Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_defer.h"
17#include "xfs_inode.h"
18#include "xfs_dir2.h"
19#include "xfs_attr.h"
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
22#include "xfs_buf_item.h"
23#include "xfs_inode_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
38
39kmem_zone_t *xfs_inode_zone;
40
41/*
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
50
51/*
52 * helper function to extract extent size hint from inode
53 */
54xfs_extlen_t
55xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57{
58 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
59 return ip->i_d.di_extsize;
60 if (XFS_IS_REALTIME_INODE(ip))
61 return ip->i_mount->m_sb.sb_rextsize;
62 return 0;
63}
64
65/*
66 * Helper function to extract CoW extent size hint from inode.
67 * Between the extent size hint and the CoW extent size hint, we
68 * return the greater of the two. If the value is zero (automatic),
69 * use the default size.
70 */
71xfs_extlen_t
72xfs_get_cowextsz_hint(
73 struct xfs_inode *ip)
74{
75 xfs_extlen_t a, b;
76
77 a = 0;
78 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
79 a = ip->i_d.di_cowextsize;
80 b = xfs_get_extsz_hint(ip);
81
82 a = max(a, b);
83 if (a == 0)
84 return XFS_DEFAULT_COWEXTSZ_HINT;
85 return a;
86}
87
88/*
89 * These two are wrapper routines around the xfs_ilock() routine used to
90 * centralize some grungy code. They are used in places that wish to lock the
91 * inode solely for reading the extents. The reason these places can't just
92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
93 * bringing in of the extents from disk for a file in b-tree format. If the
94 * inode is in b-tree format, then we need to lock the inode exclusively until
95 * the extents are read in. Locking it exclusively all the time would limit
96 * our parallelism unnecessarily, though. What we do instead is check to see
97 * if the extents have been read in yet, and only lock the inode exclusively
98 * if they have not.
99 *
100 * The functions return a value which should be given to the corresponding
101 * xfs_iunlock() call.
102 */
103uint
104xfs_ilock_data_map_shared(
105 struct xfs_inode *ip)
106{
107 uint lock_mode = XFS_ILOCK_SHARED;
108
109 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
110 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
111 lock_mode = XFS_ILOCK_EXCL;
112 xfs_ilock(ip, lock_mode);
113 return lock_mode;
114}
115
116uint
117xfs_ilock_attr_map_shared(
118 struct xfs_inode *ip)
119{
120 uint lock_mode = XFS_ILOCK_SHARED;
121
122 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
123 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
124 lock_mode = XFS_ILOCK_EXCL;
125 xfs_ilock(ip, lock_mode);
126 return lock_mode;
127}
128
129/*
130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
131 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
132 * various combinations of the locks to be obtained.
133 *
134 * The 3 locks should always be ordered so that the IO lock is obtained first,
135 * the mmap lock second and the ilock last in order to prevent deadlock.
136 *
137 * Basic locking order:
138 *
139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
140 *
141 * mmap_sem locking order:
142 *
143 * i_rwsem -> page lock -> mmap_sem
144 * mmap_sem -> i_mmap_lock -> page_lock
145 *
146 * The difference in mmap_sem locking order mean that we cannot hold the
147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
149 * in get_user_pages() to map the user pages into the kernel address space for
150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
151 * page faults already hold the mmap_sem.
152 *
153 * Hence to serialise fully against both syscall and mmap based IO, we need to
154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
155 * taken in places where we need to invalidate the page cache in a race
156 * free manner (e.g. truncate, hole punch and other extent manipulation
157 * functions).
158 */
159void
160xfs_ilock(
161 xfs_inode_t *ip,
162 uint lock_flags)
163{
164 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
165
166 /*
167 * You can't set both SHARED and EXCL for the same lock,
168 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
169 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
170 */
171 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
172 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
173 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
174 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
175 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
176 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
177 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
178
179 if (lock_flags & XFS_IOLOCK_EXCL) {
180 down_write_nested(&VFS_I(ip)->i_rwsem,
181 XFS_IOLOCK_DEP(lock_flags));
182 } else if (lock_flags & XFS_IOLOCK_SHARED) {
183 down_read_nested(&VFS_I(ip)->i_rwsem,
184 XFS_IOLOCK_DEP(lock_flags));
185 }
186
187 if (lock_flags & XFS_MMAPLOCK_EXCL)
188 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
189 else if (lock_flags & XFS_MMAPLOCK_SHARED)
190 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
191
192 if (lock_flags & XFS_ILOCK_EXCL)
193 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
194 else if (lock_flags & XFS_ILOCK_SHARED)
195 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
196}
197
198/*
199 * This is just like xfs_ilock(), except that the caller
200 * is guaranteed not to sleep. It returns 1 if it gets
201 * the requested locks and 0 otherwise. If the IO lock is
202 * obtained but the inode lock cannot be, then the IO lock
203 * is dropped before returning.
204 *
205 * ip -- the inode being locked
206 * lock_flags -- this parameter indicates the inode's locks to be
207 * to be locked. See the comment for xfs_ilock() for a list
208 * of valid values.
209 */
210int
211xfs_ilock_nowait(
212 xfs_inode_t *ip,
213 uint lock_flags)
214{
215 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
216
217 /*
218 * You can't set both SHARED and EXCL for the same lock,
219 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
220 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
221 */
222 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
223 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
224 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
225 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
226 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
227 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
228 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
229
230 if (lock_flags & XFS_IOLOCK_EXCL) {
231 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
232 goto out;
233 } else if (lock_flags & XFS_IOLOCK_SHARED) {
234 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
235 goto out;
236 }
237
238 if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 if (!mrtryupdate(&ip->i_mmaplock))
240 goto out_undo_iolock;
241 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 if (!mrtryaccess(&ip->i_mmaplock))
243 goto out_undo_iolock;
244 }
245
246 if (lock_flags & XFS_ILOCK_EXCL) {
247 if (!mrtryupdate(&ip->i_lock))
248 goto out_undo_mmaplock;
249 } else if (lock_flags & XFS_ILOCK_SHARED) {
250 if (!mrtryaccess(&ip->i_lock))
251 goto out_undo_mmaplock;
252 }
253 return 1;
254
255out_undo_mmaplock:
256 if (lock_flags & XFS_MMAPLOCK_EXCL)
257 mrunlock_excl(&ip->i_mmaplock);
258 else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 mrunlock_shared(&ip->i_mmaplock);
260out_undo_iolock:
261 if (lock_flags & XFS_IOLOCK_EXCL)
262 up_write(&VFS_I(ip)->i_rwsem);
263 else if (lock_flags & XFS_IOLOCK_SHARED)
264 up_read(&VFS_I(ip)->i_rwsem);
265out:
266 return 0;
267}
268
269/*
270 * xfs_iunlock() is used to drop the inode locks acquired with
271 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273 * that we know which locks to drop.
274 *
275 * ip -- the inode being unlocked
276 * lock_flags -- this parameter indicates the inode's locks to be
277 * to be unlocked. See the comment for xfs_ilock() for a list
278 * of valid values for this parameter.
279 *
280 */
281void
282xfs_iunlock(
283 xfs_inode_t *ip,
284 uint lock_flags)
285{
286 /*
287 * You can't set both SHARED and EXCL for the same lock,
288 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
289 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
290 */
291 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
292 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
293 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
294 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
295 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
296 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
297 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
298 ASSERT(lock_flags != 0);
299
300 if (lock_flags & XFS_IOLOCK_EXCL)
301 up_write(&VFS_I(ip)->i_rwsem);
302 else if (lock_flags & XFS_IOLOCK_SHARED)
303 up_read(&VFS_I(ip)->i_rwsem);
304
305 if (lock_flags & XFS_MMAPLOCK_EXCL)
306 mrunlock_excl(&ip->i_mmaplock);
307 else if (lock_flags & XFS_MMAPLOCK_SHARED)
308 mrunlock_shared(&ip->i_mmaplock);
309
310 if (lock_flags & XFS_ILOCK_EXCL)
311 mrunlock_excl(&ip->i_lock);
312 else if (lock_flags & XFS_ILOCK_SHARED)
313 mrunlock_shared(&ip->i_lock);
314
315 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
316}
317
318/*
319 * give up write locks. the i/o lock cannot be held nested
320 * if it is being demoted.
321 */
322void
323xfs_ilock_demote(
324 xfs_inode_t *ip,
325 uint lock_flags)
326{
327 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
328 ASSERT((lock_flags &
329 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
330
331 if (lock_flags & XFS_ILOCK_EXCL)
332 mrdemote(&ip->i_lock);
333 if (lock_flags & XFS_MMAPLOCK_EXCL)
334 mrdemote(&ip->i_mmaplock);
335 if (lock_flags & XFS_IOLOCK_EXCL)
336 downgrade_write(&VFS_I(ip)->i_rwsem);
337
338 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
339}
340
341#if defined(DEBUG) || defined(XFS_WARN)
342int
343xfs_isilocked(
344 xfs_inode_t *ip,
345 uint lock_flags)
346{
347 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
348 if (!(lock_flags & XFS_ILOCK_SHARED))
349 return !!ip->i_lock.mr_writer;
350 return rwsem_is_locked(&ip->i_lock.mr_lock);
351 }
352
353 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
354 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
355 return !!ip->i_mmaplock.mr_writer;
356 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
357 }
358
359 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
360 if (!(lock_flags & XFS_IOLOCK_SHARED))
361 return !debug_locks ||
362 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
363 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
364 }
365
366 ASSERT(0);
367 return 0;
368}
369#endif
370
371/*
372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
375 * errors and warnings.
376 */
377#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
378static bool
379xfs_lockdep_subclass_ok(
380 int subclass)
381{
382 return subclass < MAX_LOCKDEP_SUBCLASSES;
383}
384#else
385#define xfs_lockdep_subclass_ok(subclass) (true)
386#endif
387
388/*
389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
390 * value. This can be called for any type of inode lock combination, including
391 * parent locking. Care must be taken to ensure we don't overrun the subclass
392 * storage fields in the class mask we build.
393 */
394static inline int
395xfs_lock_inumorder(int lock_mode, int subclass)
396{
397 int class = 0;
398
399 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
400 XFS_ILOCK_RTSUM)));
401 ASSERT(xfs_lockdep_subclass_ok(subclass));
402
403 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
404 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
405 class += subclass << XFS_IOLOCK_SHIFT;
406 }
407
408 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
409 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
410 class += subclass << XFS_MMAPLOCK_SHIFT;
411 }
412
413 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
414 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
415 class += subclass << XFS_ILOCK_SHIFT;
416 }
417
418 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
419}
420
421/*
422 * The following routine will lock n inodes in exclusive mode. We assume the
423 * caller calls us with the inodes in i_ino order.
424 *
425 * We need to detect deadlock where an inode that we lock is in the AIL and we
426 * start waiting for another inode that is locked by a thread in a long running
427 * transaction (such as truncate). This can result in deadlock since the long
428 * running trans might need to wait for the inode we just locked in order to
429 * push the tail and free space in the log.
430 *
431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
433 * lock more than one at a time, lockdep will report false positives saying we
434 * have violated locking orders.
435 */
436static void
437xfs_lock_inodes(
438 struct xfs_inode **ips,
439 int inodes,
440 uint lock_mode)
441{
442 int attempts = 0, i, j, try_lock;
443 struct xfs_log_item *lp;
444
445 /*
446 * Currently supports between 2 and 5 inodes with exclusive locking. We
447 * support an arbitrary depth of locking here, but absolute limits on
448 * inodes depend on the the type of locking and the limits placed by
449 * lockdep annotations in xfs_lock_inumorder. These are all checked by
450 * the asserts.
451 */
452 ASSERT(ips && inodes >= 2 && inodes <= 5);
453 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
454 XFS_ILOCK_EXCL));
455 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
456 XFS_ILOCK_SHARED)));
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466
467 try_lock = 0;
468 i = 0;
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
474 continue;
475
476 /*
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
479 */
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = &ips[j]->i_itemp->ili_item;
483 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
484 try_lock++;
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
503
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
510 /*
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
514 */
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
517
518 xfs_iunlock(ips[j], lock_mode);
519 }
520
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
523 }
524 i = 0;
525 try_lock = 0;
526 goto again;
527 }
528}
529
530/*
531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
532 * the mmaplock or the ilock, but not more than one type at a time. If we lock
533 * more than one at a time, lockdep will report false positives saying we have
534 * violated locking orders. The iolock must be double-locked separately since
535 * we use i_rwsem for that. We now support taking one lock EXCL and the other
536 * SHARED.
537 */
538void
539xfs_lock_two_inodes(
540 struct xfs_inode *ip0,
541 uint ip0_mode,
542 struct xfs_inode *ip1,
543 uint ip1_mode)
544{
545 struct xfs_inode *temp;
546 uint mode_temp;
547 int attempts = 0;
548 struct xfs_log_item *lp;
549
550 ASSERT(hweight32(ip0_mode) == 1);
551 ASSERT(hweight32(ip1_mode) == 1);
552 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
553 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
554 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
555 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
556 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
557 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
558 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562
563 ASSERT(ip0->i_ino != ip1->i_ino);
564
565 if (ip0->i_ino > ip1->i_ino) {
566 temp = ip0;
567 ip0 = ip1;
568 ip1 = temp;
569 mode_temp = ip0_mode;
570 ip0_mode = ip1_mode;
571 ip1_mode = mode_temp;
572 }
573
574 again:
575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
582 lp = &ip0->i_itemp->ili_item;
583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 xfs_iunlock(ip0, ip0_mode);
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 }
593}
594
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
608 finish_wait(wq, &wait.wq_entry);
609}
610
611STATIC uint
612_xfs_dic2xflags(
613 uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
621 flags |= FS_XFLAG_REALTIME;
622 if (di_flags & XFS_DIFLAG_PREALLOC)
623 flags |= FS_XFLAG_PREALLOC;
624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 flags |= FS_XFLAG_IMMUTABLE;
626 if (di_flags & XFS_DIFLAG_APPEND)
627 flags |= FS_XFLAG_APPEND;
628 if (di_flags & XFS_DIFLAG_SYNC)
629 flags |= FS_XFLAG_SYNC;
630 if (di_flags & XFS_DIFLAG_NOATIME)
631 flags |= FS_XFLAG_NOATIME;
632 if (di_flags & XFS_DIFLAG_NODUMP)
633 flags |= FS_XFLAG_NODUMP;
634 if (di_flags & XFS_DIFLAG_RTINHERIT)
635 flags |= FS_XFLAG_RTINHERIT;
636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 flags |= FS_XFLAG_PROJINHERIT;
638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 flags |= FS_XFLAG_NOSYMLINKS;
640 if (di_flags & XFS_DIFLAG_EXTSIZE)
641 flags |= FS_XFLAG_EXTSIZE;
642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 flags |= FS_XFLAG_EXTSZINHERIT;
644 if (di_flags & XFS_DIFLAG_NODEFRAG)
645 flags |= FS_XFLAG_NODEFRAG;
646 if (di_flags & XFS_DIFLAG_FILESTREAM)
647 flags |= FS_XFLAG_FILESTREAM;
648 }
649
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
653 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
654 flags |= FS_XFLAG_COWEXTSIZE;
655 }
656
657 if (has_attr)
658 flags |= FS_XFLAG_HASATTR;
659
660 return flags;
661}
662
663uint
664xfs_ip2xflags(
665 struct xfs_inode *ip)
666{
667 struct xfs_icdinode *dic = &ip->i_d;
668
669 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
670}
671
672/*
673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
675 * ci_name->name will point to a the actual name (caller must free) or
676 * will be set to NULL if an exact match is found.
677 */
678int
679xfs_lookup(
680 xfs_inode_t *dp,
681 struct xfs_name *name,
682 xfs_inode_t **ipp,
683 struct xfs_name *ci_name)
684{
685 xfs_ino_t inum;
686 int error;
687
688 trace_xfs_lookup(dp, name);
689
690 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
691 return -EIO;
692
693 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
694 if (error)
695 goto out_unlock;
696
697 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 if (error)
699 goto out_free_name;
700
701 return 0;
702
703out_free_name:
704 if (ci_name)
705 kmem_free(ci_name->name);
706out_unlock:
707 *ipp = NULL;
708 return error;
709}
710
711/*
712 * Allocate an inode on disk and return a copy of its in-core version.
713 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
714 * appropriately within the inode. The uid and gid for the inode are
715 * set according to the contents of the given cred structure.
716 *
717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
718 * has a free inode available, call xfs_iget() to obtain the in-core
719 * version of the allocated inode. Finally, fill in the inode and
720 * log its initial contents. In this case, ialloc_context would be
721 * set to NULL.
722 *
723 * If xfs_dialloc() does not have an available inode, it will replenish
724 * its supply by doing an allocation. Since we can only do one
725 * allocation within a transaction without deadlocks, we must commit
726 * the current transaction before returning the inode itself.
727 * In this case, therefore, we will set ialloc_context and return.
728 * The caller should then commit the current transaction, start a new
729 * transaction, and call xfs_ialloc() again to actually get the inode.
730 *
731 * To ensure that some other process does not grab the inode that
732 * was allocated during the first call to xfs_ialloc(), this routine
733 * also returns the [locked] bp pointing to the head of the freelist
734 * as ialloc_context. The caller should hold this buffer across
735 * the commit and pass it back into this routine on the second call.
736 *
737 * If we are allocating quota inodes, we do not have a parent inode
738 * to attach to or associate with (i.e. pip == NULL) because they
739 * are not linked into the directory structure - they are attached
740 * directly to the superblock - and so have no parent.
741 */
742static int
743xfs_ialloc(
744 xfs_trans_t *tp,
745 xfs_inode_t *pip,
746 umode_t mode,
747 xfs_nlink_t nlink,
748 dev_t rdev,
749 prid_t prid,
750 xfs_buf_t **ialloc_context,
751 xfs_inode_t **ipp)
752{
753 struct xfs_mount *mp = tp->t_mountp;
754 xfs_ino_t ino;
755 xfs_inode_t *ip;
756 uint flags;
757 int error;
758 struct timespec64 tv;
759 struct inode *inode;
760
761 /*
762 * Call the space management code to pick
763 * the on-disk inode to be allocated.
764 */
765 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
766 ialloc_context, &ino);
767 if (error)
768 return error;
769 if (*ialloc_context || ino == NULLFSINO) {
770 *ipp = NULL;
771 return 0;
772 }
773 ASSERT(*ialloc_context == NULL);
774
775 /*
776 * Protect against obviously corrupt allocation btree records. Later
777 * xfs_iget checks will catch re-allocation of other active in-memory
778 * and on-disk inodes. If we don't catch reallocating the parent inode
779 * here we will deadlock in xfs_iget() so we have to do these checks
780 * first.
781 */
782 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
783 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
784 return -EFSCORRUPTED;
785 }
786
787 /*
788 * Get the in-core inode with the lock held exclusively.
789 * This is because we're setting fields here we need
790 * to prevent others from looking at until we're done.
791 */
792 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
793 XFS_ILOCK_EXCL, &ip);
794 if (error)
795 return error;
796 ASSERT(ip != NULL);
797 inode = VFS_I(ip);
798
799 /*
800 * We always convert v1 inodes to v2 now - we only support filesystems
801 * with >= v2 inode capability, so there is no reason for ever leaving
802 * an inode in v1 format.
803 */
804 if (ip->i_d.di_version == 1)
805 ip->i_d.di_version = 2;
806
807 inode->i_mode = mode;
808 set_nlink(inode, nlink);
809 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
810 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
811 inode->i_rdev = rdev;
812 xfs_set_projid(ip, prid);
813
814 if (pip && XFS_INHERIT_GID(pip)) {
815 ip->i_d.di_gid = pip->i_d.di_gid;
816 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
817 inode->i_mode |= S_ISGID;
818 }
819
820 /*
821 * If the group ID of the new file does not match the effective group
822 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
823 * (and only if the irix_sgid_inherit compatibility variable is set).
824 */
825 if ((irix_sgid_inherit) &&
826 (inode->i_mode & S_ISGID) &&
827 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
828 inode->i_mode &= ~S_ISGID;
829
830 ip->i_d.di_size = 0;
831 ip->i_d.di_nextents = 0;
832 ASSERT(ip->i_d.di_nblocks == 0);
833
834 tv = current_time(inode);
835 inode->i_mtime = tv;
836 inode->i_atime = tv;
837 inode->i_ctime = tv;
838
839 ip->i_d.di_extsize = 0;
840 ip->i_d.di_dmevmask = 0;
841 ip->i_d.di_dmstate = 0;
842 ip->i_d.di_flags = 0;
843
844 if (ip->i_d.di_version == 3) {
845 inode_set_iversion(inode, 1);
846 ip->i_d.di_flags2 = 0;
847 ip->i_d.di_cowextsize = 0;
848 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
849 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
850 }
851
852
853 flags = XFS_ILOG_CORE;
854 switch (mode & S_IFMT) {
855 case S_IFIFO:
856 case S_IFCHR:
857 case S_IFBLK:
858 case S_IFSOCK:
859 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
860 ip->i_df.if_flags = 0;
861 flags |= XFS_ILOG_DEV;
862 break;
863 case S_IFREG:
864 case S_IFDIR:
865 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
866 uint di_flags = 0;
867
868 if (S_ISDIR(mode)) {
869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 di_flags |= XFS_DIFLAG_RTINHERIT;
871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
873 ip->i_d.di_extsize = pip->i_d.di_extsize;
874 }
875 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
876 di_flags |= XFS_DIFLAG_PROJINHERIT;
877 } else if (S_ISREG(mode)) {
878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
879 di_flags |= XFS_DIFLAG_REALTIME;
880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 di_flags |= XFS_DIFLAG_EXTSIZE;
882 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 }
884 }
885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
886 xfs_inherit_noatime)
887 di_flags |= XFS_DIFLAG_NOATIME;
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
889 xfs_inherit_nodump)
890 di_flags |= XFS_DIFLAG_NODUMP;
891 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
892 xfs_inherit_sync)
893 di_flags |= XFS_DIFLAG_SYNC;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
895 xfs_inherit_nosymlinks)
896 di_flags |= XFS_DIFLAG_NOSYMLINKS;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
898 xfs_inherit_nodefrag)
899 di_flags |= XFS_DIFLAG_NODEFRAG;
900 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
901 di_flags |= XFS_DIFLAG_FILESTREAM;
902
903 ip->i_d.di_flags |= di_flags;
904 }
905 if (pip &&
906 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
907 pip->i_d.di_version == 3 &&
908 ip->i_d.di_version == 3) {
909 uint64_t di_flags2 = 0;
910
911 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
912 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
913 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
914 }
915 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
916 di_flags2 |= XFS_DIFLAG2_DAX;
917
918 ip->i_d.di_flags2 |= di_flags2;
919 }
920 /* FALLTHROUGH */
921 case S_IFLNK:
922 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
923 ip->i_df.if_flags = XFS_IFEXTENTS;
924 ip->i_df.if_bytes = 0;
925 ip->i_df.if_u1.if_root = NULL;
926 break;
927 default:
928 ASSERT(0);
929 }
930 /*
931 * Attribute fork settings for new inode.
932 */
933 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
934 ip->i_d.di_anextents = 0;
935
936 /*
937 * Log the new values stuffed into the inode.
938 */
939 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
940 xfs_trans_log_inode(tp, ip, flags);
941
942 /* now that we have an i_mode we can setup the inode structure */
943 xfs_setup_inode(ip);
944
945 *ipp = ip;
946 return 0;
947}
948
949/*
950 * Allocates a new inode from disk and return a pointer to the
951 * incore copy. This routine will internally commit the current
952 * transaction and allocate a new one if the Space Manager needed
953 * to do an allocation to replenish the inode free-list.
954 *
955 * This routine is designed to be called from xfs_create and
956 * xfs_create_dir.
957 *
958 */
959int
960xfs_dir_ialloc(
961 xfs_trans_t **tpp, /* input: current transaction;
962 output: may be a new transaction. */
963 xfs_inode_t *dp, /* directory within whose allocate
964 the inode. */
965 umode_t mode,
966 xfs_nlink_t nlink,
967 dev_t rdev,
968 prid_t prid, /* project id */
969 xfs_inode_t **ipp) /* pointer to inode; it will be
970 locked. */
971{
972 xfs_trans_t *tp;
973 xfs_inode_t *ip;
974 xfs_buf_t *ialloc_context = NULL;
975 int code;
976 void *dqinfo;
977 uint tflags;
978
979 tp = *tpp;
980 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
981
982 /*
983 * xfs_ialloc will return a pointer to an incore inode if
984 * the Space Manager has an available inode on the free
985 * list. Otherwise, it will do an allocation and replenish
986 * the freelist. Since we can only do one allocation per
987 * transaction without deadlocks, we will need to commit the
988 * current transaction and start a new one. We will then
989 * need to call xfs_ialloc again to get the inode.
990 *
991 * If xfs_ialloc did an allocation to replenish the freelist,
992 * it returns the bp containing the head of the freelist as
993 * ialloc_context. We will hold a lock on it across the
994 * transaction commit so that no other process can steal
995 * the inode(s) that we've just allocated.
996 */
997 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
998 &ip);
999
1000 /*
1001 * Return an error if we were unable to allocate a new inode.
1002 * This should only happen if we run out of space on disk or
1003 * encounter a disk error.
1004 */
1005 if (code) {
1006 *ipp = NULL;
1007 return code;
1008 }
1009 if (!ialloc_context && !ip) {
1010 *ipp = NULL;
1011 return -ENOSPC;
1012 }
1013
1014 /*
1015 * If the AGI buffer is non-NULL, then we were unable to get an
1016 * inode in one operation. We need to commit the current
1017 * transaction and call xfs_ialloc() again. It is guaranteed
1018 * to succeed the second time.
1019 */
1020 if (ialloc_context) {
1021 /*
1022 * Normally, xfs_trans_commit releases all the locks.
1023 * We call bhold to hang on to the ialloc_context across
1024 * the commit. Holding this buffer prevents any other
1025 * processes from doing any allocations in this
1026 * allocation group.
1027 */
1028 xfs_trans_bhold(tp, ialloc_context);
1029
1030 /*
1031 * We want the quota changes to be associated with the next
1032 * transaction, NOT this one. So, detach the dqinfo from this
1033 * and attach it to the next transaction.
1034 */
1035 dqinfo = NULL;
1036 tflags = 0;
1037 if (tp->t_dqinfo) {
1038 dqinfo = (void *)tp->t_dqinfo;
1039 tp->t_dqinfo = NULL;
1040 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042 }
1043
1044 code = xfs_trans_roll(&tp);
1045
1046 /*
1047 * Re-attach the quota info that we detached from prev trx.
1048 */
1049 if (dqinfo) {
1050 tp->t_dqinfo = dqinfo;
1051 tp->t_flags |= tflags;
1052 }
1053
1054 if (code) {
1055 xfs_buf_relse(ialloc_context);
1056 *tpp = tp;
1057 *ipp = NULL;
1058 return code;
1059 }
1060 xfs_trans_bjoin(tp, ialloc_context);
1061
1062 /*
1063 * Call ialloc again. Since we've locked out all
1064 * other allocations in this allocation group,
1065 * this call should always succeed.
1066 */
1067 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1068 &ialloc_context, &ip);
1069
1070 /*
1071 * If we get an error at this point, return to the caller
1072 * so that the current transaction can be aborted.
1073 */
1074 if (code) {
1075 *tpp = tp;
1076 *ipp = NULL;
1077 return code;
1078 }
1079 ASSERT(!ialloc_context && ip);
1080
1081 }
1082
1083 *ipp = ip;
1084 *tpp = tp;
1085
1086 return 0;
1087}
1088
1089/*
1090 * Decrement the link count on an inode & log the change. If this causes the
1091 * link count to go to zero, move the inode to AGI unlinked list so that it can
1092 * be freed when the last active reference goes away via xfs_inactive().
1093 */
1094static int /* error */
1095xfs_droplink(
1096 xfs_trans_t *tp,
1097 xfs_inode_t *ip)
1098{
1099 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100
1101 drop_nlink(VFS_I(ip));
1102 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103
1104 if (VFS_I(ip)->i_nlink)
1105 return 0;
1106
1107 return xfs_iunlink(tp, ip);
1108}
1109
1110/*
1111 * Increment the link count on an inode & log the change.
1112 */
1113static void
1114xfs_bumplink(
1115 xfs_trans_t *tp,
1116 xfs_inode_t *ip)
1117{
1118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
1120 ASSERT(ip->i_d.di_version > 1);
1121 inc_nlink(VFS_I(ip));
1122 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1123}
1124
1125int
1126xfs_create(
1127 xfs_inode_t *dp,
1128 struct xfs_name *name,
1129 umode_t mode,
1130 dev_t rdev,
1131 xfs_inode_t **ipp)
1132{
1133 int is_dir = S_ISDIR(mode);
1134 struct xfs_mount *mp = dp->i_mount;
1135 struct xfs_inode *ip = NULL;
1136 struct xfs_trans *tp = NULL;
1137 int error;
1138 bool unlock_dp_on_error = false;
1139 prid_t prid;
1140 struct xfs_dquot *udqp = NULL;
1141 struct xfs_dquot *gdqp = NULL;
1142 struct xfs_dquot *pdqp = NULL;
1143 struct xfs_trans_res *tres;
1144 uint resblks;
1145
1146 trace_xfs_create(dp, name);
1147
1148 if (XFS_FORCED_SHUTDOWN(mp))
1149 return -EIO;
1150
1151 prid = xfs_get_initial_prid(dp);
1152
1153 /*
1154 * Make sure that we have allocated dquot(s) on disk.
1155 */
1156 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157 xfs_kgid_to_gid(current_fsgid()), prid,
1158 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159 &udqp, &gdqp, &pdqp);
1160 if (error)
1161 return error;
1162
1163 if (is_dir) {
1164 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165 tres = &M_RES(mp)->tr_mkdir;
1166 } else {
1167 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168 tres = &M_RES(mp)->tr_create;
1169 }
1170
1171 /*
1172 * Initially assume that the file does not exist and
1173 * reserve the resources for that case. If that is not
1174 * the case we'll drop the one we have and get a more
1175 * appropriate transaction later.
1176 */
1177 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1178 if (error == -ENOSPC) {
1179 /* flush outstanding delalloc blocks and retry */
1180 xfs_flush_inodes(mp);
1181 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1182 }
1183 if (error)
1184 goto out_release_inode;
1185
1186 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187 unlock_dp_on_error = true;
1188
1189 /*
1190 * Reserve disk quota and the inode.
1191 */
1192 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193 pdqp, resblks, 1, 0);
1194 if (error)
1195 goto out_trans_cancel;
1196
1197 /*
1198 * A newly created regular or special file just has one directory
1199 * entry pointing to them, but a directory also the "." entry
1200 * pointing to itself.
1201 */
1202 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1203 if (error)
1204 goto out_trans_cancel;
1205
1206 /*
1207 * Now we join the directory inode to the transaction. We do not do it
1208 * earlier because xfs_dir_ialloc might commit the previous transaction
1209 * (and release all the locks). An error from here on will result in
1210 * the transaction cancel unlocking dp so don't do it explicitly in the
1211 * error path.
1212 */
1213 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1214 unlock_dp_on_error = false;
1215
1216 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1217 resblks ?
1218 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219 if (error) {
1220 ASSERT(error != -ENOSPC);
1221 goto out_trans_cancel;
1222 }
1223 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225
1226 if (is_dir) {
1227 error = xfs_dir_init(tp, ip, dp);
1228 if (error)
1229 goto out_trans_cancel;
1230
1231 xfs_bumplink(tp, dp);
1232 }
1233
1234 /*
1235 * If this is a synchronous mount, make sure that the
1236 * create transaction goes to disk before returning to
1237 * the user.
1238 */
1239 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240 xfs_trans_set_sync(tp);
1241
1242 /*
1243 * Attach the dquot(s) to the inodes and modify them incore.
1244 * These ids of the inode couldn't have changed since the new
1245 * inode has been locked ever since it was created.
1246 */
1247 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248
1249 error = xfs_trans_commit(tp);
1250 if (error)
1251 goto out_release_inode;
1252
1253 xfs_qm_dqrele(udqp);
1254 xfs_qm_dqrele(gdqp);
1255 xfs_qm_dqrele(pdqp);
1256
1257 *ipp = ip;
1258 return 0;
1259
1260 out_trans_cancel:
1261 xfs_trans_cancel(tp);
1262 out_release_inode:
1263 /*
1264 * Wait until after the current transaction is aborted to finish the
1265 * setup of the inode and release the inode. This prevents recursive
1266 * transactions and deadlocks from xfs_inactive.
1267 */
1268 if (ip) {
1269 xfs_finish_inode_setup(ip);
1270 xfs_irele(ip);
1271 }
1272
1273 xfs_qm_dqrele(udqp);
1274 xfs_qm_dqrele(gdqp);
1275 xfs_qm_dqrele(pdqp);
1276
1277 if (unlock_dp_on_error)
1278 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1279 return error;
1280}
1281
1282int
1283xfs_create_tmpfile(
1284 struct xfs_inode *dp,
1285 umode_t mode,
1286 struct xfs_inode **ipp)
1287{
1288 struct xfs_mount *mp = dp->i_mount;
1289 struct xfs_inode *ip = NULL;
1290 struct xfs_trans *tp = NULL;
1291 int error;
1292 prid_t prid;
1293 struct xfs_dquot *udqp = NULL;
1294 struct xfs_dquot *gdqp = NULL;
1295 struct xfs_dquot *pdqp = NULL;
1296 struct xfs_trans_res *tres;
1297 uint resblks;
1298
1299 if (XFS_FORCED_SHUTDOWN(mp))
1300 return -EIO;
1301
1302 prid = xfs_get_initial_prid(dp);
1303
1304 /*
1305 * Make sure that we have allocated dquot(s) on disk.
1306 */
1307 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308 xfs_kgid_to_gid(current_fsgid()), prid,
1309 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310 &udqp, &gdqp, &pdqp);
1311 if (error)
1312 return error;
1313
1314 resblks = XFS_IALLOC_SPACE_RES(mp);
1315 tres = &M_RES(mp)->tr_create_tmpfile;
1316
1317 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1318 if (error)
1319 goto out_release_inode;
1320
1321 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322 pdqp, resblks, 1, 0);
1323 if (error)
1324 goto out_trans_cancel;
1325
1326 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1327 if (error)
1328 goto out_trans_cancel;
1329
1330 if (mp->m_flags & XFS_MOUNT_WSYNC)
1331 xfs_trans_set_sync(tp);
1332
1333 /*
1334 * Attach the dquot(s) to the inodes and modify them incore.
1335 * These ids of the inode couldn't have changed since the new
1336 * inode has been locked ever since it was created.
1337 */
1338 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339
1340 error = xfs_iunlink(tp, ip);
1341 if (error)
1342 goto out_trans_cancel;
1343
1344 error = xfs_trans_commit(tp);
1345 if (error)
1346 goto out_release_inode;
1347
1348 xfs_qm_dqrele(udqp);
1349 xfs_qm_dqrele(gdqp);
1350 xfs_qm_dqrele(pdqp);
1351
1352 *ipp = ip;
1353 return 0;
1354
1355 out_trans_cancel:
1356 xfs_trans_cancel(tp);
1357 out_release_inode:
1358 /*
1359 * Wait until after the current transaction is aborted to finish the
1360 * setup of the inode and release the inode. This prevents recursive
1361 * transactions and deadlocks from xfs_inactive.
1362 */
1363 if (ip) {
1364 xfs_finish_inode_setup(ip);
1365 xfs_irele(ip);
1366 }
1367
1368 xfs_qm_dqrele(udqp);
1369 xfs_qm_dqrele(gdqp);
1370 xfs_qm_dqrele(pdqp);
1371
1372 return error;
1373}
1374
1375int
1376xfs_link(
1377 xfs_inode_t *tdp,
1378 xfs_inode_t *sip,
1379 struct xfs_name *target_name)
1380{
1381 xfs_mount_t *mp = tdp->i_mount;
1382 xfs_trans_t *tp;
1383 int error;
1384 int resblks;
1385
1386 trace_xfs_link(tdp, target_name);
1387
1388 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1389
1390 if (XFS_FORCED_SHUTDOWN(mp))
1391 return -EIO;
1392
1393 error = xfs_qm_dqattach(sip);
1394 if (error)
1395 goto std_return;
1396
1397 error = xfs_qm_dqattach(tdp);
1398 if (error)
1399 goto std_return;
1400
1401 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1402 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1403 if (error == -ENOSPC) {
1404 resblks = 0;
1405 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1406 }
1407 if (error)
1408 goto std_return;
1409
1410 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1411
1412 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1414
1415 /*
1416 * If we are using project inheritance, we only allow hard link
1417 * creation in our tree when the project IDs are the same; else
1418 * the tree quota mechanism could be circumvented.
1419 */
1420 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422 error = -EXDEV;
1423 goto error_return;
1424 }
1425
1426 if (!resblks) {
1427 error = xfs_dir_canenter(tp, tdp, target_name);
1428 if (error)
1429 goto error_return;
1430 }
1431
1432 /*
1433 * Handle initial link state of O_TMPFILE inode
1434 */
1435 if (VFS_I(sip)->i_nlink == 0) {
1436 error = xfs_iunlink_remove(tp, sip);
1437 if (error)
1438 goto error_return;
1439 }
1440
1441 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1442 resblks);
1443 if (error)
1444 goto error_return;
1445 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447
1448 xfs_bumplink(tp, sip);
1449
1450 /*
1451 * If this is a synchronous mount, make sure that the
1452 * link transaction goes to disk before returning to
1453 * the user.
1454 */
1455 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1456 xfs_trans_set_sync(tp);
1457
1458 return xfs_trans_commit(tp);
1459
1460 error_return:
1461 xfs_trans_cancel(tp);
1462 std_return:
1463 return error;
1464}
1465
1466/* Clear the reflink flag and the cowblocks tag if possible. */
1467static void
1468xfs_itruncate_clear_reflink_flags(
1469 struct xfs_inode *ip)
1470{
1471 struct xfs_ifork *dfork;
1472 struct xfs_ifork *cfork;
1473
1474 if (!xfs_is_reflink_inode(ip))
1475 return;
1476 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480 if (cfork->if_bytes == 0)
1481 xfs_inode_clear_cowblocks_tag(ip);
1482}
1483
1484/*
1485 * Free up the underlying blocks past new_size. The new size must be smaller
1486 * than the current size. This routine can be used both for the attribute and
1487 * data fork, and does not modify the inode size, which is left to the caller.
1488 *
1489 * The transaction passed to this routine must have made a permanent log
1490 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1491 * given transaction and start new ones, so make sure everything involved in
1492 * the transaction is tidy before calling here. Some transaction will be
1493 * returned to the caller to be committed. The incoming transaction must
1494 * already include the inode, and both inode locks must be held exclusively.
1495 * The inode must also be "held" within the transaction. On return the inode
1496 * will be "held" within the returned transaction. This routine does NOT
1497 * require any disk space to be reserved for it within the transaction.
1498 *
1499 * If we get an error, we must return with the inode locked and linked into the
1500 * current transaction. This keeps things simple for the higher level code,
1501 * because it always knows that the inode is locked and held in the transaction
1502 * that returns to it whether errors occur or not. We don't mark the inode
1503 * dirty on error so that transactions can be easily aborted if possible.
1504 */
1505int
1506xfs_itruncate_extents_flags(
1507 struct xfs_trans **tpp,
1508 struct xfs_inode *ip,
1509 int whichfork,
1510 xfs_fsize_t new_size,
1511 int flags)
1512{
1513 struct xfs_mount *mp = ip->i_mount;
1514 struct xfs_trans *tp = *tpp;
1515 xfs_fileoff_t first_unmap_block;
1516 xfs_fileoff_t last_block;
1517 xfs_filblks_t unmap_len;
1518 int error = 0;
1519 int done = 0;
1520
1521 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1524 ASSERT(new_size <= XFS_ISIZE(ip));
1525 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1526 ASSERT(ip->i_itemp != NULL);
1527 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1528 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1529
1530 trace_xfs_itruncate_extents_start(ip, new_size);
1531
1532 flags |= xfs_bmapi_aflag(whichfork);
1533
1534 /*
1535 * Since it is possible for space to become allocated beyond
1536 * the end of the file (in a crash where the space is allocated
1537 * but the inode size is not yet updated), simply remove any
1538 * blocks which show up between the new EOF and the maximum
1539 * possible file size. If the first block to be removed is
1540 * beyond the maximum file size (ie it is the same as last_block),
1541 * then there is nothing to do.
1542 */
1543 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1544 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1545 if (first_unmap_block == last_block)
1546 return 0;
1547
1548 ASSERT(first_unmap_block < last_block);
1549 unmap_len = last_block - first_unmap_block + 1;
1550 while (!done) {
1551 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1552 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1553 XFS_ITRUNC_MAX_EXTENTS, &done);
1554 if (error)
1555 goto out;
1556
1557 /*
1558 * Duplicate the transaction that has the permanent
1559 * reservation and commit the old transaction.
1560 */
1561 error = xfs_defer_finish(&tp);
1562 if (error)
1563 goto out;
1564
1565 error = xfs_trans_roll_inode(&tp, ip);
1566 if (error)
1567 goto out;
1568 }
1569
1570 if (whichfork == XFS_DATA_FORK) {
1571 /* Remove all pending CoW reservations. */
1572 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573 first_unmap_block, last_block, true);
1574 if (error)
1575 goto out;
1576
1577 xfs_itruncate_clear_reflink_flags(ip);
1578 }
1579
1580 /*
1581 * Always re-log the inode so that our permanent transaction can keep
1582 * on rolling it forward in the log.
1583 */
1584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586 trace_xfs_itruncate_extents_end(ip, new_size);
1587
1588out:
1589 *tpp = tp;
1590 return error;
1591}
1592
1593int
1594xfs_release(
1595 xfs_inode_t *ip)
1596{
1597 xfs_mount_t *mp = ip->i_mount;
1598 int error;
1599
1600 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1601 return 0;
1602
1603 /* If this is a read-only mount, don't do this (would generate I/O) */
1604 if (mp->m_flags & XFS_MOUNT_RDONLY)
1605 return 0;
1606
1607 if (!XFS_FORCED_SHUTDOWN(mp)) {
1608 int truncated;
1609
1610 /*
1611 * If we previously truncated this file and removed old data
1612 * in the process, we want to initiate "early" writeout on
1613 * the last close. This is an attempt to combat the notorious
1614 * NULL files problem which is particularly noticeable from a
1615 * truncate down, buffered (re-)write (delalloc), followed by
1616 * a crash. What we are effectively doing here is
1617 * significantly reducing the time window where we'd otherwise
1618 * be exposed to that problem.
1619 */
1620 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621 if (truncated) {
1622 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1623 if (ip->i_delayed_blks > 0) {
1624 error = filemap_flush(VFS_I(ip)->i_mapping);
1625 if (error)
1626 return error;
1627 }
1628 }
1629 }
1630
1631 if (VFS_I(ip)->i_nlink == 0)
1632 return 0;
1633
1634 if (xfs_can_free_eofblocks(ip, false)) {
1635
1636 /*
1637 * Check if the inode is being opened, written and closed
1638 * frequently and we have delayed allocation blocks outstanding
1639 * (e.g. streaming writes from the NFS server), truncating the
1640 * blocks past EOF will cause fragmentation to occur.
1641 *
1642 * In this case don't do the truncation, but we have to be
1643 * careful how we detect this case. Blocks beyond EOF show up as
1644 * i_delayed_blks even when the inode is clean, so we need to
1645 * truncate them away first before checking for a dirty release.
1646 * Hence on the first dirty close we will still remove the
1647 * speculative allocation, but after that we will leave it in
1648 * place.
1649 */
1650 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651 return 0;
1652 /*
1653 * If we can't get the iolock just skip truncating the blocks
1654 * past EOF because we could deadlock with the mmap_sem
1655 * otherwise. We'll get another chance to drop them once the
1656 * last reference to the inode is dropped, so we'll never leak
1657 * blocks permanently.
1658 */
1659 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660 error = xfs_free_eofblocks(ip);
1661 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662 if (error)
1663 return error;
1664 }
1665
1666 /* delalloc blocks after truncation means it really is dirty */
1667 if (ip->i_delayed_blks)
1668 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669 }
1670 return 0;
1671}
1672
1673/*
1674 * xfs_inactive_truncate
1675 *
1676 * Called to perform a truncate when an inode becomes unlinked.
1677 */
1678STATIC int
1679xfs_inactive_truncate(
1680 struct xfs_inode *ip)
1681{
1682 struct xfs_mount *mp = ip->i_mount;
1683 struct xfs_trans *tp;
1684 int error;
1685
1686 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1687 if (error) {
1688 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1689 return error;
1690 }
1691 xfs_ilock(ip, XFS_ILOCK_EXCL);
1692 xfs_trans_ijoin(tp, ip, 0);
1693
1694 /*
1695 * Log the inode size first to prevent stale data exposure in the event
1696 * of a system crash before the truncate completes. See the related
1697 * comment in xfs_vn_setattr_size() for details.
1698 */
1699 ip->i_d.di_size = 0;
1700 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701
1702 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703 if (error)
1704 goto error_trans_cancel;
1705
1706 ASSERT(ip->i_d.di_nextents == 0);
1707
1708 error = xfs_trans_commit(tp);
1709 if (error)
1710 goto error_unlock;
1711
1712 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713 return 0;
1714
1715error_trans_cancel:
1716 xfs_trans_cancel(tp);
1717error_unlock:
1718 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719 return error;
1720}
1721
1722/*
1723 * xfs_inactive_ifree()
1724 *
1725 * Perform the inode free when an inode is unlinked.
1726 */
1727STATIC int
1728xfs_inactive_ifree(
1729 struct xfs_inode *ip)
1730{
1731 struct xfs_mount *mp = ip->i_mount;
1732 struct xfs_trans *tp;
1733 int error;
1734
1735 /*
1736 * We try to use a per-AG reservation for any block needed by the finobt
1737 * tree, but as the finobt feature predates the per-AG reservation
1738 * support a degraded file system might not have enough space for the
1739 * reservation at mount time. In that case try to dip into the reserved
1740 * pool and pray.
1741 *
1742 * Send a warning if the reservation does happen to fail, as the inode
1743 * now remains allocated and sits on the unlinked list until the fs is
1744 * repaired.
1745 */
1746 if (unlikely(mp->m_finobt_nores)) {
1747 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749 &tp);
1750 } else {
1751 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752 }
1753 if (error) {
1754 if (error == -ENOSPC) {
1755 xfs_warn_ratelimited(mp,
1756 "Failed to remove inode(s) from unlinked list. "
1757 "Please free space, unmount and run xfs_repair.");
1758 } else {
1759 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760 }
1761 return error;
1762 }
1763
1764 xfs_ilock(ip, XFS_ILOCK_EXCL);
1765 xfs_trans_ijoin(tp, ip, 0);
1766
1767 error = xfs_ifree(tp, ip);
1768 if (error) {
1769 /*
1770 * If we fail to free the inode, shut down. The cancel
1771 * might do that, we need to make sure. Otherwise the
1772 * inode might be lost for a long time or forever.
1773 */
1774 if (!XFS_FORCED_SHUTDOWN(mp)) {
1775 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776 __func__, error);
1777 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778 }
1779 xfs_trans_cancel(tp);
1780 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 return error;
1782 }
1783
1784 /*
1785 * Credit the quota account(s). The inode is gone.
1786 */
1787 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1788
1789 /*
1790 * Just ignore errors at this point. There is nothing we can do except
1791 * to try to keep going. Make sure it's not a silent error.
1792 */
1793 error = xfs_trans_commit(tp);
1794 if (error)
1795 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1796 __func__, error);
1797
1798 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799 return 0;
1800}
1801
1802/*
1803 * xfs_inactive
1804 *
1805 * This is called when the vnode reference count for the vnode
1806 * goes to zero. If the file has been unlinked, then it must
1807 * now be truncated. Also, we clear all of the read-ahead state
1808 * kept for the inode here since the file is now closed.
1809 */
1810void
1811xfs_inactive(
1812 xfs_inode_t *ip)
1813{
1814 struct xfs_mount *mp;
1815 int error;
1816 int truncate = 0;
1817
1818 /*
1819 * If the inode is already free, then there can be nothing
1820 * to clean up here.
1821 */
1822 if (VFS_I(ip)->i_mode == 0) {
1823 ASSERT(ip->i_df.if_broot_bytes == 0);
1824 return;
1825 }
1826
1827 mp = ip->i_mount;
1828 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1829
1830 /* If this is a read-only mount, don't do this (would generate I/O) */
1831 if (mp->m_flags & XFS_MOUNT_RDONLY)
1832 return;
1833
1834 /* Try to clean out the cow blocks if there are any. */
1835 if (xfs_inode_has_cow_data(ip))
1836 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1837
1838 if (VFS_I(ip)->i_nlink != 0) {
1839 /*
1840 * force is true because we are evicting an inode from the
1841 * cache. Post-eof blocks must be freed, lest we end up with
1842 * broken free space accounting.
1843 *
1844 * Note: don't bother with iolock here since lockdep complains
1845 * about acquiring it in reclaim context. We have the only
1846 * reference to the inode at this point anyways.
1847 */
1848 if (xfs_can_free_eofblocks(ip, true))
1849 xfs_free_eofblocks(ip);
1850
1851 return;
1852 }
1853
1854 if (S_ISREG(VFS_I(ip)->i_mode) &&
1855 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1856 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1857 truncate = 1;
1858
1859 error = xfs_qm_dqattach(ip);
1860 if (error)
1861 return;
1862
1863 if (S_ISLNK(VFS_I(ip)->i_mode))
1864 error = xfs_inactive_symlink(ip);
1865 else if (truncate)
1866 error = xfs_inactive_truncate(ip);
1867 if (error)
1868 return;
1869
1870 /*
1871 * If there are attributes associated with the file then blow them away
1872 * now. The code calls a routine that recursively deconstructs the
1873 * attribute fork. If also blows away the in-core attribute fork.
1874 */
1875 if (XFS_IFORK_Q(ip)) {
1876 error = xfs_attr_inactive(ip);
1877 if (error)
1878 return;
1879 }
1880
1881 ASSERT(!ip->i_afp);
1882 ASSERT(ip->i_d.di_anextents == 0);
1883 ASSERT(ip->i_d.di_forkoff == 0);
1884
1885 /*
1886 * Free the inode.
1887 */
1888 error = xfs_inactive_ifree(ip);
1889 if (error)
1890 return;
1891
1892 /*
1893 * Release the dquots held by inode, if any.
1894 */
1895 xfs_qm_dqdetach(ip);
1896}
1897
1898/*
1899 * In-Core Unlinked List Lookups
1900 * =============================
1901 *
1902 * Every inode is supposed to be reachable from some other piece of metadata
1903 * with the exception of the root directory. Inodes with a connection to a
1904 * file descriptor but not linked from anywhere in the on-disk directory tree
1905 * are collectively known as unlinked inodes, though the filesystem itself
1906 * maintains links to these inodes so that on-disk metadata are consistent.
1907 *
1908 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1909 * header contains a number of buckets that point to an inode, and each inode
1910 * record has a pointer to the next inode in the hash chain. This
1911 * singly-linked list causes scaling problems in the iunlink remove function
1912 * because we must walk that list to find the inode that points to the inode
1913 * being removed from the unlinked hash bucket list.
1914 *
1915 * What if we modelled the unlinked list as a collection of records capturing
1916 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1917 * have a fast way to look up unlinked list predecessors, which avoids the
1918 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1919 * rhashtable.
1920 *
1921 * Because this is a backref cache, we ignore operational failures since the
1922 * iunlink code can fall back to the slow bucket walk. The only errors that
1923 * should bubble out are for obviously incorrect situations.
1924 *
1925 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1926 * access or have otherwise provided for concurrency control.
1927 */
1928
1929/* Capture a "X.next_unlinked = Y" relationship. */
1930struct xfs_iunlink {
1931 struct rhash_head iu_rhash_head;
1932 xfs_agino_t iu_agino; /* X */
1933 xfs_agino_t iu_next_unlinked; /* Y */
1934};
1935
1936/* Unlinked list predecessor lookup hashtable construction */
1937static int
1938xfs_iunlink_obj_cmpfn(
1939 struct rhashtable_compare_arg *arg,
1940 const void *obj)
1941{
1942 const xfs_agino_t *key = arg->key;
1943 const struct xfs_iunlink *iu = obj;
1944
1945 if (iu->iu_next_unlinked != *key)
1946 return 1;
1947 return 0;
1948}
1949
1950static const struct rhashtable_params xfs_iunlink_hash_params = {
1951 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1952 .key_len = sizeof(xfs_agino_t),
1953 .key_offset = offsetof(struct xfs_iunlink,
1954 iu_next_unlinked),
1955 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1956 .automatic_shrinking = true,
1957 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1958};
1959
1960/*
1961 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1962 * relation is found.
1963 */
1964static xfs_agino_t
1965xfs_iunlink_lookup_backref(
1966 struct xfs_perag *pag,
1967 xfs_agino_t agino)
1968{
1969 struct xfs_iunlink *iu;
1970
1971 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1972 xfs_iunlink_hash_params);
1973 return iu ? iu->iu_agino : NULLAGINO;
1974}
1975
1976/*
1977 * Take ownership of an iunlink cache entry and insert it into the hash table.
1978 * If successful, the entry will be owned by the cache; if not, it is freed.
1979 * Either way, the caller does not own @iu after this call.
1980 */
1981static int
1982xfs_iunlink_insert_backref(
1983 struct xfs_perag *pag,
1984 struct xfs_iunlink *iu)
1985{
1986 int error;
1987
1988 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1989 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1990 /*
1991 * Fail loudly if there already was an entry because that's a sign of
1992 * corruption of in-memory data. Also fail loudly if we see an error
1993 * code we didn't anticipate from the rhashtable code. Currently we
1994 * only anticipate ENOMEM.
1995 */
1996 if (error) {
1997 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1998 kmem_free(iu);
1999 }
2000 /*
2001 * Absorb any runtime errors that aren't a result of corruption because
2002 * this is a cache and we can always fall back to bucket list scanning.
2003 */
2004 if (error != 0 && error != -EEXIST)
2005 error = 0;
2006 return error;
2007}
2008
2009/* Remember that @prev_agino.next_unlinked = @this_agino. */
2010static int
2011xfs_iunlink_add_backref(
2012 struct xfs_perag *pag,
2013 xfs_agino_t prev_agino,
2014 xfs_agino_t this_agino)
2015{
2016 struct xfs_iunlink *iu;
2017
2018 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2019 return 0;
2020
2021 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2022 iu->iu_agino = prev_agino;
2023 iu->iu_next_unlinked = this_agino;
2024
2025 return xfs_iunlink_insert_backref(pag, iu);
2026}
2027
2028/*
2029 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2030 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2031 * wasn't any such entry then we don't bother.
2032 */
2033static int
2034xfs_iunlink_change_backref(
2035 struct xfs_perag *pag,
2036 xfs_agino_t agino,
2037 xfs_agino_t next_unlinked)
2038{
2039 struct xfs_iunlink *iu;
2040 int error;
2041
2042 /* Look up the old entry; if there wasn't one then exit. */
2043 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2044 xfs_iunlink_hash_params);
2045 if (!iu)
2046 return 0;
2047
2048 /*
2049 * Remove the entry. This shouldn't ever return an error, but if we
2050 * couldn't remove the old entry we don't want to add it again to the
2051 * hash table, and if the entry disappeared on us then someone's
2052 * violated the locking rules and we need to fail loudly. Either way
2053 * we cannot remove the inode because internal state is or would have
2054 * been corrupt.
2055 */
2056 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2057 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2058 if (error)
2059 return error;
2060
2061 /* If there is no new next entry just free our item and return. */
2062 if (next_unlinked == NULLAGINO) {
2063 kmem_free(iu);
2064 return 0;
2065 }
2066
2067 /* Update the entry and re-add it to the hash table. */
2068 iu->iu_next_unlinked = next_unlinked;
2069 return xfs_iunlink_insert_backref(pag, iu);
2070}
2071
2072/* Set up the in-core predecessor structures. */
2073int
2074xfs_iunlink_init(
2075 struct xfs_perag *pag)
2076{
2077 return rhashtable_init(&pag->pagi_unlinked_hash,
2078 &xfs_iunlink_hash_params);
2079}
2080
2081/* Free the in-core predecessor structures. */
2082static void
2083xfs_iunlink_free_item(
2084 void *ptr,
2085 void *arg)
2086{
2087 struct xfs_iunlink *iu = ptr;
2088 bool *freed_anything = arg;
2089
2090 *freed_anything = true;
2091 kmem_free(iu);
2092}
2093
2094void
2095xfs_iunlink_destroy(
2096 struct xfs_perag *pag)
2097{
2098 bool freed_anything = false;
2099
2100 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2101 xfs_iunlink_free_item, &freed_anything);
2102
2103 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2104}
2105
2106/*
2107 * Point the AGI unlinked bucket at an inode and log the results. The caller
2108 * is responsible for validating the old value.
2109 */
2110STATIC int
2111xfs_iunlink_update_bucket(
2112 struct xfs_trans *tp,
2113 xfs_agnumber_t agno,
2114 struct xfs_buf *agibp,
2115 unsigned int bucket_index,
2116 xfs_agino_t new_agino)
2117{
2118 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
2119 xfs_agino_t old_value;
2120 int offset;
2121
2122 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2123
2124 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2125 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2126 old_value, new_agino);
2127
2128 /*
2129 * We should never find the head of the list already set to the value
2130 * passed in because either we're adding or removing ourselves from the
2131 * head of the list.
2132 */
2133 if (old_value == new_agino)
2134 return -EFSCORRUPTED;
2135
2136 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137 offset = offsetof(struct xfs_agi, agi_unlinked) +
2138 (sizeof(xfs_agino_t) * bucket_index);
2139 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140 return 0;
2141}
2142
2143/* Set an on-disk inode's next_unlinked pointer. */
2144STATIC void
2145xfs_iunlink_update_dinode(
2146 struct xfs_trans *tp,
2147 xfs_agnumber_t agno,
2148 xfs_agino_t agino,
2149 struct xfs_buf *ibp,
2150 struct xfs_dinode *dip,
2151 struct xfs_imap *imap,
2152 xfs_agino_t next_agino)
2153{
2154 struct xfs_mount *mp = tp->t_mountp;
2155 int offset;
2156
2157 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158
2159 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160 be32_to_cpu(dip->di_next_unlinked), next_agino);
2161
2162 dip->di_next_unlinked = cpu_to_be32(next_agino);
2163 offset = imap->im_boffset +
2164 offsetof(struct xfs_dinode, di_next_unlinked);
2165
2166 /* need to recalc the inode CRC if appropriate */
2167 xfs_dinode_calc_crc(mp, dip);
2168 xfs_trans_inode_buf(tp, ibp);
2169 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170 xfs_inobp_check(mp, ibp);
2171}
2172
2173/* Set an in-core inode's unlinked pointer and return the old value. */
2174STATIC int
2175xfs_iunlink_update_inode(
2176 struct xfs_trans *tp,
2177 struct xfs_inode *ip,
2178 xfs_agnumber_t agno,
2179 xfs_agino_t next_agino,
2180 xfs_agino_t *old_next_agino)
2181{
2182 struct xfs_mount *mp = tp->t_mountp;
2183 struct xfs_dinode *dip;
2184 struct xfs_buf *ibp;
2185 xfs_agino_t old_value;
2186 int error;
2187
2188 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189
2190 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191 if (error)
2192 return error;
2193
2194 /* Make sure the old pointer isn't garbage. */
2195 old_value = be32_to_cpu(dip->di_next_unlinked);
2196 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2197 error = -EFSCORRUPTED;
2198 goto out;
2199 }
2200
2201 /*
2202 * Since we're updating a linked list, we should never find that the
2203 * current pointer is the same as the new value, unless we're
2204 * terminating the list.
2205 */
2206 *old_next_agino = old_value;
2207 if (old_value == next_agino) {
2208 if (next_agino != NULLAGINO)
2209 error = -EFSCORRUPTED;
2210 goto out;
2211 }
2212
2213 /* Ok, update the new pointer. */
2214 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2215 ibp, dip, &ip->i_imap, next_agino);
2216 return 0;
2217out:
2218 xfs_trans_brelse(tp, ibp);
2219 return error;
2220}
2221
2222/*
2223 * This is called when the inode's link count has gone to 0 or we are creating
2224 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2225 *
2226 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2227 * list when the inode is freed.
2228 */
2229STATIC int
2230xfs_iunlink(
2231 struct xfs_trans *tp,
2232 struct xfs_inode *ip)
2233{
2234 struct xfs_mount *mp = tp->t_mountp;
2235 struct xfs_agi *agi;
2236 struct xfs_buf *agibp;
2237 xfs_agino_t next_agino;
2238 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2239 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2240 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2241 int error;
2242
2243 ASSERT(VFS_I(ip)->i_nlink == 0);
2244 ASSERT(VFS_I(ip)->i_mode != 0);
2245 trace_xfs_iunlink(ip);
2246
2247 /* Get the agi buffer first. It ensures lock ordering on the list. */
2248 error = xfs_read_agi(mp, tp, agno, &agibp);
2249 if (error)
2250 return error;
2251 agi = XFS_BUF_TO_AGI(agibp);
2252
2253 /*
2254 * Get the index into the agi hash table for the list this inode will
2255 * go on. Make sure the pointer isn't garbage and that this inode
2256 * isn't already on the list.
2257 */
2258 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2259 if (next_agino == agino ||
2260 !xfs_verify_agino_or_null(mp, agno, next_agino))
2261 return -EFSCORRUPTED;
2262
2263 if (next_agino != NULLAGINO) {
2264 struct xfs_perag *pag;
2265 xfs_agino_t old_agino;
2266
2267 /*
2268 * There is already another inode in the bucket, so point this
2269 * inode to the current head of the list.
2270 */
2271 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2272 &old_agino);
2273 if (error)
2274 return error;
2275 ASSERT(old_agino == NULLAGINO);
2276
2277 /*
2278 * agino has been unlinked, add a backref from the next inode
2279 * back to agino.
2280 */
2281 pag = xfs_perag_get(mp, agno);
2282 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2283 xfs_perag_put(pag);
2284 if (error)
2285 return error;
2286 }
2287
2288 /* Point the head of the list to point to this inode. */
2289 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2290}
2291
2292/* Return the imap, dinode pointer, and buffer for an inode. */
2293STATIC int
2294xfs_iunlink_map_ino(
2295 struct xfs_trans *tp,
2296 xfs_agnumber_t agno,
2297 xfs_agino_t agino,
2298 struct xfs_imap *imap,
2299 struct xfs_dinode **dipp,
2300 struct xfs_buf **bpp)
2301{
2302 struct xfs_mount *mp = tp->t_mountp;
2303 int error;
2304
2305 imap->im_blkno = 0;
2306 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2307 if (error) {
2308 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2309 __func__, error);
2310 return error;
2311 }
2312
2313 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2314 if (error) {
2315 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2316 __func__, error);
2317 return error;
2318 }
2319
2320 return 0;
2321}
2322
2323/*
2324 * Walk the unlinked chain from @head_agino until we find the inode that
2325 * points to @target_agino. Return the inode number, map, dinode pointer,
2326 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2327 *
2328 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2329 * @agino, @imap, @dipp, and @bpp are all output parameters.
2330 *
2331 * Do not call this function if @target_agino is the head of the list.
2332 */
2333STATIC int
2334xfs_iunlink_map_prev(
2335 struct xfs_trans *tp,
2336 xfs_agnumber_t agno,
2337 xfs_agino_t head_agino,
2338 xfs_agino_t target_agino,
2339 xfs_agino_t *agino,
2340 struct xfs_imap *imap,
2341 struct xfs_dinode **dipp,
2342 struct xfs_buf **bpp,
2343 struct xfs_perag *pag)
2344{
2345 struct xfs_mount *mp = tp->t_mountp;
2346 xfs_agino_t next_agino;
2347 int error;
2348
2349 ASSERT(head_agino != target_agino);
2350 *bpp = NULL;
2351
2352 /* See if our backref cache can find it faster. */
2353 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2354 if (*agino != NULLAGINO) {
2355 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2356 if (error)
2357 return error;
2358
2359 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2360 return 0;
2361
2362 /*
2363 * If we get here the cache contents were corrupt, so drop the
2364 * buffer and fall back to walking the bucket list.
2365 */
2366 xfs_trans_brelse(tp, *bpp);
2367 *bpp = NULL;
2368 WARN_ON_ONCE(1);
2369 }
2370
2371 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2372
2373 /* Otherwise, walk the entire bucket until we find it. */
2374 next_agino = head_agino;
2375 while (next_agino != target_agino) {
2376 xfs_agino_t unlinked_agino;
2377
2378 if (*bpp)
2379 xfs_trans_brelse(tp, *bpp);
2380
2381 *agino = next_agino;
2382 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2383 bpp);
2384 if (error)
2385 return error;
2386
2387 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2388 /*
2389 * Make sure this pointer is valid and isn't an obvious
2390 * infinite loop.
2391 */
2392 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2393 next_agino == unlinked_agino) {
2394 XFS_CORRUPTION_ERROR(__func__,
2395 XFS_ERRLEVEL_LOW, mp,
2396 *dipp, sizeof(**dipp));
2397 error = -EFSCORRUPTED;
2398 return error;
2399 }
2400 next_agino = unlinked_agino;
2401 }
2402
2403 return 0;
2404}
2405
2406/*
2407 * Pull the on-disk inode from the AGI unlinked list.
2408 */
2409STATIC int
2410xfs_iunlink_remove(
2411 struct xfs_trans *tp,
2412 struct xfs_inode *ip)
2413{
2414 struct xfs_mount *mp = tp->t_mountp;
2415 struct xfs_agi *agi;
2416 struct xfs_buf *agibp;
2417 struct xfs_buf *last_ibp;
2418 struct xfs_dinode *last_dip = NULL;
2419 struct xfs_perag *pag = NULL;
2420 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422 xfs_agino_t next_agino;
2423 xfs_agino_t head_agino;
2424 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425 int error;
2426
2427 trace_xfs_iunlink_remove(ip);
2428
2429 /* Get the agi buffer first. It ensures lock ordering on the list. */
2430 error = xfs_read_agi(mp, tp, agno, &agibp);
2431 if (error)
2432 return error;
2433 agi = XFS_BUF_TO_AGI(agibp);
2434
2435 /*
2436 * Get the index into the agi hash table for the list this inode will
2437 * go on. Make sure the head pointer isn't garbage.
2438 */
2439 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440 if (!xfs_verify_agino(mp, agno, head_agino)) {
2441 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442 agi, sizeof(*agi));
2443 return -EFSCORRUPTED;
2444 }
2445
2446 /*
2447 * Set our inode's next_unlinked pointer to NULL and then return
2448 * the old pointer value so that we can update whatever was previous
2449 * to us in the list to point to whatever was next in the list.
2450 */
2451 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452 if (error)
2453 return error;
2454
2455 /*
2456 * If there was a backref pointing from the next inode back to this
2457 * one, remove it because we've removed this inode from the list.
2458 *
2459 * Later, if this inode was in the middle of the list we'll update
2460 * this inode's backref to point from the next inode.
2461 */
2462 if (next_agino != NULLAGINO) {
2463 pag = xfs_perag_get(mp, agno);
2464 error = xfs_iunlink_change_backref(pag, next_agino,
2465 NULLAGINO);
2466 if (error)
2467 goto out;
2468 }
2469
2470 if (head_agino == agino) {
2471 /* Point the head of the list to the next unlinked inode. */
2472 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2473 next_agino);
2474 if (error)
2475 goto out;
2476 } else {
2477 struct xfs_imap imap;
2478 xfs_agino_t prev_agino;
2479
2480 if (!pag)
2481 pag = xfs_perag_get(mp, agno);
2482
2483 /* We need to search the list for the inode being freed. */
2484 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2485 &prev_agino, &imap, &last_dip, &last_ibp,
2486 pag);
2487 if (error)
2488 goto out;
2489
2490 /* Point the previous inode on the list to the next inode. */
2491 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2492 last_dip, &imap, next_agino);
2493
2494 /*
2495 * Now we deal with the backref for this inode. If this inode
2496 * pointed at a real inode, change the backref that pointed to
2497 * us to point to our old next. If this inode was the end of
2498 * the list, delete the backref that pointed to us. Note that
2499 * change_backref takes care of deleting the backref if
2500 * next_agino is NULLAGINO.
2501 */
2502 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2503 if (error)
2504 goto out;
2505 }
2506
2507out:
2508 if (pag)
2509 xfs_perag_put(pag);
2510 return error;
2511}
2512
2513/*
2514 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2515 * inodes that are in memory - they all must be marked stale and attached to
2516 * the cluster buffer.
2517 */
2518STATIC int
2519xfs_ifree_cluster(
2520 xfs_inode_t *free_ip,
2521 xfs_trans_t *tp,
2522 struct xfs_icluster *xic)
2523{
2524 xfs_mount_t *mp = free_ip->i_mount;
2525 int nbufs;
2526 int i, j;
2527 int ioffset;
2528 xfs_daddr_t blkno;
2529 xfs_buf_t *bp;
2530 xfs_inode_t *ip;
2531 xfs_inode_log_item_t *iip;
2532 struct xfs_log_item *lip;
2533 struct xfs_perag *pag;
2534 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2535 xfs_ino_t inum;
2536
2537 inum = xic->first_ino;
2538 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2539 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2540
2541 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2542 /*
2543 * The allocation bitmap tells us which inodes of the chunk were
2544 * physically allocated. Skip the cluster if an inode falls into
2545 * a sparse region.
2546 */
2547 ioffset = inum - xic->first_ino;
2548 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2549 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2550 continue;
2551 }
2552
2553 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554 XFS_INO_TO_AGBNO(mp, inum));
2555
2556 /*
2557 * We obtain and lock the backing buffer first in the process
2558 * here, as we have to ensure that any dirty inode that we
2559 * can't get the flush lock on is attached to the buffer.
2560 * If we scan the in-memory inodes first, then buffer IO can
2561 * complete before we get a lock on it, and hence we may fail
2562 * to mark all the active inodes on the buffer stale.
2563 */
2564 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2565 mp->m_bsize * igeo->blocks_per_cluster,
2566 XBF_UNMAPPED);
2567
2568 if (!bp)
2569 return -ENOMEM;
2570
2571 /*
2572 * This buffer may not have been correctly initialised as we
2573 * didn't read it from disk. That's not important because we are
2574 * only using to mark the buffer as stale in the log, and to
2575 * attach stale cached inodes on it. That means it will never be
2576 * dispatched for IO. If it is, we want to know about it, and we
2577 * want it to fail. We can acheive this by adding a write
2578 * verifier to the buffer.
2579 */
2580 bp->b_ops = &xfs_inode_buf_ops;
2581
2582 /*
2583 * Walk the inodes already attached to the buffer and mark them
2584 * stale. These will all have the flush locks held, so an
2585 * in-memory inode walk can't lock them. By marking them all
2586 * stale first, we will not attempt to lock them in the loop
2587 * below as the XFS_ISTALE flag will be set.
2588 */
2589 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2590 if (lip->li_type == XFS_LI_INODE) {
2591 iip = (xfs_inode_log_item_t *)lip;
2592 ASSERT(iip->ili_logged == 1);
2593 lip->li_cb = xfs_istale_done;
2594 xfs_trans_ail_copy_lsn(mp->m_ail,
2595 &iip->ili_flush_lsn,
2596 &iip->ili_item.li_lsn);
2597 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2598 }
2599 }
2600
2601
2602 /*
2603 * For each inode in memory attempt to add it to the inode
2604 * buffer and set it up for being staled on buffer IO
2605 * completion. This is safe as we've locked out tail pushing
2606 * and flushing by locking the buffer.
2607 *
2608 * We have already marked every inode that was part of a
2609 * transaction stale above, which means there is no point in
2610 * even trying to lock them.
2611 */
2612 for (i = 0; i < igeo->inodes_per_cluster; i++) {
2613retry:
2614 rcu_read_lock();
2615 ip = radix_tree_lookup(&pag->pag_ici_root,
2616 XFS_INO_TO_AGINO(mp, (inum + i)));
2617
2618 /* Inode not in memory, nothing to do */
2619 if (!ip) {
2620 rcu_read_unlock();
2621 continue;
2622 }
2623
2624 /*
2625 * because this is an RCU protected lookup, we could
2626 * find a recently freed or even reallocated inode
2627 * during the lookup. We need to check under the
2628 * i_flags_lock for a valid inode here. Skip it if it
2629 * is not valid, the wrong inode or stale.
2630 */
2631 spin_lock(&ip->i_flags_lock);
2632 if (ip->i_ino != inum + i ||
2633 __xfs_iflags_test(ip, XFS_ISTALE)) {
2634 spin_unlock(&ip->i_flags_lock);
2635 rcu_read_unlock();
2636 continue;
2637 }
2638 spin_unlock(&ip->i_flags_lock);
2639
2640 /*
2641 * Don't try to lock/unlock the current inode, but we
2642 * _cannot_ skip the other inodes that we did not find
2643 * in the list attached to the buffer and are not
2644 * already marked stale. If we can't lock it, back off
2645 * and retry.
2646 */
2647 if (ip != free_ip) {
2648 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2649 rcu_read_unlock();
2650 delay(1);
2651 goto retry;
2652 }
2653
2654 /*
2655 * Check the inode number again in case we're
2656 * racing with freeing in xfs_reclaim_inode().
2657 * See the comments in that function for more
2658 * information as to why the initial check is
2659 * not sufficient.
2660 */
2661 if (ip->i_ino != inum + i) {
2662 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2663 rcu_read_unlock();
2664 continue;
2665 }
2666 }
2667 rcu_read_unlock();
2668
2669 xfs_iflock(ip);
2670 xfs_iflags_set(ip, XFS_ISTALE);
2671
2672 /*
2673 * we don't need to attach clean inodes or those only
2674 * with unlogged changes (which we throw away, anyway).
2675 */
2676 iip = ip->i_itemp;
2677 if (!iip || xfs_inode_clean(ip)) {
2678 ASSERT(ip != free_ip);
2679 xfs_ifunlock(ip);
2680 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2681 continue;
2682 }
2683
2684 iip->ili_last_fields = iip->ili_fields;
2685 iip->ili_fields = 0;
2686 iip->ili_fsync_fields = 0;
2687 iip->ili_logged = 1;
2688 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2689 &iip->ili_item.li_lsn);
2690
2691 xfs_buf_attach_iodone(bp, xfs_istale_done,
2692 &iip->ili_item);
2693
2694 if (ip != free_ip)
2695 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2696 }
2697
2698 xfs_trans_stale_inode_buf(tp, bp);
2699 xfs_trans_binval(tp, bp);
2700 }
2701
2702 xfs_perag_put(pag);
2703 return 0;
2704}
2705
2706/*
2707 * Free any local-format buffers sitting around before we reset to
2708 * extents format.
2709 */
2710static inline void
2711xfs_ifree_local_data(
2712 struct xfs_inode *ip,
2713 int whichfork)
2714{
2715 struct xfs_ifork *ifp;
2716
2717 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2718 return;
2719
2720 ifp = XFS_IFORK_PTR(ip, whichfork);
2721 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2722}
2723
2724/*
2725 * This is called to return an inode to the inode free list.
2726 * The inode should already be truncated to 0 length and have
2727 * no pages associated with it. This routine also assumes that
2728 * the inode is already a part of the transaction.
2729 *
2730 * The on-disk copy of the inode will have been added to the list
2731 * of unlinked inodes in the AGI. We need to remove the inode from
2732 * that list atomically with respect to freeing it here.
2733 */
2734int
2735xfs_ifree(
2736 struct xfs_trans *tp,
2737 struct xfs_inode *ip)
2738{
2739 int error;
2740 struct xfs_icluster xic = { 0 };
2741
2742 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2743 ASSERT(VFS_I(ip)->i_nlink == 0);
2744 ASSERT(ip->i_d.di_nextents == 0);
2745 ASSERT(ip->i_d.di_anextents == 0);
2746 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2747 ASSERT(ip->i_d.di_nblocks == 0);
2748
2749 /*
2750 * Pull the on-disk inode from the AGI unlinked list.
2751 */
2752 error = xfs_iunlink_remove(tp, ip);
2753 if (error)
2754 return error;
2755
2756 error = xfs_difree(tp, ip->i_ino, &xic);
2757 if (error)
2758 return error;
2759
2760 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2761 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2762
2763 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2764 ip->i_d.di_flags = 0;
2765 ip->i_d.di_flags2 = 0;
2766 ip->i_d.di_dmevmask = 0;
2767 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2768 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2769 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2770
2771 /* Don't attempt to replay owner changes for a deleted inode */
2772 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2773
2774 /*
2775 * Bump the generation count so no one will be confused
2776 * by reincarnations of this inode.
2777 */
2778 VFS_I(ip)->i_generation++;
2779 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2780
2781 if (xic.deleted)
2782 error = xfs_ifree_cluster(ip, tp, &xic);
2783
2784 return error;
2785}
2786
2787/*
2788 * This is called to unpin an inode. The caller must have the inode locked
2789 * in at least shared mode so that the buffer cannot be subsequently pinned
2790 * once someone is waiting for it to be unpinned.
2791 */
2792static void
2793xfs_iunpin(
2794 struct xfs_inode *ip)
2795{
2796 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2797
2798 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2799
2800 /* Give the log a push to start the unpinning I/O */
2801 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2802
2803}
2804
2805static void
2806__xfs_iunpin_wait(
2807 struct xfs_inode *ip)
2808{
2809 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2810 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2811
2812 xfs_iunpin(ip);
2813
2814 do {
2815 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2816 if (xfs_ipincount(ip))
2817 io_schedule();
2818 } while (xfs_ipincount(ip));
2819 finish_wait(wq, &wait.wq_entry);
2820}
2821
2822void
2823xfs_iunpin_wait(
2824 struct xfs_inode *ip)
2825{
2826 if (xfs_ipincount(ip))
2827 __xfs_iunpin_wait(ip);
2828}
2829
2830/*
2831 * Removing an inode from the namespace involves removing the directory entry
2832 * and dropping the link count on the inode. Removing the directory entry can
2833 * result in locking an AGF (directory blocks were freed) and removing a link
2834 * count can result in placing the inode on an unlinked list which results in
2835 * locking an AGI.
2836 *
2837 * The big problem here is that we have an ordering constraint on AGF and AGI
2838 * locking - inode allocation locks the AGI, then can allocate a new extent for
2839 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2840 * removes the inode from the unlinked list, requiring that we lock the AGI
2841 * first, and then freeing the inode can result in an inode chunk being freed
2842 * and hence freeing disk space requiring that we lock an AGF.
2843 *
2844 * Hence the ordering that is imposed by other parts of the code is AGI before
2845 * AGF. This means we cannot remove the directory entry before we drop the inode
2846 * reference count and put it on the unlinked list as this results in a lock
2847 * order of AGF then AGI, and this can deadlock against inode allocation and
2848 * freeing. Therefore we must drop the link counts before we remove the
2849 * directory entry.
2850 *
2851 * This is still safe from a transactional point of view - it is not until we
2852 * get to xfs_defer_finish() that we have the possibility of multiple
2853 * transactions in this operation. Hence as long as we remove the directory
2854 * entry and drop the link count in the first transaction of the remove
2855 * operation, there are no transactional constraints on the ordering here.
2856 */
2857int
2858xfs_remove(
2859 xfs_inode_t *dp,
2860 struct xfs_name *name,
2861 xfs_inode_t *ip)
2862{
2863 xfs_mount_t *mp = dp->i_mount;
2864 xfs_trans_t *tp = NULL;
2865 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2866 int error = 0;
2867 uint resblks;
2868
2869 trace_xfs_remove(dp, name);
2870
2871 if (XFS_FORCED_SHUTDOWN(mp))
2872 return -EIO;
2873
2874 error = xfs_qm_dqattach(dp);
2875 if (error)
2876 goto std_return;
2877
2878 error = xfs_qm_dqattach(ip);
2879 if (error)
2880 goto std_return;
2881
2882 /*
2883 * We try to get the real space reservation first,
2884 * allowing for directory btree deletion(s) implying
2885 * possible bmap insert(s). If we can't get the space
2886 * reservation then we use 0 instead, and avoid the bmap
2887 * btree insert(s) in the directory code by, if the bmap
2888 * insert tries to happen, instead trimming the LAST
2889 * block from the directory.
2890 */
2891 resblks = XFS_REMOVE_SPACE_RES(mp);
2892 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2893 if (error == -ENOSPC) {
2894 resblks = 0;
2895 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2896 &tp);
2897 }
2898 if (error) {
2899 ASSERT(error != -ENOSPC);
2900 goto std_return;
2901 }
2902
2903 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2904
2905 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2906 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2907
2908 /*
2909 * If we're removing a directory perform some additional validation.
2910 */
2911 if (is_dir) {
2912 ASSERT(VFS_I(ip)->i_nlink >= 2);
2913 if (VFS_I(ip)->i_nlink != 2) {
2914 error = -ENOTEMPTY;
2915 goto out_trans_cancel;
2916 }
2917 if (!xfs_dir_isempty(ip)) {
2918 error = -ENOTEMPTY;
2919 goto out_trans_cancel;
2920 }
2921
2922 /* Drop the link from ip's "..". */
2923 error = xfs_droplink(tp, dp);
2924 if (error)
2925 goto out_trans_cancel;
2926
2927 /* Drop the "." link from ip to self. */
2928 error = xfs_droplink(tp, ip);
2929 if (error)
2930 goto out_trans_cancel;
2931 } else {
2932 /*
2933 * When removing a non-directory we need to log the parent
2934 * inode here. For a directory this is done implicitly
2935 * by the xfs_droplink call for the ".." entry.
2936 */
2937 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2938 }
2939 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2940
2941 /* Drop the link from dp to ip. */
2942 error = xfs_droplink(tp, ip);
2943 if (error)
2944 goto out_trans_cancel;
2945
2946 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2947 if (error) {
2948 ASSERT(error != -ENOENT);
2949 goto out_trans_cancel;
2950 }
2951
2952 /*
2953 * If this is a synchronous mount, make sure that the
2954 * remove transaction goes to disk before returning to
2955 * the user.
2956 */
2957 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2958 xfs_trans_set_sync(tp);
2959
2960 error = xfs_trans_commit(tp);
2961 if (error)
2962 goto std_return;
2963
2964 if (is_dir && xfs_inode_is_filestream(ip))
2965 xfs_filestream_deassociate(ip);
2966
2967 return 0;
2968
2969 out_trans_cancel:
2970 xfs_trans_cancel(tp);
2971 std_return:
2972 return error;
2973}
2974
2975/*
2976 * Enter all inodes for a rename transaction into a sorted array.
2977 */
2978#define __XFS_SORT_INODES 5
2979STATIC void
2980xfs_sort_for_rename(
2981 struct xfs_inode *dp1, /* in: old (source) directory inode */
2982 struct xfs_inode *dp2, /* in: new (target) directory inode */
2983 struct xfs_inode *ip1, /* in: inode of old entry */
2984 struct xfs_inode *ip2, /* in: inode of new entry */
2985 struct xfs_inode *wip, /* in: whiteout inode */
2986 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2987 int *num_inodes) /* in/out: inodes in array */
2988{
2989 int i, j;
2990
2991 ASSERT(*num_inodes == __XFS_SORT_INODES);
2992 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2993
2994 /*
2995 * i_tab contains a list of pointers to inodes. We initialize
2996 * the table here & we'll sort it. We will then use it to
2997 * order the acquisition of the inode locks.
2998 *
2999 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3000 */
3001 i = 0;
3002 i_tab[i++] = dp1;
3003 i_tab[i++] = dp2;
3004 i_tab[i++] = ip1;
3005 if (ip2)
3006 i_tab[i++] = ip2;
3007 if (wip)
3008 i_tab[i++] = wip;
3009 *num_inodes = i;
3010
3011 /*
3012 * Sort the elements via bubble sort. (Remember, there are at
3013 * most 5 elements to sort, so this is adequate.)
3014 */
3015 for (i = 0; i < *num_inodes; i++) {
3016 for (j = 1; j < *num_inodes; j++) {
3017 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3018 struct xfs_inode *temp = i_tab[j];
3019 i_tab[j] = i_tab[j-1];
3020 i_tab[j-1] = temp;
3021 }
3022 }
3023 }
3024}
3025
3026static int
3027xfs_finish_rename(
3028 struct xfs_trans *tp)
3029{
3030 /*
3031 * If this is a synchronous mount, make sure that the rename transaction
3032 * goes to disk before returning to the user.
3033 */
3034 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3035 xfs_trans_set_sync(tp);
3036
3037 return xfs_trans_commit(tp);
3038}
3039
3040/*
3041 * xfs_cross_rename()
3042 *
3043 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3044 */
3045STATIC int
3046xfs_cross_rename(
3047 struct xfs_trans *tp,
3048 struct xfs_inode *dp1,
3049 struct xfs_name *name1,
3050 struct xfs_inode *ip1,
3051 struct xfs_inode *dp2,
3052 struct xfs_name *name2,
3053 struct xfs_inode *ip2,
3054 int spaceres)
3055{
3056 int error = 0;
3057 int ip1_flags = 0;
3058 int ip2_flags = 0;
3059 int dp2_flags = 0;
3060
3061 /* Swap inode number for dirent in first parent */
3062 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3063 if (error)
3064 goto out_trans_abort;
3065
3066 /* Swap inode number for dirent in second parent */
3067 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3068 if (error)
3069 goto out_trans_abort;
3070
3071 /*
3072 * If we're renaming one or more directories across different parents,
3073 * update the respective ".." entries (and link counts) to match the new
3074 * parents.
3075 */
3076 if (dp1 != dp2) {
3077 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3078
3079 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3080 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3081 dp1->i_ino, spaceres);
3082 if (error)
3083 goto out_trans_abort;
3084
3085 /* transfer ip2 ".." reference to dp1 */
3086 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3087 error = xfs_droplink(tp, dp2);
3088 if (error)
3089 goto out_trans_abort;
3090 xfs_bumplink(tp, dp1);
3091 }
3092
3093 /*
3094 * Although ip1 isn't changed here, userspace needs
3095 * to be warned about the change, so that applications
3096 * relying on it (like backup ones), will properly
3097 * notify the change
3098 */
3099 ip1_flags |= XFS_ICHGTIME_CHG;
3100 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3101 }
3102
3103 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3104 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3105 dp2->i_ino, spaceres);
3106 if (error)
3107 goto out_trans_abort;
3108
3109 /* transfer ip1 ".." reference to dp2 */
3110 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3111 error = xfs_droplink(tp, dp1);
3112 if (error)
3113 goto out_trans_abort;
3114 xfs_bumplink(tp, dp2);
3115 }
3116
3117 /*
3118 * Although ip2 isn't changed here, userspace needs
3119 * to be warned about the change, so that applications
3120 * relying on it (like backup ones), will properly
3121 * notify the change
3122 */
3123 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3124 ip2_flags |= XFS_ICHGTIME_CHG;
3125 }
3126 }
3127
3128 if (ip1_flags) {
3129 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3130 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3131 }
3132 if (ip2_flags) {
3133 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3134 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3135 }
3136 if (dp2_flags) {
3137 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3138 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3139 }
3140 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3141 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3142 return xfs_finish_rename(tp);
3143
3144out_trans_abort:
3145 xfs_trans_cancel(tp);
3146 return error;
3147}
3148
3149/*
3150 * xfs_rename_alloc_whiteout()
3151 *
3152 * Return a referenced, unlinked, unlocked inode that that can be used as a
3153 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3154 * crash between allocating the inode and linking it into the rename transaction
3155 * recovery will free the inode and we won't leak it.
3156 */
3157static int
3158xfs_rename_alloc_whiteout(
3159 struct xfs_inode *dp,
3160 struct xfs_inode **wip)
3161{
3162 struct xfs_inode *tmpfile;
3163 int error;
3164
3165 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3166 if (error)
3167 return error;
3168
3169 /*
3170 * Prepare the tmpfile inode as if it were created through the VFS.
3171 * Complete the inode setup and flag it as linkable. nlink is already
3172 * zero, so we can skip the drop_nlink.
3173 */
3174 xfs_setup_iops(tmpfile);
3175 xfs_finish_inode_setup(tmpfile);
3176 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3177
3178 *wip = tmpfile;
3179 return 0;
3180}
3181
3182/*
3183 * xfs_rename
3184 */
3185int
3186xfs_rename(
3187 struct xfs_inode *src_dp,
3188 struct xfs_name *src_name,
3189 struct xfs_inode *src_ip,
3190 struct xfs_inode *target_dp,
3191 struct xfs_name *target_name,
3192 struct xfs_inode *target_ip,
3193 unsigned int flags)
3194{
3195 struct xfs_mount *mp = src_dp->i_mount;
3196 struct xfs_trans *tp;
3197 struct xfs_inode *wip = NULL; /* whiteout inode */
3198 struct xfs_inode *inodes[__XFS_SORT_INODES];
3199 int num_inodes = __XFS_SORT_INODES;
3200 bool new_parent = (src_dp != target_dp);
3201 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3202 int spaceres;
3203 int error;
3204
3205 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3206
3207 if ((flags & RENAME_EXCHANGE) && !target_ip)
3208 return -EINVAL;
3209
3210 /*
3211 * If we are doing a whiteout operation, allocate the whiteout inode
3212 * we will be placing at the target and ensure the type is set
3213 * appropriately.
3214 */
3215 if (flags & RENAME_WHITEOUT) {
3216 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3217 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3218 if (error)
3219 return error;
3220
3221 /* setup target dirent info as whiteout */
3222 src_name->type = XFS_DIR3_FT_CHRDEV;
3223 }
3224
3225 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3226 inodes, &num_inodes);
3227
3228 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3229 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3230 if (error == -ENOSPC) {
3231 spaceres = 0;
3232 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3233 &tp);
3234 }
3235 if (error)
3236 goto out_release_wip;
3237
3238 /*
3239 * Attach the dquots to the inodes
3240 */
3241 error = xfs_qm_vop_rename_dqattach(inodes);
3242 if (error)
3243 goto out_trans_cancel;
3244
3245 /*
3246 * Lock all the participating inodes. Depending upon whether
3247 * the target_name exists in the target directory, and
3248 * whether the target directory is the same as the source
3249 * directory, we can lock from 2 to 4 inodes.
3250 */
3251 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3252
3253 /*
3254 * Join all the inodes to the transaction. From this point on,
3255 * we can rely on either trans_commit or trans_cancel to unlock
3256 * them.
3257 */
3258 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3259 if (new_parent)
3260 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3261 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3262 if (target_ip)
3263 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3264 if (wip)
3265 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3266
3267 /*
3268 * If we are using project inheritance, we only allow renames
3269 * into our tree when the project IDs are the same; else the
3270 * tree quota mechanism would be circumvented.
3271 */
3272 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3273 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3274 error = -EXDEV;
3275 goto out_trans_cancel;
3276 }
3277
3278 /* RENAME_EXCHANGE is unique from here on. */
3279 if (flags & RENAME_EXCHANGE)
3280 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3281 target_dp, target_name, target_ip,
3282 spaceres);
3283
3284 /*
3285 * Check for expected errors before we dirty the transaction
3286 * so we can return an error without a transaction abort.
3287 */
3288 if (target_ip == NULL) {
3289 /*
3290 * If there's no space reservation, check the entry will
3291 * fit before actually inserting it.
3292 */
3293 if (!spaceres) {
3294 error = xfs_dir_canenter(tp, target_dp, target_name);
3295 if (error)
3296 goto out_trans_cancel;
3297 }
3298 } else {
3299 /*
3300 * If target exists and it's a directory, check that whether
3301 * it can be destroyed.
3302 */
3303 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3304 (!xfs_dir_isempty(target_ip) ||
3305 (VFS_I(target_ip)->i_nlink > 2))) {
3306 error = -EEXIST;
3307 goto out_trans_cancel;
3308 }
3309 }
3310
3311 /*
3312 * Directory entry creation below may acquire the AGF. Remove
3313 * the whiteout from the unlinked list first to preserve correct
3314 * AGI/AGF locking order. This dirties the transaction so failures
3315 * after this point will abort and log recovery will clean up the
3316 * mess.
3317 *
3318 * For whiteouts, we need to bump the link count on the whiteout
3319 * inode. After this point, we have a real link, clear the tmpfile
3320 * state flag from the inode so it doesn't accidentally get misused
3321 * in future.
3322 */
3323 if (wip) {
3324 ASSERT(VFS_I(wip)->i_nlink == 0);
3325 error = xfs_iunlink_remove(tp, wip);
3326 if (error)
3327 goto out_trans_cancel;
3328
3329 xfs_bumplink(tp, wip);
3330 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3331 VFS_I(wip)->i_state &= ~I_LINKABLE;
3332 }
3333
3334 /*
3335 * Set up the target.
3336 */
3337 if (target_ip == NULL) {
3338 /*
3339 * If target does not exist and the rename crosses
3340 * directories, adjust the target directory link count
3341 * to account for the ".." reference from the new entry.
3342 */
3343 error = xfs_dir_createname(tp, target_dp, target_name,
3344 src_ip->i_ino, spaceres);
3345 if (error)
3346 goto out_trans_cancel;
3347
3348 xfs_trans_ichgtime(tp, target_dp,
3349 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3350
3351 if (new_parent && src_is_directory) {
3352 xfs_bumplink(tp, target_dp);
3353 }
3354 } else { /* target_ip != NULL */
3355 /*
3356 * Link the source inode under the target name.
3357 * If the source inode is a directory and we are moving
3358 * it across directories, its ".." entry will be
3359 * inconsistent until we replace that down below.
3360 *
3361 * In case there is already an entry with the same
3362 * name at the destination directory, remove it first.
3363 */
3364 error = xfs_dir_replace(tp, target_dp, target_name,
3365 src_ip->i_ino, spaceres);
3366 if (error)
3367 goto out_trans_cancel;
3368
3369 xfs_trans_ichgtime(tp, target_dp,
3370 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3371
3372 /*
3373 * Decrement the link count on the target since the target
3374 * dir no longer points to it.
3375 */
3376 error = xfs_droplink(tp, target_ip);
3377 if (error)
3378 goto out_trans_cancel;
3379
3380 if (src_is_directory) {
3381 /*
3382 * Drop the link from the old "." entry.
3383 */
3384 error = xfs_droplink(tp, target_ip);
3385 if (error)
3386 goto out_trans_cancel;
3387 }
3388 } /* target_ip != NULL */
3389
3390 /*
3391 * Remove the source.
3392 */
3393 if (new_parent && src_is_directory) {
3394 /*
3395 * Rewrite the ".." entry to point to the new
3396 * directory.
3397 */
3398 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3399 target_dp->i_ino, spaceres);
3400 ASSERT(error != -EEXIST);
3401 if (error)
3402 goto out_trans_cancel;
3403 }
3404
3405 /*
3406 * We always want to hit the ctime on the source inode.
3407 *
3408 * This isn't strictly required by the standards since the source
3409 * inode isn't really being changed, but old unix file systems did
3410 * it and some incremental backup programs won't work without it.
3411 */
3412 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3413 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3414
3415 /*
3416 * Adjust the link count on src_dp. This is necessary when
3417 * renaming a directory, either within one parent when
3418 * the target existed, or across two parent directories.
3419 */
3420 if (src_is_directory && (new_parent || target_ip != NULL)) {
3421
3422 /*
3423 * Decrement link count on src_directory since the
3424 * entry that's moved no longer points to it.
3425 */
3426 error = xfs_droplink(tp, src_dp);
3427 if (error)
3428 goto out_trans_cancel;
3429 }
3430
3431 /*
3432 * For whiteouts, we only need to update the source dirent with the
3433 * inode number of the whiteout inode rather than removing it
3434 * altogether.
3435 */
3436 if (wip) {
3437 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3438 spaceres);
3439 } else
3440 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3441 spaceres);
3442 if (error)
3443 goto out_trans_cancel;
3444
3445 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3446 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3447 if (new_parent)
3448 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3449
3450 error = xfs_finish_rename(tp);
3451 if (wip)
3452 xfs_irele(wip);
3453 return error;
3454
3455out_trans_cancel:
3456 xfs_trans_cancel(tp);
3457out_release_wip:
3458 if (wip)
3459 xfs_irele(wip);
3460 return error;
3461}
3462
3463STATIC int
3464xfs_iflush_cluster(
3465 struct xfs_inode *ip,
3466 struct xfs_buf *bp)
3467{
3468 struct xfs_mount *mp = ip->i_mount;
3469 struct xfs_perag *pag;
3470 unsigned long first_index, mask;
3471 int cilist_size;
3472 struct xfs_inode **cilist;
3473 struct xfs_inode *cip;
3474 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3475 int nr_found;
3476 int clcount = 0;
3477 int i;
3478
3479 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3480
3481 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3482 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3483 if (!cilist)
3484 goto out_put;
3485
3486 mask = ~(igeo->inodes_per_cluster - 1);
3487 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3488 rcu_read_lock();
3489 /* really need a gang lookup range call here */
3490 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3491 first_index, igeo->inodes_per_cluster);
3492 if (nr_found == 0)
3493 goto out_free;
3494
3495 for (i = 0; i < nr_found; i++) {
3496 cip = cilist[i];
3497 if (cip == ip)
3498 continue;
3499
3500 /*
3501 * because this is an RCU protected lookup, we could find a
3502 * recently freed or even reallocated inode during the lookup.
3503 * We need to check under the i_flags_lock for a valid inode
3504 * here. Skip it if it is not valid or the wrong inode.
3505 */
3506 spin_lock(&cip->i_flags_lock);
3507 if (!cip->i_ino ||
3508 __xfs_iflags_test(cip, XFS_ISTALE)) {
3509 spin_unlock(&cip->i_flags_lock);
3510 continue;
3511 }
3512
3513 /*
3514 * Once we fall off the end of the cluster, no point checking
3515 * any more inodes in the list because they will also all be
3516 * outside the cluster.
3517 */
3518 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3519 spin_unlock(&cip->i_flags_lock);
3520 break;
3521 }
3522 spin_unlock(&cip->i_flags_lock);
3523
3524 /*
3525 * Do an un-protected check to see if the inode is dirty and
3526 * is a candidate for flushing. These checks will be repeated
3527 * later after the appropriate locks are acquired.
3528 */
3529 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3530 continue;
3531
3532 /*
3533 * Try to get locks. If any are unavailable or it is pinned,
3534 * then this inode cannot be flushed and is skipped.
3535 */
3536
3537 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3538 continue;
3539 if (!xfs_iflock_nowait(cip)) {
3540 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3541 continue;
3542 }
3543 if (xfs_ipincount(cip)) {
3544 xfs_ifunlock(cip);
3545 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3546 continue;
3547 }
3548
3549
3550 /*
3551 * Check the inode number again, just to be certain we are not
3552 * racing with freeing in xfs_reclaim_inode(). See the comments
3553 * in that function for more information as to why the initial
3554 * check is not sufficient.
3555 */
3556 if (!cip->i_ino) {
3557 xfs_ifunlock(cip);
3558 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3559 continue;
3560 }
3561
3562 /*
3563 * arriving here means that this inode can be flushed. First
3564 * re-check that it's dirty before flushing.
3565 */
3566 if (!xfs_inode_clean(cip)) {
3567 int error;
3568 error = xfs_iflush_int(cip, bp);
3569 if (error) {
3570 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3571 goto cluster_corrupt_out;
3572 }
3573 clcount++;
3574 } else {
3575 xfs_ifunlock(cip);
3576 }
3577 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3578 }
3579
3580 if (clcount) {
3581 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3582 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3583 }
3584
3585out_free:
3586 rcu_read_unlock();
3587 kmem_free(cilist);
3588out_put:
3589 xfs_perag_put(pag);
3590 return 0;
3591
3592
3593cluster_corrupt_out:
3594 /*
3595 * Corruption detected in the clustering loop. Invalidate the
3596 * inode buffer and shut down the filesystem.
3597 */
3598 rcu_read_unlock();
3599
3600 /*
3601 * We'll always have an inode attached to the buffer for completion
3602 * process by the time we are called from xfs_iflush(). Hence we have
3603 * always need to do IO completion processing to abort the inodes
3604 * attached to the buffer. handle them just like the shutdown case in
3605 * xfs_buf_submit().
3606 */
3607 ASSERT(bp->b_iodone);
3608 bp->b_flags |= XBF_ASYNC;
3609 bp->b_flags &= ~XBF_DONE;
3610 xfs_buf_stale(bp);
3611 xfs_buf_ioerror(bp, -EIO);
3612 xfs_buf_ioend(bp);
3613
3614 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3615
3616 /* abort the corrupt inode, as it was not attached to the buffer */
3617 xfs_iflush_abort(cip, false);
3618 kmem_free(cilist);
3619 xfs_perag_put(pag);
3620 return -EFSCORRUPTED;
3621}
3622
3623/*
3624 * Flush dirty inode metadata into the backing buffer.
3625 *
3626 * The caller must have the inode lock and the inode flush lock held. The
3627 * inode lock will still be held upon return to the caller, and the inode
3628 * flush lock will be released after the inode has reached the disk.
3629 *
3630 * The caller must write out the buffer returned in *bpp and release it.
3631 */
3632int
3633xfs_iflush(
3634 struct xfs_inode *ip,
3635 struct xfs_buf **bpp)
3636{
3637 struct xfs_mount *mp = ip->i_mount;
3638 struct xfs_buf *bp = NULL;
3639 struct xfs_dinode *dip;
3640 int error;
3641
3642 XFS_STATS_INC(mp, xs_iflush_count);
3643
3644 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3645 ASSERT(xfs_isiflocked(ip));
3646 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3647 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3648
3649 *bpp = NULL;
3650
3651 xfs_iunpin_wait(ip);
3652
3653 /*
3654 * For stale inodes we cannot rely on the backing buffer remaining
3655 * stale in cache for the remaining life of the stale inode and so
3656 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3657 * inodes below. We have to check this after ensuring the inode is
3658 * unpinned so that it is safe to reclaim the stale inode after the
3659 * flush call.
3660 */
3661 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3662 xfs_ifunlock(ip);
3663 return 0;
3664 }
3665
3666 /*
3667 * This may have been unpinned because the filesystem is shutting
3668 * down forcibly. If that's the case we must not write this inode
3669 * to disk, because the log record didn't make it to disk.
3670 *
3671 * We also have to remove the log item from the AIL in this case,
3672 * as we wait for an empty AIL as part of the unmount process.
3673 */
3674 if (XFS_FORCED_SHUTDOWN(mp)) {
3675 error = -EIO;
3676 goto abort_out;
3677 }
3678
3679 /*
3680 * Get the buffer containing the on-disk inode. We are doing a try-lock
3681 * operation here, so we may get an EAGAIN error. In that case, we
3682 * simply want to return with the inode still dirty.
3683 *
3684 * If we get any other error, we effectively have a corruption situation
3685 * and we cannot flush the inode, so we treat it the same as failing
3686 * xfs_iflush_int().
3687 */
3688 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3689 0);
3690 if (error == -EAGAIN) {
3691 xfs_ifunlock(ip);
3692 return error;
3693 }
3694 if (error)
3695 goto corrupt_out;
3696
3697 /*
3698 * First flush out the inode that xfs_iflush was called with.
3699 */
3700 error = xfs_iflush_int(ip, bp);
3701 if (error)
3702 goto corrupt_out;
3703
3704 /*
3705 * If the buffer is pinned then push on the log now so we won't
3706 * get stuck waiting in the write for too long.
3707 */
3708 if (xfs_buf_ispinned(bp))
3709 xfs_log_force(mp, 0);
3710
3711 /*
3712 * inode clustering: try to gather other inodes into this write
3713 *
3714 * Note: Any error during clustering will result in the filesystem
3715 * being shut down and completion callbacks run on the cluster buffer.
3716 * As we have already flushed and attached this inode to the buffer,
3717 * it has already been aborted and released by xfs_iflush_cluster() and
3718 * so we have no further error handling to do here.
3719 */
3720 error = xfs_iflush_cluster(ip, bp);
3721 if (error)
3722 return error;
3723
3724 *bpp = bp;
3725 return 0;
3726
3727corrupt_out:
3728 if (bp)
3729 xfs_buf_relse(bp);
3730 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3731abort_out:
3732 /* abort the corrupt inode, as it was not attached to the buffer */
3733 xfs_iflush_abort(ip, false);
3734 return error;
3735}
3736
3737/*
3738 * If there are inline format data / attr forks attached to this inode,
3739 * make sure they're not corrupt.
3740 */
3741bool
3742xfs_inode_verify_forks(
3743 struct xfs_inode *ip)
3744{
3745 struct xfs_ifork *ifp;
3746 xfs_failaddr_t fa;
3747
3748 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3749 if (fa) {
3750 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3751 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3752 ifp->if_u1.if_data, ifp->if_bytes, fa);
3753 return false;
3754 }
3755
3756 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3757 if (fa) {
3758 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3759 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3760 ifp ? ifp->if_u1.if_data : NULL,
3761 ifp ? ifp->if_bytes : 0, fa);
3762 return false;
3763 }
3764 return true;
3765}
3766
3767STATIC int
3768xfs_iflush_int(
3769 struct xfs_inode *ip,
3770 struct xfs_buf *bp)
3771{
3772 struct xfs_inode_log_item *iip = ip->i_itemp;
3773 struct xfs_dinode *dip;
3774 struct xfs_mount *mp = ip->i_mount;
3775
3776 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3777 ASSERT(xfs_isiflocked(ip));
3778 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3779 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3780 ASSERT(iip != NULL && iip->ili_fields != 0);
3781 ASSERT(ip->i_d.di_version > 1);
3782
3783 /* set *dip = inode's place in the buffer */
3784 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3785
3786 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3787 mp, XFS_ERRTAG_IFLUSH_1)) {
3788 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3789 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3790 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3791 goto corrupt_out;
3792 }
3793 if (S_ISREG(VFS_I(ip)->i_mode)) {
3794 if (XFS_TEST_ERROR(
3795 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3796 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3797 mp, XFS_ERRTAG_IFLUSH_3)) {
3798 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3799 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3800 __func__, ip->i_ino, ip);
3801 goto corrupt_out;
3802 }
3803 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3804 if (XFS_TEST_ERROR(
3805 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3806 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3807 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3808 mp, XFS_ERRTAG_IFLUSH_4)) {
3809 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3810 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3811 __func__, ip->i_ino, ip);
3812 goto corrupt_out;
3813 }
3814 }
3815 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3816 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3817 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818 "%s: detected corrupt incore inode %Lu, "
3819 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3820 __func__, ip->i_ino,
3821 ip->i_d.di_nextents + ip->i_d.di_anextents,
3822 ip->i_d.di_nblocks, ip);
3823 goto corrupt_out;
3824 }
3825 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3826 mp, XFS_ERRTAG_IFLUSH_6)) {
3827 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3828 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3829 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3830 goto corrupt_out;
3831 }
3832
3833 /*
3834 * Inode item log recovery for v2 inodes are dependent on the
3835 * di_flushiter count for correct sequencing. We bump the flush
3836 * iteration count so we can detect flushes which postdate a log record
3837 * during recovery. This is redundant as we now log every change and
3838 * hence this can't happen but we need to still do it to ensure
3839 * backwards compatibility with old kernels that predate logging all
3840 * inode changes.
3841 */
3842 if (ip->i_d.di_version < 3)
3843 ip->i_d.di_flushiter++;
3844
3845 /* Check the inline fork data before we write out. */
3846 if (!xfs_inode_verify_forks(ip))
3847 goto corrupt_out;
3848
3849 /*
3850 * Copy the dirty parts of the inode into the on-disk inode. We always
3851 * copy out the core of the inode, because if the inode is dirty at all
3852 * the core must be.
3853 */
3854 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3855
3856 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3857 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3858 ip->i_d.di_flushiter = 0;
3859
3860 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3861 if (XFS_IFORK_Q(ip))
3862 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3863 xfs_inobp_check(mp, bp);
3864
3865 /*
3866 * We've recorded everything logged in the inode, so we'd like to clear
3867 * the ili_fields bits so we don't log and flush things unnecessarily.
3868 * However, we can't stop logging all this information until the data
3869 * we've copied into the disk buffer is written to disk. If we did we
3870 * might overwrite the copy of the inode in the log with all the data
3871 * after re-logging only part of it, and in the face of a crash we
3872 * wouldn't have all the data we need to recover.
3873 *
3874 * What we do is move the bits to the ili_last_fields field. When
3875 * logging the inode, these bits are moved back to the ili_fields field.
3876 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3877 * know that the information those bits represent is permanently on
3878 * disk. As long as the flush completes before the inode is logged
3879 * again, then both ili_fields and ili_last_fields will be cleared.
3880 *
3881 * We can play with the ili_fields bits here, because the inode lock
3882 * must be held exclusively in order to set bits there and the flush
3883 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3884 * done routine can tell whether or not to look in the AIL. Also, store
3885 * the current LSN of the inode so that we can tell whether the item has
3886 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3887 * need the AIL lock, because it is a 64 bit value that cannot be read
3888 * atomically.
3889 */
3890 iip->ili_last_fields = iip->ili_fields;
3891 iip->ili_fields = 0;
3892 iip->ili_fsync_fields = 0;
3893 iip->ili_logged = 1;
3894
3895 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3896 &iip->ili_item.li_lsn);
3897
3898 /*
3899 * Attach the function xfs_iflush_done to the inode's
3900 * buffer. This will remove the inode from the AIL
3901 * and unlock the inode's flush lock when the inode is
3902 * completely written to disk.
3903 */
3904 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3905
3906 /* generate the checksum. */
3907 xfs_dinode_calc_crc(mp, dip);
3908
3909 ASSERT(!list_empty(&bp->b_li_list));
3910 ASSERT(bp->b_iodone != NULL);
3911 return 0;
3912
3913corrupt_out:
3914 return -EFSCORRUPTED;
3915}
3916
3917/* Release an inode. */
3918void
3919xfs_irele(
3920 struct xfs_inode *ip)
3921{
3922 trace_xfs_irele(ip, _RET_IP_);
3923 iput(VFS_I(ip));
3924}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_sb.h"
27#include "xfs_mount.h"
28#include "xfs_inode.h"
29#include "xfs_da_format.h"
30#include "xfs_da_btree.h"
31#include "xfs_dir2.h"
32#include "xfs_attr_sf.h"
33#include "xfs_attr.h"
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
36#include "xfs_buf_item.h"
37#include "xfs_inode_item.h"
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
40#include "xfs_bmap_util.h"
41#include "xfs_error.h"
42#include "xfs_quota.h"
43#include "xfs_filestream.h"
44#include "xfs_cksum.h"
45#include "xfs_trace.h"
46#include "xfs_icache.h"
47#include "xfs_symlink.h"
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
50#include "xfs_bmap_btree.h"
51
52kmem_zone_t *xfs_inode_zone;
53
54/*
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
63
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
78/*
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
89 *
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
92 */
93uint
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
96{
97 uint lock_mode = XFS_ILOCK_SHARED;
98
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
104}
105
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
109{
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
117}
118
119/*
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
123 *
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
126 *
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
235 goto out_undo_mmaplock;
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
238 goto out_undo_mmaplock;
239 }
240 return 1;
241
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
252out:
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
328#if defined(DEBUG) || defined(XFS_WARN)
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
365/*
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
370 */
371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372static bool
373xfs_lockdep_subclass_ok(
374 int subclass)
375{
376 return subclass < MAX_LOCKDEP_SUBCLASSES;
377}
378#else
379#define xfs_lockdep_subclass_ok(subclass) (true)
380#endif
381
382/*
383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
387 */
388static inline int
389xfs_lock_inumorder(int lock_mode, int subclass)
390{
391 int class = 0;
392
393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 XFS_ILOCK_RTSUM)));
395 ASSERT(xfs_lockdep_subclass_ok(subclass));
396
397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 ASSERT(xfs_lockdep_subclass_ok(subclass +
400 XFS_IOLOCK_PARENT_VAL));
401 class += subclass << XFS_IOLOCK_SHIFT;
402 if (lock_mode & XFS_IOLOCK_PARENT)
403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
404 }
405
406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 class += subclass << XFS_MMAPLOCK_SHIFT;
409 }
410
411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 class += subclass << XFS_ILOCK_SHIFT;
414 }
415
416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
417}
418
419/*
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
422 *
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
428 *
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
433 */
434void
435xfs_lock_inodes(
436 xfs_inode_t **ips,
437 int inodes,
438 uint lock_mode)
439{
440 int attempts = 0, i, j, try_lock;
441 xfs_log_item_t *lp;
442
443 /*
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
448 * the asserts.
449 */
450 ASSERT(ips && inodes >= 2 && inodes <= 5);
451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 XFS_ILOCK_EXCL));
453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 XFS_ILOCK_SHARED)));
455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466
467 try_lock = 0;
468 i = 0;
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
474 continue;
475
476 /*
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
479 */
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 try_lock++;
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
503
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
510 /*
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
514 */
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
517
518 xfs_iunlock(ips[j], lock_mode);
519 }
520
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
523#ifdef DEBUG
524 xfs_lock_delays++;
525#endif
526 }
527 i = 0;
528 try_lock = 0;
529 goto again;
530 }
531
532#ifdef DEBUG
533 if (attempts) {
534 if (attempts < 5) xfs_small_retries++;
535 else if (attempts < 100) xfs_middle_retries++;
536 else xfs_lots_retries++;
537 } else {
538 xfs_locked_n++;
539 }
540#endif
541}
542
543/*
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
548 */
549void
550xfs_lock_two_inodes(
551 xfs_inode_t *ip0,
552 xfs_inode_t *ip1,
553 uint lock_mode)
554{
555 xfs_inode_t *temp;
556 int attempts = 0;
557 xfs_log_item_t *lp;
558
559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564
565 ASSERT(ip0->i_ino != ip1->i_ino);
566
567 if (ip0->i_ino > ip1->i_ino) {
568 temp = ip0;
569 ip0 = ip1;
570 ip1 = temp;
571 }
572
573 again:
574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575
576 /*
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
579 * and try again.
580 */
581 lp = (xfs_log_item_t *)ip0->i_itemp;
582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 xfs_iunlock(ip0, lock_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
587 goto again;
588 }
589 } else {
590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 }
592}
593
594
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
608 finish_wait(wq, &wait.wait);
609}
610
611STATIC uint
612_xfs_dic2xflags(
613 __uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
621 flags |= FS_XFLAG_REALTIME;
622 if (di_flags & XFS_DIFLAG_PREALLOC)
623 flags |= FS_XFLAG_PREALLOC;
624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 flags |= FS_XFLAG_IMMUTABLE;
626 if (di_flags & XFS_DIFLAG_APPEND)
627 flags |= FS_XFLAG_APPEND;
628 if (di_flags & XFS_DIFLAG_SYNC)
629 flags |= FS_XFLAG_SYNC;
630 if (di_flags & XFS_DIFLAG_NOATIME)
631 flags |= FS_XFLAG_NOATIME;
632 if (di_flags & XFS_DIFLAG_NODUMP)
633 flags |= FS_XFLAG_NODUMP;
634 if (di_flags & XFS_DIFLAG_RTINHERIT)
635 flags |= FS_XFLAG_RTINHERIT;
636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 flags |= FS_XFLAG_PROJINHERIT;
638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 flags |= FS_XFLAG_NOSYMLINKS;
640 if (di_flags & XFS_DIFLAG_EXTSIZE)
641 flags |= FS_XFLAG_EXTSIZE;
642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 flags |= FS_XFLAG_EXTSZINHERIT;
644 if (di_flags & XFS_DIFLAG_NODEFRAG)
645 flags |= FS_XFLAG_NODEFRAG;
646 if (di_flags & XFS_DIFLAG_FILESTREAM)
647 flags |= FS_XFLAG_FILESTREAM;
648 }
649
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
653 }
654
655 if (has_attr)
656 flags |= FS_XFLAG_HASATTR;
657
658 return flags;
659}
660
661uint
662xfs_ip2xflags(
663 struct xfs_inode *ip)
664{
665 struct xfs_icdinode *dic = &ip->i_d;
666
667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
668}
669
670uint
671xfs_dic2xflags(
672 struct xfs_dinode *dip)
673{
674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
676}
677
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 return -EIO;
698
699 xfs_ilock(dp, XFS_IOLOCK_SHARED);
700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 if (error)
702 goto out_unlock;
703
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
707
708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 return 0;
710
711out_free_name:
712 if (ci_name)
713 kmem_free(ci_name->name);
714out_unlock:
715 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
716 *ipp = NULL;
717 return error;
718}
719
720/*
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
725 *
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
730 * set to NULL.
731 *
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
739 *
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
745 *
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
750 */
751int
752xfs_ialloc(
753 xfs_trans_t *tp,
754 xfs_inode_t *pip,
755 umode_t mode,
756 xfs_nlink_t nlink,
757 xfs_dev_t rdev,
758 prid_t prid,
759 int okalloc,
760 xfs_buf_t **ialloc_context,
761 xfs_inode_t **ipp)
762{
763 struct xfs_mount *mp = tp->t_mountp;
764 xfs_ino_t ino;
765 xfs_inode_t *ip;
766 uint flags;
767 int error;
768 struct timespec tv;
769 struct inode *inode;
770
771 /*
772 * Call the space management code to pick
773 * the on-disk inode to be allocated.
774 */
775 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
776 ialloc_context, &ino);
777 if (error)
778 return error;
779 if (*ialloc_context || ino == NULLFSINO) {
780 *ipp = NULL;
781 return 0;
782 }
783 ASSERT(*ialloc_context == NULL);
784
785 /*
786 * Get the in-core inode with the lock held exclusively.
787 * This is because we're setting fields here we need
788 * to prevent others from looking at until we're done.
789 */
790 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
791 XFS_ILOCK_EXCL, &ip);
792 if (error)
793 return error;
794 ASSERT(ip != NULL);
795 inode = VFS_I(ip);
796
797 /*
798 * We always convert v1 inodes to v2 now - we only support filesystems
799 * with >= v2 inode capability, so there is no reason for ever leaving
800 * an inode in v1 format.
801 */
802 if (ip->i_d.di_version == 1)
803 ip->i_d.di_version = 2;
804
805 inode->i_mode = mode;
806 set_nlink(inode, nlink);
807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
809 xfs_set_projid(ip, prid);
810
811 if (pip && XFS_INHERIT_GID(pip)) {
812 ip->i_d.di_gid = pip->i_d.di_gid;
813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 inode->i_mode |= S_ISGID;
815 }
816
817 /*
818 * If the group ID of the new file does not match the effective group
819 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
820 * (and only if the irix_sgid_inherit compatibility variable is set).
821 */
822 if ((irix_sgid_inherit) &&
823 (inode->i_mode & S_ISGID) &&
824 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
825 inode->i_mode &= ~S_ISGID;
826
827 ip->i_d.di_size = 0;
828 ip->i_d.di_nextents = 0;
829 ASSERT(ip->i_d.di_nblocks == 0);
830
831 tv = current_fs_time(mp->m_super);
832 inode->i_mtime = tv;
833 inode->i_atime = tv;
834 inode->i_ctime = tv;
835
836 ip->i_d.di_extsize = 0;
837 ip->i_d.di_dmevmask = 0;
838 ip->i_d.di_dmstate = 0;
839 ip->i_d.di_flags = 0;
840
841 if (ip->i_d.di_version == 3) {
842 inode->i_version = 1;
843 ip->i_d.di_flags2 = 0;
844 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
845 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
846 }
847
848
849 flags = XFS_ILOG_CORE;
850 switch (mode & S_IFMT) {
851 case S_IFIFO:
852 case S_IFCHR:
853 case S_IFBLK:
854 case S_IFSOCK:
855 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
856 ip->i_df.if_u2.if_rdev = rdev;
857 ip->i_df.if_flags = 0;
858 flags |= XFS_ILOG_DEV;
859 break;
860 case S_IFREG:
861 case S_IFDIR:
862 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
863 uint64_t di_flags2 = 0;
864 uint di_flags = 0;
865
866 if (S_ISDIR(mode)) {
867 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
868 di_flags |= XFS_DIFLAG_RTINHERIT;
869 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
870 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
871 ip->i_d.di_extsize = pip->i_d.di_extsize;
872 }
873 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
874 di_flags |= XFS_DIFLAG_PROJINHERIT;
875 } else if (S_ISREG(mode)) {
876 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
877 di_flags |= XFS_DIFLAG_REALTIME;
878 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
879 di_flags |= XFS_DIFLAG_EXTSIZE;
880 ip->i_d.di_extsize = pip->i_d.di_extsize;
881 }
882 }
883 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
884 xfs_inherit_noatime)
885 di_flags |= XFS_DIFLAG_NOATIME;
886 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
887 xfs_inherit_nodump)
888 di_flags |= XFS_DIFLAG_NODUMP;
889 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
890 xfs_inherit_sync)
891 di_flags |= XFS_DIFLAG_SYNC;
892 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
893 xfs_inherit_nosymlinks)
894 di_flags |= XFS_DIFLAG_NOSYMLINKS;
895 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
896 xfs_inherit_nodefrag)
897 di_flags |= XFS_DIFLAG_NODEFRAG;
898 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
899 di_flags |= XFS_DIFLAG_FILESTREAM;
900 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
901 di_flags2 |= XFS_DIFLAG2_DAX;
902
903 ip->i_d.di_flags |= di_flags;
904 ip->i_d.di_flags2 |= di_flags2;
905 }
906 /* FALLTHROUGH */
907 case S_IFLNK:
908 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
909 ip->i_df.if_flags = XFS_IFEXTENTS;
910 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
911 ip->i_df.if_u1.if_extents = NULL;
912 break;
913 default:
914 ASSERT(0);
915 }
916 /*
917 * Attribute fork settings for new inode.
918 */
919 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
920 ip->i_d.di_anextents = 0;
921
922 /*
923 * Log the new values stuffed into the inode.
924 */
925 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
926 xfs_trans_log_inode(tp, ip, flags);
927
928 /* now that we have an i_mode we can setup the inode structure */
929 xfs_setup_inode(ip);
930
931 *ipp = ip;
932 return 0;
933}
934
935/*
936 * Allocates a new inode from disk and return a pointer to the
937 * incore copy. This routine will internally commit the current
938 * transaction and allocate a new one if the Space Manager needed
939 * to do an allocation to replenish the inode free-list.
940 *
941 * This routine is designed to be called from xfs_create and
942 * xfs_create_dir.
943 *
944 */
945int
946xfs_dir_ialloc(
947 xfs_trans_t **tpp, /* input: current transaction;
948 output: may be a new transaction. */
949 xfs_inode_t *dp, /* directory within whose allocate
950 the inode. */
951 umode_t mode,
952 xfs_nlink_t nlink,
953 xfs_dev_t rdev,
954 prid_t prid, /* project id */
955 int okalloc, /* ok to allocate new space */
956 xfs_inode_t **ipp, /* pointer to inode; it will be
957 locked. */
958 int *committed)
959
960{
961 xfs_trans_t *tp;
962 xfs_inode_t *ip;
963 xfs_buf_t *ialloc_context = NULL;
964 int code;
965 void *dqinfo;
966 uint tflags;
967
968 tp = *tpp;
969 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
970
971 /*
972 * xfs_ialloc will return a pointer to an incore inode if
973 * the Space Manager has an available inode on the free
974 * list. Otherwise, it will do an allocation and replenish
975 * the freelist. Since we can only do one allocation per
976 * transaction without deadlocks, we will need to commit the
977 * current transaction and start a new one. We will then
978 * need to call xfs_ialloc again to get the inode.
979 *
980 * If xfs_ialloc did an allocation to replenish the freelist,
981 * it returns the bp containing the head of the freelist as
982 * ialloc_context. We will hold a lock on it across the
983 * transaction commit so that no other process can steal
984 * the inode(s) that we've just allocated.
985 */
986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
987 &ialloc_context, &ip);
988
989 /*
990 * Return an error if we were unable to allocate a new inode.
991 * This should only happen if we run out of space on disk or
992 * encounter a disk error.
993 */
994 if (code) {
995 *ipp = NULL;
996 return code;
997 }
998 if (!ialloc_context && !ip) {
999 *ipp = NULL;
1000 return -ENOSPC;
1001 }
1002
1003 /*
1004 * If the AGI buffer is non-NULL, then we were unable to get an
1005 * inode in one operation. We need to commit the current
1006 * transaction and call xfs_ialloc() again. It is guaranteed
1007 * to succeed the second time.
1008 */
1009 if (ialloc_context) {
1010 /*
1011 * Normally, xfs_trans_commit releases all the locks.
1012 * We call bhold to hang on to the ialloc_context across
1013 * the commit. Holding this buffer prevents any other
1014 * processes from doing any allocations in this
1015 * allocation group.
1016 */
1017 xfs_trans_bhold(tp, ialloc_context);
1018
1019 /*
1020 * We want the quota changes to be associated with the next
1021 * transaction, NOT this one. So, detach the dqinfo from this
1022 * and attach it to the next transaction.
1023 */
1024 dqinfo = NULL;
1025 tflags = 0;
1026 if (tp->t_dqinfo) {
1027 dqinfo = (void *)tp->t_dqinfo;
1028 tp->t_dqinfo = NULL;
1029 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031 }
1032
1033 code = xfs_trans_roll(&tp, 0);
1034 if (committed != NULL)
1035 *committed = 1;
1036
1037 /*
1038 * Re-attach the quota info that we detached from prev trx.
1039 */
1040 if (dqinfo) {
1041 tp->t_dqinfo = dqinfo;
1042 tp->t_flags |= tflags;
1043 }
1044
1045 if (code) {
1046 xfs_buf_relse(ialloc_context);
1047 *tpp = tp;
1048 *ipp = NULL;
1049 return code;
1050 }
1051 xfs_trans_bjoin(tp, ialloc_context);
1052
1053 /*
1054 * Call ialloc again. Since we've locked out all
1055 * other allocations in this allocation group,
1056 * this call should always succeed.
1057 */
1058 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059 okalloc, &ialloc_context, &ip);
1060
1061 /*
1062 * If we get an error at this point, return to the caller
1063 * so that the current transaction can be aborted.
1064 */
1065 if (code) {
1066 *tpp = tp;
1067 *ipp = NULL;
1068 return code;
1069 }
1070 ASSERT(!ialloc_context && ip);
1071
1072 } else {
1073 if (committed != NULL)
1074 *committed = 0;
1075 }
1076
1077 *ipp = ip;
1078 *tpp = tp;
1079
1080 return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change. If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int /* error */
1089xfs_droplink(
1090 xfs_trans_t *tp,
1091 xfs_inode_t *ip)
1092{
1093 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095 drop_nlink(VFS_I(ip));
1096 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098 if (VFS_I(ip)->i_nlink)
1099 return 0;
1100
1101 return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109 xfs_trans_t *tp,
1110 xfs_inode_t *ip)
1111{
1112 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114 ASSERT(ip->i_d.di_version > 1);
1115 inc_nlink(VFS_I(ip));
1116 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117 return 0;
1118}
1119
1120int
1121xfs_create(
1122 xfs_inode_t *dp,
1123 struct xfs_name *name,
1124 umode_t mode,
1125 xfs_dev_t rdev,
1126 xfs_inode_t **ipp)
1127{
1128 int is_dir = S_ISDIR(mode);
1129 struct xfs_mount *mp = dp->i_mount;
1130 struct xfs_inode *ip = NULL;
1131 struct xfs_trans *tp = NULL;
1132 int error;
1133 xfs_bmap_free_t free_list;
1134 xfs_fsblock_t first_block;
1135 bool unlock_dp_on_error = false;
1136 prid_t prid;
1137 struct xfs_dquot *udqp = NULL;
1138 struct xfs_dquot *gdqp = NULL;
1139 struct xfs_dquot *pdqp = NULL;
1140 struct xfs_trans_res *tres;
1141 uint resblks;
1142
1143 trace_xfs_create(dp, name);
1144
1145 if (XFS_FORCED_SHUTDOWN(mp))
1146 return -EIO;
1147
1148 prid = xfs_get_initial_prid(dp);
1149
1150 /*
1151 * Make sure that we have allocated dquot(s) on disk.
1152 */
1153 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154 xfs_kgid_to_gid(current_fsgid()), prid,
1155 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156 &udqp, &gdqp, &pdqp);
1157 if (error)
1158 return error;
1159
1160 if (is_dir) {
1161 rdev = 0;
1162 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163 tres = &M_RES(mp)->tr_mkdir;
1164 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165 } else {
1166 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167 tres = &M_RES(mp)->tr_create;
1168 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169 }
1170
1171 /*
1172 * Initially assume that the file does not exist and
1173 * reserve the resources for that case. If that is not
1174 * the case we'll drop the one we have and get a more
1175 * appropriate transaction later.
1176 */
1177 error = xfs_trans_reserve(tp, tres, resblks, 0);
1178 if (error == -ENOSPC) {
1179 /* flush outstanding delalloc blocks and retry */
1180 xfs_flush_inodes(mp);
1181 error = xfs_trans_reserve(tp, tres, resblks, 0);
1182 }
1183 if (error == -ENOSPC) {
1184 /* No space at all so try a "no-allocation" reservation */
1185 resblks = 0;
1186 error = xfs_trans_reserve(tp, tres, 0, 0);
1187 }
1188 if (error)
1189 goto out_trans_cancel;
1190
1191
1192 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194 unlock_dp_on_error = true;
1195
1196 xfs_bmap_init(&free_list, &first_block);
1197
1198 /*
1199 * Reserve disk quota and the inode.
1200 */
1201 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202 pdqp, resblks, 1, 0);
1203 if (error)
1204 goto out_trans_cancel;
1205
1206 if (!resblks) {
1207 error = xfs_dir_canenter(tp, dp, name);
1208 if (error)
1209 goto out_trans_cancel;
1210 }
1211
1212 /*
1213 * A newly created regular or special file just has one directory
1214 * entry pointing to them, but a directory also the "." entry
1215 * pointing to itself.
1216 */
1217 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218 prid, resblks > 0, &ip, NULL);
1219 if (error)
1220 goto out_trans_cancel;
1221
1222 /*
1223 * Now we join the directory inode to the transaction. We do not do it
1224 * earlier because xfs_dir_ialloc might commit the previous transaction
1225 * (and release all the locks). An error from here on will result in
1226 * the transaction cancel unlocking dp so don't do it explicitly in the
1227 * error path.
1228 */
1229 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230 unlock_dp_on_error = false;
1231
1232 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233 &first_block, &free_list, resblks ?
1234 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235 if (error) {
1236 ASSERT(error != -ENOSPC);
1237 goto out_trans_cancel;
1238 }
1239 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242 if (is_dir) {
1243 error = xfs_dir_init(tp, ip, dp);
1244 if (error)
1245 goto out_bmap_cancel;
1246
1247 error = xfs_bumplink(tp, dp);
1248 if (error)
1249 goto out_bmap_cancel;
1250 }
1251
1252 /*
1253 * If this is a synchronous mount, make sure that the
1254 * create transaction goes to disk before returning to
1255 * the user.
1256 */
1257 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258 xfs_trans_set_sync(tp);
1259
1260 /*
1261 * Attach the dquot(s) to the inodes and modify them incore.
1262 * These ids of the inode couldn't have changed since the new
1263 * inode has been locked ever since it was created.
1264 */
1265 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
1267 error = xfs_bmap_finish(&tp, &free_list, NULL);
1268 if (error)
1269 goto out_bmap_cancel;
1270
1271 error = xfs_trans_commit(tp);
1272 if (error)
1273 goto out_release_inode;
1274
1275 xfs_qm_dqrele(udqp);
1276 xfs_qm_dqrele(gdqp);
1277 xfs_qm_dqrele(pdqp);
1278
1279 *ipp = ip;
1280 return 0;
1281
1282 out_bmap_cancel:
1283 xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285 xfs_trans_cancel(tp);
1286 out_release_inode:
1287 /*
1288 * Wait until after the current transaction is aborted to finish the
1289 * setup of the inode and release the inode. This prevents recursive
1290 * transactions and deadlocks from xfs_inactive.
1291 */
1292 if (ip) {
1293 xfs_finish_inode_setup(ip);
1294 IRELE(ip);
1295 }
1296
1297 xfs_qm_dqrele(udqp);
1298 xfs_qm_dqrele(gdqp);
1299 xfs_qm_dqrele(pdqp);
1300
1301 if (unlock_dp_on_error)
1302 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303 return error;
1304}
1305
1306int
1307xfs_create_tmpfile(
1308 struct xfs_inode *dp,
1309 struct dentry *dentry,
1310 umode_t mode,
1311 struct xfs_inode **ipp)
1312{
1313 struct xfs_mount *mp = dp->i_mount;
1314 struct xfs_inode *ip = NULL;
1315 struct xfs_trans *tp = NULL;
1316 int error;
1317 prid_t prid;
1318 struct xfs_dquot *udqp = NULL;
1319 struct xfs_dquot *gdqp = NULL;
1320 struct xfs_dquot *pdqp = NULL;
1321 struct xfs_trans_res *tres;
1322 uint resblks;
1323
1324 if (XFS_FORCED_SHUTDOWN(mp))
1325 return -EIO;
1326
1327 prid = xfs_get_initial_prid(dp);
1328
1329 /*
1330 * Make sure that we have allocated dquot(s) on disk.
1331 */
1332 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333 xfs_kgid_to_gid(current_fsgid()), prid,
1334 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335 &udqp, &gdqp, &pdqp);
1336 if (error)
1337 return error;
1338
1339 resblks = XFS_IALLOC_SPACE_RES(mp);
1340 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341
1342 tres = &M_RES(mp)->tr_create_tmpfile;
1343 error = xfs_trans_reserve(tp, tres, resblks, 0);
1344 if (error == -ENOSPC) {
1345 /* No space at all so try a "no-allocation" reservation */
1346 resblks = 0;
1347 error = xfs_trans_reserve(tp, tres, 0, 0);
1348 }
1349 if (error)
1350 goto out_trans_cancel;
1351
1352 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353 pdqp, resblks, 1, 0);
1354 if (error)
1355 goto out_trans_cancel;
1356
1357 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358 prid, resblks > 0, &ip, NULL);
1359 if (error)
1360 goto out_trans_cancel;
1361
1362 if (mp->m_flags & XFS_MOUNT_WSYNC)
1363 xfs_trans_set_sync(tp);
1364
1365 /*
1366 * Attach the dquot(s) to the inodes and modify them incore.
1367 * These ids of the inode couldn't have changed since the new
1368 * inode has been locked ever since it was created.
1369 */
1370 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371
1372 error = xfs_iunlink(tp, ip);
1373 if (error)
1374 goto out_trans_cancel;
1375
1376 error = xfs_trans_commit(tp);
1377 if (error)
1378 goto out_release_inode;
1379
1380 xfs_qm_dqrele(udqp);
1381 xfs_qm_dqrele(gdqp);
1382 xfs_qm_dqrele(pdqp);
1383
1384 *ipp = ip;
1385 return 0;
1386
1387 out_trans_cancel:
1388 xfs_trans_cancel(tp);
1389 out_release_inode:
1390 /*
1391 * Wait until after the current transaction is aborted to finish the
1392 * setup of the inode and release the inode. This prevents recursive
1393 * transactions and deadlocks from xfs_inactive.
1394 */
1395 if (ip) {
1396 xfs_finish_inode_setup(ip);
1397 IRELE(ip);
1398 }
1399
1400 xfs_qm_dqrele(udqp);
1401 xfs_qm_dqrele(gdqp);
1402 xfs_qm_dqrele(pdqp);
1403
1404 return error;
1405}
1406
1407int
1408xfs_link(
1409 xfs_inode_t *tdp,
1410 xfs_inode_t *sip,
1411 struct xfs_name *target_name)
1412{
1413 xfs_mount_t *mp = tdp->i_mount;
1414 xfs_trans_t *tp;
1415 int error;
1416 xfs_bmap_free_t free_list;
1417 xfs_fsblock_t first_block;
1418 int resblks;
1419
1420 trace_xfs_link(tdp, target_name);
1421
1422 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423
1424 if (XFS_FORCED_SHUTDOWN(mp))
1425 return -EIO;
1426
1427 error = xfs_qm_dqattach(sip, 0);
1428 if (error)
1429 goto std_return;
1430
1431 error = xfs_qm_dqattach(tdp, 0);
1432 if (error)
1433 goto std_return;
1434
1435 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438 if (error == -ENOSPC) {
1439 resblks = 0;
1440 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441 }
1442 if (error)
1443 goto error_return;
1444
1445 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447
1448 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1450
1451 /*
1452 * If we are using project inheritance, we only allow hard link
1453 * creation in our tree when the project IDs are the same; else
1454 * the tree quota mechanism could be circumvented.
1455 */
1456 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458 error = -EXDEV;
1459 goto error_return;
1460 }
1461
1462 if (!resblks) {
1463 error = xfs_dir_canenter(tp, tdp, target_name);
1464 if (error)
1465 goto error_return;
1466 }
1467
1468 xfs_bmap_init(&free_list, &first_block);
1469
1470 /*
1471 * Handle initial link state of O_TMPFILE inode
1472 */
1473 if (VFS_I(sip)->i_nlink == 0) {
1474 error = xfs_iunlink_remove(tp, sip);
1475 if (error)
1476 goto error_return;
1477 }
1478
1479 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480 &first_block, &free_list, resblks);
1481 if (error)
1482 goto error_return;
1483 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485
1486 error = xfs_bumplink(tp, sip);
1487 if (error)
1488 goto error_return;
1489
1490 /*
1491 * If this is a synchronous mount, make sure that the
1492 * link transaction goes to disk before returning to
1493 * the user.
1494 */
1495 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496 xfs_trans_set_sync(tp);
1497
1498 error = xfs_bmap_finish(&tp, &free_list, NULL);
1499 if (error) {
1500 xfs_bmap_cancel(&free_list);
1501 goto error_return;
1502 }
1503
1504 return xfs_trans_commit(tp);
1505
1506 error_return:
1507 xfs_trans_cancel(tp);
1508 std_return:
1509 return error;
1510}
1511
1512/*
1513 * Free up the underlying blocks past new_size. The new size must be smaller
1514 * than the current size. This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1516 *
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here. Some transaction will be
1521 * returned to the caller to be committed. The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction. On return the inode
1524 * will be "held" within the returned transaction. This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1526 *
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not. We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1532 */
1533int
1534xfs_itruncate_extents(
1535 struct xfs_trans **tpp,
1536 struct xfs_inode *ip,
1537 int whichfork,
1538 xfs_fsize_t new_size)
1539{
1540 struct xfs_mount *mp = ip->i_mount;
1541 struct xfs_trans *tp = *tpp;
1542 xfs_bmap_free_t free_list;
1543 xfs_fsblock_t first_block;
1544 xfs_fileoff_t first_unmap_block;
1545 xfs_fileoff_t last_block;
1546 xfs_filblks_t unmap_len;
1547 int error = 0;
1548 int done = 0;
1549
1550 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553 ASSERT(new_size <= XFS_ISIZE(ip));
1554 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555 ASSERT(ip->i_itemp != NULL);
1556 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558
1559 trace_xfs_itruncate_extents_start(ip, new_size);
1560
1561 /*
1562 * Since it is possible for space to become allocated beyond
1563 * the end of the file (in a crash where the space is allocated
1564 * but the inode size is not yet updated), simply remove any
1565 * blocks which show up between the new EOF and the maximum
1566 * possible file size. If the first block to be removed is
1567 * beyond the maximum file size (ie it is the same as last_block),
1568 * then there is nothing to do.
1569 */
1570 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572 if (first_unmap_block == last_block)
1573 return 0;
1574
1575 ASSERT(first_unmap_block < last_block);
1576 unmap_len = last_block - first_unmap_block + 1;
1577 while (!done) {
1578 xfs_bmap_init(&free_list, &first_block);
1579 error = xfs_bunmapi(tp, ip,
1580 first_unmap_block, unmap_len,
1581 xfs_bmapi_aflag(whichfork),
1582 XFS_ITRUNC_MAX_EXTENTS,
1583 &first_block, &free_list,
1584 &done);
1585 if (error)
1586 goto out_bmap_cancel;
1587
1588 /*
1589 * Duplicate the transaction that has the permanent
1590 * reservation and commit the old transaction.
1591 */
1592 error = xfs_bmap_finish(&tp, &free_list, ip);
1593 if (error)
1594 goto out_bmap_cancel;
1595
1596 error = xfs_trans_roll(&tp, ip);
1597 if (error)
1598 goto out;
1599 }
1600
1601 /*
1602 * Always re-log the inode so that our permanent transaction can keep
1603 * on rolling it forward in the log.
1604 */
1605 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606
1607 trace_xfs_itruncate_extents_end(ip, new_size);
1608
1609out:
1610 *tpp = tp;
1611 return error;
1612out_bmap_cancel:
1613 /*
1614 * If the bunmapi call encounters an error, return to the caller where
1615 * the transaction can be properly aborted. We just need to make sure
1616 * we're not holding any resources that we were not when we came in.
1617 */
1618 xfs_bmap_cancel(&free_list);
1619 goto out;
1620}
1621
1622int
1623xfs_release(
1624 xfs_inode_t *ip)
1625{
1626 xfs_mount_t *mp = ip->i_mount;
1627 int error;
1628
1629 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630 return 0;
1631
1632 /* If this is a read-only mount, don't do this (would generate I/O) */
1633 if (mp->m_flags & XFS_MOUNT_RDONLY)
1634 return 0;
1635
1636 if (!XFS_FORCED_SHUTDOWN(mp)) {
1637 int truncated;
1638
1639 /*
1640 * If we previously truncated this file and removed old data
1641 * in the process, we want to initiate "early" writeout on
1642 * the last close. This is an attempt to combat the notorious
1643 * NULL files problem which is particularly noticeable from a
1644 * truncate down, buffered (re-)write (delalloc), followed by
1645 * a crash. What we are effectively doing here is
1646 * significantly reducing the time window where we'd otherwise
1647 * be exposed to that problem.
1648 */
1649 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650 if (truncated) {
1651 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652 if (ip->i_delayed_blks > 0) {
1653 error = filemap_flush(VFS_I(ip)->i_mapping);
1654 if (error)
1655 return error;
1656 }
1657 }
1658 }
1659
1660 if (VFS_I(ip)->i_nlink == 0)
1661 return 0;
1662
1663 if (xfs_can_free_eofblocks(ip, false)) {
1664
1665 /*
1666 * If we can't get the iolock just skip truncating the blocks
1667 * past EOF because we could deadlock with the mmap_sem
1668 * otherwise. We'll get another chance to drop them once the
1669 * last reference to the inode is dropped, so we'll never leak
1670 * blocks permanently.
1671 *
1672 * Further, check if the inode is being opened, written and
1673 * closed frequently and we have delayed allocation blocks
1674 * outstanding (e.g. streaming writes from the NFS server),
1675 * truncating the blocks past EOF will cause fragmentation to
1676 * occur.
1677 *
1678 * In this case don't do the truncation, either, but we have to
1679 * be careful how we detect this case. Blocks beyond EOF show
1680 * up as i_delayed_blks even when the inode is clean, so we
1681 * need to truncate them away first before checking for a dirty
1682 * release. Hence on the first dirty close we will still remove
1683 * the speculative allocation, but after that we will leave it
1684 * in place.
1685 */
1686 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687 return 0;
1688
1689 error = xfs_free_eofblocks(mp, ip, true);
1690 if (error && error != -EAGAIN)
1691 return error;
1692
1693 /* delalloc blocks after truncation means it really is dirty */
1694 if (ip->i_delayed_blks)
1695 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696 }
1697 return 0;
1698}
1699
1700/*
1701 * xfs_inactive_truncate
1702 *
1703 * Called to perform a truncate when an inode becomes unlinked.
1704 */
1705STATIC int
1706xfs_inactive_truncate(
1707 struct xfs_inode *ip)
1708{
1709 struct xfs_mount *mp = ip->i_mount;
1710 struct xfs_trans *tp;
1711 int error;
1712
1713 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715 if (error) {
1716 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717 xfs_trans_cancel(tp);
1718 return error;
1719 }
1720
1721 xfs_ilock(ip, XFS_ILOCK_EXCL);
1722 xfs_trans_ijoin(tp, ip, 0);
1723
1724 /*
1725 * Log the inode size first to prevent stale data exposure in the event
1726 * of a system crash before the truncate completes. See the related
1727 * comment in xfs_setattr_size() for details.
1728 */
1729 ip->i_d.di_size = 0;
1730 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731
1732 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733 if (error)
1734 goto error_trans_cancel;
1735
1736 ASSERT(ip->i_d.di_nextents == 0);
1737
1738 error = xfs_trans_commit(tp);
1739 if (error)
1740 goto error_unlock;
1741
1742 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743 return 0;
1744
1745error_trans_cancel:
1746 xfs_trans_cancel(tp);
1747error_unlock:
1748 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749 return error;
1750}
1751
1752/*
1753 * xfs_inactive_ifree()
1754 *
1755 * Perform the inode free when an inode is unlinked.
1756 */
1757STATIC int
1758xfs_inactive_ifree(
1759 struct xfs_inode *ip)
1760{
1761 xfs_bmap_free_t free_list;
1762 xfs_fsblock_t first_block;
1763 struct xfs_mount *mp = ip->i_mount;
1764 struct xfs_trans *tp;
1765 int error;
1766
1767 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768
1769 /*
1770 * The ifree transaction might need to allocate blocks for record
1771 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772 * allow ifree to dip into the reserved block pool if necessary.
1773 *
1774 * Freeing large sets of inodes generally means freeing inode chunks,
1775 * directory and file data blocks, so this should be relatively safe.
1776 * Only under severe circumstances should it be possible to free enough
1777 * inodes to exhaust the reserve block pool via finobt expansion while
1778 * at the same time not creating free space in the filesystem.
1779 *
1780 * Send a warning if the reservation does happen to fail, as the inode
1781 * now remains allocated and sits on the unlinked list until the fs is
1782 * repaired.
1783 */
1784 tp->t_flags |= XFS_TRANS_RESERVE;
1785 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786 XFS_IFREE_SPACE_RES(mp), 0);
1787 if (error) {
1788 if (error == -ENOSPC) {
1789 xfs_warn_ratelimited(mp,
1790 "Failed to remove inode(s) from unlinked list. "
1791 "Please free space, unmount and run xfs_repair.");
1792 } else {
1793 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794 }
1795 xfs_trans_cancel(tp);
1796 return error;
1797 }
1798
1799 xfs_ilock(ip, XFS_ILOCK_EXCL);
1800 xfs_trans_ijoin(tp, ip, 0);
1801
1802 xfs_bmap_init(&free_list, &first_block);
1803 error = xfs_ifree(tp, ip, &free_list);
1804 if (error) {
1805 /*
1806 * If we fail to free the inode, shut down. The cancel
1807 * might do that, we need to make sure. Otherwise the
1808 * inode might be lost for a long time or forever.
1809 */
1810 if (!XFS_FORCED_SHUTDOWN(mp)) {
1811 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812 __func__, error);
1813 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814 }
1815 xfs_trans_cancel(tp);
1816 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817 return error;
1818 }
1819
1820 /*
1821 * Credit the quota account(s). The inode is gone.
1822 */
1823 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824
1825 /*
1826 * Just ignore errors at this point. There is nothing we can do except
1827 * to try to keep going. Make sure it's not a silent error.
1828 */
1829 error = xfs_bmap_finish(&tp, &free_list, NULL);
1830 if (error) {
1831 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832 __func__, error);
1833 xfs_bmap_cancel(&free_list);
1834 }
1835 error = xfs_trans_commit(tp);
1836 if (error)
1837 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838 __func__, error);
1839
1840 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841 return 0;
1842}
1843
1844/*
1845 * xfs_inactive
1846 *
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero. If the file has been unlinked, then it must
1849 * now be truncated. Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1851 */
1852void
1853xfs_inactive(
1854 xfs_inode_t *ip)
1855{
1856 struct xfs_mount *mp;
1857 int error;
1858 int truncate = 0;
1859
1860 /*
1861 * If the inode is already free, then there can be nothing
1862 * to clean up here.
1863 */
1864 if (VFS_I(ip)->i_mode == 0) {
1865 ASSERT(ip->i_df.if_real_bytes == 0);
1866 ASSERT(ip->i_df.if_broot_bytes == 0);
1867 return;
1868 }
1869
1870 mp = ip->i_mount;
1871
1872 /* If this is a read-only mount, don't do this (would generate I/O) */
1873 if (mp->m_flags & XFS_MOUNT_RDONLY)
1874 return;
1875
1876 if (VFS_I(ip)->i_nlink != 0) {
1877 /*
1878 * force is true because we are evicting an inode from the
1879 * cache. Post-eof blocks must be freed, lest we end up with
1880 * broken free space accounting.
1881 */
1882 if (xfs_can_free_eofblocks(ip, true))
1883 xfs_free_eofblocks(mp, ip, false);
1884
1885 return;
1886 }
1887
1888 if (S_ISREG(VFS_I(ip)->i_mode) &&
1889 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891 truncate = 1;
1892
1893 error = xfs_qm_dqattach(ip, 0);
1894 if (error)
1895 return;
1896
1897 if (S_ISLNK(VFS_I(ip)->i_mode))
1898 error = xfs_inactive_symlink(ip);
1899 else if (truncate)
1900 error = xfs_inactive_truncate(ip);
1901 if (error)
1902 return;
1903
1904 /*
1905 * If there are attributes associated with the file then blow them away
1906 * now. The code calls a routine that recursively deconstructs the
1907 * attribute fork. If also blows away the in-core attribute fork.
1908 */
1909 if (XFS_IFORK_Q(ip)) {
1910 error = xfs_attr_inactive(ip);
1911 if (error)
1912 return;
1913 }
1914
1915 ASSERT(!ip->i_afp);
1916 ASSERT(ip->i_d.di_anextents == 0);
1917 ASSERT(ip->i_d.di_forkoff == 0);
1918
1919 /*
1920 * Free the inode.
1921 */
1922 error = xfs_inactive_ifree(ip);
1923 if (error)
1924 return;
1925
1926 /*
1927 * Release the dquots held by inode, if any.
1928 */
1929 xfs_qm_dqdetach(ip);
1930}
1931
1932/*
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
1938 *
1939 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1940 * list when the inode is freed.
1941 */
1942STATIC int
1943xfs_iunlink(
1944 struct xfs_trans *tp,
1945 struct xfs_inode *ip)
1946{
1947 xfs_mount_t *mp = tp->t_mountp;
1948 xfs_agi_t *agi;
1949 xfs_dinode_t *dip;
1950 xfs_buf_t *agibp;
1951 xfs_buf_t *ibp;
1952 xfs_agino_t agino;
1953 short bucket_index;
1954 int offset;
1955 int error;
1956
1957 ASSERT(VFS_I(ip)->i_mode != 0);
1958
1959 /*
1960 * Get the agi buffer first. It ensures lock ordering
1961 * on the list.
1962 */
1963 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964 if (error)
1965 return error;
1966 agi = XFS_BUF_TO_AGI(agibp);
1967
1968 /*
1969 * Get the index into the agi hash table for the
1970 * list this inode will go on.
1971 */
1972 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973 ASSERT(agino != 0);
1974 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975 ASSERT(agi->agi_unlinked[bucket_index]);
1976 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1977
1978 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979 /*
1980 * There is already another inode in the bucket we need
1981 * to add ourselves to. Add us at the front of the list.
1982 * Here we put the head pointer into our next pointer,
1983 * and then we fall through to point the head at us.
1984 */
1985 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986 0, 0);
1987 if (error)
1988 return error;
1989
1990 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992 offset = ip->i_imap.im_boffset +
1993 offsetof(xfs_dinode_t, di_next_unlinked);
1994
1995 /* need to recalc the inode CRC if appropriate */
1996 xfs_dinode_calc_crc(mp, dip);
1997
1998 xfs_trans_inode_buf(tp, ibp);
1999 xfs_trans_log_buf(tp, ibp, offset,
2000 (offset + sizeof(xfs_agino_t) - 1));
2001 xfs_inobp_check(mp, ibp);
2002 }
2003
2004 /*
2005 * Point the bucket head pointer at the inode being inserted.
2006 */
2007 ASSERT(agino != 0);
2008 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009 offset = offsetof(xfs_agi_t, agi_unlinked) +
2010 (sizeof(xfs_agino_t) * bucket_index);
2011 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012 xfs_trans_log_buf(tp, agibp, offset,
2013 (offset + sizeof(xfs_agino_t) - 1));
2014 return 0;
2015}
2016
2017/*
2018 * Pull the on-disk inode from the AGI unlinked list.
2019 */
2020STATIC int
2021xfs_iunlink_remove(
2022 xfs_trans_t *tp,
2023 xfs_inode_t *ip)
2024{
2025 xfs_ino_t next_ino;
2026 xfs_mount_t *mp;
2027 xfs_agi_t *agi;
2028 xfs_dinode_t *dip;
2029 xfs_buf_t *agibp;
2030 xfs_buf_t *ibp;
2031 xfs_agnumber_t agno;
2032 xfs_agino_t agino;
2033 xfs_agino_t next_agino;
2034 xfs_buf_t *last_ibp;
2035 xfs_dinode_t *last_dip = NULL;
2036 short bucket_index;
2037 int offset, last_offset = 0;
2038 int error;
2039
2040 mp = tp->t_mountp;
2041 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2042
2043 /*
2044 * Get the agi buffer first. It ensures lock ordering
2045 * on the list.
2046 */
2047 error = xfs_read_agi(mp, tp, agno, &agibp);
2048 if (error)
2049 return error;
2050
2051 agi = XFS_BUF_TO_AGI(agibp);
2052
2053 /*
2054 * Get the index into the agi hash table for the
2055 * list this inode will go on.
2056 */
2057 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058 ASSERT(agino != 0);
2059 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061 ASSERT(agi->agi_unlinked[bucket_index]);
2062
2063 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064 /*
2065 * We're at the head of the list. Get the inode's on-disk
2066 * buffer to see if there is anyone after us on the list.
2067 * Only modify our next pointer if it is not already NULLAGINO.
2068 * This saves us the overhead of dealing with the buffer when
2069 * there is no need to change it.
2070 */
2071 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072 0, 0);
2073 if (error) {
2074 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075 __func__, error);
2076 return error;
2077 }
2078 next_agino = be32_to_cpu(dip->di_next_unlinked);
2079 ASSERT(next_agino != 0);
2080 if (next_agino != NULLAGINO) {
2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082 offset = ip->i_imap.im_boffset +
2083 offsetof(xfs_dinode_t, di_next_unlinked);
2084
2085 /* need to recalc the inode CRC if appropriate */
2086 xfs_dinode_calc_crc(mp, dip);
2087
2088 xfs_trans_inode_buf(tp, ibp);
2089 xfs_trans_log_buf(tp, ibp, offset,
2090 (offset + sizeof(xfs_agino_t) - 1));
2091 xfs_inobp_check(mp, ibp);
2092 } else {
2093 xfs_trans_brelse(tp, ibp);
2094 }
2095 /*
2096 * Point the bucket head pointer at the next inode.
2097 */
2098 ASSERT(next_agino != 0);
2099 ASSERT(next_agino != agino);
2100 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101 offset = offsetof(xfs_agi_t, agi_unlinked) +
2102 (sizeof(xfs_agino_t) * bucket_index);
2103 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104 xfs_trans_log_buf(tp, agibp, offset,
2105 (offset + sizeof(xfs_agino_t) - 1));
2106 } else {
2107 /*
2108 * We need to search the list for the inode being freed.
2109 */
2110 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111 last_ibp = NULL;
2112 while (next_agino != agino) {
2113 struct xfs_imap imap;
2114
2115 if (last_ibp)
2116 xfs_trans_brelse(tp, last_ibp);
2117
2118 imap.im_blkno = 0;
2119 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120
2121 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122 if (error) {
2123 xfs_warn(mp,
2124 "%s: xfs_imap returned error %d.",
2125 __func__, error);
2126 return error;
2127 }
2128
2129 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130 &last_ibp, 0, 0);
2131 if (error) {
2132 xfs_warn(mp,
2133 "%s: xfs_imap_to_bp returned error %d.",
2134 __func__, error);
2135 return error;
2136 }
2137
2138 last_offset = imap.im_boffset;
2139 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140 ASSERT(next_agino != NULLAGINO);
2141 ASSERT(next_agino != 0);
2142 }
2143
2144 /*
2145 * Now last_ibp points to the buffer previous to us on the
2146 * unlinked list. Pull us from the list.
2147 */
2148 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149 0, 0);
2150 if (error) {
2151 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152 __func__, error);
2153 return error;
2154 }
2155 next_agino = be32_to_cpu(dip->di_next_unlinked);
2156 ASSERT(next_agino != 0);
2157 ASSERT(next_agino != agino);
2158 if (next_agino != NULLAGINO) {
2159 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160 offset = ip->i_imap.im_boffset +
2161 offsetof(xfs_dinode_t, di_next_unlinked);
2162
2163 /* need to recalc the inode CRC if appropriate */
2164 xfs_dinode_calc_crc(mp, dip);
2165
2166 xfs_trans_inode_buf(tp, ibp);
2167 xfs_trans_log_buf(tp, ibp, offset,
2168 (offset + sizeof(xfs_agino_t) - 1));
2169 xfs_inobp_check(mp, ibp);
2170 } else {
2171 xfs_trans_brelse(tp, ibp);
2172 }
2173 /*
2174 * Point the previous inode on the list to the next inode.
2175 */
2176 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177 ASSERT(next_agino != 0);
2178 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180 /* need to recalc the inode CRC if appropriate */
2181 xfs_dinode_calc_crc(mp, last_dip);
2182
2183 xfs_trans_inode_buf(tp, last_ibp);
2184 xfs_trans_log_buf(tp, last_ibp, offset,
2185 (offset + sizeof(xfs_agino_t) - 1));
2186 xfs_inobp_check(mp, last_ibp);
2187 }
2188 return 0;
2189}
2190
2191/*
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2195 */
2196STATIC int
2197xfs_ifree_cluster(
2198 xfs_inode_t *free_ip,
2199 xfs_trans_t *tp,
2200 struct xfs_icluster *xic)
2201{
2202 xfs_mount_t *mp = free_ip->i_mount;
2203 int blks_per_cluster;
2204 int inodes_per_cluster;
2205 int nbufs;
2206 int i, j;
2207 int ioffset;
2208 xfs_daddr_t blkno;
2209 xfs_buf_t *bp;
2210 xfs_inode_t *ip;
2211 xfs_inode_log_item_t *iip;
2212 xfs_log_item_t *lip;
2213 struct xfs_perag *pag;
2214 xfs_ino_t inum;
2215
2216 inum = xic->first_ino;
2217 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218 blks_per_cluster = xfs_icluster_size_fsb(mp);
2219 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221
2222 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223 /*
2224 * The allocation bitmap tells us which inodes of the chunk were
2225 * physically allocated. Skip the cluster if an inode falls into
2226 * a sparse region.
2227 */
2228 ioffset = inum - xic->first_ino;
2229 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231 continue;
2232 }
2233
2234 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235 XFS_INO_TO_AGBNO(mp, inum));
2236
2237 /*
2238 * We obtain and lock the backing buffer first in the process
2239 * here, as we have to ensure that any dirty inode that we
2240 * can't get the flush lock on is attached to the buffer.
2241 * If we scan the in-memory inodes first, then buffer IO can
2242 * complete before we get a lock on it, and hence we may fail
2243 * to mark all the active inodes on the buffer stale.
2244 */
2245 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246 mp->m_bsize * blks_per_cluster,
2247 XBF_UNMAPPED);
2248
2249 if (!bp)
2250 return -ENOMEM;
2251
2252 /*
2253 * This buffer may not have been correctly initialised as we
2254 * didn't read it from disk. That's not important because we are
2255 * only using to mark the buffer as stale in the log, and to
2256 * attach stale cached inodes on it. That means it will never be
2257 * dispatched for IO. If it is, we want to know about it, and we
2258 * want it to fail. We can acheive this by adding a write
2259 * verifier to the buffer.
2260 */
2261 bp->b_ops = &xfs_inode_buf_ops;
2262
2263 /*
2264 * Walk the inodes already attached to the buffer and mark them
2265 * stale. These will all have the flush locks held, so an
2266 * in-memory inode walk can't lock them. By marking them all
2267 * stale first, we will not attempt to lock them in the loop
2268 * below as the XFS_ISTALE flag will be set.
2269 */
2270 lip = bp->b_fspriv;
2271 while (lip) {
2272 if (lip->li_type == XFS_LI_INODE) {
2273 iip = (xfs_inode_log_item_t *)lip;
2274 ASSERT(iip->ili_logged == 1);
2275 lip->li_cb = xfs_istale_done;
2276 xfs_trans_ail_copy_lsn(mp->m_ail,
2277 &iip->ili_flush_lsn,
2278 &iip->ili_item.li_lsn);
2279 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280 }
2281 lip = lip->li_bio_list;
2282 }
2283
2284
2285 /*
2286 * For each inode in memory attempt to add it to the inode
2287 * buffer and set it up for being staled on buffer IO
2288 * completion. This is safe as we've locked out tail pushing
2289 * and flushing by locking the buffer.
2290 *
2291 * We have already marked every inode that was part of a
2292 * transaction stale above, which means there is no point in
2293 * even trying to lock them.
2294 */
2295 for (i = 0; i < inodes_per_cluster; i++) {
2296retry:
2297 rcu_read_lock();
2298 ip = radix_tree_lookup(&pag->pag_ici_root,
2299 XFS_INO_TO_AGINO(mp, (inum + i)));
2300
2301 /* Inode not in memory, nothing to do */
2302 if (!ip) {
2303 rcu_read_unlock();
2304 continue;
2305 }
2306
2307 /*
2308 * because this is an RCU protected lookup, we could
2309 * find a recently freed or even reallocated inode
2310 * during the lookup. We need to check under the
2311 * i_flags_lock for a valid inode here. Skip it if it
2312 * is not valid, the wrong inode or stale.
2313 */
2314 spin_lock(&ip->i_flags_lock);
2315 if (ip->i_ino != inum + i ||
2316 __xfs_iflags_test(ip, XFS_ISTALE)) {
2317 spin_unlock(&ip->i_flags_lock);
2318 rcu_read_unlock();
2319 continue;
2320 }
2321 spin_unlock(&ip->i_flags_lock);
2322
2323 /*
2324 * Don't try to lock/unlock the current inode, but we
2325 * _cannot_ skip the other inodes that we did not find
2326 * in the list attached to the buffer and are not
2327 * already marked stale. If we can't lock it, back off
2328 * and retry.
2329 */
2330 if (ip != free_ip &&
2331 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332 rcu_read_unlock();
2333 delay(1);
2334 goto retry;
2335 }
2336 rcu_read_unlock();
2337
2338 xfs_iflock(ip);
2339 xfs_iflags_set(ip, XFS_ISTALE);
2340
2341 /*
2342 * we don't need to attach clean inodes or those only
2343 * with unlogged changes (which we throw away, anyway).
2344 */
2345 iip = ip->i_itemp;
2346 if (!iip || xfs_inode_clean(ip)) {
2347 ASSERT(ip != free_ip);
2348 xfs_ifunlock(ip);
2349 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350 continue;
2351 }
2352
2353 iip->ili_last_fields = iip->ili_fields;
2354 iip->ili_fields = 0;
2355 iip->ili_fsync_fields = 0;
2356 iip->ili_logged = 1;
2357 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358 &iip->ili_item.li_lsn);
2359
2360 xfs_buf_attach_iodone(bp, xfs_istale_done,
2361 &iip->ili_item);
2362
2363 if (ip != free_ip)
2364 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365 }
2366
2367 xfs_trans_stale_inode_buf(tp, bp);
2368 xfs_trans_binval(tp, bp);
2369 }
2370
2371 xfs_perag_put(pag);
2372 return 0;
2373}
2374
2375/*
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it. This routine also assumes that
2379 * the inode is already a part of the transaction.
2380 *
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2384 */
2385int
2386xfs_ifree(
2387 xfs_trans_t *tp,
2388 xfs_inode_t *ip,
2389 xfs_bmap_free_t *flist)
2390{
2391 int error;
2392 struct xfs_icluster xic = { 0 };
2393
2394 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395 ASSERT(VFS_I(ip)->i_nlink == 0);
2396 ASSERT(ip->i_d.di_nextents == 0);
2397 ASSERT(ip->i_d.di_anextents == 0);
2398 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399 ASSERT(ip->i_d.di_nblocks == 0);
2400
2401 /*
2402 * Pull the on-disk inode from the AGI unlinked list.
2403 */
2404 error = xfs_iunlink_remove(tp, ip);
2405 if (error)
2406 return error;
2407
2408 error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409 if (error)
2410 return error;
2411
2412 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2413 ip->i_d.di_flags = 0;
2414 ip->i_d.di_dmevmask = 0;
2415 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2416 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2418 /*
2419 * Bump the generation count so no one will be confused
2420 * by reincarnations of this inode.
2421 */
2422 VFS_I(ip)->i_generation++;
2423 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424
2425 if (xic.deleted)
2426 error = xfs_ifree_cluster(ip, tp, &xic);
2427
2428 return error;
2429}
2430
2431/*
2432 * This is called to unpin an inode. The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2435 */
2436static void
2437xfs_iunpin(
2438 struct xfs_inode *ip)
2439{
2440 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441
2442 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443
2444 /* Give the log a push to start the unpinning I/O */
2445 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446
2447}
2448
2449static void
2450__xfs_iunpin_wait(
2451 struct xfs_inode *ip)
2452{
2453 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455
2456 xfs_iunpin(ip);
2457
2458 do {
2459 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460 if (xfs_ipincount(ip))
2461 io_schedule();
2462 } while (xfs_ipincount(ip));
2463 finish_wait(wq, &wait.wait);
2464}
2465
2466void
2467xfs_iunpin_wait(
2468 struct xfs_inode *ip)
2469{
2470 if (xfs_ipincount(ip))
2471 __xfs_iunpin_wait(ip);
2472}
2473
2474/*
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2480 *
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2487 *
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2494 *
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2500 */
2501int
2502xfs_remove(
2503 xfs_inode_t *dp,
2504 struct xfs_name *name,
2505 xfs_inode_t *ip)
2506{
2507 xfs_mount_t *mp = dp->i_mount;
2508 xfs_trans_t *tp = NULL;
2509 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510 int error = 0;
2511 xfs_bmap_free_t free_list;
2512 xfs_fsblock_t first_block;
2513 uint resblks;
2514
2515 trace_xfs_remove(dp, name);
2516
2517 if (XFS_FORCED_SHUTDOWN(mp))
2518 return -EIO;
2519
2520 error = xfs_qm_dqattach(dp, 0);
2521 if (error)
2522 goto std_return;
2523
2524 error = xfs_qm_dqattach(ip, 0);
2525 if (error)
2526 goto std_return;
2527
2528 if (is_dir)
2529 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530 else
2531 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532
2533 /*
2534 * We try to get the real space reservation first,
2535 * allowing for directory btree deletion(s) implying
2536 * possible bmap insert(s). If we can't get the space
2537 * reservation then we use 0 instead, and avoid the bmap
2538 * btree insert(s) in the directory code by, if the bmap
2539 * insert tries to happen, instead trimming the LAST
2540 * block from the directory.
2541 */
2542 resblks = XFS_REMOVE_SPACE_RES(mp);
2543 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544 if (error == -ENOSPC) {
2545 resblks = 0;
2546 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2547 }
2548 if (error) {
2549 ASSERT(error != -ENOSPC);
2550 goto out_trans_cancel;
2551 }
2552
2553 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555
2556 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2558
2559 /*
2560 * If we're removing a directory perform some additional validation.
2561 */
2562 if (is_dir) {
2563 ASSERT(VFS_I(ip)->i_nlink >= 2);
2564 if (VFS_I(ip)->i_nlink != 2) {
2565 error = -ENOTEMPTY;
2566 goto out_trans_cancel;
2567 }
2568 if (!xfs_dir_isempty(ip)) {
2569 error = -ENOTEMPTY;
2570 goto out_trans_cancel;
2571 }
2572
2573 /* Drop the link from ip's "..". */
2574 error = xfs_droplink(tp, dp);
2575 if (error)
2576 goto out_trans_cancel;
2577
2578 /* Drop the "." link from ip to self. */
2579 error = xfs_droplink(tp, ip);
2580 if (error)
2581 goto out_trans_cancel;
2582 } else {
2583 /*
2584 * When removing a non-directory we need to log the parent
2585 * inode here. For a directory this is done implicitly
2586 * by the xfs_droplink call for the ".." entry.
2587 */
2588 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589 }
2590 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591
2592 /* Drop the link from dp to ip. */
2593 error = xfs_droplink(tp, ip);
2594 if (error)
2595 goto out_trans_cancel;
2596
2597 xfs_bmap_init(&free_list, &first_block);
2598 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599 &first_block, &free_list, resblks);
2600 if (error) {
2601 ASSERT(error != -ENOENT);
2602 goto out_bmap_cancel;
2603 }
2604
2605 /*
2606 * If this is a synchronous mount, make sure that the
2607 * remove transaction goes to disk before returning to
2608 * the user.
2609 */
2610 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611 xfs_trans_set_sync(tp);
2612
2613 error = xfs_bmap_finish(&tp, &free_list, NULL);
2614 if (error)
2615 goto out_bmap_cancel;
2616
2617 error = xfs_trans_commit(tp);
2618 if (error)
2619 goto std_return;
2620
2621 if (is_dir && xfs_inode_is_filestream(ip))
2622 xfs_filestream_deassociate(ip);
2623
2624 return 0;
2625
2626 out_bmap_cancel:
2627 xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629 xfs_trans_cancel(tp);
2630 std_return:
2631 return error;
2632}
2633
2634/*
2635 * Enter all inodes for a rename transaction into a sorted array.
2636 */
2637#define __XFS_SORT_INODES 5
2638STATIC void
2639xfs_sort_for_rename(
2640 struct xfs_inode *dp1, /* in: old (source) directory inode */
2641 struct xfs_inode *dp2, /* in: new (target) directory inode */
2642 struct xfs_inode *ip1, /* in: inode of old entry */
2643 struct xfs_inode *ip2, /* in: inode of new entry */
2644 struct xfs_inode *wip, /* in: whiteout inode */
2645 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2646 int *num_inodes) /* in/out: inodes in array */
2647{
2648 int i, j;
2649
2650 ASSERT(*num_inodes == __XFS_SORT_INODES);
2651 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652
2653 /*
2654 * i_tab contains a list of pointers to inodes. We initialize
2655 * the table here & we'll sort it. We will then use it to
2656 * order the acquisition of the inode locks.
2657 *
2658 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2659 */
2660 i = 0;
2661 i_tab[i++] = dp1;
2662 i_tab[i++] = dp2;
2663 i_tab[i++] = ip1;
2664 if (ip2)
2665 i_tab[i++] = ip2;
2666 if (wip)
2667 i_tab[i++] = wip;
2668 *num_inodes = i;
2669
2670 /*
2671 * Sort the elements via bubble sort. (Remember, there are at
2672 * most 5 elements to sort, so this is adequate.)
2673 */
2674 for (i = 0; i < *num_inodes; i++) {
2675 for (j = 1; j < *num_inodes; j++) {
2676 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677 struct xfs_inode *temp = i_tab[j];
2678 i_tab[j] = i_tab[j-1];
2679 i_tab[j-1] = temp;
2680 }
2681 }
2682 }
2683}
2684
2685static int
2686xfs_finish_rename(
2687 struct xfs_trans *tp,
2688 struct xfs_bmap_free *free_list)
2689{
2690 int error;
2691
2692 /*
2693 * If this is a synchronous mount, make sure that the rename transaction
2694 * goes to disk before returning to the user.
2695 */
2696 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697 xfs_trans_set_sync(tp);
2698
2699 error = xfs_bmap_finish(&tp, free_list, NULL);
2700 if (error) {
2701 xfs_bmap_cancel(free_list);
2702 xfs_trans_cancel(tp);
2703 return error;
2704 }
2705
2706 return xfs_trans_commit(tp);
2707}
2708
2709/*
2710 * xfs_cross_rename()
2711 *
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713 */
2714STATIC int
2715xfs_cross_rename(
2716 struct xfs_trans *tp,
2717 struct xfs_inode *dp1,
2718 struct xfs_name *name1,
2719 struct xfs_inode *ip1,
2720 struct xfs_inode *dp2,
2721 struct xfs_name *name2,
2722 struct xfs_inode *ip2,
2723 struct xfs_bmap_free *free_list,
2724 xfs_fsblock_t *first_block,
2725 int spaceres)
2726{
2727 int error = 0;
2728 int ip1_flags = 0;
2729 int ip2_flags = 0;
2730 int dp2_flags = 0;
2731
2732 /* Swap inode number for dirent in first parent */
2733 error = xfs_dir_replace(tp, dp1, name1,
2734 ip2->i_ino,
2735 first_block, free_list, spaceres);
2736 if (error)
2737 goto out_trans_abort;
2738
2739 /* Swap inode number for dirent in second parent */
2740 error = xfs_dir_replace(tp, dp2, name2,
2741 ip1->i_ino,
2742 first_block, free_list, spaceres);
2743 if (error)
2744 goto out_trans_abort;
2745
2746 /*
2747 * If we're renaming one or more directories across different parents,
2748 * update the respective ".." entries (and link counts) to match the new
2749 * parents.
2750 */
2751 if (dp1 != dp2) {
2752 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753
2754 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756 dp1->i_ino, first_block,
2757 free_list, spaceres);
2758 if (error)
2759 goto out_trans_abort;
2760
2761 /* transfer ip2 ".." reference to dp1 */
2762 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763 error = xfs_droplink(tp, dp2);
2764 if (error)
2765 goto out_trans_abort;
2766 error = xfs_bumplink(tp, dp1);
2767 if (error)
2768 goto out_trans_abort;
2769 }
2770
2771 /*
2772 * Although ip1 isn't changed here, userspace needs
2773 * to be warned about the change, so that applications
2774 * relying on it (like backup ones), will properly
2775 * notify the change
2776 */
2777 ip1_flags |= XFS_ICHGTIME_CHG;
2778 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779 }
2780
2781 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783 dp2->i_ino, first_block,
2784 free_list, spaceres);
2785 if (error)
2786 goto out_trans_abort;
2787
2788 /* transfer ip1 ".." reference to dp2 */
2789 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790 error = xfs_droplink(tp, dp1);
2791 if (error)
2792 goto out_trans_abort;
2793 error = xfs_bumplink(tp, dp2);
2794 if (error)
2795 goto out_trans_abort;
2796 }
2797
2798 /*
2799 * Although ip2 isn't changed here, userspace needs
2800 * to be warned about the change, so that applications
2801 * relying on it (like backup ones), will properly
2802 * notify the change
2803 */
2804 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805 ip2_flags |= XFS_ICHGTIME_CHG;
2806 }
2807 }
2808
2809 if (ip1_flags) {
2810 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812 }
2813 if (ip2_flags) {
2814 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816 }
2817 if (dp2_flags) {
2818 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820 }
2821 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823 return xfs_finish_rename(tp, free_list);
2824
2825out_trans_abort:
2826 xfs_bmap_cancel(free_list);
2827 xfs_trans_cancel(tp);
2828 return error;
2829}
2830
2831/*
2832 * xfs_rename_alloc_whiteout()
2833 *
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2838 */
2839static int
2840xfs_rename_alloc_whiteout(
2841 struct xfs_inode *dp,
2842 struct xfs_inode **wip)
2843{
2844 struct xfs_inode *tmpfile;
2845 int error;
2846
2847 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848 if (error)
2849 return error;
2850
2851 /*
2852 * Prepare the tmpfile inode as if it were created through the VFS.
2853 * Otherwise, the link increment paths will complain about nlink 0->1.
2854 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855 * and flag it as linkable.
2856 */
2857 drop_nlink(VFS_I(tmpfile));
2858 xfs_finish_inode_setup(tmpfile);
2859 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860
2861 *wip = tmpfile;
2862 return 0;
2863}
2864
2865/*
2866 * xfs_rename
2867 */
2868int
2869xfs_rename(
2870 struct xfs_inode *src_dp,
2871 struct xfs_name *src_name,
2872 struct xfs_inode *src_ip,
2873 struct xfs_inode *target_dp,
2874 struct xfs_name *target_name,
2875 struct xfs_inode *target_ip,
2876 unsigned int flags)
2877{
2878 struct xfs_mount *mp = src_dp->i_mount;
2879 struct xfs_trans *tp;
2880 struct xfs_bmap_free free_list;
2881 xfs_fsblock_t first_block;
2882 struct xfs_inode *wip = NULL; /* whiteout inode */
2883 struct xfs_inode *inodes[__XFS_SORT_INODES];
2884 int num_inodes = __XFS_SORT_INODES;
2885 bool new_parent = (src_dp != target_dp);
2886 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887 int spaceres;
2888 int error;
2889
2890 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891
2892 if ((flags & RENAME_EXCHANGE) && !target_ip)
2893 return -EINVAL;
2894
2895 /*
2896 * If we are doing a whiteout operation, allocate the whiteout inode
2897 * we will be placing at the target and ensure the type is set
2898 * appropriately.
2899 */
2900 if (flags & RENAME_WHITEOUT) {
2901 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903 if (error)
2904 return error;
2905
2906 /* setup target dirent info as whiteout */
2907 src_name->type = XFS_DIR3_FT_CHRDEV;
2908 }
2909
2910 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911 inodes, &num_inodes);
2912
2913 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916 if (error == -ENOSPC) {
2917 spaceres = 0;
2918 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2919 }
2920 if (error)
2921 goto out_trans_cancel;
2922
2923 /*
2924 * Attach the dquots to the inodes
2925 */
2926 error = xfs_qm_vop_rename_dqattach(inodes);
2927 if (error)
2928 goto out_trans_cancel;
2929
2930 /*
2931 * Lock all the participating inodes. Depending upon whether
2932 * the target_name exists in the target directory, and
2933 * whether the target directory is the same as the source
2934 * directory, we can lock from 2 to 4 inodes.
2935 */
2936 if (!new_parent)
2937 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938 else
2939 xfs_lock_two_inodes(src_dp, target_dp,
2940 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941
2942 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943
2944 /*
2945 * Join all the inodes to the transaction. From this point on,
2946 * we can rely on either trans_commit or trans_cancel to unlock
2947 * them.
2948 */
2949 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950 if (new_parent)
2951 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953 if (target_ip)
2954 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955 if (wip)
2956 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957
2958 /*
2959 * If we are using project inheritance, we only allow renames
2960 * into our tree when the project IDs are the same; else the
2961 * tree quota mechanism would be circumvented.
2962 */
2963 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965 error = -EXDEV;
2966 goto out_trans_cancel;
2967 }
2968
2969 xfs_bmap_init(&free_list, &first_block);
2970
2971 /* RENAME_EXCHANGE is unique from here on. */
2972 if (flags & RENAME_EXCHANGE)
2973 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974 target_dp, target_name, target_ip,
2975 &free_list, &first_block, spaceres);
2976
2977 /*
2978 * Set up the target.
2979 */
2980 if (target_ip == NULL) {
2981 /*
2982 * If there's no space reservation, check the entry will
2983 * fit before actually inserting it.
2984 */
2985 if (!spaceres) {
2986 error = xfs_dir_canenter(tp, target_dp, target_name);
2987 if (error)
2988 goto out_trans_cancel;
2989 }
2990 /*
2991 * If target does not exist and the rename crosses
2992 * directories, adjust the target directory link count
2993 * to account for the ".." reference from the new entry.
2994 */
2995 error = xfs_dir_createname(tp, target_dp, target_name,
2996 src_ip->i_ino, &first_block,
2997 &free_list, spaceres);
2998 if (error)
2999 goto out_bmap_cancel;
3000
3001 xfs_trans_ichgtime(tp, target_dp,
3002 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003
3004 if (new_parent && src_is_directory) {
3005 error = xfs_bumplink(tp, target_dp);
3006 if (error)
3007 goto out_bmap_cancel;
3008 }
3009 } else { /* target_ip != NULL */
3010 /*
3011 * If target exists and it's a directory, check that both
3012 * target and source are directories and that target can be
3013 * destroyed, or that neither is a directory.
3014 */
3015 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016 /*
3017 * Make sure target dir is empty.
3018 */
3019 if (!(xfs_dir_isempty(target_ip)) ||
3020 (VFS_I(target_ip)->i_nlink > 2)) {
3021 error = -EEXIST;
3022 goto out_trans_cancel;
3023 }
3024 }
3025
3026 /*
3027 * Link the source inode under the target name.
3028 * If the source inode is a directory and we are moving
3029 * it across directories, its ".." entry will be
3030 * inconsistent until we replace that down below.
3031 *
3032 * In case there is already an entry with the same
3033 * name at the destination directory, remove it first.
3034 */
3035 error = xfs_dir_replace(tp, target_dp, target_name,
3036 src_ip->i_ino,
3037 &first_block, &free_list, spaceres);
3038 if (error)
3039 goto out_bmap_cancel;
3040
3041 xfs_trans_ichgtime(tp, target_dp,
3042 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043
3044 /*
3045 * Decrement the link count on the target since the target
3046 * dir no longer points to it.
3047 */
3048 error = xfs_droplink(tp, target_ip);
3049 if (error)
3050 goto out_bmap_cancel;
3051
3052 if (src_is_directory) {
3053 /*
3054 * Drop the link from the old "." entry.
3055 */
3056 error = xfs_droplink(tp, target_ip);
3057 if (error)
3058 goto out_bmap_cancel;
3059 }
3060 } /* target_ip != NULL */
3061
3062 /*
3063 * Remove the source.
3064 */
3065 if (new_parent && src_is_directory) {
3066 /*
3067 * Rewrite the ".." entry to point to the new
3068 * directory.
3069 */
3070 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071 target_dp->i_ino,
3072 &first_block, &free_list, spaceres);
3073 ASSERT(error != -EEXIST);
3074 if (error)
3075 goto out_bmap_cancel;
3076 }
3077
3078 /*
3079 * We always want to hit the ctime on the source inode.
3080 *
3081 * This isn't strictly required by the standards since the source
3082 * inode isn't really being changed, but old unix file systems did
3083 * it and some incremental backup programs won't work without it.
3084 */
3085 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087
3088 /*
3089 * Adjust the link count on src_dp. This is necessary when
3090 * renaming a directory, either within one parent when
3091 * the target existed, or across two parent directories.
3092 */
3093 if (src_is_directory && (new_parent || target_ip != NULL)) {
3094
3095 /*
3096 * Decrement link count on src_directory since the
3097 * entry that's moved no longer points to it.
3098 */
3099 error = xfs_droplink(tp, src_dp);
3100 if (error)
3101 goto out_bmap_cancel;
3102 }
3103
3104 /*
3105 * For whiteouts, we only need to update the source dirent with the
3106 * inode number of the whiteout inode rather than removing it
3107 * altogether.
3108 */
3109 if (wip) {
3110 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111 &first_block, &free_list, spaceres);
3112 } else
3113 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114 &first_block, &free_list, spaceres);
3115 if (error)
3116 goto out_bmap_cancel;
3117
3118 /*
3119 * For whiteouts, we need to bump the link count on the whiteout inode.
3120 * This means that failures all the way up to this point leave the inode
3121 * on the unlinked list and so cleanup is a simple matter of dropping
3122 * the remaining reference to it. If we fail here after bumping the link
3123 * count, we're shutting down the filesystem so we'll never see the
3124 * intermediate state on disk.
3125 */
3126 if (wip) {
3127 ASSERT(VFS_I(wip)->i_nlink == 0);
3128 error = xfs_bumplink(tp, wip);
3129 if (error)
3130 goto out_bmap_cancel;
3131 error = xfs_iunlink_remove(tp, wip);
3132 if (error)
3133 goto out_bmap_cancel;
3134 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135
3136 /*
3137 * Now we have a real link, clear the "I'm a tmpfile" state
3138 * flag from the inode so it doesn't accidentally get misused in
3139 * future.
3140 */
3141 VFS_I(wip)->i_state &= ~I_LINKABLE;
3142 }
3143
3144 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146 if (new_parent)
3147 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148
3149 error = xfs_finish_rename(tp, &free_list);
3150 if (wip)
3151 IRELE(wip);
3152 return error;
3153
3154out_bmap_cancel:
3155 xfs_bmap_cancel(&free_list);
3156out_trans_cancel:
3157 xfs_trans_cancel(tp);
3158 if (wip)
3159 IRELE(wip);
3160 return error;
3161}
3162
3163STATIC int
3164xfs_iflush_cluster(
3165 xfs_inode_t *ip,
3166 xfs_buf_t *bp)
3167{
3168 xfs_mount_t *mp = ip->i_mount;
3169 struct xfs_perag *pag;
3170 unsigned long first_index, mask;
3171 unsigned long inodes_per_cluster;
3172 int ilist_size;
3173 xfs_inode_t **ilist;
3174 xfs_inode_t *iq;
3175 int nr_found;
3176 int clcount = 0;
3177 int bufwasdelwri;
3178 int i;
3179
3180 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181
3182 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185 if (!ilist)
3186 goto out_put;
3187
3188 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190 rcu_read_lock();
3191 /* really need a gang lookup range call here */
3192 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193 first_index, inodes_per_cluster);
3194 if (nr_found == 0)
3195 goto out_free;
3196
3197 for (i = 0; i < nr_found; i++) {
3198 iq = ilist[i];
3199 if (iq == ip)
3200 continue;
3201
3202 /*
3203 * because this is an RCU protected lookup, we could find a
3204 * recently freed or even reallocated inode during the lookup.
3205 * We need to check under the i_flags_lock for a valid inode
3206 * here. Skip it if it is not valid or the wrong inode.
3207 */
3208 spin_lock(&ip->i_flags_lock);
3209 if (!ip->i_ino ||
3210 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211 spin_unlock(&ip->i_flags_lock);
3212 continue;
3213 }
3214 spin_unlock(&ip->i_flags_lock);
3215
3216 /*
3217 * Do an un-protected check to see if the inode is dirty and
3218 * is a candidate for flushing. These checks will be repeated
3219 * later after the appropriate locks are acquired.
3220 */
3221 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222 continue;
3223
3224 /*
3225 * Try to get locks. If any are unavailable or it is pinned,
3226 * then this inode cannot be flushed and is skipped.
3227 */
3228
3229 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230 continue;
3231 if (!xfs_iflock_nowait(iq)) {
3232 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233 continue;
3234 }
3235 if (xfs_ipincount(iq)) {
3236 xfs_ifunlock(iq);
3237 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238 continue;
3239 }
3240
3241 /*
3242 * arriving here means that this inode can be flushed. First
3243 * re-check that it's dirty before flushing.
3244 */
3245 if (!xfs_inode_clean(iq)) {
3246 int error;
3247 error = xfs_iflush_int(iq, bp);
3248 if (error) {
3249 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250 goto cluster_corrupt_out;
3251 }
3252 clcount++;
3253 } else {
3254 xfs_ifunlock(iq);
3255 }
3256 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257 }
3258
3259 if (clcount) {
3260 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262 }
3263
3264out_free:
3265 rcu_read_unlock();
3266 kmem_free(ilist);
3267out_put:
3268 xfs_perag_put(pag);
3269 return 0;
3270
3271
3272cluster_corrupt_out:
3273 /*
3274 * Corruption detected in the clustering loop. Invalidate the
3275 * inode buffer and shut down the filesystem.
3276 */
3277 rcu_read_unlock();
3278 /*
3279 * Clean up the buffer. If it was delwri, just release it --
3280 * brelse can handle it with no problems. If not, shut down the
3281 * filesystem before releasing the buffer.
3282 */
3283 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284 if (bufwasdelwri)
3285 xfs_buf_relse(bp);
3286
3287 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289 if (!bufwasdelwri) {
3290 /*
3291 * Just like incore_relse: if we have b_iodone functions,
3292 * mark the buffer as an error and call them. Otherwise
3293 * mark it as stale and brelse.
3294 */
3295 if (bp->b_iodone) {
3296 bp->b_flags &= ~XBF_DONE;
3297 xfs_buf_stale(bp);
3298 xfs_buf_ioerror(bp, -EIO);
3299 xfs_buf_ioend(bp);
3300 } else {
3301 xfs_buf_stale(bp);
3302 xfs_buf_relse(bp);
3303 }
3304 }
3305
3306 /*
3307 * Unlocks the flush lock
3308 */
3309 xfs_iflush_abort(iq, false);
3310 kmem_free(ilist);
3311 xfs_perag_put(pag);
3312 return -EFSCORRUPTED;
3313}
3314
3315/*
3316 * Flush dirty inode metadata into the backing buffer.
3317 *
3318 * The caller must have the inode lock and the inode flush lock held. The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3321 *
3322 * The caller must write out the buffer returned in *bpp and release it.
3323 */
3324int
3325xfs_iflush(
3326 struct xfs_inode *ip,
3327 struct xfs_buf **bpp)
3328{
3329 struct xfs_mount *mp = ip->i_mount;
3330 struct xfs_buf *bp;
3331 struct xfs_dinode *dip;
3332 int error;
3333
3334 XFS_STATS_INC(mp, xs_iflush_count);
3335
3336 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337 ASSERT(xfs_isiflocked(ip));
3338 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340
3341 *bpp = NULL;
3342
3343 xfs_iunpin_wait(ip);
3344
3345 /*
3346 * For stale inodes we cannot rely on the backing buffer remaining
3347 * stale in cache for the remaining life of the stale inode and so
3348 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349 * inodes below. We have to check this after ensuring the inode is
3350 * unpinned so that it is safe to reclaim the stale inode after the
3351 * flush call.
3352 */
3353 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354 xfs_ifunlock(ip);
3355 return 0;
3356 }
3357
3358 /*
3359 * This may have been unpinned because the filesystem is shutting
3360 * down forcibly. If that's the case we must not write this inode
3361 * to disk, because the log record didn't make it to disk.
3362 *
3363 * We also have to remove the log item from the AIL in this case,
3364 * as we wait for an empty AIL as part of the unmount process.
3365 */
3366 if (XFS_FORCED_SHUTDOWN(mp)) {
3367 error = -EIO;
3368 goto abort_out;
3369 }
3370
3371 /*
3372 * Get the buffer containing the on-disk inode.
3373 */
3374 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375 0);
3376 if (error || !bp) {
3377 xfs_ifunlock(ip);
3378 return error;
3379 }
3380
3381 /*
3382 * First flush out the inode that xfs_iflush was called with.
3383 */
3384 error = xfs_iflush_int(ip, bp);
3385 if (error)
3386 goto corrupt_out;
3387
3388 /*
3389 * If the buffer is pinned then push on the log now so we won't
3390 * get stuck waiting in the write for too long.
3391 */
3392 if (xfs_buf_ispinned(bp))
3393 xfs_log_force(mp, 0);
3394
3395 /*
3396 * inode clustering:
3397 * see if other inodes can be gathered into this write
3398 */
3399 error = xfs_iflush_cluster(ip, bp);
3400 if (error)
3401 goto cluster_corrupt_out;
3402
3403 *bpp = bp;
3404 return 0;
3405
3406corrupt_out:
3407 xfs_buf_relse(bp);
3408 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409cluster_corrupt_out:
3410 error = -EFSCORRUPTED;
3411abort_out:
3412 /*
3413 * Unlocks the flush lock
3414 */
3415 xfs_iflush_abort(ip, false);
3416 return error;
3417}
3418
3419STATIC int
3420xfs_iflush_int(
3421 struct xfs_inode *ip,
3422 struct xfs_buf *bp)
3423{
3424 struct xfs_inode_log_item *iip = ip->i_itemp;
3425 struct xfs_dinode *dip;
3426 struct xfs_mount *mp = ip->i_mount;
3427
3428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429 ASSERT(xfs_isiflocked(ip));
3430 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432 ASSERT(iip != NULL && iip->ili_fields != 0);
3433 ASSERT(ip->i_d.di_version > 1);
3434
3435 /* set *dip = inode's place in the buffer */
3436 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437
3438 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443 goto corrupt_out;
3444 }
3445 if (S_ISREG(VFS_I(ip)->i_mode)) {
3446 if (XFS_TEST_ERROR(
3447 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451 "%s: Bad regular inode %Lu, ptr 0x%p",
3452 __func__, ip->i_ino, ip);
3453 goto corrupt_out;
3454 }
3455 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456 if (XFS_TEST_ERROR(
3457 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462 "%s: Bad directory inode %Lu, ptr 0x%p",
3463 __func__, ip->i_ino, ip);
3464 goto corrupt_out;
3465 }
3466 }
3467 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469 XFS_RANDOM_IFLUSH_5)) {
3470 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471 "%s: detected corrupt incore inode %Lu, "
3472 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3473 __func__, ip->i_ino,
3474 ip->i_d.di_nextents + ip->i_d.di_anextents,
3475 ip->i_d.di_nblocks, ip);
3476 goto corrupt_out;
3477 }
3478 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483 goto corrupt_out;
3484 }
3485
3486 /*
3487 * Inode item log recovery for v2 inodes are dependent on the
3488 * di_flushiter count for correct sequencing. We bump the flush
3489 * iteration count so we can detect flushes which postdate a log record
3490 * during recovery. This is redundant as we now log every change and
3491 * hence this can't happen but we need to still do it to ensure
3492 * backwards compatibility with old kernels that predate logging all
3493 * inode changes.
3494 */
3495 if (ip->i_d.di_version < 3)
3496 ip->i_d.di_flushiter++;
3497
3498 /*
3499 * Copy the dirty parts of the inode into the on-disk inode. We always
3500 * copy out the core of the inode, because if the inode is dirty at all
3501 * the core must be.
3502 */
3503 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504
3505 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3506 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507 ip->i_d.di_flushiter = 0;
3508
3509 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510 if (XFS_IFORK_Q(ip))
3511 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512 xfs_inobp_check(mp, bp);
3513
3514 /*
3515 * We've recorded everything logged in the inode, so we'd like to clear
3516 * the ili_fields bits so we don't log and flush things unnecessarily.
3517 * However, we can't stop logging all this information until the data
3518 * we've copied into the disk buffer is written to disk. If we did we
3519 * might overwrite the copy of the inode in the log with all the data
3520 * after re-logging only part of it, and in the face of a crash we
3521 * wouldn't have all the data we need to recover.
3522 *
3523 * What we do is move the bits to the ili_last_fields field. When
3524 * logging the inode, these bits are moved back to the ili_fields field.
3525 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526 * know that the information those bits represent is permanently on
3527 * disk. As long as the flush completes before the inode is logged
3528 * again, then both ili_fields and ili_last_fields will be cleared.
3529 *
3530 * We can play with the ili_fields bits here, because the inode lock
3531 * must be held exclusively in order to set bits there and the flush
3532 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3533 * done routine can tell whether or not to look in the AIL. Also, store
3534 * the current LSN of the inode so that we can tell whether the item has
3535 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3536 * need the AIL lock, because it is a 64 bit value that cannot be read
3537 * atomically.
3538 */
3539 iip->ili_last_fields = iip->ili_fields;
3540 iip->ili_fields = 0;
3541 iip->ili_fsync_fields = 0;
3542 iip->ili_logged = 1;
3543
3544 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545 &iip->ili_item.li_lsn);
3546
3547 /*
3548 * Attach the function xfs_iflush_done to the inode's
3549 * buffer. This will remove the inode from the AIL
3550 * and unlock the inode's flush lock when the inode is
3551 * completely written to disk.
3552 */
3553 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3554
3555 /* generate the checksum. */
3556 xfs_dinode_calc_crc(mp, dip);
3557
3558 ASSERT(bp->b_fspriv != NULL);
3559 ASSERT(bp->b_iodone != NULL);
3560 return 0;
3561
3562corrupt_out:
3563 return -EFSCORRUPTED;
3564}