Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
 
  14
  15struct kmem_cache *btrfs_delayed_ref_head_cachep;
  16struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  17struct kmem_cache *btrfs_delayed_data_ref_cachep;
  18struct kmem_cache *btrfs_delayed_extent_op_cachep;
  19/*
  20 * delayed back reference update tracking.  For subvolume trees
  21 * we queue up extent allocations and backref maintenance for
  22 * delayed processing.   This avoids deep call chains where we
  23 * add extents in the middle of btrfs_search_slot, and it allows
  24 * us to buffer up frequently modified backrefs in an rb tree instead
  25 * of hammering updates on the extent allocation tree.
  26 */
  27
  28bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  29{
  30	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  31	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  32	bool ret = false;
  33	u64 reserved;
  34
  35	spin_lock(&global_rsv->lock);
  36	reserved = global_rsv->reserved;
  37	spin_unlock(&global_rsv->lock);
  38
  39	/*
  40	 * Since the global reserve is just kind of magic we don't really want
  41	 * to rely on it to save our bacon, so if our size is more than the
  42	 * delayed_refs_rsv and the global rsv then it's time to think about
  43	 * bailing.
  44	 */
  45	spin_lock(&delayed_refs_rsv->lock);
  46	reserved += delayed_refs_rsv->reserved;
  47	if (delayed_refs_rsv->size >= reserved)
  48		ret = true;
  49	spin_unlock(&delayed_refs_rsv->lock);
  50	return ret;
  51}
  52
  53int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  54{
  55	u64 num_entries =
  56		atomic_read(&trans->transaction->delayed_refs.num_entries);
  57	u64 avg_runtime;
  58	u64 val;
  59
  60	smp_mb();
  61	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  62	val = num_entries * avg_runtime;
  63	if (val >= NSEC_PER_SEC)
  64		return 1;
  65	if (val >= NSEC_PER_SEC / 2)
  66		return 2;
  67
  68	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  69}
  70
  71/**
  72 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
  73 * @fs_info - the fs_info for our fs.
  74 * @nr - the number of items to drop.
 
  75 *
  76 * This drops the delayed ref head's count from the delayed refs rsv and frees
  77 * any excess reservation we had.
  78 */
  79void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  80{
  81	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  82	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  83	u64 released = 0;
  84
  85	released = __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes,
  86					     NULL);
  87	if (released)
  88		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  89					      0, released, 0);
  90}
  91
  92/*
  93 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  94 * @trans - the trans that may have generated delayed refs
  95 *
  96 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  97 * it'll calculate the additional size and add it to the delayed_refs_rsv.
  98 */
  99void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 100{
 101	struct btrfs_fs_info *fs_info = trans->fs_info;
 102	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 103	u64 num_bytes;
 104
 105	if (!trans->delayed_ref_updates)
 106		return;
 107
 108	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 109						    trans->delayed_ref_updates);
 110	spin_lock(&delayed_rsv->lock);
 111	delayed_rsv->size += num_bytes;
 112	delayed_rsv->full = 0;
 113	spin_unlock(&delayed_rsv->lock);
 114	trans->delayed_ref_updates = 0;
 115}
 116
 117/**
 118 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
 119 * @fs_info - the fs info for our fs.
 120 * @src - the source block rsv to transfer from.
 121 * @num_bytes - the number of bytes to transfer.
 
 122 *
 123 * This transfers up to the num_bytes amount from the src rsv to the
 124 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 125 */
 126void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 127				       struct btrfs_block_rsv *src,
 128				       u64 num_bytes)
 129{
 130	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 131	u64 to_free = 0;
 132
 133	spin_lock(&src->lock);
 134	src->reserved -= num_bytes;
 135	src->size -= num_bytes;
 136	spin_unlock(&src->lock);
 137
 138	spin_lock(&delayed_refs_rsv->lock);
 139	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 140		u64 delta = delayed_refs_rsv->size -
 141			delayed_refs_rsv->reserved;
 142		if (num_bytes > delta) {
 143			to_free = num_bytes - delta;
 144			num_bytes = delta;
 145		}
 146	} else {
 147		to_free = num_bytes;
 148		num_bytes = 0;
 149	}
 150
 151	if (num_bytes)
 152		delayed_refs_rsv->reserved += num_bytes;
 153	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 154		delayed_refs_rsv->full = 1;
 155	spin_unlock(&delayed_refs_rsv->lock);
 156
 157	if (num_bytes)
 158		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 159					      0, num_bytes, 1);
 160	if (to_free)
 161		btrfs_space_info_free_bytes_may_use(fs_info,
 162				delayed_refs_rsv->space_info, to_free);
 163}
 164
 165/**
 166 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
 167 * @fs_info - the fs_info for our fs.
 168 * @flush - control how we can flush for this reservation.
 
 169 *
 170 * This will refill the delayed block_rsv up to 1 items size worth of space and
 171 * will return -ENOSPC if we can't make the reservation.
 172 */
 173int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 174				  enum btrfs_reserve_flush_enum flush)
 175{
 176	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 177	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 178	u64 num_bytes = 0;
 179	int ret = -ENOSPC;
 180
 181	spin_lock(&block_rsv->lock);
 182	if (block_rsv->reserved < block_rsv->size) {
 183		num_bytes = block_rsv->size - block_rsv->reserved;
 184		num_bytes = min(num_bytes, limit);
 185	}
 186	spin_unlock(&block_rsv->lock);
 187
 188	if (!num_bytes)
 189		return 0;
 190
 191	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 192					   num_bytes, flush);
 193	if (ret)
 194		return ret;
 195	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 196	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 197				      0, num_bytes, 1);
 198	return 0;
 199}
 200
 201/*
 202 * compare two delayed tree backrefs with same bytenr and type
 203 */
 204static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 205			  struct btrfs_delayed_tree_ref *ref2)
 206{
 207	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 208		if (ref1->root < ref2->root)
 209			return -1;
 210		if (ref1->root > ref2->root)
 211			return 1;
 212	} else {
 213		if (ref1->parent < ref2->parent)
 214			return -1;
 215		if (ref1->parent > ref2->parent)
 216			return 1;
 217	}
 218	return 0;
 219}
 220
 221/*
 222 * compare two delayed data backrefs with same bytenr and type
 223 */
 224static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 225			  struct btrfs_delayed_data_ref *ref2)
 226{
 227	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 228		if (ref1->root < ref2->root)
 229			return -1;
 230		if (ref1->root > ref2->root)
 231			return 1;
 232		if (ref1->objectid < ref2->objectid)
 233			return -1;
 234		if (ref1->objectid > ref2->objectid)
 235			return 1;
 236		if (ref1->offset < ref2->offset)
 237			return -1;
 238		if (ref1->offset > ref2->offset)
 239			return 1;
 240	} else {
 241		if (ref1->parent < ref2->parent)
 242			return -1;
 243		if (ref1->parent > ref2->parent)
 244			return 1;
 245	}
 246	return 0;
 247}
 248
 249static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 250		     struct btrfs_delayed_ref_node *ref2,
 251		     bool check_seq)
 252{
 253	int ret = 0;
 254
 255	if (ref1->type < ref2->type)
 256		return -1;
 257	if (ref1->type > ref2->type)
 258		return 1;
 259	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 260	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 261		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 262				     btrfs_delayed_node_to_tree_ref(ref2));
 263	else
 264		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 265				     btrfs_delayed_node_to_data_ref(ref2));
 266	if (ret)
 267		return ret;
 268	if (check_seq) {
 269		if (ref1->seq < ref2->seq)
 270			return -1;
 271		if (ref1->seq > ref2->seq)
 272			return 1;
 273	}
 274	return 0;
 275}
 276
 277/* insert a new ref to head ref rbtree */
 278static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 279						   struct rb_node *node)
 280{
 281	struct rb_node **p = &root->rb_root.rb_node;
 282	struct rb_node *parent_node = NULL;
 283	struct btrfs_delayed_ref_head *entry;
 284	struct btrfs_delayed_ref_head *ins;
 285	u64 bytenr;
 286	bool leftmost = true;
 287
 288	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 289	bytenr = ins->bytenr;
 290	while (*p) {
 291		parent_node = *p;
 292		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 293				 href_node);
 294
 295		if (bytenr < entry->bytenr) {
 296			p = &(*p)->rb_left;
 297		} else if (bytenr > entry->bytenr) {
 298			p = &(*p)->rb_right;
 299			leftmost = false;
 300		} else {
 301			return entry;
 302		}
 303	}
 304
 305	rb_link_node(node, parent_node, p);
 306	rb_insert_color_cached(node, root, leftmost);
 307	return NULL;
 308}
 309
 310static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 311		struct btrfs_delayed_ref_node *ins)
 312{
 313	struct rb_node **p = &root->rb_root.rb_node;
 314	struct rb_node *node = &ins->ref_node;
 315	struct rb_node *parent_node = NULL;
 316	struct btrfs_delayed_ref_node *entry;
 317	bool leftmost = true;
 318
 319	while (*p) {
 320		int comp;
 321
 322		parent_node = *p;
 323		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 324				 ref_node);
 325		comp = comp_refs(ins, entry, true);
 326		if (comp < 0) {
 327			p = &(*p)->rb_left;
 328		} else if (comp > 0) {
 329			p = &(*p)->rb_right;
 330			leftmost = false;
 331		} else {
 332			return entry;
 333		}
 334	}
 335
 336	rb_link_node(node, parent_node, p);
 337	rb_insert_color_cached(node, root, leftmost);
 338	return NULL;
 339}
 340
 341static struct btrfs_delayed_ref_head *find_first_ref_head(
 342		struct btrfs_delayed_ref_root *dr)
 343{
 344	struct rb_node *n;
 345	struct btrfs_delayed_ref_head *entry;
 346
 347	n = rb_first_cached(&dr->href_root);
 348	if (!n)
 349		return NULL;
 350
 351	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 352
 353	return entry;
 354}
 355
 356/*
 357 * Find a head entry based on bytenr. This returns the delayed ref head if it
 358 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 359 * is given, the next bigger entry is returned if no exact match is found.
 360 */
 361static struct btrfs_delayed_ref_head *find_ref_head(
 362		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 363		bool return_bigger)
 364{
 365	struct rb_root *root = &dr->href_root.rb_root;
 366	struct rb_node *n;
 367	struct btrfs_delayed_ref_head *entry;
 368
 369	n = root->rb_node;
 370	entry = NULL;
 371	while (n) {
 372		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 373
 374		if (bytenr < entry->bytenr)
 375			n = n->rb_left;
 376		else if (bytenr > entry->bytenr)
 377			n = n->rb_right;
 378		else
 379			return entry;
 380	}
 381	if (entry && return_bigger) {
 382		if (bytenr > entry->bytenr) {
 383			n = rb_next(&entry->href_node);
 384			if (!n)
 385				return NULL;
 386			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 387					 href_node);
 388		}
 389		return entry;
 390	}
 391	return NULL;
 392}
 393
 394int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 395			   struct btrfs_delayed_ref_head *head)
 396{
 397	lockdep_assert_held(&delayed_refs->lock);
 398	if (mutex_trylock(&head->mutex))
 399		return 0;
 400
 401	refcount_inc(&head->refs);
 402	spin_unlock(&delayed_refs->lock);
 403
 404	mutex_lock(&head->mutex);
 405	spin_lock(&delayed_refs->lock);
 406	if (RB_EMPTY_NODE(&head->href_node)) {
 407		mutex_unlock(&head->mutex);
 408		btrfs_put_delayed_ref_head(head);
 409		return -EAGAIN;
 410	}
 411	btrfs_put_delayed_ref_head(head);
 412	return 0;
 413}
 414
 415static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 416				    struct btrfs_delayed_ref_root *delayed_refs,
 417				    struct btrfs_delayed_ref_head *head,
 418				    struct btrfs_delayed_ref_node *ref)
 419{
 420	lockdep_assert_held(&head->lock);
 421	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 422	RB_CLEAR_NODE(&ref->ref_node);
 423	if (!list_empty(&ref->add_list))
 424		list_del(&ref->add_list);
 425	ref->in_tree = 0;
 426	btrfs_put_delayed_ref(ref);
 427	atomic_dec(&delayed_refs->num_entries);
 428}
 429
 430static bool merge_ref(struct btrfs_trans_handle *trans,
 431		      struct btrfs_delayed_ref_root *delayed_refs,
 432		      struct btrfs_delayed_ref_head *head,
 433		      struct btrfs_delayed_ref_node *ref,
 434		      u64 seq)
 435{
 436	struct btrfs_delayed_ref_node *next;
 437	struct rb_node *node = rb_next(&ref->ref_node);
 438	bool done = false;
 439
 440	while (!done && node) {
 441		int mod;
 442
 443		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 444		node = rb_next(node);
 445		if (seq && next->seq >= seq)
 446			break;
 447		if (comp_refs(ref, next, false))
 448			break;
 449
 450		if (ref->action == next->action) {
 451			mod = next->ref_mod;
 452		} else {
 453			if (ref->ref_mod < next->ref_mod) {
 454				swap(ref, next);
 455				done = true;
 456			}
 457			mod = -next->ref_mod;
 458		}
 459
 460		drop_delayed_ref(trans, delayed_refs, head, next);
 461		ref->ref_mod += mod;
 462		if (ref->ref_mod == 0) {
 463			drop_delayed_ref(trans, delayed_refs, head, ref);
 464			done = true;
 465		} else {
 466			/*
 467			 * Can't have multiples of the same ref on a tree block.
 468			 */
 469			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 470				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 471		}
 472	}
 473
 474	return done;
 475}
 476
 477void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 478			      struct btrfs_delayed_ref_root *delayed_refs,
 479			      struct btrfs_delayed_ref_head *head)
 480{
 481	struct btrfs_fs_info *fs_info = trans->fs_info;
 482	struct btrfs_delayed_ref_node *ref;
 483	struct rb_node *node;
 484	u64 seq = 0;
 485
 486	lockdep_assert_held(&head->lock);
 487
 488	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 489		return;
 490
 491	/* We don't have too many refs to merge for data. */
 492	if (head->is_data)
 493		return;
 494
 495	spin_lock(&fs_info->tree_mod_seq_lock);
 496	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 497		struct seq_list *elem;
 498
 499		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 500					struct seq_list, list);
 501		seq = elem->seq;
 502	}
 503	spin_unlock(&fs_info->tree_mod_seq_lock);
 504
 505again:
 506	for (node = rb_first_cached(&head->ref_tree); node;
 507	     node = rb_next(node)) {
 508		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 509		if (seq && ref->seq >= seq)
 510			continue;
 511		if (merge_ref(trans, delayed_refs, head, ref, seq))
 512			goto again;
 513	}
 514}
 515
 516int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 517{
 518	struct seq_list *elem;
 519	int ret = 0;
 
 520
 521	spin_lock(&fs_info->tree_mod_seq_lock);
 522	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 523		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 524					struct seq_list, list);
 525		if (seq >= elem->seq) {
 526			btrfs_debug(fs_info,
 527				"holding back delayed_ref %#x.%x, lowest is %#x.%x",
 528				(u32)(seq >> 32), (u32)seq,
 529				(u32)(elem->seq >> 32), (u32)elem->seq);
 530			ret = 1;
 531		}
 532	}
 533
 534	spin_unlock(&fs_info->tree_mod_seq_lock);
 535	return ret;
 536}
 537
 538struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 539		struct btrfs_delayed_ref_root *delayed_refs)
 540{
 541	struct btrfs_delayed_ref_head *head;
 542
 543again:
 544	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 545			     true);
 546	if (!head && delayed_refs->run_delayed_start != 0) {
 547		delayed_refs->run_delayed_start = 0;
 548		head = find_first_ref_head(delayed_refs);
 549	}
 550	if (!head)
 551		return NULL;
 552
 553	while (head->processing) {
 554		struct rb_node *node;
 555
 556		node = rb_next(&head->href_node);
 557		if (!node) {
 558			if (delayed_refs->run_delayed_start == 0)
 559				return NULL;
 560			delayed_refs->run_delayed_start = 0;
 561			goto again;
 562		}
 563		head = rb_entry(node, struct btrfs_delayed_ref_head,
 564				href_node);
 565	}
 566
 567	head->processing = 1;
 568	WARN_ON(delayed_refs->num_heads_ready == 0);
 569	delayed_refs->num_heads_ready--;
 570	delayed_refs->run_delayed_start = head->bytenr +
 571		head->num_bytes;
 572	return head;
 573}
 574
 575void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 576			   struct btrfs_delayed_ref_head *head)
 577{
 578	lockdep_assert_held(&delayed_refs->lock);
 579	lockdep_assert_held(&head->lock);
 580
 581	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 582	RB_CLEAR_NODE(&head->href_node);
 583	atomic_dec(&delayed_refs->num_entries);
 584	delayed_refs->num_heads--;
 585	if (head->processing == 0)
 586		delayed_refs->num_heads_ready--;
 587}
 588
 589/*
 590 * Helper to insert the ref_node to the tail or merge with tail.
 591 *
 592 * Return 0 for insert.
 593 * Return >0 for merge.
 594 */
 595static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 596			      struct btrfs_delayed_ref_root *root,
 597			      struct btrfs_delayed_ref_head *href,
 598			      struct btrfs_delayed_ref_node *ref)
 599{
 600	struct btrfs_delayed_ref_node *exist;
 601	int mod;
 602	int ret = 0;
 603
 604	spin_lock(&href->lock);
 605	exist = tree_insert(&href->ref_tree, ref);
 606	if (!exist)
 607		goto inserted;
 608
 609	/* Now we are sure we can merge */
 610	ret = 1;
 611	if (exist->action == ref->action) {
 612		mod = ref->ref_mod;
 613	} else {
 614		/* Need to change action */
 615		if (exist->ref_mod < ref->ref_mod) {
 616			exist->action = ref->action;
 617			mod = -exist->ref_mod;
 618			exist->ref_mod = ref->ref_mod;
 619			if (ref->action == BTRFS_ADD_DELAYED_REF)
 620				list_add_tail(&exist->add_list,
 621					      &href->ref_add_list);
 622			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 623				ASSERT(!list_empty(&exist->add_list));
 624				list_del(&exist->add_list);
 625			} else {
 626				ASSERT(0);
 627			}
 628		} else
 629			mod = -ref->ref_mod;
 630	}
 631	exist->ref_mod += mod;
 632
 633	/* remove existing tail if its ref_mod is zero */
 634	if (exist->ref_mod == 0)
 635		drop_delayed_ref(trans, root, href, exist);
 636	spin_unlock(&href->lock);
 637	return ret;
 638inserted:
 639	if (ref->action == BTRFS_ADD_DELAYED_REF)
 640		list_add_tail(&ref->add_list, &href->ref_add_list);
 641	atomic_inc(&root->num_entries);
 642	spin_unlock(&href->lock);
 643	return ret;
 644}
 645
 646/*
 647 * helper function to update the accounting in the head ref
 648 * existing and update must have the same bytenr
 649 */
 650static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 651			 struct btrfs_delayed_ref_head *existing,
 652			 struct btrfs_delayed_ref_head *update,
 653			 int *old_ref_mod_ret)
 654{
 655	struct btrfs_delayed_ref_root *delayed_refs =
 656		&trans->transaction->delayed_refs;
 657	struct btrfs_fs_info *fs_info = trans->fs_info;
 658	int old_ref_mod;
 659
 660	BUG_ON(existing->is_data != update->is_data);
 661
 662	spin_lock(&existing->lock);
 663	if (update->must_insert_reserved) {
 664		/* if the extent was freed and then
 665		 * reallocated before the delayed ref
 666		 * entries were processed, we can end up
 667		 * with an existing head ref without
 668		 * the must_insert_reserved flag set.
 669		 * Set it again here
 670		 */
 671		existing->must_insert_reserved = update->must_insert_reserved;
 672
 673		/*
 674		 * update the num_bytes so we make sure the accounting
 675		 * is done correctly
 676		 */
 677		existing->num_bytes = update->num_bytes;
 678
 679	}
 680
 681	if (update->extent_op) {
 682		if (!existing->extent_op) {
 683			existing->extent_op = update->extent_op;
 684		} else {
 685			if (update->extent_op->update_key) {
 686				memcpy(&existing->extent_op->key,
 687				       &update->extent_op->key,
 688				       sizeof(update->extent_op->key));
 689				existing->extent_op->update_key = true;
 690			}
 691			if (update->extent_op->update_flags) {
 692				existing->extent_op->flags_to_set |=
 693					update->extent_op->flags_to_set;
 694				existing->extent_op->update_flags = true;
 695			}
 696			btrfs_free_delayed_extent_op(update->extent_op);
 697		}
 698	}
 699	/*
 700	 * update the reference mod on the head to reflect this new operation,
 701	 * only need the lock for this case cause we could be processing it
 702	 * currently, for refs we just added we know we're a-ok.
 703	 */
 704	old_ref_mod = existing->total_ref_mod;
 705	if (old_ref_mod_ret)
 706		*old_ref_mod_ret = old_ref_mod;
 707	existing->ref_mod += update->ref_mod;
 708	existing->total_ref_mod += update->ref_mod;
 709
 710	/*
 711	 * If we are going to from a positive ref mod to a negative or vice
 712	 * versa we need to make sure to adjust pending_csums accordingly.
 713	 */
 714	if (existing->is_data) {
 715		u64 csum_leaves =
 716			btrfs_csum_bytes_to_leaves(fs_info,
 717						   existing->num_bytes);
 718
 719		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 720			delayed_refs->pending_csums -= existing->num_bytes;
 721			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 722		}
 723		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 724			delayed_refs->pending_csums += existing->num_bytes;
 725			trans->delayed_ref_updates += csum_leaves;
 726		}
 727	}
 
 728	spin_unlock(&existing->lock);
 729}
 730
 731static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 732				  struct btrfs_qgroup_extent_record *qrecord,
 733				  u64 bytenr, u64 num_bytes, u64 ref_root,
 734				  u64 reserved, int action, bool is_data,
 735				  bool is_system)
 736{
 737	int count_mod = 1;
 738	int must_insert_reserved = 0;
 739
 740	/* If reserved is provided, it must be a data extent. */
 741	BUG_ON(!is_data && reserved);
 742
 743	/*
 744	 * The head node stores the sum of all the mods, so dropping a ref
 745	 * should drop the sum in the head node by one.
 746	 */
 747	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 748		count_mod = 0;
 749	else if (action == BTRFS_DROP_DELAYED_REF)
 750		count_mod = -1;
 751
 752	/*
 753	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 754	 * accounting when the extent is finally added, or if a later
 755	 * modification deletes the delayed ref without ever inserting the
 756	 * extent into the extent allocation tree.  ref->must_insert_reserved
 757	 * is the flag used to record that accounting mods are required.
 758	 *
 759	 * Once we record must_insert_reserved, switch the action to
 760	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 761	 */
 762	if (action == BTRFS_ADD_DELAYED_EXTENT)
 763		must_insert_reserved = 1;
 764	else
 765		must_insert_reserved = 0;
 766
 767	refcount_set(&head_ref->refs, 1);
 768	head_ref->bytenr = bytenr;
 769	head_ref->num_bytes = num_bytes;
 770	head_ref->ref_mod = count_mod;
 771	head_ref->must_insert_reserved = must_insert_reserved;
 772	head_ref->is_data = is_data;
 773	head_ref->is_system = is_system;
 774	head_ref->ref_tree = RB_ROOT_CACHED;
 775	INIT_LIST_HEAD(&head_ref->ref_add_list);
 776	RB_CLEAR_NODE(&head_ref->href_node);
 777	head_ref->processing = 0;
 778	head_ref->total_ref_mod = count_mod;
 779	spin_lock_init(&head_ref->lock);
 780	mutex_init(&head_ref->mutex);
 781
 782	if (qrecord) {
 783		if (ref_root && reserved) {
 784			qrecord->data_rsv = reserved;
 785			qrecord->data_rsv_refroot = ref_root;
 786		}
 787		qrecord->bytenr = bytenr;
 788		qrecord->num_bytes = num_bytes;
 789		qrecord->old_roots = NULL;
 790	}
 791}
 792
 793/*
 794 * helper function to actually insert a head node into the rbtree.
 795 * this does all the dirty work in terms of maintaining the correct
 796 * overall modification count.
 797 */
 798static noinline struct btrfs_delayed_ref_head *
 799add_delayed_ref_head(struct btrfs_trans_handle *trans,
 800		     struct btrfs_delayed_ref_head *head_ref,
 801		     struct btrfs_qgroup_extent_record *qrecord,
 802		     int action, int *qrecord_inserted_ret,
 803		     int *old_ref_mod, int *new_ref_mod)
 804{
 805	struct btrfs_delayed_ref_head *existing;
 806	struct btrfs_delayed_ref_root *delayed_refs;
 807	int qrecord_inserted = 0;
 808
 809	delayed_refs = &trans->transaction->delayed_refs;
 810
 811	/* Record qgroup extent info if provided */
 812	if (qrecord) {
 813		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 814					delayed_refs, qrecord))
 815			kfree(qrecord);
 816		else
 817			qrecord_inserted = 1;
 818	}
 819
 820	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 821
 822	existing = htree_insert(&delayed_refs->href_root,
 823				&head_ref->href_node);
 824	if (existing) {
 825		update_existing_head_ref(trans, existing, head_ref,
 826					 old_ref_mod);
 827		/*
 828		 * we've updated the existing ref, free the newly
 829		 * allocated ref
 830		 */
 831		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 832		head_ref = existing;
 833	} else {
 834		if (old_ref_mod)
 835			*old_ref_mod = 0;
 836		if (head_ref->is_data && head_ref->ref_mod < 0) {
 837			delayed_refs->pending_csums += head_ref->num_bytes;
 838			trans->delayed_ref_updates +=
 839				btrfs_csum_bytes_to_leaves(trans->fs_info,
 840							   head_ref->num_bytes);
 841		}
 842		delayed_refs->num_heads++;
 843		delayed_refs->num_heads_ready++;
 844		atomic_inc(&delayed_refs->num_entries);
 845		trans->delayed_ref_updates++;
 846	}
 847	if (qrecord_inserted_ret)
 848		*qrecord_inserted_ret = qrecord_inserted;
 849	if (new_ref_mod)
 850		*new_ref_mod = head_ref->total_ref_mod;
 851
 852	return head_ref;
 853}
 854
 855/*
 856 * init_delayed_ref_common - Initialize the structure which represents a
 857 *			     modification to a an extent.
 858 *
 859 * @fs_info:    Internal to the mounted filesystem mount structure.
 860 *
 861 * @ref:	The structure which is going to be initialized.
 862 *
 863 * @bytenr:	The logical address of the extent for which a modification is
 864 *		going to be recorded.
 865 *
 866 * @num_bytes:  Size of the extent whose modification is being recorded.
 867 *
 868 * @ref_root:	The id of the root where this modification has originated, this
 869 *		can be either one of the well-known metadata trees or the
 870 *		subvolume id which references this extent.
 871 *
 872 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 873 *		BTRFS_ADD_DELAYED_EXTENT
 874 *
 875 * @ref_type:	Holds the type of the extent which is being recorded, can be
 876 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 877 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 878 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 879 */
 880static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 881				    struct btrfs_delayed_ref_node *ref,
 882				    u64 bytenr, u64 num_bytes, u64 ref_root,
 883				    int action, u8 ref_type)
 884{
 885	u64 seq = 0;
 886
 887	if (action == BTRFS_ADD_DELAYED_EXTENT)
 888		action = BTRFS_ADD_DELAYED_REF;
 889
 890	if (is_fstree(ref_root))
 891		seq = atomic64_read(&fs_info->tree_mod_seq);
 892
 893	refcount_set(&ref->refs, 1);
 894	ref->bytenr = bytenr;
 895	ref->num_bytes = num_bytes;
 896	ref->ref_mod = 1;
 897	ref->action = action;
 898	ref->is_head = 0;
 899	ref->in_tree = 1;
 900	ref->seq = seq;
 901	ref->type = ref_type;
 902	RB_CLEAR_NODE(&ref->ref_node);
 903	INIT_LIST_HEAD(&ref->add_list);
 904}
 905
 906/*
 907 * add a delayed tree ref.  This does all of the accounting required
 908 * to make sure the delayed ref is eventually processed before this
 909 * transaction commits.
 910 */
 911int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 912			       struct btrfs_ref *generic_ref,
 913			       struct btrfs_delayed_extent_op *extent_op,
 914			       int *old_ref_mod, int *new_ref_mod)
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	BUG_ON(extent_op && extent_op->is_data);
 935	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 936	if (!ref)
 937		return -ENOMEM;
 938
 939	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 940	if (!head_ref) {
 941		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 942		return -ENOMEM;
 943	}
 944
 945	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 946	    is_fstree(generic_ref->real_root) &&
 947	    is_fstree(generic_ref->tree_ref.root) &&
 948	    !generic_ref->skip_qgroup) {
 949		record = kzalloc(sizeof(*record), GFP_NOFS);
 950		if (!record) {
 951			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 952			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 953			return -ENOMEM;
 954		}
 955	}
 956
 957	if (parent)
 958		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 959	else
 960		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 961
 962	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 963				generic_ref->tree_ref.root, action, ref_type);
 964	ref->root = generic_ref->tree_ref.root;
 965	ref->parent = parent;
 966	ref->level = level;
 967
 968	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 969			      generic_ref->tree_ref.root, 0, action, false,
 970			      is_system);
 971	head_ref->extent_op = extent_op;
 972
 973	delayed_refs = &trans->transaction->delayed_refs;
 974	spin_lock(&delayed_refs->lock);
 975
 976	/*
 977	 * insert both the head node and the new ref without dropping
 978	 * the spin lock
 979	 */
 980	head_ref = add_delayed_ref_head(trans, head_ref, record,
 981					action, &qrecord_inserted,
 982					old_ref_mod, new_ref_mod);
 983
 984	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 985	spin_unlock(&delayed_refs->lock);
 986
 987	/*
 988	 * Need to update the delayed_refs_rsv with any changes we may have
 989	 * made.
 990	 */
 991	btrfs_update_delayed_refs_rsv(trans);
 992
 993	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 994				   action == BTRFS_ADD_DELAYED_EXTENT ?
 995				   BTRFS_ADD_DELAYED_REF : action);
 996	if (ret > 0)
 997		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 998
 999	if (qrecord_inserted)
1000		btrfs_qgroup_trace_extent_post(fs_info, record);
1001
1002	return 0;
1003}
1004
1005/*
1006 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1007 */
1008int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1009			       struct btrfs_ref *generic_ref,
1010			       u64 reserved, int *old_ref_mod,
1011			       int *new_ref_mod)
1012{
1013	struct btrfs_fs_info *fs_info = trans->fs_info;
1014	struct btrfs_delayed_data_ref *ref;
1015	struct btrfs_delayed_ref_head *head_ref;
1016	struct btrfs_delayed_ref_root *delayed_refs;
1017	struct btrfs_qgroup_extent_record *record = NULL;
1018	int qrecord_inserted;
1019	int action = generic_ref->action;
1020	int ret;
1021	u64 bytenr = generic_ref->bytenr;
1022	u64 num_bytes = generic_ref->len;
1023	u64 parent = generic_ref->parent;
1024	u64 ref_root = generic_ref->data_ref.ref_root;
1025	u64 owner = generic_ref->data_ref.ino;
1026	u64 offset = generic_ref->data_ref.offset;
1027	u8 ref_type;
1028
1029	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1030	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1031	if (!ref)
1032		return -ENOMEM;
1033
1034	if (parent)
1035	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1036	else
1037	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1038	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1039				ref_root, action, ref_type);
1040	ref->root = ref_root;
1041	ref->parent = parent;
1042	ref->objectid = owner;
1043	ref->offset = offset;
1044
1045
1046	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1047	if (!head_ref) {
1048		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1049		return -ENOMEM;
1050	}
1051
1052	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1053	    is_fstree(ref_root) &&
1054	    is_fstree(generic_ref->real_root) &&
1055	    !generic_ref->skip_qgroup) {
1056		record = kzalloc(sizeof(*record), GFP_NOFS);
1057		if (!record) {
1058			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1059			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1060					head_ref);
1061			return -ENOMEM;
1062		}
1063	}
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1066			      reserved, action, true, false);
1067	head_ref->extent_op = NULL;
1068
1069	delayed_refs = &trans->transaction->delayed_refs;
1070	spin_lock(&delayed_refs->lock);
1071
1072	/*
1073	 * insert both the head node and the new ref without dropping
1074	 * the spin lock
1075	 */
1076	head_ref = add_delayed_ref_head(trans, head_ref, record,
1077					action, &qrecord_inserted,
1078					old_ref_mod, new_ref_mod);
1079
1080	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (ret > 0)
1093		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1094
1095
1096	if (qrecord_inserted)
1097		return btrfs_qgroup_trace_extent_post(fs_info, record);
1098	return 0;
1099}
1100
1101int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1102				u64 bytenr, u64 num_bytes,
1103				struct btrfs_delayed_extent_op *extent_op)
1104{
1105	struct btrfs_delayed_ref_head *head_ref;
1106	struct btrfs_delayed_ref_root *delayed_refs;
1107
1108	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109	if (!head_ref)
1110		return -ENOMEM;
1111
1112	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1113			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1114			      false);
1115	head_ref->extent_op = extent_op;
1116
1117	delayed_refs = &trans->transaction->delayed_refs;
1118	spin_lock(&delayed_refs->lock);
1119
1120	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1121			     NULL, NULL, NULL);
1122
1123	spin_unlock(&delayed_refs->lock);
1124
1125	/*
1126	 * Need to update the delayed_refs_rsv with any changes we may have
1127	 * made.
1128	 */
1129	btrfs_update_delayed_refs_rsv(trans);
1130	return 0;
1131}
1132
1133/*
1134 * This does a simple search for the head node for a given extent.  Returns the
1135 * head node if found, or NULL if not.
1136 */
1137struct btrfs_delayed_ref_head *
1138btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1139{
1140	lockdep_assert_held(&delayed_refs->lock);
1141
1142	return find_ref_head(delayed_refs, bytenr, false);
1143}
1144
1145void __cold btrfs_delayed_ref_exit(void)
1146{
1147	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1148	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1149	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1150	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1151}
1152
1153int __init btrfs_delayed_ref_init(void)
1154{
1155	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1156				"btrfs_delayed_ref_head",
1157				sizeof(struct btrfs_delayed_ref_head), 0,
1158				SLAB_MEM_SPREAD, NULL);
1159	if (!btrfs_delayed_ref_head_cachep)
1160		goto fail;
1161
1162	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1163				"btrfs_delayed_tree_ref",
1164				sizeof(struct btrfs_delayed_tree_ref), 0,
1165				SLAB_MEM_SPREAD, NULL);
1166	if (!btrfs_delayed_tree_ref_cachep)
1167		goto fail;
1168
1169	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1170				"btrfs_delayed_data_ref",
1171				sizeof(struct btrfs_delayed_data_ref), 0,
1172				SLAB_MEM_SPREAD, NULL);
1173	if (!btrfs_delayed_data_ref_cachep)
1174		goto fail;
1175
1176	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1177				"btrfs_delayed_extent_op",
1178				sizeof(struct btrfs_delayed_extent_op), 0,
1179				SLAB_MEM_SPREAD, NULL);
1180	if (!btrfs_delayed_extent_op_cachep)
1181		goto fail;
1182
1183	return 0;
1184fail:
1185	btrfs_delayed_ref_exit();
1186	return -ENOMEM;
1187}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
  14#include "tree-mod-log.h"
  15
  16struct kmem_cache *btrfs_delayed_ref_head_cachep;
  17struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  18struct kmem_cache *btrfs_delayed_data_ref_cachep;
  19struct kmem_cache *btrfs_delayed_extent_op_cachep;
  20/*
  21 * delayed back reference update tracking.  For subvolume trees
  22 * we queue up extent allocations and backref maintenance for
  23 * delayed processing.   This avoids deep call chains where we
  24 * add extents in the middle of btrfs_search_slot, and it allows
  25 * us to buffer up frequently modified backrefs in an rb tree instead
  26 * of hammering updates on the extent allocation tree.
  27 */
  28
  29bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  30{
  31	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  32	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  33	bool ret = false;
  34	u64 reserved;
  35
  36	spin_lock(&global_rsv->lock);
  37	reserved = global_rsv->reserved;
  38	spin_unlock(&global_rsv->lock);
  39
  40	/*
  41	 * Since the global reserve is just kind of magic we don't really want
  42	 * to rely on it to save our bacon, so if our size is more than the
  43	 * delayed_refs_rsv and the global rsv then it's time to think about
  44	 * bailing.
  45	 */
  46	spin_lock(&delayed_refs_rsv->lock);
  47	reserved += delayed_refs_rsv->reserved;
  48	if (delayed_refs_rsv->size >= reserved)
  49		ret = true;
  50	spin_unlock(&delayed_refs_rsv->lock);
  51	return ret;
  52}
  53
  54int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  55{
  56	u64 num_entries =
  57		atomic_read(&trans->transaction->delayed_refs.num_entries);
  58	u64 avg_runtime;
  59	u64 val;
  60
  61	smp_mb();
  62	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  63	val = num_entries * avg_runtime;
  64	if (val >= NSEC_PER_SEC)
  65		return 1;
  66	if (val >= NSEC_PER_SEC / 2)
  67		return 2;
  68
  69	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  70}
  71
  72/**
  73 * Release a ref head's reservation
  74 *
  75 * @fs_info:  the filesystem
  76 * @nr:       number of items to drop
  77 *
  78 * This drops the delayed ref head's count from the delayed refs rsv and frees
  79 * any excess reservation we had.
  80 */
  81void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  82{
  83	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  84	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  85	u64 released = 0;
  86
  87	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
 
  88	if (released)
  89		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  90					      0, released, 0);
  91}
  92
  93/*
  94 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  95 * @trans - the trans that may have generated delayed refs
  96 *
  97 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  98 * it'll calculate the additional size and add it to the delayed_refs_rsv.
  99 */
 100void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 101{
 102	struct btrfs_fs_info *fs_info = trans->fs_info;
 103	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 104	u64 num_bytes;
 105
 106	if (!trans->delayed_ref_updates)
 107		return;
 108
 109	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 110						    trans->delayed_ref_updates);
 111	spin_lock(&delayed_rsv->lock);
 112	delayed_rsv->size += num_bytes;
 113	delayed_rsv->full = 0;
 114	spin_unlock(&delayed_rsv->lock);
 115	trans->delayed_ref_updates = 0;
 116}
 117
 118/**
 119 * Transfer bytes to our delayed refs rsv
 120 *
 121 * @fs_info:   the filesystem
 122 * @src:       source block rsv to transfer from
 123 * @num_bytes: number of bytes to transfer
 124 *
 125 * This transfers up to the num_bytes amount from the src rsv to the
 126 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 127 */
 128void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 129				       struct btrfs_block_rsv *src,
 130				       u64 num_bytes)
 131{
 132	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 133	u64 to_free = 0;
 134
 135	spin_lock(&src->lock);
 136	src->reserved -= num_bytes;
 137	src->size -= num_bytes;
 138	spin_unlock(&src->lock);
 139
 140	spin_lock(&delayed_refs_rsv->lock);
 141	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 142		u64 delta = delayed_refs_rsv->size -
 143			delayed_refs_rsv->reserved;
 144		if (num_bytes > delta) {
 145			to_free = num_bytes - delta;
 146			num_bytes = delta;
 147		}
 148	} else {
 149		to_free = num_bytes;
 150		num_bytes = 0;
 151	}
 152
 153	if (num_bytes)
 154		delayed_refs_rsv->reserved += num_bytes;
 155	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 156		delayed_refs_rsv->full = 1;
 157	spin_unlock(&delayed_refs_rsv->lock);
 158
 159	if (num_bytes)
 160		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 161					      0, num_bytes, 1);
 162	if (to_free)
 163		btrfs_space_info_free_bytes_may_use(fs_info,
 164				delayed_refs_rsv->space_info, to_free);
 165}
 166
 167/**
 168 * Refill based on our delayed refs usage
 169 *
 170 * @fs_info: the filesystem
 171 * @flush:   control how we can flush for this reservation.
 172 *
 173 * This will refill the delayed block_rsv up to 1 items size worth of space and
 174 * will return -ENOSPC if we can't make the reservation.
 175 */
 176int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 177				  enum btrfs_reserve_flush_enum flush)
 178{
 179	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 180	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 181	u64 num_bytes = 0;
 182	int ret = -ENOSPC;
 183
 184	spin_lock(&block_rsv->lock);
 185	if (block_rsv->reserved < block_rsv->size) {
 186		num_bytes = block_rsv->size - block_rsv->reserved;
 187		num_bytes = min(num_bytes, limit);
 188	}
 189	spin_unlock(&block_rsv->lock);
 190
 191	if (!num_bytes)
 192		return 0;
 193
 194	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 195					   num_bytes, flush);
 196	if (ret)
 197		return ret;
 198	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 199	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 200				      0, num_bytes, 1);
 201	return 0;
 202}
 203
 204/*
 205 * compare two delayed tree backrefs with same bytenr and type
 206 */
 207static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 208			  struct btrfs_delayed_tree_ref *ref2)
 209{
 210	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 211		if (ref1->root < ref2->root)
 212			return -1;
 213		if (ref1->root > ref2->root)
 214			return 1;
 215	} else {
 216		if (ref1->parent < ref2->parent)
 217			return -1;
 218		if (ref1->parent > ref2->parent)
 219			return 1;
 220	}
 221	return 0;
 222}
 223
 224/*
 225 * compare two delayed data backrefs with same bytenr and type
 226 */
 227static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 228			  struct btrfs_delayed_data_ref *ref2)
 229{
 230	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 231		if (ref1->root < ref2->root)
 232			return -1;
 233		if (ref1->root > ref2->root)
 234			return 1;
 235		if (ref1->objectid < ref2->objectid)
 236			return -1;
 237		if (ref1->objectid > ref2->objectid)
 238			return 1;
 239		if (ref1->offset < ref2->offset)
 240			return -1;
 241		if (ref1->offset > ref2->offset)
 242			return 1;
 243	} else {
 244		if (ref1->parent < ref2->parent)
 245			return -1;
 246		if (ref1->parent > ref2->parent)
 247			return 1;
 248	}
 249	return 0;
 250}
 251
 252static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 253		     struct btrfs_delayed_ref_node *ref2,
 254		     bool check_seq)
 255{
 256	int ret = 0;
 257
 258	if (ref1->type < ref2->type)
 259		return -1;
 260	if (ref1->type > ref2->type)
 261		return 1;
 262	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 263	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 264		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 265				     btrfs_delayed_node_to_tree_ref(ref2));
 266	else
 267		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 268				     btrfs_delayed_node_to_data_ref(ref2));
 269	if (ret)
 270		return ret;
 271	if (check_seq) {
 272		if (ref1->seq < ref2->seq)
 273			return -1;
 274		if (ref1->seq > ref2->seq)
 275			return 1;
 276	}
 277	return 0;
 278}
 279
 280/* insert a new ref to head ref rbtree */
 281static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 282						   struct rb_node *node)
 283{
 284	struct rb_node **p = &root->rb_root.rb_node;
 285	struct rb_node *parent_node = NULL;
 286	struct btrfs_delayed_ref_head *entry;
 287	struct btrfs_delayed_ref_head *ins;
 288	u64 bytenr;
 289	bool leftmost = true;
 290
 291	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 292	bytenr = ins->bytenr;
 293	while (*p) {
 294		parent_node = *p;
 295		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 296				 href_node);
 297
 298		if (bytenr < entry->bytenr) {
 299			p = &(*p)->rb_left;
 300		} else if (bytenr > entry->bytenr) {
 301			p = &(*p)->rb_right;
 302			leftmost = false;
 303		} else {
 304			return entry;
 305		}
 306	}
 307
 308	rb_link_node(node, parent_node, p);
 309	rb_insert_color_cached(node, root, leftmost);
 310	return NULL;
 311}
 312
 313static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 314		struct btrfs_delayed_ref_node *ins)
 315{
 316	struct rb_node **p = &root->rb_root.rb_node;
 317	struct rb_node *node = &ins->ref_node;
 318	struct rb_node *parent_node = NULL;
 319	struct btrfs_delayed_ref_node *entry;
 320	bool leftmost = true;
 321
 322	while (*p) {
 323		int comp;
 324
 325		parent_node = *p;
 326		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 327				 ref_node);
 328		comp = comp_refs(ins, entry, true);
 329		if (comp < 0) {
 330			p = &(*p)->rb_left;
 331		} else if (comp > 0) {
 332			p = &(*p)->rb_right;
 333			leftmost = false;
 334		} else {
 335			return entry;
 336		}
 337	}
 338
 339	rb_link_node(node, parent_node, p);
 340	rb_insert_color_cached(node, root, leftmost);
 341	return NULL;
 342}
 343
 344static struct btrfs_delayed_ref_head *find_first_ref_head(
 345		struct btrfs_delayed_ref_root *dr)
 346{
 347	struct rb_node *n;
 348	struct btrfs_delayed_ref_head *entry;
 349
 350	n = rb_first_cached(&dr->href_root);
 351	if (!n)
 352		return NULL;
 353
 354	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 355
 356	return entry;
 357}
 358
 359/*
 360 * Find a head entry based on bytenr. This returns the delayed ref head if it
 361 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 362 * is given, the next bigger entry is returned if no exact match is found.
 363 */
 364static struct btrfs_delayed_ref_head *find_ref_head(
 365		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 366		bool return_bigger)
 367{
 368	struct rb_root *root = &dr->href_root.rb_root;
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = root->rb_node;
 373	entry = NULL;
 374	while (n) {
 375		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 376
 377		if (bytenr < entry->bytenr)
 378			n = n->rb_left;
 379		else if (bytenr > entry->bytenr)
 380			n = n->rb_right;
 381		else
 382			return entry;
 383	}
 384	if (entry && return_bigger) {
 385		if (bytenr > entry->bytenr) {
 386			n = rb_next(&entry->href_node);
 387			if (!n)
 388				return NULL;
 389			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 390					 href_node);
 391		}
 392		return entry;
 393	}
 394	return NULL;
 395}
 396
 397int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 398			   struct btrfs_delayed_ref_head *head)
 399{
 400	lockdep_assert_held(&delayed_refs->lock);
 401	if (mutex_trylock(&head->mutex))
 402		return 0;
 403
 404	refcount_inc(&head->refs);
 405	spin_unlock(&delayed_refs->lock);
 406
 407	mutex_lock(&head->mutex);
 408	spin_lock(&delayed_refs->lock);
 409	if (RB_EMPTY_NODE(&head->href_node)) {
 410		mutex_unlock(&head->mutex);
 411		btrfs_put_delayed_ref_head(head);
 412		return -EAGAIN;
 413	}
 414	btrfs_put_delayed_ref_head(head);
 415	return 0;
 416}
 417
 418static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 419				    struct btrfs_delayed_ref_root *delayed_refs,
 420				    struct btrfs_delayed_ref_head *head,
 421				    struct btrfs_delayed_ref_node *ref)
 422{
 423	lockdep_assert_held(&head->lock);
 424	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 425	RB_CLEAR_NODE(&ref->ref_node);
 426	if (!list_empty(&ref->add_list))
 427		list_del(&ref->add_list);
 428	ref->in_tree = 0;
 429	btrfs_put_delayed_ref(ref);
 430	atomic_dec(&delayed_refs->num_entries);
 431}
 432
 433static bool merge_ref(struct btrfs_trans_handle *trans,
 434		      struct btrfs_delayed_ref_root *delayed_refs,
 435		      struct btrfs_delayed_ref_head *head,
 436		      struct btrfs_delayed_ref_node *ref,
 437		      u64 seq)
 438{
 439	struct btrfs_delayed_ref_node *next;
 440	struct rb_node *node = rb_next(&ref->ref_node);
 441	bool done = false;
 442
 443	while (!done && node) {
 444		int mod;
 445
 446		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 447		node = rb_next(node);
 448		if (seq && next->seq >= seq)
 449			break;
 450		if (comp_refs(ref, next, false))
 451			break;
 452
 453		if (ref->action == next->action) {
 454			mod = next->ref_mod;
 455		} else {
 456			if (ref->ref_mod < next->ref_mod) {
 457				swap(ref, next);
 458				done = true;
 459			}
 460			mod = -next->ref_mod;
 461		}
 462
 463		drop_delayed_ref(trans, delayed_refs, head, next);
 464		ref->ref_mod += mod;
 465		if (ref->ref_mod == 0) {
 466			drop_delayed_ref(trans, delayed_refs, head, ref);
 467			done = true;
 468		} else {
 469			/*
 470			 * Can't have multiples of the same ref on a tree block.
 471			 */
 472			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 473				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 474		}
 475	}
 476
 477	return done;
 478}
 479
 480void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 481			      struct btrfs_delayed_ref_root *delayed_refs,
 482			      struct btrfs_delayed_ref_head *head)
 483{
 484	struct btrfs_fs_info *fs_info = trans->fs_info;
 485	struct btrfs_delayed_ref_node *ref;
 486	struct rb_node *node;
 487	u64 seq = 0;
 488
 489	lockdep_assert_held(&head->lock);
 490
 491	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 492		return;
 493
 494	/* We don't have too many refs to merge for data. */
 495	if (head->is_data)
 496		return;
 497
 498	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 
 
 
 
 
 
 
 
 
 499again:
 500	for (node = rb_first_cached(&head->ref_tree); node;
 501	     node = rb_next(node)) {
 502		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 503		if (seq && ref->seq >= seq)
 504			continue;
 505		if (merge_ref(trans, delayed_refs, head, ref, seq))
 506			goto again;
 507	}
 508}
 509
 510int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 511{
 
 512	int ret = 0;
 513	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 514
 515	if (min_seq != 0 && seq >= min_seq) {
 516		btrfs_debug(fs_info,
 517			    "holding back delayed_ref %llu, lowest is %llu",
 518			    seq, min_seq);
 519		ret = 1;
 
 
 
 
 
 
 520	}
 521
 
 522	return ret;
 523}
 524
 525struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 526		struct btrfs_delayed_ref_root *delayed_refs)
 527{
 528	struct btrfs_delayed_ref_head *head;
 529
 530again:
 531	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 532			     true);
 533	if (!head && delayed_refs->run_delayed_start != 0) {
 534		delayed_refs->run_delayed_start = 0;
 535		head = find_first_ref_head(delayed_refs);
 536	}
 537	if (!head)
 538		return NULL;
 539
 540	while (head->processing) {
 541		struct rb_node *node;
 542
 543		node = rb_next(&head->href_node);
 544		if (!node) {
 545			if (delayed_refs->run_delayed_start == 0)
 546				return NULL;
 547			delayed_refs->run_delayed_start = 0;
 548			goto again;
 549		}
 550		head = rb_entry(node, struct btrfs_delayed_ref_head,
 551				href_node);
 552	}
 553
 554	head->processing = 1;
 555	WARN_ON(delayed_refs->num_heads_ready == 0);
 556	delayed_refs->num_heads_ready--;
 557	delayed_refs->run_delayed_start = head->bytenr +
 558		head->num_bytes;
 559	return head;
 560}
 561
 562void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 563			   struct btrfs_delayed_ref_head *head)
 564{
 565	lockdep_assert_held(&delayed_refs->lock);
 566	lockdep_assert_held(&head->lock);
 567
 568	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 569	RB_CLEAR_NODE(&head->href_node);
 570	atomic_dec(&delayed_refs->num_entries);
 571	delayed_refs->num_heads--;
 572	if (head->processing == 0)
 573		delayed_refs->num_heads_ready--;
 574}
 575
 576/*
 577 * Helper to insert the ref_node to the tail or merge with tail.
 578 *
 579 * Return 0 for insert.
 580 * Return >0 for merge.
 581 */
 582static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 583			      struct btrfs_delayed_ref_root *root,
 584			      struct btrfs_delayed_ref_head *href,
 585			      struct btrfs_delayed_ref_node *ref)
 586{
 587	struct btrfs_delayed_ref_node *exist;
 588	int mod;
 589	int ret = 0;
 590
 591	spin_lock(&href->lock);
 592	exist = tree_insert(&href->ref_tree, ref);
 593	if (!exist)
 594		goto inserted;
 595
 596	/* Now we are sure we can merge */
 597	ret = 1;
 598	if (exist->action == ref->action) {
 599		mod = ref->ref_mod;
 600	} else {
 601		/* Need to change action */
 602		if (exist->ref_mod < ref->ref_mod) {
 603			exist->action = ref->action;
 604			mod = -exist->ref_mod;
 605			exist->ref_mod = ref->ref_mod;
 606			if (ref->action == BTRFS_ADD_DELAYED_REF)
 607				list_add_tail(&exist->add_list,
 608					      &href->ref_add_list);
 609			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 610				ASSERT(!list_empty(&exist->add_list));
 611				list_del(&exist->add_list);
 612			} else {
 613				ASSERT(0);
 614			}
 615		} else
 616			mod = -ref->ref_mod;
 617	}
 618	exist->ref_mod += mod;
 619
 620	/* remove existing tail if its ref_mod is zero */
 621	if (exist->ref_mod == 0)
 622		drop_delayed_ref(trans, root, href, exist);
 623	spin_unlock(&href->lock);
 624	return ret;
 625inserted:
 626	if (ref->action == BTRFS_ADD_DELAYED_REF)
 627		list_add_tail(&ref->add_list, &href->ref_add_list);
 628	atomic_inc(&root->num_entries);
 629	spin_unlock(&href->lock);
 630	return ret;
 631}
 632
 633/*
 634 * helper function to update the accounting in the head ref
 635 * existing and update must have the same bytenr
 636 */
 637static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 638			 struct btrfs_delayed_ref_head *existing,
 639			 struct btrfs_delayed_ref_head *update)
 
 640{
 641	struct btrfs_delayed_ref_root *delayed_refs =
 642		&trans->transaction->delayed_refs;
 643	struct btrfs_fs_info *fs_info = trans->fs_info;
 644	int old_ref_mod;
 645
 646	BUG_ON(existing->is_data != update->is_data);
 647
 648	spin_lock(&existing->lock);
 649	if (update->must_insert_reserved) {
 650		/* if the extent was freed and then
 651		 * reallocated before the delayed ref
 652		 * entries were processed, we can end up
 653		 * with an existing head ref without
 654		 * the must_insert_reserved flag set.
 655		 * Set it again here
 656		 */
 657		existing->must_insert_reserved = update->must_insert_reserved;
 658
 659		/*
 660		 * update the num_bytes so we make sure the accounting
 661		 * is done correctly
 662		 */
 663		existing->num_bytes = update->num_bytes;
 664
 665	}
 666
 667	if (update->extent_op) {
 668		if (!existing->extent_op) {
 669			existing->extent_op = update->extent_op;
 670		} else {
 671			if (update->extent_op->update_key) {
 672				memcpy(&existing->extent_op->key,
 673				       &update->extent_op->key,
 674				       sizeof(update->extent_op->key));
 675				existing->extent_op->update_key = true;
 676			}
 677			if (update->extent_op->update_flags) {
 678				existing->extent_op->flags_to_set |=
 679					update->extent_op->flags_to_set;
 680				existing->extent_op->update_flags = true;
 681			}
 682			btrfs_free_delayed_extent_op(update->extent_op);
 683		}
 684	}
 685	/*
 686	 * update the reference mod on the head to reflect this new operation,
 687	 * only need the lock for this case cause we could be processing it
 688	 * currently, for refs we just added we know we're a-ok.
 689	 */
 690	old_ref_mod = existing->total_ref_mod;
 
 
 691	existing->ref_mod += update->ref_mod;
 692	existing->total_ref_mod += update->ref_mod;
 693
 694	/*
 695	 * If we are going to from a positive ref mod to a negative or vice
 696	 * versa we need to make sure to adjust pending_csums accordingly.
 697	 */
 698	if (existing->is_data) {
 699		u64 csum_leaves =
 700			btrfs_csum_bytes_to_leaves(fs_info,
 701						   existing->num_bytes);
 702
 703		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 704			delayed_refs->pending_csums -= existing->num_bytes;
 705			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 706		}
 707		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 708			delayed_refs->pending_csums += existing->num_bytes;
 709			trans->delayed_ref_updates += csum_leaves;
 710		}
 711	}
 712
 713	spin_unlock(&existing->lock);
 714}
 715
 716static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 717				  struct btrfs_qgroup_extent_record *qrecord,
 718				  u64 bytenr, u64 num_bytes, u64 ref_root,
 719				  u64 reserved, int action, bool is_data,
 720				  bool is_system)
 721{
 722	int count_mod = 1;
 723	int must_insert_reserved = 0;
 724
 725	/* If reserved is provided, it must be a data extent. */
 726	BUG_ON(!is_data && reserved);
 727
 728	/*
 729	 * The head node stores the sum of all the mods, so dropping a ref
 730	 * should drop the sum in the head node by one.
 731	 */
 732	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 733		count_mod = 0;
 734	else if (action == BTRFS_DROP_DELAYED_REF)
 735		count_mod = -1;
 736
 737	/*
 738	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 739	 * accounting when the extent is finally added, or if a later
 740	 * modification deletes the delayed ref without ever inserting the
 741	 * extent into the extent allocation tree.  ref->must_insert_reserved
 742	 * is the flag used to record that accounting mods are required.
 743	 *
 744	 * Once we record must_insert_reserved, switch the action to
 745	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 746	 */
 747	if (action == BTRFS_ADD_DELAYED_EXTENT)
 748		must_insert_reserved = 1;
 749	else
 750		must_insert_reserved = 0;
 751
 752	refcount_set(&head_ref->refs, 1);
 753	head_ref->bytenr = bytenr;
 754	head_ref->num_bytes = num_bytes;
 755	head_ref->ref_mod = count_mod;
 756	head_ref->must_insert_reserved = must_insert_reserved;
 757	head_ref->is_data = is_data;
 758	head_ref->is_system = is_system;
 759	head_ref->ref_tree = RB_ROOT_CACHED;
 760	INIT_LIST_HEAD(&head_ref->ref_add_list);
 761	RB_CLEAR_NODE(&head_ref->href_node);
 762	head_ref->processing = 0;
 763	head_ref->total_ref_mod = count_mod;
 764	spin_lock_init(&head_ref->lock);
 765	mutex_init(&head_ref->mutex);
 766
 767	if (qrecord) {
 768		if (ref_root && reserved) {
 769			qrecord->data_rsv = reserved;
 770			qrecord->data_rsv_refroot = ref_root;
 771		}
 772		qrecord->bytenr = bytenr;
 773		qrecord->num_bytes = num_bytes;
 774		qrecord->old_roots = NULL;
 775	}
 776}
 777
 778/*
 779 * helper function to actually insert a head node into the rbtree.
 780 * this does all the dirty work in terms of maintaining the correct
 781 * overall modification count.
 782 */
 783static noinline struct btrfs_delayed_ref_head *
 784add_delayed_ref_head(struct btrfs_trans_handle *trans,
 785		     struct btrfs_delayed_ref_head *head_ref,
 786		     struct btrfs_qgroup_extent_record *qrecord,
 787		     int action, int *qrecord_inserted_ret)
 
 788{
 789	struct btrfs_delayed_ref_head *existing;
 790	struct btrfs_delayed_ref_root *delayed_refs;
 791	int qrecord_inserted = 0;
 792
 793	delayed_refs = &trans->transaction->delayed_refs;
 794
 795	/* Record qgroup extent info if provided */
 796	if (qrecord) {
 797		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 798					delayed_refs, qrecord))
 799			kfree(qrecord);
 800		else
 801			qrecord_inserted = 1;
 802	}
 803
 804	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 805
 806	existing = htree_insert(&delayed_refs->href_root,
 807				&head_ref->href_node);
 808	if (existing) {
 809		update_existing_head_ref(trans, existing, head_ref);
 
 810		/*
 811		 * we've updated the existing ref, free the newly
 812		 * allocated ref
 813		 */
 814		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 815		head_ref = existing;
 816	} else {
 
 
 817		if (head_ref->is_data && head_ref->ref_mod < 0) {
 818			delayed_refs->pending_csums += head_ref->num_bytes;
 819			trans->delayed_ref_updates +=
 820				btrfs_csum_bytes_to_leaves(trans->fs_info,
 821							   head_ref->num_bytes);
 822		}
 823		delayed_refs->num_heads++;
 824		delayed_refs->num_heads_ready++;
 825		atomic_inc(&delayed_refs->num_entries);
 826		trans->delayed_ref_updates++;
 827	}
 828	if (qrecord_inserted_ret)
 829		*qrecord_inserted_ret = qrecord_inserted;
 
 
 830
 831	return head_ref;
 832}
 833
 834/*
 835 * init_delayed_ref_common - Initialize the structure which represents a
 836 *			     modification to a an extent.
 837 *
 838 * @fs_info:    Internal to the mounted filesystem mount structure.
 839 *
 840 * @ref:	The structure which is going to be initialized.
 841 *
 842 * @bytenr:	The logical address of the extent for which a modification is
 843 *		going to be recorded.
 844 *
 845 * @num_bytes:  Size of the extent whose modification is being recorded.
 846 *
 847 * @ref_root:	The id of the root where this modification has originated, this
 848 *		can be either one of the well-known metadata trees or the
 849 *		subvolume id which references this extent.
 850 *
 851 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 852 *		BTRFS_ADD_DELAYED_EXTENT
 853 *
 854 * @ref_type:	Holds the type of the extent which is being recorded, can be
 855 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 856 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 857 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 858 */
 859static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 860				    struct btrfs_delayed_ref_node *ref,
 861				    u64 bytenr, u64 num_bytes, u64 ref_root,
 862				    int action, u8 ref_type)
 863{
 864	u64 seq = 0;
 865
 866	if (action == BTRFS_ADD_DELAYED_EXTENT)
 867		action = BTRFS_ADD_DELAYED_REF;
 868
 869	if (is_fstree(ref_root))
 870		seq = atomic64_read(&fs_info->tree_mod_seq);
 871
 872	refcount_set(&ref->refs, 1);
 873	ref->bytenr = bytenr;
 874	ref->num_bytes = num_bytes;
 875	ref->ref_mod = 1;
 876	ref->action = action;
 877	ref->is_head = 0;
 878	ref->in_tree = 1;
 879	ref->seq = seq;
 880	ref->type = ref_type;
 881	RB_CLEAR_NODE(&ref->ref_node);
 882	INIT_LIST_HEAD(&ref->add_list);
 883}
 884
 885/*
 886 * add a delayed tree ref.  This does all of the accounting required
 887 * to make sure the delayed ref is eventually processed before this
 888 * transaction commits.
 889 */
 890int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 891			       struct btrfs_ref *generic_ref,
 892			       struct btrfs_delayed_extent_op *extent_op)
 
 893{
 894	struct btrfs_fs_info *fs_info = trans->fs_info;
 895	struct btrfs_delayed_tree_ref *ref;
 896	struct btrfs_delayed_ref_head *head_ref;
 897	struct btrfs_delayed_ref_root *delayed_refs;
 898	struct btrfs_qgroup_extent_record *record = NULL;
 899	int qrecord_inserted;
 900	bool is_system;
 901	int action = generic_ref->action;
 902	int level = generic_ref->tree_ref.level;
 903	int ret;
 904	u64 bytenr = generic_ref->bytenr;
 905	u64 num_bytes = generic_ref->len;
 906	u64 parent = generic_ref->parent;
 907	u8 ref_type;
 908
 909	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 910
 911	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 912	BUG_ON(extent_op && extent_op->is_data);
 913	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 914	if (!ref)
 915		return -ENOMEM;
 916
 917	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 918	if (!head_ref) {
 919		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 920		return -ENOMEM;
 921	}
 922
 923	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 924	    is_fstree(generic_ref->real_root) &&
 925	    is_fstree(generic_ref->tree_ref.root) &&
 926	    !generic_ref->skip_qgroup) {
 927		record = kzalloc(sizeof(*record), GFP_NOFS);
 928		if (!record) {
 929			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 930			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 931			return -ENOMEM;
 932		}
 933	}
 934
 935	if (parent)
 936		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 937	else
 938		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 939
 940	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 941				generic_ref->tree_ref.root, action, ref_type);
 942	ref->root = generic_ref->tree_ref.root;
 943	ref->parent = parent;
 944	ref->level = level;
 945
 946	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 947			      generic_ref->tree_ref.root, 0, action, false,
 948			      is_system);
 949	head_ref->extent_op = extent_op;
 950
 951	delayed_refs = &trans->transaction->delayed_refs;
 952	spin_lock(&delayed_refs->lock);
 953
 954	/*
 955	 * insert both the head node and the new ref without dropping
 956	 * the spin lock
 957	 */
 958	head_ref = add_delayed_ref_head(trans, head_ref, record,
 959					action, &qrecord_inserted);
 
 960
 961	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 962	spin_unlock(&delayed_refs->lock);
 963
 964	/*
 965	 * Need to update the delayed_refs_rsv with any changes we may have
 966	 * made.
 967	 */
 968	btrfs_update_delayed_refs_rsv(trans);
 969
 970	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 971				   action == BTRFS_ADD_DELAYED_EXTENT ?
 972				   BTRFS_ADD_DELAYED_REF : action);
 973	if (ret > 0)
 974		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 975
 976	if (qrecord_inserted)
 977		btrfs_qgroup_trace_extent_post(trans, record);
 978
 979	return 0;
 980}
 981
 982/*
 983 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
 984 */
 985int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
 986			       struct btrfs_ref *generic_ref,
 987			       u64 reserved)
 
 988{
 989	struct btrfs_fs_info *fs_info = trans->fs_info;
 990	struct btrfs_delayed_data_ref *ref;
 991	struct btrfs_delayed_ref_head *head_ref;
 992	struct btrfs_delayed_ref_root *delayed_refs;
 993	struct btrfs_qgroup_extent_record *record = NULL;
 994	int qrecord_inserted;
 995	int action = generic_ref->action;
 996	int ret;
 997	u64 bytenr = generic_ref->bytenr;
 998	u64 num_bytes = generic_ref->len;
 999	u64 parent = generic_ref->parent;
1000	u64 ref_root = generic_ref->data_ref.ref_root;
1001	u64 owner = generic_ref->data_ref.ino;
1002	u64 offset = generic_ref->data_ref.offset;
1003	u8 ref_type;
1004
1005	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1006	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1007	if (!ref)
1008		return -ENOMEM;
1009
1010	if (parent)
1011	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1012	else
1013	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1014	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1015				ref_root, action, ref_type);
1016	ref->root = ref_root;
1017	ref->parent = parent;
1018	ref->objectid = owner;
1019	ref->offset = offset;
1020
1021
1022	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1023	if (!head_ref) {
1024		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1025		return -ENOMEM;
1026	}
1027
1028	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1029	    is_fstree(ref_root) &&
1030	    is_fstree(generic_ref->real_root) &&
1031	    !generic_ref->skip_qgroup) {
1032		record = kzalloc(sizeof(*record), GFP_NOFS);
1033		if (!record) {
1034			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1035			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1036					head_ref);
1037			return -ENOMEM;
1038		}
1039	}
1040
1041	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1042			      reserved, action, true, false);
1043	head_ref->extent_op = NULL;
1044
1045	delayed_refs = &trans->transaction->delayed_refs;
1046	spin_lock(&delayed_refs->lock);
1047
1048	/*
1049	 * insert both the head node and the new ref without dropping
1050	 * the spin lock
1051	 */
1052	head_ref = add_delayed_ref_head(trans, head_ref, record,
1053					action, &qrecord_inserted);
 
1054
1055	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1056	spin_unlock(&delayed_refs->lock);
1057
1058	/*
1059	 * Need to update the delayed_refs_rsv with any changes we may have
1060	 * made.
1061	 */
1062	btrfs_update_delayed_refs_rsv(trans);
1063
1064	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1065				   action == BTRFS_ADD_DELAYED_EXTENT ?
1066				   BTRFS_ADD_DELAYED_REF : action);
1067	if (ret > 0)
1068		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1069
1070
1071	if (qrecord_inserted)
1072		return btrfs_qgroup_trace_extent_post(trans, record);
1073	return 0;
1074}
1075
1076int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1077				u64 bytenr, u64 num_bytes,
1078				struct btrfs_delayed_extent_op *extent_op)
1079{
1080	struct btrfs_delayed_ref_head *head_ref;
1081	struct btrfs_delayed_ref_root *delayed_refs;
1082
1083	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1084	if (!head_ref)
1085		return -ENOMEM;
1086
1087	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1088			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1089			      false);
1090	head_ref->extent_op = extent_op;
1091
1092	delayed_refs = &trans->transaction->delayed_refs;
1093	spin_lock(&delayed_refs->lock);
1094
1095	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1096			     NULL);
1097
1098	spin_unlock(&delayed_refs->lock);
1099
1100	/*
1101	 * Need to update the delayed_refs_rsv with any changes we may have
1102	 * made.
1103	 */
1104	btrfs_update_delayed_refs_rsv(trans);
1105	return 0;
1106}
1107
1108/*
1109 * This does a simple search for the head node for a given extent.  Returns the
1110 * head node if found, or NULL if not.
1111 */
1112struct btrfs_delayed_ref_head *
1113btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1114{
1115	lockdep_assert_held(&delayed_refs->lock);
1116
1117	return find_ref_head(delayed_refs, bytenr, false);
1118}
1119
1120void __cold btrfs_delayed_ref_exit(void)
1121{
1122	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1123	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1124	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1125	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1126}
1127
1128int __init btrfs_delayed_ref_init(void)
1129{
1130	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1131				"btrfs_delayed_ref_head",
1132				sizeof(struct btrfs_delayed_ref_head), 0,
1133				SLAB_MEM_SPREAD, NULL);
1134	if (!btrfs_delayed_ref_head_cachep)
1135		goto fail;
1136
1137	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1138				"btrfs_delayed_tree_ref",
1139				sizeof(struct btrfs_delayed_tree_ref), 0,
1140				SLAB_MEM_SPREAD, NULL);
1141	if (!btrfs_delayed_tree_ref_cachep)
1142		goto fail;
1143
1144	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1145				"btrfs_delayed_data_ref",
1146				sizeof(struct btrfs_delayed_data_ref), 0,
1147				SLAB_MEM_SPREAD, NULL);
1148	if (!btrfs_delayed_data_ref_cachep)
1149		goto fail;
1150
1151	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1152				"btrfs_delayed_extent_op",
1153				sizeof(struct btrfs_delayed_extent_op), 0,
1154				SLAB_MEM_SPREAD, NULL);
1155	if (!btrfs_delayed_extent_op_cachep)
1156		goto fail;
1157
1158	return 0;
1159fail:
1160	btrfs_delayed_ref_exit();
1161	return -ENOMEM;
1162}