Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_sb.h"
  15#include "xfs_mount.h"
  16#include "xfs_defer.h"
  17#include "xfs_inode.h"
  18#include "xfs_dir2.h"
  19#include "xfs_attr.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
 
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
 
 
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
  47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
 
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56	struct xfs_inode	*ip)
  57{
  58	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  59		return ip->i_d.di_extsize;
 
 
 
 
 
 
  60	if (XFS_IS_REALTIME_INODE(ip))
  61		return ip->i_mount->m_sb.sb_rextsize;
  62	return 0;
  63}
  64
  65/*
  66 * Helper function to extract CoW extent size hint from inode.
  67 * Between the extent size hint and the CoW extent size hint, we
  68 * return the greater of the two.  If the value is zero (automatic),
  69 * use the default size.
  70 */
  71xfs_extlen_t
  72xfs_get_cowextsz_hint(
  73	struct xfs_inode	*ip)
  74{
  75	xfs_extlen_t		a, b;
  76
  77	a = 0;
  78	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  79		a = ip->i_d.di_cowextsize;
  80	b = xfs_get_extsz_hint(ip);
  81
  82	a = max(a, b);
  83	if (a == 0)
  84		return XFS_DEFAULT_COWEXTSZ_HINT;
  85	return a;
  86}
  87
  88/*
  89 * These two are wrapper routines around the xfs_ilock() routine used to
  90 * centralize some grungy code.  They are used in places that wish to lock the
  91 * inode solely for reading the extents.  The reason these places can't just
  92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  93 * bringing in of the extents from disk for a file in b-tree format.  If the
  94 * inode is in b-tree format, then we need to lock the inode exclusively until
  95 * the extents are read in.  Locking it exclusively all the time would limit
  96 * our parallelism unnecessarily, though.  What we do instead is check to see
  97 * if the extents have been read in yet, and only lock the inode exclusively
  98 * if they have not.
  99 *
 100 * The functions return a value which should be given to the corresponding
 101 * xfs_iunlock() call.
 102 */
 103uint
 104xfs_ilock_data_map_shared(
 105	struct xfs_inode	*ip)
 106{
 107	uint			lock_mode = XFS_ILOCK_SHARED;
 108
 109	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 110	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 111		lock_mode = XFS_ILOCK_EXCL;
 112	xfs_ilock(ip, lock_mode);
 113	return lock_mode;
 114}
 115
 116uint
 117xfs_ilock_attr_map_shared(
 118	struct xfs_inode	*ip)
 119{
 120	uint			lock_mode = XFS_ILOCK_SHARED;
 121
 122	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 123	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 124		lock_mode = XFS_ILOCK_EXCL;
 125	xfs_ilock(ip, lock_mode);
 126	return lock_mode;
 127}
 128
 129/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 131 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 132 * various combinations of the locks to be obtained.
 133 *
 134 * The 3 locks should always be ordered so that the IO lock is obtained first,
 135 * the mmap lock second and the ilock last in order to prevent deadlock.
 136 *
 137 * Basic locking order:
 138 *
 139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 140 *
 141 * mmap_sem locking order:
 142 *
 143 * i_rwsem -> page lock -> mmap_sem
 144 * mmap_sem -> i_mmap_lock -> page_lock
 145 *
 146 * The difference in mmap_sem locking order mean that we cannot hold the
 147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 149 * in get_user_pages() to map the user pages into the kernel address space for
 150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 151 * page faults already hold the mmap_sem.
 152 *
 153 * Hence to serialise fully against both syscall and mmap based IO, we need to
 154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 155 * taken in places where we need to invalidate the page cache in a race
 156 * free manner (e.g. truncate, hole punch and other extent manipulation
 157 * functions).
 158 */
 159void
 160xfs_ilock(
 161	xfs_inode_t		*ip,
 162	uint			lock_flags)
 163{
 164	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 165
 166	/*
 167	 * You can't set both SHARED and EXCL for the same lock,
 168	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 169	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 170	 */
 171	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 172	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 173	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 174	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 175	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 176	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 177	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 178
 179	if (lock_flags & XFS_IOLOCK_EXCL) {
 180		down_write_nested(&VFS_I(ip)->i_rwsem,
 181				  XFS_IOLOCK_DEP(lock_flags));
 182	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 183		down_read_nested(&VFS_I(ip)->i_rwsem,
 184				 XFS_IOLOCK_DEP(lock_flags));
 185	}
 186
 187	if (lock_flags & XFS_MMAPLOCK_EXCL)
 188		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 189	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 190		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 
 
 
 191
 192	if (lock_flags & XFS_ILOCK_EXCL)
 193		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 194	else if (lock_flags & XFS_ILOCK_SHARED)
 195		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 196}
 197
 198/*
 199 * This is just like xfs_ilock(), except that the caller
 200 * is guaranteed not to sleep.  It returns 1 if it gets
 201 * the requested locks and 0 otherwise.  If the IO lock is
 202 * obtained but the inode lock cannot be, then the IO lock
 203 * is dropped before returning.
 204 *
 205 * ip -- the inode being locked
 206 * lock_flags -- this parameter indicates the inode's locks to be
 207 *       to be locked.  See the comment for xfs_ilock() for a list
 208 *	 of valid values.
 209 */
 210int
 211xfs_ilock_nowait(
 212	xfs_inode_t		*ip,
 213	uint			lock_flags)
 214{
 215	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 216
 217	/*
 218	 * You can't set both SHARED and EXCL for the same lock,
 219	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 220	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 221	 */
 222	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 223	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 224	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 225	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 226	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 227	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 228	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 229
 230	if (lock_flags & XFS_IOLOCK_EXCL) {
 231		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 232			goto out;
 233	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 234		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 235			goto out;
 236	}
 237
 238	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 239		if (!mrtryupdate(&ip->i_mmaplock))
 240			goto out_undo_iolock;
 241	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 242		if (!mrtryaccess(&ip->i_mmaplock))
 243			goto out_undo_iolock;
 244	}
 245
 246	if (lock_flags & XFS_ILOCK_EXCL) {
 247		if (!mrtryupdate(&ip->i_lock))
 248			goto out_undo_mmaplock;
 249	} else if (lock_flags & XFS_ILOCK_SHARED) {
 250		if (!mrtryaccess(&ip->i_lock))
 251			goto out_undo_mmaplock;
 252	}
 253	return 1;
 254
 255out_undo_mmaplock:
 256	if (lock_flags & XFS_MMAPLOCK_EXCL)
 257		mrunlock_excl(&ip->i_mmaplock);
 258	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 259		mrunlock_shared(&ip->i_mmaplock);
 260out_undo_iolock:
 261	if (lock_flags & XFS_IOLOCK_EXCL)
 262		up_write(&VFS_I(ip)->i_rwsem);
 263	else if (lock_flags & XFS_IOLOCK_SHARED)
 264		up_read(&VFS_I(ip)->i_rwsem);
 265out:
 266	return 0;
 267}
 268
 269/*
 270 * xfs_iunlock() is used to drop the inode locks acquired with
 271 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 273 * that we know which locks to drop.
 274 *
 275 * ip -- the inode being unlocked
 276 * lock_flags -- this parameter indicates the inode's locks to be
 277 *       to be unlocked.  See the comment for xfs_ilock() for a list
 278 *	 of valid values for this parameter.
 279 *
 280 */
 281void
 282xfs_iunlock(
 283	xfs_inode_t		*ip,
 284	uint			lock_flags)
 285{
 286	/*
 287	 * You can't set both SHARED and EXCL for the same lock,
 288	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 289	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 290	 */
 291	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 292	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 293	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 294	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 295	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 296	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 297	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 298	ASSERT(lock_flags != 0);
 299
 300	if (lock_flags & XFS_IOLOCK_EXCL)
 301		up_write(&VFS_I(ip)->i_rwsem);
 302	else if (lock_flags & XFS_IOLOCK_SHARED)
 303		up_read(&VFS_I(ip)->i_rwsem);
 304
 305	if (lock_flags & XFS_MMAPLOCK_EXCL)
 306		mrunlock_excl(&ip->i_mmaplock);
 307	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 308		mrunlock_shared(&ip->i_mmaplock);
 309
 310	if (lock_flags & XFS_ILOCK_EXCL)
 311		mrunlock_excl(&ip->i_lock);
 312	else if (lock_flags & XFS_ILOCK_SHARED)
 313		mrunlock_shared(&ip->i_lock);
 314
 315	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 316}
 317
 318/*
 319 * give up write locks.  the i/o lock cannot be held nested
 320 * if it is being demoted.
 321 */
 322void
 323xfs_ilock_demote(
 324	xfs_inode_t		*ip,
 325	uint			lock_flags)
 326{
 327	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 328	ASSERT((lock_flags &
 329		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 330
 331	if (lock_flags & XFS_ILOCK_EXCL)
 332		mrdemote(&ip->i_lock);
 333	if (lock_flags & XFS_MMAPLOCK_EXCL)
 334		mrdemote(&ip->i_mmaplock);
 335	if (lock_flags & XFS_IOLOCK_EXCL)
 336		downgrade_write(&VFS_I(ip)->i_rwsem);
 337
 338	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 339}
 340
 341#if defined(DEBUG) || defined(XFS_WARN)
 342int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343xfs_isilocked(
 344	xfs_inode_t		*ip,
 345	uint			lock_flags)
 346{
 347	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 348		if (!(lock_flags & XFS_ILOCK_SHARED))
 349			return !!ip->i_lock.mr_writer;
 350		return rwsem_is_locked(&ip->i_lock.mr_lock);
 351	}
 352
 353	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 354		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 355			return !!ip->i_mmaplock.mr_writer;
 356		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 357	}
 358
 359	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 360		if (!(lock_flags & XFS_IOLOCK_SHARED))
 361			return !debug_locks ||
 362				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 363		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 364	}
 365
 366	ASSERT(0);
 367	return 0;
 368}
 369#endif
 370
 371/*
 372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 375 * errors and warnings.
 376 */
 377#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 378static bool
 379xfs_lockdep_subclass_ok(
 380	int subclass)
 381{
 382	return subclass < MAX_LOCKDEP_SUBCLASSES;
 383}
 384#else
 385#define xfs_lockdep_subclass_ok(subclass)	(true)
 386#endif
 387
 388/*
 389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 390 * value. This can be called for any type of inode lock combination, including
 391 * parent locking. Care must be taken to ensure we don't overrun the subclass
 392 * storage fields in the class mask we build.
 393 */
 394static inline int
 395xfs_lock_inumorder(int lock_mode, int subclass)
 
 
 396{
 397	int	class = 0;
 398
 399	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 400			      XFS_ILOCK_RTSUM)));
 401	ASSERT(xfs_lockdep_subclass_ok(subclass));
 402
 403	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 404		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 405		class += subclass << XFS_IOLOCK_SHIFT;
 406	}
 407
 408	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 409		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 410		class += subclass << XFS_MMAPLOCK_SHIFT;
 411	}
 412
 413	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 414		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 415		class += subclass << XFS_ILOCK_SHIFT;
 416	}
 417
 418	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 419}
 420
 421/*
 422 * The following routine will lock n inodes in exclusive mode.  We assume the
 423 * caller calls us with the inodes in i_ino order.
 424 *
 425 * We need to detect deadlock where an inode that we lock is in the AIL and we
 426 * start waiting for another inode that is locked by a thread in a long running
 427 * transaction (such as truncate). This can result in deadlock since the long
 428 * running trans might need to wait for the inode we just locked in order to
 429 * push the tail and free space in the log.
 430 *
 431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 433 * lock more than one at a time, lockdep will report false positives saying we
 434 * have violated locking orders.
 435 */
 436static void
 437xfs_lock_inodes(
 438	struct xfs_inode	**ips,
 439	int			inodes,
 440	uint			lock_mode)
 441{
 442	int			attempts = 0, i, j, try_lock;
 
 
 
 443	struct xfs_log_item	*lp;
 444
 445	/*
 446	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 447	 * support an arbitrary depth of locking here, but absolute limits on
 448	 * inodes depend on the the type of locking and the limits placed by
 449	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 450	 * the asserts.
 451	 */
 452	ASSERT(ips && inodes >= 2 && inodes <= 5);
 453	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 454			    XFS_ILOCK_EXCL));
 455	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 456			      XFS_ILOCK_SHARED)));
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467	try_lock = 0;
 468	i = 0;
 469again:
 
 
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = &ips[j]->i_itemp->ili_item;
 483				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 484					try_lock++;
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 497		}
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523		}
 524		i = 0;
 525		try_lock = 0;
 526		goto again;
 527	}
 528}
 529
 530/*
 531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 532 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 533 * more than one at a time, lockdep will report false positives saying we have
 534 * violated locking orders.  The iolock must be double-locked separately since
 535 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 536 * SHARED.
 537 */
 538void
 539xfs_lock_two_inodes(
 540	struct xfs_inode	*ip0,
 541	uint			ip0_mode,
 542	struct xfs_inode	*ip1,
 543	uint			ip1_mode)
 544{
 545	struct xfs_inode	*temp;
 546	uint			mode_temp;
 547	int			attempts = 0;
 548	struct xfs_log_item	*lp;
 549
 550	ASSERT(hweight32(ip0_mode) == 1);
 551	ASSERT(hweight32(ip1_mode) == 1);
 552	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 553	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 554	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 555	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 556	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 557	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 558	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562
 563	ASSERT(ip0->i_ino != ip1->i_ino);
 564
 565	if (ip0->i_ino > ip1->i_ino) {
 566		temp = ip0;
 567		ip0 = ip1;
 568		ip1 = temp;
 569		mode_temp = ip0_mode;
 570		ip0_mode = ip1_mode;
 571		ip1_mode = mode_temp;
 572	}
 573
 574 again:
 575	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 576
 577	/*
 578	 * If the first lock we have locked is in the AIL, we must TRY to get
 579	 * the second lock. If we can't get it, we must release the first one
 580	 * and try again.
 581	 */
 582	lp = &ip0->i_itemp->ili_item;
 583	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 584		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 585			xfs_iunlock(ip0, ip0_mode);
 586			if ((++attempts % 5) == 0)
 587				delay(1); /* Don't just spin the CPU */
 588			goto again;
 589		}
 590	} else {
 591		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 592	}
 593}
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wq_entry);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 653		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 654			flags |= FS_XFLAG_COWEXTSIZE;
 655	}
 656
 657	if (has_attr)
 658		flags |= FS_XFLAG_HASATTR;
 659
 660	return flags;
 661}
 662
 663uint
 664xfs_ip2xflags(
 665	struct xfs_inode	*ip)
 666{
 667	struct xfs_icdinode	*dic = &ip->i_d;
 668
 669	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 670}
 671
 672/*
 673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 675 * ci_name->name will point to a the actual name (caller must free) or
 676 * will be set to NULL if an exact match is found.
 677 */
 678int
 679xfs_lookup(
 680	xfs_inode_t		*dp,
 681	struct xfs_name		*name,
 682	xfs_inode_t		**ipp,
 683	struct xfs_name		*ci_name)
 684{
 685	xfs_ino_t		inum;
 686	int			error;
 687
 688	trace_xfs_lookup(dp, name);
 689
 690	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 691		return -EIO;
 692
 693	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 694	if (error)
 695		goto out_unlock;
 696
 697	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 698	if (error)
 699		goto out_free_name;
 700
 701	return 0;
 702
 703out_free_name:
 704	if (ci_name)
 705		kmem_free(ci_name->name);
 706out_unlock:
 707	*ipp = NULL;
 708	return error;
 709}
 710
 711/*
 712 * Allocate an inode on disk and return a copy of its in-core version.
 713 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 714 * appropriately within the inode.  The uid and gid for the inode are
 715 * set according to the contents of the given cred structure.
 716 *
 717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 718 * has a free inode available, call xfs_iget() to obtain the in-core
 719 * version of the allocated inode.  Finally, fill in the inode and
 720 * log its initial contents.  In this case, ialloc_context would be
 721 * set to NULL.
 722 *
 723 * If xfs_dialloc() does not have an available inode, it will replenish
 724 * its supply by doing an allocation. Since we can only do one
 725 * allocation within a transaction without deadlocks, we must commit
 726 * the current transaction before returning the inode itself.
 727 * In this case, therefore, we will set ialloc_context and return.
 728 * The caller should then commit the current transaction, start a new
 729 * transaction, and call xfs_ialloc() again to actually get the inode.
 730 *
 731 * To ensure that some other process does not grab the inode that
 732 * was allocated during the first call to xfs_ialloc(), this routine
 733 * also returns the [locked] bp pointing to the head of the freelist
 734 * as ialloc_context.  The caller should hold this buffer across
 735 * the commit and pass it back into this routine on the second call.
 736 *
 737 * If we are allocating quota inodes, we do not have a parent inode
 738 * to attach to or associate with (i.e. pip == NULL) because they
 739 * are not linked into the directory structure - they are attached
 740 * directly to the superblock - and so have no parent.
 741 */
 742static int
 743xfs_ialloc(
 744	xfs_trans_t	*tp,
 745	xfs_inode_t	*pip,
 746	umode_t		mode,
 747	xfs_nlink_t	nlink,
 748	dev_t		rdev,
 749	prid_t		prid,
 750	xfs_buf_t	**ialloc_context,
 751	xfs_inode_t	**ipp)
 752{
 753	struct xfs_mount *mp = tp->t_mountp;
 754	xfs_ino_t	ino;
 755	xfs_inode_t	*ip;
 756	uint		flags;
 757	int		error;
 758	struct timespec64 tv;
 759	struct inode	*inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760
 761	/*
 762	 * Call the space management code to pick
 763	 * the on-disk inode to be allocated.
 764	 */
 765	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 766			    ialloc_context, &ino);
 767	if (error)
 768		return error;
 769	if (*ialloc_context || ino == NULLFSINO) {
 770		*ipp = NULL;
 771		return 0;
 
 
 
 
 
 
 
 
 
 
 772	}
 773	ASSERT(*ialloc_context == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774
 775	/*
 776	 * Protect against obviously corrupt allocation btree records. Later
 777	 * xfs_iget checks will catch re-allocation of other active in-memory
 778	 * and on-disk inodes. If we don't catch reallocating the parent inode
 779	 * here we will deadlock in xfs_iget() so we have to do these checks
 780	 * first.
 781	 */
 782	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 783		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 784		return -EFSCORRUPTED;
 785	}
 786
 787	/*
 788	 * Get the in-core inode with the lock held exclusively.
 789	 * This is because we're setting fields here we need
 790	 * to prevent others from looking at until we're done.
 791	 */
 792	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 793			 XFS_ILOCK_EXCL, &ip);
 794	if (error)
 795		return error;
 
 796	ASSERT(ip != NULL);
 797	inode = VFS_I(ip);
 798
 799	/*
 800	 * We always convert v1 inodes to v2 now - we only support filesystems
 801	 * with >= v2 inode capability, so there is no reason for ever leaving
 802	 * an inode in v1 format.
 803	 */
 804	if (ip->i_d.di_version == 1)
 805		ip->i_d.di_version = 2;
 806
 807	inode->i_mode = mode;
 808	set_nlink(inode, nlink);
 809	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 810	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 811	inode->i_rdev = rdev;
 812	xfs_set_projid(ip, prid);
 813
 814	if (pip && XFS_INHERIT_GID(pip)) {
 815		ip->i_d.di_gid = pip->i_d.di_gid;
 816		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 817			inode->i_mode |= S_ISGID;
 
 
 818	}
 819
 820	/*
 821	 * If the group ID of the new file does not match the effective group
 822	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 823	 * (and only if the irix_sgid_inherit compatibility variable is set).
 824	 */
 825	if ((irix_sgid_inherit) &&
 826	    (inode->i_mode & S_ISGID) &&
 827	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 828		inode->i_mode &= ~S_ISGID;
 829
 830	ip->i_d.di_size = 0;
 831	ip->i_d.di_nextents = 0;
 832	ASSERT(ip->i_d.di_nblocks == 0);
 833
 834	tv = current_time(inode);
 835	inode->i_mtime = tv;
 836	inode->i_atime = tv;
 837	inode->i_ctime = tv;
 838
 839	ip->i_d.di_extsize = 0;
 840	ip->i_d.di_dmevmask = 0;
 841	ip->i_d.di_dmstate = 0;
 842	ip->i_d.di_flags = 0;
 843
 844	if (ip->i_d.di_version == 3) {
 845		inode_set_iversion(inode, 1);
 846		ip->i_d.di_flags2 = 0;
 847		ip->i_d.di_cowextsize = 0;
 848		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 849		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 850	}
 851
 852
 853	flags = XFS_ILOG_CORE;
 854	switch (mode & S_IFMT) {
 855	case S_IFIFO:
 856	case S_IFCHR:
 857	case S_IFBLK:
 858	case S_IFSOCK:
 859		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 860		ip->i_df.if_flags = 0;
 861		flags |= XFS_ILOG_DEV;
 862		break;
 863	case S_IFREG:
 864	case S_IFDIR:
 865		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 866			uint		di_flags = 0;
 867
 868			if (S_ISDIR(mode)) {
 869				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 870					di_flags |= XFS_DIFLAG_RTINHERIT;
 871				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 872					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 873					ip->i_d.di_extsize = pip->i_d.di_extsize;
 874				}
 875				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 876					di_flags |= XFS_DIFLAG_PROJINHERIT;
 877			} else if (S_ISREG(mode)) {
 878				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 879					di_flags |= XFS_DIFLAG_REALTIME;
 880				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 881					di_flags |= XFS_DIFLAG_EXTSIZE;
 882					ip->i_d.di_extsize = pip->i_d.di_extsize;
 883				}
 884			}
 885			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 886			    xfs_inherit_noatime)
 887				di_flags |= XFS_DIFLAG_NOATIME;
 888			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 889			    xfs_inherit_nodump)
 890				di_flags |= XFS_DIFLAG_NODUMP;
 891			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 892			    xfs_inherit_sync)
 893				di_flags |= XFS_DIFLAG_SYNC;
 894			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 895			    xfs_inherit_nosymlinks)
 896				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 897			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 898			    xfs_inherit_nodefrag)
 899				di_flags |= XFS_DIFLAG_NODEFRAG;
 900			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 901				di_flags |= XFS_DIFLAG_FILESTREAM;
 902
 903			ip->i_d.di_flags |= di_flags;
 904		}
 905		if (pip &&
 906		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 907		    pip->i_d.di_version == 3 &&
 908		    ip->i_d.di_version == 3) {
 909			uint64_t	di_flags2 = 0;
 910
 911			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 912				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 913				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 914			}
 915			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 916				di_flags2 |= XFS_DIFLAG2_DAX;
 917
 918			ip->i_d.di_flags2 |= di_flags2;
 919		}
 920		/* FALLTHROUGH */
 921	case S_IFLNK:
 922		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 923		ip->i_df.if_flags = XFS_IFEXTENTS;
 924		ip->i_df.if_bytes = 0;
 925		ip->i_df.if_u1.if_root = NULL;
 926		break;
 927	default:
 928		ASSERT(0);
 929	}
 
 930	/*
 931	 * Attribute fork settings for new inode.
 932	 */
 933	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 934	ip->i_d.di_anextents = 0;
 
 
 
 
 
 
 
 
 935
 936	/*
 937	 * Log the new values stuffed into the inode.
 938	 */
 939	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 940	xfs_trans_log_inode(tp, ip, flags);
 941
 942	/* now that we have an i_mode we can setup the inode structure */
 943	xfs_setup_inode(ip);
 944
 945	*ipp = ip;
 946	return 0;
 947}
 948
 949/*
 950 * Allocates a new inode from disk and return a pointer to the
 951 * incore copy. This routine will internally commit the current
 952 * transaction and allocate a new one if the Space Manager needed
 953 * to do an allocation to replenish the inode free-list.
 954 *
 955 * This routine is designed to be called from xfs_create and
 956 * xfs_create_dir.
 957 *
 958 */
 959int
 960xfs_dir_ialloc(
 961	xfs_trans_t	**tpp,		/* input: current transaction;
 962					   output: may be a new transaction. */
 963	xfs_inode_t	*dp,		/* directory within whose allocate
 964					   the inode. */
 965	umode_t		mode,
 966	xfs_nlink_t	nlink,
 967	dev_t		rdev,
 968	prid_t		prid,		/* project id */
 969	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 970					   locked. */
 971{
 972	xfs_trans_t	*tp;
 973	xfs_inode_t	*ip;
 974	xfs_buf_t	*ialloc_context = NULL;
 975	int		code;
 976	void		*dqinfo;
 977	uint		tflags;
 978
 979	tp = *tpp;
 980	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 981
 982	/*
 983	 * xfs_ialloc will return a pointer to an incore inode if
 984	 * the Space Manager has an available inode on the free
 985	 * list. Otherwise, it will do an allocation and replenish
 986	 * the freelist.  Since we can only do one allocation per
 987	 * transaction without deadlocks, we will need to commit the
 988	 * current transaction and start a new one.  We will then
 989	 * need to call xfs_ialloc again to get the inode.
 990	 *
 991	 * If xfs_ialloc did an allocation to replenish the freelist,
 992	 * it returns the bp containing the head of the freelist as
 993	 * ialloc_context. We will hold a lock on it across the
 994	 * transaction commit so that no other process can steal
 995	 * the inode(s) that we've just allocated.
 996	 */
 997	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
 998			&ip);
 999
1000	/*
1001	 * Return an error if we were unable to allocate a new inode.
1002	 * This should only happen if we run out of space on disk or
1003	 * encounter a disk error.
1004	 */
1005	if (code) {
1006		*ipp = NULL;
1007		return code;
1008	}
1009	if (!ialloc_context && !ip) {
1010		*ipp = NULL;
1011		return -ENOSPC;
1012	}
1013
1014	/*
1015	 * If the AGI buffer is non-NULL, then we were unable to get an
1016	 * inode in one operation.  We need to commit the current
1017	 * transaction and call xfs_ialloc() again.  It is guaranteed
1018	 * to succeed the second time.
1019	 */
1020	if (ialloc_context) {
1021		/*
1022		 * Normally, xfs_trans_commit releases all the locks.
1023		 * We call bhold to hang on to the ialloc_context across
1024		 * the commit.  Holding this buffer prevents any other
1025		 * processes from doing any allocations in this
1026		 * allocation group.
1027		 */
1028		xfs_trans_bhold(tp, ialloc_context);
1029
1030		/*
1031		 * We want the quota changes to be associated with the next
1032		 * transaction, NOT this one. So, detach the dqinfo from this
1033		 * and attach it to the next transaction.
1034		 */
1035		dqinfo = NULL;
1036		tflags = 0;
1037		if (tp->t_dqinfo) {
1038			dqinfo = (void *)tp->t_dqinfo;
1039			tp->t_dqinfo = NULL;
1040			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042		}
1043
1044		code = xfs_trans_roll(&tp);
1045
1046		/*
1047		 * Re-attach the quota info that we detached from prev trx.
1048		 */
1049		if (dqinfo) {
1050			tp->t_dqinfo = dqinfo;
1051			tp->t_flags |= tflags;
1052		}
1053
1054		if (code) {
1055			xfs_buf_relse(ialloc_context);
1056			*tpp = tp;
1057			*ipp = NULL;
1058			return code;
1059		}
1060		xfs_trans_bjoin(tp, ialloc_context);
1061
1062		/*
1063		 * Call ialloc again. Since we've locked out all
1064		 * other allocations in this allocation group,
1065		 * this call should always succeed.
1066		 */
1067		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1068				  &ialloc_context, &ip);
1069
1070		/*
1071		 * If we get an error at this point, return to the caller
1072		 * so that the current transaction can be aborted.
1073		 */
1074		if (code) {
1075			*tpp = tp;
1076			*ipp = NULL;
1077			return code;
1078		}
1079		ASSERT(!ialloc_context && ip);
1080
1081	}
1082
1083	*ipp = ip;
1084	*tpp = tp;
1085
1086	return 0;
1087}
1088
1089/*
1090 * Decrement the link count on an inode & log the change.  If this causes the
1091 * link count to go to zero, move the inode to AGI unlinked list so that it can
1092 * be freed when the last active reference goes away via xfs_inactive().
1093 */
1094static int			/* error */
1095xfs_droplink(
1096	xfs_trans_t *tp,
1097	xfs_inode_t *ip)
1098{
1099	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100
1101	drop_nlink(VFS_I(ip));
1102	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103
1104	if (VFS_I(ip)->i_nlink)
1105		return 0;
1106
1107	return xfs_iunlink(tp, ip);
1108}
1109
1110/*
1111 * Increment the link count on an inode & log the change.
1112 */
1113static void
1114xfs_bumplink(
1115	xfs_trans_t *tp,
1116	xfs_inode_t *ip)
1117{
1118	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
1120	ASSERT(ip->i_d.di_version > 1);
1121	inc_nlink(VFS_I(ip));
1122	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1123}
1124
1125int
1126xfs_create(
 
1127	xfs_inode_t		*dp,
1128	struct xfs_name		*name,
1129	umode_t			mode,
1130	dev_t			rdev,
 
1131	xfs_inode_t		**ipp)
1132{
1133	int			is_dir = S_ISDIR(mode);
1134	struct xfs_mount	*mp = dp->i_mount;
1135	struct xfs_inode	*ip = NULL;
1136	struct xfs_trans	*tp = NULL;
1137	int			error;
1138	bool                    unlock_dp_on_error = false;
1139	prid_t			prid;
1140	struct xfs_dquot	*udqp = NULL;
1141	struct xfs_dquot	*gdqp = NULL;
1142	struct xfs_dquot	*pdqp = NULL;
1143	struct xfs_trans_res	*tres;
1144	uint			resblks;
 
1145
1146	trace_xfs_create(dp, name);
1147
1148	if (XFS_FORCED_SHUTDOWN(mp))
1149		return -EIO;
1150
1151	prid = xfs_get_initial_prid(dp);
1152
1153	/*
1154	 * Make sure that we have allocated dquot(s) on disk.
1155	 */
1156	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157					xfs_kgid_to_gid(current_fsgid()), prid,
1158					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159					&udqp, &gdqp, &pdqp);
1160	if (error)
1161		return error;
1162
1163	if (is_dir) {
1164		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165		tres = &M_RES(mp)->tr_mkdir;
1166	} else {
1167		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168		tres = &M_RES(mp)->tr_create;
1169	}
1170
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1182	}
1183	if (error)
1184		goto out_release_inode;
1185
1186	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187	unlock_dp_on_error = true;
1188
1189	/*
1190	 * Reserve disk quota and the inode.
1191	 */
1192	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193						pdqp, resblks, 1, 0);
1194	if (error)
1195		goto out_trans_cancel;
1196
1197	/*
1198	 * A newly created regular or special file just has one directory
1199	 * entry pointing to them, but a directory also the "." entry
1200	 * pointing to itself.
1201	 */
1202	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
 
 
 
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	/*
1207	 * Now we join the directory inode to the transaction.  We do not do it
1208	 * earlier because xfs_dir_ialloc might commit the previous transaction
1209	 * (and release all the locks).  An error from here on will result in
1210	 * the transaction cancel unlocking dp so don't do it explicitly in the
1211	 * error path.
1212	 */
1213	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1214	unlock_dp_on_error = false;
1215
1216	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1217				   resblks ?
1218					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219	if (error) {
1220		ASSERT(error != -ENOSPC);
1221		goto out_trans_cancel;
1222	}
1223	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225
1226	if (is_dir) {
1227		error = xfs_dir_init(tp, ip, dp);
1228		if (error)
1229			goto out_trans_cancel;
1230
1231		xfs_bumplink(tp, dp);
1232	}
1233
1234	/*
1235	 * If this is a synchronous mount, make sure that the
1236	 * create transaction goes to disk before returning to
1237	 * the user.
1238	 */
1239	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240		xfs_trans_set_sync(tp);
1241
1242	/*
1243	 * Attach the dquot(s) to the inodes and modify them incore.
1244	 * These ids of the inode couldn't have changed since the new
1245	 * inode has been locked ever since it was created.
1246	 */
1247	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248
1249	error = xfs_trans_commit(tp);
1250	if (error)
1251		goto out_release_inode;
1252
1253	xfs_qm_dqrele(udqp);
1254	xfs_qm_dqrele(gdqp);
1255	xfs_qm_dqrele(pdqp);
1256
1257	*ipp = ip;
1258	return 0;
1259
1260 out_trans_cancel:
1261	xfs_trans_cancel(tp);
1262 out_release_inode:
1263	/*
1264	 * Wait until after the current transaction is aborted to finish the
1265	 * setup of the inode and release the inode.  This prevents recursive
1266	 * transactions and deadlocks from xfs_inactive.
1267	 */
1268	if (ip) {
1269		xfs_finish_inode_setup(ip);
1270		xfs_irele(ip);
1271	}
1272
1273	xfs_qm_dqrele(udqp);
1274	xfs_qm_dqrele(gdqp);
1275	xfs_qm_dqrele(pdqp);
1276
1277	if (unlock_dp_on_error)
1278		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1279	return error;
1280}
1281
1282int
1283xfs_create_tmpfile(
 
1284	struct xfs_inode	*dp,
1285	umode_t			mode,
1286	struct xfs_inode	**ipp)
1287{
1288	struct xfs_mount	*mp = dp->i_mount;
1289	struct xfs_inode	*ip = NULL;
1290	struct xfs_trans	*tp = NULL;
1291	int			error;
1292	prid_t                  prid;
1293	struct xfs_dquot	*udqp = NULL;
1294	struct xfs_dquot	*gdqp = NULL;
1295	struct xfs_dquot	*pdqp = NULL;
1296	struct xfs_trans_res	*tres;
1297	uint			resblks;
 
1298
1299	if (XFS_FORCED_SHUTDOWN(mp))
1300		return -EIO;
1301
1302	prid = xfs_get_initial_prid(dp);
1303
1304	/*
1305	 * Make sure that we have allocated dquot(s) on disk.
1306	 */
1307	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308				xfs_kgid_to_gid(current_fsgid()), prid,
1309				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310				&udqp, &gdqp, &pdqp);
1311	if (error)
1312		return error;
1313
1314	resblks = XFS_IALLOC_SPACE_RES(mp);
1315	tres = &M_RES(mp)->tr_create_tmpfile;
1316
1317	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1318	if (error)
1319		goto out_release_inode;
1320
1321	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322						pdqp, resblks, 1, 0);
1323	if (error)
1324		goto out_trans_cancel;
1325
1326	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
 
 
 
1327	if (error)
1328		goto out_trans_cancel;
1329
1330	if (mp->m_flags & XFS_MOUNT_WSYNC)
1331		xfs_trans_set_sync(tp);
1332
1333	/*
1334	 * Attach the dquot(s) to the inodes and modify them incore.
1335	 * These ids of the inode couldn't have changed since the new
1336	 * inode has been locked ever since it was created.
1337	 */
1338	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339
1340	error = xfs_iunlink(tp, ip);
1341	if (error)
1342		goto out_trans_cancel;
1343
1344	error = xfs_trans_commit(tp);
1345	if (error)
1346		goto out_release_inode;
1347
1348	xfs_qm_dqrele(udqp);
1349	xfs_qm_dqrele(gdqp);
1350	xfs_qm_dqrele(pdqp);
1351
1352	*ipp = ip;
1353	return 0;
1354
1355 out_trans_cancel:
1356	xfs_trans_cancel(tp);
1357 out_release_inode:
1358	/*
1359	 * Wait until after the current transaction is aborted to finish the
1360	 * setup of the inode and release the inode.  This prevents recursive
1361	 * transactions and deadlocks from xfs_inactive.
1362	 */
1363	if (ip) {
1364		xfs_finish_inode_setup(ip);
1365		xfs_irele(ip);
1366	}
1367
1368	xfs_qm_dqrele(udqp);
1369	xfs_qm_dqrele(gdqp);
1370	xfs_qm_dqrele(pdqp);
1371
1372	return error;
1373}
1374
1375int
1376xfs_link(
1377	xfs_inode_t		*tdp,
1378	xfs_inode_t		*sip,
1379	struct xfs_name		*target_name)
1380{
1381	xfs_mount_t		*mp = tdp->i_mount;
1382	xfs_trans_t		*tp;
1383	int			error;
1384	int			resblks;
1385
1386	trace_xfs_link(tdp, target_name);
1387
1388	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1389
1390	if (XFS_FORCED_SHUTDOWN(mp))
1391		return -EIO;
1392
1393	error = xfs_qm_dqattach(sip);
1394	if (error)
1395		goto std_return;
1396
1397	error = xfs_qm_dqattach(tdp);
1398	if (error)
1399		goto std_return;
1400
1401	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1402	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1403	if (error == -ENOSPC) {
1404		resblks = 0;
1405		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1406	}
1407	if (error)
1408		goto std_return;
1409
1410	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1411
1412	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1414
1415	/*
1416	 * If we are using project inheritance, we only allow hard link
1417	 * creation in our tree when the project IDs are the same; else
1418	 * the tree quota mechanism could be circumvented.
1419	 */
1420	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422		error = -EXDEV;
1423		goto error_return;
1424	}
1425
1426	if (!resblks) {
1427		error = xfs_dir_canenter(tp, tdp, target_name);
1428		if (error)
1429			goto error_return;
1430	}
1431
1432	/*
1433	 * Handle initial link state of O_TMPFILE inode
1434	 */
1435	if (VFS_I(sip)->i_nlink == 0) {
1436		error = xfs_iunlink_remove(tp, sip);
 
 
 
 
1437		if (error)
1438			goto error_return;
1439	}
1440
1441	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1442				   resblks);
1443	if (error)
1444		goto error_return;
1445	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447
1448	xfs_bumplink(tp, sip);
1449
1450	/*
1451	 * If this is a synchronous mount, make sure that the
1452	 * link transaction goes to disk before returning to
1453	 * the user.
1454	 */
1455	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1456		xfs_trans_set_sync(tp);
1457
1458	return xfs_trans_commit(tp);
1459
1460 error_return:
1461	xfs_trans_cancel(tp);
1462 std_return:
 
 
1463	return error;
1464}
1465
1466/* Clear the reflink flag and the cowblocks tag if possible. */
1467static void
1468xfs_itruncate_clear_reflink_flags(
1469	struct xfs_inode	*ip)
1470{
1471	struct xfs_ifork	*dfork;
1472	struct xfs_ifork	*cfork;
1473
1474	if (!xfs_is_reflink_inode(ip))
1475		return;
1476	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480	if (cfork->if_bytes == 0)
1481		xfs_inode_clear_cowblocks_tag(ip);
1482}
1483
1484/*
1485 * Free up the underlying blocks past new_size.  The new size must be smaller
1486 * than the current size.  This routine can be used both for the attribute and
1487 * data fork, and does not modify the inode size, which is left to the caller.
1488 *
1489 * The transaction passed to this routine must have made a permanent log
1490 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1491 * given transaction and start new ones, so make sure everything involved in
1492 * the transaction is tidy before calling here.  Some transaction will be
1493 * returned to the caller to be committed.  The incoming transaction must
1494 * already include the inode, and both inode locks must be held exclusively.
1495 * The inode must also be "held" within the transaction.  On return the inode
1496 * will be "held" within the returned transaction.  This routine does NOT
1497 * require any disk space to be reserved for it within the transaction.
1498 *
1499 * If we get an error, we must return with the inode locked and linked into the
1500 * current transaction. This keeps things simple for the higher level code,
1501 * because it always knows that the inode is locked and held in the transaction
1502 * that returns to it whether errors occur or not.  We don't mark the inode
1503 * dirty on error so that transactions can be easily aborted if possible.
1504 */
1505int
1506xfs_itruncate_extents_flags(
1507	struct xfs_trans	**tpp,
1508	struct xfs_inode	*ip,
1509	int			whichfork,
1510	xfs_fsize_t		new_size,
1511	int			flags)
1512{
1513	struct xfs_mount	*mp = ip->i_mount;
1514	struct xfs_trans	*tp = *tpp;
1515	xfs_fileoff_t		first_unmap_block;
1516	xfs_fileoff_t		last_block;
1517	xfs_filblks_t		unmap_len;
1518	int			error = 0;
1519	int			done = 0;
1520
1521	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1524	ASSERT(new_size <= XFS_ISIZE(ip));
1525	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1526	ASSERT(ip->i_itemp != NULL);
1527	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1528	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1529
1530	trace_xfs_itruncate_extents_start(ip, new_size);
1531
1532	flags |= xfs_bmapi_aflag(whichfork);
1533
1534	/*
1535	 * Since it is possible for space to become allocated beyond
1536	 * the end of the file (in a crash where the space is allocated
1537	 * but the inode size is not yet updated), simply remove any
1538	 * blocks which show up between the new EOF and the maximum
1539	 * possible file size.  If the first block to be removed is
1540	 * beyond the maximum file size (ie it is the same as last_block),
1541	 * then there is nothing to do.
 
1542	 */
1543	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1544	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1545	if (first_unmap_block == last_block)
1546		return 0;
 
1547
1548	ASSERT(first_unmap_block < last_block);
1549	unmap_len = last_block - first_unmap_block + 1;
1550	while (!done) {
1551		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1552		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1553				    XFS_ITRUNC_MAX_EXTENTS, &done);
1554		if (error)
1555			goto out;
1556
1557		/*
1558		 * Duplicate the transaction that has the permanent
1559		 * reservation and commit the old transaction.
1560		 */
1561		error = xfs_defer_finish(&tp);
1562		if (error)
1563			goto out;
1564
1565		error = xfs_trans_roll_inode(&tp, ip);
1566		if (error)
1567			goto out;
1568	}
1569
1570	if (whichfork == XFS_DATA_FORK) {
1571		/* Remove all pending CoW reservations. */
1572		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573				first_unmap_block, last_block, true);
1574		if (error)
1575			goto out;
1576
1577		xfs_itruncate_clear_reflink_flags(ip);
1578	}
1579
1580	/*
1581	 * Always re-log the inode so that our permanent transaction can keep
1582	 * on rolling it forward in the log.
1583	 */
1584	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586	trace_xfs_itruncate_extents_end(ip, new_size);
1587
1588out:
1589	*tpp = tp;
1590	return error;
1591}
1592
1593int
1594xfs_release(
1595	xfs_inode_t	*ip)
1596{
1597	xfs_mount_t	*mp = ip->i_mount;
1598	int		error;
1599
1600	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1601		return 0;
1602
1603	/* If this is a read-only mount, don't do this (would generate I/O) */
1604	if (mp->m_flags & XFS_MOUNT_RDONLY)
1605		return 0;
1606
1607	if (!XFS_FORCED_SHUTDOWN(mp)) {
1608		int truncated;
1609
1610		/*
1611		 * If we previously truncated this file and removed old data
1612		 * in the process, we want to initiate "early" writeout on
1613		 * the last close.  This is an attempt to combat the notorious
1614		 * NULL files problem which is particularly noticeable from a
1615		 * truncate down, buffered (re-)write (delalloc), followed by
1616		 * a crash.  What we are effectively doing here is
1617		 * significantly reducing the time window where we'd otherwise
1618		 * be exposed to that problem.
1619		 */
1620		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621		if (truncated) {
1622			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1623			if (ip->i_delayed_blks > 0) {
1624				error = filemap_flush(VFS_I(ip)->i_mapping);
1625				if (error)
1626					return error;
1627			}
1628		}
1629	}
1630
1631	if (VFS_I(ip)->i_nlink == 0)
1632		return 0;
1633
1634	if (xfs_can_free_eofblocks(ip, false)) {
 
 
 
 
 
 
 
1635
 
1636		/*
1637		 * Check if the inode is being opened, written and closed
1638		 * frequently and we have delayed allocation blocks outstanding
1639		 * (e.g. streaming writes from the NFS server), truncating the
1640		 * blocks past EOF will cause fragmentation to occur.
1641		 *
1642		 * In this case don't do the truncation, but we have to be
1643		 * careful how we detect this case. Blocks beyond EOF show up as
1644		 * i_delayed_blks even when the inode is clean, so we need to
1645		 * truncate them away first before checking for a dirty release.
1646		 * Hence on the first dirty close we will still remove the
1647		 * speculative allocation, but after that we will leave it in
1648		 * place.
1649		 */
1650		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651			return 0;
1652		/*
1653		 * If we can't get the iolock just skip truncating the blocks
1654		 * past EOF because we could deadlock with the mmap_sem
1655		 * otherwise. We'll get another chance to drop them once the
1656		 * last reference to the inode is dropped, so we'll never leak
1657		 * blocks permanently.
1658		 */
1659		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660			error = xfs_free_eofblocks(ip);
1661			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662			if (error)
1663				return error;
1664		}
1665
1666		/* delalloc blocks after truncation means it really is dirty */
1667		if (ip->i_delayed_blks)
1668			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669	}
1670	return 0;
 
 
 
1671}
1672
1673/*
1674 * xfs_inactive_truncate
1675 *
1676 * Called to perform a truncate when an inode becomes unlinked.
1677 */
1678STATIC int
1679xfs_inactive_truncate(
1680	struct xfs_inode *ip)
1681{
1682	struct xfs_mount	*mp = ip->i_mount;
1683	struct xfs_trans	*tp;
1684	int			error;
1685
1686	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1687	if (error) {
1688		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1689		return error;
1690	}
1691	xfs_ilock(ip, XFS_ILOCK_EXCL);
1692	xfs_trans_ijoin(tp, ip, 0);
1693
1694	/*
1695	 * Log the inode size first to prevent stale data exposure in the event
1696	 * of a system crash before the truncate completes. See the related
1697	 * comment in xfs_vn_setattr_size() for details.
1698	 */
1699	ip->i_d.di_size = 0;
1700	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701
1702	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703	if (error)
1704		goto error_trans_cancel;
1705
1706	ASSERT(ip->i_d.di_nextents == 0);
1707
1708	error = xfs_trans_commit(tp);
1709	if (error)
1710		goto error_unlock;
1711
1712	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713	return 0;
1714
1715error_trans_cancel:
1716	xfs_trans_cancel(tp);
1717error_unlock:
1718	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719	return error;
1720}
1721
1722/*
1723 * xfs_inactive_ifree()
1724 *
1725 * Perform the inode free when an inode is unlinked.
1726 */
1727STATIC int
1728xfs_inactive_ifree(
1729	struct xfs_inode *ip)
1730{
1731	struct xfs_mount	*mp = ip->i_mount;
1732	struct xfs_trans	*tp;
1733	int			error;
1734
1735	/*
1736	 * We try to use a per-AG reservation for any block needed by the finobt
1737	 * tree, but as the finobt feature predates the per-AG reservation
1738	 * support a degraded file system might not have enough space for the
1739	 * reservation at mount time.  In that case try to dip into the reserved
1740	 * pool and pray.
1741	 *
1742	 * Send a warning if the reservation does happen to fail, as the inode
1743	 * now remains allocated and sits on the unlinked list until the fs is
1744	 * repaired.
1745	 */
1746	if (unlikely(mp->m_finobt_nores)) {
1747		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749				&tp);
1750	} else {
1751		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752	}
1753	if (error) {
1754		if (error == -ENOSPC) {
1755			xfs_warn_ratelimited(mp,
1756			"Failed to remove inode(s) from unlinked list. "
1757			"Please free space, unmount and run xfs_repair.");
1758		} else {
1759			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760		}
1761		return error;
1762	}
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	xfs_ilock(ip, XFS_ILOCK_EXCL);
1765	xfs_trans_ijoin(tp, ip, 0);
1766
1767	error = xfs_ifree(tp, ip);
 
1768	if (error) {
1769		/*
1770		 * If we fail to free the inode, shut down.  The cancel
1771		 * might do that, we need to make sure.  Otherwise the
1772		 * inode might be lost for a long time or forever.
1773		 */
1774		if (!XFS_FORCED_SHUTDOWN(mp)) {
1775			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776				__func__, error);
1777			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778		}
1779		xfs_trans_cancel(tp);
1780		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781		return error;
1782	}
1783
1784	/*
1785	 * Credit the quota account(s). The inode is gone.
1786	 */
1787	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1788
1789	/*
1790	 * Just ignore errors at this point.  There is nothing we can do except
1791	 * to try to keep going. Make sure it's not a silent error.
1792	 */
1793	error = xfs_trans_commit(tp);
1794	if (error)
1795		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1796			__func__, error);
1797
1798	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799	return 0;
1800}
1801
1802/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803 * xfs_inactive
1804 *
1805 * This is called when the vnode reference count for the vnode
1806 * goes to zero.  If the file has been unlinked, then it must
1807 * now be truncated.  Also, we clear all of the read-ahead state
1808 * kept for the inode here since the file is now closed.
1809 */
1810void
1811xfs_inactive(
1812	xfs_inode_t	*ip)
1813{
1814	struct xfs_mount	*mp;
1815	int			error;
1816	int			truncate = 0;
1817
1818	/*
1819	 * If the inode is already free, then there can be nothing
1820	 * to clean up here.
1821	 */
1822	if (VFS_I(ip)->i_mode == 0) {
1823		ASSERT(ip->i_df.if_broot_bytes == 0);
1824		return;
1825	}
1826
1827	mp = ip->i_mount;
1828	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1829
1830	/* If this is a read-only mount, don't do this (would generate I/O) */
1831	if (mp->m_flags & XFS_MOUNT_RDONLY)
1832		return;
 
 
 
 
1833
1834	/* Try to clean out the cow blocks if there are any. */
1835	if (xfs_inode_has_cow_data(ip))
1836		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1837
1838	if (VFS_I(ip)->i_nlink != 0) {
1839		/*
1840		 * force is true because we are evicting an inode from the
1841		 * cache. Post-eof blocks must be freed, lest we end up with
1842		 * broken free space accounting.
1843		 *
1844		 * Note: don't bother with iolock here since lockdep complains
1845		 * about acquiring it in reclaim context. We have the only
1846		 * reference to the inode at this point anyways.
1847		 */
1848		if (xfs_can_free_eofblocks(ip, true))
1849			xfs_free_eofblocks(ip);
1850
1851		return;
1852	}
1853
1854	if (S_ISREG(VFS_I(ip)->i_mode) &&
1855	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1856	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1857		truncate = 1;
1858
1859	error = xfs_qm_dqattach(ip);
1860	if (error)
1861		return;
1862
1863	if (S_ISLNK(VFS_I(ip)->i_mode))
1864		error = xfs_inactive_symlink(ip);
1865	else if (truncate)
1866		error = xfs_inactive_truncate(ip);
1867	if (error)
1868		return;
1869
1870	/*
1871	 * If there are attributes associated with the file then blow them away
1872	 * now.  The code calls a routine that recursively deconstructs the
1873	 * attribute fork. If also blows away the in-core attribute fork.
1874	 */
1875	if (XFS_IFORK_Q(ip)) {
1876		error = xfs_attr_inactive(ip);
1877		if (error)
1878			return;
1879	}
1880
1881	ASSERT(!ip->i_afp);
1882	ASSERT(ip->i_d.di_anextents == 0);
1883	ASSERT(ip->i_d.di_forkoff == 0);
1884
1885	/*
1886	 * Free the inode.
1887	 */
1888	error = xfs_inactive_ifree(ip);
1889	if (error)
1890		return;
1891
 
1892	/*
1893	 * Release the dquots held by inode, if any.
 
1894	 */
1895	xfs_qm_dqdetach(ip);
1896}
1897
1898/*
1899 * In-Core Unlinked List Lookups
1900 * =============================
1901 *
1902 * Every inode is supposed to be reachable from some other piece of metadata
1903 * with the exception of the root directory.  Inodes with a connection to a
1904 * file descriptor but not linked from anywhere in the on-disk directory tree
1905 * are collectively known as unlinked inodes, though the filesystem itself
1906 * maintains links to these inodes so that on-disk metadata are consistent.
1907 *
1908 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1909 * header contains a number of buckets that point to an inode, and each inode
1910 * record has a pointer to the next inode in the hash chain.  This
1911 * singly-linked list causes scaling problems in the iunlink remove function
1912 * because we must walk that list to find the inode that points to the inode
1913 * being removed from the unlinked hash bucket list.
1914 *
1915 * What if we modelled the unlinked list as a collection of records capturing
1916 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1917 * have a fast way to look up unlinked list predecessors, which avoids the
1918 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1919 * rhashtable.
1920 *
1921 * Because this is a backref cache, we ignore operational failures since the
1922 * iunlink code can fall back to the slow bucket walk.  The only errors that
1923 * should bubble out are for obviously incorrect situations.
1924 *
1925 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1926 * access or have otherwise provided for concurrency control.
1927 */
1928
1929/* Capture a "X.next_unlinked = Y" relationship. */
1930struct xfs_iunlink {
1931	struct rhash_head	iu_rhash_head;
1932	xfs_agino_t		iu_agino;		/* X */
1933	xfs_agino_t		iu_next_unlinked;	/* Y */
1934};
1935
1936/* Unlinked list predecessor lookup hashtable construction */
1937static int
1938xfs_iunlink_obj_cmpfn(
1939	struct rhashtable_compare_arg	*arg,
1940	const void			*obj)
1941{
1942	const xfs_agino_t		*key = arg->key;
1943	const struct xfs_iunlink	*iu = obj;
1944
1945	if (iu->iu_next_unlinked != *key)
1946		return 1;
1947	return 0;
1948}
1949
1950static const struct rhashtable_params xfs_iunlink_hash_params = {
1951	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1952	.key_len		= sizeof(xfs_agino_t),
1953	.key_offset		= offsetof(struct xfs_iunlink,
1954					   iu_next_unlinked),
1955	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1956	.automatic_shrinking	= true,
1957	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1958};
1959
1960/*
1961 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1962 * relation is found.
 
 
1963 */
1964static xfs_agino_t
1965xfs_iunlink_lookup_backref(
1966	struct xfs_perag	*pag,
1967	xfs_agino_t		agino)
1968{
1969	struct xfs_iunlink	*iu;
1970
1971	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1972			xfs_iunlink_hash_params);
1973	return iu ? iu->iu_agino : NULLAGINO;
1974}
1975
1976/*
1977 * Take ownership of an iunlink cache entry and insert it into the hash table.
1978 * If successful, the entry will be owned by the cache; if not, it is freed.
1979 * Either way, the caller does not own @iu after this call.
1980 */
1981static int
1982xfs_iunlink_insert_backref(
1983	struct xfs_perag	*pag,
1984	struct xfs_iunlink	*iu)
1985{
1986	int			error;
1987
1988	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1989			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1990	/*
1991	 * Fail loudly if there already was an entry because that's a sign of
1992	 * corruption of in-memory data.  Also fail loudly if we see an error
1993	 * code we didn't anticipate from the rhashtable code.  Currently we
1994	 * only anticipate ENOMEM.
1995	 */
1996	if (error) {
1997		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1998		kmem_free(iu);
1999	}
2000	/*
2001	 * Absorb any runtime errors that aren't a result of corruption because
2002	 * this is a cache and we can always fall back to bucket list scanning.
2003	 */
2004	if (error != 0 && error != -EEXIST)
2005		error = 0;
2006	return error;
2007}
2008
2009/* Remember that @prev_agino.next_unlinked = @this_agino. */
2010static int
2011xfs_iunlink_add_backref(
2012	struct xfs_perag	*pag,
2013	xfs_agino_t		prev_agino,
2014	xfs_agino_t		this_agino)
2015{
2016	struct xfs_iunlink	*iu;
2017
2018	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2019		return 0;
2020
2021	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2022	iu->iu_agino = prev_agino;
2023	iu->iu_next_unlinked = this_agino;
2024
2025	return xfs_iunlink_insert_backref(pag, iu);
2026}
2027
2028/*
2029 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2030 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2031 * wasn't any such entry then we don't bother.
2032 */
2033static int
2034xfs_iunlink_change_backref(
2035	struct xfs_perag	*pag,
2036	xfs_agino_t		agino,
2037	xfs_agino_t		next_unlinked)
2038{
2039	struct xfs_iunlink	*iu;
2040	int			error;
2041
2042	/* Look up the old entry; if there wasn't one then exit. */
2043	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2044			xfs_iunlink_hash_params);
2045	if (!iu)
2046		return 0;
2047
2048	/*
2049	 * Remove the entry.  This shouldn't ever return an error, but if we
2050	 * couldn't remove the old entry we don't want to add it again to the
2051	 * hash table, and if the entry disappeared on us then someone's
2052	 * violated the locking rules and we need to fail loudly.  Either way
2053	 * we cannot remove the inode because internal state is or would have
2054	 * been corrupt.
2055	 */
2056	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2057			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2058	if (error)
2059		return error;
2060
2061	/* If there is no new next entry just free our item and return. */
2062	if (next_unlinked == NULLAGINO) {
2063		kmem_free(iu);
2064		return 0;
2065	}
2066
2067	/* Update the entry and re-add it to the hash table. */
2068	iu->iu_next_unlinked = next_unlinked;
2069	return xfs_iunlink_insert_backref(pag, iu);
2070}
2071
2072/* Set up the in-core predecessor structures. */
2073int
2074xfs_iunlink_init(
2075	struct xfs_perag	*pag)
2076{
2077	return rhashtable_init(&pag->pagi_unlinked_hash,
2078			&xfs_iunlink_hash_params);
2079}
2080
2081/* Free the in-core predecessor structures. */
2082static void
2083xfs_iunlink_free_item(
2084	void			*ptr,
2085	void			*arg)
2086{
2087	struct xfs_iunlink	*iu = ptr;
2088	bool			*freed_anything = arg;
2089
2090	*freed_anything = true;
2091	kmem_free(iu);
2092}
2093
2094void
2095xfs_iunlink_destroy(
2096	struct xfs_perag	*pag)
2097{
2098	bool			freed_anything = false;
2099
2100	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2101			xfs_iunlink_free_item, &freed_anything);
2102
2103	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2104}
2105
2106/*
2107 * Point the AGI unlinked bucket at an inode and log the results.  The caller
2108 * is responsible for validating the old value.
2109 */
2110STATIC int
2111xfs_iunlink_update_bucket(
2112	struct xfs_trans	*tp,
2113	xfs_agnumber_t		agno,
2114	struct xfs_buf		*agibp,
2115	unsigned int		bucket_index,
2116	xfs_agino_t		new_agino)
2117{
2118	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2119	xfs_agino_t		old_value;
2120	int			offset;
2121
2122	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2123
2124	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2125	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2126			old_value, new_agino);
2127
2128	/*
2129	 * We should never find the head of the list already set to the value
2130	 * passed in because either we're adding or removing ourselves from the
2131	 * head of the list.
2132	 */
2133	if (old_value == new_agino)
 
2134		return -EFSCORRUPTED;
 
2135
2136	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137	offset = offsetof(struct xfs_agi, agi_unlinked) +
2138			(sizeof(xfs_agino_t) * bucket_index);
2139	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140	return 0;
2141}
2142
2143/* Set an on-disk inode's next_unlinked pointer. */
2144STATIC void
2145xfs_iunlink_update_dinode(
2146	struct xfs_trans	*tp,
2147	xfs_agnumber_t		agno,
2148	xfs_agino_t		agino,
2149	struct xfs_buf		*ibp,
2150	struct xfs_dinode	*dip,
2151	struct xfs_imap		*imap,
2152	xfs_agino_t		next_agino)
2153{
2154	struct xfs_mount	*mp = tp->t_mountp;
2155	int			offset;
2156
2157	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158
2159	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160			be32_to_cpu(dip->di_next_unlinked), next_agino);
2161
2162	dip->di_next_unlinked = cpu_to_be32(next_agino);
2163	offset = imap->im_boffset +
2164			offsetof(struct xfs_dinode, di_next_unlinked);
2165
2166	/* need to recalc the inode CRC if appropriate */
2167	xfs_dinode_calc_crc(mp, dip);
2168	xfs_trans_inode_buf(tp, ibp);
2169	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170	xfs_inobp_check(mp, ibp);
2171}
2172
2173/* Set an in-core inode's unlinked pointer and return the old value. */
2174STATIC int
2175xfs_iunlink_update_inode(
2176	struct xfs_trans	*tp,
2177	struct xfs_inode	*ip,
2178	xfs_agnumber_t		agno,
2179	xfs_agino_t		next_agino,
2180	xfs_agino_t		*old_next_agino)
2181{
2182	struct xfs_mount	*mp = tp->t_mountp;
2183	struct xfs_dinode	*dip;
2184	struct xfs_buf		*ibp;
2185	xfs_agino_t		old_value;
2186	int			error;
2187
2188	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189
2190	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191	if (error)
2192		return error;
2193
2194	/* Make sure the old pointer isn't garbage. */
2195	old_value = be32_to_cpu(dip->di_next_unlinked);
2196	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2197		error = -EFSCORRUPTED;
2198		goto out;
2199	}
2200
2201	/*
2202	 * Since we're updating a linked list, we should never find that the
2203	 * current pointer is the same as the new value, unless we're
2204	 * terminating the list.
2205	 */
2206	*old_next_agino = old_value;
2207	if (old_value == next_agino) {
2208		if (next_agino != NULLAGINO)
2209			error = -EFSCORRUPTED;
2210		goto out;
2211	}
2212
2213	/* Ok, update the new pointer. */
2214	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2215			ibp, dip, &ip->i_imap, next_agino);
2216	return 0;
2217out:
2218	xfs_trans_brelse(tp, ibp);
2219	return error;
2220}
2221
2222/*
2223 * This is called when the inode's link count has gone to 0 or we are creating
2224 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2225 *
2226 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2227 * list when the inode is freed.
2228 */
2229STATIC int
2230xfs_iunlink(
2231	struct xfs_trans	*tp,
 
 
2232	struct xfs_inode	*ip)
2233{
2234	struct xfs_mount	*mp = tp->t_mountp;
2235	struct xfs_agi		*agi;
2236	struct xfs_buf		*agibp;
2237	xfs_agino_t		next_agino;
2238	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2239	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2240	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2241	int			error;
2242
2243	ASSERT(VFS_I(ip)->i_nlink == 0);
2244	ASSERT(VFS_I(ip)->i_mode != 0);
2245	trace_xfs_iunlink(ip);
2246
2247	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2248	error = xfs_read_agi(mp, tp, agno, &agibp);
2249	if (error)
2250		return error;
2251	agi = XFS_BUF_TO_AGI(agibp);
2252
2253	/*
2254	 * Get the index into the agi hash table for the list this inode will
2255	 * go on.  Make sure the pointer isn't garbage and that this inode
2256	 * isn't already on the list.
2257	 */
2258	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2259	if (next_agino == agino ||
2260	    !xfs_verify_agino_or_null(mp, agno, next_agino))
 
2261		return -EFSCORRUPTED;
 
2262
2263	if (next_agino != NULLAGINO) {
2264		struct xfs_perag	*pag;
2265		xfs_agino_t		old_agino;
 
 
 
 
2266
 
2267		/*
2268		 * There is already another inode in the bucket, so point this
2269		 * inode to the current head of the list.
2270		 */
2271		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2272				&old_agino);
2273		if (error)
2274			return error;
2275		ASSERT(old_agino == NULLAGINO);
2276
2277		/*
2278		 * agino has been unlinked, add a backref from the next inode
2279		 * back to agino.
2280		 */
2281		pag = xfs_perag_get(mp, agno);
2282		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2283		xfs_perag_put(pag);
2284		if (error)
2285			return error;
 
2286	}
2287
2288	/* Point the head of the list to point to this inode. */
2289	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2290}
2291
2292/* Return the imap, dinode pointer, and buffer for an inode. */
 
 
 
 
 
 
2293STATIC int
2294xfs_iunlink_map_ino(
2295	struct xfs_trans	*tp,
2296	xfs_agnumber_t		agno,
2297	xfs_agino_t		agino,
2298	struct xfs_imap		*imap,
2299	struct xfs_dinode	**dipp,
2300	struct xfs_buf		**bpp)
2301{
2302	struct xfs_mount	*mp = tp->t_mountp;
 
 
2303	int			error;
2304
2305	imap->im_blkno = 0;
2306	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2307	if (error) {
2308		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2309				__func__, error);
2310		return error;
2311	}
2312
2313	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2314	if (error) {
2315		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2316				__func__, error);
2317		return error;
2318	}
2319
2320	return 0;
 
 
 
 
 
 
 
 
2321}
2322
2323/*
2324 * Walk the unlinked chain from @head_agino until we find the inode that
2325 * points to @target_agino.  Return the inode number, map, dinode pointer,
2326 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2327 *
2328 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2329 * @agino, @imap, @dipp, and @bpp are all output parameters.
2330 *
2331 * Do not call this function if @target_agino is the head of the list.
2332 */
2333STATIC int
2334xfs_iunlink_map_prev(
2335	struct xfs_trans	*tp,
2336	xfs_agnumber_t		agno,
2337	xfs_agino_t		head_agino,
2338	xfs_agino_t		target_agino,
2339	xfs_agino_t		*agino,
2340	struct xfs_imap		*imap,
2341	struct xfs_dinode	**dipp,
2342	struct xfs_buf		**bpp,
2343	struct xfs_perag	*pag)
2344{
2345	struct xfs_mount	*mp = tp->t_mountp;
2346	xfs_agino_t		next_agino;
 
 
 
2347	int			error;
2348
2349	ASSERT(head_agino != target_agino);
2350	*bpp = NULL;
2351
2352	/* See if our backref cache can find it faster. */
2353	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2354	if (*agino != NULLAGINO) {
2355		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2356		if (error)
2357			return error;
2358
2359		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2360			return 0;
2361
2362		/*
2363		 * If we get here the cache contents were corrupt, so drop the
2364		 * buffer and fall back to walking the bucket list.
2365		 */
2366		xfs_trans_brelse(tp, *bpp);
2367		*bpp = NULL;
2368		WARN_ON_ONCE(1);
 
 
2369	}
2370
2371	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2372
2373	/* Otherwise, walk the entire bucket until we find it. */
2374	next_agino = head_agino;
2375	while (next_agino != target_agino) {
2376		xfs_agino_t	unlinked_agino;
 
 
2377
2378		if (*bpp)
2379			xfs_trans_brelse(tp, *bpp);
 
 
 
 
 
 
2380
2381		*agino = next_agino;
2382		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2383				bpp);
2384		if (error)
2385			return error;
2386
2387		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2388		/*
2389		 * Make sure this pointer is valid and isn't an obvious
2390		 * infinite loop.
2391		 */
2392		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2393		    next_agino == unlinked_agino) {
2394			XFS_CORRUPTION_ERROR(__func__,
2395					XFS_ERRLEVEL_LOW, mp,
2396					*dipp, sizeof(**dipp));
2397			error = -EFSCORRUPTED;
2398			return error;
2399		}
2400		next_agino = unlinked_agino;
2401	}
2402
2403	return 0;
 
 
2404}
2405
2406/*
2407 * Pull the on-disk inode from the AGI unlinked list.
2408 */
2409STATIC int
2410xfs_iunlink_remove(
2411	struct xfs_trans	*tp,
 
2412	struct xfs_inode	*ip)
2413{
2414	struct xfs_mount	*mp = tp->t_mountp;
2415	struct xfs_agi		*agi;
2416	struct xfs_buf		*agibp;
2417	struct xfs_buf		*last_ibp;
2418	struct xfs_dinode	*last_dip = NULL;
2419	struct xfs_perag	*pag = NULL;
2420	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422	xfs_agino_t		next_agino;
2423	xfs_agino_t		head_agino;
2424	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425	int			error;
2426
2427	trace_xfs_iunlink_remove(ip);
2428
2429	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2430	error = xfs_read_agi(mp, tp, agno, &agibp);
2431	if (error)
2432		return error;
2433	agi = XFS_BUF_TO_AGI(agibp);
2434
2435	/*
2436	 * Get the index into the agi hash table for the list this inode will
2437	 * go on.  Make sure the head pointer isn't garbage.
2438	 */
2439	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440	if (!xfs_verify_agino(mp, agno, head_agino)) {
2441		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442				agi, sizeof(*agi));
2443		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2444	}
2445
2446	/*
2447	 * Set our inode's next_unlinked pointer to NULL and then return
2448	 * the old pointer value so that we can update whatever was previous
2449	 * to us in the list to point to whatever was next in the list.
 
 
 
 
 
 
 
 
 
 
 
2450	 */
2451	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452	if (error)
2453		return error;
 
 
 
 
 
 
2454
2455	/*
2456	 * If there was a backref pointing from the next inode back to this
2457	 * one, remove it because we've removed this inode from the list.
2458	 *
2459	 * Later, if this inode was in the middle of the list we'll update
2460	 * this inode's backref to point from the next inode.
2461	 */
2462	if (next_agino != NULLAGINO) {
2463		pag = xfs_perag_get(mp, agno);
2464		error = xfs_iunlink_change_backref(pag, next_agino,
2465				NULLAGINO);
2466		if (error)
2467			goto out;
2468	}
2469
2470	if (head_agino == agino) {
2471		/* Point the head of the list to the next unlinked inode. */
2472		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2473				next_agino);
2474		if (error)
2475			goto out;
2476	} else {
2477		struct xfs_imap	imap;
2478		xfs_agino_t	prev_agino;
2479
2480		if (!pag)
2481			pag = xfs_perag_get(mp, agno);
2482
2483		/* We need to search the list for the inode being freed. */
2484		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2485				&prev_agino, &imap, &last_dip, &last_ibp,
2486				pag);
2487		if (error)
2488			goto out;
2489
2490		/* Point the previous inode on the list to the next inode. */
2491		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2492				last_dip, &imap, next_agino);
 
 
 
 
2493
2494		/*
2495		 * Now we deal with the backref for this inode.  If this inode
2496		 * pointed at a real inode, change the backref that pointed to
2497		 * us to point to our old next.  If this inode was the end of
2498		 * the list, delete the backref that pointed to us.  Note that
2499		 * change_backref takes care of deleting the backref if
2500		 * next_agino is NULLAGINO.
2501		 */
2502		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2503		if (error)
2504			goto out;
2505	}
2506
2507out:
2508	if (pag)
2509		xfs_perag_put(pag);
2510	return error;
 
 
2511}
2512
2513/*
2514 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2515 * inodes that are in memory - they all must be marked stale and attached to
2516 * the cluster buffer.
2517 */
2518STATIC int
2519xfs_ifree_cluster(
2520	xfs_inode_t		*free_ip,
2521	xfs_trans_t		*tp,
 
2522	struct xfs_icluster	*xic)
2523{
2524	xfs_mount_t		*mp = free_ip->i_mount;
 
 
 
 
2525	int			nbufs;
2526	int			i, j;
2527	int			ioffset;
2528	xfs_daddr_t		blkno;
2529	xfs_buf_t		*bp;
2530	xfs_inode_t		*ip;
2531	xfs_inode_log_item_t	*iip;
2532	struct xfs_log_item	*lip;
2533	struct xfs_perag	*pag;
2534	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2535	xfs_ino_t		inum;
2536
2537	inum = xic->first_ino;
2538	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2539	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2540
2541	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2542		/*
2543		 * The allocation bitmap tells us which inodes of the chunk were
2544		 * physically allocated. Skip the cluster if an inode falls into
2545		 * a sparse region.
2546		 */
2547		ioffset = inum - xic->first_ino;
2548		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2549			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2550			continue;
2551		}
2552
2553		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554					 XFS_INO_TO_AGBNO(mp, inum));
2555
2556		/*
2557		 * We obtain and lock the backing buffer first in the process
2558		 * here, as we have to ensure that any dirty inode that we
2559		 * can't get the flush lock on is attached to the buffer.
 
2560		 * If we scan the in-memory inodes first, then buffer IO can
2561		 * complete before we get a lock on it, and hence we may fail
2562		 * to mark all the active inodes on the buffer stale.
2563		 */
2564		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2565					mp->m_bsize * igeo->blocks_per_cluster,
2566					XBF_UNMAPPED);
2567
2568		if (!bp)
2569			return -ENOMEM;
2570
2571		/*
2572		 * This buffer may not have been correctly initialised as we
2573		 * didn't read it from disk. That's not important because we are
2574		 * only using to mark the buffer as stale in the log, and to
2575		 * attach stale cached inodes on it. That means it will never be
2576		 * dispatched for IO. If it is, we want to know about it, and we
2577		 * want it to fail. We can acheive this by adding a write
2578		 * verifier to the buffer.
2579		 */
2580		bp->b_ops = &xfs_inode_buf_ops;
2581
2582		/*
2583		 * Walk the inodes already attached to the buffer and mark them
2584		 * stale. These will all have the flush locks held, so an
2585		 * in-memory inode walk can't lock them. By marking them all
2586		 * stale first, we will not attempt to lock them in the loop
2587		 * below as the XFS_ISTALE flag will be set.
2588		 */
2589		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2590			if (lip->li_type == XFS_LI_INODE) {
2591				iip = (xfs_inode_log_item_t *)lip;
2592				ASSERT(iip->ili_logged == 1);
2593				lip->li_cb = xfs_istale_done;
2594				xfs_trans_ail_copy_lsn(mp->m_ail,
2595							&iip->ili_flush_lsn,
2596							&iip->ili_item.li_lsn);
2597				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2598			}
2599		}
2600
2601
2602		/*
2603		 * For each inode in memory attempt to add it to the inode
2604		 * buffer and set it up for being staled on buffer IO
2605		 * completion.  This is safe as we've locked out tail pushing
2606		 * and flushing by locking the buffer.
2607		 *
2608		 * We have already marked every inode that was part of a
2609		 * transaction stale above, which means there is no point in
2610		 * even trying to lock them.
2611		 */
2612		for (i = 0; i < igeo->inodes_per_cluster; i++) {
2613retry:
2614			rcu_read_lock();
2615			ip = radix_tree_lookup(&pag->pag_ici_root,
2616					XFS_INO_TO_AGINO(mp, (inum + i)));
2617
2618			/* Inode not in memory, nothing to do */
2619			if (!ip) {
2620				rcu_read_unlock();
2621				continue;
2622			}
2623
2624			/*
2625			 * because this is an RCU protected lookup, we could
2626			 * find a recently freed or even reallocated inode
2627			 * during the lookup. We need to check under the
2628			 * i_flags_lock for a valid inode here. Skip it if it
2629			 * is not valid, the wrong inode or stale.
2630			 */
2631			spin_lock(&ip->i_flags_lock);
2632			if (ip->i_ino != inum + i ||
2633			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2634				spin_unlock(&ip->i_flags_lock);
2635				rcu_read_unlock();
2636				continue;
2637			}
2638			spin_unlock(&ip->i_flags_lock);
2639
2640			/*
2641			 * Don't try to lock/unlock the current inode, but we
2642			 * _cannot_ skip the other inodes that we did not find
2643			 * in the list attached to the buffer and are not
2644			 * already marked stale. If we can't lock it, back off
2645			 * and retry.
2646			 */
2647			if (ip != free_ip) {
2648				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2649					rcu_read_unlock();
2650					delay(1);
2651					goto retry;
2652				}
2653
2654				/*
2655				 * Check the inode number again in case we're
2656				 * racing with freeing in xfs_reclaim_inode().
2657				 * See the comments in that function for more
2658				 * information as to why the initial check is
2659				 * not sufficient.
2660				 */
2661				if (ip->i_ino != inum + i) {
2662					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2663					rcu_read_unlock();
2664					continue;
2665				}
2666			}
2667			rcu_read_unlock();
2668
2669			xfs_iflock(ip);
2670			xfs_iflags_set(ip, XFS_ISTALE);
2671
2672			/*
2673			 * we don't need to attach clean inodes or those only
2674			 * with unlogged changes (which we throw away, anyway).
2675			 */
2676			iip = ip->i_itemp;
2677			if (!iip || xfs_inode_clean(ip)) {
2678				ASSERT(ip != free_ip);
2679				xfs_ifunlock(ip);
2680				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2681				continue;
2682			}
2683
2684			iip->ili_last_fields = iip->ili_fields;
2685			iip->ili_fields = 0;
2686			iip->ili_fsync_fields = 0;
2687			iip->ili_logged = 1;
2688			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2689						&iip->ili_item.li_lsn);
2690
2691			xfs_buf_attach_iodone(bp, xfs_istale_done,
2692						  &iip->ili_item);
2693
2694			if (ip != free_ip)
2695				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2696		}
2697
2698		xfs_trans_stale_inode_buf(tp, bp);
2699		xfs_trans_binval(tp, bp);
2700	}
2701
2702	xfs_perag_put(pag);
2703	return 0;
2704}
2705
2706/*
2707 * Free any local-format buffers sitting around before we reset to
2708 * extents format.
2709 */
2710static inline void
2711xfs_ifree_local_data(
2712	struct xfs_inode	*ip,
2713	int			whichfork)
2714{
2715	struct xfs_ifork	*ifp;
2716
2717	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2718		return;
2719
2720	ifp = XFS_IFORK_PTR(ip, whichfork);
2721	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2722}
2723
2724/*
2725 * This is called to return an inode to the inode free list.
2726 * The inode should already be truncated to 0 length and have
2727 * no pages associated with it.  This routine also assumes that
2728 * the inode is already a part of the transaction.
2729 *
2730 * The on-disk copy of the inode will have been added to the list
2731 * of unlinked inodes in the AGI. We need to remove the inode from
2732 * that list atomically with respect to freeing it here.
2733 */
2734int
2735xfs_ifree(
2736	struct xfs_trans	*tp,
2737	struct xfs_inode	*ip)
2738{
2739	int			error;
 
2740	struct xfs_icluster	xic = { 0 };
 
 
2741
2742	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2743	ASSERT(VFS_I(ip)->i_nlink == 0);
2744	ASSERT(ip->i_d.di_nextents == 0);
2745	ASSERT(ip->i_d.di_anextents == 0);
2746	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2747	ASSERT(ip->i_d.di_nblocks == 0);
 
2748
2749	/*
2750	 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
2751	 */
2752	error = xfs_iunlink_remove(tp, ip);
2753	if (error)
2754		return error;
2755
2756	error = xfs_difree(tp, ip->i_ino, &xic);
2757	if (error)
2758		return error;
2759
2760	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2761	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
 
 
 
 
 
 
 
 
2762
2763	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2764	ip->i_d.di_flags = 0;
2765	ip->i_d.di_flags2 = 0;
2766	ip->i_d.di_dmevmask = 0;
2767	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2768	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2769	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2770
2771	/* Don't attempt to replay owner changes for a deleted inode */
2772	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
 
 
2773
2774	/*
2775	 * Bump the generation count so no one will be confused
2776	 * by reincarnations of this inode.
2777	 */
2778	VFS_I(ip)->i_generation++;
2779	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2780
2781	if (xic.deleted)
2782		error = xfs_ifree_cluster(ip, tp, &xic);
2783
 
2784	return error;
2785}
2786
2787/*
2788 * This is called to unpin an inode.  The caller must have the inode locked
2789 * in at least shared mode so that the buffer cannot be subsequently pinned
2790 * once someone is waiting for it to be unpinned.
2791 */
2792static void
2793xfs_iunpin(
2794	struct xfs_inode	*ip)
2795{
2796	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2797
2798	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2799
2800	/* Give the log a push to start the unpinning I/O */
2801	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2802
2803}
2804
2805static void
2806__xfs_iunpin_wait(
2807	struct xfs_inode	*ip)
2808{
2809	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2810	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2811
2812	xfs_iunpin(ip);
2813
2814	do {
2815		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2816		if (xfs_ipincount(ip))
2817			io_schedule();
2818	} while (xfs_ipincount(ip));
2819	finish_wait(wq, &wait.wq_entry);
2820}
2821
2822void
2823xfs_iunpin_wait(
2824	struct xfs_inode	*ip)
2825{
2826	if (xfs_ipincount(ip))
2827		__xfs_iunpin_wait(ip);
2828}
2829
2830/*
2831 * Removing an inode from the namespace involves removing the directory entry
2832 * and dropping the link count on the inode. Removing the directory entry can
2833 * result in locking an AGF (directory blocks were freed) and removing a link
2834 * count can result in placing the inode on an unlinked list which results in
2835 * locking an AGI.
2836 *
2837 * The big problem here is that we have an ordering constraint on AGF and AGI
2838 * locking - inode allocation locks the AGI, then can allocate a new extent for
2839 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2840 * removes the inode from the unlinked list, requiring that we lock the AGI
2841 * first, and then freeing the inode can result in an inode chunk being freed
2842 * and hence freeing disk space requiring that we lock an AGF.
2843 *
2844 * Hence the ordering that is imposed by other parts of the code is AGI before
2845 * AGF. This means we cannot remove the directory entry before we drop the inode
2846 * reference count and put it on the unlinked list as this results in a lock
2847 * order of AGF then AGI, and this can deadlock against inode allocation and
2848 * freeing. Therefore we must drop the link counts before we remove the
2849 * directory entry.
2850 *
2851 * This is still safe from a transactional point of view - it is not until we
2852 * get to xfs_defer_finish() that we have the possibility of multiple
2853 * transactions in this operation. Hence as long as we remove the directory
2854 * entry and drop the link count in the first transaction of the remove
2855 * operation, there are no transactional constraints on the ordering here.
2856 */
2857int
2858xfs_remove(
2859	xfs_inode_t             *dp,
2860	struct xfs_name		*name,
2861	xfs_inode_t		*ip)
2862{
2863	xfs_mount_t		*mp = dp->i_mount;
2864	xfs_trans_t             *tp = NULL;
2865	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
 
2866	int                     error = 0;
2867	uint			resblks;
2868
2869	trace_xfs_remove(dp, name);
2870
2871	if (XFS_FORCED_SHUTDOWN(mp))
2872		return -EIO;
2873
2874	error = xfs_qm_dqattach(dp);
2875	if (error)
2876		goto std_return;
2877
2878	error = xfs_qm_dqattach(ip);
2879	if (error)
2880		goto std_return;
2881
2882	/*
2883	 * We try to get the real space reservation first,
2884	 * allowing for directory btree deletion(s) implying
2885	 * possible bmap insert(s).  If we can't get the space
2886	 * reservation then we use 0 instead, and avoid the bmap
2887	 * btree insert(s) in the directory code by, if the bmap
2888	 * insert tries to happen, instead trimming the LAST
2889	 * block from the directory.
 
 
2890	 */
2891	resblks = XFS_REMOVE_SPACE_RES(mp);
2892	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2893	if (error == -ENOSPC) {
2894		resblks = 0;
2895		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2896				&tp);
2897	}
2898	if (error) {
2899		ASSERT(error != -ENOSPC);
2900		goto std_return;
2901	}
2902
2903	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2904
2905	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2906	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2907
2908	/*
2909	 * If we're removing a directory perform some additional validation.
2910	 */
2911	if (is_dir) {
2912		ASSERT(VFS_I(ip)->i_nlink >= 2);
2913		if (VFS_I(ip)->i_nlink != 2) {
2914			error = -ENOTEMPTY;
2915			goto out_trans_cancel;
2916		}
2917		if (!xfs_dir_isempty(ip)) {
2918			error = -ENOTEMPTY;
2919			goto out_trans_cancel;
2920		}
2921
2922		/* Drop the link from ip's "..".  */
2923		error = xfs_droplink(tp, dp);
2924		if (error)
2925			goto out_trans_cancel;
2926
2927		/* Drop the "." link from ip to self.  */
2928		error = xfs_droplink(tp, ip);
2929		if (error)
2930			goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
2931	} else {
2932		/*
2933		 * When removing a non-directory we need to log the parent
2934		 * inode here.  For a directory this is done implicitly
2935		 * by the xfs_droplink call for the ".." entry.
2936		 */
2937		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2938	}
2939	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2940
2941	/* Drop the link from dp to ip. */
2942	error = xfs_droplink(tp, ip);
2943	if (error)
2944		goto out_trans_cancel;
2945
2946	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2947	if (error) {
2948		ASSERT(error != -ENOENT);
2949		goto out_trans_cancel;
2950	}
2951
2952	/*
2953	 * If this is a synchronous mount, make sure that the
2954	 * remove transaction goes to disk before returning to
2955	 * the user.
2956	 */
2957	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2958		xfs_trans_set_sync(tp);
2959
2960	error = xfs_trans_commit(tp);
2961	if (error)
2962		goto std_return;
2963
2964	if (is_dir && xfs_inode_is_filestream(ip))
2965		xfs_filestream_deassociate(ip);
2966
2967	return 0;
2968
2969 out_trans_cancel:
2970	xfs_trans_cancel(tp);
2971 std_return:
2972	return error;
2973}
2974
2975/*
2976 * Enter all inodes for a rename transaction into a sorted array.
2977 */
2978#define __XFS_SORT_INODES	5
2979STATIC void
2980xfs_sort_for_rename(
2981	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2982	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2983	struct xfs_inode	*ip1,	/* in: inode of old entry */
2984	struct xfs_inode	*ip2,	/* in: inode of new entry */
2985	struct xfs_inode	*wip,	/* in: whiteout inode */
2986	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2987	int			*num_inodes)  /* in/out: inodes in array */
2988{
2989	int			i, j;
2990
2991	ASSERT(*num_inodes == __XFS_SORT_INODES);
2992	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2993
2994	/*
2995	 * i_tab contains a list of pointers to inodes.  We initialize
2996	 * the table here & we'll sort it.  We will then use it to
2997	 * order the acquisition of the inode locks.
2998	 *
2999	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3000	 */
3001	i = 0;
3002	i_tab[i++] = dp1;
3003	i_tab[i++] = dp2;
3004	i_tab[i++] = ip1;
3005	if (ip2)
3006		i_tab[i++] = ip2;
3007	if (wip)
3008		i_tab[i++] = wip;
3009	*num_inodes = i;
3010
3011	/*
3012	 * Sort the elements via bubble sort.  (Remember, there are at
3013	 * most 5 elements to sort, so this is adequate.)
3014	 */
3015	for (i = 0; i < *num_inodes; i++) {
3016		for (j = 1; j < *num_inodes; j++) {
3017			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3018				struct xfs_inode *temp = i_tab[j];
3019				i_tab[j] = i_tab[j-1];
3020				i_tab[j-1] = temp;
3021			}
3022		}
3023	}
3024}
3025
3026static int
3027xfs_finish_rename(
3028	struct xfs_trans	*tp)
3029{
3030	/*
3031	 * If this is a synchronous mount, make sure that the rename transaction
3032	 * goes to disk before returning to the user.
3033	 */
3034	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3035		xfs_trans_set_sync(tp);
3036
3037	return xfs_trans_commit(tp);
3038}
3039
3040/*
3041 * xfs_cross_rename()
3042 *
3043 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3044 */
3045STATIC int
3046xfs_cross_rename(
3047	struct xfs_trans	*tp,
3048	struct xfs_inode	*dp1,
3049	struct xfs_name		*name1,
3050	struct xfs_inode	*ip1,
3051	struct xfs_inode	*dp2,
3052	struct xfs_name		*name2,
3053	struct xfs_inode	*ip2,
3054	int			spaceres)
3055{
3056	int		error = 0;
3057	int		ip1_flags = 0;
3058	int		ip2_flags = 0;
3059	int		dp2_flags = 0;
3060
3061	/* Swap inode number for dirent in first parent */
3062	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3063	if (error)
3064		goto out_trans_abort;
3065
3066	/* Swap inode number for dirent in second parent */
3067	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3068	if (error)
3069		goto out_trans_abort;
3070
3071	/*
3072	 * If we're renaming one or more directories across different parents,
3073	 * update the respective ".." entries (and link counts) to match the new
3074	 * parents.
3075	 */
3076	if (dp1 != dp2) {
3077		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3078
3079		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3080			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3081						dp1->i_ino, spaceres);
3082			if (error)
3083				goto out_trans_abort;
3084
3085			/* transfer ip2 ".." reference to dp1 */
3086			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3087				error = xfs_droplink(tp, dp2);
3088				if (error)
3089					goto out_trans_abort;
3090				xfs_bumplink(tp, dp1);
3091			}
3092
3093			/*
3094			 * Although ip1 isn't changed here, userspace needs
3095			 * to be warned about the change, so that applications
3096			 * relying on it (like backup ones), will properly
3097			 * notify the change
3098			 */
3099			ip1_flags |= XFS_ICHGTIME_CHG;
3100			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3101		}
3102
3103		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3104			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3105						dp2->i_ino, spaceres);
3106			if (error)
3107				goto out_trans_abort;
3108
3109			/* transfer ip1 ".." reference to dp2 */
3110			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3111				error = xfs_droplink(tp, dp1);
3112				if (error)
3113					goto out_trans_abort;
3114				xfs_bumplink(tp, dp2);
3115			}
3116
3117			/*
3118			 * Although ip2 isn't changed here, userspace needs
3119			 * to be warned about the change, so that applications
3120			 * relying on it (like backup ones), will properly
3121			 * notify the change
3122			 */
3123			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3124			ip2_flags |= XFS_ICHGTIME_CHG;
3125		}
3126	}
3127
3128	if (ip1_flags) {
3129		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3130		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3131	}
3132	if (ip2_flags) {
3133		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3134		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3135	}
3136	if (dp2_flags) {
3137		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3138		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3139	}
3140	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3141	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3142	return xfs_finish_rename(tp);
3143
3144out_trans_abort:
3145	xfs_trans_cancel(tp);
3146	return error;
3147}
3148
3149/*
3150 * xfs_rename_alloc_whiteout()
3151 *
3152 * Return a referenced, unlinked, unlocked inode that that can be used as a
3153 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3154 * crash between allocating the inode and linking it into the rename transaction
3155 * recovery will free the inode and we won't leak it.
3156 */
3157static int
3158xfs_rename_alloc_whiteout(
 
 
3159	struct xfs_inode	*dp,
3160	struct xfs_inode	**wip)
3161{
3162	struct xfs_inode	*tmpfile;
 
3163	int			error;
3164
3165	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
 
3166	if (error)
3167		return error;
3168
 
 
 
 
 
 
 
 
 
3169	/*
3170	 * Prepare the tmpfile inode as if it were created through the VFS.
3171	 * Complete the inode setup and flag it as linkable.  nlink is already
3172	 * zero, so we can skip the drop_nlink.
3173	 */
3174	xfs_setup_iops(tmpfile);
3175	xfs_finish_inode_setup(tmpfile);
3176	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3177
3178	*wip = tmpfile;
3179	return 0;
3180}
3181
3182/*
3183 * xfs_rename
3184 */
3185int
3186xfs_rename(
 
3187	struct xfs_inode	*src_dp,
3188	struct xfs_name		*src_name,
3189	struct xfs_inode	*src_ip,
3190	struct xfs_inode	*target_dp,
3191	struct xfs_name		*target_name,
3192	struct xfs_inode	*target_ip,
3193	unsigned int		flags)
3194{
3195	struct xfs_mount	*mp = src_dp->i_mount;
3196	struct xfs_trans	*tp;
3197	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3198	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 
3199	int			num_inodes = __XFS_SORT_INODES;
3200	bool			new_parent = (src_dp != target_dp);
3201	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3202	int			spaceres;
3203	int			error;
 
3204
3205	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3206
3207	if ((flags & RENAME_EXCHANGE) && !target_ip)
3208		return -EINVAL;
3209
3210	/*
3211	 * If we are doing a whiteout operation, allocate the whiteout inode
3212	 * we will be placing at the target and ensure the type is set
3213	 * appropriately.
3214	 */
3215	if (flags & RENAME_WHITEOUT) {
3216		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3217		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3218		if (error)
3219			return error;
3220
3221		/* setup target dirent info as whiteout */
3222		src_name->type = XFS_DIR3_FT_CHRDEV;
3223	}
3224
3225	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3226				inodes, &num_inodes);
3227
 
 
3228	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3229	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3230	if (error == -ENOSPC) {
 
3231		spaceres = 0;
3232		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3233				&tp);
3234	}
3235	if (error)
3236		goto out_release_wip;
3237
3238	/*
3239	 * Attach the dquots to the inodes
3240	 */
3241	error = xfs_qm_vop_rename_dqattach(inodes);
3242	if (error)
3243		goto out_trans_cancel;
3244
3245	/*
3246	 * Lock all the participating inodes. Depending upon whether
3247	 * the target_name exists in the target directory, and
3248	 * whether the target directory is the same as the source
3249	 * directory, we can lock from 2 to 4 inodes.
3250	 */
3251	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3252
3253	/*
3254	 * Join all the inodes to the transaction. From this point on,
3255	 * we can rely on either trans_commit or trans_cancel to unlock
3256	 * them.
3257	 */
3258	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3259	if (new_parent)
3260		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3261	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3262	if (target_ip)
3263		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3264	if (wip)
3265		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3266
3267	/*
3268	 * If we are using project inheritance, we only allow renames
3269	 * into our tree when the project IDs are the same; else the
3270	 * tree quota mechanism would be circumvented.
3271	 */
3272	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3273		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3274		error = -EXDEV;
3275		goto out_trans_cancel;
3276	}
3277
3278	/* RENAME_EXCHANGE is unique from here on. */
3279	if (flags & RENAME_EXCHANGE)
3280		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3281					target_dp, target_name, target_ip,
3282					spaceres);
3283
3284	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3285	 * Check for expected errors before we dirty the transaction
3286	 * so we can return an error without a transaction abort.
3287	 */
3288	if (target_ip == NULL) {
3289		/*
3290		 * If there's no space reservation, check the entry will
3291		 * fit before actually inserting it.
3292		 */
3293		if (!spaceres) {
3294			error = xfs_dir_canenter(tp, target_dp, target_name);
3295			if (error)
3296				goto out_trans_cancel;
3297		}
3298	} else {
3299		/*
3300		 * If target exists and it's a directory, check that whether
3301		 * it can be destroyed.
3302		 */
3303		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3304		    (!xfs_dir_isempty(target_ip) ||
3305		     (VFS_I(target_ip)->i_nlink > 2))) {
3306			error = -EEXIST;
3307			goto out_trans_cancel;
3308		}
3309	}
3310
3311	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312	 * Directory entry creation below may acquire the AGF. Remove
3313	 * the whiteout from the unlinked list first to preserve correct
3314	 * AGI/AGF locking order. This dirties the transaction so failures
3315	 * after this point will abort and log recovery will clean up the
3316	 * mess.
3317	 *
3318	 * For whiteouts, we need to bump the link count on the whiteout
3319	 * inode. After this point, we have a real link, clear the tmpfile
3320	 * state flag from the inode so it doesn't accidentally get misused
3321	 * in future.
3322	 */
3323	if (wip) {
 
 
3324		ASSERT(VFS_I(wip)->i_nlink == 0);
3325		error = xfs_iunlink_remove(tp, wip);
 
 
 
3326		if (error)
3327			goto out_trans_cancel;
3328
3329		xfs_bumplink(tp, wip);
3330		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3331		VFS_I(wip)->i_state &= ~I_LINKABLE;
3332	}
3333
3334	/*
3335	 * Set up the target.
3336	 */
3337	if (target_ip == NULL) {
3338		/*
3339		 * If target does not exist and the rename crosses
3340		 * directories, adjust the target directory link count
3341		 * to account for the ".." reference from the new entry.
3342		 */
3343		error = xfs_dir_createname(tp, target_dp, target_name,
3344					   src_ip->i_ino, spaceres);
3345		if (error)
3346			goto out_trans_cancel;
3347
3348		xfs_trans_ichgtime(tp, target_dp,
3349					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3350
3351		if (new_parent && src_is_directory) {
3352			xfs_bumplink(tp, target_dp);
3353		}
3354	} else { /* target_ip != NULL */
3355		/*
3356		 * Link the source inode under the target name.
3357		 * If the source inode is a directory and we are moving
3358		 * it across directories, its ".." entry will be
3359		 * inconsistent until we replace that down below.
3360		 *
3361		 * In case there is already an entry with the same
3362		 * name at the destination directory, remove it first.
3363		 */
3364		error = xfs_dir_replace(tp, target_dp, target_name,
3365					src_ip->i_ino, spaceres);
3366		if (error)
3367			goto out_trans_cancel;
3368
3369		xfs_trans_ichgtime(tp, target_dp,
3370					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3371
3372		/*
3373		 * Decrement the link count on the target since the target
3374		 * dir no longer points to it.
3375		 */
3376		error = xfs_droplink(tp, target_ip);
3377		if (error)
3378			goto out_trans_cancel;
3379
3380		if (src_is_directory) {
3381			/*
3382			 * Drop the link from the old "." entry.
3383			 */
3384			error = xfs_droplink(tp, target_ip);
3385			if (error)
3386				goto out_trans_cancel;
3387		}
3388	} /* target_ip != NULL */
3389
3390	/*
3391	 * Remove the source.
3392	 */
3393	if (new_parent && src_is_directory) {
3394		/*
3395		 * Rewrite the ".." entry to point to the new
3396		 * directory.
3397		 */
3398		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3399					target_dp->i_ino, spaceres);
3400		ASSERT(error != -EEXIST);
3401		if (error)
3402			goto out_trans_cancel;
3403	}
3404
3405	/*
3406	 * We always want to hit the ctime on the source inode.
3407	 *
3408	 * This isn't strictly required by the standards since the source
3409	 * inode isn't really being changed, but old unix file systems did
3410	 * it and some incremental backup programs won't work without it.
3411	 */
3412	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3413	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3414
3415	/*
3416	 * Adjust the link count on src_dp.  This is necessary when
3417	 * renaming a directory, either within one parent when
3418	 * the target existed, or across two parent directories.
3419	 */
3420	if (src_is_directory && (new_parent || target_ip != NULL)) {
3421
3422		/*
3423		 * Decrement link count on src_directory since the
3424		 * entry that's moved no longer points to it.
3425		 */
3426		error = xfs_droplink(tp, src_dp);
3427		if (error)
3428			goto out_trans_cancel;
3429	}
3430
3431	/*
3432	 * For whiteouts, we only need to update the source dirent with the
3433	 * inode number of the whiteout inode rather than removing it
3434	 * altogether.
3435	 */
3436	if (wip) {
3437		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3438					spaceres);
3439	} else
3440		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3441					   spaceres);
 
3442	if (error)
3443		goto out_trans_cancel;
3444
3445	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3446	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3447	if (new_parent)
3448		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3449
3450	error = xfs_finish_rename(tp);
3451	if (wip)
3452		xfs_irele(wip);
3453	return error;
3454
3455out_trans_cancel:
3456	xfs_trans_cancel(tp);
3457out_release_wip:
3458	if (wip)
3459		xfs_irele(wip);
 
 
3460	return error;
3461}
3462
3463STATIC int
3464xfs_iflush_cluster(
3465	struct xfs_inode	*ip,
3466	struct xfs_buf		*bp)
3467{
3468	struct xfs_mount	*mp = ip->i_mount;
3469	struct xfs_perag	*pag;
3470	unsigned long		first_index, mask;
3471	int			cilist_size;
3472	struct xfs_inode	**cilist;
3473	struct xfs_inode	*cip;
3474	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3475	int			nr_found;
3476	int			clcount = 0;
3477	int			i;
3478
3479	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3480
3481	cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3482	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3483	if (!cilist)
3484		goto out_put;
3485
3486	mask = ~(igeo->inodes_per_cluster - 1);
3487	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3488	rcu_read_lock();
3489	/* really need a gang lookup range call here */
3490	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3491					first_index, igeo->inodes_per_cluster);
3492	if (nr_found == 0)
3493		goto out_free;
3494
3495	for (i = 0; i < nr_found; i++) {
3496		cip = cilist[i];
3497		if (cip == ip)
3498			continue;
3499
3500		/*
3501		 * because this is an RCU protected lookup, we could find a
3502		 * recently freed or even reallocated inode during the lookup.
3503		 * We need to check under the i_flags_lock for a valid inode
3504		 * here. Skip it if it is not valid or the wrong inode.
3505		 */
3506		spin_lock(&cip->i_flags_lock);
3507		if (!cip->i_ino ||
3508		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3509			spin_unlock(&cip->i_flags_lock);
3510			continue;
3511		}
3512
3513		/*
3514		 * Once we fall off the end of the cluster, no point checking
3515		 * any more inodes in the list because they will also all be
3516		 * outside the cluster.
3517		 */
3518		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3519			spin_unlock(&cip->i_flags_lock);
3520			break;
3521		}
3522		spin_unlock(&cip->i_flags_lock);
3523
3524		/*
3525		 * Do an un-protected check to see if the inode is dirty and
3526		 * is a candidate for flushing.  These checks will be repeated
3527		 * later after the appropriate locks are acquired.
3528		 */
3529		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3530			continue;
3531
3532		/*
3533		 * Try to get locks.  If any are unavailable or it is pinned,
3534		 * then this inode cannot be flushed and is skipped.
3535		 */
3536
3537		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3538			continue;
3539		if (!xfs_iflock_nowait(cip)) {
3540			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3541			continue;
3542		}
3543		if (xfs_ipincount(cip)) {
3544			xfs_ifunlock(cip);
3545			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3546			continue;
3547		}
3548
3549
3550		/*
3551		 * Check the inode number again, just to be certain we are not
3552		 * racing with freeing in xfs_reclaim_inode(). See the comments
3553		 * in that function for more information as to why the initial
3554		 * check is not sufficient.
3555		 */
3556		if (!cip->i_ino) {
3557			xfs_ifunlock(cip);
3558			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3559			continue;
3560		}
3561
3562		/*
3563		 * arriving here means that this inode can be flushed.  First
3564		 * re-check that it's dirty before flushing.
3565		 */
3566		if (!xfs_inode_clean(cip)) {
3567			int	error;
3568			error = xfs_iflush_int(cip, bp);
3569			if (error) {
3570				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3571				goto cluster_corrupt_out;
3572			}
3573			clcount++;
3574		} else {
3575			xfs_ifunlock(cip);
3576		}
3577		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3578	}
3579
3580	if (clcount) {
3581		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3582		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3583	}
3584
3585out_free:
3586	rcu_read_unlock();
3587	kmem_free(cilist);
3588out_put:
3589	xfs_perag_put(pag);
3590	return 0;
3591
3592
3593cluster_corrupt_out:
3594	/*
3595	 * Corruption detected in the clustering loop.  Invalidate the
3596	 * inode buffer and shut down the filesystem.
3597	 */
3598	rcu_read_unlock();
3599
3600	/*
3601	 * We'll always have an inode attached to the buffer for completion
3602	 * process by the time we are called from xfs_iflush(). Hence we have
3603	 * always need to do IO completion processing to abort the inodes
3604	 * attached to the buffer.  handle them just like the shutdown case in
3605	 * xfs_buf_submit().
3606	 */
3607	ASSERT(bp->b_iodone);
3608	bp->b_flags |= XBF_ASYNC;
3609	bp->b_flags &= ~XBF_DONE;
3610	xfs_buf_stale(bp);
3611	xfs_buf_ioerror(bp, -EIO);
3612	xfs_buf_ioend(bp);
3613
3614	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3615
3616	/* abort the corrupt inode, as it was not attached to the buffer */
3617	xfs_iflush_abort(cip, false);
3618	kmem_free(cilist);
3619	xfs_perag_put(pag);
3620	return -EFSCORRUPTED;
3621}
3622
3623/*
3624 * Flush dirty inode metadata into the backing buffer.
3625 *
3626 * The caller must have the inode lock and the inode flush lock held.  The
3627 * inode lock will still be held upon return to the caller, and the inode
3628 * flush lock will be released after the inode has reached the disk.
3629 *
3630 * The caller must write out the buffer returned in *bpp and release it.
3631 */
3632int
3633xfs_iflush(
3634	struct xfs_inode	*ip,
3635	struct xfs_buf		**bpp)
3636{
3637	struct xfs_mount	*mp = ip->i_mount;
3638	struct xfs_buf		*bp = NULL;
3639	struct xfs_dinode	*dip;
3640	int			error;
3641
3642	XFS_STATS_INC(mp, xs_iflush_count);
3643
3644	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3645	ASSERT(xfs_isiflocked(ip));
3646	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3647	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3648
3649	*bpp = NULL;
3650
3651	xfs_iunpin_wait(ip);
3652
3653	/*
3654	 * For stale inodes we cannot rely on the backing buffer remaining
3655	 * stale in cache for the remaining life of the stale inode and so
3656	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3657	 * inodes below. We have to check this after ensuring the inode is
3658	 * unpinned so that it is safe to reclaim the stale inode after the
3659	 * flush call.
3660	 */
3661	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3662		xfs_ifunlock(ip);
3663		return 0;
3664	}
3665
3666	/*
3667	 * This may have been unpinned because the filesystem is shutting
3668	 * down forcibly. If that's the case we must not write this inode
3669	 * to disk, because the log record didn't make it to disk.
3670	 *
3671	 * We also have to remove the log item from the AIL in this case,
3672	 * as we wait for an empty AIL as part of the unmount process.
3673	 */
3674	if (XFS_FORCED_SHUTDOWN(mp)) {
3675		error = -EIO;
3676		goto abort_out;
3677	}
3678
3679	/*
3680	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3681	 * operation here, so we may get  an EAGAIN error. In that case, we
3682	 * simply want to return with the inode still dirty.
3683	 *
3684	 * If we get any other error, we effectively have a corruption situation
3685	 * and we cannot flush the inode, so we treat it the same as failing
3686	 * xfs_iflush_int().
3687	 */
3688	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3689			       0);
3690	if (error == -EAGAIN) {
3691		xfs_ifunlock(ip);
3692		return error;
3693	}
3694	if (error)
3695		goto corrupt_out;
3696
3697	/*
3698	 * First flush out the inode that xfs_iflush was called with.
3699	 */
3700	error = xfs_iflush_int(ip, bp);
3701	if (error)
3702		goto corrupt_out;
3703
3704	/*
3705	 * If the buffer is pinned then push on the log now so we won't
3706	 * get stuck waiting in the write for too long.
3707	 */
3708	if (xfs_buf_ispinned(bp))
3709		xfs_log_force(mp, 0);
3710
3711	/*
3712	 * inode clustering: try to gather other inodes into this write
3713	 *
3714	 * Note: Any error during clustering will result in the filesystem
3715	 * being shut down and completion callbacks run on the cluster buffer.
3716	 * As we have already flushed and attached this inode to the buffer,
3717	 * it has already been aborted and released by xfs_iflush_cluster() and
3718	 * so we have no further error handling to do here.
3719	 */
3720	error = xfs_iflush_cluster(ip, bp);
3721	if (error)
3722		return error;
3723
3724	*bpp = bp;
3725	return 0;
3726
3727corrupt_out:
3728	if (bp)
3729		xfs_buf_relse(bp);
3730	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3731abort_out:
3732	/* abort the corrupt inode, as it was not attached to the buffer */
3733	xfs_iflush_abort(ip, false);
3734	return error;
3735}
3736
3737/*
3738 * If there are inline format data / attr forks attached to this inode,
3739 * make sure they're not corrupt.
3740 */
3741bool
3742xfs_inode_verify_forks(
3743	struct xfs_inode	*ip)
3744{
3745	struct xfs_ifork	*ifp;
3746	xfs_failaddr_t		fa;
3747
3748	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3749	if (fa) {
3750		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3751		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3752				ifp->if_u1.if_data, ifp->if_bytes, fa);
3753		return false;
3754	}
3755
3756	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3757	if (fa) {
3758		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3759		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3760				ifp ? ifp->if_u1.if_data : NULL,
3761				ifp ? ifp->if_bytes : 0, fa);
3762		return false;
3763	}
3764	return true;
3765}
3766
3767STATIC int
3768xfs_iflush_int(
3769	struct xfs_inode	*ip,
3770	struct xfs_buf		*bp)
3771{
3772	struct xfs_inode_log_item *iip = ip->i_itemp;
3773	struct xfs_dinode	*dip;
3774	struct xfs_mount	*mp = ip->i_mount;
 
3775
3776	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3777	ASSERT(xfs_isiflocked(ip));
3778	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3779	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3780	ASSERT(iip != NULL && iip->ili_fields != 0);
3781	ASSERT(ip->i_d.di_version > 1);
3782
3783	/* set *dip = inode's place in the buffer */
3784	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3785
 
 
 
 
 
 
 
3786	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3787			       mp, XFS_ERRTAG_IFLUSH_1)) {
3788		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3789			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3790			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3791		goto corrupt_out;
3792	}
3793	if (S_ISREG(VFS_I(ip)->i_mode)) {
3794		if (XFS_TEST_ERROR(
3795		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3796		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3797		    mp, XFS_ERRTAG_IFLUSH_3)) {
3798			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3799				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3800				__func__, ip->i_ino, ip);
3801			goto corrupt_out;
3802		}
3803	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3804		if (XFS_TEST_ERROR(
3805		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3806		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3807		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3808		    mp, XFS_ERRTAG_IFLUSH_4)) {
3809			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3810				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3811				__func__, ip->i_ino, ip);
3812			goto corrupt_out;
3813		}
3814	}
3815	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3816				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3817		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818			"%s: detected corrupt incore inode %Lu, "
3819			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3820			__func__, ip->i_ino,
3821			ip->i_d.di_nextents + ip->i_d.di_anextents,
3822			ip->i_d.di_nblocks, ip);
3823		goto corrupt_out;
3824	}
3825	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3826				mp, XFS_ERRTAG_IFLUSH_6)) {
3827		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3828			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3829			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3830		goto corrupt_out;
3831	}
3832
3833	/*
3834	 * Inode item log recovery for v2 inodes are dependent on the
3835	 * di_flushiter count for correct sequencing. We bump the flush
3836	 * iteration count so we can detect flushes which postdate a log record
3837	 * during recovery. This is redundant as we now log every change and
3838	 * hence this can't happen but we need to still do it to ensure
3839	 * backwards compatibility with old kernels that predate logging all
3840	 * inode changes.
3841	 */
3842	if (ip->i_d.di_version < 3)
3843		ip->i_d.di_flushiter++;
3844
3845	/* Check the inline fork data before we write out. */
3846	if (!xfs_inode_verify_forks(ip))
3847		goto corrupt_out;
 
 
 
 
 
 
 
3848
3849	/*
3850	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3851	 * copy out the core of the inode, because if the inode is dirty at all
3852	 * the core must be.
3853	 */
3854	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3855
3856	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3857	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3858		ip->i_d.di_flushiter = 0;
 
 
3859
3860	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3861	if (XFS_IFORK_Q(ip))
3862		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3863	xfs_inobp_check(mp, bp);
3864
3865	/*
3866	 * We've recorded everything logged in the inode, so we'd like to clear
3867	 * the ili_fields bits so we don't log and flush things unnecessarily.
3868	 * However, we can't stop logging all this information until the data
3869	 * we've copied into the disk buffer is written to disk.  If we did we
3870	 * might overwrite the copy of the inode in the log with all the data
3871	 * after re-logging only part of it, and in the face of a crash we
3872	 * wouldn't have all the data we need to recover.
3873	 *
3874	 * What we do is move the bits to the ili_last_fields field.  When
3875	 * logging the inode, these bits are moved back to the ili_fields field.
3876	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3877	 * know that the information those bits represent is permanently on
3878	 * disk.  As long as the flush completes before the inode is logged
3879	 * again, then both ili_fields and ili_last_fields will be cleared.
3880	 *
3881	 * We can play with the ili_fields bits here, because the inode lock
3882	 * must be held exclusively in order to set bits there and the flush
3883	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3884	 * done routine can tell whether or not to look in the AIL.  Also, store
3885	 * the current LSN of the inode so that we can tell whether the item has
3886	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3887	 * need the AIL lock, because it is a 64 bit value that cannot be read
3888	 * atomically.
3889	 */
 
 
 
3890	iip->ili_last_fields = iip->ili_fields;
3891	iip->ili_fields = 0;
3892	iip->ili_fsync_fields = 0;
3893	iip->ili_logged = 1;
3894
 
 
 
 
3895	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3896				&iip->ili_item.li_lsn);
3897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898	/*
3899	 * Attach the function xfs_iflush_done to the inode's
3900	 * buffer.  This will remove the inode from the AIL
3901	 * and unlock the inode's flush lock when the inode is
3902	 * completely written to disk.
3903	 */
3904	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
 
 
3905
3906	/* generate the checksum. */
3907	xfs_dinode_calc_crc(mp, dip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908
3909	ASSERT(!list_empty(&bp->b_li_list));
3910	ASSERT(bp->b_iodone != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3911	return 0;
3912
3913corrupt_out:
3914	return -EFSCORRUPTED;
3915}
3916
3917/* Release an inode. */
3918void
3919xfs_irele(
3920	struct xfs_inode	*ip)
3921{
3922	trace_xfs_irele(ip, _RET_IP_);
3923	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_iunlink_item.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38#include "xfs_ag.h"
  39#include "xfs_log_priv.h"
  40
  41struct kmem_cache *xfs_inode_cache;
  42
  43/*
  44 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  45 * freed from a file in a single transaction.
  46 */
  47#define	XFS_ITRUNC_MAX_EXTENTS	2
  48
 
  49STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  50STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  51	struct xfs_inode *);
  52
  53/*
  54 * helper function to extract extent size hint from inode
  55 */
  56xfs_extlen_t
  57xfs_get_extsz_hint(
  58	struct xfs_inode	*ip)
  59{
  60	/*
  61	 * No point in aligning allocations if we need to COW to actually
  62	 * write to them.
  63	 */
  64	if (xfs_is_always_cow_inode(ip))
  65		return 0;
  66	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  67		return ip->i_extsize;
  68	if (XFS_IS_REALTIME_INODE(ip))
  69		return ip->i_mount->m_sb.sb_rextsize;
  70	return 0;
  71}
  72
  73/*
  74 * Helper function to extract CoW extent size hint from inode.
  75 * Between the extent size hint and the CoW extent size hint, we
  76 * return the greater of the two.  If the value is zero (automatic),
  77 * use the default size.
  78 */
  79xfs_extlen_t
  80xfs_get_cowextsz_hint(
  81	struct xfs_inode	*ip)
  82{
  83	xfs_extlen_t		a, b;
  84
  85	a = 0;
  86	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  87		a = ip->i_cowextsize;
  88	b = xfs_get_extsz_hint(ip);
  89
  90	a = max(a, b);
  91	if (a == 0)
  92		return XFS_DEFAULT_COWEXTSZ_HINT;
  93	return a;
  94}
  95
  96/*
  97 * These two are wrapper routines around the xfs_ilock() routine used to
  98 * centralize some grungy code.  They are used in places that wish to lock the
  99 * inode solely for reading the extents.  The reason these places can't just
 100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 101 * bringing in of the extents from disk for a file in b-tree format.  If the
 102 * inode is in b-tree format, then we need to lock the inode exclusively until
 103 * the extents are read in.  Locking it exclusively all the time would limit
 104 * our parallelism unnecessarily, though.  What we do instead is check to see
 105 * if the extents have been read in yet, and only lock the inode exclusively
 106 * if they have not.
 107 *
 108 * The functions return a value which should be given to the corresponding
 109 * xfs_iunlock() call.
 110 */
 111uint
 112xfs_ilock_data_map_shared(
 113	struct xfs_inode	*ip)
 114{
 115	uint			lock_mode = XFS_ILOCK_SHARED;
 116
 117	if (xfs_need_iread_extents(&ip->i_df))
 
 118		lock_mode = XFS_ILOCK_EXCL;
 119	xfs_ilock(ip, lock_mode);
 120	return lock_mode;
 121}
 122
 123uint
 124xfs_ilock_attr_map_shared(
 125	struct xfs_inode	*ip)
 126{
 127	uint			lock_mode = XFS_ILOCK_SHARED;
 128
 129	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 
 130		lock_mode = XFS_ILOCK_EXCL;
 131	xfs_ilock(ip, lock_mode);
 132	return lock_mode;
 133}
 134
 135/*
 136 * You can't set both SHARED and EXCL for the same lock,
 137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 139 * to set in lock_flags.
 140 */
 141static inline void
 142xfs_lock_flags_assert(
 143	uint		lock_flags)
 144{
 145	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 146		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 147	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 148		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 149	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 150		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 151	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 152	ASSERT(lock_flags != 0);
 153}
 154
 155/*
 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 157 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 158 * various combinations of the locks to be obtained.
 159 *
 160 * The 3 locks should always be ordered so that the IO lock is obtained first,
 161 * the mmap lock second and the ilock last in order to prevent deadlock.
 162 *
 163 * Basic locking order:
 164 *
 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 166 *
 167 * mmap_lock locking order:
 168 *
 169 * i_rwsem -> page lock -> mmap_lock
 170 * mmap_lock -> invalidate_lock -> page_lock
 171 *
 172 * The difference in mmap_lock locking order mean that we cannot hold the
 173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 174 * can fault in pages during copy in/out (for buffered IO) or require the
 175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 177 * fault because page faults already hold the mmap_lock.
 178 *
 179 * Hence to serialise fully against both syscall and mmap based IO, we need to
 180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 181 * both taken in places where we need to invalidate the page cache in a race
 182 * free manner (e.g. truncate, hole punch and other extent manipulation
 183 * functions).
 184 */
 185void
 186xfs_ilock(
 187	xfs_inode_t		*ip,
 188	uint			lock_flags)
 189{
 190	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 191
 192	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 193
 194	if (lock_flags & XFS_IOLOCK_EXCL) {
 195		down_write_nested(&VFS_I(ip)->i_rwsem,
 196				  XFS_IOLOCK_DEP(lock_flags));
 197	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 198		down_read_nested(&VFS_I(ip)->i_rwsem,
 199				 XFS_IOLOCK_DEP(lock_flags));
 200	}
 201
 202	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 203		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 204				  XFS_MMAPLOCK_DEP(lock_flags));
 205	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 206		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 207				 XFS_MMAPLOCK_DEP(lock_flags));
 208	}
 209
 210	if (lock_flags & XFS_ILOCK_EXCL)
 211		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 212	else if (lock_flags & XFS_ILOCK_SHARED)
 213		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 214}
 215
 216/*
 217 * This is just like xfs_ilock(), except that the caller
 218 * is guaranteed not to sleep.  It returns 1 if it gets
 219 * the requested locks and 0 otherwise.  If the IO lock is
 220 * obtained but the inode lock cannot be, then the IO lock
 221 * is dropped before returning.
 222 *
 223 * ip -- the inode being locked
 224 * lock_flags -- this parameter indicates the inode's locks to be
 225 *       to be locked.  See the comment for xfs_ilock() for a list
 226 *	 of valid values.
 227 */
 228int
 229xfs_ilock_nowait(
 230	xfs_inode_t		*ip,
 231	uint			lock_flags)
 232{
 233	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 234
 235	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 236
 237	if (lock_flags & XFS_IOLOCK_EXCL) {
 238		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 239			goto out;
 240	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 241		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 242			goto out;
 243	}
 244
 245	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 246		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 247			goto out_undo_iolock;
 248	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 249		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 250			goto out_undo_iolock;
 251	}
 252
 253	if (lock_flags & XFS_ILOCK_EXCL) {
 254		if (!mrtryupdate(&ip->i_lock))
 255			goto out_undo_mmaplock;
 256	} else if (lock_flags & XFS_ILOCK_SHARED) {
 257		if (!mrtryaccess(&ip->i_lock))
 258			goto out_undo_mmaplock;
 259	}
 260	return 1;
 261
 262out_undo_mmaplock:
 263	if (lock_flags & XFS_MMAPLOCK_EXCL)
 264		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 265	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 266		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 267out_undo_iolock:
 268	if (lock_flags & XFS_IOLOCK_EXCL)
 269		up_write(&VFS_I(ip)->i_rwsem);
 270	else if (lock_flags & XFS_IOLOCK_SHARED)
 271		up_read(&VFS_I(ip)->i_rwsem);
 272out:
 273	return 0;
 274}
 275
 276/*
 277 * xfs_iunlock() is used to drop the inode locks acquired with
 278 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 280 * that we know which locks to drop.
 281 *
 282 * ip -- the inode being unlocked
 283 * lock_flags -- this parameter indicates the inode's locks to be
 284 *       to be unlocked.  See the comment for xfs_ilock() for a list
 285 *	 of valid values for this parameter.
 286 *
 287 */
 288void
 289xfs_iunlock(
 290	xfs_inode_t		*ip,
 291	uint			lock_flags)
 292{
 293	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295	if (lock_flags & XFS_IOLOCK_EXCL)
 296		up_write(&VFS_I(ip)->i_rwsem);
 297	else if (lock_flags & XFS_IOLOCK_SHARED)
 298		up_read(&VFS_I(ip)->i_rwsem);
 299
 300	if (lock_flags & XFS_MMAPLOCK_EXCL)
 301		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 302	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 303		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 304
 305	if (lock_flags & XFS_ILOCK_EXCL)
 306		mrunlock_excl(&ip->i_lock);
 307	else if (lock_flags & XFS_ILOCK_SHARED)
 308		mrunlock_shared(&ip->i_lock);
 309
 310	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 311}
 312
 313/*
 314 * give up write locks.  the i/o lock cannot be held nested
 315 * if it is being demoted.
 316 */
 317void
 318xfs_ilock_demote(
 319	xfs_inode_t		*ip,
 320	uint			lock_flags)
 321{
 322	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 323	ASSERT((lock_flags &
 324		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 325
 326	if (lock_flags & XFS_ILOCK_EXCL)
 327		mrdemote(&ip->i_lock);
 328	if (lock_flags & XFS_MMAPLOCK_EXCL)
 329		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 330	if (lock_flags & XFS_IOLOCK_EXCL)
 331		downgrade_write(&VFS_I(ip)->i_rwsem);
 332
 333	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 334}
 335
 336#if defined(DEBUG) || defined(XFS_WARN)
 337static inline bool
 338__xfs_rwsem_islocked(
 339	struct rw_semaphore	*rwsem,
 340	bool			shared)
 341{
 342	if (!debug_locks)
 343		return rwsem_is_locked(rwsem);
 344
 345	if (!shared)
 346		return lockdep_is_held_type(rwsem, 0);
 347
 348	/*
 349	 * We are checking that the lock is held at least in shared
 350	 * mode but don't care that it might be held exclusively
 351	 * (i.e. shared | excl). Hence we check if the lock is held
 352	 * in any mode rather than an explicit shared mode.
 353	 */
 354	return lockdep_is_held_type(rwsem, -1);
 355}
 356
 357bool
 358xfs_isilocked(
 359	struct xfs_inode	*ip,
 360	uint			lock_flags)
 361{
 362	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 363		if (!(lock_flags & XFS_ILOCK_SHARED))
 364			return !!ip->i_lock.mr_writer;
 365		return rwsem_is_locked(&ip->i_lock.mr_lock);
 366	}
 367
 368	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 369		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
 370				(lock_flags & XFS_MMAPLOCK_SHARED));
 
 371	}
 372
 373	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
 374		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
 375				(lock_flags & XFS_IOLOCK_SHARED));
 
 
 376	}
 377
 378	ASSERT(0);
 379	return false;
 380}
 381#endif
 382
 383/*
 384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 387 * errors and warnings.
 388 */
 389#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 390static bool
 391xfs_lockdep_subclass_ok(
 392	int subclass)
 393{
 394	return subclass < MAX_LOCKDEP_SUBCLASSES;
 395}
 396#else
 397#define xfs_lockdep_subclass_ok(subclass)	(true)
 398#endif
 399
 400/*
 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 402 * value. This can be called for any type of inode lock combination, including
 403 * parent locking. Care must be taken to ensure we don't overrun the subclass
 404 * storage fields in the class mask we build.
 405 */
 406static inline uint
 407xfs_lock_inumorder(
 408	uint	lock_mode,
 409	uint	subclass)
 410{
 411	uint	class = 0;
 412
 413	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 414			      XFS_ILOCK_RTSUM)));
 415	ASSERT(xfs_lockdep_subclass_ok(subclass));
 416
 417	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_IOLOCK_SHIFT;
 420	}
 421
 422	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 423		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 424		class += subclass << XFS_MMAPLOCK_SHIFT;
 425	}
 426
 427	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 428		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 429		class += subclass << XFS_ILOCK_SHIFT;
 430	}
 431
 432	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 433}
 434
 435/*
 436 * The following routine will lock n inodes in exclusive mode.  We assume the
 437 * caller calls us with the inodes in i_ino order.
 438 *
 439 * We need to detect deadlock where an inode that we lock is in the AIL and we
 440 * start waiting for another inode that is locked by a thread in a long running
 441 * transaction (such as truncate). This can result in deadlock since the long
 442 * running trans might need to wait for the inode we just locked in order to
 443 * push the tail and free space in the log.
 444 *
 445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 447 * lock more than one at a time, lockdep will report false positives saying we
 448 * have violated locking orders.
 449 */
 450static void
 451xfs_lock_inodes(
 452	struct xfs_inode	**ips,
 453	int			inodes,
 454	uint			lock_mode)
 455{
 456	int			attempts = 0;
 457	uint			i;
 458	int			j;
 459	bool			try_lock;
 460	struct xfs_log_item	*lp;
 461
 462	/*
 463	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 464	 * support an arbitrary depth of locking here, but absolute limits on
 465	 * inodes depend on the type of locking and the limits placed by
 466	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 467	 * the asserts.
 468	 */
 469	ASSERT(ips && inodes >= 2 && inodes <= 5);
 470	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 471			    XFS_ILOCK_EXCL));
 472	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 473			      XFS_ILOCK_SHARED)));
 474	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 475		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 476	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 477		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 478
 479	if (lock_mode & XFS_IOLOCK_EXCL) {
 480		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 481	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 482		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 483
 
 
 484again:
 485	try_lock = false;
 486	i = 0;
 487	for (; i < inodes; i++) {
 488		ASSERT(ips[i]);
 489
 490		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 491			continue;
 492
 493		/*
 494		 * If try_lock is not set yet, make sure all locked inodes are
 495		 * not in the AIL.  If any are, set try_lock to be used later.
 496		 */
 497		if (!try_lock) {
 498			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 499				lp = &ips[j]->i_itemp->ili_item;
 500				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 501					try_lock = true;
 502			}
 503		}
 504
 505		/*
 506		 * If any of the previous locks we have locked is in the AIL,
 507		 * we must TRY to get the second and subsequent locks. If
 508		 * we can't get any, we must release all we have
 509		 * and try again.
 510		 */
 511		if (!try_lock) {
 512			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 513			continue;
 514		}
 515
 516		/* try_lock means we have an inode locked that is in the AIL. */
 517		ASSERT(i != 0);
 518		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 519			continue;
 520
 521		/*
 522		 * Unlock all previous guys and try again.  xfs_iunlock will try
 523		 * to push the tail if the inode is in the AIL.
 524		 */
 525		attempts++;
 526		for (j = i - 1; j >= 0; j--) {
 527			/*
 528			 * Check to see if we've already unlocked this one.  Not
 529			 * the first one going back, and the inode ptr is the
 530			 * same.
 531			 */
 532			if (j != (i - 1) && ips[j] == ips[j + 1])
 533				continue;
 534
 535			xfs_iunlock(ips[j], lock_mode);
 536		}
 537
 538		if ((attempts % 5) == 0) {
 539			delay(1); /* Don't just spin the CPU */
 540		}
 
 
 541		goto again;
 542	}
 543}
 544
 545/*
 546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 547 * mmaplock must be double-locked separately since we use i_rwsem and
 548 * invalidate_lock for that. We now support taking one lock EXCL and the
 549 * other SHARED.
 
 
 550 */
 551void
 552xfs_lock_two_inodes(
 553	struct xfs_inode	*ip0,
 554	uint			ip0_mode,
 555	struct xfs_inode	*ip1,
 556	uint			ip1_mode)
 557{
 
 
 558	int			attempts = 0;
 559	struct xfs_log_item	*lp;
 560
 561	ASSERT(hweight32(ip0_mode) == 1);
 562	ASSERT(hweight32(ip1_mode) == 1);
 563	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 564	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 565	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 566	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 
 
 
 
 
 
 
 567	ASSERT(ip0->i_ino != ip1->i_ino);
 568
 569	if (ip0->i_ino > ip1->i_ino) {
 570		swap(ip0, ip1);
 571		swap(ip0_mode, ip1_mode);
 
 
 
 
 572	}
 573
 574 again:
 575	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 576
 577	/*
 578	 * If the first lock we have locked is in the AIL, we must TRY to get
 579	 * the second lock. If we can't get it, we must release the first one
 580	 * and try again.
 581	 */
 582	lp = &ip0->i_itemp->ili_item;
 583	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 584		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 585			xfs_iunlock(ip0, ip0_mode);
 586			if ((++attempts % 5) == 0)
 587				delay(1); /* Don't just spin the CPU */
 588			goto again;
 589		}
 590	} else {
 591		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 592	}
 593}
 594
 595uint
 596xfs_ip2xflags(
 597	struct xfs_inode	*ip)
 598{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599	uint			flags = 0;
 600
 601	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 602		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 603			flags |= FS_XFLAG_REALTIME;
 604		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 605			flags |= FS_XFLAG_PREALLOC;
 606		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 607			flags |= FS_XFLAG_IMMUTABLE;
 608		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 609			flags |= FS_XFLAG_APPEND;
 610		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 611			flags |= FS_XFLAG_SYNC;
 612		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 613			flags |= FS_XFLAG_NOATIME;
 614		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 615			flags |= FS_XFLAG_NODUMP;
 616		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 617			flags |= FS_XFLAG_RTINHERIT;
 618		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 619			flags |= FS_XFLAG_PROJINHERIT;
 620		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 621			flags |= FS_XFLAG_NOSYMLINKS;
 622		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 623			flags |= FS_XFLAG_EXTSIZE;
 624		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 625			flags |= FS_XFLAG_EXTSZINHERIT;
 626		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 627			flags |= FS_XFLAG_NODEFRAG;
 628		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 629			flags |= FS_XFLAG_FILESTREAM;
 630	}
 631
 632	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 633		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 634			flags |= FS_XFLAG_DAX;
 635		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 636			flags |= FS_XFLAG_COWEXTSIZE;
 637	}
 638
 639	if (xfs_inode_has_attr_fork(ip))
 640		flags |= FS_XFLAG_HASATTR;
 
 641	return flags;
 642}
 643
 
 
 
 
 
 
 
 
 
 644/*
 645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 647 * ci_name->name will point to a the actual name (caller must free) or
 648 * will be set to NULL if an exact match is found.
 649 */
 650int
 651xfs_lookup(
 652	struct xfs_inode	*dp,
 653	const struct xfs_name	*name,
 654	struct xfs_inode	**ipp,
 655	struct xfs_name		*ci_name)
 656{
 657	xfs_ino_t		inum;
 658	int			error;
 659
 660	trace_xfs_lookup(dp, name);
 661
 662	if (xfs_is_shutdown(dp->i_mount))
 663		return -EIO;
 664
 665	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 666	if (error)
 667		goto out_unlock;
 668
 669	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 670	if (error)
 671		goto out_free_name;
 672
 673	return 0;
 674
 675out_free_name:
 676	if (ci_name)
 677		kmem_free(ci_name->name);
 678out_unlock:
 679	*ipp = NULL;
 680	return error;
 681}
 682
 683/* Propagate di_flags from a parent inode to a child inode. */
 684static void
 685xfs_inode_inherit_flags(
 686	struct xfs_inode	*ip,
 687	const struct xfs_inode	*pip)
 688{
 689	unsigned int		di_flags = 0;
 690	xfs_failaddr_t		failaddr;
 691	umode_t			mode = VFS_I(ip)->i_mode;
 692
 693	if (S_ISDIR(mode)) {
 694		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 695			di_flags |= XFS_DIFLAG_RTINHERIT;
 696		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 697			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 698			ip->i_extsize = pip->i_extsize;
 699		}
 700		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 701			di_flags |= XFS_DIFLAG_PROJINHERIT;
 702	} else if (S_ISREG(mode)) {
 703		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 704		    xfs_has_realtime(ip->i_mount))
 705			di_flags |= XFS_DIFLAG_REALTIME;
 706		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 707			di_flags |= XFS_DIFLAG_EXTSIZE;
 708			ip->i_extsize = pip->i_extsize;
 709		}
 710	}
 711	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 712	    xfs_inherit_noatime)
 713		di_flags |= XFS_DIFLAG_NOATIME;
 714	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 715	    xfs_inherit_nodump)
 716		di_flags |= XFS_DIFLAG_NODUMP;
 717	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 718	    xfs_inherit_sync)
 719		di_flags |= XFS_DIFLAG_SYNC;
 720	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 721	    xfs_inherit_nosymlinks)
 722		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 723	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 724	    xfs_inherit_nodefrag)
 725		di_flags |= XFS_DIFLAG_NODEFRAG;
 726	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 727		di_flags |= XFS_DIFLAG_FILESTREAM;
 728
 729	ip->i_diflags |= di_flags;
 730
 731	/*
 732	 * Inode verifiers on older kernels only check that the extent size
 733	 * hint is an integer multiple of the rt extent size on realtime files.
 734	 * They did not check the hint alignment on a directory with both
 735	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 736	 * propagated from a directory into a new realtime file, new file
 737	 * allocations will fail due to math errors in the rt allocator and/or
 738	 * trip the verifiers.  Validate the hint settings in the new file so
 739	 * that we don't let broken hints propagate.
 740	 */
 741	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 742			VFS_I(ip)->i_mode, ip->i_diflags);
 743	if (failaddr) {
 744		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 745				   XFS_DIFLAG_EXTSZINHERIT);
 746		ip->i_extsize = 0;
 747	}
 748}
 749
 750/* Propagate di_flags2 from a parent inode to a child inode. */
 751static void
 752xfs_inode_inherit_flags2(
 753	struct xfs_inode	*ip,
 754	const struct xfs_inode	*pip)
 755{
 756	xfs_failaddr_t		failaddr;
 757
 758	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 759		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 760		ip->i_cowextsize = pip->i_cowextsize;
 761	}
 762	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 763		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 764
 765	/* Don't let invalid cowextsize hints propagate. */
 766	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 767			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 768	if (failaddr) {
 769		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 770		ip->i_cowextsize = 0;
 771	}
 772}
 773
 774/*
 775 * Initialise a newly allocated inode and return the in-core inode to the
 776 * caller locked exclusively.
 777 */
 778int
 779xfs_init_new_inode(
 780	struct user_namespace	*mnt_userns,
 781	struct xfs_trans	*tp,
 782	struct xfs_inode	*pip,
 783	xfs_ino_t		ino,
 784	umode_t			mode,
 785	xfs_nlink_t		nlink,
 786	dev_t			rdev,
 787	prid_t			prid,
 788	bool			init_xattrs,
 789	struct xfs_inode	**ipp)
 790{
 791	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 792	struct xfs_mount	*mp = tp->t_mountp;
 793	struct xfs_inode	*ip;
 794	unsigned int		flags;
 795	int			error;
 796	struct timespec64	tv;
 797	struct inode		*inode;
 798
 799	/*
 800	 * Protect against obviously corrupt allocation btree records. Later
 801	 * xfs_iget checks will catch re-allocation of other active in-memory
 802	 * and on-disk inodes. If we don't catch reallocating the parent inode
 803	 * here we will deadlock in xfs_iget() so we have to do these checks
 804	 * first.
 805	 */
 806	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 807		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 808		return -EFSCORRUPTED;
 809	}
 810
 811	/*
 812	 * Get the in-core inode with the lock held exclusively to prevent
 813	 * others from looking at until we're done.
 
 814	 */
 815	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 
 816	if (error)
 817		return error;
 818
 819	ASSERT(ip != NULL);
 820	inode = VFS_I(ip);
 
 
 
 
 
 
 
 
 
 
 821	set_nlink(inode, nlink);
 
 
 822	inode->i_rdev = rdev;
 823	ip->i_projid = prid;
 824
 825	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
 826		inode_fsuid_set(inode, mnt_userns);
 827		inode->i_gid = dir->i_gid;
 828		inode->i_mode = mode;
 829	} else {
 830		inode_init_owner(mnt_userns, inode, dir, mode);
 831	}
 832
 833	/*
 834	 * If the group ID of the new file does not match the effective group
 835	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 836	 * (and only if the irix_sgid_inherit compatibility variable is set).
 837	 */
 838	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
 839	    !vfsgid_in_group_p(i_gid_into_vfsgid(mnt_userns, inode)))
 
 840		inode->i_mode &= ~S_ISGID;
 841
 842	ip->i_disk_size = 0;
 843	ip->i_df.if_nextents = 0;
 844	ASSERT(ip->i_nblocks == 0);
 845
 846	tv = current_time(inode);
 847	inode->i_mtime = tv;
 848	inode->i_atime = tv;
 849	inode->i_ctime = tv;
 850
 851	ip->i_extsize = 0;
 852	ip->i_diflags = 0;
 
 
 853
 854	if (xfs_has_v3inodes(mp)) {
 855		inode_set_iversion(inode, 1);
 856		ip->i_cowextsize = 0;
 857		ip->i_crtime = tv;
 
 
 858	}
 859
 
 860	flags = XFS_ILOG_CORE;
 861	switch (mode & S_IFMT) {
 862	case S_IFIFO:
 863	case S_IFCHR:
 864	case S_IFBLK:
 865	case S_IFSOCK:
 866		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 
 867		flags |= XFS_ILOG_DEV;
 868		break;
 869	case S_IFREG:
 870	case S_IFDIR:
 871		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 872			xfs_inode_inherit_flags(ip, pip);
 873		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 874			xfs_inode_inherit_flags2(ip, pip);
 875		fallthrough;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	case S_IFLNK:
 877		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 
 878		ip->i_df.if_bytes = 0;
 879		ip->i_df.if_u1.if_root = NULL;
 880		break;
 881	default:
 882		ASSERT(0);
 883	}
 884
 885	/*
 886	 * If we need to create attributes immediately after allocating the
 887	 * inode, initialise an empty attribute fork right now. We use the
 888	 * default fork offset for attributes here as we don't know exactly what
 889	 * size or how many attributes we might be adding. We can do this
 890	 * safely here because we know the data fork is completely empty and
 891	 * this saves us from needing to run a separate transaction to set the
 892	 * fork offset in the immediate future.
 893	 */
 894	if (init_xattrs && xfs_has_attr(mp)) {
 895		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 896		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
 897	}
 898
 899	/*
 900	 * Log the new values stuffed into the inode.
 901	 */
 902	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 903	xfs_trans_log_inode(tp, ip, flags);
 904
 905	/* now that we have an i_mode we can setup the inode structure */
 906	xfs_setup_inode(ip);
 907
 908	*ipp = ip;
 909	return 0;
 910}
 911
 912/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913 * Decrement the link count on an inode & log the change.  If this causes the
 914 * link count to go to zero, move the inode to AGI unlinked list so that it can
 915 * be freed when the last active reference goes away via xfs_inactive().
 916 */
 917static int			/* error */
 918xfs_droplink(
 919	xfs_trans_t *tp,
 920	xfs_inode_t *ip)
 921{
 922	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 923
 924	drop_nlink(VFS_I(ip));
 925	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 926
 927	if (VFS_I(ip)->i_nlink)
 928		return 0;
 929
 930	return xfs_iunlink(tp, ip);
 931}
 932
 933/*
 934 * Increment the link count on an inode & log the change.
 935 */
 936static void
 937xfs_bumplink(
 938	xfs_trans_t *tp,
 939	xfs_inode_t *ip)
 940{
 941	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 942
 
 943	inc_nlink(VFS_I(ip));
 944	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 945}
 946
 947int
 948xfs_create(
 949	struct user_namespace	*mnt_userns,
 950	xfs_inode_t		*dp,
 951	struct xfs_name		*name,
 952	umode_t			mode,
 953	dev_t			rdev,
 954	bool			init_xattrs,
 955	xfs_inode_t		**ipp)
 956{
 957	int			is_dir = S_ISDIR(mode);
 958	struct xfs_mount	*mp = dp->i_mount;
 959	struct xfs_inode	*ip = NULL;
 960	struct xfs_trans	*tp = NULL;
 961	int			error;
 962	bool                    unlock_dp_on_error = false;
 963	prid_t			prid;
 964	struct xfs_dquot	*udqp = NULL;
 965	struct xfs_dquot	*gdqp = NULL;
 966	struct xfs_dquot	*pdqp = NULL;
 967	struct xfs_trans_res	*tres;
 968	uint			resblks;
 969	xfs_ino_t		ino;
 970
 971	trace_xfs_create(dp, name);
 972
 973	if (xfs_is_shutdown(mp))
 974		return -EIO;
 975
 976	prid = xfs_get_initial_prid(dp);
 977
 978	/*
 979	 * Make sure that we have allocated dquot(s) on disk.
 980	 */
 981	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
 982			mapped_fsgid(mnt_userns, &init_user_ns), prid,
 983			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 984			&udqp, &gdqp, &pdqp);
 985	if (error)
 986		return error;
 987
 988	if (is_dir) {
 989		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 990		tres = &M_RES(mp)->tr_mkdir;
 991	} else {
 992		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 993		tres = &M_RES(mp)->tr_create;
 994	}
 995
 996	/*
 997	 * Initially assume that the file does not exist and
 998	 * reserve the resources for that case.  If that is not
 999	 * the case we'll drop the one we have and get a more
1000	 * appropriate transaction later.
1001	 */
1002	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1003			&tp);
1004	if (error == -ENOSPC) {
1005		/* flush outstanding delalloc blocks and retry */
1006		xfs_flush_inodes(mp);
1007		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1008				resblks, &tp);
1009	}
1010	if (error)
1011		goto out_release_dquots;
1012
1013	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1014	unlock_dp_on_error = true;
1015
1016	/*
 
 
 
 
 
 
 
 
1017	 * A newly created regular or special file just has one directory
1018	 * entry pointing to them, but a directory also the "." entry
1019	 * pointing to itself.
1020	 */
1021	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1022	if (!error)
1023		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1024				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1025	if (error)
1026		goto out_trans_cancel;
1027
1028	/*
1029	 * Now we join the directory inode to the transaction.  We do not do it
1030	 * earlier because xfs_dialloc might commit the previous transaction
1031	 * (and release all the locks).  An error from here on will result in
1032	 * the transaction cancel unlocking dp so don't do it explicitly in the
1033	 * error path.
1034	 */
1035	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1036	unlock_dp_on_error = false;
1037
1038	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1039					resblks - XFS_IALLOC_SPACE_RES(mp));
 
1040	if (error) {
1041		ASSERT(error != -ENOSPC);
1042		goto out_trans_cancel;
1043	}
1044	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1046
1047	if (is_dir) {
1048		error = xfs_dir_init(tp, ip, dp);
1049		if (error)
1050			goto out_trans_cancel;
1051
1052		xfs_bumplink(tp, dp);
1053	}
1054
1055	/*
1056	 * If this is a synchronous mount, make sure that the
1057	 * create transaction goes to disk before returning to
1058	 * the user.
1059	 */
1060	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1061		xfs_trans_set_sync(tp);
1062
1063	/*
1064	 * Attach the dquot(s) to the inodes and modify them incore.
1065	 * These ids of the inode couldn't have changed since the new
1066	 * inode has been locked ever since it was created.
1067	 */
1068	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1069
1070	error = xfs_trans_commit(tp);
1071	if (error)
1072		goto out_release_inode;
1073
1074	xfs_qm_dqrele(udqp);
1075	xfs_qm_dqrele(gdqp);
1076	xfs_qm_dqrele(pdqp);
1077
1078	*ipp = ip;
1079	return 0;
1080
1081 out_trans_cancel:
1082	xfs_trans_cancel(tp);
1083 out_release_inode:
1084	/*
1085	 * Wait until after the current transaction is aborted to finish the
1086	 * setup of the inode and release the inode.  This prevents recursive
1087	 * transactions and deadlocks from xfs_inactive.
1088	 */
1089	if (ip) {
1090		xfs_finish_inode_setup(ip);
1091		xfs_irele(ip);
1092	}
1093 out_release_dquots:
1094	xfs_qm_dqrele(udqp);
1095	xfs_qm_dqrele(gdqp);
1096	xfs_qm_dqrele(pdqp);
1097
1098	if (unlock_dp_on_error)
1099		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1100	return error;
1101}
1102
1103int
1104xfs_create_tmpfile(
1105	struct user_namespace	*mnt_userns,
1106	struct xfs_inode	*dp,
1107	umode_t			mode,
1108	struct xfs_inode	**ipp)
1109{
1110	struct xfs_mount	*mp = dp->i_mount;
1111	struct xfs_inode	*ip = NULL;
1112	struct xfs_trans	*tp = NULL;
1113	int			error;
1114	prid_t                  prid;
1115	struct xfs_dquot	*udqp = NULL;
1116	struct xfs_dquot	*gdqp = NULL;
1117	struct xfs_dquot	*pdqp = NULL;
1118	struct xfs_trans_res	*tres;
1119	uint			resblks;
1120	xfs_ino_t		ino;
1121
1122	if (xfs_is_shutdown(mp))
1123		return -EIO;
1124
1125	prid = xfs_get_initial_prid(dp);
1126
1127	/*
1128	 * Make sure that we have allocated dquot(s) on disk.
1129	 */
1130	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1131			mapped_fsgid(mnt_userns, &init_user_ns), prid,
1132			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133			&udqp, &gdqp, &pdqp);
1134	if (error)
1135		return error;
1136
1137	resblks = XFS_IALLOC_SPACE_RES(mp);
1138	tres = &M_RES(mp)->tr_create_tmpfile;
1139
1140	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1141			&tp);
 
 
 
 
1142	if (error)
1143		goto out_release_dquots;
1144
1145	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1146	if (!error)
1147		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1148				0, 0, prid, false, &ip);
1149	if (error)
1150		goto out_trans_cancel;
1151
1152	if (xfs_has_wsync(mp))
1153		xfs_trans_set_sync(tp);
1154
1155	/*
1156	 * Attach the dquot(s) to the inodes and modify them incore.
1157	 * These ids of the inode couldn't have changed since the new
1158	 * inode has been locked ever since it was created.
1159	 */
1160	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1161
1162	error = xfs_iunlink(tp, ip);
1163	if (error)
1164		goto out_trans_cancel;
1165
1166	error = xfs_trans_commit(tp);
1167	if (error)
1168		goto out_release_inode;
1169
1170	xfs_qm_dqrele(udqp);
1171	xfs_qm_dqrele(gdqp);
1172	xfs_qm_dqrele(pdqp);
1173
1174	*ipp = ip;
1175	return 0;
1176
1177 out_trans_cancel:
1178	xfs_trans_cancel(tp);
1179 out_release_inode:
1180	/*
1181	 * Wait until after the current transaction is aborted to finish the
1182	 * setup of the inode and release the inode.  This prevents recursive
1183	 * transactions and deadlocks from xfs_inactive.
1184	 */
1185	if (ip) {
1186		xfs_finish_inode_setup(ip);
1187		xfs_irele(ip);
1188	}
1189 out_release_dquots:
1190	xfs_qm_dqrele(udqp);
1191	xfs_qm_dqrele(gdqp);
1192	xfs_qm_dqrele(pdqp);
1193
1194	return error;
1195}
1196
1197int
1198xfs_link(
1199	xfs_inode_t		*tdp,
1200	xfs_inode_t		*sip,
1201	struct xfs_name		*target_name)
1202{
1203	xfs_mount_t		*mp = tdp->i_mount;
1204	xfs_trans_t		*tp;
1205	int			error, nospace_error = 0;
1206	int			resblks;
1207
1208	trace_xfs_link(tdp, target_name);
1209
1210	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1211
1212	if (xfs_is_shutdown(mp))
1213		return -EIO;
1214
1215	error = xfs_qm_dqattach(sip);
1216	if (error)
1217		goto std_return;
1218
1219	error = xfs_qm_dqattach(tdp);
1220	if (error)
1221		goto std_return;
1222
1223	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1224	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225			&tp, &nospace_error);
 
 
 
1226	if (error)
1227		goto std_return;
1228
 
 
 
 
 
1229	/*
1230	 * If we are using project inheritance, we only allow hard link
1231	 * creation in our tree when the project IDs are the same; else
1232	 * the tree quota mechanism could be circumvented.
1233	 */
1234	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1235		     tdp->i_projid != sip->i_projid)) {
1236		error = -EXDEV;
1237		goto error_return;
1238	}
1239
1240	if (!resblks) {
1241		error = xfs_dir_canenter(tp, tdp, target_name);
1242		if (error)
1243			goto error_return;
1244	}
1245
1246	/*
1247	 * Handle initial link state of O_TMPFILE inode
1248	 */
1249	if (VFS_I(sip)->i_nlink == 0) {
1250		struct xfs_perag	*pag;
1251
1252		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253		error = xfs_iunlink_remove(tp, pag, sip);
1254		xfs_perag_put(pag);
1255		if (error)
1256			goto error_return;
1257	}
1258
1259	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1260				   resblks);
1261	if (error)
1262		goto error_return;
1263	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1265
1266	xfs_bumplink(tp, sip);
1267
1268	/*
1269	 * If this is a synchronous mount, make sure that the
1270	 * link transaction goes to disk before returning to
1271	 * the user.
1272	 */
1273	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1274		xfs_trans_set_sync(tp);
1275
1276	return xfs_trans_commit(tp);
1277
1278 error_return:
1279	xfs_trans_cancel(tp);
1280 std_return:
1281	if (error == -ENOSPC && nospace_error)
1282		error = nospace_error;
1283	return error;
1284}
1285
1286/* Clear the reflink flag and the cowblocks tag if possible. */
1287static void
1288xfs_itruncate_clear_reflink_flags(
1289	struct xfs_inode	*ip)
1290{
1291	struct xfs_ifork	*dfork;
1292	struct xfs_ifork	*cfork;
1293
1294	if (!xfs_is_reflink_inode(ip))
1295		return;
1296	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1297	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1298	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1299		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1300	if (cfork->if_bytes == 0)
1301		xfs_inode_clear_cowblocks_tag(ip);
1302}
1303
1304/*
1305 * Free up the underlying blocks past new_size.  The new size must be smaller
1306 * than the current size.  This routine can be used both for the attribute and
1307 * data fork, and does not modify the inode size, which is left to the caller.
1308 *
1309 * The transaction passed to this routine must have made a permanent log
1310 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1311 * given transaction and start new ones, so make sure everything involved in
1312 * the transaction is tidy before calling here.  Some transaction will be
1313 * returned to the caller to be committed.  The incoming transaction must
1314 * already include the inode, and both inode locks must be held exclusively.
1315 * The inode must also be "held" within the transaction.  On return the inode
1316 * will be "held" within the returned transaction.  This routine does NOT
1317 * require any disk space to be reserved for it within the transaction.
1318 *
1319 * If we get an error, we must return with the inode locked and linked into the
1320 * current transaction. This keeps things simple for the higher level code,
1321 * because it always knows that the inode is locked and held in the transaction
1322 * that returns to it whether errors occur or not.  We don't mark the inode
1323 * dirty on error so that transactions can be easily aborted if possible.
1324 */
1325int
1326xfs_itruncate_extents_flags(
1327	struct xfs_trans	**tpp,
1328	struct xfs_inode	*ip,
1329	int			whichfork,
1330	xfs_fsize_t		new_size,
1331	int			flags)
1332{
1333	struct xfs_mount	*mp = ip->i_mount;
1334	struct xfs_trans	*tp = *tpp;
1335	xfs_fileoff_t		first_unmap_block;
 
1336	xfs_filblks_t		unmap_len;
1337	int			error = 0;
 
1338
1339	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1342	ASSERT(new_size <= XFS_ISIZE(ip));
1343	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1344	ASSERT(ip->i_itemp != NULL);
1345	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1346	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1347
1348	trace_xfs_itruncate_extents_start(ip, new_size);
1349
1350	flags |= xfs_bmapi_aflag(whichfork);
1351
1352	/*
1353	 * Since it is possible for space to become allocated beyond
1354	 * the end of the file (in a crash where the space is allocated
1355	 * but the inode size is not yet updated), simply remove any
1356	 * blocks which show up between the new EOF and the maximum
1357	 * possible file size.
1358	 *
1359	 * We have to free all the blocks to the bmbt maximum offset, even if
1360	 * the page cache can't scale that far.
1361	 */
1362	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1364		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1365		return 0;
1366	}
1367
1368	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369	while (unmap_len > 0) {
 
1370		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1371		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372				flags, XFS_ITRUNC_MAX_EXTENTS);
1373		if (error)
1374			goto out;
1375
1376		/* free the just unmapped extents */
 
 
 
1377		error = xfs_defer_finish(&tp);
1378		if (error)
1379			goto out;
 
 
 
 
1380	}
1381
1382	if (whichfork == XFS_DATA_FORK) {
1383		/* Remove all pending CoW reservations. */
1384		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1385				first_unmap_block, XFS_MAX_FILEOFF, true);
1386		if (error)
1387			goto out;
1388
1389		xfs_itruncate_clear_reflink_flags(ip);
1390	}
1391
1392	/*
1393	 * Always re-log the inode so that our permanent transaction can keep
1394	 * on rolling it forward in the log.
1395	 */
1396	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1397
1398	trace_xfs_itruncate_extents_end(ip, new_size);
1399
1400out:
1401	*tpp = tp;
1402	return error;
1403}
1404
1405int
1406xfs_release(
1407	xfs_inode_t	*ip)
1408{
1409	xfs_mount_t	*mp = ip->i_mount;
1410	int		error = 0;
1411
1412	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1413		return 0;
1414
1415	/* If this is a read-only mount, don't do this (would generate I/O) */
1416	if (xfs_is_readonly(mp))
1417		return 0;
1418
1419	if (!xfs_is_shutdown(mp)) {
1420		int truncated;
1421
1422		/*
1423		 * If we previously truncated this file and removed old data
1424		 * in the process, we want to initiate "early" writeout on
1425		 * the last close.  This is an attempt to combat the notorious
1426		 * NULL files problem which is particularly noticeable from a
1427		 * truncate down, buffered (re-)write (delalloc), followed by
1428		 * a crash.  What we are effectively doing here is
1429		 * significantly reducing the time window where we'd otherwise
1430		 * be exposed to that problem.
1431		 */
1432		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1433		if (truncated) {
1434			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1435			if (ip->i_delayed_blks > 0) {
1436				error = filemap_flush(VFS_I(ip)->i_mapping);
1437				if (error)
1438					return error;
1439			}
1440		}
1441	}
1442
1443	if (VFS_I(ip)->i_nlink == 0)
1444		return 0;
1445
1446	/*
1447	 * If we can't get the iolock just skip truncating the blocks past EOF
1448	 * because we could deadlock with the mmap_lock otherwise. We'll get
1449	 * another chance to drop them once the last reference to the inode is
1450	 * dropped, so we'll never leak blocks permanently.
1451	 */
1452	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1453		return 0;
1454
1455	if (xfs_can_free_eofblocks(ip, false)) {
1456		/*
1457		 * Check if the inode is being opened, written and closed
1458		 * frequently and we have delayed allocation blocks outstanding
1459		 * (e.g. streaming writes from the NFS server), truncating the
1460		 * blocks past EOF will cause fragmentation to occur.
1461		 *
1462		 * In this case don't do the truncation, but we have to be
1463		 * careful how we detect this case. Blocks beyond EOF show up as
1464		 * i_delayed_blks even when the inode is clean, so we need to
1465		 * truncate them away first before checking for a dirty release.
1466		 * Hence on the first dirty close we will still remove the
1467		 * speculative allocation, but after that we will leave it in
1468		 * place.
1469		 */
1470		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1471			goto out_unlock;
1472
1473		error = xfs_free_eofblocks(ip);
1474		if (error)
1475			goto out_unlock;
 
 
 
 
 
 
 
 
 
1476
1477		/* delalloc blocks after truncation means it really is dirty */
1478		if (ip->i_delayed_blks)
1479			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1480	}
1481
1482out_unlock:
1483	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1484	return error;
1485}
1486
1487/*
1488 * xfs_inactive_truncate
1489 *
1490 * Called to perform a truncate when an inode becomes unlinked.
1491 */
1492STATIC int
1493xfs_inactive_truncate(
1494	struct xfs_inode *ip)
1495{
1496	struct xfs_mount	*mp = ip->i_mount;
1497	struct xfs_trans	*tp;
1498	int			error;
1499
1500	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1501	if (error) {
1502		ASSERT(xfs_is_shutdown(mp));
1503		return error;
1504	}
1505	xfs_ilock(ip, XFS_ILOCK_EXCL);
1506	xfs_trans_ijoin(tp, ip, 0);
1507
1508	/*
1509	 * Log the inode size first to prevent stale data exposure in the event
1510	 * of a system crash before the truncate completes. See the related
1511	 * comment in xfs_vn_setattr_size() for details.
1512	 */
1513	ip->i_disk_size = 0;
1514	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1515
1516	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1517	if (error)
1518		goto error_trans_cancel;
1519
1520	ASSERT(ip->i_df.if_nextents == 0);
1521
1522	error = xfs_trans_commit(tp);
1523	if (error)
1524		goto error_unlock;
1525
1526	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1527	return 0;
1528
1529error_trans_cancel:
1530	xfs_trans_cancel(tp);
1531error_unlock:
1532	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533	return error;
1534}
1535
1536/*
1537 * xfs_inactive_ifree()
1538 *
1539 * Perform the inode free when an inode is unlinked.
1540 */
1541STATIC int
1542xfs_inactive_ifree(
1543	struct xfs_inode *ip)
1544{
1545	struct xfs_mount	*mp = ip->i_mount;
1546	struct xfs_trans	*tp;
1547	int			error;
1548
1549	/*
1550	 * We try to use a per-AG reservation for any block needed by the finobt
1551	 * tree, but as the finobt feature predates the per-AG reservation
1552	 * support a degraded file system might not have enough space for the
1553	 * reservation at mount time.  In that case try to dip into the reserved
1554	 * pool and pray.
1555	 *
1556	 * Send a warning if the reservation does happen to fail, as the inode
1557	 * now remains allocated and sits on the unlinked list until the fs is
1558	 * repaired.
1559	 */
1560	if (unlikely(mp->m_finobt_nores)) {
1561		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1563				&tp);
1564	} else {
1565		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1566	}
1567	if (error) {
1568		if (error == -ENOSPC) {
1569			xfs_warn_ratelimited(mp,
1570			"Failed to remove inode(s) from unlinked list. "
1571			"Please free space, unmount and run xfs_repair.");
1572		} else {
1573			ASSERT(xfs_is_shutdown(mp));
1574		}
1575		return error;
1576	}
1577
1578	/*
1579	 * We do not hold the inode locked across the entire rolling transaction
1580	 * here. We only need to hold it for the first transaction that
1581	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583	 * here breaks the relationship between cluster buffer invalidation and
1584	 * stale inode invalidation on cluster buffer item journal commit
1585	 * completion, and can result in leaving dirty stale inodes hanging
1586	 * around in memory.
1587	 *
1588	 * We have no need for serialising this inode operation against other
1589	 * operations - we freed the inode and hence reallocation is required
1590	 * and that will serialise on reallocating the space the deferops need
1591	 * to free. Hence we can unlock the inode on the first commit of
1592	 * the transaction rather than roll it right through the deferops. This
1593	 * avoids relogging the XFS_ISTALE inode.
1594	 *
1595	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596	 * by asserting that the inode is still locked when it returns.
1597	 */
1598	xfs_ilock(ip, XFS_ILOCK_EXCL);
1599	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1600
1601	error = xfs_ifree(tp, ip);
1602	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1603	if (error) {
1604		/*
1605		 * If we fail to free the inode, shut down.  The cancel
1606		 * might do that, we need to make sure.  Otherwise the
1607		 * inode might be lost for a long time or forever.
1608		 */
1609		if (!xfs_is_shutdown(mp)) {
1610			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1611				__func__, error);
1612			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1613		}
1614		xfs_trans_cancel(tp);
 
1615		return error;
1616	}
1617
1618	/*
1619	 * Credit the quota account(s). The inode is gone.
1620	 */
1621	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1622
1623	/*
1624	 * Just ignore errors at this point.  There is nothing we can do except
1625	 * to try to keep going. Make sure it's not a silent error.
1626	 */
1627	error = xfs_trans_commit(tp);
1628	if (error)
1629		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1630			__func__, error);
1631
 
1632	return 0;
1633}
1634
1635/*
1636 * Returns true if we need to update the on-disk metadata before we can free
1637 * the memory used by this inode.  Updates include freeing post-eof
1638 * preallocations; freeing COW staging extents; and marking the inode free in
1639 * the inobt if it is on the unlinked list.
1640 */
1641bool
1642xfs_inode_needs_inactive(
1643	struct xfs_inode	*ip)
1644{
1645	struct xfs_mount	*mp = ip->i_mount;
1646	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1647
1648	/*
1649	 * If the inode is already free, then there can be nothing
1650	 * to clean up here.
1651	 */
1652	if (VFS_I(ip)->i_mode == 0)
1653		return false;
1654
1655	/* If this is a read-only mount, don't do this (would generate I/O) */
1656	if (xfs_is_readonly(mp))
1657		return false;
1658
1659	/* If the log isn't running, push inodes straight to reclaim. */
1660	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661		return false;
1662
1663	/* Metadata inodes require explicit resource cleanup. */
1664	if (xfs_is_metadata_inode(ip))
1665		return false;
1666
1667	/* Want to clean out the cow blocks if there are any. */
1668	if (cow_ifp && cow_ifp->if_bytes > 0)
1669		return true;
1670
1671	/* Unlinked files must be freed. */
1672	if (VFS_I(ip)->i_nlink == 0)
1673		return true;
1674
1675	/*
1676	 * This file isn't being freed, so check if there are post-eof blocks
1677	 * to free.  @force is true because we are evicting an inode from the
1678	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1679	 * free space accounting.
1680	 *
1681	 * Note: don't bother with iolock here since lockdep complains about
1682	 * acquiring it in reclaim context. We have the only reference to the
1683	 * inode at this point anyways.
1684	 */
1685	return xfs_can_free_eofblocks(ip, true);
1686}
1687
1688/*
1689 * xfs_inactive
1690 *
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero.  If the file has been unlinked, then it must
1693 * now be truncated.  Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1695 */
1696void
1697xfs_inactive(
1698	xfs_inode_t	*ip)
1699{
1700	struct xfs_mount	*mp;
1701	int			error;
1702	int			truncate = 0;
1703
1704	/*
1705	 * If the inode is already free, then there can be nothing
1706	 * to clean up here.
1707	 */
1708	if (VFS_I(ip)->i_mode == 0) {
1709		ASSERT(ip->i_df.if_broot_bytes == 0);
1710		goto out;
1711	}
1712
1713	mp = ip->i_mount;
1714	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715
1716	/* If this is a read-only mount, don't do this (would generate I/O) */
1717	if (xfs_is_readonly(mp))
1718		goto out;
1719
1720	/* Metadata inodes require explicit resource cleanup. */
1721	if (xfs_is_metadata_inode(ip))
1722		goto out;
1723
1724	/* Try to clean out the cow blocks if there are any. */
1725	if (xfs_inode_has_cow_data(ip))
1726		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1727
1728	if (VFS_I(ip)->i_nlink != 0) {
1729		/*
1730		 * force is true because we are evicting an inode from the
1731		 * cache. Post-eof blocks must be freed, lest we end up with
1732		 * broken free space accounting.
1733		 *
1734		 * Note: don't bother with iolock here since lockdep complains
1735		 * about acquiring it in reclaim context. We have the only
1736		 * reference to the inode at this point anyways.
1737		 */
1738		if (xfs_can_free_eofblocks(ip, true))
1739			xfs_free_eofblocks(ip);
1740
1741		goto out;
1742	}
1743
1744	if (S_ISREG(VFS_I(ip)->i_mode) &&
1745	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1746	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1747		truncate = 1;
1748
1749	error = xfs_qm_dqattach(ip);
1750	if (error)
1751		goto out;
1752
1753	if (S_ISLNK(VFS_I(ip)->i_mode))
1754		error = xfs_inactive_symlink(ip);
1755	else if (truncate)
1756		error = xfs_inactive_truncate(ip);
1757	if (error)
1758		goto out;
1759
1760	/*
1761	 * If there are attributes associated with the file then blow them away
1762	 * now.  The code calls a routine that recursively deconstructs the
1763	 * attribute fork. If also blows away the in-core attribute fork.
1764	 */
1765	if (xfs_inode_has_attr_fork(ip)) {
1766		error = xfs_attr_inactive(ip);
1767		if (error)
1768			goto out;
1769	}
1770
1771	ASSERT(ip->i_forkoff == 0);
 
 
1772
1773	/*
1774	 * Free the inode.
1775	 */
1776	xfs_inactive_ifree(ip);
 
 
1777
1778out:
1779	/*
1780	 * We're done making metadata updates for this inode, so we can release
1781	 * the attached dquots.
1782	 */
1783	xfs_qm_dqdetach(ip);
1784}
1785
1786/*
1787 * In-Core Unlinked List Lookups
1788 * =============================
1789 *
1790 * Every inode is supposed to be reachable from some other piece of metadata
1791 * with the exception of the root directory.  Inodes with a connection to a
1792 * file descriptor but not linked from anywhere in the on-disk directory tree
1793 * are collectively known as unlinked inodes, though the filesystem itself
1794 * maintains links to these inodes so that on-disk metadata are consistent.
1795 *
1796 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1797 * header contains a number of buckets that point to an inode, and each inode
1798 * record has a pointer to the next inode in the hash chain.  This
1799 * singly-linked list causes scaling problems in the iunlink remove function
1800 * because we must walk that list to find the inode that points to the inode
1801 * being removed from the unlinked hash bucket list.
1802 *
1803 * Hence we keep an in-memory double linked list to link each inode on an
1804 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1805 * based lists would require having 64 list heads in the perag, one for each
1806 * list. This is expensive in terms of memory (think millions of AGs) and cache
1807 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1808 * must be referenced at the VFS level to keep them on the list and hence we
1809 * have an existence guarantee for inodes on the unlinked list.
1810 *
1811 * Given we have an existence guarantee, we can use lockless inode cache lookups
1812 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1813 * for the double linked unlinked list, and we don't need any extra locking to
1814 * keep the list safe as all manipulations are done under the AGI buffer lock.
1815 * Keeping the list up to date does not require memory allocation, just finding
1816 * the XFS inode and updating the next/prev unlinked list aginos.
1817 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819/*
1820 * Find an inode on the unlinked list. This does not take references to the
1821 * inode as we have existence guarantees by holding the AGI buffer lock and that
1822 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1823 * don't find the inode in cache, then let the caller handle the situation.
1824 */
1825static struct xfs_inode *
1826xfs_iunlink_lookup(
1827	struct xfs_perag	*pag,
1828	xfs_agino_t		agino)
1829{
1830	struct xfs_inode	*ip;
 
 
 
 
 
1831
1832	rcu_read_lock();
1833	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 
 
 
 
 
 
 
 
 
1834
 
 
1835	/*
1836	 * Inode not in memory or in RCU freeing limbo should not happen.
1837	 * Warn about this and let the caller handle the failure.
 
 
1838	 */
1839	if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1840		rcu_read_unlock();
1841		return NULL;
1842	}
1843	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1844	rcu_read_unlock();
1845	return ip;
 
 
 
 
1846}
1847
1848/* Update the prev pointer of the next agino. */
1849static int
1850xfs_iunlink_update_backref(
1851	struct xfs_perag	*pag,
1852	xfs_agino_t		prev_agino,
1853	xfs_agino_t		next_agino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854{
1855	struct xfs_inode	*ip;
 
1856
1857	/* No update necessary if we are at the end of the list. */
1858	if (next_agino == NULLAGINO)
 
 
1859		return 0;
1860
1861	ip = xfs_iunlink_lookup(pag, next_agino);
1862	if (!ip)
1863		return -EFSCORRUPTED;
1864	ip->i_prev_unlinked = prev_agino;
1865	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866}
1867
1868/*
1869 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1870 * is responsible for validating the old value.
1871 */
1872STATIC int
1873xfs_iunlink_update_bucket(
1874	struct xfs_trans	*tp,
1875	struct xfs_perag	*pag,
1876	struct xfs_buf		*agibp,
1877	unsigned int		bucket_index,
1878	xfs_agino_t		new_agino)
1879{
1880	struct xfs_agi		*agi = agibp->b_addr;
1881	xfs_agino_t		old_value;
1882	int			offset;
1883
1884	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1885
1886	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1887	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1888			old_value, new_agino);
1889
1890	/*
1891	 * We should never find the head of the list already set to the value
1892	 * passed in because either we're adding or removing ourselves from the
1893	 * head of the list.
1894	 */
1895	if (old_value == new_agino) {
1896		xfs_buf_mark_corrupt(agibp);
1897		return -EFSCORRUPTED;
1898	}
1899
1900	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1901	offset = offsetof(struct xfs_agi, agi_unlinked) +
1902			(sizeof(xfs_agino_t) * bucket_index);
1903	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1904	return 0;
1905}
1906
1907static int
1908xfs_iunlink_insert_inode(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	struct xfs_trans	*tp,
1910	struct xfs_perag	*pag,
1911	struct xfs_buf		*agibp,
1912	struct xfs_inode	*ip)
1913{
1914	struct xfs_mount	*mp = tp->t_mountp;
1915	struct xfs_agi		*agi = agibp->b_addr;
 
1916	xfs_agino_t		next_agino;
 
1917	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1918	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1919	int			error;
1920
 
 
 
 
 
 
 
 
 
 
1921	/*
1922	 * Get the index into the agi hash table for the list this inode will
1923	 * go on.  Make sure the pointer isn't garbage and that this inode
1924	 * isn't already on the list.
1925	 */
1926	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1927	if (next_agino == agino ||
1928	    !xfs_verify_agino_or_null(pag, next_agino)) {
1929		xfs_buf_mark_corrupt(agibp);
1930		return -EFSCORRUPTED;
1931	}
1932
1933	/*
1934	 * Update the prev pointer in the next inode to point back to this
1935	 * inode.
1936	 */
1937	error = xfs_iunlink_update_backref(pag, agino, next_agino);
1938	if (error)
1939		return error;
1940
1941	if (next_agino != NULLAGINO) {
1942		/*
1943		 * There is already another inode in the bucket, so point this
1944		 * inode to the current head of the list.
1945		 */
1946		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
 
 
 
 
 
 
 
 
 
 
 
 
1947		if (error)
1948			return error;
1949		ip->i_next_unlinked = next_agino;
1950	}
1951
1952	/* Point the head of the list to point to this inode. */
1953	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
1954}
1955
1956/*
1957 * This is called when the inode's link count has gone to 0 or we are creating
1958 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
1959 *
1960 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1961 * list when the inode is freed.
1962 */
1963STATIC int
1964xfs_iunlink(
1965	struct xfs_trans	*tp,
1966	struct xfs_inode	*ip)
 
 
 
 
1967{
1968	struct xfs_mount	*mp = tp->t_mountp;
1969	struct xfs_perag	*pag;
1970	struct xfs_buf		*agibp;
1971	int			error;
1972
1973	ASSERT(VFS_I(ip)->i_nlink == 0);
1974	ASSERT(VFS_I(ip)->i_mode != 0);
1975	trace_xfs_iunlink(ip);
 
 
 
 
1976
1977	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
 
 
1978
1979	/* Get the agi buffer first.  It ensures lock ordering on the list. */
1980	error = xfs_read_agi(pag, tp, &agibp);
1981	if (error)
1982		goto out;
1983
1984	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
1985out:
1986	xfs_perag_put(pag);
1987	return error;
1988}
1989
1990static int
1991xfs_iunlink_remove_inode(
 
 
 
 
 
 
 
 
 
 
1992	struct xfs_trans	*tp,
1993	struct xfs_perag	*pag,
1994	struct xfs_buf		*agibp,
1995	struct xfs_inode	*ip)
 
 
 
 
 
1996{
1997	struct xfs_mount	*mp = tp->t_mountp;
1998	struct xfs_agi		*agi = agibp->b_addr;
1999	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2000	xfs_agino_t		head_agino;
2001	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2002	int			error;
2003
2004	trace_xfs_iunlink_remove(ip);
 
 
 
 
 
 
 
 
 
 
 
2005
2006	/*
2007	 * Get the index into the agi hash table for the list this inode will
2008	 * go on.  Make sure the head pointer isn't garbage.
2009	 */
2010	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011	if (!xfs_verify_agino(pag, head_agino)) {
2012		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2013				agi, sizeof(*agi));
2014		return -EFSCORRUPTED;
2015	}
2016
2017	/*
2018	 * Set our inode's next_unlinked pointer to NULL and then return
2019	 * the old pointer value so that we can update whatever was previous
2020	 * to us in the list to point to whatever was next in the list.
2021	 */
2022	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2023	if (error)
2024		return error;
2025
2026	/*
2027	 * Update the prev pointer in the next inode to point back to previous
2028	 * inode in the chain.
2029	 */
2030	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2031			ip->i_next_unlinked);
2032	if (error)
2033		return error;
2034
2035	if (head_agino != agino) {
2036		struct xfs_inode	*prev_ip;
 
 
 
2037
2038		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2039		if (!prev_ip)
2040			return -EFSCORRUPTED;
2041
2042		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2043				ip->i_next_unlinked);
2044		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2045	} else {
2046		/* Point the head of the list to the next unlinked inode. */
2047		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2048				ip->i_next_unlinked);
 
 
 
2049	}
2050
2051	ip->i_next_unlinked = NULLAGINO;
2052	ip->i_prev_unlinked = NULLAGINO;
2053	return error;
2054}
2055
2056/*
2057 * Pull the on-disk inode from the AGI unlinked list.
2058 */
2059STATIC int
2060xfs_iunlink_remove(
2061	struct xfs_trans	*tp,
2062	struct xfs_perag	*pag,
2063	struct xfs_inode	*ip)
2064{
 
 
2065	struct xfs_buf		*agibp;
 
 
 
 
 
 
 
 
2066	int			error;
2067
2068	trace_xfs_iunlink_remove(ip);
2069
2070	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2071	error = xfs_read_agi(pag, tp, &agibp);
2072	if (error)
2073		return error;
 
2074
2075	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2076}
2077
2078/*
2079 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2080 * mark it stale. We should only find clean inodes in this lookup that aren't
2081 * already stale.
2082 */
2083static void
2084xfs_ifree_mark_inode_stale(
2085	struct xfs_perag	*pag,
2086	struct xfs_inode	*free_ip,
2087	xfs_ino_t		inum)
2088{
2089	struct xfs_mount	*mp = pag->pag_mount;
2090	struct xfs_inode_log_item *iip;
2091	struct xfs_inode	*ip;
2092
2093retry:
2094	rcu_read_lock();
2095	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2096
2097	/* Inode not in memory, nothing to do */
2098	if (!ip) {
2099		rcu_read_unlock();
2100		return;
2101	}
2102
2103	/*
2104	 * because this is an RCU protected lookup, we could find a recently
2105	 * freed or even reallocated inode during the lookup. We need to check
2106	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2107	 * valid, the wrong inode or stale.
2108	 */
2109	spin_lock(&ip->i_flags_lock);
2110	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2111		goto out_iflags_unlock;
2112
2113	/*
2114	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2115	 * other inodes that we did not find in the list attached to the buffer
2116	 * and are not already marked stale. If we can't lock it, back off and
2117	 * retry.
2118	 */
2119	if (ip != free_ip) {
2120		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2121			spin_unlock(&ip->i_flags_lock);
2122			rcu_read_unlock();
2123			delay(1);
2124			goto retry;
2125		}
2126	}
2127	ip->i_flags |= XFS_ISTALE;
2128
2129	/*
2130	 * If the inode is flushing, it is already attached to the buffer.  All
2131	 * we needed to do here is mark the inode stale so buffer IO completion
2132	 * will remove it from the AIL.
 
 
2133	 */
2134	iip = ip->i_itemp;
2135	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2136		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2137		ASSERT(iip->ili_last_fields);
2138		goto out_iunlock;
 
2139	}
2140
2141	/*
2142	 * Inodes not attached to the buffer can be released immediately.
2143	 * Everything else has to go through xfs_iflush_abort() on journal
2144	 * commit as the flock synchronises removal of the inode from the
2145	 * cluster buffer against inode reclaim.
2146	 */
2147	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2148		goto out_iunlock;
 
 
 
 
2149
2150	__xfs_iflags_set(ip, XFS_IFLUSHING);
2151	spin_unlock(&ip->i_flags_lock);
2152	rcu_read_unlock();
 
 
 
2153
2154	/* we have a dirty inode in memory that has not yet been flushed. */
2155	spin_lock(&iip->ili_lock);
2156	iip->ili_last_fields = iip->ili_fields;
2157	iip->ili_fields = 0;
2158	iip->ili_fsync_fields = 0;
2159	spin_unlock(&iip->ili_lock);
2160	ASSERT(iip->ili_last_fields);
2161
2162	if (ip != free_ip)
2163		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2164	return;
 
 
 
 
 
 
 
 
 
2165
2166out_iunlock:
2167	if (ip != free_ip)
2168		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169out_iflags_unlock:
2170	spin_unlock(&ip->i_flags_lock);
2171	rcu_read_unlock();
2172}
2173
2174/*
2175 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2176 * inodes that are in memory - they all must be marked stale and attached to
2177 * the cluster buffer.
2178 */
2179static int
2180xfs_ifree_cluster(
2181	struct xfs_trans	*tp,
2182	struct xfs_perag	*pag,
2183	struct xfs_inode	*free_ip,
2184	struct xfs_icluster	*xic)
2185{
2186	struct xfs_mount	*mp = free_ip->i_mount;
2187	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2188	struct xfs_buf		*bp;
2189	xfs_daddr_t		blkno;
2190	xfs_ino_t		inum = xic->first_ino;
2191	int			nbufs;
2192	int			i, j;
2193	int			ioffset;
2194	int			error;
 
 
 
 
 
 
 
2195
 
 
2196	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2197
2198	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2199		/*
2200		 * The allocation bitmap tells us which inodes of the chunk were
2201		 * physically allocated. Skip the cluster if an inode falls into
2202		 * a sparse region.
2203		 */
2204		ioffset = inum - xic->first_ino;
2205		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2206			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2207			continue;
2208		}
2209
2210		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211					 XFS_INO_TO_AGBNO(mp, inum));
2212
2213		/*
2214		 * We obtain and lock the backing buffer first in the process
2215		 * here to ensure dirty inodes attached to the buffer remain in
2216		 * the flushing state while we mark them stale.
2217		 *
2218		 * If we scan the in-memory inodes first, then buffer IO can
2219		 * complete before we get a lock on it, and hence we may fail
2220		 * to mark all the active inodes on the buffer stale.
2221		 */
2222		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2223				mp->m_bsize * igeo->blocks_per_cluster,
2224				XBF_UNMAPPED, &bp);
2225		if (error)
2226			return error;
 
2227
2228		/*
2229		 * This buffer may not have been correctly initialised as we
2230		 * didn't read it from disk. That's not important because we are
2231		 * only using to mark the buffer as stale in the log, and to
2232		 * attach stale cached inodes on it. That means it will never be
2233		 * dispatched for IO. If it is, we want to know about it, and we
2234		 * want it to fail. We can acheive this by adding a write
2235		 * verifier to the buffer.
2236		 */
2237		bp->b_ops = &xfs_inode_buf_ops;
2238
2239		/*
2240		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2241		 * too. This requires lookups, and will skip inodes that we've
2242		 * already marked XFS_ISTALE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243		 */
2244		for (i = 0; i < igeo->inodes_per_cluster; i++)
2245			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246
2247		xfs_trans_stale_inode_buf(tp, bp);
2248		xfs_trans_binval(tp, bp);
2249	}
 
 
2250	return 0;
2251}
2252
2253/*
2254 * This is called to return an inode to the inode free list.  The inode should
2255 * already be truncated to 0 length and have no pages associated with it.  This
2256 * routine also assumes that the inode is already a part of the transaction.
2257 *
2258 * The on-disk copy of the inode will have been added to the list of unlinked
2259 * inodes in the AGI. We need to remove the inode from that list atomically with
2260 * respect to freeing it here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261 */
2262int
2263xfs_ifree(
2264	struct xfs_trans	*tp,
2265	struct xfs_inode	*ip)
2266{
2267	struct xfs_mount	*mp = ip->i_mount;
2268	struct xfs_perag	*pag;
2269	struct xfs_icluster	xic = { 0 };
2270	struct xfs_inode_log_item *iip = ip->i_itemp;
2271	int			error;
2272
2273	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2274	ASSERT(VFS_I(ip)->i_nlink == 0);
2275	ASSERT(ip->i_df.if_nextents == 0);
2276	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2277	ASSERT(ip->i_nblocks == 0);
2278
2279	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2280
2281	/*
2282	 * Free the inode first so that we guarantee that the AGI lock is going
2283	 * to be taken before we remove the inode from the unlinked list. This
2284	 * makes the AGI lock -> unlinked list modification order the same as
2285	 * used in O_TMPFILE creation.
2286	 */
2287	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2288	if (error)
2289		goto out;
2290
2291	error = xfs_iunlink_remove(tp, pag, ip);
2292	if (error)
2293		goto out;
2294
2295	/*
2296	 * Free any local-format data sitting around before we reset the
2297	 * data fork to extents format.  Note that the attr fork data has
2298	 * already been freed by xfs_attr_inactive.
2299	 */
2300	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2301		kmem_free(ip->i_df.if_u1.if_data);
2302		ip->i_df.if_u1.if_data = NULL;
2303		ip->i_df.if_bytes = 0;
2304	}
2305
2306	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2307	ip->i_diflags = 0;
2308	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2309	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2310	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2311	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2312		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2313
2314	/* Don't attempt to replay owner changes for a deleted inode */
2315	spin_lock(&iip->ili_lock);
2316	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2317	spin_unlock(&iip->ili_lock);
2318
2319	/*
2320	 * Bump the generation count so no one will be confused
2321	 * by reincarnations of this inode.
2322	 */
2323	VFS_I(ip)->i_generation++;
2324	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2325
2326	if (xic.deleted)
2327		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2328out:
2329	xfs_perag_put(pag);
2330	return error;
2331}
2332
2333/*
2334 * This is called to unpin an inode.  The caller must have the inode locked
2335 * in at least shared mode so that the buffer cannot be subsequently pinned
2336 * once someone is waiting for it to be unpinned.
2337 */
2338static void
2339xfs_iunpin(
2340	struct xfs_inode	*ip)
2341{
2342	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2343
2344	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2345
2346	/* Give the log a push to start the unpinning I/O */
2347	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2348
2349}
2350
2351static void
2352__xfs_iunpin_wait(
2353	struct xfs_inode	*ip)
2354{
2355	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2356	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2357
2358	xfs_iunpin(ip);
2359
2360	do {
2361		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2362		if (xfs_ipincount(ip))
2363			io_schedule();
2364	} while (xfs_ipincount(ip));
2365	finish_wait(wq, &wait.wq_entry);
2366}
2367
2368void
2369xfs_iunpin_wait(
2370	struct xfs_inode	*ip)
2371{
2372	if (xfs_ipincount(ip))
2373		__xfs_iunpin_wait(ip);
2374}
2375
2376/*
2377 * Removing an inode from the namespace involves removing the directory entry
2378 * and dropping the link count on the inode. Removing the directory entry can
2379 * result in locking an AGF (directory blocks were freed) and removing a link
2380 * count can result in placing the inode on an unlinked list which results in
2381 * locking an AGI.
2382 *
2383 * The big problem here is that we have an ordering constraint on AGF and AGI
2384 * locking - inode allocation locks the AGI, then can allocate a new extent for
2385 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2386 * removes the inode from the unlinked list, requiring that we lock the AGI
2387 * first, and then freeing the inode can result in an inode chunk being freed
2388 * and hence freeing disk space requiring that we lock an AGF.
2389 *
2390 * Hence the ordering that is imposed by other parts of the code is AGI before
2391 * AGF. This means we cannot remove the directory entry before we drop the inode
2392 * reference count and put it on the unlinked list as this results in a lock
2393 * order of AGF then AGI, and this can deadlock against inode allocation and
2394 * freeing. Therefore we must drop the link counts before we remove the
2395 * directory entry.
2396 *
2397 * This is still safe from a transactional point of view - it is not until we
2398 * get to xfs_defer_finish() that we have the possibility of multiple
2399 * transactions in this operation. Hence as long as we remove the directory
2400 * entry and drop the link count in the first transaction of the remove
2401 * operation, there are no transactional constraints on the ordering here.
2402 */
2403int
2404xfs_remove(
2405	xfs_inode_t             *dp,
2406	struct xfs_name		*name,
2407	xfs_inode_t		*ip)
2408{
2409	xfs_mount_t		*mp = dp->i_mount;
2410	xfs_trans_t             *tp = NULL;
2411	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2412	int			dontcare;
2413	int                     error = 0;
2414	uint			resblks;
2415
2416	trace_xfs_remove(dp, name);
2417
2418	if (xfs_is_shutdown(mp))
2419		return -EIO;
2420
2421	error = xfs_qm_dqattach(dp);
2422	if (error)
2423		goto std_return;
2424
2425	error = xfs_qm_dqattach(ip);
2426	if (error)
2427		goto std_return;
2428
2429	/*
2430	 * We try to get the real space reservation first, allowing for
2431	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2432	 * can't get the space reservation then we use 0 instead, and avoid the
2433	 * bmap btree insert(s) in the directory code by, if the bmap insert
2434	 * tries to happen, instead trimming the LAST block from the directory.
2435	 *
2436	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2437	 * the directory code can handle a reservationless update and we don't
2438	 * want to prevent a user from trying to free space by deleting things.
2439	 */
2440	resblks = XFS_REMOVE_SPACE_RES(mp);
2441	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2442			&tp, &dontcare);
 
 
 
 
2443	if (error) {
2444		ASSERT(error != -ENOSPC);
2445		goto std_return;
2446	}
2447
 
 
 
 
 
2448	/*
2449	 * If we're removing a directory perform some additional validation.
2450	 */
2451	if (is_dir) {
2452		ASSERT(VFS_I(ip)->i_nlink >= 2);
2453		if (VFS_I(ip)->i_nlink != 2) {
2454			error = -ENOTEMPTY;
2455			goto out_trans_cancel;
2456		}
2457		if (!xfs_dir_isempty(ip)) {
2458			error = -ENOTEMPTY;
2459			goto out_trans_cancel;
2460		}
2461
2462		/* Drop the link from ip's "..".  */
2463		error = xfs_droplink(tp, dp);
2464		if (error)
2465			goto out_trans_cancel;
2466
2467		/* Drop the "." link from ip to self.  */
2468		error = xfs_droplink(tp, ip);
2469		if (error)
2470			goto out_trans_cancel;
2471
2472		/*
2473		 * Point the unlinked child directory's ".." entry to the root
2474		 * directory to eliminate back-references to inodes that may
2475		 * get freed before the child directory is closed.  If the fs
2476		 * gets shrunk, this can lead to dirent inode validation errors.
2477		 */
2478		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2479			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2480					tp->t_mountp->m_sb.sb_rootino, 0);
2481			if (error)
2482				goto out_trans_cancel;
2483		}
2484	} else {
2485		/*
2486		 * When removing a non-directory we need to log the parent
2487		 * inode here.  For a directory this is done implicitly
2488		 * by the xfs_droplink call for the ".." entry.
2489		 */
2490		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2491	}
2492	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2493
2494	/* Drop the link from dp to ip. */
2495	error = xfs_droplink(tp, ip);
2496	if (error)
2497		goto out_trans_cancel;
2498
2499	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2500	if (error) {
2501		ASSERT(error != -ENOENT);
2502		goto out_trans_cancel;
2503	}
2504
2505	/*
2506	 * If this is a synchronous mount, make sure that the
2507	 * remove transaction goes to disk before returning to
2508	 * the user.
2509	 */
2510	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2511		xfs_trans_set_sync(tp);
2512
2513	error = xfs_trans_commit(tp);
2514	if (error)
2515		goto std_return;
2516
2517	if (is_dir && xfs_inode_is_filestream(ip))
2518		xfs_filestream_deassociate(ip);
2519
2520	return 0;
2521
2522 out_trans_cancel:
2523	xfs_trans_cancel(tp);
2524 std_return:
2525	return error;
2526}
2527
2528/*
2529 * Enter all inodes for a rename transaction into a sorted array.
2530 */
2531#define __XFS_SORT_INODES	5
2532STATIC void
2533xfs_sort_for_rename(
2534	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2535	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2536	struct xfs_inode	*ip1,	/* in: inode of old entry */
2537	struct xfs_inode	*ip2,	/* in: inode of new entry */
2538	struct xfs_inode	*wip,	/* in: whiteout inode */
2539	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2540	int			*num_inodes)  /* in/out: inodes in array */
2541{
2542	int			i, j;
2543
2544	ASSERT(*num_inodes == __XFS_SORT_INODES);
2545	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2546
2547	/*
2548	 * i_tab contains a list of pointers to inodes.  We initialize
2549	 * the table here & we'll sort it.  We will then use it to
2550	 * order the acquisition of the inode locks.
2551	 *
2552	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2553	 */
2554	i = 0;
2555	i_tab[i++] = dp1;
2556	i_tab[i++] = dp2;
2557	i_tab[i++] = ip1;
2558	if (ip2)
2559		i_tab[i++] = ip2;
2560	if (wip)
2561		i_tab[i++] = wip;
2562	*num_inodes = i;
2563
2564	/*
2565	 * Sort the elements via bubble sort.  (Remember, there are at
2566	 * most 5 elements to sort, so this is adequate.)
2567	 */
2568	for (i = 0; i < *num_inodes; i++) {
2569		for (j = 1; j < *num_inodes; j++) {
2570			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2571				struct xfs_inode *temp = i_tab[j];
2572				i_tab[j] = i_tab[j-1];
2573				i_tab[j-1] = temp;
2574			}
2575		}
2576	}
2577}
2578
2579static int
2580xfs_finish_rename(
2581	struct xfs_trans	*tp)
2582{
2583	/*
2584	 * If this is a synchronous mount, make sure that the rename transaction
2585	 * goes to disk before returning to the user.
2586	 */
2587	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2588		xfs_trans_set_sync(tp);
2589
2590	return xfs_trans_commit(tp);
2591}
2592
2593/*
2594 * xfs_cross_rename()
2595 *
2596 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2597 */
2598STATIC int
2599xfs_cross_rename(
2600	struct xfs_trans	*tp,
2601	struct xfs_inode	*dp1,
2602	struct xfs_name		*name1,
2603	struct xfs_inode	*ip1,
2604	struct xfs_inode	*dp2,
2605	struct xfs_name		*name2,
2606	struct xfs_inode	*ip2,
2607	int			spaceres)
2608{
2609	int		error = 0;
2610	int		ip1_flags = 0;
2611	int		ip2_flags = 0;
2612	int		dp2_flags = 0;
2613
2614	/* Swap inode number for dirent in first parent */
2615	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2616	if (error)
2617		goto out_trans_abort;
2618
2619	/* Swap inode number for dirent in second parent */
2620	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2621	if (error)
2622		goto out_trans_abort;
2623
2624	/*
2625	 * If we're renaming one or more directories across different parents,
2626	 * update the respective ".." entries (and link counts) to match the new
2627	 * parents.
2628	 */
2629	if (dp1 != dp2) {
2630		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2631
2632		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2633			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2634						dp1->i_ino, spaceres);
2635			if (error)
2636				goto out_trans_abort;
2637
2638			/* transfer ip2 ".." reference to dp1 */
2639			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2640				error = xfs_droplink(tp, dp2);
2641				if (error)
2642					goto out_trans_abort;
2643				xfs_bumplink(tp, dp1);
2644			}
2645
2646			/*
2647			 * Although ip1 isn't changed here, userspace needs
2648			 * to be warned about the change, so that applications
2649			 * relying on it (like backup ones), will properly
2650			 * notify the change
2651			 */
2652			ip1_flags |= XFS_ICHGTIME_CHG;
2653			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2654		}
2655
2656		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2657			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2658						dp2->i_ino, spaceres);
2659			if (error)
2660				goto out_trans_abort;
2661
2662			/* transfer ip1 ".." reference to dp2 */
2663			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2664				error = xfs_droplink(tp, dp1);
2665				if (error)
2666					goto out_trans_abort;
2667				xfs_bumplink(tp, dp2);
2668			}
2669
2670			/*
2671			 * Although ip2 isn't changed here, userspace needs
2672			 * to be warned about the change, so that applications
2673			 * relying on it (like backup ones), will properly
2674			 * notify the change
2675			 */
2676			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2677			ip2_flags |= XFS_ICHGTIME_CHG;
2678		}
2679	}
2680
2681	if (ip1_flags) {
2682		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2683		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2684	}
2685	if (ip2_flags) {
2686		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2687		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2688	}
2689	if (dp2_flags) {
2690		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2691		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2692	}
2693	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2694	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2695	return xfs_finish_rename(tp);
2696
2697out_trans_abort:
2698	xfs_trans_cancel(tp);
2699	return error;
2700}
2701
2702/*
2703 * xfs_rename_alloc_whiteout()
2704 *
2705 * Return a referenced, unlinked, unlocked inode that can be used as a
2706 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2707 * crash between allocating the inode and linking it into the rename transaction
2708 * recovery will free the inode and we won't leak it.
2709 */
2710static int
2711xfs_rename_alloc_whiteout(
2712	struct user_namespace	*mnt_userns,
2713	struct xfs_name		*src_name,
2714	struct xfs_inode	*dp,
2715	struct xfs_inode	**wip)
2716{
2717	struct xfs_inode	*tmpfile;
2718	struct qstr		name;
2719	int			error;
2720
2721	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2722				   &tmpfile);
2723	if (error)
2724		return error;
2725
2726	name.name = src_name->name;
2727	name.len = src_name->len;
2728	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2729	if (error) {
2730		xfs_finish_inode_setup(tmpfile);
2731		xfs_irele(tmpfile);
2732		return error;
2733	}
2734
2735	/*
2736	 * Prepare the tmpfile inode as if it were created through the VFS.
2737	 * Complete the inode setup and flag it as linkable.  nlink is already
2738	 * zero, so we can skip the drop_nlink.
2739	 */
2740	xfs_setup_iops(tmpfile);
2741	xfs_finish_inode_setup(tmpfile);
2742	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2743
2744	*wip = tmpfile;
2745	return 0;
2746}
2747
2748/*
2749 * xfs_rename
2750 */
2751int
2752xfs_rename(
2753	struct user_namespace	*mnt_userns,
2754	struct xfs_inode	*src_dp,
2755	struct xfs_name		*src_name,
2756	struct xfs_inode	*src_ip,
2757	struct xfs_inode	*target_dp,
2758	struct xfs_name		*target_name,
2759	struct xfs_inode	*target_ip,
2760	unsigned int		flags)
2761{
2762	struct xfs_mount	*mp = src_dp->i_mount;
2763	struct xfs_trans	*tp;
2764	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2765	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2766	int			i;
2767	int			num_inodes = __XFS_SORT_INODES;
2768	bool			new_parent = (src_dp != target_dp);
2769	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2770	int			spaceres;
2771	bool			retried = false;
2772	int			error, nospace_error = 0;
2773
2774	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2775
2776	if ((flags & RENAME_EXCHANGE) && !target_ip)
2777		return -EINVAL;
2778
2779	/*
2780	 * If we are doing a whiteout operation, allocate the whiteout inode
2781	 * we will be placing at the target and ensure the type is set
2782	 * appropriately.
2783	 */
2784	if (flags & RENAME_WHITEOUT) {
2785		error = xfs_rename_alloc_whiteout(mnt_userns, src_name,
2786						  target_dp, &wip);
2787		if (error)
2788			return error;
2789
2790		/* setup target dirent info as whiteout */
2791		src_name->type = XFS_DIR3_FT_CHRDEV;
2792	}
2793
2794	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2795				inodes, &num_inodes);
2796
2797retry:
2798	nospace_error = 0;
2799	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2800	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2801	if (error == -ENOSPC) {
2802		nospace_error = error;
2803		spaceres = 0;
2804		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2805				&tp);
2806	}
2807	if (error)
2808		goto out_release_wip;
2809
2810	/*
2811	 * Attach the dquots to the inodes
2812	 */
2813	error = xfs_qm_vop_rename_dqattach(inodes);
2814	if (error)
2815		goto out_trans_cancel;
2816
2817	/*
2818	 * Lock all the participating inodes. Depending upon whether
2819	 * the target_name exists in the target directory, and
2820	 * whether the target directory is the same as the source
2821	 * directory, we can lock from 2 to 5 inodes.
2822	 */
2823	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2824
2825	/*
2826	 * Join all the inodes to the transaction. From this point on,
2827	 * we can rely on either trans_commit or trans_cancel to unlock
2828	 * them.
2829	 */
2830	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2831	if (new_parent)
2832		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2833	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2834	if (target_ip)
2835		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2836	if (wip)
2837		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2838
2839	/*
2840	 * If we are using project inheritance, we only allow renames
2841	 * into our tree when the project IDs are the same; else the
2842	 * tree quota mechanism would be circumvented.
2843	 */
2844	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2845		     target_dp->i_projid != src_ip->i_projid)) {
2846		error = -EXDEV;
2847		goto out_trans_cancel;
2848	}
2849
2850	/* RENAME_EXCHANGE is unique from here on. */
2851	if (flags & RENAME_EXCHANGE)
2852		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2853					target_dp, target_name, target_ip,
2854					spaceres);
2855
2856	/*
2857	 * Try to reserve quota to handle an expansion of the target directory.
2858	 * We'll allow the rename to continue in reservationless mode if we hit
2859	 * a space usage constraint.  If we trigger reservationless mode, save
2860	 * the errno if there isn't any free space in the target directory.
2861	 */
2862	if (spaceres != 0) {
2863		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2864				0, false);
2865		if (error == -EDQUOT || error == -ENOSPC) {
2866			if (!retried) {
2867				xfs_trans_cancel(tp);
2868				xfs_blockgc_free_quota(target_dp, 0);
2869				retried = true;
2870				goto retry;
2871			}
2872
2873			nospace_error = error;
2874			spaceres = 0;
2875			error = 0;
2876		}
2877		if (error)
2878			goto out_trans_cancel;
2879	}
2880
2881	/*
2882	 * Check for expected errors before we dirty the transaction
2883	 * so we can return an error without a transaction abort.
2884	 */
2885	if (target_ip == NULL) {
2886		/*
2887		 * If there's no space reservation, check the entry will
2888		 * fit before actually inserting it.
2889		 */
2890		if (!spaceres) {
2891			error = xfs_dir_canenter(tp, target_dp, target_name);
2892			if (error)
2893				goto out_trans_cancel;
2894		}
2895	} else {
2896		/*
2897		 * If target exists and it's a directory, check that whether
2898		 * it can be destroyed.
2899		 */
2900		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2901		    (!xfs_dir_isempty(target_ip) ||
2902		     (VFS_I(target_ip)->i_nlink > 2))) {
2903			error = -EEXIST;
2904			goto out_trans_cancel;
2905		}
2906	}
2907
2908	/*
2909	 * Lock the AGI buffers we need to handle bumping the nlink of the
2910	 * whiteout inode off the unlinked list and to handle dropping the
2911	 * nlink of the target inode.  Per locking order rules, do this in
2912	 * increasing AG order and before directory block allocation tries to
2913	 * grab AGFs because we grab AGIs before AGFs.
2914	 *
2915	 * The (vfs) caller must ensure that if src is a directory then
2916	 * target_ip is either null or an empty directory.
2917	 */
2918	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2919		if (inodes[i] == wip ||
2920		    (inodes[i] == target_ip &&
2921		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2922			struct xfs_perag	*pag;
2923			struct xfs_buf		*bp;
2924
2925			pag = xfs_perag_get(mp,
2926					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2927			error = xfs_read_agi(pag, tp, &bp);
2928			xfs_perag_put(pag);
2929			if (error)
2930				goto out_trans_cancel;
2931		}
2932	}
2933
2934	/*
2935	 * Directory entry creation below may acquire the AGF. Remove
2936	 * the whiteout from the unlinked list first to preserve correct
2937	 * AGI/AGF locking order. This dirties the transaction so failures
2938	 * after this point will abort and log recovery will clean up the
2939	 * mess.
2940	 *
2941	 * For whiteouts, we need to bump the link count on the whiteout
2942	 * inode. After this point, we have a real link, clear the tmpfile
2943	 * state flag from the inode so it doesn't accidentally get misused
2944	 * in future.
2945	 */
2946	if (wip) {
2947		struct xfs_perag	*pag;
2948
2949		ASSERT(VFS_I(wip)->i_nlink == 0);
2950
2951		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2952		error = xfs_iunlink_remove(tp, pag, wip);
2953		xfs_perag_put(pag);
2954		if (error)
2955			goto out_trans_cancel;
2956
2957		xfs_bumplink(tp, wip);
 
2958		VFS_I(wip)->i_state &= ~I_LINKABLE;
2959	}
2960
2961	/*
2962	 * Set up the target.
2963	 */
2964	if (target_ip == NULL) {
2965		/*
2966		 * If target does not exist and the rename crosses
2967		 * directories, adjust the target directory link count
2968		 * to account for the ".." reference from the new entry.
2969		 */
2970		error = xfs_dir_createname(tp, target_dp, target_name,
2971					   src_ip->i_ino, spaceres);
2972		if (error)
2973			goto out_trans_cancel;
2974
2975		xfs_trans_ichgtime(tp, target_dp,
2976					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2977
2978		if (new_parent && src_is_directory) {
2979			xfs_bumplink(tp, target_dp);
2980		}
2981	} else { /* target_ip != NULL */
2982		/*
2983		 * Link the source inode under the target name.
2984		 * If the source inode is a directory and we are moving
2985		 * it across directories, its ".." entry will be
2986		 * inconsistent until we replace that down below.
2987		 *
2988		 * In case there is already an entry with the same
2989		 * name at the destination directory, remove it first.
2990		 */
2991		error = xfs_dir_replace(tp, target_dp, target_name,
2992					src_ip->i_ino, spaceres);
2993		if (error)
2994			goto out_trans_cancel;
2995
2996		xfs_trans_ichgtime(tp, target_dp,
2997					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2998
2999		/*
3000		 * Decrement the link count on the target since the target
3001		 * dir no longer points to it.
3002		 */
3003		error = xfs_droplink(tp, target_ip);
3004		if (error)
3005			goto out_trans_cancel;
3006
3007		if (src_is_directory) {
3008			/*
3009			 * Drop the link from the old "." entry.
3010			 */
3011			error = xfs_droplink(tp, target_ip);
3012			if (error)
3013				goto out_trans_cancel;
3014		}
3015	} /* target_ip != NULL */
3016
3017	/*
3018	 * Remove the source.
3019	 */
3020	if (new_parent && src_is_directory) {
3021		/*
3022		 * Rewrite the ".." entry to point to the new
3023		 * directory.
3024		 */
3025		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3026					target_dp->i_ino, spaceres);
3027		ASSERT(error != -EEXIST);
3028		if (error)
3029			goto out_trans_cancel;
3030	}
3031
3032	/*
3033	 * We always want to hit the ctime on the source inode.
3034	 *
3035	 * This isn't strictly required by the standards since the source
3036	 * inode isn't really being changed, but old unix file systems did
3037	 * it and some incremental backup programs won't work without it.
3038	 */
3039	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3040	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3041
3042	/*
3043	 * Adjust the link count on src_dp.  This is necessary when
3044	 * renaming a directory, either within one parent when
3045	 * the target existed, or across two parent directories.
3046	 */
3047	if (src_is_directory && (new_parent || target_ip != NULL)) {
3048
3049		/*
3050		 * Decrement link count on src_directory since the
3051		 * entry that's moved no longer points to it.
3052		 */
3053		error = xfs_droplink(tp, src_dp);
3054		if (error)
3055			goto out_trans_cancel;
3056	}
3057
3058	/*
3059	 * For whiteouts, we only need to update the source dirent with the
3060	 * inode number of the whiteout inode rather than removing it
3061	 * altogether.
3062	 */
3063	if (wip)
3064		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3065					spaceres);
3066	else
3067		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3068					   spaceres);
3069
3070	if (error)
3071		goto out_trans_cancel;
3072
3073	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3074	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3075	if (new_parent)
3076		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3077
3078	error = xfs_finish_rename(tp);
3079	if (wip)
3080		xfs_irele(wip);
3081	return error;
3082
3083out_trans_cancel:
3084	xfs_trans_cancel(tp);
3085out_release_wip:
3086	if (wip)
3087		xfs_irele(wip);
3088	if (error == -ENOSPC && nospace_error)
3089		error = nospace_error;
3090	return error;
3091}
3092
3093static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094xfs_iflush(
3095	struct xfs_inode	*ip,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096	struct xfs_buf		*bp)
3097{
3098	struct xfs_inode_log_item *iip = ip->i_itemp;
3099	struct xfs_dinode	*dip;
3100	struct xfs_mount	*mp = ip->i_mount;
3101	int			error;
3102
3103	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3104	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3105	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3106	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3107	ASSERT(iip->ili_item.li_buf == bp);
 
3108
 
3109	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3110
3111	/*
3112	 * We don't flush the inode if any of the following checks fail, but we
3113	 * do still update the log item and attach to the backing buffer as if
3114	 * the flush happened. This is a formality to facilitate predictable
3115	 * error handling as the caller will shutdown and fail the buffer.
3116	 */
3117	error = -EFSCORRUPTED;
3118	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3119			       mp, XFS_ERRTAG_IFLUSH_1)) {
3120		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3121			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3122			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3123		goto flush_out;
3124	}
3125	if (S_ISREG(VFS_I(ip)->i_mode)) {
3126		if (XFS_TEST_ERROR(
3127		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3128		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3129		    mp, XFS_ERRTAG_IFLUSH_3)) {
3130			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3131				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3132				__func__, ip->i_ino, ip);
3133			goto flush_out;
3134		}
3135	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3136		if (XFS_TEST_ERROR(
3137		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3138		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3139		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3140		    mp, XFS_ERRTAG_IFLUSH_4)) {
3141			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3142				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3143				__func__, ip->i_ino, ip);
3144			goto flush_out;
3145		}
3146	}
3147	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3148				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3149		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3150			"%s: detected corrupt incore inode %llu, "
3151			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3152			__func__, ip->i_ino,
3153			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3154			ip->i_nblocks, ip);
3155		goto flush_out;
3156	}
3157	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3158				mp, XFS_ERRTAG_IFLUSH_6)) {
3159		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3160			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3161			__func__, ip->i_ino, ip->i_forkoff, ip);
3162		goto flush_out;
3163	}
3164
3165	/*
3166	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3167	 * count for correct sequencing.  We bump the flush iteration count so
3168	 * we can detect flushes which postdate a log record during recovery.
3169	 * This is redundant as we now log every change and hence this can't
3170	 * happen but we need to still do it to ensure backwards compatibility
3171	 * with old kernels that predate logging all inode changes.
3172	 */
3173	if (!xfs_has_v3inodes(mp))
3174		ip->i_flushiter++;
3175
3176	/*
3177	 * If there are inline format data / attr forks attached to this inode,
3178	 * make sure they are not corrupt.
3179	 */
3180	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3181	    xfs_ifork_verify_local_data(ip))
3182		goto flush_out;
3183	if (xfs_inode_has_attr_fork(ip) &&
3184	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3185	    xfs_ifork_verify_local_attr(ip))
3186		goto flush_out;
3187
3188	/*
3189	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3190	 * copy out the core of the inode, because if the inode is dirty at all
3191	 * the core must be.
3192	 */
3193	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3194
3195	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3196	if (!xfs_has_v3inodes(mp)) {
3197		if (ip->i_flushiter == DI_MAX_FLUSH)
3198			ip->i_flushiter = 0;
3199	}
3200
3201	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3202	if (xfs_inode_has_attr_fork(ip))
3203		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
3204
3205	/*
3206	 * We've recorded everything logged in the inode, so we'd like to clear
3207	 * the ili_fields bits so we don't log and flush things unnecessarily.
3208	 * However, we can't stop logging all this information until the data
3209	 * we've copied into the disk buffer is written to disk.  If we did we
3210	 * might overwrite the copy of the inode in the log with all the data
3211	 * after re-logging only part of it, and in the face of a crash we
3212	 * wouldn't have all the data we need to recover.
3213	 *
3214	 * What we do is move the bits to the ili_last_fields field.  When
3215	 * logging the inode, these bits are moved back to the ili_fields field.
3216	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3217	 * we know that the information those bits represent is permanently on
3218	 * disk.  As long as the flush completes before the inode is logged
3219	 * again, then both ili_fields and ili_last_fields will be cleared.
 
 
 
 
 
 
 
 
 
3220	 */
3221	error = 0;
3222flush_out:
3223	spin_lock(&iip->ili_lock);
3224	iip->ili_last_fields = iip->ili_fields;
3225	iip->ili_fields = 0;
3226	iip->ili_fsync_fields = 0;
3227	spin_unlock(&iip->ili_lock);
3228
3229	/*
3230	 * Store the current LSN of the inode so that we can tell whether the
3231	 * item has moved in the AIL from xfs_buf_inode_iodone().
3232	 */
3233	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3234				&iip->ili_item.li_lsn);
3235
3236	/* generate the checksum. */
3237	xfs_dinode_calc_crc(mp, dip);
3238	return error;
3239}
3240
3241/*
3242 * Non-blocking flush of dirty inode metadata into the backing buffer.
3243 *
3244 * The caller must have a reference to the inode and hold the cluster buffer
3245 * locked. The function will walk across all the inodes on the cluster buffer it
3246 * can find and lock without blocking, and flush them to the cluster buffer.
3247 *
3248 * On successful flushing of at least one inode, the caller must write out the
3249 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3250 * the caller needs to release the buffer. On failure, the filesystem will be
3251 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3252 * will be returned.
3253 */
3254int
3255xfs_iflush_cluster(
3256	struct xfs_buf		*bp)
3257{
3258	struct xfs_mount	*mp = bp->b_mount;
3259	struct xfs_log_item	*lip, *n;
3260	struct xfs_inode	*ip;
3261	struct xfs_inode_log_item *iip;
3262	int			clcount = 0;
3263	int			error = 0;
3264
3265	/*
3266	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3267	 * will remove itself from the list.
 
 
3268	 */
3269	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3270		iip = (struct xfs_inode_log_item *)lip;
3271		ip = iip->ili_inode;
3272
3273		/*
3274		 * Quick and dirty check to avoid locks if possible.
3275		 */
3276		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3277			continue;
3278		if (xfs_ipincount(ip))
3279			continue;
3280
3281		/*
3282		 * The inode is still attached to the buffer, which means it is
3283		 * dirty but reclaim might try to grab it. Check carefully for
3284		 * that, and grab the ilock while still holding the i_flags_lock
3285		 * to guarantee reclaim will not be able to reclaim this inode
3286		 * once we drop the i_flags_lock.
3287		 */
3288		spin_lock(&ip->i_flags_lock);
3289		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3290		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3291			spin_unlock(&ip->i_flags_lock);
3292			continue;
3293		}
3294
3295		/*
3296		 * ILOCK will pin the inode against reclaim and prevent
3297		 * concurrent transactions modifying the inode while we are
3298		 * flushing the inode. If we get the lock, set the flushing
3299		 * state before we drop the i_flags_lock.
3300		 */
3301		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3302			spin_unlock(&ip->i_flags_lock);
3303			continue;
3304		}
3305		__xfs_iflags_set(ip, XFS_IFLUSHING);
3306		spin_unlock(&ip->i_flags_lock);
3307
3308		/*
3309		 * Abort flushing this inode if we are shut down because the
3310		 * inode may not currently be in the AIL. This can occur when
3311		 * log I/O failure unpins the inode without inserting into the
3312		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3313		 * that otherwise looks like it should be flushed.
3314		 */
3315		if (xlog_is_shutdown(mp->m_log)) {
3316			xfs_iunpin_wait(ip);
3317			xfs_iflush_abort(ip);
3318			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3319			error = -EIO;
3320			continue;
3321		}
3322
3323		/* don't block waiting on a log force to unpin dirty inodes */
3324		if (xfs_ipincount(ip)) {
3325			xfs_iflags_clear(ip, XFS_IFLUSHING);
3326			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3327			continue;
3328		}
3329
3330		if (!xfs_inode_clean(ip))
3331			error = xfs_iflush(ip, bp);
3332		else
3333			xfs_iflags_clear(ip, XFS_IFLUSHING);
3334		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3335		if (error)
3336			break;
3337		clcount++;
3338	}
3339
3340	if (error) {
3341		/*
3342		 * Shutdown first so we kill the log before we release this
3343		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3344		 * of the log, failing it before the _log_ is shut down can
3345		 * result in the log tail being moved forward in the journal
3346		 * on disk because log writes can still be taking place. Hence
3347		 * unpinning the tail will allow the ICREATE intent to be
3348		 * removed from the log an recovery will fail with uninitialised
3349		 * inode cluster buffers.
3350		 */
3351		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3352		bp->b_flags |= XBF_ASYNC;
3353		xfs_buf_ioend_fail(bp);
3354		return error;
3355	}
3356
3357	if (!clcount)
3358		return -EAGAIN;
3359
3360	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3361	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3362	return 0;
3363
 
 
3364}
3365
3366/* Release an inode. */
3367void
3368xfs_irele(
3369	struct xfs_inode	*ip)
3370{
3371	trace_xfs_irele(ip, _RET_IP_);
3372	iput(VFS_I(ip));
3373}
3374
3375/*
3376 * Ensure all commited transactions touching the inode are written to the log.
3377 */
3378int
3379xfs_log_force_inode(
3380	struct xfs_inode	*ip)
3381{
3382	xfs_csn_t		seq = 0;
3383
3384	xfs_ilock(ip, XFS_ILOCK_SHARED);
3385	if (xfs_ipincount(ip))
3386		seq = ip->i_itemp->ili_commit_seq;
3387	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3388
3389	if (!seq)
3390		return 0;
3391	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3392}
3393
3394/*
3395 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3396 * abide vfs locking order (lowest pointer value goes first) and breaking the
3397 * layout leases before proceeding.  The loop is needed because we cannot call
3398 * the blocking break_layout() with the iolocks held, and therefore have to
3399 * back out both locks.
3400 */
3401static int
3402xfs_iolock_two_inodes_and_break_layout(
3403	struct inode		*src,
3404	struct inode		*dest)
3405{
3406	int			error;
3407
3408	if (src > dest)
3409		swap(src, dest);
3410
3411retry:
3412	/* Wait to break both inodes' layouts before we start locking. */
3413	error = break_layout(src, true);
3414	if (error)
3415		return error;
3416	if (src != dest) {
3417		error = break_layout(dest, true);
3418		if (error)
3419			return error;
3420	}
3421
3422	/* Lock one inode and make sure nobody got in and leased it. */
3423	inode_lock(src);
3424	error = break_layout(src, false);
3425	if (error) {
3426		inode_unlock(src);
3427		if (error == -EWOULDBLOCK)
3428			goto retry;
3429		return error;
3430	}
3431
3432	if (src == dest)
3433		return 0;
3434
3435	/* Lock the other inode and make sure nobody got in and leased it. */
3436	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3437	error = break_layout(dest, false);
3438	if (error) {
3439		inode_unlock(src);
3440		inode_unlock(dest);
3441		if (error == -EWOULDBLOCK)
3442			goto retry;
3443		return error;
3444	}
3445
3446	return 0;
3447}
3448
3449static int
3450xfs_mmaplock_two_inodes_and_break_dax_layout(
3451	struct xfs_inode	*ip1,
3452	struct xfs_inode	*ip2)
3453{
3454	int			error;
3455	bool			retry;
3456	struct page		*page;
3457
3458	if (ip1->i_ino > ip2->i_ino)
3459		swap(ip1, ip2);
3460
3461again:
3462	retry = false;
3463	/* Lock the first inode */
3464	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3465	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3466	if (error || retry) {
3467		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3468		if (error == 0 && retry)
3469			goto again;
3470		return error;
3471	}
3472
3473	if (ip1 == ip2)
3474		return 0;
3475
3476	/* Nested lock the second inode */
3477	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3478	/*
3479	 * We cannot use xfs_break_dax_layouts() directly here because it may
3480	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3481	 * for this nested lock case.
3482	 */
3483	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3484	if (page && page_ref_count(page) != 1) {
3485		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3486		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3487		goto again;
3488	}
3489
3490	return 0;
3491}
3492
3493/*
3494 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3495 * mmap activity.
3496 */
3497int
3498xfs_ilock2_io_mmap(
3499	struct xfs_inode	*ip1,
3500	struct xfs_inode	*ip2)
3501{
3502	int			ret;
3503
3504	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3505	if (ret)
3506		return ret;
3507
3508	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3509		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3510		if (ret) {
3511			inode_unlock(VFS_I(ip2));
3512			if (ip1 != ip2)
3513				inode_unlock(VFS_I(ip1));
3514			return ret;
3515		}
3516	} else
3517		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3518					    VFS_I(ip2)->i_mapping);
3519
3520	return 0;
3521}
3522
3523/* Unlock both inodes to allow IO and mmap activity. */
3524void
3525xfs_iunlock2_io_mmap(
3526	struct xfs_inode	*ip1,
3527	struct xfs_inode	*ip2)
3528{
3529	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3530		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3531		if (ip1 != ip2)
3532			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3533	} else
3534		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3535					      VFS_I(ip2)->i_mapping);
3536
3537	inode_unlock(VFS_I(ip2));
3538	if (ip1 != ip2)
3539		inode_unlock(VFS_I(ip1));
3540}