = 0;
3893	iip->ili_logged = 1;
3894
 
 
 
 
3895	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3896				&iip->ili_item.li_lsn);
3897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898	/*
3899	 * Attach the function xfs_iflush_done to the inode's
3900	 * buffer.  This will remove the inode from the AIL
3901	 * and unlock the inode's flush lock when the inode is
3902	 * completely written to disk.
3903	 */
3904	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
 
 
3905
3906	/* generate the checksum. */
3907	xfs_dinode_calc_crc(mp, dip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908
3909	ASSERT(!list_empty(&bp->b_li_list));
3910	ASSERT(bp->b_iodone != NULL);
 
 
 
3911	return 0;
3912
3913corrupt_out:
3914	return -EFSCORRUPTED;
3915}
3916
3917/* Release an inode. */
3918void
3919xfs_irele(
3920	struct xfs_inode	*ip)
3921{
3922	trace_xfs_irele(ip, _RET_IP_);
3923	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_ialloc.h"
  24#include "xfs_bmap.h"
  25#include "xfs_bmap_util.h"
  26#include "xfs_errortag.h"
  27#include "xfs_error.h"
  28#include "xfs_quota.h"
  29#include "xfs_filestream.h"
  30#include "xfs_trace.h"
  31#include "xfs_icache.h"
  32#include "xfs_symlink.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_log.h"
  35#include "xfs_bmap_btree.h"
  36#include "xfs_reflink.h"
  37#include "xfs_ag.h"
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
 
  47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  48STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  49	struct xfs_inode *);
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56	struct xfs_inode	*ip)
  57{
  58	/*
  59	 * No point in aligning allocations if we need to COW to actually
  60	 * write to them.
  61	 */
  62	if (xfs_is_always_cow_inode(ip))
  63		return 0;
  64	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  65		return ip->i_extsize;
  66	if (XFS_IS_REALTIME_INODE(ip))
  67		return ip->i_mount->m_sb.sb_rextsize;
  68	return 0;
  69}
  70
  71/*
  72 * Helper function to extract CoW extent size hint from inode.
  73 * Between the extent size hint and the CoW extent size hint, we
  74 * return the greater of the two.  If the value is zero (automatic),
  75 * use the default size.
  76 */
  77xfs_extlen_t
  78xfs_get_cowextsz_hint(
  79	struct xfs_inode	*ip)
  80{
  81	xfs_extlen_t		a, b;
  82
  83	a = 0;
  84	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  85		a = ip->i_cowextsize;
  86	b = xfs_get_extsz_hint(ip);
  87
  88	a = max(a, b);
  89	if (a == 0)
  90		return XFS_DEFAULT_COWEXTSZ_HINT;
  91	return a;
  92}
  93
  94/*
  95 * These two are wrapper routines around the xfs_ilock() routine used to
  96 * centralize some grungy code.  They are used in places that wish to lock the
  97 * inode solely for reading the extents.  The reason these places can't just
  98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  99 * bringing in of the extents from disk for a file in b-tree format.  If the
 100 * inode is in b-tree format, then we need to lock the inode exclusively until
 101 * the extents are read in.  Locking it exclusively all the time would limit
 102 * our parallelism unnecessarily, though.  What we do instead is check to see
 103 * if the extents have been read in yet, and only lock the inode exclusively
 104 * if they have not.
 105 *
 106 * The functions return a value which should be given to the corresponding
 107 * xfs_iunlock() call.
 108 */
 109uint
 110xfs_ilock_data_map_shared(
 111	struct xfs_inode	*ip)
 112{
 113	uint			lock_mode = XFS_ILOCK_SHARED;
 114
 115	if (xfs_need_iread_extents(&ip->i_df))
 
 116		lock_mode = XFS_ILOCK_EXCL;
 117	xfs_ilock(ip, lock_mode);
 118	return lock_mode;
 119}
 120
 121uint
 122xfs_ilock_attr_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 126
 127	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
 
 128		lock_mode = XFS_ILOCK_EXCL;
 129	xfs_ilock(ip, lock_mode);
 130	return lock_mode;
 131}
 132
 133/*
 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 135 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 136 * various combinations of the locks to be obtained.
 137 *
 138 * The 3 locks should always be ordered so that the IO lock is obtained first,
 139 * the mmap lock second and the ilock last in order to prevent deadlock.
 140 *
 141 * Basic locking order:
 142 *
 143 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 144 *
 145 * mmap_lock locking order:
 146 *
 147 * i_rwsem -> page lock -> mmap_lock
 148 * mmap_lock -> i_mmap_lock -> page_lock
 149 *
 150 * The difference in mmap_lock locking order mean that we cannot hold the
 151 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 152 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
 153 * in get_user_pages() to map the user pages into the kernel address space for
 154 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 155 * page faults already hold the mmap_lock.
 156 *
 157 * Hence to serialise fully against both syscall and mmap based IO, we need to
 158 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 159 * taken in places where we need to invalidate the page cache in a race
 160 * free manner (e.g. truncate, hole punch and other extent manipulation
 161 * functions).
 162 */
 163void
 164xfs_ilock(
 165	xfs_inode_t		*ip,
 166	uint			lock_flags)
 167{
 168	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 169
 170	/*
 171	 * You can't set both SHARED and EXCL for the same lock,
 172	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 173	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 174	 */
 175	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 176	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 177	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 178	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 179	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 180	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 181	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 182
 183	if (lock_flags & XFS_IOLOCK_EXCL) {
 184		down_write_nested(&VFS_I(ip)->i_rwsem,
 185				  XFS_IOLOCK_DEP(lock_flags));
 186	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 187		down_read_nested(&VFS_I(ip)->i_rwsem,
 188				 XFS_IOLOCK_DEP(lock_flags));
 189	}
 190
 191	if (lock_flags & XFS_MMAPLOCK_EXCL)
 192		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 193	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 194		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195
 196	if (lock_flags & XFS_ILOCK_EXCL)
 197		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 198	else if (lock_flags & XFS_ILOCK_SHARED)
 199		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200}
 201
 202/*
 203 * This is just like xfs_ilock(), except that the caller
 204 * is guaranteed not to sleep.  It returns 1 if it gets
 205 * the requested locks and 0 otherwise.  If the IO lock is
 206 * obtained but the inode lock cannot be, then the IO lock
 207 * is dropped before returning.
 208 *
 209 * ip -- the inode being locked
 210 * lock_flags -- this parameter indicates the inode's locks to be
 211 *       to be locked.  See the comment for xfs_ilock() for a list
 212 *	 of valid values.
 213 */
 214int
 215xfs_ilock_nowait(
 216	xfs_inode_t		*ip,
 217	uint			lock_flags)
 218{
 219	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 220
 221	/*
 222	 * You can't set both SHARED and EXCL for the same lock,
 223	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 224	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 225	 */
 226	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 227	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 228	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 229	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 230	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 231	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 232	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 233
 234	if (lock_flags & XFS_IOLOCK_EXCL) {
 235		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 236			goto out;
 237	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 238		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 239			goto out;
 240	}
 241
 242	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 243		if (!mrtryupdate(&ip->i_mmaplock))
 244			goto out_undo_iolock;
 245	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 246		if (!mrtryaccess(&ip->i_mmaplock))
 247			goto out_undo_iolock;
 248	}
 249
 250	if (lock_flags & XFS_ILOCK_EXCL) {
 251		if (!mrtryupdate(&ip->i_lock))
 252			goto out_undo_mmaplock;
 253	} else if (lock_flags & XFS_ILOCK_SHARED) {
 254		if (!mrtryaccess(&ip->i_lock))
 255			goto out_undo_mmaplock;
 256	}
 257	return 1;
 258
 259out_undo_mmaplock:
 260	if (lock_flags & XFS_MMAPLOCK_EXCL)
 261		mrunlock_excl(&ip->i_mmaplock);
 262	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 263		mrunlock_shared(&ip->i_mmaplock);
 264out_undo_iolock:
 265	if (lock_flags & XFS_IOLOCK_EXCL)
 266		up_write(&VFS_I(ip)->i_rwsem);
 267	else if (lock_flags & XFS_IOLOCK_SHARED)
 268		up_read(&VFS_I(ip)->i_rwsem);
 269out:
 270	return 0;
 271}
 272
 273/*
 274 * xfs_iunlock() is used to drop the inode locks acquired with
 275 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 276 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 277 * that we know which locks to drop.
 278 *
 279 * ip -- the inode being unlocked
 280 * lock_flags -- this parameter indicates the inode's locks to be
 281 *       to be unlocked.  See the comment for xfs_ilock() for a list
 282 *	 of valid values for this parameter.
 283 *
 284 */
 285void
 286xfs_iunlock(
 287	xfs_inode_t		*ip,
 288	uint			lock_flags)
 289{
 290	/*
 291	 * You can't set both SHARED and EXCL for the same lock,
 292	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 293	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 294	 */
 295	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 296	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 297	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 298	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 299	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 300	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 301	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 302	ASSERT(lock_flags != 0);
 303
 304	if (lock_flags & XFS_IOLOCK_EXCL)
 305		up_write(&VFS_I(ip)->i_rwsem);
 306	else if (lock_flags & XFS_IOLOCK_SHARED)
 307		up_read(&VFS_I(ip)->i_rwsem);
 308
 309	if (lock_flags & XFS_MMAPLOCK_EXCL)
 310		mrunlock_excl(&ip->i_mmaplock);
 311	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 312		mrunlock_shared(&ip->i_mmaplock);
 313
 314	if (lock_flags & XFS_ILOCK_EXCL)
 315		mrunlock_excl(&ip->i_lock);
 316	else if (lock_flags & XFS_ILOCK_SHARED)
 317		mrunlock_shared(&ip->i_lock);
 318
 319	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 320}
 321
 322/*
 323 * give up write locks.  the i/o lock cannot be held nested
 324 * if it is being demoted.
 325 */
 326void
 327xfs_ilock_demote(
 328	xfs_inode_t		*ip,
 329	uint			lock_flags)
 330{
 331	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 332	ASSERT((lock_flags &
 333		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 334
 335	if (lock_flags & XFS_ILOCK_EXCL)
 336		mrdemote(&ip->i_lock);
 337	if (lock_flags & XFS_MMAPLOCK_EXCL)
 338		mrdemote(&ip->i_mmaplock);
 339	if (lock_flags & XFS_IOLOCK_EXCL)
 340		downgrade_write(&VFS_I(ip)->i_rwsem);
 341
 342	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 343}
 344
 345#if defined(DEBUG) || defined(XFS_WARN)
 346int
 347xfs_isilocked(
 348	xfs_inode_t		*ip,
 349	uint			lock_flags)
 350{
 351	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 352		if (!(lock_flags & XFS_ILOCK_SHARED))
 353			return !!ip->i_lock.mr_writer;
 354		return rwsem_is_locked(&ip->i_lock.mr_lock);
 355	}
 356
 357	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 358		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 359			return !!ip->i_mmaplock.mr_writer;
 360		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 361	}
 362
 363	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 364		if (!(lock_flags & XFS_IOLOCK_SHARED))
 365			return !debug_locks ||
 366				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 367		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 368	}
 369
 370	ASSERT(0);
 371	return 0;
 372}
 373#endif
 374
 375/*
 376 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 377 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 378 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 379 * errors and warnings.
 380 */
 381#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 382static bool
 383xfs_lockdep_subclass_ok(
 384	int subclass)
 385{
 386	return subclass < MAX_LOCKDEP_SUBCLASSES;
 387}
 388#else
 389#define xfs_lockdep_subclass_ok(subclass)	(true)
 390#endif
 391
 392/*
 393 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 394 * value. This can be called for any type of inode lock combination, including
 395 * parent locking. Care must be taken to ensure we don't overrun the subclass
 396 * storage fields in the class mask we build.
 397 */
 398static inline int
 399xfs_lock_inumorder(int lock_mode, int subclass)
 400{
 401	int	class = 0;
 402
 403	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 404			      XFS_ILOCK_RTSUM)));
 405	ASSERT(xfs_lockdep_subclass_ok(subclass));
 406
 407	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 408		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 409		class += subclass << XFS_IOLOCK_SHIFT;
 410	}
 411
 412	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 413		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 414		class += subclass << XFS_MMAPLOCK_SHIFT;
 415	}
 416
 417	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_ILOCK_SHIFT;
 420	}
 421
 422	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 423}
 424
 425/*
 426 * The following routine will lock n inodes in exclusive mode.  We assume the
 427 * caller calls us with the inodes in i_ino order.
 428 *
 429 * We need to detect deadlock where an inode that we lock is in the AIL and we
 430 * start waiting for another inode that is locked by a thread in a long running
 431 * transaction (such as truncate). This can result in deadlock since the long
 432 * running trans might need to wait for the inode we just locked in order to
 433 * push the tail and free space in the log.
 434 *
 435 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 436 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 437 * lock more than one at a time, lockdep will report false positives saying we
 438 * have violated locking orders.
 439 */
 440static void
 441xfs_lock_inodes(
 442	struct xfs_inode	**ips,
 443	int			inodes,
 444	uint			lock_mode)
 445{
 446	int			attempts = 0, i, j, try_lock;
 447	struct xfs_log_item	*lp;
 448
 449	/*
 450	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 451	 * support an arbitrary depth of locking here, but absolute limits on
 452	 * inodes depend on the type of locking and the limits placed by
 453	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 454	 * the asserts.
 455	 */
 456	ASSERT(ips && inodes >= 2 && inodes <= 5);
 457	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 458			    XFS_ILOCK_EXCL));
 459	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 460			      XFS_ILOCK_SHARED)));
 461	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 462		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 463	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 464		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 465
 466	if (lock_mode & XFS_IOLOCK_EXCL) {
 467		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 468	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 469		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 470
 471	try_lock = 0;
 472	i = 0;
 473again:
 474	for (; i < inodes; i++) {
 475		ASSERT(ips[i]);
 476
 477		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 478			continue;
 479
 480		/*
 481		 * If try_lock is not set yet, make sure all locked inodes are
 482		 * not in the AIL.  If any are, set try_lock to be used later.
 483		 */
 484		if (!try_lock) {
 485			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 486				lp = &ips[j]->i_itemp->ili_item;
 487				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 488					try_lock++;
 489			}
 490		}
 491
 492		/*
 493		 * If any of the previous locks we have locked is in the AIL,
 494		 * we must TRY to get the second and subsequent locks. If
 495		 * we can't get any, we must release all we have
 496		 * and try again.
 497		 */
 498		if (!try_lock) {
 499			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 500			continue;
 501		}
 502
 503		/* try_lock means we have an inode locked that is in the AIL. */
 504		ASSERT(i != 0);
 505		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 506			continue;
 507
 508		/*
 509		 * Unlock all previous guys and try again.  xfs_iunlock will try
 510		 * to push the tail if the inode is in the AIL.
 511		 */
 512		attempts++;
 513		for (j = i - 1; j >= 0; j--) {
 514			/*
 515			 * Check to see if we've already unlocked this one.  Not
 516			 * the first one going back, and the inode ptr is the
 517			 * same.
 518			 */
 519			if (j != (i - 1) && ips[j] == ips[j + 1])
 520				continue;
 521
 522			xfs_iunlock(ips[j], lock_mode);
 523		}
 524
 525		if ((attempts % 5) == 0) {
 526			delay(1); /* Don't just spin the CPU */
 527		}
 528		i = 0;
 529		try_lock = 0;
 530		goto again;
 531	}
 532}
 533
 534/*
 535 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 536 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 537 * more than one at a time, lockdep will report false positives saying we have
 538 * violated locking orders.  The iolock must be double-locked separately since
 539 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 540 * SHARED.
 541 */
 542void
 543xfs_lock_two_inodes(
 544	struct xfs_inode	*ip0,
 545	uint			ip0_mode,
 546	struct xfs_inode	*ip1,
 547	uint			ip1_mode)
 548{
 549	struct xfs_inode	*temp;
 550	uint			mode_temp;
 551	int			attempts = 0;
 552	struct xfs_log_item	*lp;
 553
 554	ASSERT(hweight32(ip0_mode) == 1);
 555	ASSERT(hweight32(ip1_mode) == 1);
 556	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 557	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 558	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566
 567	ASSERT(ip0->i_ino != ip1->i_ino);
 568
 569	if (ip0->i_ino > ip1->i_ino) {
 570		temp = ip0;
 571		ip0 = ip1;
 572		ip1 = temp;
 573		mode_temp = ip0_mode;
 574		ip0_mode = ip1_mode;
 575		ip1_mode = mode_temp;
 576	}
 577
 578 again:
 579	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 580
 581	/*
 582	 * If the first lock we have locked is in the AIL, we must TRY to get
 583	 * the second lock. If we can't get it, we must release the first one
 584	 * and try again.
 585	 */
 586	lp = &ip0->i_itemp->ili_item;
 587	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 588		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 589			xfs_iunlock(ip0, ip0_mode);
 590			if ((++attempts % 5) == 0)
 591				delay(1); /* Don't just spin the CPU */
 592			goto again;
 593		}
 594	} else {
 595		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 596	}
 597}
 598
 599uint
 600xfs_ip2xflags(
 601	struct xfs_inode	*ip)
 602{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603	uint			flags = 0;
 604
 605	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 606		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 607			flags |= FS_XFLAG_REALTIME;
 608		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 609			flags |= FS_XFLAG_PREALLOC;
 610		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 611			flags |= FS_XFLAG_IMMUTABLE;
 612		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 613			flags |= FS_XFLAG_APPEND;
 614		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 615			flags |= FS_XFLAG_SYNC;
 616		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 617			flags |= FS_XFLAG_NOATIME;
 618		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 619			flags |= FS_XFLAG_NODUMP;
 620		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 621			flags |= FS_XFLAG_RTINHERIT;
 622		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 623			flags |= FS_XFLAG_PROJINHERIT;
 624		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 625			flags |= FS_XFLAG_NOSYMLINKS;
 626		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 627			flags |= FS_XFLAG_EXTSIZE;
 628		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 629			flags |= FS_XFLAG_EXTSZINHERIT;
 630		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 631			flags |= FS_XFLAG_NODEFRAG;
 632		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 633			flags |= FS_XFLAG_FILESTREAM;
 634	}
 635
 636	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 637		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 638			flags |= FS_XFLAG_DAX;
 639		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 640			flags |= FS_XFLAG_COWEXTSIZE;
 641	}
 642
 643	if (XFS_IFORK_Q(ip))
 644		flags |= FS_XFLAG_HASATTR;
 
 645	return flags;
 646}
 647
 
 
 
 
 
 
 
 
 
 648/*
 649 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 650 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 651 * ci_name->name will point to a the actual name (caller must free) or
 652 * will be set to NULL if an exact match is found.
 653 */
 654int
 655xfs_lookup(
 656	xfs_inode_t		*dp,
 657	struct xfs_name		*name,
 658	xfs_inode_t		**ipp,
 659	struct xfs_name		*ci_name)
 660{
 661	xfs_ino_t		inum;
 662	int			error;
 663
 664	trace_xfs_lookup(dp, name);
 665
 666	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 667		return -EIO;
 668
 669	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 670	if (error)
 671		goto out_unlock;
 672
 673	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 674	if (error)
 675		goto out_free_name;
 676
 677	return 0;
 678
 679out_free_name:
 680	if (ci_name)
 681		kmem_free(ci_name->name);
 682out_unlock:
 683	*ipp = NULL;
 684	return error;
 685}
 686
 687/* Propagate di_flags from a parent inode to a child inode. */
 688static void
 689xfs_inode_inherit_flags(
 690	struct xfs_inode	*ip,
 691	const struct xfs_inode	*pip)
 692{
 693	unsigned int		di_flags = 0;
 694	xfs_failaddr_t		failaddr;
 695	umode_t			mode = VFS_I(ip)->i_mode;
 696
 697	if (S_ISDIR(mode)) {
 698		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 699			di_flags |= XFS_DIFLAG_RTINHERIT;
 700		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 701			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 702			ip->i_extsize = pip->i_extsize;
 703		}
 704		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 705			di_flags |= XFS_DIFLAG_PROJINHERIT;
 706	} else if (S_ISREG(mode)) {
 707		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 708		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
 709			di_flags |= XFS_DIFLAG_REALTIME;
 710		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 711			di_flags |= XFS_DIFLAG_EXTSIZE;
 712			ip->i_extsize = pip->i_extsize;
 713		}
 714	}
 715	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 716	    xfs_inherit_noatime)
 717		di_flags |= XFS_DIFLAG_NOATIME;
 718	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 719	    xfs_inherit_nodump)
 720		di_flags |= XFS_DIFLAG_NODUMP;
 721	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 722	    xfs_inherit_sync)
 723		di_flags |= XFS_DIFLAG_SYNC;
 724	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 725	    xfs_inherit_nosymlinks)
 726		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 727	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 728	    xfs_inherit_nodefrag)
 729		di_flags |= XFS_DIFLAG_NODEFRAG;
 730	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 731		di_flags |= XFS_DIFLAG_FILESTREAM;
 732
 733	ip->i_diflags |= di_flags;
 734
 735	/*
 736	 * Inode verifiers on older kernels only check that the extent size
 737	 * hint is an integer multiple of the rt extent size on realtime files.
 738	 * They did not check the hint alignment on a directory with both
 739	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 740	 * propagated from a directory into a new realtime file, new file
 741	 * allocations will fail due to math errors in the rt allocator and/or
 742	 * trip the verifiers.  Validate the hint settings in the new file so
 743	 * that we don't let broken hints propagate.
 744	 */
 745	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 746			VFS_I(ip)->i_mode, ip->i_diflags);
 747	if (failaddr) {
 748		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 749				   XFS_DIFLAG_EXTSZINHERIT);
 750		ip->i_extsize = 0;
 751	}
 752}
 753
 754/* Propagate di_flags2 from a parent inode to a child inode. */
 755static void
 756xfs_inode_inherit_flags2(
 757	struct xfs_inode	*ip,
 758	const struct xfs_inode	*pip)
 759{
 760	xfs_failaddr_t		failaddr;
 761
 762	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 763		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 764		ip->i_cowextsize = pip->i_cowextsize;
 765	}
 766	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 767		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 768
 769	/* Don't let invalid cowextsize hints propagate. */
 770	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 771			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 772	if (failaddr) {
 773		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 774		ip->i_cowextsize = 0;
 775	}
 776}
 777
 778/*
 779 * Initialise a newly allocated inode and return the in-core inode to the
 780 * caller locked exclusively.
 781 */
 782int
 783xfs_init_new_inode(
 784	struct user_namespace	*mnt_userns,
 785	struct xfs_trans	*tp,
 786	struct xfs_inode	*pip,
 787	xfs_ino_t		ino,
 788	umode_t			mode,
 789	xfs_nlink_t		nlink,
 790	dev_t			rdev,
 791	prid_t			prid,
 792	bool			init_xattrs,
 793	struct xfs_inode	**ipp)
 794{
 795	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 796	struct xfs_mount	*mp = tp->t_mountp;
 797	struct xfs_inode	*ip;
 798	unsigned int		flags;
 799	int			error;
 800	struct timespec64	tv;
 801	struct inode		*inode;
 802
 803	/*
 804	 * Protect against obviously corrupt allocation btree records. Later
 805	 * xfs_iget checks will catch re-allocation of other active in-memory
 806	 * and on-disk inodes. If we don't catch reallocating the parent inode
 807	 * here we will deadlock in xfs_iget() so we have to do these checks
 808	 * first.
 809	 */
 810	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 811		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 812		return -EFSCORRUPTED;
 813	}
 814
 815	/*
 816	 * Get the in-core inode with the lock held exclusively to prevent
 817	 * others from looking at until we're done.
 
 818	 */
 819	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 
 820	if (error)
 821		return error;
 822
 823	ASSERT(ip != NULL);
 824	inode = VFS_I(ip);
 
 
 
 
 
 
 
 
 
 
 825	set_nlink(inode, nlink);
 
 
 826	inode->i_rdev = rdev;
 827	ip->i_projid = prid;
 828
 829	if (dir && !(dir->i_mode & S_ISGID) &&
 830	    (mp->m_flags & XFS_MOUNT_GRPID)) {
 831		inode_fsuid_set(inode, mnt_userns);
 832		inode->i_gid = dir->i_gid;
 833		inode->i_mode = mode;
 834	} else {
 835		inode_init_owner(mnt_userns, inode, dir, mode);
 836	}
 837
 838	/*
 839	 * If the group ID of the new file does not match the effective group
 840	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 841	 * (and only if the irix_sgid_inherit compatibility variable is set).
 842	 */
 843	if (irix_sgid_inherit &&
 844	    (inode->i_mode & S_ISGID) &&
 845	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
 846		inode->i_mode &= ~S_ISGID;
 847
 848	ip->i_disk_size = 0;
 849	ip->i_df.if_nextents = 0;
 850	ASSERT(ip->i_nblocks == 0);
 851
 852	tv = current_time(inode);
 853	inode->i_mtime = tv;
 854	inode->i_atime = tv;
 855	inode->i_ctime = tv;
 856
 857	ip->i_extsize = 0;
 858	ip->i_diflags = 0;
 
 
 859
 860	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 861		inode_set_iversion(inode, 1);
 862		ip->i_cowextsize = 0;
 863		ip->i_crtime = tv;
 
 
 864	}
 865
 
 866	flags = XFS_ILOG_CORE;
 867	switch (mode & S_IFMT) {
 868	case S_IFIFO:
 869	case S_IFCHR:
 870	case S_IFBLK:
 871	case S_IFSOCK:
 872		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 
 873		flags |= XFS_ILOG_DEV;
 874		break;
 875	case S_IFREG:
 876	case S_IFDIR:
 877		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 878			xfs_inode_inherit_flags(ip, pip);
 879		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 880			xfs_inode_inherit_flags2(ip, pip);
 881		fallthrough;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882	case S_IFLNK:
 883		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 
 884		ip->i_df.if_bytes = 0;
 885		ip->i_df.if_u1.if_root = NULL;
 886		break;
 887	default:
 888		ASSERT(0);
 889	}
 890
 891	/*
 892	 * If we need to create attributes immediately after allocating the
 893	 * inode, initialise an empty attribute fork right now. We use the
 894	 * default fork offset for attributes here as we don't know exactly what
 895	 * size or how many attributes we might be adding. We can do this
 896	 * safely here because we know the data fork is completely empty and
 897	 * this saves us from needing to run a separate transaction to set the
 898	 * fork offset in the immediate future.
 899	 */
 900	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
 901		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 902		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
 903	}
 904
 905	/*
 906	 * Log the new values stuffed into the inode.
 907	 */
 908	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 909	xfs_trans_log_inode(tp, ip, flags);
 910
 911	/* now that we have an i_mode we can setup the inode structure */
 912	xfs_setup_inode(ip);
 913
 914	*ipp = ip;
 915	return 0;
 916}
 917
 918/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919 * Decrement the link count on an inode & log the change.  If this causes the
 920 * link count to go to zero, move the inode to AGI unlinked list so that it can
 921 * be freed when the last active reference goes away via xfs_inactive().
 922 */
 923static int			/* error */
 924xfs_droplink(
 925	xfs_trans_t *tp,
 926	xfs_inode_t *ip)
 927{
 928	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 929
 930	drop_nlink(VFS_I(ip));
 931	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 932
 933	if (VFS_I(ip)->i_nlink)
 934		return 0;
 935
 936	return xfs_iunlink(tp, ip);
 937}
 938
 939/*
 940 * Increment the link count on an inode & log the change.
 941 */
 942static void
 943xfs_bumplink(
 944	xfs_trans_t *tp,
 945	xfs_inode_t *ip)
 946{
 947	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 948
 
 949	inc_nlink(VFS_I(ip));
 950	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 951}
 952
 953int
 954xfs_create(
 955	struct user_namespace	*mnt_userns,
 956	xfs_inode_t		*dp,
 957	struct xfs_name		*name,
 958	umode_t			mode,
 959	dev_t			rdev,
 960	bool			init_xattrs,
 961	xfs_inode_t		**ipp)
 962{
 963	int			is_dir = S_ISDIR(mode);
 964	struct xfs_mount	*mp = dp->i_mount;
 965	struct xfs_inode	*ip = NULL;
 966	struct xfs_trans	*tp = NULL;
 967	int			error;
 968	bool                    unlock_dp_on_error = false;
 969	prid_t			prid;
 970	struct xfs_dquot	*udqp = NULL;
 971	struct xfs_dquot	*gdqp = NULL;
 972	struct xfs_dquot	*pdqp = NULL;
 973	struct xfs_trans_res	*tres;
 974	uint			resblks;
 975	xfs_ino_t		ino;
 976
 977	trace_xfs_create(dp, name);
 978
 979	if (XFS_FORCED_SHUTDOWN(mp))
 980		return -EIO;
 981
 982	prid = xfs_get_initial_prid(dp);
 983
 984	/*
 985	 * Make sure that we have allocated dquot(s) on disk.
 986	 */
 987	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
 988			mapped_fsgid(mnt_userns), prid,
 989			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 990			&udqp, &gdqp, &pdqp);
 991	if (error)
 992		return error;
 993
 994	if (is_dir) {
 995		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 996		tres = &M_RES(mp)->tr_mkdir;
 997	} else {
 998		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 999		tres = &M_RES(mp)->tr_create;
1000	}
1001
1002	/*
1003	 * Initially assume that the file does not exist and
1004	 * reserve the resources for that case.  If that is not
1005	 * the case we'll drop the one we have and get a more
1006	 * appropriate transaction later.
1007	 */
1008	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009			&tp);
1010	if (error == -ENOSPC) {
1011		/* flush outstanding delalloc blocks and retry */
1012		xfs_flush_inodes(mp);
1013		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014				resblks, &tp);
1015	}
1016	if (error)
1017		goto out_release_dquots;
1018
1019	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020	unlock_dp_on_error = true;
1021
1022	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1023			XFS_IEXT_DIR_MANIP_CNT(mp));
 
 
 
1024	if (error)
1025		goto out_trans_cancel;
1026
1027	/*
1028	 * A newly created regular or special file just has one directory
1029	 * entry pointing to them, but a directory also the "." entry
1030	 * pointing to itself.
1031	 */
1032	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1033	if (!error)
1034		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1035				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1036	if (error)
1037		goto out_trans_cancel;
1038
1039	/*
1040	 * Now we join the directory inode to the transaction.  We do not do it
1041	 * earlier because xfs_dialloc might commit the previous transaction
1042	 * (and release all the locks).  An error from here on will result in
1043	 * the transaction cancel unlocking dp so don't do it explicitly in the
1044	 * error path.
1045	 */
1046	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1047	unlock_dp_on_error = false;
1048
1049	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1050					resblks - XFS_IALLOC_SPACE_RES(mp));
 
1051	if (error) {
1052		ASSERT(error != -ENOSPC);
1053		goto out_trans_cancel;
1054	}
1055	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1056	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1057
1058	if (is_dir) {
1059		error = xfs_dir_init(tp, ip, dp);
1060		if (error)
1061			goto out_trans_cancel;
1062
1063		xfs_bumplink(tp, dp);
1064	}
1065
1066	/*
1067	 * If this is a synchronous mount, make sure that the
1068	 * create transaction goes to disk before returning to
1069	 * the user.
1070	 */
1071	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1072		xfs_trans_set_sync(tp);
1073
1074	/*
1075	 * Attach the dquot(s) to the inodes and modify them incore.
1076	 * These ids of the inode couldn't have changed since the new
1077	 * inode has been locked ever since it was created.
1078	 */
1079	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1080
1081	error = xfs_trans_commit(tp);
1082	if (error)
1083		goto out_release_inode;
1084
1085	xfs_qm_dqrele(udqp);
1086	xfs_qm_dqrele(gdqp);
1087	xfs_qm_dqrele(pdqp);
1088
1089	*ipp = ip;
1090	return 0;
1091
1092 out_trans_cancel:
1093	xfs_trans_cancel(tp);
1094 out_release_inode:
1095	/*
1096	 * Wait until after the current transaction is aborted to finish the
1097	 * setup of the inode and release the inode.  This prevents recursive
1098	 * transactions and deadlocks from xfs_inactive.
1099	 */
1100	if (ip) {
1101		xfs_finish_inode_setup(ip);
1102		xfs_irele(ip);
1103	}
1104 out_release_dquots:
1105	xfs_qm_dqrele(udqp);
1106	xfs_qm_dqrele(gdqp);
1107	xfs_qm_dqrele(pdqp);
1108
1109	if (unlock_dp_on_error)
1110		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1111	return error;
1112}
1113
1114int
1115xfs_create_tmpfile(
1116	struct user_namespace	*mnt_userns,
1117	struct xfs_inode	*dp,
1118	umode_t			mode,
1119	struct xfs_inode	**ipp)
1120{
1121	struct xfs_mount	*mp = dp->i_mount;
1122	struct xfs_inode	*ip = NULL;
1123	struct xfs_trans	*tp = NULL;
1124	int			error;
1125	prid_t                  prid;
1126	struct xfs_dquot	*udqp = NULL;
1127	struct xfs_dquot	*gdqp = NULL;
1128	struct xfs_dquot	*pdqp = NULL;
1129	struct xfs_trans_res	*tres;
1130	uint			resblks;
1131	xfs_ino_t		ino;
1132
1133	if (XFS_FORCED_SHUTDOWN(mp))
1134		return -EIO;
1135
1136	prid = xfs_get_initial_prid(dp);
1137
1138	/*
1139	 * Make sure that we have allocated dquot(s) on disk.
1140	 */
1141	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1142			mapped_fsgid(mnt_userns), prid,
1143			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1144			&udqp, &gdqp, &pdqp);
1145	if (error)
1146		return error;
1147
1148	resblks = XFS_IALLOC_SPACE_RES(mp);
1149	tres = &M_RES(mp)->tr_create_tmpfile;
1150
1151	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1152			&tp);
1153	if (error)
1154		goto out_release_dquots;
 
 
 
 
 
1155
1156	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1157	if (!error)
1158		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1159				0, 0, prid, false, &ip);
1160	if (error)
1161		goto out_trans_cancel;
1162
1163	if (mp->m_flags & XFS_MOUNT_WSYNC)
1164		xfs_trans_set_sync(tp);
1165
1166	/*
1167	 * Attach the dquot(s) to the inodes and modify them incore.
1168	 * These ids of the inode couldn't have changed since the new
1169	 * inode has been locked ever since it was created.
1170	 */
1171	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1172
1173	error = xfs_iunlink(tp, ip);
1174	if (error)
1175		goto out_trans_cancel;
1176
1177	error = xfs_trans_commit(tp);
1178	if (error)
1179		goto out_release_inode;
1180
1181	xfs_qm_dqrele(udqp);
1182	xfs_qm_dqrele(gdqp);
1183	xfs_qm_dqrele(pdqp);
1184
1185	*ipp = ip;
1186	return 0;
1187
1188 out_trans_cancel:
1189	xfs_trans_cancel(tp);
1190 out_release_inode:
1191	/*
1192	 * Wait until after the current transaction is aborted to finish the
1193	 * setup of the inode and release the inode.  This prevents recursive
1194	 * transactions and deadlocks from xfs_inactive.
1195	 */
1196	if (ip) {
1197		xfs_finish_inode_setup(ip);
1198		xfs_irele(ip);
1199	}
1200 out_release_dquots:
1201	xfs_qm_dqrele(udqp);
1202	xfs_qm_dqrele(gdqp);
1203	xfs_qm_dqrele(pdqp);
1204
1205	return error;
1206}
1207
1208int
1209xfs_link(
1210	xfs_inode_t		*tdp,
1211	xfs_inode_t		*sip,
1212	struct xfs_name		*target_name)
1213{
1214	xfs_mount_t		*mp = tdp->i_mount;
1215	xfs_trans_t		*tp;
1216	int			error;
1217	int			resblks;
1218
1219	trace_xfs_link(tdp, target_name);
1220
1221	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1222
1223	if (XFS_FORCED_SHUTDOWN(mp))
1224		return -EIO;
1225
1226	error = xfs_qm_dqattach(sip);
1227	if (error)
1228		goto std_return;
1229
1230	error = xfs_qm_dqattach(tdp);
1231	if (error)
1232		goto std_return;
1233
1234	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1235	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1236	if (error == -ENOSPC) {
1237		resblks = 0;
1238		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1239	}
1240	if (error)
1241		goto std_return;
1242
1243	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1244
1245	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1246	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1247
1248	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1249			XFS_IEXT_DIR_MANIP_CNT(mp));
1250	if (error)
1251		goto error_return;
1252
1253	/*
1254	 * If we are using project inheritance, we only allow hard link
1255	 * creation in our tree when the project IDs are the same; else
1256	 * the tree quota mechanism could be circumvented.
1257	 */
1258	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1259		     tdp->i_projid != sip->i_projid)) {
1260		error = -EXDEV;
1261		goto error_return;
1262	}
1263
1264	if (!resblks) {
1265		error = xfs_dir_canenter(tp, tdp, target_name);
1266		if (error)
1267			goto error_return;
1268	}
1269
1270	/*
1271	 * Handle initial link state of O_TMPFILE inode
1272	 */
1273	if (VFS_I(sip)->i_nlink == 0) {
1274		struct xfs_perag	*pag;
1275
1276		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1277		error = xfs_iunlink_remove(tp, pag, sip);
1278		xfs_perag_put(pag);
1279		if (error)
1280			goto error_return;
1281	}
1282
1283	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1284				   resblks);
1285	if (error)
1286		goto error_return;
1287	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1288	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1289
1290	xfs_bumplink(tp, sip);
1291
1292	/*
1293	 * If this is a synchronous mount, make sure that the
1294	 * link transaction goes to disk before returning to
1295	 * the user.
1296	 */
1297	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1298		xfs_trans_set_sync(tp);
1299
1300	return xfs_trans_commit(tp);
1301
1302 error_return:
1303	xfs_trans_cancel(tp);
1304 std_return:
1305	return error;
1306}
1307
1308/* Clear the reflink flag and the cowblocks tag if possible. */
1309static void
1310xfs_itruncate_clear_reflink_flags(
1311	struct xfs_inode	*ip)
1312{
1313	struct xfs_ifork	*dfork;
1314	struct xfs_ifork	*cfork;
1315
1316	if (!xfs_is_reflink_inode(ip))
1317		return;
1318	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1319	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1320	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1321		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1322	if (cfork->if_bytes == 0)
1323		xfs_inode_clear_cowblocks_tag(ip);
1324}
1325
1326/*
1327 * Free up the underlying blocks past new_size.  The new size must be smaller
1328 * than the current size.  This routine can be used both for the attribute and
1329 * data fork, and does not modify the inode size, which is left to the caller.
1330 *
1331 * The transaction passed to this routine must have made a permanent log
1332 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1333 * given transaction and start new ones, so make sure everything involved in
1334 * the transaction is tidy before calling here.  Some transaction will be
1335 * returned to the caller to be committed.  The incoming transaction must
1336 * already include the inode, and both inode locks must be held exclusively.
1337 * The inode must also be "held" within the transaction.  On return the inode
1338 * will be "held" within the returned transaction.  This routine does NOT
1339 * require any disk space to be reserved for it within the transaction.
1340 *
1341 * If we get an error, we must return with the inode locked and linked into the
1342 * current transaction. This keeps things simple for the higher level code,
1343 * because it always knows that the inode is locked and held in the transaction
1344 * that returns to it whether errors occur or not.  We don't mark the inode
1345 * dirty on error so that transactions can be easily aborted if possible.
1346 */
1347int
1348xfs_itruncate_extents_flags(
1349	struct xfs_trans	**tpp,
1350	struct xfs_inode	*ip,
1351	int			whichfork,
1352	xfs_fsize_t		new_size,
1353	int			flags)
1354{
1355	struct xfs_mount	*mp = ip->i_mount;
1356	struct xfs_trans	*tp = *tpp;
1357	xfs_fileoff_t		first_unmap_block;
 
1358	xfs_filblks_t		unmap_len;
1359	int			error = 0;
 
1360
1361	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1362	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1363	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364	ASSERT(new_size <= XFS_ISIZE(ip));
1365	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1366	ASSERT(ip->i_itemp != NULL);
1367	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1368	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1369
1370	trace_xfs_itruncate_extents_start(ip, new_size);
1371
1372	flags |= xfs_bmapi_aflag(whichfork);
1373
1374	/*
1375	 * Since it is possible for space to become allocated beyond
1376	 * the end of the file (in a crash where the space is allocated
1377	 * but the inode size is not yet updated), simply remove any
1378	 * blocks which show up between the new EOF and the maximum
1379	 * possible file size.
1380	 *
1381	 * We have to free all the blocks to the bmbt maximum offset, even if
1382	 * the page cache can't scale that far.
1383	 */
1384	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1385	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1386		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1387		return 0;
1388	}
1389
1390	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1391	while (unmap_len > 0) {
 
1392		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1393		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1394				flags, XFS_ITRUNC_MAX_EXTENTS);
1395		if (error)
1396			goto out;
1397
1398		/* free the just unmapped extents */
 
 
 
1399		error = xfs_defer_finish(&tp);
1400		if (error)
1401			goto out;
 
 
 
 
1402	}
1403
1404	if (whichfork == XFS_DATA_FORK) {
1405		/* Remove all pending CoW reservations. */
1406		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1407				first_unmap_block, XFS_MAX_FILEOFF, true);
1408		if (error)
1409			goto out;
1410
1411		xfs_itruncate_clear_reflink_flags(ip);
1412	}
1413
1414	/*
1415	 * Always re-log the inode so that our permanent transaction can keep
1416	 * on rolling it forward in the log.
1417	 */
1418	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1419
1420	trace_xfs_itruncate_extents_end(ip, new_size);
1421
1422out:
1423	*tpp = tp;
1424	return error;
1425}
1426
1427int
1428xfs_release(
1429	xfs_inode_t	*ip)
1430{
1431	xfs_mount_t	*mp = ip->i_mount;
1432	int		error = 0;
1433
1434	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1435		return 0;
1436
1437	/* If this is a read-only mount, don't do this (would generate I/O) */
1438	if (mp->m_flags & XFS_MOUNT_RDONLY)
1439		return 0;
1440
1441	if (!XFS_FORCED_SHUTDOWN(mp)) {
1442		int truncated;
1443
1444		/*
1445		 * If we previously truncated this file and removed old data
1446		 * in the process, we want to initiate "early" writeout on
1447		 * the last close.  This is an attempt to combat the notorious
1448		 * NULL files problem which is particularly noticeable from a
1449		 * truncate down, buffered (re-)write (delalloc), followed by
1450		 * a crash.  What we are effectively doing here is
1451		 * significantly reducing the time window where we'd otherwise
1452		 * be exposed to that problem.
1453		 */
1454		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1455		if (truncated) {
1456			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1457			if (ip->i_delayed_blks > 0) {
1458				error = filemap_flush(VFS_I(ip)->i_mapping);
1459				if (error)
1460					return error;
1461			}
1462		}
1463	}
1464
1465	if (VFS_I(ip)->i_nlink == 0)
1466		return 0;
1467
1468	/*
1469	 * If we can't get the iolock just skip truncating the blocks past EOF
1470	 * because we could deadlock with the mmap_lock otherwise. We'll get
1471	 * another chance to drop them once the last reference to the inode is
1472	 * dropped, so we'll never leak blocks permanently.
1473	 */
1474	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1475		return 0;
1476
1477	if (xfs_can_free_eofblocks(ip, false)) {
1478		/*
1479		 * Check if the inode is being opened, written and closed
1480		 * frequently and we have delayed allocation blocks outstanding
1481		 * (e.g. streaming writes from the NFS server), truncating the
1482		 * blocks past EOF will cause fragmentation to occur.
1483		 *
1484		 * In this case don't do the truncation, but we have to be
1485		 * careful how we detect this case. Blocks beyond EOF show up as
1486		 * i_delayed_blks even when the inode is clean, so we need to
1487		 * truncate them away first before checking for a dirty release.
1488		 * Hence on the first dirty close we will still remove the
1489		 * speculative allocation, but after that we will leave it in
1490		 * place.
1491		 */
1492		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1493			goto out_unlock;
1494
1495		error = xfs_free_eofblocks(ip);
1496		if (error)
1497			goto out_unlock;
 
 
 
 
 
 
 
 
 
1498
1499		/* delalloc blocks after truncation means it really is dirty */
1500		if (ip->i_delayed_blks)
1501			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1502	}
1503
1504out_unlock:
1505	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506	return error;
1507}
1508
1509/*
1510 * xfs_inactive_truncate
1511 *
1512 * Called to perform a truncate when an inode becomes unlinked.
1513 */
1514STATIC int
1515xfs_inactive_truncate(
1516	struct xfs_inode *ip)
1517{
1518	struct xfs_mount	*mp = ip->i_mount;
1519	struct xfs_trans	*tp;
1520	int			error;
1521
1522	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1523	if (error) {
1524		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1525		return error;
1526	}
1527	xfs_ilock(ip, XFS_ILOCK_EXCL);
1528	xfs_trans_ijoin(tp, ip, 0);
1529
1530	/*
1531	 * Log the inode size first to prevent stale data exposure in the event
1532	 * of a system crash before the truncate completes. See the related
1533	 * comment in xfs_vn_setattr_size() for details.
1534	 */
1535	ip->i_disk_size = 0;
1536	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537
1538	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1539	if (error)
1540		goto error_trans_cancel;
1541
1542	ASSERT(ip->i_df.if_nextents == 0);
1543
1544	error = xfs_trans_commit(tp);
1545	if (error)
1546		goto error_unlock;
1547
1548	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1549	return 0;
1550
1551error_trans_cancel:
1552	xfs_trans_cancel(tp);
1553error_unlock:
1554	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1555	return error;
1556}
1557
1558/*
1559 * xfs_inactive_ifree()
1560 *
1561 * Perform the inode free when an inode is unlinked.
1562 */
1563STATIC int
1564xfs_inactive_ifree(
1565	struct xfs_inode *ip)
1566{
1567	struct xfs_mount	*mp = ip->i_mount;
1568	struct xfs_trans	*tp;
1569	int			error;
1570
1571	/*
1572	 * We try to use a per-AG reservation for any block needed by the finobt
1573	 * tree, but as the finobt feature predates the per-AG reservation
1574	 * support a degraded file system might not have enough space for the
1575	 * reservation at mount time.  In that case try to dip into the reserved
1576	 * pool and pray.
1577	 *
1578	 * Send a warning if the reservation does happen to fail, as the inode
1579	 * now remains allocated and sits on the unlinked list until the fs is
1580	 * repaired.
1581	 */
1582	if (unlikely(mp->m_finobt_nores)) {
1583		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1584				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1585				&tp);
1586	} else {
1587		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1588	}
1589	if (error) {
1590		if (error == -ENOSPC) {
1591			xfs_warn_ratelimited(mp,
1592			"Failed to remove inode(s) from unlinked list. "
1593			"Please free space, unmount and run xfs_repair.");
1594		} else {
1595			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1596		}
1597		return error;
1598	}
1599
1600	/*
1601	 * We do not hold the inode locked across the entire rolling transaction
1602	 * here. We only need to hold it for the first transaction that
1603	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1604	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1605	 * here breaks the relationship between cluster buffer invalidation and
1606	 * stale inode invalidation on cluster buffer item journal commit
1607	 * completion, and can result in leaving dirty stale inodes hanging
1608	 * around in memory.
1609	 *
1610	 * We have no need for serialising this inode operation against other
1611	 * operations - we freed the inode and hence reallocation is required
1612	 * and that will serialise on reallocating the space the deferops need
1613	 * to free. Hence we can unlock the inode on the first commit of
1614	 * the transaction rather than roll it right through the deferops. This
1615	 * avoids relogging the XFS_ISTALE inode.
1616	 *
1617	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1618	 * by asserting that the inode is still locked when it returns.
1619	 */
1620	xfs_ilock(ip, XFS_ILOCK_EXCL);
1621	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1622
1623	error = xfs_ifree(tp, ip);
1624	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1625	if (error) {
1626		/*
1627		 * If we fail to free the inode, shut down.  The cancel
1628		 * might do that, we need to make sure.  Otherwise the
1629		 * inode might be lost for a long time or forever.
1630		 */
1631		if (!XFS_FORCED_SHUTDOWN(mp)) {
1632			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1633				__func__, error);
1634			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1635		}
1636		xfs_trans_cancel(tp);
 
1637		return error;
1638	}
1639
1640	/*
1641	 * Credit the quota account(s). The inode is gone.
1642	 */
1643	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1644
1645	/*
1646	 * Just ignore errors at this point.  There is nothing we can do except
1647	 * to try to keep going. Make sure it's not a silent error.
1648	 */
1649	error = xfs_trans_commit(tp);
1650	if (error)
1651		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1652			__func__, error);
1653
 
1654	return 0;
1655}
1656
1657/*
1658 * xfs_inactive
1659 *
1660 * This is called when the vnode reference count for the vnode
1661 * goes to zero.  If the file has been unlinked, then it must
1662 * now be truncated.  Also, we clear all of the read-ahead state
1663 * kept for the inode here since the file is now closed.
1664 */
1665void
1666xfs_inactive(
1667	xfs_inode_t	*ip)
1668{
1669	struct xfs_mount	*mp;
1670	int			error;
1671	int			truncate = 0;
1672
1673	/*
1674	 * If the inode is already free, then there can be nothing
1675	 * to clean up here.
1676	 */
1677	if (VFS_I(ip)->i_mode == 0) {
1678		ASSERT(ip->i_df.if_broot_bytes == 0);
1679		goto out;
1680	}
1681
1682	mp = ip->i_mount;
1683	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1684
1685	/* If this is a read-only mount, don't do this (would generate I/O) */
1686	if (mp->m_flags & XFS_MOUNT_RDONLY)
1687		goto out;
1688
1689	/* Metadata inodes require explicit resource cleanup. */
1690	if (xfs_is_metadata_inode(ip))
1691		goto out;
1692
1693	/* Try to clean out the cow blocks if there are any. */
1694	if (xfs_inode_has_cow_data(ip))
1695		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1696
1697	if (VFS_I(ip)->i_nlink != 0) {
1698		/*
1699		 * force is true because we are evicting an inode from the
1700		 * cache. Post-eof blocks must be freed, lest we end up with
1701		 * broken free space accounting.
1702		 *
1703		 * Note: don't bother with iolock here since lockdep complains
1704		 * about acquiring it in reclaim context. We have the only
1705		 * reference to the inode at this point anyways.
1706		 */
1707		if (xfs_can_free_eofblocks(ip, true))
1708			xfs_free_eofblocks(ip);
1709
1710		goto out;
1711	}
1712
1713	if (S_ISREG(VFS_I(ip)->i_mode) &&
1714	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1715	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1716		truncate = 1;
1717
1718	error = xfs_qm_dqattach(ip);
1719	if (error)
1720		goto out;
1721
1722	if (S_ISLNK(VFS_I(ip)->i_mode))
1723		error = xfs_inactive_symlink(ip);
1724	else if (truncate)
1725		error = xfs_inactive_truncate(ip);
1726	if (error)
1727		goto out;
1728
1729	/*
1730	 * If there are attributes associated with the file then blow them away
1731	 * now.  The code calls a routine that recursively deconstructs the
1732	 * attribute fork. If also blows away the in-core attribute fork.
1733	 */
1734	if (XFS_IFORK_Q(ip)) {
1735		error = xfs_attr_inactive(ip);
1736		if (error)
1737			goto out;
1738	}
1739
1740	ASSERT(!ip->i_afp);
1741	ASSERT(ip->i_forkoff == 0);
 
1742
1743	/*
1744	 * Free the inode.
1745	 */
1746	xfs_inactive_ifree(ip);
 
 
1747
1748out:
1749	/*
1750	 * We're done making metadata updates for this inode, so we can release
1751	 * the attached dquots.
1752	 */
1753	xfs_qm_dqdetach(ip);
1754}
1755
1756/*
1757 * In-Core Unlinked List Lookups
1758 * =============================
1759 *
1760 * Every inode is supposed to be reachable from some other piece of metadata
1761 * with the exception of the root directory.  Inodes with a connection to a
1762 * file descriptor but not linked from anywhere in the on-disk directory tree
1763 * are collectively known as unlinked inodes, though the filesystem itself
1764 * maintains links to these inodes so that on-disk metadata are consistent.
1765 *
1766 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1767 * header contains a number of buckets that point to an inode, and each inode
1768 * record has a pointer to the next inode in the hash chain.  This
1769 * singly-linked list causes scaling problems in the iunlink remove function
1770 * because we must walk that list to find the inode that points to the inode
1771 * being removed from the unlinked hash bucket list.
1772 *
1773 * What if we modelled the unlinked list as a collection of records capturing
1774 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1775 * have a fast way to look up unlinked list predecessors, which avoids the
1776 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1777 * rhashtable.
1778 *
1779 * Because this is a backref cache, we ignore operational failures since the
1780 * iunlink code can fall back to the slow bucket walk.  The only errors that
1781 * should bubble out are for obviously incorrect situations.
1782 *
1783 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1784 * access or have otherwise provided for concurrency control.
1785 */
1786
1787/* Capture a "X.next_unlinked = Y" relationship. */
1788struct xfs_iunlink {
1789	struct rhash_head	iu_rhash_head;
1790	xfs_agino_t		iu_agino;		/* X */
1791	xfs_agino_t		iu_next_unlinked;	/* Y */
1792};
1793
1794/* Unlinked list predecessor lookup hashtable construction */
1795static int
1796xfs_iunlink_obj_cmpfn(
1797	struct rhashtable_compare_arg	*arg,
1798	const void			*obj)
1799{
1800	const xfs_agino_t		*key = arg->key;
1801	const struct xfs_iunlink	*iu = obj;
1802
1803	if (iu->iu_next_unlinked != *key)
1804		return 1;
1805	return 0;
1806}
1807
1808static const struct rhashtable_params xfs_iunlink_hash_params = {
1809	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1810	.key_len		= sizeof(xfs_agino_t),
1811	.key_offset		= offsetof(struct xfs_iunlink,
1812					   iu_next_unlinked),
1813	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1814	.automatic_shrinking	= true,
1815	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1816};
1817
1818/*
1819 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1820 * relation is found.
1821 */
1822static xfs_agino_t
1823xfs_iunlink_lookup_backref(
1824	struct xfs_perag	*pag,
1825	xfs_agino_t		agino)
1826{
1827	struct xfs_iunlink	*iu;
1828
1829	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1830			xfs_iunlink_hash_params);
1831	return iu ? iu->iu_agino : NULLAGINO;
1832}
1833
1834/*
1835 * Take ownership of an iunlink cache entry and insert it into the hash table.
1836 * If successful, the entry will be owned by the cache; if not, it is freed.
1837 * Either way, the caller does not own @iu after this call.
1838 */
1839static int
1840xfs_iunlink_insert_backref(
1841	struct xfs_perag	*pag,
1842	struct xfs_iunlink	*iu)
1843{
1844	int			error;
1845
1846	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1847			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1848	/*
1849	 * Fail loudly if there already was an entry because that's a sign of
1850	 * corruption of in-memory data.  Also fail loudly if we see an error
1851	 * code we didn't anticipate from the rhashtable code.  Currently we
1852	 * only anticipate ENOMEM.
1853	 */
1854	if (error) {
1855		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1856		kmem_free(iu);
1857	}
1858	/*
1859	 * Absorb any runtime errors that aren't a result of corruption because
1860	 * this is a cache and we can always fall back to bucket list scanning.
1861	 */
1862	if (error != 0 && error != -EEXIST)
1863		error = 0;
1864	return error;
1865}
1866
1867/* Remember that @prev_agino.next_unlinked = @this_agino. */
1868static int
1869xfs_iunlink_add_backref(
1870	struct xfs_perag	*pag,
1871	xfs_agino_t		prev_agino,
1872	xfs_agino_t		this_agino)
1873{
1874	struct xfs_iunlink	*iu;
1875
1876	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1877		return 0;
1878
1879	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1880	iu->iu_agino = prev_agino;
1881	iu->iu_next_unlinked = this_agino;
1882
1883	return xfs_iunlink_insert_backref(pag, iu);
1884}
1885
1886/*
1887 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1888 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1889 * wasn't any such entry then we don't bother.
1890 */
1891static int
1892xfs_iunlink_change_backref(
1893	struct xfs_perag	*pag,
1894	xfs_agino_t		agino,
1895	xfs_agino_t		next_unlinked)
1896{
1897	struct xfs_iunlink	*iu;
1898	int			error;
1899
1900	/* Look up the old entry; if there wasn't one then exit. */
1901	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1902			xfs_iunlink_hash_params);
1903	if (!iu)
1904		return 0;
1905
1906	/*
1907	 * Remove the entry.  This shouldn't ever return an error, but if we
1908	 * couldn't remove the old entry we don't want to add it again to the
1909	 * hash table, and if the entry disappeared on us then someone's
1910	 * violated the locking rules and we need to fail loudly.  Either way
1911	 * we cannot remove the inode because internal state is or would have
1912	 * been corrupt.
1913	 */
1914	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1915			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1916	if (error)
1917		return error;
1918
1919	/* If there is no new next entry just free our item and return. */
1920	if (next_unlinked == NULLAGINO) {
1921		kmem_free(iu);
1922		return 0;
1923	}
1924
1925	/* Update the entry and re-add it to the hash table. */
1926	iu->iu_next_unlinked = next_unlinked;
1927	return xfs_iunlink_insert_backref(pag, iu);
1928}
1929
1930/* Set up the in-core predecessor structures. */
1931int
1932xfs_iunlink_init(
1933	struct xfs_perag	*pag)
1934{
1935	return rhashtable_init(&pag->pagi_unlinked_hash,
1936			&xfs_iunlink_hash_params);
1937}
1938
1939/* Free the in-core predecessor structures. */
1940static void
1941xfs_iunlink_free_item(
1942	void			*ptr,
1943	void			*arg)
1944{
1945	struct xfs_iunlink	*iu = ptr;
1946	bool			*freed_anything = arg;
1947
1948	*freed_anything = true;
1949	kmem_free(iu);
1950}
1951
1952void
1953xfs_iunlink_destroy(
1954	struct xfs_perag	*pag)
1955{
1956	bool			freed_anything = false;
1957
1958	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1959			xfs_iunlink_free_item, &freed_anything);
1960
1961	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1962}
1963
1964/*
1965 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1966 * is responsible for validating the old value.
1967 */
1968STATIC int
1969xfs_iunlink_update_bucket(
1970	struct xfs_trans	*tp,
1971	struct xfs_perag	*pag,
1972	struct xfs_buf		*agibp,
1973	unsigned int		bucket_index,
1974	xfs_agino_t		new_agino)
1975{
1976	struct xfs_agi		*agi = agibp->b_addr;
1977	xfs_agino_t		old_value;
1978	int			offset;
1979
1980	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1981
1982	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1984			old_value, new_agino);
1985
1986	/*
1987	 * We should never find the head of the list already set to the value
1988	 * passed in because either we're adding or removing ourselves from the
1989	 * head of the list.
1990	 */
1991	if (old_value == new_agino) {
1992		xfs_buf_mark_corrupt(agibp);
1993		return -EFSCORRUPTED;
1994	}
1995
1996	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1997	offset = offsetof(struct xfs_agi, agi_unlinked) +
1998			(sizeof(xfs_agino_t) * bucket_index);
1999	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2000	return 0;
2001}
2002
2003/* Set an on-disk inode's next_unlinked pointer. */
2004STATIC void
2005xfs_iunlink_update_dinode(
2006	struct xfs_trans	*tp,
2007	struct xfs_perag	*pag,
2008	xfs_agino_t		agino,
2009	struct xfs_buf		*ibp,
2010	struct xfs_dinode	*dip,
2011	struct xfs_imap		*imap,
2012	xfs_agino_t		next_agino)
2013{
2014	struct xfs_mount	*mp = tp->t_mountp;
2015	int			offset;
2016
2017	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2018
2019	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2020			be32_to_cpu(dip->di_next_unlinked), next_agino);
2021
2022	dip->di_next_unlinked = cpu_to_be32(next_agino);
2023	offset = imap->im_boffset +
2024			offsetof(struct xfs_dinode, di_next_unlinked);
2025
2026	/* need to recalc the inode CRC if appropriate */
2027	xfs_dinode_calc_crc(mp, dip);
2028	xfs_trans_inode_buf(tp, ibp);
2029	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
 
2030}
2031
2032/* Set an in-core inode's unlinked pointer and return the old value. */
2033STATIC int
2034xfs_iunlink_update_inode(
2035	struct xfs_trans	*tp,
2036	struct xfs_inode	*ip,
2037	struct xfs_perag	*pag,
2038	xfs_agino_t		next_agino,
2039	xfs_agino_t		*old_next_agino)
2040{
2041	struct xfs_mount	*mp = tp->t_mountp;
2042	struct xfs_dinode	*dip;
2043	struct xfs_buf		*ibp;
2044	xfs_agino_t		old_value;
2045	int			error;
2046
2047	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2048
2049	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2050	if (error)
2051		return error;
2052	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2053
2054	/* Make sure the old pointer isn't garbage. */
2055	old_value = be32_to_cpu(dip->di_next_unlinked);
2056	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2057		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2058				sizeof(*dip), __this_address);
2059		error = -EFSCORRUPTED;
2060		goto out;
2061	}
2062
2063	/*
2064	 * Since we're updating a linked list, we should never find that the
2065	 * current pointer is the same as the new value, unless we're
2066	 * terminating the list.
2067	 */
2068	*old_next_agino = old_value;
2069	if (old_value == next_agino) {
2070		if (next_agino != NULLAGINO) {
2071			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2072					dip, sizeof(*dip), __this_address);
2073			error = -EFSCORRUPTED;
2074		}
2075		goto out;
2076	}
2077
2078	/* Ok, update the new pointer. */
2079	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2080			ibp, dip, &ip->i_imap, next_agino);
2081	return 0;
2082out:
2083	xfs_trans_brelse(tp, ibp);
2084	return error;
2085}
2086
2087/*
2088 * This is called when the inode's link count has gone to 0 or we are creating
2089 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2090 *
2091 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2092 * list when the inode is freed.
2093 */
2094STATIC int
2095xfs_iunlink(
2096	struct xfs_trans	*tp,
2097	struct xfs_inode	*ip)
2098{
2099	struct xfs_mount	*mp = tp->t_mountp;
2100	struct xfs_perag	*pag;
2101	struct xfs_agi		*agi;
2102	struct xfs_buf		*agibp;
2103	xfs_agino_t		next_agino;
 
2104	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106	int			error;
2107
2108	ASSERT(VFS_I(ip)->i_nlink == 0);
2109	ASSERT(VFS_I(ip)->i_mode != 0);
2110	trace_xfs_iunlink(ip);
2111
2112	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2113
2114	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2115	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2116	if (error)
2117		goto out;
2118	agi = agibp->b_addr;
2119
2120	/*
2121	 * Get the index into the agi hash table for the list this inode will
2122	 * go on.  Make sure the pointer isn't garbage and that this inode
2123	 * isn't already on the list.
2124	 */
2125	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126	if (next_agino == agino ||
2127	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2128		xfs_buf_mark_corrupt(agibp);
2129		error = -EFSCORRUPTED;
2130		goto out;
2131	}
2132
2133	if (next_agino != NULLAGINO) {
 
2134		xfs_agino_t		old_agino;
2135
2136		/*
2137		 * There is already another inode in the bucket, so point this
2138		 * inode to the current head of the list.
2139		 */
2140		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2141				&old_agino);
2142		if (error)
2143			goto out;
2144		ASSERT(old_agino == NULLAGINO);
2145
2146		/*
2147		 * agino has been unlinked, add a backref from the next inode
2148		 * back to agino.
2149		 */
 
2150		error = xfs_iunlink_add_backref(pag, agino, next_agino);
 
2151		if (error)
2152			goto out;
2153	}
2154
2155	/* Point the head of the list to point to this inode. */
2156	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2157out:
2158	xfs_perag_put(pag);
2159	return error;
2160}
2161
2162/* Return the imap, dinode pointer, and buffer for an inode. */
2163STATIC int
2164xfs_iunlink_map_ino(
2165	struct xfs_trans	*tp,
2166	xfs_agnumber_t		agno,
2167	xfs_agino_t		agino,
2168	struct xfs_imap		*imap,
2169	struct xfs_dinode	**dipp,
2170	struct xfs_buf		**bpp)
2171{
2172	struct xfs_mount	*mp = tp->t_mountp;
2173	int			error;
2174
2175	imap->im_blkno = 0;
2176	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177	if (error) {
2178		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179				__func__, error);
2180		return error;
2181	}
2182
2183	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2184	if (error) {
2185		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186				__func__, error);
2187		return error;
2188	}
2189
2190	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2191	return 0;
2192}
2193
2194/*
2195 * Walk the unlinked chain from @head_agino until we find the inode that
2196 * points to @target_agino.  Return the inode number, map, dinode pointer,
2197 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198 *
2199 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200 * @agino, @imap, @dipp, and @bpp are all output parameters.
2201 *
2202 * Do not call this function if @target_agino is the head of the list.
2203 */
2204STATIC int
2205xfs_iunlink_map_prev(
2206	struct xfs_trans	*tp,
2207	struct xfs_perag	*pag,
2208	xfs_agino_t		head_agino,
2209	xfs_agino_t		target_agino,
2210	xfs_agino_t		*agino,
2211	struct xfs_imap		*imap,
2212	struct xfs_dinode	**dipp,
2213	struct xfs_buf		**bpp)
 
2214{
2215	struct xfs_mount	*mp = tp->t_mountp;
2216	xfs_agino_t		next_agino;
2217	int			error;
2218
2219	ASSERT(head_agino != target_agino);
2220	*bpp = NULL;
2221
2222	/* See if our backref cache can find it faster. */
2223	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224	if (*agino != NULLAGINO) {
2225		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2226				dipp, bpp);
2227		if (error)
2228			return error;
2229
2230		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231			return 0;
2232
2233		/*
2234		 * If we get here the cache contents were corrupt, so drop the
2235		 * buffer and fall back to walking the bucket list.
2236		 */
2237		xfs_trans_brelse(tp, *bpp);
2238		*bpp = NULL;
2239		WARN_ON_ONCE(1);
2240	}
2241
2242	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2243
2244	/* Otherwise, walk the entire bucket until we find it. */
2245	next_agino = head_agino;
2246	while (next_agino != target_agino) {
2247		xfs_agino_t	unlinked_agino;
2248
2249		if (*bpp)
2250			xfs_trans_brelse(tp, *bpp);
2251
2252		*agino = next_agino;
2253		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2254				dipp, bpp);
2255		if (error)
2256			return error;
2257
2258		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259		/*
2260		 * Make sure this pointer is valid and isn't an obvious
2261		 * infinite loop.
2262		 */
2263		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2264		    next_agino == unlinked_agino) {
2265			XFS_CORRUPTION_ERROR(__func__,
2266					XFS_ERRLEVEL_LOW, mp,
2267					*dipp, sizeof(**dipp));
2268			error = -EFSCORRUPTED;
2269			return error;
2270		}
2271		next_agino = unlinked_agino;
2272	}
2273
2274	return 0;
2275}
2276
2277/*
2278 * Pull the on-disk inode from the AGI unlinked list.
2279 */
2280STATIC int
2281xfs_iunlink_remove(
2282	struct xfs_trans	*tp,
2283	struct xfs_perag	*pag,
2284	struct xfs_inode	*ip)
2285{
2286	struct xfs_mount	*mp = tp->t_mountp;
2287	struct xfs_agi		*agi;
2288	struct xfs_buf		*agibp;
2289	struct xfs_buf		*last_ibp;
2290	struct xfs_dinode	*last_dip = NULL;
 
 
2291	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292	xfs_agino_t		next_agino;
2293	xfs_agino_t		head_agino;
2294	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295	int			error;
2296
2297	trace_xfs_iunlink_remove(ip);
2298
2299	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2300	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2301	if (error)
2302		return error;
2303	agi = agibp->b_addr;
2304
2305	/*
2306	 * Get the index into the agi hash table for the list this inode will
2307	 * go on.  Make sure the head pointer isn't garbage.
2308	 */
2309	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2311		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312				agi, sizeof(*agi));
2313		return -EFSCORRUPTED;
2314	}
2315
2316	/*
2317	 * Set our inode's next_unlinked pointer to NULL and then return
2318	 * the old pointer value so that we can update whatever was previous
2319	 * to us in the list to point to whatever was next in the list.
2320	 */
2321	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2322	if (error)
2323		return error;
2324
2325	/*
2326	 * If there was a backref pointing from the next inode back to this
2327	 * one, remove it because we've removed this inode from the list.
2328	 *
2329	 * Later, if this inode was in the middle of the list we'll update
2330	 * this inode's backref to point from the next inode.
2331	 */
2332	if (next_agino != NULLAGINO) {
2333		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
 
 
2334		if (error)
2335			return error;
2336	}
2337
2338	if (head_agino != agino) {
 
 
 
 
 
 
2339		struct xfs_imap	imap;
2340		xfs_agino_t	prev_agino;
2341
 
 
 
2342		/* We need to search the list for the inode being freed. */
2343		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2344				&prev_agino, &imap, &last_dip, &last_ibp);
 
2345		if (error)
2346			return error;
2347
2348		/* Point the previous inode on the list to the next inode. */
2349		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2350				last_dip, &imap, next_agino);
2351
2352		/*
2353		 * Now we deal with the backref for this inode.  If this inode
2354		 * pointed at a real inode, change the backref that pointed to
2355		 * us to point to our old next.  If this inode was the end of
2356		 * the list, delete the backref that pointed to us.  Note that
2357		 * change_backref takes care of deleting the backref if
2358		 * next_agino is NULLAGINO.
2359		 */
2360		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2361				next_agino);
 
2362	}
2363
2364	/* Point the head of the list to the next unlinked inode. */
2365	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2366			next_agino);
2367}
2368
2369/*
2370 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2371 * mark it stale. We should only find clean inodes in this lookup that aren't
2372 * already stale.
2373 */
2374static void
2375xfs_ifree_mark_inode_stale(
2376	struct xfs_perag	*pag,
2377	struct xfs_inode	*free_ip,
2378	xfs_ino_t		inum)
2379{
2380	struct xfs_mount	*mp = pag->pag_mount;
2381	struct xfs_inode_log_item *iip;
2382	struct xfs_inode	*ip;
2383
2384retry:
2385	rcu_read_lock();
2386	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2387
2388	/* Inode not in memory, nothing to do */
2389	if (!ip) {
2390		rcu_read_unlock();
2391		return;
2392	}
2393
2394	/*
2395	 * because this is an RCU protected lookup, we could find a recently
2396	 * freed or even reallocated inode during the lookup. We need to check
2397	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2398	 * valid, the wrong inode or stale.
2399	 */
2400	spin_lock(&ip->i_flags_lock);
2401	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2402		goto out_iflags_unlock;
2403
2404	/*
2405	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2406	 * other inodes that we did not find in the list attached to the buffer
2407	 * and are not already marked stale. If we can't lock it, back off and
2408	 * retry.
2409	 */
2410	if (ip != free_ip) {
2411		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2412			spin_unlock(&ip->i_flags_lock);
2413			rcu_read_unlock();
2414			delay(1);
2415			goto retry;
2416		}
2417	}
2418	ip->i_flags |= XFS_ISTALE;
2419
2420	/*
2421	 * If the inode is flushing, it is already attached to the buffer.  All
2422	 * we needed to do here is mark the inode stale so buffer IO completion
2423	 * will remove it from the AIL.
2424	 */
2425	iip = ip->i_itemp;
2426	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2427		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2428		ASSERT(iip->ili_last_fields);
2429		goto out_iunlock;
2430	}
2431
2432	/*
2433	 * Inodes not attached to the buffer can be released immediately.
2434	 * Everything else has to go through xfs_iflush_abort() on journal
2435	 * commit as the flock synchronises removal of the inode from the
2436	 * cluster buffer against inode reclaim.
2437	 */
2438	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2439		goto out_iunlock;
2440
2441	__xfs_iflags_set(ip, XFS_IFLUSHING);
2442	spin_unlock(&ip->i_flags_lock);
2443	rcu_read_unlock();
2444
2445	/* we have a dirty inode in memory that has not yet been flushed. */
2446	spin_lock(&iip->ili_lock);
2447	iip->ili_last_fields = iip->ili_fields;
2448	iip->ili_fields = 0;
2449	iip->ili_fsync_fields = 0;
2450	spin_unlock(&iip->ili_lock);
2451	ASSERT(iip->ili_last_fields);
2452
2453	if (ip != free_ip)
2454		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2455	return;
2456
2457out_iunlock:
2458	if (ip != free_ip)
2459		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2460out_iflags_unlock:
2461	spin_unlock(&ip->i_flags_lock);
2462	rcu_read_unlock();
2463}
2464
2465/*
2466 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2467 * inodes that are in memory - they all must be marked stale and attached to
2468 * the cluster buffer.
2469 */
2470static int
2471xfs_ifree_cluster(
2472	struct xfs_trans	*tp,
2473	struct xfs_perag	*pag,
2474	struct xfs_inode	*free_ip,
2475	struct xfs_icluster	*xic)
2476{
2477	struct xfs_mount	*mp = free_ip->i_mount;
2478	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2479	struct xfs_buf		*bp;
2480	xfs_daddr_t		blkno;
2481	xfs_ino_t		inum = xic->first_ino;
2482	int			nbufs;
2483	int			i, j;
2484	int			ioffset;
2485	int			error;
 
 
 
 
 
 
 
2486
 
 
2487	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2488
2489	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2490		/*
2491		 * The allocation bitmap tells us which inodes of the chunk were
2492		 * physically allocated. Skip the cluster if an inode falls into
2493		 * a sparse region.
2494		 */
2495		ioffset = inum - xic->first_ino;
2496		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2497			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2498			continue;
2499		}
2500
2501		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2502					 XFS_INO_TO_AGBNO(mp, inum));
2503
2504		/*
2505		 * We obtain and lock the backing buffer first in the process
2506		 * here to ensure dirty inodes attached to the buffer remain in
2507		 * the flushing state while we mark them stale.
2508		 *
2509		 * If we scan the in-memory inodes first, then buffer IO can
2510		 * complete before we get a lock on it, and hence we may fail
2511		 * to mark all the active inodes on the buffer stale.
2512		 */
2513		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2514				mp->m_bsize * igeo->blocks_per_cluster,
2515				XBF_UNMAPPED, &bp);
2516		if (error)
2517			return error;
 
2518
2519		/*
2520		 * This buffer may not have been correctly initialised as we
2521		 * didn't read it from disk. That's not important because we are
2522		 * only using to mark the buffer as stale in the log, and to
2523		 * attach stale cached inodes on it. That means it will never be
2524		 * dispatched for IO. If it is, we want to know about it, and we
2525		 * want it to fail. We can acheive this by adding a write
2526		 * verifier to the buffer.
2527		 */
2528		bp->b_ops = &xfs_inode_buf_ops;
2529
2530		/*
2531		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2532		 * too. This requires lookups, and will skip inodes that we've
2533		 * already marked XFS_ISTALE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534		 */
2535		for (i = 0; i < igeo->inodes_per_cluster; i++)
2536			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538		xfs_trans_stale_inode_buf(tp, bp);
2539		xfs_trans_binval(tp, bp);
2540	}
 
 
2541	return 0;
2542}
2543
2544/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545 * This is called to return an inode to the inode free list.
2546 * The inode should already be truncated to 0 length and have
2547 * no pages associated with it.  This routine also assumes that
2548 * the inode is already a part of the transaction.
2549 *
2550 * The on-disk copy of the inode will have been added to the list
2551 * of unlinked inodes in the AGI. We need to remove the inode from
2552 * that list atomically with respect to freeing it here.
2553 */
2554int
2555xfs_ifree(
2556	struct xfs_trans	*tp,
2557	struct xfs_inode	*ip)
2558{
2559	struct xfs_mount	*mp = ip->i_mount;
2560	struct xfs_perag	*pag;
2561	struct xfs_icluster	xic = { 0 };
2562	struct xfs_inode_log_item *iip = ip->i_itemp;
2563	int			error;
2564
2565	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566	ASSERT(VFS_I(ip)->i_nlink == 0);
2567	ASSERT(ip->i_df.if_nextents == 0);
2568	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569	ASSERT(ip->i_nblocks == 0);
2570
2571	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2572
2573	/*
2574	 * Pull the on-disk inode from the AGI unlinked list.
2575	 */
2576	error = xfs_iunlink_remove(tp, pag, ip);
2577	if (error)
2578		goto out;
2579
2580	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2581	if (error)
2582		goto out;
2583
2584	/*
2585	 * Free any local-format data sitting around before we reset the
2586	 * data fork to extents format.  Note that the attr fork data has
2587	 * already been freed by xfs_attr_inactive.
2588	 */
2589	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2590		kmem_free(ip->i_df.if_u1.if_data);
2591		ip->i_df.if_u1.if_data = NULL;
2592		ip->i_df.if_bytes = 0;
2593	}
2594
2595	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2596	ip->i_diflags = 0;
2597	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2598	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2599	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2600	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2601		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2602
2603	/* Don't attempt to replay owner changes for a deleted inode */
2604	spin_lock(&iip->ili_lock);
2605	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2606	spin_unlock(&iip->ili_lock);
2607
2608	/*
2609	 * Bump the generation count so no one will be confused
2610	 * by reincarnations of this inode.
2611	 */
2612	VFS_I(ip)->i_generation++;
2613	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2614
2615	if (xic.deleted)
2616		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2617out:
2618	xfs_perag_put(pag);
2619	return error;
2620}
2621
2622/*
2623 * This is called to unpin an inode.  The caller must have the inode locked
2624 * in at least shared mode so that the buffer cannot be subsequently pinned
2625 * once someone is waiting for it to be unpinned.
2626 */
2627static void
2628xfs_iunpin(
2629	struct xfs_inode	*ip)
2630{
2631	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2632
2633	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2634
2635	/* Give the log a push to start the unpinning I/O */
2636	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2637
2638}
2639
2640static void
2641__xfs_iunpin_wait(
2642	struct xfs_inode	*ip)
2643{
2644	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2645	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2646
2647	xfs_iunpin(ip);
2648
2649	do {
2650		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2651		if (xfs_ipincount(ip))
2652			io_schedule();
2653	} while (xfs_ipincount(ip));
2654	finish_wait(wq, &wait.wq_entry);
2655}
2656
2657void
2658xfs_iunpin_wait(
2659	struct xfs_inode	*ip)
2660{
2661	if (xfs_ipincount(ip))
2662		__xfs_iunpin_wait(ip);
2663}
2664
2665/*
2666 * Removing an inode from the namespace involves removing the directory entry
2667 * and dropping the link count on the inode. Removing the directory entry can
2668 * result in locking an AGF (directory blocks were freed) and removing a link
2669 * count can result in placing the inode on an unlinked list which results in
2670 * locking an AGI.
2671 *
2672 * The big problem here is that we have an ordering constraint on AGF and AGI
2673 * locking - inode allocation locks the AGI, then can allocate a new extent for
2674 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2675 * removes the inode from the unlinked list, requiring that we lock the AGI
2676 * first, and then freeing the inode can result in an inode chunk being freed
2677 * and hence freeing disk space requiring that we lock an AGF.
2678 *
2679 * Hence the ordering that is imposed by other parts of the code is AGI before
2680 * AGF. This means we cannot remove the directory entry before we drop the inode
2681 * reference count and put it on the unlinked list as this results in a lock
2682 * order of AGF then AGI, and this can deadlock against inode allocation and
2683 * freeing. Therefore we must drop the link counts before we remove the
2684 * directory entry.
2685 *
2686 * This is still safe from a transactional point of view - it is not until we
2687 * get to xfs_defer_finish() that we have the possibility of multiple
2688 * transactions in this operation. Hence as long as we remove the directory
2689 * entry and drop the link count in the first transaction of the remove
2690 * operation, there are no transactional constraints on the ordering here.
2691 */
2692int
2693xfs_remove(
2694	xfs_inode_t             *dp,
2695	struct xfs_name		*name,
2696	xfs_inode_t		*ip)
2697{
2698	xfs_mount_t		*mp = dp->i_mount;
2699	xfs_trans_t             *tp = NULL;
2700	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2701	int                     error = 0;
2702	uint			resblks;
2703
2704	trace_xfs_remove(dp, name);
2705
2706	if (XFS_FORCED_SHUTDOWN(mp))
2707		return -EIO;
2708
2709	error = xfs_qm_dqattach(dp);
2710	if (error)
2711		goto std_return;
2712
2713	error = xfs_qm_dqattach(ip);
2714	if (error)
2715		goto std_return;
2716
2717	/*
2718	 * We try to get the real space reservation first,
2719	 * allowing for directory btree deletion(s) implying
2720	 * possible bmap insert(s).  If we can't get the space
2721	 * reservation then we use 0 instead, and avoid the bmap
2722	 * btree insert(s) in the directory code by, if the bmap
2723	 * insert tries to happen, instead trimming the LAST
2724	 * block from the directory.
2725	 */
2726	resblks = XFS_REMOVE_SPACE_RES(mp);
2727	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2728	if (error == -ENOSPC) {
2729		resblks = 0;
2730		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2731				&tp);
2732	}
2733	if (error) {
2734		ASSERT(error != -ENOSPC);
2735		goto std_return;
2736	}
2737
2738	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2739
2740	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2741	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2742
2743	/*
2744	 * If we're removing a directory perform some additional validation.
2745	 */
2746	if (is_dir) {
2747		ASSERT(VFS_I(ip)->i_nlink >= 2);
2748		if (VFS_I(ip)->i_nlink != 2) {
2749			error = -ENOTEMPTY;
2750			goto out_trans_cancel;
2751		}
2752		if (!xfs_dir_isempty(ip)) {
2753			error = -ENOTEMPTY;
2754			goto out_trans_cancel;
2755		}
2756
2757		/* Drop the link from ip's "..".  */
2758		error = xfs_droplink(tp, dp);
2759		if (error)
2760			goto out_trans_cancel;
2761
2762		/* Drop the "." link from ip to self.  */
2763		error = xfs_droplink(tp, ip);
2764		if (error)
2765			goto out_trans_cancel;
2766
2767		/*
2768		 * Point the unlinked child directory's ".." entry to the root
2769		 * directory to eliminate back-references to inodes that may
2770		 * get freed before the child directory is closed.  If the fs
2771		 * gets shrunk, this can lead to dirent inode validation errors.
2772		 */
2773		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2774			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2775					tp->t_mountp->m_sb.sb_rootino, 0);
2776			if (error)
2777				return error;
2778		}
2779	} else {
2780		/*
2781		 * When removing a non-directory we need to log the parent
2782		 * inode here.  For a directory this is done implicitly
2783		 * by the xfs_droplink call for the ".." entry.
2784		 */
2785		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2786	}
2787	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2788
2789	/* Drop the link from dp to ip. */
2790	error = xfs_droplink(tp, ip);
2791	if (error)
2792		goto out_trans_cancel;
2793
2794	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2795	if (error) {
2796		ASSERT(error != -ENOENT);
2797		goto out_trans_cancel;
2798	}
2799
2800	/*
2801	 * If this is a synchronous mount, make sure that the
2802	 * remove transaction goes to disk before returning to
2803	 * the user.
2804	 */
2805	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2806		xfs_trans_set_sync(tp);
2807
2808	error = xfs_trans_commit(tp);
2809	if (error)
2810		goto std_return;
2811
2812	if (is_dir && xfs_inode_is_filestream(ip))
2813		xfs_filestream_deassociate(ip);
2814
2815	return 0;
2816
2817 out_trans_cancel:
2818	xfs_trans_cancel(tp);
2819 std_return:
2820	return error;
2821}
2822
2823/*
2824 * Enter all inodes for a rename transaction into a sorted array.
2825 */
2826#define __XFS_SORT_INODES	5
2827STATIC void
2828xfs_sort_for_rename(
2829	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2830	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2831	struct xfs_inode	*ip1,	/* in: inode of old entry */
2832	struct xfs_inode	*ip2,	/* in: inode of new entry */
2833	struct xfs_inode	*wip,	/* in: whiteout inode */
2834	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2835	int			*num_inodes)  /* in/out: inodes in array */
2836{
2837	int			i, j;
2838
2839	ASSERT(*num_inodes == __XFS_SORT_INODES);
2840	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2841
2842	/*
2843	 * i_tab contains a list of pointers to inodes.  We initialize
2844	 * the table here & we'll sort it.  We will then use it to
2845	 * order the acquisition of the inode locks.
2846	 *
2847	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2848	 */
2849	i = 0;
2850	i_tab[i++] = dp1;
2851	i_tab[i++] = dp2;
2852	i_tab[i++] = ip1;
2853	if (ip2)
2854		i_tab[i++] = ip2;
2855	if (wip)
2856		i_tab[i++] = wip;
2857	*num_inodes = i;
2858
2859	/*
2860	 * Sort the elements via bubble sort.  (Remember, there are at
2861	 * most 5 elements to sort, so this is adequate.)
2862	 */
2863	for (i = 0; i < *num_inodes; i++) {
2864		for (j = 1; j < *num_inodes; j++) {
2865			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2866				struct xfs_inode *temp = i_tab[j];
2867				i_tab[j] = i_tab[j-1];
2868				i_tab[j-1] = temp;
2869			}
2870		}
2871	}
2872}
2873
2874static int
2875xfs_finish_rename(
2876	struct xfs_trans	*tp)
2877{
2878	/*
2879	 * If this is a synchronous mount, make sure that the rename transaction
2880	 * goes to disk before returning to the user.
2881	 */
2882	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2883		xfs_trans_set_sync(tp);
2884
2885	return xfs_trans_commit(tp);
2886}
2887
2888/*
2889 * xfs_cross_rename()
2890 *
2891 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2892 */
2893STATIC int
2894xfs_cross_rename(
2895	struct xfs_trans	*tp,
2896	struct xfs_inode	*dp1,
2897	struct xfs_name		*name1,
2898	struct xfs_inode	*ip1,
2899	struct xfs_inode	*dp2,
2900	struct xfs_name		*name2,
2901	struct xfs_inode	*ip2,
2902	int			spaceres)
2903{
2904	int		error = 0;
2905	int		ip1_flags = 0;
2906	int		ip2_flags = 0;
2907	int		dp2_flags = 0;
2908
2909	/* Swap inode number for dirent in first parent */
2910	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2911	if (error)
2912		goto out_trans_abort;
2913
2914	/* Swap inode number for dirent in second parent */
2915	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2916	if (error)
2917		goto out_trans_abort;
2918
2919	/*
2920	 * If we're renaming one or more directories across different parents,
2921	 * update the respective ".." entries (and link counts) to match the new
2922	 * parents.
2923	 */
2924	if (dp1 != dp2) {
2925		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2926
2927		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2928			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2929						dp1->i_ino, spaceres);
2930			if (error)
2931				goto out_trans_abort;
2932
2933			/* transfer ip2 ".." reference to dp1 */
2934			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2935				error = xfs_droplink(tp, dp2);
2936				if (error)
2937					goto out_trans_abort;
2938				xfs_bumplink(tp, dp1);
2939			}
2940
2941			/*
2942			 * Although ip1 isn't changed here, userspace needs
2943			 * to be warned about the change, so that applications
2944			 * relying on it (like backup ones), will properly
2945			 * notify the change
2946			 */
2947			ip1_flags |= XFS_ICHGTIME_CHG;
2948			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2949		}
2950
2951		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2952			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2953						dp2->i_ino, spaceres);
2954			if (error)
2955				goto out_trans_abort;
2956
2957			/* transfer ip1 ".." reference to dp2 */
2958			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2959				error = xfs_droplink(tp, dp1);
2960				if (error)
2961					goto out_trans_abort;
2962				xfs_bumplink(tp, dp2);
2963			}
2964
2965			/*
2966			 * Although ip2 isn't changed here, userspace needs
2967			 * to be warned about the change, so that applications
2968			 * relying on it (like backup ones), will properly
2969			 * notify the change
2970			 */
2971			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2972			ip2_flags |= XFS_ICHGTIME_CHG;
2973		}
2974	}
2975
2976	if (ip1_flags) {
2977		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2978		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2979	}
2980	if (ip2_flags) {
2981		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2982		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2983	}
2984	if (dp2_flags) {
2985		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2986		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2987	}
2988	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2990	return xfs_finish_rename(tp);
2991
2992out_trans_abort:
2993	xfs_trans_cancel(tp);
2994	return error;
2995}
2996
2997/*
2998 * xfs_rename_alloc_whiteout()
2999 *
3000 * Return a referenced, unlinked, unlocked inode that can be used as a
3001 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3002 * crash between allocating the inode and linking it into the rename transaction
3003 * recovery will free the inode and we won't leak it.
3004 */
3005static int
3006xfs_rename_alloc_whiteout(
3007	struct user_namespace	*mnt_userns,
3008	struct xfs_inode	*dp,
3009	struct xfs_inode	**wip)
3010{
3011	struct xfs_inode	*tmpfile;
3012	int			error;
3013
3014	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3015				   &tmpfile);
3016	if (error)
3017		return error;
3018
3019	/*
3020	 * Prepare the tmpfile inode as if it were created through the VFS.
3021	 * Complete the inode setup and flag it as linkable.  nlink is already
3022	 * zero, so we can skip the drop_nlink.
3023	 */
3024	xfs_setup_iops(tmpfile);
3025	xfs_finish_inode_setup(tmpfile);
3026	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3027
3028	*wip = tmpfile;
3029	return 0;
3030}
3031
3032/*
3033 * xfs_rename
3034 */
3035int
3036xfs_rename(
3037	struct user_namespace	*mnt_userns,
3038	struct xfs_inode	*src_dp,
3039	struct xfs_name		*src_name,
3040	struct xfs_inode	*src_ip,
3041	struct xfs_inode	*target_dp,
3042	struct xfs_name		*target_name,
3043	struct xfs_inode	*target_ip,
3044	unsigned int		flags)
3045{
3046	struct xfs_mount	*mp = src_dp->i_mount;
3047	struct xfs_trans	*tp;
3048	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3049	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3050	int			i;
3051	int			num_inodes = __XFS_SORT_INODES;
3052	bool			new_parent = (src_dp != target_dp);
3053	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3054	int			spaceres;
3055	int			error;
3056
3057	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3058
3059	if ((flags & RENAME_EXCHANGE) && !target_ip)
3060		return -EINVAL;
3061
3062	/*
3063	 * If we are doing a whiteout operation, allocate the whiteout inode
3064	 * we will be placing at the target and ensure the type is set
3065	 * appropriately.
3066	 */
3067	if (flags & RENAME_WHITEOUT) {
3068		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3069		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3070		if (error)
3071			return error;
3072
3073		/* setup target dirent info as whiteout */
3074		src_name->type = XFS_DIR3_FT_CHRDEV;
3075	}
3076
3077	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3078				inodes, &num_inodes);
3079
3080	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3081	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3082	if (error == -ENOSPC) {
3083		spaceres = 0;
3084		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3085				&tp);
3086	}
3087	if (error)
3088		goto out_release_wip;
3089
3090	/*
3091	 * Attach the dquots to the inodes
3092	 */
3093	error = xfs_qm_vop_rename_dqattach(inodes);
3094	if (error)
3095		goto out_trans_cancel;
3096
3097	/*
3098	 * Lock all the participating inodes. Depending upon whether
3099	 * the target_name exists in the target directory, and
3100	 * whether the target directory is the same as the source
3101	 * directory, we can lock from 2 to 4 inodes.
3102	 */
3103	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3104
3105	/*
3106	 * Join all the inodes to the transaction. From this point on,
3107	 * we can rely on either trans_commit or trans_cancel to unlock
3108	 * them.
3109	 */
3110	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3111	if (new_parent)
3112		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3113	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3114	if (target_ip)
3115		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3116	if (wip)
3117		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3118
3119	/*
3120	 * If we are using project inheritance, we only allow renames
3121	 * into our tree when the project IDs are the same; else the
3122	 * tree quota mechanism would be circumvented.
3123	 */
3124	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3125		     target_dp->i_projid != src_ip->i_projid)) {
3126		error = -EXDEV;
3127		goto out_trans_cancel;
3128	}
3129
3130	/* RENAME_EXCHANGE is unique from here on. */
3131	if (flags & RENAME_EXCHANGE)
3132		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3133					target_dp, target_name, target_ip,
3134					spaceres);
3135
3136	/*
3137	 * Check for expected errors before we dirty the transaction
3138	 * so we can return an error without a transaction abort.
3139	 *
3140	 * Extent count overflow check:
3141	 *
3142	 * From the perspective of src_dp, a rename operation is essentially a
3143	 * directory entry remove operation. Hence the only place where we check
3144	 * for extent count overflow for src_dp is in
3145	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3146	 * -ENOSPC when it detects a possible extent count overflow and in
3147	 * response, the higher layers of directory handling code do the
3148	 * following:
3149	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3150	 *    future remove operation removes them.
3151	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3152	 *    Leaf space and unmaps the last block.
3153	 *
3154	 * For target_dp, there are two cases depending on whether the
3155	 * destination directory entry exists or not.
3156	 *
3157	 * When destination directory entry does not exist (i.e. target_ip ==
3158	 * NULL), extent count overflow check is performed only when transaction
3159	 * has a non-zero sized space reservation associated with it.  With a
3160	 * zero-sized space reservation, XFS allows a rename operation to
3161	 * continue only when the directory has sufficient free space in its
3162	 * data/leaf/free space blocks to hold the new entry.
3163	 *
3164	 * When destination directory entry exists (i.e. target_ip != NULL), all
3165	 * we need to do is change the inode number associated with the already
3166	 * existing entry. Hence there is no need to perform an extent count
3167	 * overflow check.
3168	 */
3169	if (target_ip == NULL) {
3170		/*
3171		 * If there's no space reservation, check the entry will
3172		 * fit before actually inserting it.
3173		 */
3174		if (!spaceres) {
3175			error = xfs_dir_canenter(tp, target_dp, target_name);
3176			if (error)
3177				goto out_trans_cancel;
3178		} else {
3179			error = xfs_iext_count_may_overflow(target_dp,
3180					XFS_DATA_FORK,
3181					XFS_IEXT_DIR_MANIP_CNT(mp));
3182			if (error)
3183				goto out_trans_cancel;
3184		}
3185	} else {
3186		/*
3187		 * If target exists and it's a directory, check that whether
3188		 * it can be destroyed.
3189		 */
3190		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3191		    (!xfs_dir_isempty(target_ip) ||
3192		     (VFS_I(target_ip)->i_nlink > 2))) {
3193			error = -EEXIST;
3194			goto out_trans_cancel;
3195		}
3196	}
3197
3198	/*
3199	 * Lock the AGI buffers we need to handle bumping the nlink of the
3200	 * whiteout inode off the unlinked list and to handle dropping the
3201	 * nlink of the target inode.  Per locking order rules, do this in
3202	 * increasing AG order and before directory block allocation tries to
3203	 * grab AGFs because we grab AGIs before AGFs.
3204	 *
3205	 * The (vfs) caller must ensure that if src is a directory then
3206	 * target_ip is either null or an empty directory.
3207	 */
3208	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3209		if (inodes[i] == wip ||
3210		    (inodes[i] == target_ip &&
3211		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3212			struct xfs_buf	*bp;
3213			xfs_agnumber_t	agno;
3214
3215			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3216			error = xfs_read_agi(mp, tp, agno, &bp);
3217			if (error)
3218				goto out_trans_cancel;
3219		}
3220	}
3221
3222	/*
3223	 * Directory entry creation below may acquire the AGF. Remove
3224	 * the whiteout from the unlinked list first to preserve correct
3225	 * AGI/AGF locking order. This dirties the transaction so failures
3226	 * after this point will abort and log recovery will clean up the
3227	 * mess.
3228	 *
3229	 * For whiteouts, we need to bump the link count on the whiteout
3230	 * inode. After this point, we have a real link, clear the tmpfile
3231	 * state flag from the inode so it doesn't accidentally get misused
3232	 * in future.
3233	 */
3234	if (wip) {
3235		struct xfs_perag	*pag;
3236
3237		ASSERT(VFS_I(wip)->i_nlink == 0);
3238
3239		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3240		error = xfs_iunlink_remove(tp, pag, wip);
3241		xfs_perag_put(pag);
3242		if (error)
3243			goto out_trans_cancel;
3244
3245		xfs_bumplink(tp, wip);
 
3246		VFS_I(wip)->i_state &= ~I_LINKABLE;
3247	}
3248
3249	/*
3250	 * Set up the target.
3251	 */
3252	if (target_ip == NULL) {
3253		/*
3254		 * If target does not exist and the rename crosses
3255		 * directories, adjust the target directory link count
3256		 * to account for the ".." reference from the new entry.
3257		 */
3258		error = xfs_dir_createname(tp, target_dp, target_name,
3259					   src_ip->i_ino, spaceres);
3260		if (error)
3261			goto out_trans_cancel;
3262
3263		xfs_trans_ichgtime(tp, target_dp,
3264					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3265
3266		if (new_parent && src_is_directory) {
3267			xfs_bumplink(tp, target_dp);
3268		}
3269	} else { /* target_ip != NULL */
3270		/*
3271		 * Link the source inode under the target name.
3272		 * If the source inode is a directory and we are moving
3273		 * it across directories, its ".." entry will be
3274		 * inconsistent until we replace that down below.
3275		 *
3276		 * In case there is already an entry with the same
3277		 * name at the destination directory, remove it first.
3278		 */
3279		error = xfs_dir_replace(tp, target_dp, target_name,
3280					src_ip->i_ino, spaceres);
3281		if (error)
3282			goto out_trans_cancel;
3283
3284		xfs_trans_ichgtime(tp, target_dp,
3285					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3286
3287		/*
3288		 * Decrement the link count on the target since the target
3289		 * dir no longer points to it.
3290		 */
3291		error = xfs_droplink(tp, target_ip);
3292		if (error)
3293			goto out_trans_cancel;
3294
3295		if (src_is_directory) {
3296			/*
3297			 * Drop the link from the old "." entry.
3298			 */
3299			error = xfs_droplink(tp, target_ip);
3300			if (error)
3301				goto out_trans_cancel;
3302		}
3303	} /* target_ip != NULL */
3304
3305	/*
3306	 * Remove the source.
3307	 */
3308	if (new_parent && src_is_directory) {
3309		/*
3310		 * Rewrite the ".." entry to point to the new
3311		 * directory.
3312		 */
3313		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3314					target_dp->i_ino, spaceres);
3315		ASSERT(error != -EEXIST);
3316		if (error)
3317			goto out_trans_cancel;
3318	}
3319
3320	/*
3321	 * We always want to hit the ctime on the source inode.
3322	 *
3323	 * This isn't strictly required by the standards since the source
3324	 * inode isn't really being changed, but old unix file systems did
3325	 * it and some incremental backup programs won't work without it.
3326	 */
3327	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3328	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3329
3330	/*
3331	 * Adjust the link count on src_dp.  This is necessary when
3332	 * renaming a directory, either within one parent when
3333	 * the target existed, or across two parent directories.
3334	 */
3335	if (src_is_directory && (new_parent || target_ip != NULL)) {
3336
3337		/*
3338		 * Decrement link count on src_directory since the
3339		 * entry that's moved no longer points to it.
3340		 */
3341		error = xfs_droplink(tp, src_dp);
3342		if (error)
3343			goto out_trans_cancel;
3344	}
3345
3346	/*
3347	 * For whiteouts, we only need to update the source dirent with the
3348	 * inode number of the whiteout inode rather than removing it
3349	 * altogether.
3350	 */
3351	if (wip) {
3352		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3353					spaceres);
3354	} else {
3355		/*
3356		 * NOTE: We don't need to check for extent count overflow here
3357		 * because the dir remove name code will leave the dir block in
3358		 * place if the extent count would overflow.
3359		 */
3360		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3361					   spaceres);
3362	}
3363
3364	if (error)
3365		goto out_trans_cancel;
3366
3367	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3368	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3369	if (new_parent)
3370		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3371
3372	error = xfs_finish_rename(tp);
3373	if (wip)
3374		xfs_irele(wip);
3375	return error;
3376
3377out_trans_cancel:
3378	xfs_trans_cancel(tp);
3379out_release_wip:
3380	if (wip)
3381		xfs_irele(wip);
3382	return error;
3383}
3384
3385static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386xfs_iflush(
3387	struct xfs_inode	*ip,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388	struct xfs_buf		*bp)
3389{
3390	struct xfs_inode_log_item *iip = ip->i_itemp;
3391	struct xfs_dinode	*dip;
3392	struct xfs_mount	*mp = ip->i_mount;
3393	int			error;
3394
3395	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3396	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3397	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3398	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3399	ASSERT(iip->ili_item.li_buf == bp);
 
3400
 
3401	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3402
3403	/*
3404	 * We don't flush the inode if any of the following checks fail, but we
3405	 * do still update the log item and attach to the backing buffer as if
3406	 * the flush happened. This is a formality to facilitate predictable
3407	 * error handling as the caller will shutdown and fail the buffer.
3408	 */
3409	error = -EFSCORRUPTED;
3410	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3411			       mp, XFS_ERRTAG_IFLUSH_1)) {
3412		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3413			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3414			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3415		goto flush_out;
3416	}
3417	if (S_ISREG(VFS_I(ip)->i_mode)) {
3418		if (XFS_TEST_ERROR(
3419		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3420		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3421		    mp, XFS_ERRTAG_IFLUSH_3)) {
3422			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3424				__func__, ip->i_ino, ip);
3425			goto flush_out;
3426		}
3427	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3428		if (XFS_TEST_ERROR(
3429		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3430		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3431		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3432		    mp, XFS_ERRTAG_IFLUSH_4)) {
3433			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3435				__func__, ip->i_ino, ip);
3436			goto flush_out;
3437		}
3438	}
3439	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3440				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3441		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442			"%s: detected corrupt incore inode %Lu, "
3443			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3444			__func__, ip->i_ino,
3445			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3446			ip->i_nblocks, ip);
3447		goto flush_out;
3448	}
3449	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3450				mp, XFS_ERRTAG_IFLUSH_6)) {
3451		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3453			__func__, ip->i_ino, ip->i_forkoff, ip);
3454		goto flush_out;
3455	}
3456
3457	/*
3458	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3459	 * count for correct sequencing.  We bump the flush iteration count so
3460	 * we can detect flushes which postdate a log record during recovery.
3461	 * This is redundant as we now log every change and hence this can't
3462	 * happen but we need to still do it to ensure backwards compatibility
3463	 * with old kernels that predate logging all inode changes.
 
3464	 */
3465	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3466		ip->i_flushiter++;
3467
3468	/*
3469	 * If there are inline format data / attr forks attached to this inode,
3470	 * make sure they are not corrupt.
3471	 */
3472	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3473	    xfs_ifork_verify_local_data(ip))
3474		goto flush_out;
3475	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3476	    xfs_ifork_verify_local_attr(ip))
3477		goto flush_out;
3478
3479	/*
3480	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3481	 * copy out the core of the inode, because if the inode is dirty at all
3482	 * the core must be.
3483	 */
3484	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3485
3486	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3487	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3488		if (ip->i_flushiter == DI_MAX_FLUSH)
3489			ip->i_flushiter = 0;
3490	}
3491
3492	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3493	if (XFS_IFORK_Q(ip))
3494		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
3495
3496	/*
3497	 * We've recorded everything logged in the inode, so we'd like to clear
3498	 * the ili_fields bits so we don't log and flush things unnecessarily.
3499	 * However, we can't stop logging all this information until the data
3500	 * we've copied into the disk buffer is written to disk.  If we did we
3501	 * might overwrite the copy of the inode in the log with all the data
3502	 * after re-logging only part of it, and in the face of a crash we
3503	 * wouldn't have all the data we need to recover.
3504	 *
3505	 * What we do is move the bits to the ili_last_fields field.  When
3506	 * logging the inode, these bits are moved back to the ili_fields field.
3507	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3508	 * we know that the information those bits represent is permanently on
3509	 * disk.  As long as the flush completes before the inode is logged
3510	 * again, then both ili_fields and ili_last_fields will be cleared.
 
 
 
 
 
 
 
 
 
3511	 */
3512	error = 0;
3513flush_out:
3514	spin_lock(&iip->ili_lock);
3515	iip->ili_last_fields = iip->ili_fields;
3516	iip->ili_fields = 0;
3517	iip->ili_fsync_fields = 0;
3518	spin_unlock(&iip->ili_lock);
3519
3520	/*
3521	 * Store the current LSN of the inode so that we can tell whether the
3522	 * item has moved in the AIL from xfs_buf_inode_iodone().
3523	 */
3524	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3525				&iip->ili_item.li_lsn);
3526
3527	/* generate the checksum. */
3528	xfs_dinode_calc_crc(mp, dip);
3529	return error;
3530}
3531
3532/*
3533 * Non-blocking flush of dirty inode metadata into the backing buffer.
3534 *
3535 * The caller must have a reference to the inode and hold the cluster buffer
3536 * locked. The function will walk across all the inodes on the cluster buffer it
3537 * can find and lock without blocking, and flush them to the cluster buffer.
3538 *
3539 * On successful flushing of at least one inode, the caller must write out the
3540 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3541 * the caller needs to release the buffer. On failure, the filesystem will be
3542 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3543 * will be returned.
3544 */
3545int
3546xfs_iflush_cluster(
3547	struct xfs_buf		*bp)
3548{
3549	struct xfs_mount	*mp = bp->b_mount;
3550	struct xfs_log_item	*lip, *n;
3551	struct xfs_inode	*ip;
3552	struct xfs_inode_log_item *iip;
3553	int			clcount = 0;
3554	int			error = 0;
3555
3556	/*
3557	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3558	 * can remove itself from the list.
 
 
3559	 */
3560	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3561		iip = (struct xfs_inode_log_item *)lip;
3562		ip = iip->ili_inode;
3563
3564		/*
3565		 * Quick and dirty check to avoid locks if possible.
3566		 */
3567		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3568			continue;
3569		if (xfs_ipincount(ip))
3570			continue;
3571
3572		/*
3573		 * The inode is still attached to the buffer, which means it is
3574		 * dirty but reclaim might try to grab it. Check carefully for
3575		 * that, and grab the ilock while still holding the i_flags_lock
3576		 * to guarantee reclaim will not be able to reclaim this inode
3577		 * once we drop the i_flags_lock.
3578		 */
3579		spin_lock(&ip->i_flags_lock);
3580		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3581		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3582			spin_unlock(&ip->i_flags_lock);
3583			continue;
3584		}
3585
3586		/*
3587		 * ILOCK will pin the inode against reclaim and prevent
3588		 * concurrent transactions modifying the inode while we are
3589		 * flushing the inode. If we get the lock, set the flushing
3590		 * state before we drop the i_flags_lock.
3591		 */
3592		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3593			spin_unlock(&ip->i_flags_lock);
3594			continue;
3595		}
3596		__xfs_iflags_set(ip, XFS_IFLUSHING);
3597		spin_unlock(&ip->i_flags_lock);
3598
3599		/*
3600		 * Abort flushing this inode if we are shut down because the
3601		 * inode may not currently be in the AIL. This can occur when
3602		 * log I/O failure unpins the inode without inserting into the
3603		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3604		 * that otherwise looks like it should be flushed.
3605		 */
3606		if (XFS_FORCED_SHUTDOWN(mp)) {
3607			xfs_iunpin_wait(ip);
3608			xfs_iflush_abort(ip);
3609			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610			error = -EIO;
3611			continue;
3612		}
3613
3614		/* don't block waiting on a log force to unpin dirty inodes */
3615		if (xfs_ipincount(ip)) {
3616			xfs_iflags_clear(ip, XFS_IFLUSHING);
3617			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3618			continue;
3619		}
3620
3621		if (!xfs_inode_clean(ip))
3622			error = xfs_iflush(ip, bp);
3623		else
3624			xfs_iflags_clear(ip, XFS_IFLUSHING);
3625		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3626		if (error)
3627			break;
3628		clcount++;
3629	}
3630
3631	if (error) {
3632		bp->b_flags |= XBF_ASYNC;
3633		xfs_buf_ioend_fail(bp);
3634		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3635		return error;
3636	}
3637
3638	if (!clcount)
3639		return -EAGAIN;
3640
3641	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3642	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3643	return 0;
3644
 
 
3645}
3646
3647/* Release an inode. */
3648void
3649xfs_irele(
3650	struct xfs_inode	*ip)
3651{
3652	trace_xfs_irele(ip, _RET_IP_);
3653	iput(VFS_I(ip));
3654}
3655
3656/*
3657 * Ensure all commited transactions touching the inode are written to the log.
3658 */
3659int
3660xfs_log_force_inode(
3661	struct xfs_inode	*ip)
3662{
3663	xfs_csn_t		seq = 0;
3664
3665	xfs_ilock(ip, XFS_ILOCK_SHARED);
3666	if (xfs_ipincount(ip))
3667		seq = ip->i_itemp->ili_commit_seq;
3668	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3669
3670	if (!seq)
3671		return 0;
3672	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3673}
3674
3675/*
3676 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3677 * abide vfs locking order (lowest pointer value goes first) and breaking the
3678 * layout leases before proceeding.  The loop is needed because we cannot call
3679 * the blocking break_layout() with the iolocks held, and therefore have to
3680 * back out both locks.
3681 */
3682static int
3683xfs_iolock_two_inodes_and_break_layout(
3684	struct inode		*src,
3685	struct inode		*dest)
3686{
3687	int			error;
3688
3689	if (src > dest)
3690		swap(src, dest);
3691
3692retry:
3693	/* Wait to break both inodes' layouts before we start locking. */
3694	error = break_layout(src, true);
3695	if (error)
3696		return error;
3697	if (src != dest) {
3698		error = break_layout(dest, true);
3699		if (error)
3700			return error;
3701	}
3702
3703	/* Lock one inode and make sure nobody got in and leased it. */
3704	inode_lock(src);
3705	error = break_layout(src, false);
3706	if (error) {
3707		inode_unlock(src);
3708		if (error == -EWOULDBLOCK)
3709			goto retry;
3710		return error;
3711	}
3712
3713	if (src == dest)
3714		return 0;
3715
3716	/* Lock the other inode and make sure nobody got in and leased it. */
3717	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3718	error = break_layout(dest, false);
3719	if (error) {
3720		inode_unlock(src);
3721		inode_unlock(dest);
3722		if (error == -EWOULDBLOCK)
3723			goto retry;
3724		return error;
3725	}
3726
3727	return 0;
3728}
3729
3730/*
3731 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3732 * mmap activity.
3733 */
3734int
3735xfs_ilock2_io_mmap(
3736	struct xfs_inode	*ip1,
3737	struct xfs_inode	*ip2)
3738{
3739	int			ret;
3740
3741	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3742	if (ret)
3743		return ret;
3744	if (ip1 == ip2)
3745		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3746	else
3747		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3748				    ip2, XFS_MMAPLOCK_EXCL);
3749	return 0;
3750}
3751
3752/* Unlock both inodes to allow IO and mmap activity. */
3753void
3754xfs_iunlock2_io_mmap(
3755	struct xfs_inode	*ip1,
3756	struct xfs_inode	*ip2)
3757{
3758	bool			same_inode = (ip1 == ip2);
3759
3760	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3761	if (!same_inode)
3762		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3763	inode_unlock(VFS_I(ip2));
3764	if (!same_inode)
3765		inode_unlock(VFS_I(ip1));
3766}