Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 
 258	int i;
 259
 260	for (i = 0; i < insn->prefixes.nbytes; i++) {
 261		insn_attr_t attr;
 262
 263		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
 264		switch (attr) {
 265		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 266		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 267		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 270			return true;
 271		}
 272	}
 273	return false;
 274}
 275
 276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 277{
 
 278	u32 volatile *good_insns;
 
 279
 280	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 281	/* has the side-effect of processing the entire instruction */
 282	insn_get_length(insn);
 283	if (!insn_complete(insn))
 284		return -ENOEXEC;
 285
 286	if (is_prefix_bad(insn))
 287		return -ENOTSUPP;
 288
 289	/* We should not singlestep on the exception masking instructions */
 290	if (insn_masking_exception(insn))
 291		return -ENOTSUPP;
 292
 293	if (x86_64)
 294		good_insns = good_insns_64;
 295	else
 296		good_insns = good_insns_32;
 297
 298	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 299		return 0;
 300
 301	if (insn->opcode.nbytes == 2) {
 302		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 303			return 0;
 304	}
 305
 306	return -ENOTSUPP;
 307}
 308
 309#ifdef CONFIG_X86_64
 310/*
 311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 312 * immediately.  Otherwise, rewrite the instruction so that it accesses
 313 * its memory operand indirectly through a scratch register.  Set
 314 * defparam->fixups accordingly. (The contents of the scratch register
 315 * will be saved before we single-step the modified instruction,
 316 * and restored afterward).
 317 *
 318 * We do this because a rip-relative instruction can access only a
 319 * relatively small area (+/- 2 GB from the instruction), and the XOL
 320 * area typically lies beyond that area.  At least for instructions
 321 * that store to memory, we can't execute the original instruction
 322 * and "fix things up" later, because the misdirected store could be
 323 * disastrous.
 324 *
 325 * Some useful facts about rip-relative instructions:
 326 *
 327 *  - There's always a modrm byte with bit layout "00 reg 101".
 328 *  - There's never a SIB byte.
 329 *  - The displacement is always 4 bytes.
 330 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 331 *    has no effect on rip-relative mode. It doesn't make modrm byte
 332 *    with r/m=101 refer to register 1101 = R13.
 333 */
 334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 335{
 336	u8 *cursor;
 337	u8 reg;
 338	u8 reg2;
 339
 340	if (!insn_rip_relative(insn))
 341		return;
 342
 343	/*
 344	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 345	 * Clear REX.b bit (extension of MODRM.rm field):
 346	 * we want to encode low numbered reg, not r8+.
 347	 */
 348	if (insn->rex_prefix.nbytes) {
 349		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 350		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 351		*cursor &= 0xfe;
 352	}
 353	/*
 354	 * Similar treatment for VEX3/EVEX prefix.
 355	 * TODO: add XOP treatment when insn decoder supports them
 356	 */
 357	if (insn->vex_prefix.nbytes >= 3) {
 358		/*
 359		 * vex2:     c5    rvvvvLpp   (has no b bit)
 360		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 361		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 362		 * Setting VEX3.b (setting because it has inverted meaning).
 363		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 364		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 365		 * For VEX3-encoded insns, VEX3.x value has no effect in
 366		 * non-SIB encoding, the change is superfluous but harmless.
 367		 */
 368		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 369		*cursor |= 0x60;
 370	}
 371
 372	/*
 373	 * Convert from rip-relative addressing to register-relative addressing
 374	 * via a scratch register.
 375	 *
 376	 * This is tricky since there are insns with modrm byte
 377	 * which also use registers not encoded in modrm byte:
 378	 * [i]div/[i]mul: implicitly use dx:ax
 379	 * shift ops: implicitly use cx
 380	 * cmpxchg: implicitly uses ax
 381	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 382	 *   Encoding: 0f c7/1 modrm
 383	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 384	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 385	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 386	 *   Example where none of bx,cx,dx can be used as scratch reg:
 387	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 388	 * [v]pcmpistri: implicitly uses cx, xmm0
 389	 * [v]pcmpistrm: implicitly uses xmm0
 390	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 391	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 392	 *   Evil SSE4.2 string comparison ops from hell.
 393	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 394	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 395	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 396	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 397	 *   and that it can have only register operands, not mem
 398	 *   (its modrm byte must have mode=11).
 399	 *   If these restrictions will ever be lifted,
 400	 *   we'll need code to prevent selection of di as scratch reg!
 401	 *
 402	 * Summary: I don't know any insns with modrm byte which
 403	 * use SI register implicitly. DI register is used only
 404	 * by one insn (maskmovq) and BX register is used
 405	 * only by one too (cmpxchg8b).
 406	 * BP is stack-segment based (may be a problem?).
 407	 * AX, DX, CX are off-limits (many implicit users).
 408	 * SP is unusable (it's stack pointer - think about "pop mem";
 409	 * also, rsp+disp32 needs sib encoding -> insn length change).
 410	 */
 411
 412	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 413	reg2 = 0xff;		/* Fetch vex.vvvv */
 414	if (insn->vex_prefix.nbytes)
 415		reg2 = insn->vex_prefix.bytes[2];
 416	/*
 417	 * TODO: add XOP vvvv reading.
 418	 *
 419	 * vex.vvvv field is in bits 6-3, bits are inverted.
 420	 * But in 32-bit mode, high-order bit may be ignored.
 421	 * Therefore, let's consider only 3 low-order bits.
 422	 */
 423	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 424	/*
 425	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 426	 *
 427	 * Choose scratch reg. Order is important: must not select bx
 428	 * if we can use si (cmpxchg8b case!)
 429	 */
 430	if (reg != 6 && reg2 != 6) {
 431		reg2 = 6;
 432		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 433	} else if (reg != 7 && reg2 != 7) {
 434		reg2 = 7;
 435		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 436		/* TODO (paranoia): force maskmovq to not use di */
 437	} else {
 438		reg2 = 3;
 439		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 440	}
 441	/*
 442	 * Point cursor at the modrm byte.  The next 4 bytes are the
 443	 * displacement.  Beyond the displacement, for some instructions,
 444	 * is the immediate operand.
 445	 */
 446	cursor = auprobe->insn + insn_offset_modrm(insn);
 447	/*
 448	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 449	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 450	 * 89 86 disp32  mov %eax,disp32(%rsi)
 451	 */
 452	*cursor = 0x80 | (reg << 3) | reg2;
 453}
 454
 455static inline unsigned long *
 456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 457{
 458	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 459		return &regs->si;
 460	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 461		return &regs->di;
 462	return &regs->bx;
 463}
 464
 465/*
 466 * If we're emulating a rip-relative instruction, save the contents
 467 * of the scratch register and store the target address in that register.
 468 */
 469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 470{
 471	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 472		struct uprobe_task *utask = current->utask;
 473		unsigned long *sr = scratch_reg(auprobe, regs);
 474
 475		utask->autask.saved_scratch_register = *sr;
 476		*sr = utask->vaddr + auprobe->defparam.ilen;
 477	}
 478}
 479
 480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 481{
 482	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 483		struct uprobe_task *utask = current->utask;
 484		unsigned long *sr = scratch_reg(auprobe, regs);
 485
 486		*sr = utask->autask.saved_scratch_register;
 487	}
 488}
 489#else /* 32-bit: */
 490/*
 491 * No RIP-relative addressing on 32-bit
 492 */
 493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 494{
 495}
 496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 497{
 498}
 499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 500{
 501}
 502#endif /* CONFIG_X86_64 */
 503
 504struct uprobe_xol_ops {
 505	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 506	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 508	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 509};
 510
 511static inline int sizeof_long(struct pt_regs *regs)
 512{
 513	/*
 514	 * Check registers for mode as in_xxx_syscall() does not apply here.
 515	 */
 516	return user_64bit_mode(regs) ? 8 : 4;
 517}
 518
 519static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 520{
 521	riprel_pre_xol(auprobe, regs);
 522	return 0;
 523}
 524
 525static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 526{
 527	unsigned long new_sp = regs->sp - sizeof_long(regs);
 528
 529	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 530		return -EFAULT;
 531
 532	regs->sp = new_sp;
 533	return 0;
 534}
 535
 536/*
 537 * We have to fix things up as follows:
 538 *
 539 * Typically, the new ip is relative to the copied instruction.  We need
 540 * to make it relative to the original instruction (FIX_IP).  Exceptions
 541 * are return instructions and absolute or indirect jump or call instructions.
 542 *
 543 * If the single-stepped instruction was a call, the return address that
 544 * is atop the stack is the address following the copied instruction.  We
 545 * need to make it the address following the original instruction (FIX_CALL).
 546 *
 547 * If the original instruction was a rip-relative instruction such as
 548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 550 * We need to restore the contents of the scratch register
 551 * (FIX_RIP_reg).
 552 */
 553static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 554{
 555	struct uprobe_task *utask = current->utask;
 556
 557	riprel_post_xol(auprobe, regs);
 558	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 559		long correction = utask->vaddr - utask->xol_vaddr;
 560		regs->ip += correction;
 561	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 562		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 563		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 564			return -ERESTART;
 565	}
 566	/* popf; tell the caller to not touch TF */
 567	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 568		utask->autask.saved_tf = true;
 569
 570	return 0;
 571}
 572
 573static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 574{
 575	riprel_post_xol(auprobe, regs);
 576}
 577
 578static const struct uprobe_xol_ops default_xol_ops = {
 579	.pre_xol  = default_pre_xol_op,
 580	.post_xol = default_post_xol_op,
 581	.abort	  = default_abort_op,
 582};
 583
 584static bool branch_is_call(struct arch_uprobe *auprobe)
 585{
 586	return auprobe->branch.opc1 == 0xe8;
 587}
 588
 589#define CASE_COND					\
 590	COND(70, 71, XF(OF))				\
 591	COND(72, 73, XF(CF))				\
 592	COND(74, 75, XF(ZF))				\
 593	COND(78, 79, XF(SF))				\
 594	COND(7a, 7b, XF(PF))				\
 595	COND(76, 77, XF(CF) || XF(ZF))			\
 596	COND(7c, 7d, XF(SF) != XF(OF))			\
 597	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 598
 599#define COND(op_y, op_n, expr)				\
 600	case 0x ## op_y: DO((expr) != 0)		\
 601	case 0x ## op_n: DO((expr) == 0)
 602
 603#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 604
 605static bool is_cond_jmp_opcode(u8 opcode)
 606{
 607	switch (opcode) {
 608	#define DO(expr)	\
 609		return true;
 610	CASE_COND
 611	#undef	DO
 612
 613	default:
 614		return false;
 615	}
 616}
 617
 618static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 619{
 620	unsigned long flags = regs->flags;
 621
 622	switch (auprobe->branch.opc1) {
 623	#define DO(expr)	\
 624		return expr;
 625	CASE_COND
 626	#undef	DO
 627
 628	default:	/* not a conditional jmp */
 629		return true;
 630	}
 631}
 632
 633#undef	XF
 634#undef	COND
 635#undef	CASE_COND
 636
 637static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 640	unsigned long offs = (long)auprobe->branch.offs;
 641
 642	if (branch_is_call(auprobe)) {
 643		/*
 644		 * If it fails we execute this (mangled, see the comment in
 645		 * branch_clear_offset) insn out-of-line. In the likely case
 646		 * this should trigger the trap, and the probed application
 647		 * should die or restart the same insn after it handles the
 648		 * signal, arch_uprobe_post_xol() won't be even called.
 649		 *
 650		 * But there is corner case, see the comment in ->post_xol().
 651		 */
 652		if (emulate_push_stack(regs, new_ip))
 653			return false;
 654	} else if (!check_jmp_cond(auprobe, regs)) {
 655		offs = 0;
 656	}
 657
 658	regs->ip = new_ip + offs;
 659	return true;
 660}
 661
 662static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 663{
 664	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 665
 666	if (emulate_push_stack(regs, *src_ptr))
 667		return false;
 668	regs->ip += auprobe->push.ilen;
 669	return true;
 670}
 671
 672static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 673{
 674	BUG_ON(!branch_is_call(auprobe));
 675	/*
 676	 * We can only get here if branch_emulate_op() failed to push the ret
 677	 * address _and_ another thread expanded our stack before the (mangled)
 678	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 679	 * We could also restore ->ip and try to call branch_emulate_op() again.
 680	 */
 681	regs->sp += sizeof_long(regs);
 682	return -ERESTART;
 683}
 684
 685static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 686{
 687	/*
 688	 * Turn this insn into "call 1f; 1:", this is what we will execute
 689	 * out-of-line if ->emulate() fails. We only need this to generate
 690	 * a trap, so that the probed task receives the correct signal with
 691	 * the properly filled siginfo.
 692	 *
 693	 * But see the comment in ->post_xol(), in the unlikely case it can
 694	 * succeed. So we need to ensure that the new ->ip can not fall into
 695	 * the non-canonical area and trigger #GP.
 696	 *
 697	 * We could turn it into (say) "pushf", but then we would need to
 698	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 699	 * of ->insn[] for set_orig_insn().
 700	 */
 701	memset(auprobe->insn + insn_offset_immediate(insn),
 702		0, insn->immediate.nbytes);
 703}
 704
 705static const struct uprobe_xol_ops branch_xol_ops = {
 706	.emulate  = branch_emulate_op,
 707	.post_xol = branch_post_xol_op,
 708};
 709
 710static const struct uprobe_xol_ops push_xol_ops = {
 711	.emulate  = push_emulate_op,
 712};
 713
 714/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 715static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 716{
 717	u8 opc1 = OPCODE1(insn);
 
 718	int i;
 719
 720	switch (opc1) {
 721	case 0xeb:	/* jmp 8 */
 722	case 0xe9:	/* jmp 32 */
 723	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 724		break;
 725
 726	case 0xe8:	/* call relative */
 727		branch_clear_offset(auprobe, insn);
 728		break;
 729
 730	case 0x0f:
 731		if (insn->opcode.nbytes != 2)
 732			return -ENOSYS;
 733		/*
 734		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 735		 * OPCODE1() of the "short" jmp which checks the same condition.
 736		 */
 737		opc1 = OPCODE2(insn) - 0x10;
 738		/* fall through */
 739	default:
 740		if (!is_cond_jmp_opcode(opc1))
 741			return -ENOSYS;
 742	}
 743
 744	/*
 745	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 746	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 747	 * No one uses these insns, reject any branch insns with such prefix.
 748	 */
 749	for (i = 0; i < insn->prefixes.nbytes; i++) {
 750		if (insn->prefixes.bytes[i] == 0x66)
 751			return -ENOTSUPP;
 752	}
 753
 754	auprobe->branch.opc1 = opc1;
 755	auprobe->branch.ilen = insn->length;
 756	auprobe->branch.offs = insn->immediate.value;
 757
 758	auprobe->ops = &branch_xol_ops;
 759	return 0;
 760}
 761
 762/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 763static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 764{
 765	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 766
 767	if (opc1 < 0x50 || opc1 > 0x57)
 768		return -ENOSYS;
 769
 770	if (insn->length > 2)
 771		return -ENOSYS;
 772	if (insn->length == 2) {
 773		/* only support rex_prefix 0x41 (x64 only) */
 774#ifdef CONFIG_X86_64
 775		if (insn->rex_prefix.nbytes != 1 ||
 776		    insn->rex_prefix.bytes[0] != 0x41)
 777			return -ENOSYS;
 778
 779		switch (opc1) {
 780		case 0x50:
 781			reg_offset = offsetof(struct pt_regs, r8);
 782			break;
 783		case 0x51:
 784			reg_offset = offsetof(struct pt_regs, r9);
 785			break;
 786		case 0x52:
 787			reg_offset = offsetof(struct pt_regs, r10);
 788			break;
 789		case 0x53:
 790			reg_offset = offsetof(struct pt_regs, r11);
 791			break;
 792		case 0x54:
 793			reg_offset = offsetof(struct pt_regs, r12);
 794			break;
 795		case 0x55:
 796			reg_offset = offsetof(struct pt_regs, r13);
 797			break;
 798		case 0x56:
 799			reg_offset = offsetof(struct pt_regs, r14);
 800			break;
 801		case 0x57:
 802			reg_offset = offsetof(struct pt_regs, r15);
 803			break;
 804		}
 805#else
 806		return -ENOSYS;
 807#endif
 808	} else {
 809		switch (opc1) {
 810		case 0x50:
 811			reg_offset = offsetof(struct pt_regs, ax);
 812			break;
 813		case 0x51:
 814			reg_offset = offsetof(struct pt_regs, cx);
 815			break;
 816		case 0x52:
 817			reg_offset = offsetof(struct pt_regs, dx);
 818			break;
 819		case 0x53:
 820			reg_offset = offsetof(struct pt_regs, bx);
 821			break;
 822		case 0x54:
 823			reg_offset = offsetof(struct pt_regs, sp);
 824			break;
 825		case 0x55:
 826			reg_offset = offsetof(struct pt_regs, bp);
 827			break;
 828		case 0x56:
 829			reg_offset = offsetof(struct pt_regs, si);
 830			break;
 831		case 0x57:
 832			reg_offset = offsetof(struct pt_regs, di);
 833			break;
 834		}
 835	}
 836
 837	auprobe->push.reg_offset = reg_offset;
 838	auprobe->push.ilen = insn->length;
 839	auprobe->ops = &push_xol_ops;
 840	return 0;
 841}
 842
 843/**
 844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 
 845 * @mm: the probed address space.
 846 * @arch_uprobe: the probepoint information.
 847 * @addr: virtual address at which to install the probepoint
 848 * Return 0 on success or a -ve number on error.
 849 */
 850int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 851{
 852	struct insn insn;
 853	u8 fix_ip_or_call = UPROBE_FIX_IP;
 854	int ret;
 855
 856	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 857	if (ret)
 858		return ret;
 859
 860	ret = branch_setup_xol_ops(auprobe, &insn);
 861	if (ret != -ENOSYS)
 862		return ret;
 863
 864	ret = push_setup_xol_ops(auprobe, &insn);
 865	if (ret != -ENOSYS)
 866		return ret;
 867
 868	/*
 869	 * Figure out which fixups default_post_xol_op() will need to perform,
 870	 * and annotate defparam->fixups accordingly.
 871	 */
 872	switch (OPCODE1(&insn)) {
 873	case 0x9d:		/* popf */
 874		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 875		break;
 876	case 0xc3:		/* ret or lret -- ip is correct */
 877	case 0xcb:
 878	case 0xc2:
 879	case 0xca:
 880	case 0xea:		/* jmp absolute -- ip is correct */
 881		fix_ip_or_call = 0;
 882		break;
 883	case 0x9a:		/* call absolute - Fix return addr, not ip */
 884		fix_ip_or_call = UPROBE_FIX_CALL;
 885		break;
 886	case 0xff:
 887		switch (MODRM_REG(&insn)) {
 888		case 2: case 3:			/* call or lcall, indirect */
 889			fix_ip_or_call = UPROBE_FIX_CALL;
 890			break;
 891		case 4: case 5:			/* jmp or ljmp, indirect */
 892			fix_ip_or_call = 0;
 893			break;
 894		}
 895		/* fall through */
 896	default:
 897		riprel_analyze(auprobe, &insn);
 898	}
 899
 900	auprobe->defparam.ilen = insn.length;
 901	auprobe->defparam.fixups |= fix_ip_or_call;
 902
 903	auprobe->ops = &default_xol_ops;
 904	return 0;
 905}
 906
 907/*
 908 * arch_uprobe_pre_xol - prepare to execute out of line.
 909 * @auprobe: the probepoint information.
 910 * @regs: reflects the saved user state of current task.
 911 */
 912int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 913{
 914	struct uprobe_task *utask = current->utask;
 915
 916	if (auprobe->ops->pre_xol) {
 917		int err = auprobe->ops->pre_xol(auprobe, regs);
 918		if (err)
 919			return err;
 920	}
 921
 922	regs->ip = utask->xol_vaddr;
 923	utask->autask.saved_trap_nr = current->thread.trap_nr;
 924	current->thread.trap_nr = UPROBE_TRAP_NR;
 925
 926	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 927	regs->flags |= X86_EFLAGS_TF;
 928	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 929		set_task_blockstep(current, false);
 930
 931	return 0;
 932}
 933
 934/*
 935 * If xol insn itself traps and generates a signal(Say,
 936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 937 * instruction jumps back to its own address. It is assumed that anything
 938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 939 *
 940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 943 */
 944bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 945{
 946	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 947		return true;
 948
 949	return false;
 950}
 951
 952/*
 953 * Called after single-stepping. To avoid the SMP problems that can
 954 * occur when we temporarily put back the original opcode to
 955 * single-step, we single-stepped a copy of the instruction.
 956 *
 957 * This function prepares to resume execution after the single-step.
 958 */
 959int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 960{
 961	struct uprobe_task *utask = current->utask;
 962	bool send_sigtrap = utask->autask.saved_tf;
 963	int err = 0;
 964
 965	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 966	current->thread.trap_nr = utask->autask.saved_trap_nr;
 967
 968	if (auprobe->ops->post_xol) {
 969		err = auprobe->ops->post_xol(auprobe, regs);
 970		if (err) {
 971			/*
 972			 * Restore ->ip for restart or post mortem analysis.
 973			 * ->post_xol() must not return -ERESTART unless this
 974			 * is really possible.
 975			 */
 976			regs->ip = utask->vaddr;
 977			if (err == -ERESTART)
 978				err = 0;
 979			send_sigtrap = false;
 980		}
 981	}
 982	/*
 983	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 984	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 985	 * to examine the opcode to make it right.
 986	 */
 987	if (send_sigtrap)
 988		send_sig(SIGTRAP, current, 0);
 989
 990	if (!utask->autask.saved_tf)
 991		regs->flags &= ~X86_EFLAGS_TF;
 992
 993	return err;
 994}
 995
 996/* callback routine for handling exceptions. */
 997int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 998{
 999	struct die_args *args = data;
1000	struct pt_regs *regs = args->regs;
1001	int ret = NOTIFY_DONE;
1002
1003	/* We are only interested in userspace traps */
1004	if (regs && !user_mode(regs))
1005		return NOTIFY_DONE;
1006
1007	switch (val) {
1008	case DIE_INT3:
1009		if (uprobe_pre_sstep_notifier(regs))
1010			ret = NOTIFY_STOP;
1011
1012		break;
1013
1014	case DIE_DEBUG:
1015		if (uprobe_post_sstep_notifier(regs))
1016			ret = NOTIFY_STOP;
 
 
1017
1018	default:
1019		break;
1020	}
1021
1022	return ret;
1023}
1024
1025/*
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1029 */
1030void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031{
1032	struct uprobe_task *utask = current->utask;
1033
1034	if (auprobe->ops->abort)
1035		auprobe->ops->abort(auprobe, regs);
1036
1037	current->thread.trap_nr = utask->autask.saved_trap_nr;
1038	regs->ip = utask->vaddr;
1039	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040	if (!utask->autask.saved_tf)
1041		regs->flags &= ~X86_EFLAGS_TF;
1042}
1043
1044static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045{
1046	if (auprobe->ops->emulate)
1047		return auprobe->ops->emulate(auprobe, regs);
1048	return false;
1049}
1050
1051bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052{
1053	bool ret = __skip_sstep(auprobe, regs);
1054	if (ret && (regs->flags & X86_EFLAGS_TF))
1055		send_sig(SIGTRAP, current, 0);
1056	return ret;
1057}
1058
1059unsigned long
1060arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061{
1062	int rasize = sizeof_long(regs), nleft;
1063	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064
1065	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066		return -1;
1067
1068	/* check whether address has been already hijacked */
1069	if (orig_ret_vaddr == trampoline_vaddr)
1070		return orig_ret_vaddr;
1071
1072	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073	if (likely(!nleft))
1074		return orig_ret_vaddr;
1075
1076	if (nleft != rasize) {
1077		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078		       current->pid, regs->sp, regs->ip);
1079
1080		force_sig(SIGSEGV);
1081	}
1082
1083	return -1;
1084}
1085
1086bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087				struct pt_regs *regs)
1088{
1089	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090		return regs->sp < ret->stack;
1091	else
1092		return regs->sp <= ret->stack;
1093}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258	insn_byte_t p;
 259	int i;
 260
 261	for_each_insn_prefix(insn, i, p) {
 262		insn_attr_t attr;
 263
 264		attr = inat_get_opcode_attribute(p);
 265		switch (attr) {
 266		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 267		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 271			return true;
 272		}
 273	}
 274	return false;
 275}
 276
 277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 278{
 279	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 280	u32 volatile *good_insns;
 281	int ret;
 282
 283	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 284	if (ret < 0)
 
 
 285		return -ENOEXEC;
 286
 287	if (is_prefix_bad(insn))
 288		return -ENOTSUPP;
 289
 290	/* We should not singlestep on the exception masking instructions */
 291	if (insn_masking_exception(insn))
 292		return -ENOTSUPP;
 293
 294	if (x86_64)
 295		good_insns = good_insns_64;
 296	else
 297		good_insns = good_insns_32;
 298
 299	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 300		return 0;
 301
 302	if (insn->opcode.nbytes == 2) {
 303		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 304			return 0;
 305	}
 306
 307	return -ENOTSUPP;
 308}
 309
 310#ifdef CONFIG_X86_64
 311/*
 312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 313 * immediately.  Otherwise, rewrite the instruction so that it accesses
 314 * its memory operand indirectly through a scratch register.  Set
 315 * defparam->fixups accordingly. (The contents of the scratch register
 316 * will be saved before we single-step the modified instruction,
 317 * and restored afterward).
 318 *
 319 * We do this because a rip-relative instruction can access only a
 320 * relatively small area (+/- 2 GB from the instruction), and the XOL
 321 * area typically lies beyond that area.  At least for instructions
 322 * that store to memory, we can't execute the original instruction
 323 * and "fix things up" later, because the misdirected store could be
 324 * disastrous.
 325 *
 326 * Some useful facts about rip-relative instructions:
 327 *
 328 *  - There's always a modrm byte with bit layout "00 reg 101".
 329 *  - There's never a SIB byte.
 330 *  - The displacement is always 4 bytes.
 331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 332 *    has no effect on rip-relative mode. It doesn't make modrm byte
 333 *    with r/m=101 refer to register 1101 = R13.
 334 */
 335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 336{
 337	u8 *cursor;
 338	u8 reg;
 339	u8 reg2;
 340
 341	if (!insn_rip_relative(insn))
 342		return;
 343
 344	/*
 345	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 346	 * Clear REX.b bit (extension of MODRM.rm field):
 347	 * we want to encode low numbered reg, not r8+.
 348	 */
 349	if (insn->rex_prefix.nbytes) {
 350		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 351		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 352		*cursor &= 0xfe;
 353	}
 354	/*
 355	 * Similar treatment for VEX3/EVEX prefix.
 356	 * TODO: add XOP treatment when insn decoder supports them
 357	 */
 358	if (insn->vex_prefix.nbytes >= 3) {
 359		/*
 360		 * vex2:     c5    rvvvvLpp   (has no b bit)
 361		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 362		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 363		 * Setting VEX3.b (setting because it has inverted meaning).
 364		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 365		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 366		 * For VEX3-encoded insns, VEX3.x value has no effect in
 367		 * non-SIB encoding, the change is superfluous but harmless.
 368		 */
 369		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 370		*cursor |= 0x60;
 371	}
 372
 373	/*
 374	 * Convert from rip-relative addressing to register-relative addressing
 375	 * via a scratch register.
 376	 *
 377	 * This is tricky since there are insns with modrm byte
 378	 * which also use registers not encoded in modrm byte:
 379	 * [i]div/[i]mul: implicitly use dx:ax
 380	 * shift ops: implicitly use cx
 381	 * cmpxchg: implicitly uses ax
 382	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 383	 *   Encoding: 0f c7/1 modrm
 384	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 385	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 386	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 387	 *   Example where none of bx,cx,dx can be used as scratch reg:
 388	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 389	 * [v]pcmpistri: implicitly uses cx, xmm0
 390	 * [v]pcmpistrm: implicitly uses xmm0
 391	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 392	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 393	 *   Evil SSE4.2 string comparison ops from hell.
 394	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 395	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 396	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 397	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 398	 *   and that it can have only register operands, not mem
 399	 *   (its modrm byte must have mode=11).
 400	 *   If these restrictions will ever be lifted,
 401	 *   we'll need code to prevent selection of di as scratch reg!
 402	 *
 403	 * Summary: I don't know any insns with modrm byte which
 404	 * use SI register implicitly. DI register is used only
 405	 * by one insn (maskmovq) and BX register is used
 406	 * only by one too (cmpxchg8b).
 407	 * BP is stack-segment based (may be a problem?).
 408	 * AX, DX, CX are off-limits (many implicit users).
 409	 * SP is unusable (it's stack pointer - think about "pop mem";
 410	 * also, rsp+disp32 needs sib encoding -> insn length change).
 411	 */
 412
 413	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 414	reg2 = 0xff;		/* Fetch vex.vvvv */
 415	if (insn->vex_prefix.nbytes)
 416		reg2 = insn->vex_prefix.bytes[2];
 417	/*
 418	 * TODO: add XOP vvvv reading.
 419	 *
 420	 * vex.vvvv field is in bits 6-3, bits are inverted.
 421	 * But in 32-bit mode, high-order bit may be ignored.
 422	 * Therefore, let's consider only 3 low-order bits.
 423	 */
 424	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 425	/*
 426	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 427	 *
 428	 * Choose scratch reg. Order is important: must not select bx
 429	 * if we can use si (cmpxchg8b case!)
 430	 */
 431	if (reg != 6 && reg2 != 6) {
 432		reg2 = 6;
 433		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 434	} else if (reg != 7 && reg2 != 7) {
 435		reg2 = 7;
 436		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 437		/* TODO (paranoia): force maskmovq to not use di */
 438	} else {
 439		reg2 = 3;
 440		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 441	}
 442	/*
 443	 * Point cursor at the modrm byte.  The next 4 bytes are the
 444	 * displacement.  Beyond the displacement, for some instructions,
 445	 * is the immediate operand.
 446	 */
 447	cursor = auprobe->insn + insn_offset_modrm(insn);
 448	/*
 449	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 450	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 451	 * 89 86 disp32  mov %eax,disp32(%rsi)
 452	 */
 453	*cursor = 0x80 | (reg << 3) | reg2;
 454}
 455
 456static inline unsigned long *
 457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 458{
 459	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 460		return &regs->si;
 461	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 462		return &regs->di;
 463	return &regs->bx;
 464}
 465
 466/*
 467 * If we're emulating a rip-relative instruction, save the contents
 468 * of the scratch register and store the target address in that register.
 469 */
 470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 471{
 472	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 473		struct uprobe_task *utask = current->utask;
 474		unsigned long *sr = scratch_reg(auprobe, regs);
 475
 476		utask->autask.saved_scratch_register = *sr;
 477		*sr = utask->vaddr + auprobe->defparam.ilen;
 478	}
 479}
 480
 481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 482{
 483	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 484		struct uprobe_task *utask = current->utask;
 485		unsigned long *sr = scratch_reg(auprobe, regs);
 486
 487		*sr = utask->autask.saved_scratch_register;
 488	}
 489}
 490#else /* 32-bit: */
 491/*
 492 * No RIP-relative addressing on 32-bit
 493 */
 494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 495{
 496}
 497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 498{
 499}
 500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 501{
 502}
 503#endif /* CONFIG_X86_64 */
 504
 505struct uprobe_xol_ops {
 506	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 508	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 509	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 510};
 511
 512static inline int sizeof_long(struct pt_regs *regs)
 513{
 514	/*
 515	 * Check registers for mode as in_xxx_syscall() does not apply here.
 516	 */
 517	return user_64bit_mode(regs) ? 8 : 4;
 518}
 519
 520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 521{
 522	riprel_pre_xol(auprobe, regs);
 523	return 0;
 524}
 525
 526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 527{
 528	unsigned long new_sp = regs->sp - sizeof_long(regs);
 529
 530	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 531		return -EFAULT;
 532
 533	regs->sp = new_sp;
 534	return 0;
 535}
 536
 537/*
 538 * We have to fix things up as follows:
 539 *
 540 * Typically, the new ip is relative to the copied instruction.  We need
 541 * to make it relative to the original instruction (FIX_IP).  Exceptions
 542 * are return instructions and absolute or indirect jump or call instructions.
 543 *
 544 * If the single-stepped instruction was a call, the return address that
 545 * is atop the stack is the address following the copied instruction.  We
 546 * need to make it the address following the original instruction (FIX_CALL).
 547 *
 548 * If the original instruction was a rip-relative instruction such as
 549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 551 * We need to restore the contents of the scratch register
 552 * (FIX_RIP_reg).
 553 */
 554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 555{
 556	struct uprobe_task *utask = current->utask;
 557
 558	riprel_post_xol(auprobe, regs);
 559	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 560		long correction = utask->vaddr - utask->xol_vaddr;
 561		regs->ip += correction;
 562	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 563		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 564		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 565			return -ERESTART;
 566	}
 567	/* popf; tell the caller to not touch TF */
 568	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 569		utask->autask.saved_tf = true;
 570
 571	return 0;
 572}
 573
 574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576	riprel_post_xol(auprobe, regs);
 577}
 578
 579static const struct uprobe_xol_ops default_xol_ops = {
 580	.pre_xol  = default_pre_xol_op,
 581	.post_xol = default_post_xol_op,
 582	.abort	  = default_abort_op,
 583};
 584
 585static bool branch_is_call(struct arch_uprobe *auprobe)
 586{
 587	return auprobe->branch.opc1 == 0xe8;
 588}
 589
 590#define CASE_COND					\
 591	COND(70, 71, XF(OF))				\
 592	COND(72, 73, XF(CF))				\
 593	COND(74, 75, XF(ZF))				\
 594	COND(78, 79, XF(SF))				\
 595	COND(7a, 7b, XF(PF))				\
 596	COND(76, 77, XF(CF) || XF(ZF))			\
 597	COND(7c, 7d, XF(SF) != XF(OF))			\
 598	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 599
 600#define COND(op_y, op_n, expr)				\
 601	case 0x ## op_y: DO((expr) != 0)		\
 602	case 0x ## op_n: DO((expr) == 0)
 603
 604#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 605
 606static bool is_cond_jmp_opcode(u8 opcode)
 607{
 608	switch (opcode) {
 609	#define DO(expr)	\
 610		return true;
 611	CASE_COND
 612	#undef	DO
 613
 614	default:
 615		return false;
 616	}
 617}
 618
 619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 620{
 621	unsigned long flags = regs->flags;
 622
 623	switch (auprobe->branch.opc1) {
 624	#define DO(expr)	\
 625		return expr;
 626	CASE_COND
 627	#undef	DO
 628
 629	default:	/* not a conditional jmp */
 630		return true;
 631	}
 632}
 633
 634#undef	XF
 635#undef	COND
 636#undef	CASE_COND
 637
 638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 639{
 640	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 641	unsigned long offs = (long)auprobe->branch.offs;
 642
 643	if (branch_is_call(auprobe)) {
 644		/*
 645		 * If it fails we execute this (mangled, see the comment in
 646		 * branch_clear_offset) insn out-of-line. In the likely case
 647		 * this should trigger the trap, and the probed application
 648		 * should die or restart the same insn after it handles the
 649		 * signal, arch_uprobe_post_xol() won't be even called.
 650		 *
 651		 * But there is corner case, see the comment in ->post_xol().
 652		 */
 653		if (emulate_push_stack(regs, new_ip))
 654			return false;
 655	} else if (!check_jmp_cond(auprobe, regs)) {
 656		offs = 0;
 657	}
 658
 659	regs->ip = new_ip + offs;
 660	return true;
 661}
 662
 663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 664{
 665	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 666
 667	if (emulate_push_stack(regs, *src_ptr))
 668		return false;
 669	regs->ip += auprobe->push.ilen;
 670	return true;
 671}
 672
 673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 674{
 675	BUG_ON(!branch_is_call(auprobe));
 676	/*
 677	 * We can only get here if branch_emulate_op() failed to push the ret
 678	 * address _and_ another thread expanded our stack before the (mangled)
 679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 680	 * We could also restore ->ip and try to call branch_emulate_op() again.
 681	 */
 682	regs->sp += sizeof_long(regs);
 683	return -ERESTART;
 684}
 685
 686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 687{
 688	/*
 689	 * Turn this insn into "call 1f; 1:", this is what we will execute
 690	 * out-of-line if ->emulate() fails. We only need this to generate
 691	 * a trap, so that the probed task receives the correct signal with
 692	 * the properly filled siginfo.
 693	 *
 694	 * But see the comment in ->post_xol(), in the unlikely case it can
 695	 * succeed. So we need to ensure that the new ->ip can not fall into
 696	 * the non-canonical area and trigger #GP.
 697	 *
 698	 * We could turn it into (say) "pushf", but then we would need to
 699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 700	 * of ->insn[] for set_orig_insn().
 701	 */
 702	memset(auprobe->insn + insn_offset_immediate(insn),
 703		0, insn->immediate.nbytes);
 704}
 705
 706static const struct uprobe_xol_ops branch_xol_ops = {
 707	.emulate  = branch_emulate_op,
 708	.post_xol = branch_post_xol_op,
 709};
 710
 711static const struct uprobe_xol_ops push_xol_ops = {
 712	.emulate  = push_emulate_op,
 713};
 714
 715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 717{
 718	u8 opc1 = OPCODE1(insn);
 719	insn_byte_t p;
 720	int i;
 721
 722	switch (opc1) {
 723	case 0xeb:	/* jmp 8 */
 724	case 0xe9:	/* jmp 32 */
 725	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 726		break;
 727
 728	case 0xe8:	/* call relative */
 729		branch_clear_offset(auprobe, insn);
 730		break;
 731
 732	case 0x0f:
 733		if (insn->opcode.nbytes != 2)
 734			return -ENOSYS;
 735		/*
 736		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 737		 * OPCODE1() of the "short" jmp which checks the same condition.
 738		 */
 739		opc1 = OPCODE2(insn) - 0x10;
 740		fallthrough;
 741	default:
 742		if (!is_cond_jmp_opcode(opc1))
 743			return -ENOSYS;
 744	}
 745
 746	/*
 747	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 748	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 749	 * No one uses these insns, reject any branch insns with such prefix.
 750	 */
 751	for_each_insn_prefix(insn, i, p) {
 752		if (p == 0x66)
 753			return -ENOTSUPP;
 754	}
 755
 756	auprobe->branch.opc1 = opc1;
 757	auprobe->branch.ilen = insn->length;
 758	auprobe->branch.offs = insn->immediate.value;
 759
 760	auprobe->ops = &branch_xol_ops;
 761	return 0;
 762}
 763
 764/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 765static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 766{
 767	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 768
 769	if (opc1 < 0x50 || opc1 > 0x57)
 770		return -ENOSYS;
 771
 772	if (insn->length > 2)
 773		return -ENOSYS;
 774	if (insn->length == 2) {
 775		/* only support rex_prefix 0x41 (x64 only) */
 776#ifdef CONFIG_X86_64
 777		if (insn->rex_prefix.nbytes != 1 ||
 778		    insn->rex_prefix.bytes[0] != 0x41)
 779			return -ENOSYS;
 780
 781		switch (opc1) {
 782		case 0x50:
 783			reg_offset = offsetof(struct pt_regs, r8);
 784			break;
 785		case 0x51:
 786			reg_offset = offsetof(struct pt_regs, r9);
 787			break;
 788		case 0x52:
 789			reg_offset = offsetof(struct pt_regs, r10);
 790			break;
 791		case 0x53:
 792			reg_offset = offsetof(struct pt_regs, r11);
 793			break;
 794		case 0x54:
 795			reg_offset = offsetof(struct pt_regs, r12);
 796			break;
 797		case 0x55:
 798			reg_offset = offsetof(struct pt_regs, r13);
 799			break;
 800		case 0x56:
 801			reg_offset = offsetof(struct pt_regs, r14);
 802			break;
 803		case 0x57:
 804			reg_offset = offsetof(struct pt_regs, r15);
 805			break;
 806		}
 807#else
 808		return -ENOSYS;
 809#endif
 810	} else {
 811		switch (opc1) {
 812		case 0x50:
 813			reg_offset = offsetof(struct pt_regs, ax);
 814			break;
 815		case 0x51:
 816			reg_offset = offsetof(struct pt_regs, cx);
 817			break;
 818		case 0x52:
 819			reg_offset = offsetof(struct pt_regs, dx);
 820			break;
 821		case 0x53:
 822			reg_offset = offsetof(struct pt_regs, bx);
 823			break;
 824		case 0x54:
 825			reg_offset = offsetof(struct pt_regs, sp);
 826			break;
 827		case 0x55:
 828			reg_offset = offsetof(struct pt_regs, bp);
 829			break;
 830		case 0x56:
 831			reg_offset = offsetof(struct pt_regs, si);
 832			break;
 833		case 0x57:
 834			reg_offset = offsetof(struct pt_regs, di);
 835			break;
 836		}
 837	}
 838
 839	auprobe->push.reg_offset = reg_offset;
 840	auprobe->push.ilen = insn->length;
 841	auprobe->ops = &push_xol_ops;
 842	return 0;
 843}
 844
 845/**
 846 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 847 * @auprobe: the probepoint information.
 848 * @mm: the probed address space.
 
 849 * @addr: virtual address at which to install the probepoint
 850 * Return 0 on success or a -ve number on error.
 851 */
 852int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 853{
 854	struct insn insn;
 855	u8 fix_ip_or_call = UPROBE_FIX_IP;
 856	int ret;
 857
 858	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 859	if (ret)
 860		return ret;
 861
 862	ret = branch_setup_xol_ops(auprobe, &insn);
 863	if (ret != -ENOSYS)
 864		return ret;
 865
 866	ret = push_setup_xol_ops(auprobe, &insn);
 867	if (ret != -ENOSYS)
 868		return ret;
 869
 870	/*
 871	 * Figure out which fixups default_post_xol_op() will need to perform,
 872	 * and annotate defparam->fixups accordingly.
 873	 */
 874	switch (OPCODE1(&insn)) {
 875	case 0x9d:		/* popf */
 876		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 877		break;
 878	case 0xc3:		/* ret or lret -- ip is correct */
 879	case 0xcb:
 880	case 0xc2:
 881	case 0xca:
 882	case 0xea:		/* jmp absolute -- ip is correct */
 883		fix_ip_or_call = 0;
 884		break;
 885	case 0x9a:		/* call absolute - Fix return addr, not ip */
 886		fix_ip_or_call = UPROBE_FIX_CALL;
 887		break;
 888	case 0xff:
 889		switch (MODRM_REG(&insn)) {
 890		case 2: case 3:			/* call or lcall, indirect */
 891			fix_ip_or_call = UPROBE_FIX_CALL;
 892			break;
 893		case 4: case 5:			/* jmp or ljmp, indirect */
 894			fix_ip_or_call = 0;
 895			break;
 896		}
 897		fallthrough;
 898	default:
 899		riprel_analyze(auprobe, &insn);
 900	}
 901
 902	auprobe->defparam.ilen = insn.length;
 903	auprobe->defparam.fixups |= fix_ip_or_call;
 904
 905	auprobe->ops = &default_xol_ops;
 906	return 0;
 907}
 908
 909/*
 910 * arch_uprobe_pre_xol - prepare to execute out of line.
 911 * @auprobe: the probepoint information.
 912 * @regs: reflects the saved user state of current task.
 913 */
 914int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 915{
 916	struct uprobe_task *utask = current->utask;
 917
 918	if (auprobe->ops->pre_xol) {
 919		int err = auprobe->ops->pre_xol(auprobe, regs);
 920		if (err)
 921			return err;
 922	}
 923
 924	regs->ip = utask->xol_vaddr;
 925	utask->autask.saved_trap_nr = current->thread.trap_nr;
 926	current->thread.trap_nr = UPROBE_TRAP_NR;
 927
 928	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 929	regs->flags |= X86_EFLAGS_TF;
 930	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 931		set_task_blockstep(current, false);
 932
 933	return 0;
 934}
 935
 936/*
 937 * If xol insn itself traps and generates a signal(Say,
 938 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 939 * instruction jumps back to its own address. It is assumed that anything
 940 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 941 *
 942 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 943 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 944 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 945 */
 946bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 947{
 948	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 949		return true;
 950
 951	return false;
 952}
 953
 954/*
 955 * Called after single-stepping. To avoid the SMP problems that can
 956 * occur when we temporarily put back the original opcode to
 957 * single-step, we single-stepped a copy of the instruction.
 958 *
 959 * This function prepares to resume execution after the single-step.
 960 */
 961int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 962{
 963	struct uprobe_task *utask = current->utask;
 964	bool send_sigtrap = utask->autask.saved_tf;
 965	int err = 0;
 966
 967	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 968	current->thread.trap_nr = utask->autask.saved_trap_nr;
 969
 970	if (auprobe->ops->post_xol) {
 971		err = auprobe->ops->post_xol(auprobe, regs);
 972		if (err) {
 973			/*
 974			 * Restore ->ip for restart or post mortem analysis.
 975			 * ->post_xol() must not return -ERESTART unless this
 976			 * is really possible.
 977			 */
 978			regs->ip = utask->vaddr;
 979			if (err == -ERESTART)
 980				err = 0;
 981			send_sigtrap = false;
 982		}
 983	}
 984	/*
 985	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 986	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 987	 * to examine the opcode to make it right.
 988	 */
 989	if (send_sigtrap)
 990		send_sig(SIGTRAP, current, 0);
 991
 992	if (!utask->autask.saved_tf)
 993		regs->flags &= ~X86_EFLAGS_TF;
 994
 995	return err;
 996}
 997
 998/* callback routine for handling exceptions. */
 999int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1000{
1001	struct die_args *args = data;
1002	struct pt_regs *regs = args->regs;
1003	int ret = NOTIFY_DONE;
1004
1005	/* We are only interested in userspace traps */
1006	if (regs && !user_mode(regs))
1007		return NOTIFY_DONE;
1008
1009	switch (val) {
1010	case DIE_INT3:
1011		if (uprobe_pre_sstep_notifier(regs))
1012			ret = NOTIFY_STOP;
1013
1014		break;
1015
1016	case DIE_DEBUG:
1017		if (uprobe_post_sstep_notifier(regs))
1018			ret = NOTIFY_STOP;
1019
1020		break;
1021
1022	default:
1023		break;
1024	}
1025
1026	return ret;
1027}
1028
1029/*
1030 * This function gets called when XOL instruction either gets trapped or
1031 * the thread has a fatal signal. Reset the instruction pointer to its
1032 * probed address for the potential restart or for post mortem analysis.
1033 */
1034void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1035{
1036	struct uprobe_task *utask = current->utask;
1037
1038	if (auprobe->ops->abort)
1039		auprobe->ops->abort(auprobe, regs);
1040
1041	current->thread.trap_nr = utask->autask.saved_trap_nr;
1042	regs->ip = utask->vaddr;
1043	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1044	if (!utask->autask.saved_tf)
1045		regs->flags &= ~X86_EFLAGS_TF;
1046}
1047
1048static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1049{
1050	if (auprobe->ops->emulate)
1051		return auprobe->ops->emulate(auprobe, regs);
1052	return false;
1053}
1054
1055bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1056{
1057	bool ret = __skip_sstep(auprobe, regs);
1058	if (ret && (regs->flags & X86_EFLAGS_TF))
1059		send_sig(SIGTRAP, current, 0);
1060	return ret;
1061}
1062
1063unsigned long
1064arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1065{
1066	int rasize = sizeof_long(regs), nleft;
1067	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1068
1069	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1070		return -1;
1071
1072	/* check whether address has been already hijacked */
1073	if (orig_ret_vaddr == trampoline_vaddr)
1074		return orig_ret_vaddr;
1075
1076	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1077	if (likely(!nleft))
1078		return orig_ret_vaddr;
1079
1080	if (nleft != rasize) {
1081		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1082		       current->pid, regs->sp, regs->ip);
1083
1084		force_sig(SIGSEGV);
1085	}
1086
1087	return -1;
1088}
1089
1090bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1091				struct pt_regs *regs)
1092{
1093	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1094		return regs->sp < ret->stack;
1095	else
1096		return regs->sp <= ret->stack;
1097}