Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * User-space Probes (UProbes) for x86
4 *
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 */
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/ptrace.h>
13#include <linux/uprobes.h>
14#include <linux/uaccess.h>
15
16#include <linux/kdebug.h>
17#include <asm/processor.h>
18#include <asm/insn.h>
19#include <asm/mmu_context.h>
20
21/* Post-execution fixups. */
22
23/* Adjust IP back to vicinity of actual insn */
24#define UPROBE_FIX_IP 0x01
25
26/* Adjust the return address of a call insn */
27#define UPROBE_FIX_CALL 0x02
28
29/* Instruction will modify TF, don't change it */
30#define UPROBE_FIX_SETF 0x04
31
32#define UPROBE_FIX_RIP_SI 0x08
33#define UPROBE_FIX_RIP_DI 0x10
34#define UPROBE_FIX_RIP_BX 0x20
35#define UPROBE_FIX_RIP_MASK \
36 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37
38#define UPROBE_TRAP_NR UINT_MAX
39
40/* Adaptations for mhiramat x86 decoder v14. */
41#define OPCODE1(insn) ((insn)->opcode.bytes[0])
42#define OPCODE2(insn) ((insn)->opcode.bytes[1])
43#define OPCODE3(insn) ((insn)->opcode.bytes[2])
44#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
45
46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
48 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
49 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
50 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
51 << (row % 32))
52
53/*
54 * Good-instruction tables for 32-bit apps. This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
57 *
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 * (why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
69 *
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 * Normally not used in userspace, but would execute if used.
73 * Can cause GP or stack exception if tries to load wrong segment descriptor.
74 * We hesitate to run them under single step since kernel's handling
75 * of userspace single-stepping (TF flag) is fragile.
76 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 * on the same grounds that they are never used.
78 * cd - int N.
79 * Used by userspace for "int 80" syscall entry. (Other "int N"
80 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 * Not supported since kernel's handling of userspace single-stepping
82 * (TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84 */
85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86static volatile u32 good_insns_32[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
105 /* ---------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
108#else
109#define good_insns_32 NULL
110#endif
111
112/* Good-instruction tables for 64-bit apps.
113 *
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122 * 82 - formerly redundant encoding of Group1
123 * 9a - formerly call seg:ofs
124 * ce - formerly into
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
127 * ea - formerly jmp seg:ofs
128 *
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
138 *
139 * Opcodes which need some work to be supported:
140 * cd - int N.
141 * Used by userspace for "int 80" syscall entry. (Other "int N"
142 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 * Not supported since kernel's handling of userspace single-stepping
144 * (TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146 */
147#if defined(CONFIG_X86_64)
148static volatile u32 good_insns_64[256 / 32] = {
149 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
150 /* ---------------------------------------------- */
151 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
167 /* ---------------------------------------------- */
168 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
169};
170#else
171#define good_insns_64 NULL
172#endif
173
174/* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 * Also encodes tons of other system insns if mod=11.
179 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
180 * 0f 05 - syscall
181 * 0f 06 - clts (CPL0 insn)
182 * 0f 07 - sysret
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
185 * 0f 0b - ud2
186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187 * 0f 34 - sysenter
188 * 0f 35 - sysexit
189 * 0f 37 - getsec
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 * Note: with prefixes, these two opcodes are
193 * extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 * {rd,wr}{fs,gs}base,{s,l,m}fence.
196 * Why? They are all user-executable.
197 */
198static volatile u32 good_2byte_insns[256 / 32] = {
199 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
200 /* ---------------------------------------------- */
201 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
217 /* ---------------------------------------------- */
218 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
219};
220#undef W
221
222/*
223 * opcodes we may need to refine support for:
224 *
225 * 0f - 2-byte instructions: For many of these instructions, the validity
226 * depends on the prefix and/or the reg field. On such instructions, we
227 * just consider the opcode combination valid if it corresponds to any
228 * valid instruction.
229 *
230 * 8f - Group 1 - only reg = 0 is OK
231 * c6-c7 - Group 11 - only reg = 0 is OK
232 * d9-df - fpu insns with some illegal encodings
233 * f2, f3 - repnz, repz prefixes. These are also the first byte for
234 * certain floating-point instructions, such as addsd.
235 *
236 * fe - Group 4 - only reg = 0 or 1 is OK
237 * ff - Group 5 - only reg = 0-6 is OK
238 *
239 * others -- Do we need to support these?
240 *
241 * 0f - (floating-point?) prefetch instructions
242 * 07, 17, 1f - pop es, pop ss, pop ds
243 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
245 * 67 - addr16 prefix
246 * ce - into
247 * f0 - lock prefix
248 */
249
250/*
251 * TODO:
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
254 */
255
256static bool is_prefix_bad(struct insn *insn)
257{
258 int i;
259
260 for (i = 0; i < insn->prefixes.nbytes; i++) {
261 insn_attr_t attr;
262
263 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
264 switch (attr) {
265 case INAT_MAKE_PREFIX(INAT_PFX_ES):
266 case INAT_MAKE_PREFIX(INAT_PFX_CS):
267 case INAT_MAKE_PREFIX(INAT_PFX_DS):
268 case INAT_MAKE_PREFIX(INAT_PFX_SS):
269 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
270 return true;
271 }
272 }
273 return false;
274}
275
276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
277{
278 u32 volatile *good_insns;
279
280 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
281 /* has the side-effect of processing the entire instruction */
282 insn_get_length(insn);
283 if (!insn_complete(insn))
284 return -ENOEXEC;
285
286 if (is_prefix_bad(insn))
287 return -ENOTSUPP;
288
289 /* We should not singlestep on the exception masking instructions */
290 if (insn_masking_exception(insn))
291 return -ENOTSUPP;
292
293 if (x86_64)
294 good_insns = good_insns_64;
295 else
296 good_insns = good_insns_32;
297
298 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
299 return 0;
300
301 if (insn->opcode.nbytes == 2) {
302 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
303 return 0;
304 }
305
306 return -ENOTSUPP;
307}
308
309#ifdef CONFIG_X86_64
310/*
311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
312 * immediately. Otherwise, rewrite the instruction so that it accesses
313 * its memory operand indirectly through a scratch register. Set
314 * defparam->fixups accordingly. (The contents of the scratch register
315 * will be saved before we single-step the modified instruction,
316 * and restored afterward).
317 *
318 * We do this because a rip-relative instruction can access only a
319 * relatively small area (+/- 2 GB from the instruction), and the XOL
320 * area typically lies beyond that area. At least for instructions
321 * that store to memory, we can't execute the original instruction
322 * and "fix things up" later, because the misdirected store could be
323 * disastrous.
324 *
325 * Some useful facts about rip-relative instructions:
326 *
327 * - There's always a modrm byte with bit layout "00 reg 101".
328 * - There's never a SIB byte.
329 * - The displacement is always 4 bytes.
330 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
331 * has no effect on rip-relative mode. It doesn't make modrm byte
332 * with r/m=101 refer to register 1101 = R13.
333 */
334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
335{
336 u8 *cursor;
337 u8 reg;
338 u8 reg2;
339
340 if (!insn_rip_relative(insn))
341 return;
342
343 /*
344 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
345 * Clear REX.b bit (extension of MODRM.rm field):
346 * we want to encode low numbered reg, not r8+.
347 */
348 if (insn->rex_prefix.nbytes) {
349 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
350 /* REX byte has 0100wrxb layout, clearing REX.b bit */
351 *cursor &= 0xfe;
352 }
353 /*
354 * Similar treatment for VEX3/EVEX prefix.
355 * TODO: add XOP treatment when insn decoder supports them
356 */
357 if (insn->vex_prefix.nbytes >= 3) {
358 /*
359 * vex2: c5 rvvvvLpp (has no b bit)
360 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
361 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
362 * Setting VEX3.b (setting because it has inverted meaning).
363 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
364 * is the 4th bit of MODRM.rm, and needs the same treatment.
365 * For VEX3-encoded insns, VEX3.x value has no effect in
366 * non-SIB encoding, the change is superfluous but harmless.
367 */
368 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
369 *cursor |= 0x60;
370 }
371
372 /*
373 * Convert from rip-relative addressing to register-relative addressing
374 * via a scratch register.
375 *
376 * This is tricky since there are insns with modrm byte
377 * which also use registers not encoded in modrm byte:
378 * [i]div/[i]mul: implicitly use dx:ax
379 * shift ops: implicitly use cx
380 * cmpxchg: implicitly uses ax
381 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
382 * Encoding: 0f c7/1 modrm
383 * The code below thinks that reg=1 (cx), chooses si as scratch.
384 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
385 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
386 * Example where none of bx,cx,dx can be used as scratch reg:
387 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
388 * [v]pcmpistri: implicitly uses cx, xmm0
389 * [v]pcmpistrm: implicitly uses xmm0
390 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
391 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
392 * Evil SSE4.2 string comparison ops from hell.
393 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
394 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
395 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
396 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
397 * and that it can have only register operands, not mem
398 * (its modrm byte must have mode=11).
399 * If these restrictions will ever be lifted,
400 * we'll need code to prevent selection of di as scratch reg!
401 *
402 * Summary: I don't know any insns with modrm byte which
403 * use SI register implicitly. DI register is used only
404 * by one insn (maskmovq) and BX register is used
405 * only by one too (cmpxchg8b).
406 * BP is stack-segment based (may be a problem?).
407 * AX, DX, CX are off-limits (many implicit users).
408 * SP is unusable (it's stack pointer - think about "pop mem";
409 * also, rsp+disp32 needs sib encoding -> insn length change).
410 */
411
412 reg = MODRM_REG(insn); /* Fetch modrm.reg */
413 reg2 = 0xff; /* Fetch vex.vvvv */
414 if (insn->vex_prefix.nbytes)
415 reg2 = insn->vex_prefix.bytes[2];
416 /*
417 * TODO: add XOP vvvv reading.
418 *
419 * vex.vvvv field is in bits 6-3, bits are inverted.
420 * But in 32-bit mode, high-order bit may be ignored.
421 * Therefore, let's consider only 3 low-order bits.
422 */
423 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
424 /*
425 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
426 *
427 * Choose scratch reg. Order is important: must not select bx
428 * if we can use si (cmpxchg8b case!)
429 */
430 if (reg != 6 && reg2 != 6) {
431 reg2 = 6;
432 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
433 } else if (reg != 7 && reg2 != 7) {
434 reg2 = 7;
435 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
436 /* TODO (paranoia): force maskmovq to not use di */
437 } else {
438 reg2 = 3;
439 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
440 }
441 /*
442 * Point cursor at the modrm byte. The next 4 bytes are the
443 * displacement. Beyond the displacement, for some instructions,
444 * is the immediate operand.
445 */
446 cursor = auprobe->insn + insn_offset_modrm(insn);
447 /*
448 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
449 * 89 05 disp32 mov %eax,disp32(%rip) becomes
450 * 89 86 disp32 mov %eax,disp32(%rsi)
451 */
452 *cursor = 0x80 | (reg << 3) | reg2;
453}
454
455static inline unsigned long *
456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
457{
458 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
459 return ®s->si;
460 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
461 return ®s->di;
462 return ®s->bx;
463}
464
465/*
466 * If we're emulating a rip-relative instruction, save the contents
467 * of the scratch register and store the target address in that register.
468 */
469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
470{
471 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
472 struct uprobe_task *utask = current->utask;
473 unsigned long *sr = scratch_reg(auprobe, regs);
474
475 utask->autask.saved_scratch_register = *sr;
476 *sr = utask->vaddr + auprobe->defparam.ilen;
477 }
478}
479
480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
481{
482 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
483 struct uprobe_task *utask = current->utask;
484 unsigned long *sr = scratch_reg(auprobe, regs);
485
486 *sr = utask->autask.saved_scratch_register;
487 }
488}
489#else /* 32-bit: */
490/*
491 * No RIP-relative addressing on 32-bit
492 */
493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
494{
495}
496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
497{
498}
499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
500{
501}
502#endif /* CONFIG_X86_64 */
503
504struct uprobe_xol_ops {
505 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
506 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
507 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
508 void (*abort)(struct arch_uprobe *, struct pt_regs *);
509};
510
511static inline int sizeof_long(struct pt_regs *regs)
512{
513 /*
514 * Check registers for mode as in_xxx_syscall() does not apply here.
515 */
516 return user_64bit_mode(regs) ? 8 : 4;
517}
518
519static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
520{
521 riprel_pre_xol(auprobe, regs);
522 return 0;
523}
524
525static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
526{
527 unsigned long new_sp = regs->sp - sizeof_long(regs);
528
529 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
530 return -EFAULT;
531
532 regs->sp = new_sp;
533 return 0;
534}
535
536/*
537 * We have to fix things up as follows:
538 *
539 * Typically, the new ip is relative to the copied instruction. We need
540 * to make it relative to the original instruction (FIX_IP). Exceptions
541 * are return instructions and absolute or indirect jump or call instructions.
542 *
543 * If the single-stepped instruction was a call, the return address that
544 * is atop the stack is the address following the copied instruction. We
545 * need to make it the address following the original instruction (FIX_CALL).
546 *
547 * If the original instruction was a rip-relative instruction such as
548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
550 * We need to restore the contents of the scratch register
551 * (FIX_RIP_reg).
552 */
553static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
554{
555 struct uprobe_task *utask = current->utask;
556
557 riprel_post_xol(auprobe, regs);
558 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
559 long correction = utask->vaddr - utask->xol_vaddr;
560 regs->ip += correction;
561 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
562 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
563 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
564 return -ERESTART;
565 }
566 /* popf; tell the caller to not touch TF */
567 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
568 utask->autask.saved_tf = true;
569
570 return 0;
571}
572
573static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
574{
575 riprel_post_xol(auprobe, regs);
576}
577
578static const struct uprobe_xol_ops default_xol_ops = {
579 .pre_xol = default_pre_xol_op,
580 .post_xol = default_post_xol_op,
581 .abort = default_abort_op,
582};
583
584static bool branch_is_call(struct arch_uprobe *auprobe)
585{
586 return auprobe->branch.opc1 == 0xe8;
587}
588
589#define CASE_COND \
590 COND(70, 71, XF(OF)) \
591 COND(72, 73, XF(CF)) \
592 COND(74, 75, XF(ZF)) \
593 COND(78, 79, XF(SF)) \
594 COND(7a, 7b, XF(PF)) \
595 COND(76, 77, XF(CF) || XF(ZF)) \
596 COND(7c, 7d, XF(SF) != XF(OF)) \
597 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
598
599#define COND(op_y, op_n, expr) \
600 case 0x ## op_y: DO((expr) != 0) \
601 case 0x ## op_n: DO((expr) == 0)
602
603#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
604
605static bool is_cond_jmp_opcode(u8 opcode)
606{
607 switch (opcode) {
608 #define DO(expr) \
609 return true;
610 CASE_COND
611 #undef DO
612
613 default:
614 return false;
615 }
616}
617
618static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
619{
620 unsigned long flags = regs->flags;
621
622 switch (auprobe->branch.opc1) {
623 #define DO(expr) \
624 return expr;
625 CASE_COND
626 #undef DO
627
628 default: /* not a conditional jmp */
629 return true;
630 }
631}
632
633#undef XF
634#undef COND
635#undef CASE_COND
636
637static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
638{
639 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
640 unsigned long offs = (long)auprobe->branch.offs;
641
642 if (branch_is_call(auprobe)) {
643 /*
644 * If it fails we execute this (mangled, see the comment in
645 * branch_clear_offset) insn out-of-line. In the likely case
646 * this should trigger the trap, and the probed application
647 * should die or restart the same insn after it handles the
648 * signal, arch_uprobe_post_xol() won't be even called.
649 *
650 * But there is corner case, see the comment in ->post_xol().
651 */
652 if (emulate_push_stack(regs, new_ip))
653 return false;
654 } else if (!check_jmp_cond(auprobe, regs)) {
655 offs = 0;
656 }
657
658 regs->ip = new_ip + offs;
659 return true;
660}
661
662static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
663{
664 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
665
666 if (emulate_push_stack(regs, *src_ptr))
667 return false;
668 regs->ip += auprobe->push.ilen;
669 return true;
670}
671
672static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
673{
674 BUG_ON(!branch_is_call(auprobe));
675 /*
676 * We can only get here if branch_emulate_op() failed to push the ret
677 * address _and_ another thread expanded our stack before the (mangled)
678 * "call" insn was executed out-of-line. Just restore ->sp and restart.
679 * We could also restore ->ip and try to call branch_emulate_op() again.
680 */
681 regs->sp += sizeof_long(regs);
682 return -ERESTART;
683}
684
685static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
686{
687 /*
688 * Turn this insn into "call 1f; 1:", this is what we will execute
689 * out-of-line if ->emulate() fails. We only need this to generate
690 * a trap, so that the probed task receives the correct signal with
691 * the properly filled siginfo.
692 *
693 * But see the comment in ->post_xol(), in the unlikely case it can
694 * succeed. So we need to ensure that the new ->ip can not fall into
695 * the non-canonical area and trigger #GP.
696 *
697 * We could turn it into (say) "pushf", but then we would need to
698 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
699 * of ->insn[] for set_orig_insn().
700 */
701 memset(auprobe->insn + insn_offset_immediate(insn),
702 0, insn->immediate.nbytes);
703}
704
705static const struct uprobe_xol_ops branch_xol_ops = {
706 .emulate = branch_emulate_op,
707 .post_xol = branch_post_xol_op,
708};
709
710static const struct uprobe_xol_ops push_xol_ops = {
711 .emulate = push_emulate_op,
712};
713
714/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
715static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
716{
717 u8 opc1 = OPCODE1(insn);
718 int i;
719
720 switch (opc1) {
721 case 0xeb: /* jmp 8 */
722 case 0xe9: /* jmp 32 */
723 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
724 break;
725
726 case 0xe8: /* call relative */
727 branch_clear_offset(auprobe, insn);
728 break;
729
730 case 0x0f:
731 if (insn->opcode.nbytes != 2)
732 return -ENOSYS;
733 /*
734 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
735 * OPCODE1() of the "short" jmp which checks the same condition.
736 */
737 opc1 = OPCODE2(insn) - 0x10;
738 /* fall through */
739 default:
740 if (!is_cond_jmp_opcode(opc1))
741 return -ENOSYS;
742 }
743
744 /*
745 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
746 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
747 * No one uses these insns, reject any branch insns with such prefix.
748 */
749 for (i = 0; i < insn->prefixes.nbytes; i++) {
750 if (insn->prefixes.bytes[i] == 0x66)
751 return -ENOTSUPP;
752 }
753
754 auprobe->branch.opc1 = opc1;
755 auprobe->branch.ilen = insn->length;
756 auprobe->branch.offs = insn->immediate.value;
757
758 auprobe->ops = &branch_xol_ops;
759 return 0;
760}
761
762/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
763static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
764{
765 u8 opc1 = OPCODE1(insn), reg_offset = 0;
766
767 if (opc1 < 0x50 || opc1 > 0x57)
768 return -ENOSYS;
769
770 if (insn->length > 2)
771 return -ENOSYS;
772 if (insn->length == 2) {
773 /* only support rex_prefix 0x41 (x64 only) */
774#ifdef CONFIG_X86_64
775 if (insn->rex_prefix.nbytes != 1 ||
776 insn->rex_prefix.bytes[0] != 0x41)
777 return -ENOSYS;
778
779 switch (opc1) {
780 case 0x50:
781 reg_offset = offsetof(struct pt_regs, r8);
782 break;
783 case 0x51:
784 reg_offset = offsetof(struct pt_regs, r9);
785 break;
786 case 0x52:
787 reg_offset = offsetof(struct pt_regs, r10);
788 break;
789 case 0x53:
790 reg_offset = offsetof(struct pt_regs, r11);
791 break;
792 case 0x54:
793 reg_offset = offsetof(struct pt_regs, r12);
794 break;
795 case 0x55:
796 reg_offset = offsetof(struct pt_regs, r13);
797 break;
798 case 0x56:
799 reg_offset = offsetof(struct pt_regs, r14);
800 break;
801 case 0x57:
802 reg_offset = offsetof(struct pt_regs, r15);
803 break;
804 }
805#else
806 return -ENOSYS;
807#endif
808 } else {
809 switch (opc1) {
810 case 0x50:
811 reg_offset = offsetof(struct pt_regs, ax);
812 break;
813 case 0x51:
814 reg_offset = offsetof(struct pt_regs, cx);
815 break;
816 case 0x52:
817 reg_offset = offsetof(struct pt_regs, dx);
818 break;
819 case 0x53:
820 reg_offset = offsetof(struct pt_regs, bx);
821 break;
822 case 0x54:
823 reg_offset = offsetof(struct pt_regs, sp);
824 break;
825 case 0x55:
826 reg_offset = offsetof(struct pt_regs, bp);
827 break;
828 case 0x56:
829 reg_offset = offsetof(struct pt_regs, si);
830 break;
831 case 0x57:
832 reg_offset = offsetof(struct pt_regs, di);
833 break;
834 }
835 }
836
837 auprobe->push.reg_offset = reg_offset;
838 auprobe->push.ilen = insn->length;
839 auprobe->ops = &push_xol_ops;
840 return 0;
841}
842
843/**
844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
845 * @mm: the probed address space.
846 * @arch_uprobe: the probepoint information.
847 * @addr: virtual address at which to install the probepoint
848 * Return 0 on success or a -ve number on error.
849 */
850int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
851{
852 struct insn insn;
853 u8 fix_ip_or_call = UPROBE_FIX_IP;
854 int ret;
855
856 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
857 if (ret)
858 return ret;
859
860 ret = branch_setup_xol_ops(auprobe, &insn);
861 if (ret != -ENOSYS)
862 return ret;
863
864 ret = push_setup_xol_ops(auprobe, &insn);
865 if (ret != -ENOSYS)
866 return ret;
867
868 /*
869 * Figure out which fixups default_post_xol_op() will need to perform,
870 * and annotate defparam->fixups accordingly.
871 */
872 switch (OPCODE1(&insn)) {
873 case 0x9d: /* popf */
874 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
875 break;
876 case 0xc3: /* ret or lret -- ip is correct */
877 case 0xcb:
878 case 0xc2:
879 case 0xca:
880 case 0xea: /* jmp absolute -- ip is correct */
881 fix_ip_or_call = 0;
882 break;
883 case 0x9a: /* call absolute - Fix return addr, not ip */
884 fix_ip_or_call = UPROBE_FIX_CALL;
885 break;
886 case 0xff:
887 switch (MODRM_REG(&insn)) {
888 case 2: case 3: /* call or lcall, indirect */
889 fix_ip_or_call = UPROBE_FIX_CALL;
890 break;
891 case 4: case 5: /* jmp or ljmp, indirect */
892 fix_ip_or_call = 0;
893 break;
894 }
895 /* fall through */
896 default:
897 riprel_analyze(auprobe, &insn);
898 }
899
900 auprobe->defparam.ilen = insn.length;
901 auprobe->defparam.fixups |= fix_ip_or_call;
902
903 auprobe->ops = &default_xol_ops;
904 return 0;
905}
906
907/*
908 * arch_uprobe_pre_xol - prepare to execute out of line.
909 * @auprobe: the probepoint information.
910 * @regs: reflects the saved user state of current task.
911 */
912int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
913{
914 struct uprobe_task *utask = current->utask;
915
916 if (auprobe->ops->pre_xol) {
917 int err = auprobe->ops->pre_xol(auprobe, regs);
918 if (err)
919 return err;
920 }
921
922 regs->ip = utask->xol_vaddr;
923 utask->autask.saved_trap_nr = current->thread.trap_nr;
924 current->thread.trap_nr = UPROBE_TRAP_NR;
925
926 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
927 regs->flags |= X86_EFLAGS_TF;
928 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
929 set_task_blockstep(current, false);
930
931 return 0;
932}
933
934/*
935 * If xol insn itself traps and generates a signal(Say,
936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
937 * instruction jumps back to its own address. It is assumed that anything
938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
939 *
940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
943 */
944bool arch_uprobe_xol_was_trapped(struct task_struct *t)
945{
946 if (t->thread.trap_nr != UPROBE_TRAP_NR)
947 return true;
948
949 return false;
950}
951
952/*
953 * Called after single-stepping. To avoid the SMP problems that can
954 * occur when we temporarily put back the original opcode to
955 * single-step, we single-stepped a copy of the instruction.
956 *
957 * This function prepares to resume execution after the single-step.
958 */
959int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
960{
961 struct uprobe_task *utask = current->utask;
962 bool send_sigtrap = utask->autask.saved_tf;
963 int err = 0;
964
965 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
966 current->thread.trap_nr = utask->autask.saved_trap_nr;
967
968 if (auprobe->ops->post_xol) {
969 err = auprobe->ops->post_xol(auprobe, regs);
970 if (err) {
971 /*
972 * Restore ->ip for restart or post mortem analysis.
973 * ->post_xol() must not return -ERESTART unless this
974 * is really possible.
975 */
976 regs->ip = utask->vaddr;
977 if (err == -ERESTART)
978 err = 0;
979 send_sigtrap = false;
980 }
981 }
982 /*
983 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
984 * so we can get an extra SIGTRAP if we do not clear TF. We need
985 * to examine the opcode to make it right.
986 */
987 if (send_sigtrap)
988 send_sig(SIGTRAP, current, 0);
989
990 if (!utask->autask.saved_tf)
991 regs->flags &= ~X86_EFLAGS_TF;
992
993 return err;
994}
995
996/* callback routine for handling exceptions. */
997int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
998{
999 struct die_args *args = data;
1000 struct pt_regs *regs = args->regs;
1001 int ret = NOTIFY_DONE;
1002
1003 /* We are only interested in userspace traps */
1004 if (regs && !user_mode(regs))
1005 return NOTIFY_DONE;
1006
1007 switch (val) {
1008 case DIE_INT3:
1009 if (uprobe_pre_sstep_notifier(regs))
1010 ret = NOTIFY_STOP;
1011
1012 break;
1013
1014 case DIE_DEBUG:
1015 if (uprobe_post_sstep_notifier(regs))
1016 ret = NOTIFY_STOP;
1017
1018 default:
1019 break;
1020 }
1021
1022 return ret;
1023}
1024
1025/*
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1029 */
1030void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031{
1032 struct uprobe_task *utask = current->utask;
1033
1034 if (auprobe->ops->abort)
1035 auprobe->ops->abort(auprobe, regs);
1036
1037 current->thread.trap_nr = utask->autask.saved_trap_nr;
1038 regs->ip = utask->vaddr;
1039 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040 if (!utask->autask.saved_tf)
1041 regs->flags &= ~X86_EFLAGS_TF;
1042}
1043
1044static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045{
1046 if (auprobe->ops->emulate)
1047 return auprobe->ops->emulate(auprobe, regs);
1048 return false;
1049}
1050
1051bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052{
1053 bool ret = __skip_sstep(auprobe, regs);
1054 if (ret && (regs->flags & X86_EFLAGS_TF))
1055 send_sig(SIGTRAP, current, 0);
1056 return ret;
1057}
1058
1059unsigned long
1060arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061{
1062 int rasize = sizeof_long(regs), nleft;
1063 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064
1065 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066 return -1;
1067
1068 /* check whether address has been already hijacked */
1069 if (orig_ret_vaddr == trampoline_vaddr)
1070 return orig_ret_vaddr;
1071
1072 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073 if (likely(!nleft))
1074 return orig_ret_vaddr;
1075
1076 if (nleft != rasize) {
1077 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078 current->pid, regs->sp, regs->ip);
1079
1080 force_sig(SIGSEGV);
1081 }
1082
1083 return -1;
1084}
1085
1086bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087 struct pt_regs *regs)
1088{
1089 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090 return regs->sp < ret->stack;
1091 else
1092 return regs->sp <= ret->stack;
1093}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * User-space Probes (UProbes) for x86
4 *
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 */
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/ptrace.h>
13#include <linux/uprobes.h>
14#include <linux/uaccess.h>
15
16#include <linux/kdebug.h>
17#include <asm/processor.h>
18#include <asm/insn.h>
19#include <asm/mmu_context.h>
20
21/* Post-execution fixups. */
22
23/* Adjust IP back to vicinity of actual insn */
24#define UPROBE_FIX_IP 0x01
25
26/* Adjust the return address of a call insn */
27#define UPROBE_FIX_CALL 0x02
28
29/* Instruction will modify TF, don't change it */
30#define UPROBE_FIX_SETF 0x04
31
32#define UPROBE_FIX_RIP_SI 0x08
33#define UPROBE_FIX_RIP_DI 0x10
34#define UPROBE_FIX_RIP_BX 0x20
35#define UPROBE_FIX_RIP_MASK \
36 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37
38#define UPROBE_TRAP_NR UINT_MAX
39
40/* Adaptations for mhiramat x86 decoder v14. */
41#define OPCODE1(insn) ((insn)->opcode.bytes[0])
42#define OPCODE2(insn) ((insn)->opcode.bytes[1])
43#define OPCODE3(insn) ((insn)->opcode.bytes[2])
44#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
45
46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
48 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
49 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
50 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
51 << (row % 32))
52
53/*
54 * Good-instruction tables for 32-bit apps. This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
57 *
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 * (why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
69 *
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 * Normally not used in userspace, but would execute if used.
73 * Can cause GP or stack exception if tries to load wrong segment descriptor.
74 * We hesitate to run them under single step since kernel's handling
75 * of userspace single-stepping (TF flag) is fragile.
76 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 * on the same grounds that they are never used.
78 * cd - int N.
79 * Used by userspace for "int 80" syscall entry. (Other "int N"
80 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 * Not supported since kernel's handling of userspace single-stepping
82 * (TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84 */
85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86static volatile u32 good_insns_32[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
105 /* ---------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
108#else
109#define good_insns_32 NULL
110#endif
111
112/* Good-instruction tables for 64-bit apps.
113 *
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122 * 82 - formerly redundant encoding of Group1
123 * 9a - formerly call seg:ofs
124 * ce - formerly into
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
127 * ea - formerly jmp seg:ofs
128 *
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
138 *
139 * Opcodes which need some work to be supported:
140 * cd - int N.
141 * Used by userspace for "int 80" syscall entry. (Other "int N"
142 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 * Not supported since kernel's handling of userspace single-stepping
144 * (TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146 */
147#if defined(CONFIG_X86_64)
148static volatile u32 good_insns_64[256 / 32] = {
149 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
150 /* ---------------------------------------------- */
151 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
167 /* ---------------------------------------------- */
168 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
169};
170#else
171#define good_insns_64 NULL
172#endif
173
174/* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 * Also encodes tons of other system insns if mod=11.
179 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
180 * 0f 05 - syscall
181 * 0f 06 - clts (CPL0 insn)
182 * 0f 07 - sysret
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
185 * 0f 0b - ud2
186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187 * 0f 34 - sysenter
188 * 0f 35 - sysexit
189 * 0f 37 - getsec
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 * Note: with prefixes, these two opcodes are
193 * extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 * {rd,wr}{fs,gs}base,{s,l,m}fence.
196 * Why? They are all user-executable.
197 */
198static volatile u32 good_2byte_insns[256 / 32] = {
199 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
200 /* ---------------------------------------------- */
201 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
217 /* ---------------------------------------------- */
218 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
219};
220#undef W
221
222/*
223 * opcodes we may need to refine support for:
224 *
225 * 0f - 2-byte instructions: For many of these instructions, the validity
226 * depends on the prefix and/or the reg field. On such instructions, we
227 * just consider the opcode combination valid if it corresponds to any
228 * valid instruction.
229 *
230 * 8f - Group 1 - only reg = 0 is OK
231 * c6-c7 - Group 11 - only reg = 0 is OK
232 * d9-df - fpu insns with some illegal encodings
233 * f2, f3 - repnz, repz prefixes. These are also the first byte for
234 * certain floating-point instructions, such as addsd.
235 *
236 * fe - Group 4 - only reg = 0 or 1 is OK
237 * ff - Group 5 - only reg = 0-6 is OK
238 *
239 * others -- Do we need to support these?
240 *
241 * 0f - (floating-point?) prefetch instructions
242 * 07, 17, 1f - pop es, pop ss, pop ds
243 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
245 * 67 - addr16 prefix
246 * ce - into
247 * f0 - lock prefix
248 */
249
250/*
251 * TODO:
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
254 */
255
256static bool is_prefix_bad(struct insn *insn)
257{
258 insn_byte_t p;
259 int i;
260
261 for_each_insn_prefix(insn, i, p) {
262 insn_attr_t attr;
263
264 attr = inat_get_opcode_attribute(p);
265 switch (attr) {
266 case INAT_MAKE_PREFIX(INAT_PFX_ES):
267 case INAT_MAKE_PREFIX(INAT_PFX_CS):
268 case INAT_MAKE_PREFIX(INAT_PFX_DS):
269 case INAT_MAKE_PREFIX(INAT_PFX_SS):
270 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
271 return true;
272 }
273 }
274 return false;
275}
276
277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
278{
279 enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
280 u32 volatile *good_insns;
281 int ret;
282
283 ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
284 if (ret < 0)
285 return -ENOEXEC;
286
287 if (is_prefix_bad(insn))
288 return -ENOTSUPP;
289
290 /* We should not singlestep on the exception masking instructions */
291 if (insn_masking_exception(insn))
292 return -ENOTSUPP;
293
294 if (x86_64)
295 good_insns = good_insns_64;
296 else
297 good_insns = good_insns_32;
298
299 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
300 return 0;
301
302 if (insn->opcode.nbytes == 2) {
303 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
304 return 0;
305 }
306
307 return -ENOTSUPP;
308}
309
310#ifdef CONFIG_X86_64
311/*
312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
313 * immediately. Otherwise, rewrite the instruction so that it accesses
314 * its memory operand indirectly through a scratch register. Set
315 * defparam->fixups accordingly. (The contents of the scratch register
316 * will be saved before we single-step the modified instruction,
317 * and restored afterward).
318 *
319 * We do this because a rip-relative instruction can access only a
320 * relatively small area (+/- 2 GB from the instruction), and the XOL
321 * area typically lies beyond that area. At least for instructions
322 * that store to memory, we can't execute the original instruction
323 * and "fix things up" later, because the misdirected store could be
324 * disastrous.
325 *
326 * Some useful facts about rip-relative instructions:
327 *
328 * - There's always a modrm byte with bit layout "00 reg 101".
329 * - There's never a SIB byte.
330 * - The displacement is always 4 bytes.
331 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
332 * has no effect on rip-relative mode. It doesn't make modrm byte
333 * with r/m=101 refer to register 1101 = R13.
334 */
335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
336{
337 u8 *cursor;
338 u8 reg;
339 u8 reg2;
340
341 if (!insn_rip_relative(insn))
342 return;
343
344 /*
345 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
346 * Clear REX.b bit (extension of MODRM.rm field):
347 * we want to encode low numbered reg, not r8+.
348 */
349 if (insn->rex_prefix.nbytes) {
350 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
351 /* REX byte has 0100wrxb layout, clearing REX.b bit */
352 *cursor &= 0xfe;
353 }
354 /*
355 * Similar treatment for VEX3/EVEX prefix.
356 * TODO: add XOP treatment when insn decoder supports them
357 */
358 if (insn->vex_prefix.nbytes >= 3) {
359 /*
360 * vex2: c5 rvvvvLpp (has no b bit)
361 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
362 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
363 * Setting VEX3.b (setting because it has inverted meaning).
364 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
365 * is the 4th bit of MODRM.rm, and needs the same treatment.
366 * For VEX3-encoded insns, VEX3.x value has no effect in
367 * non-SIB encoding, the change is superfluous but harmless.
368 */
369 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
370 *cursor |= 0x60;
371 }
372
373 /*
374 * Convert from rip-relative addressing to register-relative addressing
375 * via a scratch register.
376 *
377 * This is tricky since there are insns with modrm byte
378 * which also use registers not encoded in modrm byte:
379 * [i]div/[i]mul: implicitly use dx:ax
380 * shift ops: implicitly use cx
381 * cmpxchg: implicitly uses ax
382 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
383 * Encoding: 0f c7/1 modrm
384 * The code below thinks that reg=1 (cx), chooses si as scratch.
385 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
386 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
387 * Example where none of bx,cx,dx can be used as scratch reg:
388 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
389 * [v]pcmpistri: implicitly uses cx, xmm0
390 * [v]pcmpistrm: implicitly uses xmm0
391 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
392 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
393 * Evil SSE4.2 string comparison ops from hell.
394 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
395 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
396 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
397 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
398 * and that it can have only register operands, not mem
399 * (its modrm byte must have mode=11).
400 * If these restrictions will ever be lifted,
401 * we'll need code to prevent selection of di as scratch reg!
402 *
403 * Summary: I don't know any insns with modrm byte which
404 * use SI register implicitly. DI register is used only
405 * by one insn (maskmovq) and BX register is used
406 * only by one too (cmpxchg8b).
407 * BP is stack-segment based (may be a problem?).
408 * AX, DX, CX are off-limits (many implicit users).
409 * SP is unusable (it's stack pointer - think about "pop mem";
410 * also, rsp+disp32 needs sib encoding -> insn length change).
411 */
412
413 reg = MODRM_REG(insn); /* Fetch modrm.reg */
414 reg2 = 0xff; /* Fetch vex.vvvv */
415 if (insn->vex_prefix.nbytes)
416 reg2 = insn->vex_prefix.bytes[2];
417 /*
418 * TODO: add XOP vvvv reading.
419 *
420 * vex.vvvv field is in bits 6-3, bits are inverted.
421 * But in 32-bit mode, high-order bit may be ignored.
422 * Therefore, let's consider only 3 low-order bits.
423 */
424 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
425 /*
426 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
427 *
428 * Choose scratch reg. Order is important: must not select bx
429 * if we can use si (cmpxchg8b case!)
430 */
431 if (reg != 6 && reg2 != 6) {
432 reg2 = 6;
433 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
434 } else if (reg != 7 && reg2 != 7) {
435 reg2 = 7;
436 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
437 /* TODO (paranoia): force maskmovq to not use di */
438 } else {
439 reg2 = 3;
440 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
441 }
442 /*
443 * Point cursor at the modrm byte. The next 4 bytes are the
444 * displacement. Beyond the displacement, for some instructions,
445 * is the immediate operand.
446 */
447 cursor = auprobe->insn + insn_offset_modrm(insn);
448 /*
449 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
450 * 89 05 disp32 mov %eax,disp32(%rip) becomes
451 * 89 86 disp32 mov %eax,disp32(%rsi)
452 */
453 *cursor = 0x80 | (reg << 3) | reg2;
454}
455
456static inline unsigned long *
457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
458{
459 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
460 return ®s->si;
461 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
462 return ®s->di;
463 return ®s->bx;
464}
465
466/*
467 * If we're emulating a rip-relative instruction, save the contents
468 * of the scratch register and store the target address in that register.
469 */
470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
471{
472 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
473 struct uprobe_task *utask = current->utask;
474 unsigned long *sr = scratch_reg(auprobe, regs);
475
476 utask->autask.saved_scratch_register = *sr;
477 *sr = utask->vaddr + auprobe->defparam.ilen;
478 }
479}
480
481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
482{
483 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
484 struct uprobe_task *utask = current->utask;
485 unsigned long *sr = scratch_reg(auprobe, regs);
486
487 *sr = utask->autask.saved_scratch_register;
488 }
489}
490#else /* 32-bit: */
491/*
492 * No RIP-relative addressing on 32-bit
493 */
494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
495{
496}
497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
498{
499}
500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
501{
502}
503#endif /* CONFIG_X86_64 */
504
505struct uprobe_xol_ops {
506 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
507 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
508 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
509 void (*abort)(struct arch_uprobe *, struct pt_regs *);
510};
511
512static inline int sizeof_long(struct pt_regs *regs)
513{
514 /*
515 * Check registers for mode as in_xxx_syscall() does not apply here.
516 */
517 return user_64bit_mode(regs) ? 8 : 4;
518}
519
520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
521{
522 riprel_pre_xol(auprobe, regs);
523 return 0;
524}
525
526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
527{
528 unsigned long new_sp = regs->sp - sizeof_long(regs);
529
530 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
531 return -EFAULT;
532
533 regs->sp = new_sp;
534 return 0;
535}
536
537/*
538 * We have to fix things up as follows:
539 *
540 * Typically, the new ip is relative to the copied instruction. We need
541 * to make it relative to the original instruction (FIX_IP). Exceptions
542 * are return instructions and absolute or indirect jump or call instructions.
543 *
544 * If the single-stepped instruction was a call, the return address that
545 * is atop the stack is the address following the copied instruction. We
546 * need to make it the address following the original instruction (FIX_CALL).
547 *
548 * If the original instruction was a rip-relative instruction such as
549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
551 * We need to restore the contents of the scratch register
552 * (FIX_RIP_reg).
553 */
554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
555{
556 struct uprobe_task *utask = current->utask;
557
558 riprel_post_xol(auprobe, regs);
559 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
560 long correction = utask->vaddr - utask->xol_vaddr;
561 regs->ip += correction;
562 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
563 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
564 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
565 return -ERESTART;
566 }
567 /* popf; tell the caller to not touch TF */
568 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
569 utask->autask.saved_tf = true;
570
571 return 0;
572}
573
574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
575{
576 riprel_post_xol(auprobe, regs);
577}
578
579static const struct uprobe_xol_ops default_xol_ops = {
580 .pre_xol = default_pre_xol_op,
581 .post_xol = default_post_xol_op,
582 .abort = default_abort_op,
583};
584
585static bool branch_is_call(struct arch_uprobe *auprobe)
586{
587 return auprobe->branch.opc1 == 0xe8;
588}
589
590#define CASE_COND \
591 COND(70, 71, XF(OF)) \
592 COND(72, 73, XF(CF)) \
593 COND(74, 75, XF(ZF)) \
594 COND(78, 79, XF(SF)) \
595 COND(7a, 7b, XF(PF)) \
596 COND(76, 77, XF(CF) || XF(ZF)) \
597 COND(7c, 7d, XF(SF) != XF(OF)) \
598 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
599
600#define COND(op_y, op_n, expr) \
601 case 0x ## op_y: DO((expr) != 0) \
602 case 0x ## op_n: DO((expr) == 0)
603
604#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
605
606static bool is_cond_jmp_opcode(u8 opcode)
607{
608 switch (opcode) {
609 #define DO(expr) \
610 return true;
611 CASE_COND
612 #undef DO
613
614 default:
615 return false;
616 }
617}
618
619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
620{
621 unsigned long flags = regs->flags;
622
623 switch (auprobe->branch.opc1) {
624 #define DO(expr) \
625 return expr;
626 CASE_COND
627 #undef DO
628
629 default: /* not a conditional jmp */
630 return true;
631 }
632}
633
634#undef XF
635#undef COND
636#undef CASE_COND
637
638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
639{
640 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
641 unsigned long offs = (long)auprobe->branch.offs;
642
643 if (branch_is_call(auprobe)) {
644 /*
645 * If it fails we execute this (mangled, see the comment in
646 * branch_clear_offset) insn out-of-line. In the likely case
647 * this should trigger the trap, and the probed application
648 * should die or restart the same insn after it handles the
649 * signal, arch_uprobe_post_xol() won't be even called.
650 *
651 * But there is corner case, see the comment in ->post_xol().
652 */
653 if (emulate_push_stack(regs, new_ip))
654 return false;
655 } else if (!check_jmp_cond(auprobe, regs)) {
656 offs = 0;
657 }
658
659 regs->ip = new_ip + offs;
660 return true;
661}
662
663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
664{
665 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
666
667 if (emulate_push_stack(regs, *src_ptr))
668 return false;
669 regs->ip += auprobe->push.ilen;
670 return true;
671}
672
673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
674{
675 BUG_ON(!branch_is_call(auprobe));
676 /*
677 * We can only get here if branch_emulate_op() failed to push the ret
678 * address _and_ another thread expanded our stack before the (mangled)
679 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680 * We could also restore ->ip and try to call branch_emulate_op() again.
681 */
682 regs->sp += sizeof_long(regs);
683 return -ERESTART;
684}
685
686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
687{
688 /*
689 * Turn this insn into "call 1f; 1:", this is what we will execute
690 * out-of-line if ->emulate() fails. We only need this to generate
691 * a trap, so that the probed task receives the correct signal with
692 * the properly filled siginfo.
693 *
694 * But see the comment in ->post_xol(), in the unlikely case it can
695 * succeed. So we need to ensure that the new ->ip can not fall into
696 * the non-canonical area and trigger #GP.
697 *
698 * We could turn it into (say) "pushf", but then we would need to
699 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700 * of ->insn[] for set_orig_insn().
701 */
702 memset(auprobe->insn + insn_offset_immediate(insn),
703 0, insn->immediate.nbytes);
704}
705
706static const struct uprobe_xol_ops branch_xol_ops = {
707 .emulate = branch_emulate_op,
708 .post_xol = branch_post_xol_op,
709};
710
711static const struct uprobe_xol_ops push_xol_ops = {
712 .emulate = push_emulate_op,
713};
714
715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
717{
718 u8 opc1 = OPCODE1(insn);
719 insn_byte_t p;
720 int i;
721
722 switch (opc1) {
723 case 0xeb: /* jmp 8 */
724 case 0xe9: /* jmp 32 */
725 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
726 break;
727
728 case 0xe8: /* call relative */
729 branch_clear_offset(auprobe, insn);
730 break;
731
732 case 0x0f:
733 if (insn->opcode.nbytes != 2)
734 return -ENOSYS;
735 /*
736 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
737 * OPCODE1() of the "short" jmp which checks the same condition.
738 */
739 opc1 = OPCODE2(insn) - 0x10;
740 fallthrough;
741 default:
742 if (!is_cond_jmp_opcode(opc1))
743 return -ENOSYS;
744 }
745
746 /*
747 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
748 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
749 * No one uses these insns, reject any branch insns with such prefix.
750 */
751 for_each_insn_prefix(insn, i, p) {
752 if (p == 0x66)
753 return -ENOTSUPP;
754 }
755
756 auprobe->branch.opc1 = opc1;
757 auprobe->branch.ilen = insn->length;
758 auprobe->branch.offs = insn->immediate.value;
759
760 auprobe->ops = &branch_xol_ops;
761 return 0;
762}
763
764/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
765static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
766{
767 u8 opc1 = OPCODE1(insn), reg_offset = 0;
768
769 if (opc1 < 0x50 || opc1 > 0x57)
770 return -ENOSYS;
771
772 if (insn->length > 2)
773 return -ENOSYS;
774 if (insn->length == 2) {
775 /* only support rex_prefix 0x41 (x64 only) */
776#ifdef CONFIG_X86_64
777 if (insn->rex_prefix.nbytes != 1 ||
778 insn->rex_prefix.bytes[0] != 0x41)
779 return -ENOSYS;
780
781 switch (opc1) {
782 case 0x50:
783 reg_offset = offsetof(struct pt_regs, r8);
784 break;
785 case 0x51:
786 reg_offset = offsetof(struct pt_regs, r9);
787 break;
788 case 0x52:
789 reg_offset = offsetof(struct pt_regs, r10);
790 break;
791 case 0x53:
792 reg_offset = offsetof(struct pt_regs, r11);
793 break;
794 case 0x54:
795 reg_offset = offsetof(struct pt_regs, r12);
796 break;
797 case 0x55:
798 reg_offset = offsetof(struct pt_regs, r13);
799 break;
800 case 0x56:
801 reg_offset = offsetof(struct pt_regs, r14);
802 break;
803 case 0x57:
804 reg_offset = offsetof(struct pt_regs, r15);
805 break;
806 }
807#else
808 return -ENOSYS;
809#endif
810 } else {
811 switch (opc1) {
812 case 0x50:
813 reg_offset = offsetof(struct pt_regs, ax);
814 break;
815 case 0x51:
816 reg_offset = offsetof(struct pt_regs, cx);
817 break;
818 case 0x52:
819 reg_offset = offsetof(struct pt_regs, dx);
820 break;
821 case 0x53:
822 reg_offset = offsetof(struct pt_regs, bx);
823 break;
824 case 0x54:
825 reg_offset = offsetof(struct pt_regs, sp);
826 break;
827 case 0x55:
828 reg_offset = offsetof(struct pt_regs, bp);
829 break;
830 case 0x56:
831 reg_offset = offsetof(struct pt_regs, si);
832 break;
833 case 0x57:
834 reg_offset = offsetof(struct pt_regs, di);
835 break;
836 }
837 }
838
839 auprobe->push.reg_offset = reg_offset;
840 auprobe->push.ilen = insn->length;
841 auprobe->ops = &push_xol_ops;
842 return 0;
843}
844
845/**
846 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
847 * @auprobe: the probepoint information.
848 * @mm: the probed address space.
849 * @addr: virtual address at which to install the probepoint
850 * Return 0 on success or a -ve number on error.
851 */
852int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
853{
854 struct insn insn;
855 u8 fix_ip_or_call = UPROBE_FIX_IP;
856 int ret;
857
858 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
859 if (ret)
860 return ret;
861
862 ret = branch_setup_xol_ops(auprobe, &insn);
863 if (ret != -ENOSYS)
864 return ret;
865
866 ret = push_setup_xol_ops(auprobe, &insn);
867 if (ret != -ENOSYS)
868 return ret;
869
870 /*
871 * Figure out which fixups default_post_xol_op() will need to perform,
872 * and annotate defparam->fixups accordingly.
873 */
874 switch (OPCODE1(&insn)) {
875 case 0x9d: /* popf */
876 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
877 break;
878 case 0xc3: /* ret or lret -- ip is correct */
879 case 0xcb:
880 case 0xc2:
881 case 0xca:
882 case 0xea: /* jmp absolute -- ip is correct */
883 fix_ip_or_call = 0;
884 break;
885 case 0x9a: /* call absolute - Fix return addr, not ip */
886 fix_ip_or_call = UPROBE_FIX_CALL;
887 break;
888 case 0xff:
889 switch (MODRM_REG(&insn)) {
890 case 2: case 3: /* call or lcall, indirect */
891 fix_ip_or_call = UPROBE_FIX_CALL;
892 break;
893 case 4: case 5: /* jmp or ljmp, indirect */
894 fix_ip_or_call = 0;
895 break;
896 }
897 fallthrough;
898 default:
899 riprel_analyze(auprobe, &insn);
900 }
901
902 auprobe->defparam.ilen = insn.length;
903 auprobe->defparam.fixups |= fix_ip_or_call;
904
905 auprobe->ops = &default_xol_ops;
906 return 0;
907}
908
909/*
910 * arch_uprobe_pre_xol - prepare to execute out of line.
911 * @auprobe: the probepoint information.
912 * @regs: reflects the saved user state of current task.
913 */
914int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
915{
916 struct uprobe_task *utask = current->utask;
917
918 if (auprobe->ops->pre_xol) {
919 int err = auprobe->ops->pre_xol(auprobe, regs);
920 if (err)
921 return err;
922 }
923
924 regs->ip = utask->xol_vaddr;
925 utask->autask.saved_trap_nr = current->thread.trap_nr;
926 current->thread.trap_nr = UPROBE_TRAP_NR;
927
928 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
929 regs->flags |= X86_EFLAGS_TF;
930 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
931 set_task_blockstep(current, false);
932
933 return 0;
934}
935
936/*
937 * If xol insn itself traps and generates a signal(Say,
938 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
939 * instruction jumps back to its own address. It is assumed that anything
940 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
941 *
942 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
943 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
944 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
945 */
946bool arch_uprobe_xol_was_trapped(struct task_struct *t)
947{
948 if (t->thread.trap_nr != UPROBE_TRAP_NR)
949 return true;
950
951 return false;
952}
953
954/*
955 * Called after single-stepping. To avoid the SMP problems that can
956 * occur when we temporarily put back the original opcode to
957 * single-step, we single-stepped a copy of the instruction.
958 *
959 * This function prepares to resume execution after the single-step.
960 */
961int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
962{
963 struct uprobe_task *utask = current->utask;
964 bool send_sigtrap = utask->autask.saved_tf;
965 int err = 0;
966
967 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
968 current->thread.trap_nr = utask->autask.saved_trap_nr;
969
970 if (auprobe->ops->post_xol) {
971 err = auprobe->ops->post_xol(auprobe, regs);
972 if (err) {
973 /*
974 * Restore ->ip for restart or post mortem analysis.
975 * ->post_xol() must not return -ERESTART unless this
976 * is really possible.
977 */
978 regs->ip = utask->vaddr;
979 if (err == -ERESTART)
980 err = 0;
981 send_sigtrap = false;
982 }
983 }
984 /*
985 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
986 * so we can get an extra SIGTRAP if we do not clear TF. We need
987 * to examine the opcode to make it right.
988 */
989 if (send_sigtrap)
990 send_sig(SIGTRAP, current, 0);
991
992 if (!utask->autask.saved_tf)
993 regs->flags &= ~X86_EFLAGS_TF;
994
995 return err;
996}
997
998/* callback routine for handling exceptions. */
999int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1000{
1001 struct die_args *args = data;
1002 struct pt_regs *regs = args->regs;
1003 int ret = NOTIFY_DONE;
1004
1005 /* We are only interested in userspace traps */
1006 if (regs && !user_mode(regs))
1007 return NOTIFY_DONE;
1008
1009 switch (val) {
1010 case DIE_INT3:
1011 if (uprobe_pre_sstep_notifier(regs))
1012 ret = NOTIFY_STOP;
1013
1014 break;
1015
1016 case DIE_DEBUG:
1017 if (uprobe_post_sstep_notifier(regs))
1018 ret = NOTIFY_STOP;
1019
1020 break;
1021
1022 default:
1023 break;
1024 }
1025
1026 return ret;
1027}
1028
1029/*
1030 * This function gets called when XOL instruction either gets trapped or
1031 * the thread has a fatal signal. Reset the instruction pointer to its
1032 * probed address for the potential restart or for post mortem analysis.
1033 */
1034void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1035{
1036 struct uprobe_task *utask = current->utask;
1037
1038 if (auprobe->ops->abort)
1039 auprobe->ops->abort(auprobe, regs);
1040
1041 current->thread.trap_nr = utask->autask.saved_trap_nr;
1042 regs->ip = utask->vaddr;
1043 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1044 if (!utask->autask.saved_tf)
1045 regs->flags &= ~X86_EFLAGS_TF;
1046}
1047
1048static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1049{
1050 if (auprobe->ops->emulate)
1051 return auprobe->ops->emulate(auprobe, regs);
1052 return false;
1053}
1054
1055bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1056{
1057 bool ret = __skip_sstep(auprobe, regs);
1058 if (ret && (regs->flags & X86_EFLAGS_TF))
1059 send_sig(SIGTRAP, current, 0);
1060 return ret;
1061}
1062
1063unsigned long
1064arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1065{
1066 int rasize = sizeof_long(regs), nleft;
1067 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1068
1069 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1070 return -1;
1071
1072 /* check whether address has been already hijacked */
1073 if (orig_ret_vaddr == trampoline_vaddr)
1074 return orig_ret_vaddr;
1075
1076 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1077 if (likely(!nleft))
1078 return orig_ret_vaddr;
1079
1080 if (nleft != rasize) {
1081 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1082 current->pid, regs->sp, regs->ip);
1083
1084 force_sig(SIGSEGV);
1085 }
1086
1087 return -1;
1088}
1089
1090bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1091 struct pt_regs *regs)
1092{
1093 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1094 return regs->sp < ret->stack;
1095 else
1096 return regs->sp <= ret->stack;
1097}