Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of_device.h>
  35
  36#include <drm/drm_atomic.h>
  37#include <drm/drm_atomic_helper.h>
  38#include <drm/drm_atomic_uapi.h>
  39#include <drm/drm_fb_cma_helper.h>
  40#include <drm/drm_print.h>
  41#include <drm/drm_probe_helper.h>
  42#include <drm/drm_vblank.h>
  43
  44#include "vc4_drv.h"
  45#include "vc4_regs.h"
  46
  47struct vc4_crtc_state {
  48	struct drm_crtc_state base;
  49	/* Dlist area for this CRTC configuration. */
  50	struct drm_mm_node mm;
  51	bool feed_txp;
  52	bool txp_armed;
  53
  54	struct {
  55		unsigned int left;
  56		unsigned int right;
  57		unsigned int top;
  58		unsigned int bottom;
  59	} margins;
  60};
  61
  62static inline struct vc4_crtc_state *
  63to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  64{
  65	return (struct vc4_crtc_state *)crtc_state;
  66}
  67
  68#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  69#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  70
  71static const struct debugfs_reg32 crtc_regs[] = {
  72	VC4_REG32(PV_CONTROL),
  73	VC4_REG32(PV_V_CONTROL),
  74	VC4_REG32(PV_VSYNCD_EVEN),
  75	VC4_REG32(PV_HORZA),
  76	VC4_REG32(PV_HORZB),
  77	VC4_REG32(PV_VERTA),
  78	VC4_REG32(PV_VERTB),
  79	VC4_REG32(PV_VERTA_EVEN),
  80	VC4_REG32(PV_VERTB_EVEN),
  81	VC4_REG32(PV_INTEN),
  82	VC4_REG32(PV_INTSTAT),
  83	VC4_REG32(PV_STAT),
  84	VC4_REG32(PV_HACT_ACT),
  85};
  86
  87bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  88			     bool in_vblank_irq, int *vpos, int *hpos,
  89			     ktime_t *stime, ktime_t *etime,
  90			     const struct drm_display_mode *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91{
 
  92	struct vc4_dev *vc4 = to_vc4_dev(dev);
  93	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  94	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
  95	u32 val;
  96	int fifo_lines;
  97	int vblank_lines;
  98	bool ret = false;
  99
 100	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 101
 102	/* Get optional system timestamp before query. */
 103	if (stime)
 104		*stime = ktime_get();
 105
 106	/*
 107	 * Read vertical scanline which is currently composed for our
 108	 * pixelvalve by the HVS, and also the scaler status.
 109	 */
 110	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 111
 112	/* Get optional system timestamp after query. */
 113	if (etime)
 114		*etime = ktime_get();
 115
 116	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 117
 118	/* Vertical position of hvs composed scanline. */
 119	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 120	*hpos = 0;
 121
 122	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 123		*vpos /= 2;
 124
 125		/* Use hpos to correct for field offset in interlaced mode. */
 126		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 127			*hpos += mode->crtc_htotal / 2;
 128	}
 129
 
 130	/* This is the offset we need for translating hvs -> pv scanout pos. */
 131	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 132
 133	if (fifo_lines > 0)
 134		ret = true;
 135
 136	/* HVS more than fifo_lines into frame for compositing? */
 137	if (*vpos > fifo_lines) {
 138		/*
 139		 * We are in active scanout and can get some meaningful results
 140		 * from HVS. The actual PV scanout can not trail behind more
 141		 * than fifo_lines as that is the fifo's capacity. Assume that
 142		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 143		 * refilling the fifo and PV consuming from the fifo, ie.
 144		 * whenever the PV consumes and frees up a scanline in the
 145		 * fifo, the HVS will immediately refill it, therefore
 146		 * incrementing vpos. Therefore we choose HVS read position -
 147		 * fifo size in scanlines as a estimate of the real scanout
 148		 * position of the PV.
 149		 */
 150		*vpos -= fifo_lines + 1;
 151
 152		return ret;
 153	}
 154
 155	/*
 156	 * Less: This happens when we are in vblank and the HVS, after getting
 157	 * the VSTART restart signal from the PV, just started refilling its
 158	 * fifo with new lines from the top-most lines of the new framebuffers.
 159	 * The PV does not scan out in vblank, so does not remove lines from
 160	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 161	 * We can't get meaningful readings wrt. scanline position of the PV
 162	 * and need to make things up in a approximative but consistent way.
 163	 */
 164	vblank_lines = mode->vtotal - mode->vdisplay;
 165
 166	if (in_vblank_irq) {
 167		/*
 168		 * Assume the irq handler got called close to first
 169		 * line of vblank, so PV has about a full vblank
 170		 * scanlines to go, and as a base timestamp use the
 171		 * one taken at entry into vblank irq handler, so it
 172		 * is not affected by random delays due to lock
 173		 * contention on event_lock or vblank_time lock in
 174		 * the core.
 175		 */
 176		*vpos = -vblank_lines;
 177
 178		if (stime)
 179			*stime = vc4_crtc->t_vblank;
 180		if (etime)
 181			*etime = vc4_crtc->t_vblank;
 182
 183		/*
 184		 * If the HVS fifo is not yet full then we know for certain
 185		 * we are at the very beginning of vblank, as the hvs just
 186		 * started refilling, and the stime and etime timestamps
 187		 * truly correspond to start of vblank.
 188		 *
 189		 * Unfortunately there's no way to report this to upper levels
 190		 * and make it more useful.
 191		 */
 192	} else {
 193		/*
 194		 * No clue where we are inside vblank. Return a vpos of zero,
 195		 * which will cause calling code to just return the etime
 196		 * timestamp uncorrected. At least this is no worse than the
 197		 * standard fallback.
 198		 */
 199		*vpos = 0;
 200	}
 201
 202	return ret;
 203}
 204
 205static void vc4_crtc_destroy(struct drm_crtc *crtc)
 206{
 207	drm_crtc_cleanup(crtc);
 208}
 209
 210static void
 211vc4_crtc_lut_load(struct drm_crtc *crtc)
 212{
 213	struct drm_device *dev = crtc->dev;
 214	struct vc4_dev *vc4 = to_vc4_dev(dev);
 215	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 216	u32 i;
 217
 218	/* The LUT memory is laid out with each HVS channel in order,
 219	 * each of which takes 256 writes for R, 256 for G, then 256
 220	 * for B.
 
 
 
 
 
 
 221	 */
 222	HVS_WRITE(SCALER_GAMADDR,
 223		  SCALER_GAMADDR_AUTOINC |
 224		  (vc4_crtc->channel * 3 * crtc->gamma_size));
 225
 226	for (i = 0; i < crtc->gamma_size; i++)
 227		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 228	for (i = 0; i < crtc->gamma_size; i++)
 229		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 230	for (i = 0; i < crtc->gamma_size; i++)
 231		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 232}
 233
 234static void
 235vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
 236{
 237	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 238	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
 239	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
 240	u32 i;
 241
 242	for (i = 0; i < length; i++) {
 243		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 244		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 245		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 246	}
 247
 248	vc4_crtc_lut_load(crtc);
 249}
 250
 251static u32 vc4_get_fifo_full_level(u32 format)
 252{
 253	static const u32 fifo_len_bytes = 64;
 254	static const u32 hvs_latency_pix = 6;
 255
 256	switch (format) {
 257	case PV_CONTROL_FORMAT_DSIV_16:
 258	case PV_CONTROL_FORMAT_DSIC_16:
 259		return fifo_len_bytes - 2 * hvs_latency_pix;
 260	case PV_CONTROL_FORMAT_DSIV_18:
 261		return fifo_len_bytes - 14;
 262	case PV_CONTROL_FORMAT_24:
 263	case PV_CONTROL_FORMAT_DSIV_24:
 264	default:
 265		return fifo_len_bytes - 3 * hvs_latency_pix;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266	}
 267}
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 269/*
 270 * Returns the encoder attached to the CRTC.
 271 *
 272 * VC4 can only scan out to one encoder at a time, while the DRM core
 273 * allows drivers to push pixels to more than one encoder from the
 274 * same CRTC.
 275 */
 276static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 
 
 
 277{
 278	struct drm_connector *connector;
 279	struct drm_connector_list_iter conn_iter;
 280
 281	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 282	drm_for_each_connector_iter(connector, &conn_iter) {
 283		if (connector->state->crtc == crtc) {
 
 
 
 
 
 284			drm_connector_list_iter_end(&conn_iter);
 285			return connector->encoder;
 286		}
 287	}
 288	drm_connector_list_iter_end(&conn_iter);
 289
 290	return NULL;
 291}
 292
 293static void vc4_crtc_config_pv(struct drm_crtc *crtc)
 294{
 295	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 296	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 297	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 298	struct drm_crtc_state *state = crtc->state;
 299	struct drm_display_mode *mode = &state->adjusted_mode;
 
 300	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 301	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 302	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 303		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 304	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 
 
 
 
 
 
 
 
 
 305
 306	/* Reset the PV fifo. */
 307	CRTC_WRITE(PV_CONTROL, 0);
 308	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 309	CRTC_WRITE(PV_CONTROL, 0);
 310
 311	CRTC_WRITE(PV_HORZA,
 312		   VC4_SET_FIELD((mode->htotal -
 313				  mode->hsync_end) * pixel_rep,
 314				 PV_HORZA_HBP) |
 315		   VC4_SET_FIELD((mode->hsync_end -
 316				  mode->hsync_start) * pixel_rep,
 317				 PV_HORZA_HSYNC));
 
 318	CRTC_WRITE(PV_HORZB,
 319		   VC4_SET_FIELD((mode->hsync_start -
 320				  mode->hdisplay) * pixel_rep,
 321				 PV_HORZB_HFP) |
 322		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 
 323
 324	CRTC_WRITE(PV_VERTA,
 325		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 326				 PV_VERTA_VBP) |
 327		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 328				 PV_VERTA_VSYNC));
 329	CRTC_WRITE(PV_VERTB,
 330		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 331				 PV_VERTB_VFP) |
 332		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 333
 334	if (interlace) {
 335		CRTC_WRITE(PV_VERTA_EVEN,
 336			   VC4_SET_FIELD(mode->crtc_vtotal -
 337					 mode->crtc_vsync_end - 1,
 338					 PV_VERTA_VBP) |
 339			   VC4_SET_FIELD(mode->crtc_vsync_end -
 340					 mode->crtc_vsync_start,
 341					 PV_VERTA_VSYNC));
 342		CRTC_WRITE(PV_VERTB_EVEN,
 343			   VC4_SET_FIELD(mode->crtc_vsync_start -
 344					 mode->crtc_vdisplay,
 345					 PV_VERTB_VFP) |
 346			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 347
 348		/* We set up first field even mode for HDMI.  VEC's
 349		 * NTSC mode would want first field odd instead, once
 350		 * we support it (to do so, set ODD_FIRST and put the
 351		 * delay in VSYNCD_EVEN instead).
 352		 */
 353		CRTC_WRITE(PV_V_CONTROL,
 354			   PV_VCONTROL_CONTINUOUS |
 355			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 356			   PV_VCONTROL_INTERLACE |
 357			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 358					 PV_VCONTROL_ODD_DELAY));
 359		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 360	} else {
 361		CRTC_WRITE(PV_V_CONTROL,
 362			   PV_VCONTROL_CONTINUOUS |
 363			   (is_dsi ? PV_VCONTROL_DSI : 0));
 364	}
 365
 366	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 
 
 
 
 
 
 367
 368	CRTC_WRITE(PV_CONTROL,
 
 369		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 370		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 371				 PV_CONTROL_FIFO_LEVEL) |
 372		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 373		   PV_CONTROL_CLR_AT_START |
 374		   PV_CONTROL_TRIGGER_UNDERFLOW |
 375		   PV_CONTROL_WAIT_HSTART |
 376		   VC4_SET_FIELD(vc4_encoder->clock_select,
 377				 PV_CONTROL_CLK_SELECT) |
 378		   PV_CONTROL_FIFO_CLR |
 379		   PV_CONTROL_EN);
 380}
 381
 382static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 383{
 384	struct drm_device *dev = crtc->dev;
 385	struct vc4_dev *vc4 = to_vc4_dev(dev);
 386	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 387	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 388	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 389	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 390	bool debug_dump_regs = false;
 391
 392	if (debug_dump_regs) {
 393		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 394		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 395			 drm_crtc_index(crtc));
 396		drm_print_regset32(&p, &vc4_crtc->regset);
 397	}
 398
 399	if (vc4_crtc->channel == 2) {
 400		u32 dispctrl;
 401		u32 dsp3_mux;
 402
 403		/*
 404		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
 405		 * FIFO X'.
 406		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
 407		 *
 408		 * DSP3 is connected to FIFO2 unless the transposer is
 409		 * enabled. In this case, FIFO 2 is directly accessed by the
 410		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
 411		 * route.
 412		 */
 413		if (vc4_state->feed_txp)
 414			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
 415		else
 416			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
 417
 418		dispctrl = HVS_READ(SCALER_DISPCTRL) &
 419			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 420		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
 421	}
 422
 423	if (!vc4_state->feed_txp)
 424		vc4_crtc_config_pv(crtc);
 425
 426	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 427		  SCALER_DISPBKGND_AUTOHS |
 428		  SCALER_DISPBKGND_GAMMA |
 429		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 430
 431	/* Reload the LUT, since the SRAMs would have been disabled if
 432	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 433	 */
 434	vc4_crtc_lut_load(crtc);
 435
 436	if (debug_dump_regs) {
 437		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 438		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 439			 drm_crtc_index(crtc));
 440		drm_print_regset32(&p, &vc4_crtc->regset);
 441	}
 442}
 443
 444static void require_hvs_enabled(struct drm_device *dev)
 445{
 446	struct vc4_dev *vc4 = to_vc4_dev(dev);
 447
 448	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 449		     SCALER_DISPCTRL_ENABLE);
 450}
 451
 452static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 453				    struct drm_crtc_state *old_state)
 
 
 454{
 455	struct drm_device *dev = crtc->dev;
 456	struct vc4_dev *vc4 = to_vc4_dev(dev);
 457	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 458	u32 chan = vc4_crtc->channel;
 459	int ret;
 460	require_hvs_enabled(dev);
 461
 462	/* Disable vblank irq handling before crtc is disabled. */
 463	drm_crtc_vblank_off(crtc);
 464
 465	CRTC_WRITE(PV_V_CONTROL,
 466		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 467	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 468	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 469
 470	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 471	    SCALER_DISPCTRLX_ENABLE) {
 472		HVS_WRITE(SCALER_DISPCTRLX(chan),
 473			  SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475		/* While the docs say that reset is self-clearing, it
 476		 * seems it doesn't actually.
 477		 */
 478		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 479	}
 480
 481	/* Once we leave, the scaler should be disabled and its fifo empty. */
 
 482
 483	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 
 484
 485	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 486				   SCALER_DISPSTATX_MODE) !=
 487		     SCALER_DISPSTATX_MODE_DISABLED);
 488
 489	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 490		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 491		     SCALER_DISPSTATX_EMPTY);
 
 492
 493	/*
 494	 * Make sure we issue a vblank event after disabling the CRTC if
 495	 * someone was waiting it.
 496	 */
 497	if (crtc->state->event) {
 498		unsigned long flags;
 499
 500		spin_lock_irqsave(&dev->event_lock, flags);
 501		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 502		crtc->state->event = NULL;
 503		spin_unlock_irqrestore(&dev->event_lock, flags);
 504	}
 
 
 505}
 506
 507void vc4_crtc_txp_armed(struct drm_crtc_state *state)
 508{
 509	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 
 
 
 
 
 
 510
 511	vc4_state->txp_armed = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512}
 513
 514static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 
 515{
 
 
 
 
 
 516	struct drm_device *dev = crtc->dev;
 517	struct vc4_dev *vc4 = to_vc4_dev(dev);
 518	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 519	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 520
 521	if (crtc->state->event) {
 522		unsigned long flags;
 523
 524		crtc->state->event->pipe = drm_crtc_index(crtc);
 525
 526		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 527
 528		spin_lock_irqsave(&dev->event_lock, flags);
 
 529
 530		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
 531			vc4_crtc->event = crtc->state->event;
 532			crtc->state->event = NULL;
 533		}
 534
 535		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 536			  vc4_state->mm.start);
 
 
 
 
 537
 
 
 
 538		spin_unlock_irqrestore(&dev->event_lock, flags);
 539	} else {
 540		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 541			  vc4_state->mm.start);
 542	}
 543}
 544
 545static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 546				   struct drm_crtc_state *old_state)
 547{
 548	struct drm_device *dev = crtc->dev;
 549	struct vc4_dev *vc4 = to_vc4_dev(dev);
 550	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 551	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 552	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 
 553
 554	require_hvs_enabled(dev);
 555
 556	/* Enable vblank irq handling before crtc is started otherwise
 557	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 558	 */
 559	drm_crtc_vblank_on(crtc);
 560	vc4_crtc_update_dlist(crtc);
 561
 562	/* Turn on the scaler, which will wait for vstart to start
 563	 * compositing.
 564	 * When feeding the transposer, we should operate in oneshot
 565	 * mode.
 566	 */
 567	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 568		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 569		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 570		  SCALER_DISPCTRLX_ENABLE |
 571		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
 
 572
 573	/* When feeding the transposer block the pixelvalve is unneeded and
 574	 * should not be enabled.
 575	 */
 576	if (!vc4_state->feed_txp)
 577		CRTC_WRITE(PV_V_CONTROL,
 578			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 
 
 579}
 580
 581static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 582						const struct drm_display_mode *mode)
 583{
 584	/* Do not allow doublescan modes from user space */
 585	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 586		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 587			      crtc->base.id);
 588		return MODE_NO_DBLESCAN;
 589	}
 590
 591	return MODE_OK;
 592}
 593
 594void vc4_crtc_get_margins(struct drm_crtc_state *state,
 595			  unsigned int *left, unsigned int *right,
 596			  unsigned int *top, unsigned int *bottom)
 597{
 598	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 599	struct drm_connector_state *conn_state;
 600	struct drm_connector *conn;
 601	int i;
 602
 603	*left = vc4_state->margins.left;
 604	*right = vc4_state->margins.right;
 605	*top = vc4_state->margins.top;
 606	*bottom = vc4_state->margins.bottom;
 607
 608	/* We have to interate over all new connector states because
 609	 * vc4_crtc_get_margins() might be called before
 610	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 611	 * might be outdated.
 612	 */
 613	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 614		if (conn_state->crtc != state->crtc)
 615			continue;
 616
 617		*left = conn_state->tv.margins.left;
 618		*right = conn_state->tv.margins.right;
 619		*top = conn_state->tv.margins.top;
 620		*bottom = conn_state->tv.margins.bottom;
 621		break;
 622	}
 623}
 624
 625static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 626				 struct drm_crtc_state *state)
 627{
 628	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 629	struct drm_device *dev = crtc->dev;
 630	struct vc4_dev *vc4 = to_vc4_dev(dev);
 631	struct drm_plane *plane;
 632	unsigned long flags;
 633	const struct drm_plane_state *plane_state;
 634	struct drm_connector *conn;
 635	struct drm_connector_state *conn_state;
 636	u32 dlist_count = 0;
 637	int ret, i;
 638
 639	/* The pixelvalve can only feed one encoder (and encoders are
 640	 * 1:1 with connectors.)
 641	 */
 642	if (hweight32(state->connector_mask) > 1)
 643		return -EINVAL;
 644
 645	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 646		dlist_count += vc4_plane_dlist_size(plane_state);
 647
 648	dlist_count++; /* Account for SCALER_CTL0_END. */
 649
 650	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 651	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 652				 dlist_count);
 653	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 654	if (ret)
 655		return ret;
 656
 657	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 
 658		if (conn_state->crtc != crtc)
 659			continue;
 660
 661		/* The writeback connector is implemented using the transposer
 662		 * block which is directly taking its data from the HVS FIFO.
 663		 */
 664		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
 665			state->no_vblank = true;
 666			vc4_state->feed_txp = true;
 667		} else {
 668			state->no_vblank = false;
 669			vc4_state->feed_txp = false;
 670		}
 671
 672		vc4_state->margins.left = conn_state->tv.margins.left;
 673		vc4_state->margins.right = conn_state->tv.margins.right;
 674		vc4_state->margins.top = conn_state->tv.margins.top;
 675		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 676		break;
 677	}
 678
 679	return 0;
 680}
 681
 682static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 683				  struct drm_crtc_state *old_state)
 684{
 685	struct drm_device *dev = crtc->dev;
 686	struct vc4_dev *vc4 = to_vc4_dev(dev);
 687	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 688	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 689	struct drm_plane *plane;
 690	struct vc4_plane_state *vc4_plane_state;
 691	bool debug_dump_regs = false;
 692	bool enable_bg_fill = false;
 693	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 694	u32 __iomem *dlist_next = dlist_start;
 695
 696	if (debug_dump_regs) {
 697		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 698		vc4_hvs_dump_state(dev);
 699	}
 700
 701	/* Copy all the active planes' dlist contents to the hardware dlist. */
 702	drm_atomic_crtc_for_each_plane(plane, crtc) {
 703		/* Is this the first active plane? */
 704		if (dlist_next == dlist_start) {
 705			/* We need to enable background fill when a plane
 706			 * could be alpha blending from the background, i.e.
 707			 * where no other plane is underneath. It suffices to
 708			 * consider the first active plane here since we set
 709			 * needs_bg_fill such that either the first plane
 710			 * already needs it or all planes on top blend from
 711			 * the first or a lower plane.
 712			 */
 713			vc4_plane_state = to_vc4_plane_state(plane->state);
 714			enable_bg_fill = vc4_plane_state->needs_bg_fill;
 715		}
 716
 717		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 718	}
 719
 720	writel(SCALER_CTL0_END, dlist_next);
 721	dlist_next++;
 722
 723	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 724
 725	if (enable_bg_fill)
 726		/* This sets a black background color fill, as is the case
 727		 * with other DRM drivers.
 728		 */
 729		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 730			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 731			  SCALER_DISPBKGND_FILL);
 732
 733	/* Only update DISPLIST if the CRTC was already running and is not
 734	 * being disabled.
 735	 * vc4_crtc_enable() takes care of updating the dlist just after
 736	 * re-enabling VBLANK interrupts and before enabling the engine.
 737	 * If the CRTC is being disabled, there's no point in updating this
 738	 * information.
 739	 */
 740	if (crtc->state->active && old_state->active)
 741		vc4_crtc_update_dlist(crtc);
 742
 743	if (crtc->state->color_mgmt_changed) {
 744		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
 745
 746		if (crtc->state->gamma_lut) {
 747			vc4_crtc_update_gamma_lut(crtc);
 748			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 749		} else {
 750			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 751			 * in hardware, which is the same as a linear lut that
 752			 * DRM expects us to use in absence of a user lut.
 753			 */
 754			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 755		}
 756		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
 757	}
 758
 759	if (debug_dump_regs) {
 760		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 761		vc4_hvs_dump_state(dev);
 762	}
 763}
 764
 765static int vc4_enable_vblank(struct drm_crtc *crtc)
 766{
 767	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 768
 769	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 770
 771	return 0;
 772}
 773
 774static void vc4_disable_vblank(struct drm_crtc *crtc)
 775{
 776	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 777
 778	CRTC_WRITE(PV_INTEN, 0);
 779}
 780
 781static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 782{
 783	struct drm_crtc *crtc = &vc4_crtc->base;
 784	struct drm_device *dev = crtc->dev;
 785	struct vc4_dev *vc4 = to_vc4_dev(dev);
 786	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 787	u32 chan = vc4_crtc->channel;
 788	unsigned long flags;
 789
 790	spin_lock_irqsave(&dev->event_lock, flags);
 791	if (vc4_crtc->event &&
 792	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 793	     vc4_state->feed_txp)) {
 794		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 795		vc4_crtc->event = NULL;
 796		drm_crtc_vblank_put(crtc);
 797
 798		/* Wait for the page flip to unmask the underrun to ensure that
 799		 * the display list was updated by the hardware. Before that
 800		 * happens, the HVS will be using the previous display list with
 801		 * the CRTC and encoder already reconfigured, leading to
 802		 * underruns. This can be seen when reconfiguring the CRTC.
 803		 */
 804		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
 805	}
 806	spin_unlock_irqrestore(&dev->event_lock, flags);
 807}
 808
 809void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 810{
 811	crtc->t_vblank = ktime_get();
 812	drm_crtc_handle_vblank(&crtc->base);
 813	vc4_crtc_handle_page_flip(crtc);
 814}
 815
 816static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 817{
 818	struct vc4_crtc *vc4_crtc = data;
 819	u32 stat = CRTC_READ(PV_INTSTAT);
 820	irqreturn_t ret = IRQ_NONE;
 821
 822	if (stat & PV_INT_VFP_START) {
 823		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 824		vc4_crtc_handle_vblank(vc4_crtc);
 825		ret = IRQ_HANDLED;
 826	}
 827
 828	return ret;
 829}
 830
 831struct vc4_async_flip_state {
 832	struct drm_crtc *crtc;
 833	struct drm_framebuffer *fb;
 834	struct drm_framebuffer *old_fb;
 835	struct drm_pending_vblank_event *event;
 836
 837	struct vc4_seqno_cb cb;
 838};
 839
 840/* Called when the V3D execution for the BO being flipped to is done, so that
 841 * we can actually update the plane's address to point to it.
 842 */
 843static void
 844vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 845{
 846	struct vc4_async_flip_state *flip_state =
 847		container_of(cb, struct vc4_async_flip_state, cb);
 848	struct drm_crtc *crtc = flip_state->crtc;
 849	struct drm_device *dev = crtc->dev;
 850	struct vc4_dev *vc4 = to_vc4_dev(dev);
 851	struct drm_plane *plane = crtc->primary;
 852
 853	vc4_plane_async_set_fb(plane, flip_state->fb);
 854	if (flip_state->event) {
 855		unsigned long flags;
 856
 857		spin_lock_irqsave(&dev->event_lock, flags);
 858		drm_crtc_send_vblank_event(crtc, flip_state->event);
 859		spin_unlock_irqrestore(&dev->event_lock, flags);
 860	}
 861
 862	drm_crtc_vblank_put(crtc);
 863	drm_framebuffer_put(flip_state->fb);
 864
 865	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 866	 * when the planes are updated through the async update path.
 867	 * FIXME: we should move to generic async-page-flip when it's
 868	 * available, so that we can get rid of this hand-made cleanup_fb()
 869	 * logic.
 870	 */
 871	if (flip_state->old_fb) {
 872		struct drm_gem_cma_object *cma_bo;
 873		struct vc4_bo *bo;
 874
 875		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 876		bo = to_vc4_bo(&cma_bo->base);
 877		vc4_bo_dec_usecnt(bo);
 878		drm_framebuffer_put(flip_state->old_fb);
 879	}
 880
 881	kfree(flip_state);
 882
 883	up(&vc4->async_modeset);
 884}
 885
 886/* Implements async (non-vblank-synced) page flips.
 887 *
 888 * The page flip ioctl needs to return immediately, so we grab the
 889 * modeset semaphore on the pipe, and queue the address update for
 890 * when V3D is done with the BO being flipped to.
 891 */
 892static int vc4_async_page_flip(struct drm_crtc *crtc,
 893			       struct drm_framebuffer *fb,
 894			       struct drm_pending_vblank_event *event,
 895			       uint32_t flags)
 896{
 897	struct drm_device *dev = crtc->dev;
 898	struct vc4_dev *vc4 = to_vc4_dev(dev);
 899	struct drm_plane *plane = crtc->primary;
 900	int ret = 0;
 901	struct vc4_async_flip_state *flip_state;
 902	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 903	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 904
 905	/* Increment the BO usecnt here, so that we never end up with an
 906	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 907	 * plane is later updated through the non-async path.
 908	 * FIXME: we should move to generic async-page-flip when it's
 909	 * available, so that we can get rid of this hand-made prepare_fb()
 910	 * logic.
 911	 */
 912	ret = vc4_bo_inc_usecnt(bo);
 913	if (ret)
 914		return ret;
 915
 916	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 917	if (!flip_state) {
 918		vc4_bo_dec_usecnt(bo);
 919		return -ENOMEM;
 920	}
 921
 922	drm_framebuffer_get(fb);
 923	flip_state->fb = fb;
 924	flip_state->crtc = crtc;
 925	flip_state->event = event;
 926
 927	/* Make sure all other async modesetes have landed. */
 928	ret = down_interruptible(&vc4->async_modeset);
 929	if (ret) {
 930		drm_framebuffer_put(fb);
 931		vc4_bo_dec_usecnt(bo);
 932		kfree(flip_state);
 933		return ret;
 934	}
 935
 936	/* Save the current FB before it's replaced by the new one in
 937	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 938	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 939	 * it consistent.
 940	 * FIXME: we should move to generic async-page-flip when it's
 941	 * available, so that we can get rid of this hand-made cleanup_fb()
 942	 * logic.
 943	 */
 944	flip_state->old_fb = plane->state->fb;
 945	if (flip_state->old_fb)
 946		drm_framebuffer_get(flip_state->old_fb);
 947
 948	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 949
 950	/* Immediately update the plane's legacy fb pointer, so that later
 951	 * modeset prep sees the state that will be present when the semaphore
 952	 * is released.
 953	 */
 954	drm_atomic_set_fb_for_plane(plane->state, fb);
 955
 956	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 957			   vc4_async_page_flip_complete);
 958
 959	/* Driver takes ownership of state on successful async commit. */
 960	return 0;
 961}
 962
 963static int vc4_page_flip(struct drm_crtc *crtc,
 964			 struct drm_framebuffer *fb,
 965			 struct drm_pending_vblank_event *event,
 966			 uint32_t flags,
 967			 struct drm_modeset_acquire_ctx *ctx)
 968{
 969	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 970		return vc4_async_page_flip(crtc, fb, event, flags);
 971	else
 972		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 973}
 974
 975static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 976{
 977	struct vc4_crtc_state *vc4_state, *old_vc4_state;
 978
 979	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 980	if (!vc4_state)
 981		return NULL;
 982
 983	old_vc4_state = to_vc4_crtc_state(crtc->state);
 984	vc4_state->feed_txp = old_vc4_state->feed_txp;
 985	vc4_state->margins = old_vc4_state->margins;
 
 986
 987	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 988	return &vc4_state->base;
 989}
 990
 991static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 992				   struct drm_crtc_state *state)
 993{
 994	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 995	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 996
 997	if (vc4_state->mm.allocated) {
 998		unsigned long flags;
 999
1000		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001		drm_mm_remove_node(&vc4_state->mm);
1002		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003
1004	}
1005
1006	drm_atomic_helper_crtc_destroy_state(crtc, state);
1007}
1008
1009static void
1010vc4_crtc_reset(struct drm_crtc *crtc)
1011{
 
 
1012	if (crtc->state)
1013		vc4_crtc_destroy_state(crtc, crtc->state);
1014
1015	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016	if (crtc->state)
1017		crtc->state->crtc = crtc;
 
 
 
 
 
1018}
1019
1020static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021	.set_config = drm_atomic_helper_set_config,
1022	.destroy = vc4_crtc_destroy,
1023	.page_flip = vc4_page_flip,
1024	.set_property = NULL,
1025	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027	.reset = vc4_crtc_reset,
1028	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1029	.atomic_destroy_state = vc4_crtc_destroy_state,
1030	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1031	.enable_vblank = vc4_enable_vblank,
1032	.disable_vblank = vc4_disable_vblank,
 
1033};
1034
1035static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1037	.mode_valid = vc4_crtc_mode_valid,
1038	.atomic_check = vc4_crtc_atomic_check,
1039	.atomic_flush = vc4_crtc_atomic_flush,
1040	.atomic_enable = vc4_crtc_atomic_enable,
1041	.atomic_disable = vc4_crtc_atomic_disable,
 
1042};
1043
1044static const struct vc4_crtc_data pv0_data = {
1045	.hvs_channel = 0,
 
 
 
1046	.debugfs_name = "crtc0_regs",
 
 
1047	.encoder_types = {
1048		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050	},
1051};
1052
1053static const struct vc4_crtc_data pv1_data = {
1054	.hvs_channel = 2,
 
 
 
1055	.debugfs_name = "crtc1_regs",
 
 
1056	.encoder_types = {
1057		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059	},
1060};
1061
1062static const struct vc4_crtc_data pv2_data = {
1063	.hvs_channel = 1,
 
 
 
1064	.debugfs_name = "crtc2_regs",
 
 
1065	.encoder_types = {
1066		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068	},
1069};
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071static const struct of_device_id vc4_crtc_dt_match[] = {
1072	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 
 
 
 
 
1075	{}
1076};
1077
1078static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079					struct drm_crtc *crtc)
1080{
1081	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084	struct drm_encoder *encoder;
1085
1086	drm_for_each_encoder(encoder, drm) {
1087		struct vc4_encoder *vc4_encoder;
1088		int i;
1089
1090		/* HVS FIFO2 can feed the TXP IP. */
1091		if (crtc_data->hvs_channel == 2 &&
1092		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094			continue;
1095		}
1096
1097		vc4_encoder = to_vc4_encoder(encoder);
1098		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099			if (vc4_encoder->type == encoder_types[i]) {
1100				vc4_encoder->clock_select = i;
1101				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102				break;
1103			}
1104		}
1105	}
1106}
1107
1108static void
1109vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
 
1110{
1111	struct drm_device *drm = vc4_crtc->base.dev;
1112	struct vc4_dev *vc4 = to_vc4_dev(drm);
1113	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114	/* Top/base are supposed to be 4-pixel aligned, but the
1115	 * Raspberry Pi firmware fills the low bits (which are
1116	 * presumably ignored).
 
 
 
 
 
1117	 */
1118	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120
1121	vc4_crtc->cob_size = top - base + 4;
1122}
1123
1124static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125{
1126	struct platform_device *pdev = to_platform_device(dev);
1127	struct drm_device *drm = dev_get_drvdata(master);
 
1128	struct vc4_crtc *vc4_crtc;
1129	struct drm_crtc *crtc;
1130	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131	const struct of_device_id *match;
1132	int ret, i;
1133
1134	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135	if (!vc4_crtc)
1136		return -ENOMEM;
1137	crtc = &vc4_crtc->base;
1138
1139	match = of_match_device(vc4_crtc_dt_match, dev);
1140	if (!match)
1141		return -ENODEV;
1142	vc4_crtc->data = match->data;
1143	vc4_crtc->pdev = pdev;
1144
1145	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146	if (IS_ERR(vc4_crtc->regs))
1147		return PTR_ERR(vc4_crtc->regs);
1148
1149	vc4_crtc->regset.base = vc4_crtc->regs;
1150	vc4_crtc->regset.regs = crtc_regs;
1151	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152
1153	/* For now, we create just the primary and the legacy cursor
1154	 * planes.  We should be able to stack more planes on easily,
1155	 * but to do that we would need to compute the bandwidth
1156	 * requirement of the plane configuration, and reject ones
1157	 * that will take too much.
1158	 */
1159	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160	if (IS_ERR(primary_plane)) {
1161		dev_err(dev, "failed to construct primary plane\n");
1162		ret = PTR_ERR(primary_plane);
1163		goto err;
1164	}
1165
1166	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167				  &vc4_crtc_funcs, NULL);
1168	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172
1173	/* We support CTM, but only for one CRTC at a time. It's therefore
1174	 * implemented as private driver state in vc4_kms, not here.
1175	 */
1176	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177
1178	/* Set up some arbitrary number of planes.  We're not limited
1179	 * by a set number of physical registers, just the space in
1180	 * the HVS (16k) and how small an plane can be (28 bytes).
1181	 * However, each plane we set up takes up some memory, and
1182	 * increases the cost of looping over planes, which atomic
1183	 * modesetting does quite a bit.  As a result, we pick a
1184	 * modest number of planes to expose, that should hopefully
1185	 * still cover any sane usecase.
1186	 */
1187	for (i = 0; i < 8; i++) {
1188		struct drm_plane *plane =
1189			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190
1191		if (IS_ERR(plane))
1192			continue;
1193
1194		plane->possible_crtcs = drm_crtc_mask(crtc);
1195	}
1196
1197	/* Set up the legacy cursor after overlay initialization,
1198	 * since we overlay planes on the CRTC in the order they were
1199	 * initialized.
1200	 */
1201	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202	if (!IS_ERR(cursor_plane)) {
1203		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204		crtc->cursor = cursor_plane;
1205	}
1206
1207	vc4_crtc_get_cob_allocation(vc4_crtc);
1208
1209	CRTC_WRITE(PV_INTEN, 0);
1210	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
 
 
1213	if (ret)
1214		goto err_destroy_planes;
1215
1216	vc4_set_crtc_possible_masks(drm, crtc);
1217
1218	for (i = 0; i < crtc->gamma_size; i++) {
1219		vc4_crtc->lut_r[i] = i;
1220		vc4_crtc->lut_g[i] = i;
1221		vc4_crtc->lut_b[i] = i;
1222	}
1223
1224	platform_set_drvdata(pdev, vc4_crtc);
1225
1226	vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227				 &vc4_crtc->regset);
1228
1229	return 0;
1230
1231err_destroy_planes:
1232	list_for_each_entry_safe(destroy_plane, temp,
1233				 &drm->mode_config.plane_list, head) {
1234		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235		    destroy_plane->funcs->destroy(destroy_plane);
1236	}
1237err:
1238	return ret;
1239}
1240
1241static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242			    void *data)
1243{
1244	struct platform_device *pdev = to_platform_device(dev);
1245	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246
1247	vc4_crtc_destroy(&vc4_crtc->base);
1248
1249	CRTC_WRITE(PV_INTEN, 0);
1250
1251	platform_set_drvdata(pdev, NULL);
1252}
1253
1254static const struct component_ops vc4_crtc_ops = {
1255	.bind   = vc4_crtc_bind,
1256	.unbind = vc4_crtc_unbind,
1257};
1258
1259static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260{
1261	return component_add(&pdev->dev, &vc4_crtc_ops);
1262}
1263
1264static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265{
1266	component_del(&pdev->dev, &vc4_crtc_ops);
1267	return 0;
1268}
1269
1270struct platform_driver vc4_crtc_driver = {
1271	.probe = vc4_crtc_dev_probe,
1272	.remove = vc4_crtc_dev_remove,
1273	.driver = {
1274		.name = "vc4_crtc",
1275		.of_match_table = vc4_crtc_dt_match,
1276	},
1277};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of_device.h>
  35
  36#include <drm/drm_atomic.h>
  37#include <drm/drm_atomic_helper.h>
  38#include <drm/drm_atomic_uapi.h>
  39#include <drm/drm_fb_cma_helper.h>
  40#include <drm/drm_print.h>
  41#include <drm/drm_probe_helper.h>
  42#include <drm/drm_vblank.h>
  43
  44#include "vc4_drv.h"
  45#include "vc4_regs.h"
  46
  47#define HVS_FIFO_LATENCY_PIX	6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  50#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  51
  52static const struct debugfs_reg32 crtc_regs[] = {
  53	VC4_REG32(PV_CONTROL),
  54	VC4_REG32(PV_V_CONTROL),
  55	VC4_REG32(PV_VSYNCD_EVEN),
  56	VC4_REG32(PV_HORZA),
  57	VC4_REG32(PV_HORZB),
  58	VC4_REG32(PV_VERTA),
  59	VC4_REG32(PV_VERTB),
  60	VC4_REG32(PV_VERTA_EVEN),
  61	VC4_REG32(PV_VERTB_EVEN),
  62	VC4_REG32(PV_INTEN),
  63	VC4_REG32(PV_INTSTAT),
  64	VC4_REG32(PV_STAT),
  65	VC4_REG32(PV_HACT_ACT),
  66};
  67
  68static unsigned int
  69vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
  70{
  71	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
  72	/* Top/base are supposed to be 4-pixel aligned, but the
  73	 * Raspberry Pi firmware fills the low bits (which are
  74	 * presumably ignored).
  75	 */
  76	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  77	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  78
  79	return top - base + 4;
  80}
  81
  82static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
  83					  bool in_vblank_irq,
  84					  int *vpos, int *hpos,
  85					  ktime_t *stime, ktime_t *etime,
  86					  const struct drm_display_mode *mode)
  87{
  88	struct drm_device *dev = crtc->dev;
  89	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
  90	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  91	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
  92	unsigned int cob_size;
  93	u32 val;
  94	int fifo_lines;
  95	int vblank_lines;
  96	bool ret = false;
  97
  98	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  99
 100	/* Get optional system timestamp before query. */
 101	if (stime)
 102		*stime = ktime_get();
 103
 104	/*
 105	 * Read vertical scanline which is currently composed for our
 106	 * pixelvalve by the HVS, and also the scaler status.
 107	 */
 108	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
 109
 110	/* Get optional system timestamp after query. */
 111	if (etime)
 112		*etime = ktime_get();
 113
 114	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 115
 116	/* Vertical position of hvs composed scanline. */
 117	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 118	*hpos = 0;
 119
 120	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 121		*vpos /= 2;
 122
 123		/* Use hpos to correct for field offset in interlaced mode. */
 124		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 125			*hpos += mode->crtc_htotal / 2;
 126	}
 127
 128	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
 129	/* This is the offset we need for translating hvs -> pv scanout pos. */
 130	fifo_lines = cob_size / mode->crtc_hdisplay;
 131
 132	if (fifo_lines > 0)
 133		ret = true;
 134
 135	/* HVS more than fifo_lines into frame for compositing? */
 136	if (*vpos > fifo_lines) {
 137		/*
 138		 * We are in active scanout and can get some meaningful results
 139		 * from HVS. The actual PV scanout can not trail behind more
 140		 * than fifo_lines as that is the fifo's capacity. Assume that
 141		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 142		 * refilling the fifo and PV consuming from the fifo, ie.
 143		 * whenever the PV consumes and frees up a scanline in the
 144		 * fifo, the HVS will immediately refill it, therefore
 145		 * incrementing vpos. Therefore we choose HVS read position -
 146		 * fifo size in scanlines as a estimate of the real scanout
 147		 * position of the PV.
 148		 */
 149		*vpos -= fifo_lines + 1;
 150
 151		return ret;
 152	}
 153
 154	/*
 155	 * Less: This happens when we are in vblank and the HVS, after getting
 156	 * the VSTART restart signal from the PV, just started refilling its
 157	 * fifo with new lines from the top-most lines of the new framebuffers.
 158	 * The PV does not scan out in vblank, so does not remove lines from
 159	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 160	 * We can't get meaningful readings wrt. scanline position of the PV
 161	 * and need to make things up in a approximative but consistent way.
 162	 */
 163	vblank_lines = mode->vtotal - mode->vdisplay;
 164
 165	if (in_vblank_irq) {
 166		/*
 167		 * Assume the irq handler got called close to first
 168		 * line of vblank, so PV has about a full vblank
 169		 * scanlines to go, and as a base timestamp use the
 170		 * one taken at entry into vblank irq handler, so it
 171		 * is not affected by random delays due to lock
 172		 * contention on event_lock or vblank_time lock in
 173		 * the core.
 174		 */
 175		*vpos = -vblank_lines;
 176
 177		if (stime)
 178			*stime = vc4_crtc->t_vblank;
 179		if (etime)
 180			*etime = vc4_crtc->t_vblank;
 181
 182		/*
 183		 * If the HVS fifo is not yet full then we know for certain
 184		 * we are at the very beginning of vblank, as the hvs just
 185		 * started refilling, and the stime and etime timestamps
 186		 * truly correspond to start of vblank.
 187		 *
 188		 * Unfortunately there's no way to report this to upper levels
 189		 * and make it more useful.
 190		 */
 191	} else {
 192		/*
 193		 * No clue where we are inside vblank. Return a vpos of zero,
 194		 * which will cause calling code to just return the etime
 195		 * timestamp uncorrected. At least this is no worse than the
 196		 * standard fallback.
 197		 */
 198		*vpos = 0;
 199	}
 200
 201	return ret;
 202}
 203
 204void vc4_crtc_destroy(struct drm_crtc *crtc)
 205{
 206	drm_crtc_cleanup(crtc);
 207}
 208
 209static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
 
 210{
 211	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
 212	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 213	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
 214	u32 fifo_len_bytes = pv_data->fifo_depth;
 215
 216	/*
 217	 * Pixels are pulled from the HVS if the number of bytes is
 218	 * lower than the FIFO full level.
 219	 *
 220	 * The latency of the pixel fetch mechanism is 6 pixels, so we
 221	 * need to convert those 6 pixels in bytes, depending on the
 222	 * format, and then subtract that from the length of the FIFO
 223	 * to make sure we never end up in a situation where the FIFO
 224	 * is full.
 225	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226	switch (format) {
 227	case PV_CONTROL_FORMAT_DSIV_16:
 228	case PV_CONTROL_FORMAT_DSIC_16:
 229		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
 230	case PV_CONTROL_FORMAT_DSIV_18:
 231		return fifo_len_bytes - 14;
 232	case PV_CONTROL_FORMAT_24:
 233	case PV_CONTROL_FORMAT_DSIV_24:
 234	default:
 235		/*
 236		 * For some reason, the pixelvalve4 doesn't work with
 237		 * the usual formula and will only work with 32.
 238		 */
 239		if (crtc_data->hvs_output == 5)
 240			return 32;
 241
 242		/*
 243		 * It looks like in some situations, we will overflow
 244		 * the PixelValve FIFO (with the bit 10 of PV stat being
 245		 * set) and stall the HVS / PV, eventually resulting in
 246		 * a page flip timeout.
 247		 *
 248		 * Displaying the video overlay during a playback with
 249		 * Kodi on an RPi3 seems to be a great solution with a
 250		 * failure rate around 50%.
 251		 *
 252		 * Removing 1 from the FIFO full level however
 253		 * seems to completely remove that issue.
 254		 */
 255		if (!vc4->hvs->hvs5)
 256			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
 257
 258		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
 259	}
 260}
 261
 262static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
 263					     u32 format)
 264{
 265	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
 266	u32 ret = 0;
 267
 268	ret |= VC4_SET_FIELD((level >> 6),
 269			     PV5_CONTROL_FIFO_LEVEL_HIGH);
 270
 271	return ret | VC4_SET_FIELD(level & 0x3f,
 272				   PV_CONTROL_FIFO_LEVEL);
 273}
 274
 275/*
 276 * Returns the encoder attached to the CRTC.
 277 *
 278 * VC4 can only scan out to one encoder at a time, while the DRM core
 279 * allows drivers to push pixels to more than one encoder from the
 280 * same CRTC.
 281 */
 282static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
 283						struct drm_atomic_state *state,
 284						struct drm_connector_state *(*get_state)(struct drm_atomic_state *state,
 285											 struct drm_connector *connector))
 286{
 287	struct drm_connector *connector;
 288	struct drm_connector_list_iter conn_iter;
 289
 290	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 291	drm_for_each_connector_iter(connector, &conn_iter) {
 292		struct drm_connector_state *conn_state = get_state(state, connector);
 293
 294		if (!conn_state)
 295			continue;
 296
 297		if (conn_state->crtc == crtc) {
 298			drm_connector_list_iter_end(&conn_iter);
 299			return connector->encoder;
 300		}
 301	}
 302	drm_connector_list_iter_end(&conn_iter);
 303
 304	return NULL;
 305}
 306
 307static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
 308{
 309	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 310
 311	/* The PV needs to be disabled before it can be flushed */
 312	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
 313	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
 314}
 315
 316static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state)
 317{
 318	struct drm_device *dev = crtc->dev;
 319	struct vc4_dev *vc4 = to_vc4_dev(dev);
 320	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
 321							   drm_atomic_get_new_connector_state);
 322	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 323	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 324	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 325	struct drm_crtc_state *crtc_state = crtc->state;
 326	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 327	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 328	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 329	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 330		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 331	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 332	u8 ppc = pv_data->pixels_per_clock;
 333	bool debug_dump_regs = false;
 334
 335	if (debug_dump_regs) {
 336		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 337		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 338			 drm_crtc_index(crtc));
 339		drm_print_regset32(&p, &vc4_crtc->regset);
 340	}
 341
 342	vc4_crtc_pixelvalve_reset(crtc);
 
 
 
 343
 344	CRTC_WRITE(PV_HORZA,
 345		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
 
 346				 PV_HORZA_HBP) |
 347		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
 
 348				 PV_HORZA_HSYNC));
 349
 350	CRTC_WRITE(PV_HORZB,
 351		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
 
 352				 PV_HORZB_HFP) |
 353		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
 354				 PV_HORZB_HACTIVE));
 355
 356	CRTC_WRITE(PV_VERTA,
 357		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 358				 PV_VERTA_VBP) |
 359		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 360				 PV_VERTA_VSYNC));
 361	CRTC_WRITE(PV_VERTB,
 362		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 363				 PV_VERTB_VFP) |
 364		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 365
 366	if (interlace) {
 367		CRTC_WRITE(PV_VERTA_EVEN,
 368			   VC4_SET_FIELD(mode->crtc_vtotal -
 369					 mode->crtc_vsync_end - 1,
 370					 PV_VERTA_VBP) |
 371			   VC4_SET_FIELD(mode->crtc_vsync_end -
 372					 mode->crtc_vsync_start,
 373					 PV_VERTA_VSYNC));
 374		CRTC_WRITE(PV_VERTB_EVEN,
 375			   VC4_SET_FIELD(mode->crtc_vsync_start -
 376					 mode->crtc_vdisplay,
 377					 PV_VERTB_VFP) |
 378			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 379
 380		/* We set up first field even mode for HDMI.  VEC's
 381		 * NTSC mode would want first field odd instead, once
 382		 * we support it (to do so, set ODD_FIRST and put the
 383		 * delay in VSYNCD_EVEN instead).
 384		 */
 385		CRTC_WRITE(PV_V_CONTROL,
 386			   PV_VCONTROL_CONTINUOUS |
 387			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 388			   PV_VCONTROL_INTERLACE |
 389			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 390					 PV_VCONTROL_ODD_DELAY));
 391		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 392	} else {
 393		CRTC_WRITE(PV_V_CONTROL,
 394			   PV_VCONTROL_CONTINUOUS |
 395			   (is_dsi ? PV_VCONTROL_DSI : 0));
 396	}
 397
 398	if (is_dsi)
 399		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 400
 401	if (vc4->hvs->hvs5)
 402		CRTC_WRITE(PV_MUX_CFG,
 403			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
 404					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
 405
 406	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
 407		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
 408		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 
 
 409		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 410		   PV_CONTROL_CLR_AT_START |
 411		   PV_CONTROL_TRIGGER_UNDERFLOW |
 412		   PV_CONTROL_WAIT_HSTART |
 413		   VC4_SET_FIELD(vc4_encoder->clock_select,
 414				 PV_CONTROL_CLK_SELECT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415
 416	if (debug_dump_regs) {
 417		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 418		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 419			 drm_crtc_index(crtc));
 420		drm_print_regset32(&p, &vc4_crtc->regset);
 421	}
 422}
 423
 424static void require_hvs_enabled(struct drm_device *dev)
 425{
 426	struct vc4_dev *vc4 = to_vc4_dev(dev);
 427
 428	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 429		     SCALER_DISPCTRL_ENABLE);
 430}
 431
 432static int vc4_crtc_disable(struct drm_crtc *crtc,
 433			    struct drm_encoder *encoder,
 434			    struct drm_atomic_state *state,
 435			    unsigned int channel)
 436{
 437	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 
 438	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 439	struct drm_device *dev = crtc->dev;
 440	int ret;
 
 
 
 
 441
 442	CRTC_WRITE(PV_V_CONTROL,
 443		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 444	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 445	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 446
 447	/*
 448	 * This delay is needed to avoid to get a pixel stuck in an
 449	 * unflushable FIFO between the pixelvalve and the HDMI
 450	 * controllers on the BCM2711.
 451	 *
 452	 * Timing is fairly sensitive here, so mdelay is the safest
 453	 * approach.
 454	 *
 455	 * If it was to be reworked, the stuck pixel happens on a
 456	 * BCM2711 when changing mode with a good probability, so a
 457	 * script that changes mode on a regular basis should trigger
 458	 * the bug after less than 10 attempts. It manifests itself with
 459	 * every pixels being shifted by one to the right, and thus the
 460	 * last pixel of a line actually being displayed as the first
 461	 * pixel on the next line.
 462	 */
 463	mdelay(20);
 464
 465	if (vc4_encoder && vc4_encoder->post_crtc_disable)
 466		vc4_encoder->post_crtc_disable(encoder, state);
 
 
 
 467
 468	vc4_crtc_pixelvalve_reset(crtc);
 469	vc4_hvs_stop_channel(dev, channel);
 470
 471	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
 472		vc4_encoder->post_crtc_powerdown(encoder, state);
 473
 474	return 0;
 475}
 
 476
 477static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
 478							enum vc4_encoder_type type)
 479{
 480	struct drm_encoder *encoder;
 481
 482	drm_for_each_encoder(encoder, crtc->dev) {
 483		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 
 
 
 
 484
 485		if (vc4_encoder->type == type)
 486			return encoder;
 
 
 487	}
 488
 489	return NULL;
 490}
 491
 492int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
 493{
 494	struct drm_device *drm = crtc->dev;
 495	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 496	enum vc4_encoder_type encoder_type;
 497	const struct vc4_pv_data *pv_data;
 498	struct drm_encoder *encoder;
 499	unsigned encoder_sel;
 500	int channel;
 501
 502	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 503				      "brcm,bcm2711-pixelvalve2") ||
 504	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 505				      "brcm,bcm2711-pixelvalve4")))
 506		return 0;
 507
 508	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
 509		return 0;
 510
 511	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
 512		return 0;
 513
 514	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
 515	if (channel < 0)
 516		return 0;
 517
 518	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
 519	if (WARN_ON(encoder_sel != 0))
 520		return 0;
 521
 522	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 523	encoder_type = pv_data->encoder_types[encoder_sel];
 524	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
 525	if (WARN_ON(!encoder))
 526		return 0;
 527
 528	return vc4_crtc_disable(crtc, encoder, NULL, channel);
 529}
 530
 531static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 532				    struct drm_atomic_state *state)
 533{
 534	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 535									 crtc);
 536	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
 537	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
 538							   drm_atomic_get_old_connector_state);
 539	struct drm_device *dev = crtc->dev;
 
 
 
 540
 541	require_hvs_enabled(dev);
 
 
 
 
 
 542
 543	/* Disable vblank irq handling before crtc is disabled. */
 544	drm_crtc_vblank_off(crtc);
 545
 546	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
 
 
 
 547
 548	/*
 549	 * Make sure we issue a vblank event after disabling the CRTC if
 550	 * someone was waiting it.
 551	 */
 552	if (crtc->state->event) {
 553		unsigned long flags;
 554
 555		spin_lock_irqsave(&dev->event_lock, flags);
 556		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 557		crtc->state->event = NULL;
 558		spin_unlock_irqrestore(&dev->event_lock, flags);
 
 
 
 559	}
 560}
 561
 562static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 563				   struct drm_atomic_state *state)
 564{
 565	struct drm_device *dev = crtc->dev;
 
 566	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 567	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
 568							   drm_atomic_get_new_connector_state);
 569	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 570
 571	require_hvs_enabled(dev);
 572
 573	/* Enable vblank irq handling before crtc is started otherwise
 574	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 575	 */
 576	drm_crtc_vblank_on(crtc);
 
 577
 578	vc4_hvs_atomic_enable(crtc, state);
 579
 580	if (vc4_encoder->pre_crtc_configure)
 581		vc4_encoder->pre_crtc_configure(encoder, state);
 582
 583	vc4_crtc_config_pv(crtc, state);
 584
 585	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
 586
 587	if (vc4_encoder->pre_crtc_enable)
 588		vc4_encoder->pre_crtc_enable(encoder, state);
 589
 590	/* When feeding the transposer block the pixelvalve is unneeded and
 591	 * should not be enabled.
 592	 */
 593	CRTC_WRITE(PV_V_CONTROL,
 594		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 595
 596	if (vc4_encoder->post_crtc_enable)
 597		vc4_encoder->post_crtc_enable(encoder, state);
 598}
 599
 600static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 601						const struct drm_display_mode *mode)
 602{
 603	/* Do not allow doublescan modes from user space */
 604	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 605		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 606			      crtc->base.id);
 607		return MODE_NO_DBLESCAN;
 608	}
 609
 610	return MODE_OK;
 611}
 612
 613void vc4_crtc_get_margins(struct drm_crtc_state *state,
 614			  unsigned int *left, unsigned int *right,
 615			  unsigned int *top, unsigned int *bottom)
 616{
 617	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 618	struct drm_connector_state *conn_state;
 619	struct drm_connector *conn;
 620	int i;
 621
 622	*left = vc4_state->margins.left;
 623	*right = vc4_state->margins.right;
 624	*top = vc4_state->margins.top;
 625	*bottom = vc4_state->margins.bottom;
 626
 627	/* We have to interate over all new connector states because
 628	 * vc4_crtc_get_margins() might be called before
 629	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 630	 * might be outdated.
 631	 */
 632	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 633		if (conn_state->crtc != state->crtc)
 634			continue;
 635
 636		*left = conn_state->tv.margins.left;
 637		*right = conn_state->tv.margins.right;
 638		*top = conn_state->tv.margins.top;
 639		*bottom = conn_state->tv.margins.bottom;
 640		break;
 641	}
 642}
 643
 644static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 645				 struct drm_atomic_state *state)
 646{
 647	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 648									  crtc);
 649	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 
 
 
 650	struct drm_connector *conn;
 651	struct drm_connector_state *conn_state;
 
 652	int ret, i;
 653
 654	ret = vc4_hvs_atomic_check(crtc, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655	if (ret)
 656		return ret;
 657
 658	for_each_new_connector_in_state(state, conn, conn_state,
 659					i) {
 660		if (conn_state->crtc != crtc)
 661			continue;
 662
 
 
 
 
 
 
 
 
 
 
 
 663		vc4_state->margins.left = conn_state->tv.margins.left;
 664		vc4_state->margins.right = conn_state->tv.margins.right;
 665		vc4_state->margins.top = conn_state->tv.margins.top;
 666		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 667		break;
 668	}
 669
 670	return 0;
 671}
 672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673static int vc4_enable_vblank(struct drm_crtc *crtc)
 674{
 675	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 676
 677	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 678
 679	return 0;
 680}
 681
 682static void vc4_disable_vblank(struct drm_crtc *crtc)
 683{
 684	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 685
 686	CRTC_WRITE(PV_INTEN, 0);
 687}
 688
 689static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 690{
 691	struct drm_crtc *crtc = &vc4_crtc->base;
 692	struct drm_device *dev = crtc->dev;
 693	struct vc4_dev *vc4 = to_vc4_dev(dev);
 694	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 695	u32 chan = vc4_state->assigned_channel;
 696	unsigned long flags;
 697
 698	spin_lock_irqsave(&dev->event_lock, flags);
 699	if (vc4_crtc->event &&
 700	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 701	     vc4_state->feed_txp)) {
 702		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 703		vc4_crtc->event = NULL;
 704		drm_crtc_vblank_put(crtc);
 705
 706		/* Wait for the page flip to unmask the underrun to ensure that
 707		 * the display list was updated by the hardware. Before that
 708		 * happens, the HVS will be using the previous display list with
 709		 * the CRTC and encoder already reconfigured, leading to
 710		 * underruns. This can be seen when reconfiguring the CRTC.
 711		 */
 712		vc4_hvs_unmask_underrun(dev, chan);
 713	}
 714	spin_unlock_irqrestore(&dev->event_lock, flags);
 715}
 716
 717void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 718{
 719	crtc->t_vblank = ktime_get();
 720	drm_crtc_handle_vblank(&crtc->base);
 721	vc4_crtc_handle_page_flip(crtc);
 722}
 723
 724static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 725{
 726	struct vc4_crtc *vc4_crtc = data;
 727	u32 stat = CRTC_READ(PV_INTSTAT);
 728	irqreturn_t ret = IRQ_NONE;
 729
 730	if (stat & PV_INT_VFP_START) {
 731		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 732		vc4_crtc_handle_vblank(vc4_crtc);
 733		ret = IRQ_HANDLED;
 734	}
 735
 736	return ret;
 737}
 738
 739struct vc4_async_flip_state {
 740	struct drm_crtc *crtc;
 741	struct drm_framebuffer *fb;
 742	struct drm_framebuffer *old_fb;
 743	struct drm_pending_vblank_event *event;
 744
 745	struct vc4_seqno_cb cb;
 746};
 747
 748/* Called when the V3D execution for the BO being flipped to is done, so that
 749 * we can actually update the plane's address to point to it.
 750 */
 751static void
 752vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 753{
 754	struct vc4_async_flip_state *flip_state =
 755		container_of(cb, struct vc4_async_flip_state, cb);
 756	struct drm_crtc *crtc = flip_state->crtc;
 757	struct drm_device *dev = crtc->dev;
 
 758	struct drm_plane *plane = crtc->primary;
 759
 760	vc4_plane_async_set_fb(plane, flip_state->fb);
 761	if (flip_state->event) {
 762		unsigned long flags;
 763
 764		spin_lock_irqsave(&dev->event_lock, flags);
 765		drm_crtc_send_vblank_event(crtc, flip_state->event);
 766		spin_unlock_irqrestore(&dev->event_lock, flags);
 767	}
 768
 769	drm_crtc_vblank_put(crtc);
 770	drm_framebuffer_put(flip_state->fb);
 771
 772	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 773	 * when the planes are updated through the async update path.
 774	 * FIXME: we should move to generic async-page-flip when it's
 775	 * available, so that we can get rid of this hand-made cleanup_fb()
 776	 * logic.
 777	 */
 778	if (flip_state->old_fb) {
 779		struct drm_gem_cma_object *cma_bo;
 780		struct vc4_bo *bo;
 781
 782		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 783		bo = to_vc4_bo(&cma_bo->base);
 784		vc4_bo_dec_usecnt(bo);
 785		drm_framebuffer_put(flip_state->old_fb);
 786	}
 787
 788	kfree(flip_state);
 
 
 789}
 790
 791/* Implements async (non-vblank-synced) page flips.
 792 *
 793 * The page flip ioctl needs to return immediately, so we grab the
 794 * modeset semaphore on the pipe, and queue the address update for
 795 * when V3D is done with the BO being flipped to.
 796 */
 797static int vc4_async_page_flip(struct drm_crtc *crtc,
 798			       struct drm_framebuffer *fb,
 799			       struct drm_pending_vblank_event *event,
 800			       uint32_t flags)
 801{
 802	struct drm_device *dev = crtc->dev;
 
 803	struct drm_plane *plane = crtc->primary;
 804	int ret = 0;
 805	struct vc4_async_flip_state *flip_state;
 806	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 807	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 808
 809	/* Increment the BO usecnt here, so that we never end up with an
 810	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 811	 * plane is later updated through the non-async path.
 812	 * FIXME: we should move to generic async-page-flip when it's
 813	 * available, so that we can get rid of this hand-made prepare_fb()
 814	 * logic.
 815	 */
 816	ret = vc4_bo_inc_usecnt(bo);
 817	if (ret)
 818		return ret;
 819
 820	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 821	if (!flip_state) {
 822		vc4_bo_dec_usecnt(bo);
 823		return -ENOMEM;
 824	}
 825
 826	drm_framebuffer_get(fb);
 827	flip_state->fb = fb;
 828	flip_state->crtc = crtc;
 829	flip_state->event = event;
 830
 
 
 
 
 
 
 
 
 
 831	/* Save the current FB before it's replaced by the new one in
 832	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 833	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 834	 * it consistent.
 835	 * FIXME: we should move to generic async-page-flip when it's
 836	 * available, so that we can get rid of this hand-made cleanup_fb()
 837	 * logic.
 838	 */
 839	flip_state->old_fb = plane->state->fb;
 840	if (flip_state->old_fb)
 841		drm_framebuffer_get(flip_state->old_fb);
 842
 843	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 844
 845	/* Immediately update the plane's legacy fb pointer, so that later
 846	 * modeset prep sees the state that will be present when the semaphore
 847	 * is released.
 848	 */
 849	drm_atomic_set_fb_for_plane(plane->state, fb);
 850
 851	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 852			   vc4_async_page_flip_complete);
 853
 854	/* Driver takes ownership of state on successful async commit. */
 855	return 0;
 856}
 857
 858int vc4_page_flip(struct drm_crtc *crtc,
 859		  struct drm_framebuffer *fb,
 860		  struct drm_pending_vblank_event *event,
 861		  uint32_t flags,
 862		  struct drm_modeset_acquire_ctx *ctx)
 863{
 864	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 865		return vc4_async_page_flip(crtc, fb, event, flags);
 866	else
 867		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 868}
 869
 870struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 871{
 872	struct vc4_crtc_state *vc4_state, *old_vc4_state;
 873
 874	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 875	if (!vc4_state)
 876		return NULL;
 877
 878	old_vc4_state = to_vc4_crtc_state(crtc->state);
 879	vc4_state->feed_txp = old_vc4_state->feed_txp;
 880	vc4_state->margins = old_vc4_state->margins;
 881	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
 882
 883	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 884	return &vc4_state->base;
 885}
 886
 887void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 888			    struct drm_crtc_state *state)
 889{
 890	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 891	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 892
 893	if (drm_mm_node_allocated(&vc4_state->mm)) {
 894		unsigned long flags;
 895
 896		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 897		drm_mm_remove_node(&vc4_state->mm);
 898		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 899
 900	}
 901
 902	drm_atomic_helper_crtc_destroy_state(crtc, state);
 903}
 904
 905void vc4_crtc_reset(struct drm_crtc *crtc)
 
 906{
 907	struct vc4_crtc_state *vc4_crtc_state;
 908
 909	if (crtc->state)
 910		vc4_crtc_destroy_state(crtc, crtc->state);
 911
 912	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
 913	if (!vc4_crtc_state) {
 914		crtc->state = NULL;
 915		return;
 916	}
 917
 918	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
 919	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
 920}
 921
 922static const struct drm_crtc_funcs vc4_crtc_funcs = {
 923	.set_config = drm_atomic_helper_set_config,
 924	.destroy = vc4_crtc_destroy,
 925	.page_flip = vc4_page_flip,
 926	.set_property = NULL,
 927	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
 928	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
 929	.reset = vc4_crtc_reset,
 930	.atomic_duplicate_state = vc4_crtc_duplicate_state,
 931	.atomic_destroy_state = vc4_crtc_destroy_state,
 
 932	.enable_vblank = vc4_enable_vblank,
 933	.disable_vblank = vc4_disable_vblank,
 934	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
 935};
 936
 937static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 
 938	.mode_valid = vc4_crtc_mode_valid,
 939	.atomic_check = vc4_crtc_atomic_check,
 940	.atomic_flush = vc4_hvs_atomic_flush,
 941	.atomic_enable = vc4_crtc_atomic_enable,
 942	.atomic_disable = vc4_crtc_atomic_disable,
 943	.get_scanout_position = vc4_crtc_get_scanout_position,
 944};
 945
 946static const struct vc4_pv_data bcm2835_pv0_data = {
 947	.base = {
 948		.hvs_available_channels = BIT(0),
 949		.hvs_output = 0,
 950	},
 951	.debugfs_name = "crtc0_regs",
 952	.fifo_depth = 64,
 953	.pixels_per_clock = 1,
 954	.encoder_types = {
 955		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
 956		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
 957	},
 958};
 959
 960static const struct vc4_pv_data bcm2835_pv1_data = {
 961	.base = {
 962		.hvs_available_channels = BIT(2),
 963		.hvs_output = 2,
 964	},
 965	.debugfs_name = "crtc1_regs",
 966	.fifo_depth = 64,
 967	.pixels_per_clock = 1,
 968	.encoder_types = {
 969		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
 970		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
 971	},
 972};
 973
 974static const struct vc4_pv_data bcm2835_pv2_data = {
 975	.base = {
 976		.hvs_available_channels = BIT(1),
 977		.hvs_output = 1,
 978	},
 979	.debugfs_name = "crtc2_regs",
 980	.fifo_depth = 64,
 981	.pixels_per_clock = 1,
 982	.encoder_types = {
 983		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
 984		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
 985	},
 986};
 987
 988static const struct vc4_pv_data bcm2711_pv0_data = {
 989	.base = {
 990		.hvs_available_channels = BIT(0),
 991		.hvs_output = 0,
 992	},
 993	.debugfs_name = "crtc0_regs",
 994	.fifo_depth = 64,
 995	.pixels_per_clock = 1,
 996	.encoder_types = {
 997		[0] = VC4_ENCODER_TYPE_DSI0,
 998		[1] = VC4_ENCODER_TYPE_DPI,
 999	},
1000};
1001
1002static const struct vc4_pv_data bcm2711_pv1_data = {
1003	.base = {
1004		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1005		.hvs_output = 3,
1006	},
1007	.debugfs_name = "crtc1_regs",
1008	.fifo_depth = 64,
1009	.pixels_per_clock = 1,
1010	.encoder_types = {
1011		[0] = VC4_ENCODER_TYPE_DSI1,
1012		[1] = VC4_ENCODER_TYPE_SMI,
1013	},
1014};
1015
1016static const struct vc4_pv_data bcm2711_pv2_data = {
1017	.base = {
1018		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1019		.hvs_output = 4,
1020	},
1021	.debugfs_name = "crtc2_regs",
1022	.fifo_depth = 256,
1023	.pixels_per_clock = 2,
1024	.encoder_types = {
1025		[0] = VC4_ENCODER_TYPE_HDMI0,
1026	},
1027};
1028
1029static const struct vc4_pv_data bcm2711_pv3_data = {
1030	.base = {
1031		.hvs_available_channels = BIT(1),
1032		.hvs_output = 1,
1033	},
1034	.debugfs_name = "crtc3_regs",
1035	.fifo_depth = 64,
1036	.pixels_per_clock = 1,
1037	.encoder_types = {
1038		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1039	},
1040};
1041
1042static const struct vc4_pv_data bcm2711_pv4_data = {
1043	.base = {
1044		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045		.hvs_output = 5,
1046	},
1047	.debugfs_name = "crtc4_regs",
1048	.fifo_depth = 64,
1049	.pixels_per_clock = 2,
1050	.encoder_types = {
1051		[0] = VC4_ENCODER_TYPE_HDMI1,
1052	},
1053};
1054
1055static const struct of_device_id vc4_crtc_dt_match[] = {
1056	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1057	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1058	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1059	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1060	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1061	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1062	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1063	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1064	{}
1065};
1066
1067static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1068					struct drm_crtc *crtc)
1069{
1070	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1071	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1072	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1073	struct drm_encoder *encoder;
1074
1075	drm_for_each_encoder(encoder, drm) {
1076		struct vc4_encoder *vc4_encoder;
1077		int i;
1078
1079		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 
 
 
1080			continue;
 
1081
1082		vc4_encoder = to_vc4_encoder(encoder);
1083		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1084			if (vc4_encoder->type == encoder_types[i]) {
1085				vc4_encoder->clock_select = i;
1086				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087				break;
1088			}
1089		}
1090	}
1091}
1092
1093int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1094		  const struct drm_crtc_funcs *crtc_funcs,
1095		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1096{
 
1097	struct vc4_dev *vc4 = to_vc4_dev(drm);
1098	struct drm_crtc *crtc = &vc4_crtc->base;
1099	struct drm_plane *primary_plane;
1100	unsigned int i;
1101
1102	/* For now, we create just the primary and the legacy cursor
1103	 * planes.  We should be able to stack more planes on easily,
1104	 * but to do that we would need to compute the bandwidth
1105	 * requirement of the plane configuration, and reject ones
1106	 * that will take too much.
1107	 */
1108	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1109	if (IS_ERR(primary_plane)) {
1110		dev_err(drm->dev, "failed to construct primary plane\n");
1111		return PTR_ERR(primary_plane);
1112	}
1113
1114	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1115				  crtc_funcs, NULL);
1116	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1117
1118	if (!vc4->hvs->hvs5) {
1119		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1120
1121		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1122
1123		/* We support CTM, but only for one CRTC at a time. It's therefore
1124		 * implemented as private driver state in vc4_kms, not here.
1125		 */
1126		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1127	}
1128
1129	for (i = 0; i < crtc->gamma_size; i++) {
1130		vc4_crtc->lut_r[i] = i;
1131		vc4_crtc->lut_g[i] = i;
1132		vc4_crtc->lut_b[i] = i;
1133	}
1134
1135	return 0;
1136}
1137
1138static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1139{
1140	struct platform_device *pdev = to_platform_device(dev);
1141	struct drm_device *drm = dev_get_drvdata(master);
1142	const struct vc4_pv_data *pv_data;
1143	struct vc4_crtc *vc4_crtc;
1144	struct drm_crtc *crtc;
1145	struct drm_plane *destroy_plane, *temp;
1146	int ret;
 
1147
1148	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1149	if (!vc4_crtc)
1150		return -ENOMEM;
1151	crtc = &vc4_crtc->base;
1152
1153	pv_data = of_device_get_match_data(dev);
1154	if (!pv_data)
1155		return -ENODEV;
1156	vc4_crtc->data = &pv_data->base;
1157	vc4_crtc->pdev = pdev;
1158
1159	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1160	if (IS_ERR(vc4_crtc->regs))
1161		return PTR_ERR(vc4_crtc->regs);
1162
1163	vc4_crtc->regset.base = vc4_crtc->regs;
1164	vc4_crtc->regset.regs = crtc_regs;
1165	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1166
1167	ret = vc4_crtc_init(drm, vc4_crtc,
1168			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1169	if (ret)
1170		return ret;
1171	vc4_set_crtc_possible_masks(drm, crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173	CRTC_WRITE(PV_INTEN, 0);
1174	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1175	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1176			       vc4_crtc_irq_handler,
1177			       IRQF_SHARED,
1178			       "vc4 crtc", vc4_crtc);
1179	if (ret)
1180		goto err_destroy_planes;
1181
 
 
 
 
 
 
 
 
1182	platform_set_drvdata(pdev, vc4_crtc);
1183
1184	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1185				 &vc4_crtc->regset);
1186
1187	return 0;
1188
1189err_destroy_planes:
1190	list_for_each_entry_safe(destroy_plane, temp,
1191				 &drm->mode_config.plane_list, head) {
1192		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1193		    destroy_plane->funcs->destroy(destroy_plane);
1194	}
1195
1196	return ret;
1197}
1198
1199static void vc4_crtc_unbind(struct device *dev, struct device *master,
1200			    void *data)
1201{
1202	struct platform_device *pdev = to_platform_device(dev);
1203	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1204
1205	vc4_crtc_destroy(&vc4_crtc->base);
1206
1207	CRTC_WRITE(PV_INTEN, 0);
1208
1209	platform_set_drvdata(pdev, NULL);
1210}
1211
1212static const struct component_ops vc4_crtc_ops = {
1213	.bind   = vc4_crtc_bind,
1214	.unbind = vc4_crtc_unbind,
1215};
1216
1217static int vc4_crtc_dev_probe(struct platform_device *pdev)
1218{
1219	return component_add(&pdev->dev, &vc4_crtc_ops);
1220}
1221
1222static int vc4_crtc_dev_remove(struct platform_device *pdev)
1223{
1224	component_del(&pdev->dev, &vc4_crtc_ops);
1225	return 0;
1226}
1227
1228struct platform_driver vc4_crtc_driver = {
1229	.probe = vc4_crtc_dev_probe,
1230	.remove = vc4_crtc_dev_remove,
1231	.driver = {
1232		.name = "vc4_crtc",
1233		.of_match_table = vc4_crtc_dt_match,
1234	},
1235};