Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * User-space Probes (UProbes) for x86
4 *
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 */
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/ptrace.h>
13#include <linux/uprobes.h>
14#include <linux/uaccess.h>
15
16#include <linux/kdebug.h>
17#include <asm/processor.h>
18#include <asm/insn.h>
19#include <asm/mmu_context.h>
20
21/* Post-execution fixups. */
22
23/* Adjust IP back to vicinity of actual insn */
24#define UPROBE_FIX_IP 0x01
25
26/* Adjust the return address of a call insn */
27#define UPROBE_FIX_CALL 0x02
28
29/* Instruction will modify TF, don't change it */
30#define UPROBE_FIX_SETF 0x04
31
32#define UPROBE_FIX_RIP_SI 0x08
33#define UPROBE_FIX_RIP_DI 0x10
34#define UPROBE_FIX_RIP_BX 0x20
35#define UPROBE_FIX_RIP_MASK \
36 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37
38#define UPROBE_TRAP_NR UINT_MAX
39
40/* Adaptations for mhiramat x86 decoder v14. */
41#define OPCODE1(insn) ((insn)->opcode.bytes[0])
42#define OPCODE2(insn) ((insn)->opcode.bytes[1])
43#define OPCODE3(insn) ((insn)->opcode.bytes[2])
44#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
45
46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
48 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
49 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
50 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
51 << (row % 32))
52
53/*
54 * Good-instruction tables for 32-bit apps. This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
57 *
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 * (why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
69 *
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 * Normally not used in userspace, but would execute if used.
73 * Can cause GP or stack exception if tries to load wrong segment descriptor.
74 * We hesitate to run them under single step since kernel's handling
75 * of userspace single-stepping (TF flag) is fragile.
76 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 * on the same grounds that they are never used.
78 * cd - int N.
79 * Used by userspace for "int 80" syscall entry. (Other "int N"
80 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 * Not supported since kernel's handling of userspace single-stepping
82 * (TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84 */
85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86static volatile u32 good_insns_32[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
105 /* ---------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
108#else
109#define good_insns_32 NULL
110#endif
111
112/* Good-instruction tables for 64-bit apps.
113 *
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122 * 82 - formerly redundant encoding of Group1
123 * 9a - formerly call seg:ofs
124 * ce - formerly into
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
127 * ea - formerly jmp seg:ofs
128 *
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
138 *
139 * Opcodes which need some work to be supported:
140 * cd - int N.
141 * Used by userspace for "int 80" syscall entry. (Other "int N"
142 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 * Not supported since kernel's handling of userspace single-stepping
144 * (TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146 */
147#if defined(CONFIG_X86_64)
148static volatile u32 good_insns_64[256 / 32] = {
149 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
150 /* ---------------------------------------------- */
151 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
167 /* ---------------------------------------------- */
168 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
169};
170#else
171#define good_insns_64 NULL
172#endif
173
174/* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 * Also encodes tons of other system insns if mod=11.
179 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
180 * 0f 05 - syscall
181 * 0f 06 - clts (CPL0 insn)
182 * 0f 07 - sysret
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
185 * 0f 0b - ud2
186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187 * 0f 34 - sysenter
188 * 0f 35 - sysexit
189 * 0f 37 - getsec
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 * Note: with prefixes, these two opcodes are
193 * extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 * {rd,wr}{fs,gs}base,{s,l,m}fence.
196 * Why? They are all user-executable.
197 */
198static volatile u32 good_2byte_insns[256 / 32] = {
199 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
200 /* ---------------------------------------------- */
201 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
217 /* ---------------------------------------------- */
218 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
219};
220#undef W
221
222/*
223 * opcodes we may need to refine support for:
224 *
225 * 0f - 2-byte instructions: For many of these instructions, the validity
226 * depends on the prefix and/or the reg field. On such instructions, we
227 * just consider the opcode combination valid if it corresponds to any
228 * valid instruction.
229 *
230 * 8f - Group 1 - only reg = 0 is OK
231 * c6-c7 - Group 11 - only reg = 0 is OK
232 * d9-df - fpu insns with some illegal encodings
233 * f2, f3 - repnz, repz prefixes. These are also the first byte for
234 * certain floating-point instructions, such as addsd.
235 *
236 * fe - Group 4 - only reg = 0 or 1 is OK
237 * ff - Group 5 - only reg = 0-6 is OK
238 *
239 * others -- Do we need to support these?
240 *
241 * 0f - (floating-point?) prefetch instructions
242 * 07, 17, 1f - pop es, pop ss, pop ds
243 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
245 * 67 - addr16 prefix
246 * ce - into
247 * f0 - lock prefix
248 */
249
250/*
251 * TODO:
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
254 */
255
256static bool is_prefix_bad(struct insn *insn)
257{
258 int i;
259
260 for (i = 0; i < insn->prefixes.nbytes; i++) {
261 insn_attr_t attr;
262
263 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
264 switch (attr) {
265 case INAT_MAKE_PREFIX(INAT_PFX_ES):
266 case INAT_MAKE_PREFIX(INAT_PFX_CS):
267 case INAT_MAKE_PREFIX(INAT_PFX_DS):
268 case INAT_MAKE_PREFIX(INAT_PFX_SS):
269 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
270 return true;
271 }
272 }
273 return false;
274}
275
276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
277{
278 u32 volatile *good_insns;
279
280 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
281 /* has the side-effect of processing the entire instruction */
282 insn_get_length(insn);
283 if (!insn_complete(insn))
284 return -ENOEXEC;
285
286 if (is_prefix_bad(insn))
287 return -ENOTSUPP;
288
289 /* We should not singlestep on the exception masking instructions */
290 if (insn_masking_exception(insn))
291 return -ENOTSUPP;
292
293 if (x86_64)
294 good_insns = good_insns_64;
295 else
296 good_insns = good_insns_32;
297
298 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
299 return 0;
300
301 if (insn->opcode.nbytes == 2) {
302 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
303 return 0;
304 }
305
306 return -ENOTSUPP;
307}
308
309#ifdef CONFIG_X86_64
310/*
311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
312 * immediately. Otherwise, rewrite the instruction so that it accesses
313 * its memory operand indirectly through a scratch register. Set
314 * defparam->fixups accordingly. (The contents of the scratch register
315 * will be saved before we single-step the modified instruction,
316 * and restored afterward).
317 *
318 * We do this because a rip-relative instruction can access only a
319 * relatively small area (+/- 2 GB from the instruction), and the XOL
320 * area typically lies beyond that area. At least for instructions
321 * that store to memory, we can't execute the original instruction
322 * and "fix things up" later, because the misdirected store could be
323 * disastrous.
324 *
325 * Some useful facts about rip-relative instructions:
326 *
327 * - There's always a modrm byte with bit layout "00 reg 101".
328 * - There's never a SIB byte.
329 * - The displacement is always 4 bytes.
330 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
331 * has no effect on rip-relative mode. It doesn't make modrm byte
332 * with r/m=101 refer to register 1101 = R13.
333 */
334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
335{
336 u8 *cursor;
337 u8 reg;
338 u8 reg2;
339
340 if (!insn_rip_relative(insn))
341 return;
342
343 /*
344 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
345 * Clear REX.b bit (extension of MODRM.rm field):
346 * we want to encode low numbered reg, not r8+.
347 */
348 if (insn->rex_prefix.nbytes) {
349 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
350 /* REX byte has 0100wrxb layout, clearing REX.b bit */
351 *cursor &= 0xfe;
352 }
353 /*
354 * Similar treatment for VEX3/EVEX prefix.
355 * TODO: add XOP treatment when insn decoder supports them
356 */
357 if (insn->vex_prefix.nbytes >= 3) {
358 /*
359 * vex2: c5 rvvvvLpp (has no b bit)
360 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
361 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
362 * Setting VEX3.b (setting because it has inverted meaning).
363 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
364 * is the 4th bit of MODRM.rm, and needs the same treatment.
365 * For VEX3-encoded insns, VEX3.x value has no effect in
366 * non-SIB encoding, the change is superfluous but harmless.
367 */
368 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
369 *cursor |= 0x60;
370 }
371
372 /*
373 * Convert from rip-relative addressing to register-relative addressing
374 * via a scratch register.
375 *
376 * This is tricky since there are insns with modrm byte
377 * which also use registers not encoded in modrm byte:
378 * [i]div/[i]mul: implicitly use dx:ax
379 * shift ops: implicitly use cx
380 * cmpxchg: implicitly uses ax
381 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
382 * Encoding: 0f c7/1 modrm
383 * The code below thinks that reg=1 (cx), chooses si as scratch.
384 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
385 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
386 * Example where none of bx,cx,dx can be used as scratch reg:
387 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
388 * [v]pcmpistri: implicitly uses cx, xmm0
389 * [v]pcmpistrm: implicitly uses xmm0
390 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
391 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
392 * Evil SSE4.2 string comparison ops from hell.
393 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
394 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
395 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
396 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
397 * and that it can have only register operands, not mem
398 * (its modrm byte must have mode=11).
399 * If these restrictions will ever be lifted,
400 * we'll need code to prevent selection of di as scratch reg!
401 *
402 * Summary: I don't know any insns with modrm byte which
403 * use SI register implicitly. DI register is used only
404 * by one insn (maskmovq) and BX register is used
405 * only by one too (cmpxchg8b).
406 * BP is stack-segment based (may be a problem?).
407 * AX, DX, CX are off-limits (many implicit users).
408 * SP is unusable (it's stack pointer - think about "pop mem";
409 * also, rsp+disp32 needs sib encoding -> insn length change).
410 */
411
412 reg = MODRM_REG(insn); /* Fetch modrm.reg */
413 reg2 = 0xff; /* Fetch vex.vvvv */
414 if (insn->vex_prefix.nbytes)
415 reg2 = insn->vex_prefix.bytes[2];
416 /*
417 * TODO: add XOP vvvv reading.
418 *
419 * vex.vvvv field is in bits 6-3, bits are inverted.
420 * But in 32-bit mode, high-order bit may be ignored.
421 * Therefore, let's consider only 3 low-order bits.
422 */
423 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
424 /*
425 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
426 *
427 * Choose scratch reg. Order is important: must not select bx
428 * if we can use si (cmpxchg8b case!)
429 */
430 if (reg != 6 && reg2 != 6) {
431 reg2 = 6;
432 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
433 } else if (reg != 7 && reg2 != 7) {
434 reg2 = 7;
435 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
436 /* TODO (paranoia): force maskmovq to not use di */
437 } else {
438 reg2 = 3;
439 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
440 }
441 /*
442 * Point cursor at the modrm byte. The next 4 bytes are the
443 * displacement. Beyond the displacement, for some instructions,
444 * is the immediate operand.
445 */
446 cursor = auprobe->insn + insn_offset_modrm(insn);
447 /*
448 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
449 * 89 05 disp32 mov %eax,disp32(%rip) becomes
450 * 89 86 disp32 mov %eax,disp32(%rsi)
451 */
452 *cursor = 0x80 | (reg << 3) | reg2;
453}
454
455static inline unsigned long *
456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
457{
458 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
459 return ®s->si;
460 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
461 return ®s->di;
462 return ®s->bx;
463}
464
465/*
466 * If we're emulating a rip-relative instruction, save the contents
467 * of the scratch register and store the target address in that register.
468 */
469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
470{
471 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
472 struct uprobe_task *utask = current->utask;
473 unsigned long *sr = scratch_reg(auprobe, regs);
474
475 utask->autask.saved_scratch_register = *sr;
476 *sr = utask->vaddr + auprobe->defparam.ilen;
477 }
478}
479
480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
481{
482 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
483 struct uprobe_task *utask = current->utask;
484 unsigned long *sr = scratch_reg(auprobe, regs);
485
486 *sr = utask->autask.saved_scratch_register;
487 }
488}
489#else /* 32-bit: */
490/*
491 * No RIP-relative addressing on 32-bit
492 */
493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
494{
495}
496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
497{
498}
499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
500{
501}
502#endif /* CONFIG_X86_64 */
503
504struct uprobe_xol_ops {
505 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
506 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
507 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
508 void (*abort)(struct arch_uprobe *, struct pt_regs *);
509};
510
511static inline int sizeof_long(struct pt_regs *regs)
512{
513 /*
514 * Check registers for mode as in_xxx_syscall() does not apply here.
515 */
516 return user_64bit_mode(regs) ? 8 : 4;
517}
518
519static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
520{
521 riprel_pre_xol(auprobe, regs);
522 return 0;
523}
524
525static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
526{
527 unsigned long new_sp = regs->sp - sizeof_long(regs);
528
529 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
530 return -EFAULT;
531
532 regs->sp = new_sp;
533 return 0;
534}
535
536/*
537 * We have to fix things up as follows:
538 *
539 * Typically, the new ip is relative to the copied instruction. We need
540 * to make it relative to the original instruction (FIX_IP). Exceptions
541 * are return instructions and absolute or indirect jump or call instructions.
542 *
543 * If the single-stepped instruction was a call, the return address that
544 * is atop the stack is the address following the copied instruction. We
545 * need to make it the address following the original instruction (FIX_CALL).
546 *
547 * If the original instruction was a rip-relative instruction such as
548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
550 * We need to restore the contents of the scratch register
551 * (FIX_RIP_reg).
552 */
553static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
554{
555 struct uprobe_task *utask = current->utask;
556
557 riprel_post_xol(auprobe, regs);
558 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
559 long correction = utask->vaddr - utask->xol_vaddr;
560 regs->ip += correction;
561 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
562 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
563 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
564 return -ERESTART;
565 }
566 /* popf; tell the caller to not touch TF */
567 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
568 utask->autask.saved_tf = true;
569
570 return 0;
571}
572
573static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
574{
575 riprel_post_xol(auprobe, regs);
576}
577
578static const struct uprobe_xol_ops default_xol_ops = {
579 .pre_xol = default_pre_xol_op,
580 .post_xol = default_post_xol_op,
581 .abort = default_abort_op,
582};
583
584static bool branch_is_call(struct arch_uprobe *auprobe)
585{
586 return auprobe->branch.opc1 == 0xe8;
587}
588
589#define CASE_COND \
590 COND(70, 71, XF(OF)) \
591 COND(72, 73, XF(CF)) \
592 COND(74, 75, XF(ZF)) \
593 COND(78, 79, XF(SF)) \
594 COND(7a, 7b, XF(PF)) \
595 COND(76, 77, XF(CF) || XF(ZF)) \
596 COND(7c, 7d, XF(SF) != XF(OF)) \
597 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
598
599#define COND(op_y, op_n, expr) \
600 case 0x ## op_y: DO((expr) != 0) \
601 case 0x ## op_n: DO((expr) == 0)
602
603#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
604
605static bool is_cond_jmp_opcode(u8 opcode)
606{
607 switch (opcode) {
608 #define DO(expr) \
609 return true;
610 CASE_COND
611 #undef DO
612
613 default:
614 return false;
615 }
616}
617
618static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
619{
620 unsigned long flags = regs->flags;
621
622 switch (auprobe->branch.opc1) {
623 #define DO(expr) \
624 return expr;
625 CASE_COND
626 #undef DO
627
628 default: /* not a conditional jmp */
629 return true;
630 }
631}
632
633#undef XF
634#undef COND
635#undef CASE_COND
636
637static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
638{
639 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
640 unsigned long offs = (long)auprobe->branch.offs;
641
642 if (branch_is_call(auprobe)) {
643 /*
644 * If it fails we execute this (mangled, see the comment in
645 * branch_clear_offset) insn out-of-line. In the likely case
646 * this should trigger the trap, and the probed application
647 * should die or restart the same insn after it handles the
648 * signal, arch_uprobe_post_xol() won't be even called.
649 *
650 * But there is corner case, see the comment in ->post_xol().
651 */
652 if (emulate_push_stack(regs, new_ip))
653 return false;
654 } else if (!check_jmp_cond(auprobe, regs)) {
655 offs = 0;
656 }
657
658 regs->ip = new_ip + offs;
659 return true;
660}
661
662static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
663{
664 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
665
666 if (emulate_push_stack(regs, *src_ptr))
667 return false;
668 regs->ip += auprobe->push.ilen;
669 return true;
670}
671
672static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
673{
674 BUG_ON(!branch_is_call(auprobe));
675 /*
676 * We can only get here if branch_emulate_op() failed to push the ret
677 * address _and_ another thread expanded our stack before the (mangled)
678 * "call" insn was executed out-of-line. Just restore ->sp and restart.
679 * We could also restore ->ip and try to call branch_emulate_op() again.
680 */
681 regs->sp += sizeof_long(regs);
682 return -ERESTART;
683}
684
685static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
686{
687 /*
688 * Turn this insn into "call 1f; 1:", this is what we will execute
689 * out-of-line if ->emulate() fails. We only need this to generate
690 * a trap, so that the probed task receives the correct signal with
691 * the properly filled siginfo.
692 *
693 * But see the comment in ->post_xol(), in the unlikely case it can
694 * succeed. So we need to ensure that the new ->ip can not fall into
695 * the non-canonical area and trigger #GP.
696 *
697 * We could turn it into (say) "pushf", but then we would need to
698 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
699 * of ->insn[] for set_orig_insn().
700 */
701 memset(auprobe->insn + insn_offset_immediate(insn),
702 0, insn->immediate.nbytes);
703}
704
705static const struct uprobe_xol_ops branch_xol_ops = {
706 .emulate = branch_emulate_op,
707 .post_xol = branch_post_xol_op,
708};
709
710static const struct uprobe_xol_ops push_xol_ops = {
711 .emulate = push_emulate_op,
712};
713
714/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
715static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
716{
717 u8 opc1 = OPCODE1(insn);
718 int i;
719
720 switch (opc1) {
721 case 0xeb: /* jmp 8 */
722 case 0xe9: /* jmp 32 */
723 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
724 break;
725
726 case 0xe8: /* call relative */
727 branch_clear_offset(auprobe, insn);
728 break;
729
730 case 0x0f:
731 if (insn->opcode.nbytes != 2)
732 return -ENOSYS;
733 /*
734 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
735 * OPCODE1() of the "short" jmp which checks the same condition.
736 */
737 opc1 = OPCODE2(insn) - 0x10;
738 /* fall through */
739 default:
740 if (!is_cond_jmp_opcode(opc1))
741 return -ENOSYS;
742 }
743
744 /*
745 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
746 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
747 * No one uses these insns, reject any branch insns with such prefix.
748 */
749 for (i = 0; i < insn->prefixes.nbytes; i++) {
750 if (insn->prefixes.bytes[i] == 0x66)
751 return -ENOTSUPP;
752 }
753
754 auprobe->branch.opc1 = opc1;
755 auprobe->branch.ilen = insn->length;
756 auprobe->branch.offs = insn->immediate.value;
757
758 auprobe->ops = &branch_xol_ops;
759 return 0;
760}
761
762/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
763static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
764{
765 u8 opc1 = OPCODE1(insn), reg_offset = 0;
766
767 if (opc1 < 0x50 || opc1 > 0x57)
768 return -ENOSYS;
769
770 if (insn->length > 2)
771 return -ENOSYS;
772 if (insn->length == 2) {
773 /* only support rex_prefix 0x41 (x64 only) */
774#ifdef CONFIG_X86_64
775 if (insn->rex_prefix.nbytes != 1 ||
776 insn->rex_prefix.bytes[0] != 0x41)
777 return -ENOSYS;
778
779 switch (opc1) {
780 case 0x50:
781 reg_offset = offsetof(struct pt_regs, r8);
782 break;
783 case 0x51:
784 reg_offset = offsetof(struct pt_regs, r9);
785 break;
786 case 0x52:
787 reg_offset = offsetof(struct pt_regs, r10);
788 break;
789 case 0x53:
790 reg_offset = offsetof(struct pt_regs, r11);
791 break;
792 case 0x54:
793 reg_offset = offsetof(struct pt_regs, r12);
794 break;
795 case 0x55:
796 reg_offset = offsetof(struct pt_regs, r13);
797 break;
798 case 0x56:
799 reg_offset = offsetof(struct pt_regs, r14);
800 break;
801 case 0x57:
802 reg_offset = offsetof(struct pt_regs, r15);
803 break;
804 }
805#else
806 return -ENOSYS;
807#endif
808 } else {
809 switch (opc1) {
810 case 0x50:
811 reg_offset = offsetof(struct pt_regs, ax);
812 break;
813 case 0x51:
814 reg_offset = offsetof(struct pt_regs, cx);
815 break;
816 case 0x52:
817 reg_offset = offsetof(struct pt_regs, dx);
818 break;
819 case 0x53:
820 reg_offset = offsetof(struct pt_regs, bx);
821 break;
822 case 0x54:
823 reg_offset = offsetof(struct pt_regs, sp);
824 break;
825 case 0x55:
826 reg_offset = offsetof(struct pt_regs, bp);
827 break;
828 case 0x56:
829 reg_offset = offsetof(struct pt_regs, si);
830 break;
831 case 0x57:
832 reg_offset = offsetof(struct pt_regs, di);
833 break;
834 }
835 }
836
837 auprobe->push.reg_offset = reg_offset;
838 auprobe->push.ilen = insn->length;
839 auprobe->ops = &push_xol_ops;
840 return 0;
841}
842
843/**
844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
845 * @mm: the probed address space.
846 * @arch_uprobe: the probepoint information.
847 * @addr: virtual address at which to install the probepoint
848 * Return 0 on success or a -ve number on error.
849 */
850int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
851{
852 struct insn insn;
853 u8 fix_ip_or_call = UPROBE_FIX_IP;
854 int ret;
855
856 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
857 if (ret)
858 return ret;
859
860 ret = branch_setup_xol_ops(auprobe, &insn);
861 if (ret != -ENOSYS)
862 return ret;
863
864 ret = push_setup_xol_ops(auprobe, &insn);
865 if (ret != -ENOSYS)
866 return ret;
867
868 /*
869 * Figure out which fixups default_post_xol_op() will need to perform,
870 * and annotate defparam->fixups accordingly.
871 */
872 switch (OPCODE1(&insn)) {
873 case 0x9d: /* popf */
874 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
875 break;
876 case 0xc3: /* ret or lret -- ip is correct */
877 case 0xcb:
878 case 0xc2:
879 case 0xca:
880 case 0xea: /* jmp absolute -- ip is correct */
881 fix_ip_or_call = 0;
882 break;
883 case 0x9a: /* call absolute - Fix return addr, not ip */
884 fix_ip_or_call = UPROBE_FIX_CALL;
885 break;
886 case 0xff:
887 switch (MODRM_REG(&insn)) {
888 case 2: case 3: /* call or lcall, indirect */
889 fix_ip_or_call = UPROBE_FIX_CALL;
890 break;
891 case 4: case 5: /* jmp or ljmp, indirect */
892 fix_ip_or_call = 0;
893 break;
894 }
895 /* fall through */
896 default:
897 riprel_analyze(auprobe, &insn);
898 }
899
900 auprobe->defparam.ilen = insn.length;
901 auprobe->defparam.fixups |= fix_ip_or_call;
902
903 auprobe->ops = &default_xol_ops;
904 return 0;
905}
906
907/*
908 * arch_uprobe_pre_xol - prepare to execute out of line.
909 * @auprobe: the probepoint information.
910 * @regs: reflects the saved user state of current task.
911 */
912int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
913{
914 struct uprobe_task *utask = current->utask;
915
916 if (auprobe->ops->pre_xol) {
917 int err = auprobe->ops->pre_xol(auprobe, regs);
918 if (err)
919 return err;
920 }
921
922 regs->ip = utask->xol_vaddr;
923 utask->autask.saved_trap_nr = current->thread.trap_nr;
924 current->thread.trap_nr = UPROBE_TRAP_NR;
925
926 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
927 regs->flags |= X86_EFLAGS_TF;
928 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
929 set_task_blockstep(current, false);
930
931 return 0;
932}
933
934/*
935 * If xol insn itself traps and generates a signal(Say,
936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
937 * instruction jumps back to its own address. It is assumed that anything
938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
939 *
940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
943 */
944bool arch_uprobe_xol_was_trapped(struct task_struct *t)
945{
946 if (t->thread.trap_nr != UPROBE_TRAP_NR)
947 return true;
948
949 return false;
950}
951
952/*
953 * Called after single-stepping. To avoid the SMP problems that can
954 * occur when we temporarily put back the original opcode to
955 * single-step, we single-stepped a copy of the instruction.
956 *
957 * This function prepares to resume execution after the single-step.
958 */
959int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
960{
961 struct uprobe_task *utask = current->utask;
962 bool send_sigtrap = utask->autask.saved_tf;
963 int err = 0;
964
965 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
966 current->thread.trap_nr = utask->autask.saved_trap_nr;
967
968 if (auprobe->ops->post_xol) {
969 err = auprobe->ops->post_xol(auprobe, regs);
970 if (err) {
971 /*
972 * Restore ->ip for restart or post mortem analysis.
973 * ->post_xol() must not return -ERESTART unless this
974 * is really possible.
975 */
976 regs->ip = utask->vaddr;
977 if (err == -ERESTART)
978 err = 0;
979 send_sigtrap = false;
980 }
981 }
982 /*
983 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
984 * so we can get an extra SIGTRAP if we do not clear TF. We need
985 * to examine the opcode to make it right.
986 */
987 if (send_sigtrap)
988 send_sig(SIGTRAP, current, 0);
989
990 if (!utask->autask.saved_tf)
991 regs->flags &= ~X86_EFLAGS_TF;
992
993 return err;
994}
995
996/* callback routine for handling exceptions. */
997int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
998{
999 struct die_args *args = data;
1000 struct pt_regs *regs = args->regs;
1001 int ret = NOTIFY_DONE;
1002
1003 /* We are only interested in userspace traps */
1004 if (regs && !user_mode(regs))
1005 return NOTIFY_DONE;
1006
1007 switch (val) {
1008 case DIE_INT3:
1009 if (uprobe_pre_sstep_notifier(regs))
1010 ret = NOTIFY_STOP;
1011
1012 break;
1013
1014 case DIE_DEBUG:
1015 if (uprobe_post_sstep_notifier(regs))
1016 ret = NOTIFY_STOP;
1017
1018 default:
1019 break;
1020 }
1021
1022 return ret;
1023}
1024
1025/*
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1029 */
1030void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031{
1032 struct uprobe_task *utask = current->utask;
1033
1034 if (auprobe->ops->abort)
1035 auprobe->ops->abort(auprobe, regs);
1036
1037 current->thread.trap_nr = utask->autask.saved_trap_nr;
1038 regs->ip = utask->vaddr;
1039 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040 if (!utask->autask.saved_tf)
1041 regs->flags &= ~X86_EFLAGS_TF;
1042}
1043
1044static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045{
1046 if (auprobe->ops->emulate)
1047 return auprobe->ops->emulate(auprobe, regs);
1048 return false;
1049}
1050
1051bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052{
1053 bool ret = __skip_sstep(auprobe, regs);
1054 if (ret && (regs->flags & X86_EFLAGS_TF))
1055 send_sig(SIGTRAP, current, 0);
1056 return ret;
1057}
1058
1059unsigned long
1060arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061{
1062 int rasize = sizeof_long(regs), nleft;
1063 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064
1065 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066 return -1;
1067
1068 /* check whether address has been already hijacked */
1069 if (orig_ret_vaddr == trampoline_vaddr)
1070 return orig_ret_vaddr;
1071
1072 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073 if (likely(!nleft))
1074 return orig_ret_vaddr;
1075
1076 if (nleft != rasize) {
1077 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078 current->pid, regs->sp, regs->ip);
1079
1080 force_sig(SIGSEGV);
1081 }
1082
1083 return -1;
1084}
1085
1086bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087 struct pt_regs *regs)
1088{
1089 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090 return regs->sp < ret->stack;
1091 else
1092 return regs->sp <= ret->stack;
1093}
1/*
2 * User-space Probes (UProbes) for x86
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/uaccess.h>
28
29#include <linux/kdebug.h>
30#include <asm/processor.h>
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
35/* No fixup needed */
36#define UPROBE_FIX_NONE 0x0
37
38/* Adjust IP back to vicinity of actual insn */
39#define UPROBE_FIX_IP 0x1
40
41/* Adjust the return address of a call insn */
42#define UPROBE_FIX_CALL 0x2
43
44/* Instruction will modify TF, don't change it */
45#define UPROBE_FIX_SETF 0x4
46
47#define UPROBE_FIX_RIP_AX 0x8000
48#define UPROBE_FIX_RIP_CX 0x4000
49
50#define UPROBE_TRAP_NR UINT_MAX
51
52/* Adaptations for mhiramat x86 decoder v14. */
53#define OPCODE1(insn) ((insn)->opcode.bytes[0])
54#define OPCODE2(insn) ((insn)->opcode.bytes[1])
55#define OPCODE3(insn) ((insn)->opcode.bytes[2])
56#define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value)
57
58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
60 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
61 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
62 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
63 << (row % 32))
64
65/*
66 * Good-instruction tables for 32-bit apps. This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
69 */
70static volatile u32 good_insns_32[256 / 32] = {
71 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
72 /* ---------------------------------------------- */
73 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
74 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
75 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
76 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
77 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
78 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
79 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
80 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
81 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
82 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
83 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
84 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
85 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
86 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
87 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
88 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
89 /* ---------------------------------------------- */
90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91};
92
93/* Using this for both 64-bit and 32-bit apps */
94static volatile u32 good_2byte_insns[256 / 32] = {
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ---------------------------------------------- */
97 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
98 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
99 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
100 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
101 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
102 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
103 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
104 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
105 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
106 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
107 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
108 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
109 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
110 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
111 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
112 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
113 /* ---------------------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115};
116
117#ifdef CONFIG_X86_64
118/* Good-instruction tables for 64-bit apps */
119static volatile u32 good_insns_64[256 / 32] = {
120 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
121 /* ---------------------------------------------- */
122 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
123 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
124 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
125 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
126 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
127 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
128 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
129 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
130 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
131 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
132 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
133 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
134 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
135 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
136 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
137 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
138 /* ---------------------------------------------- */
139 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
140};
141#endif
142#undef W
143
144/*
145 * opcodes we'll probably never support:
146 *
147 * 6c-6d, e4-e5, ec-ed - in
148 * 6e-6f, e6-e7, ee-ef - out
149 * cc, cd - int3, int
150 * cf - iret
151 * d6 - illegal instruction
152 * f1 - int1/icebp
153 * f4 - hlt
154 * fa, fb - cli, sti
155 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
156 *
157 * invalid opcodes in 64-bit mode:
158 *
159 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
160 * 63 - we support this opcode in x86_64 but not in i386.
161 *
162 * opcodes we may need to refine support for:
163 *
164 * 0f - 2-byte instructions: For many of these instructions, the validity
165 * depends on the prefix and/or the reg field. On such instructions, we
166 * just consider the opcode combination valid if it corresponds to any
167 * valid instruction.
168 *
169 * 8f - Group 1 - only reg = 0 is OK
170 * c6-c7 - Group 11 - only reg = 0 is OK
171 * d9-df - fpu insns with some illegal encodings
172 * f2, f3 - repnz, repz prefixes. These are also the first byte for
173 * certain floating-point instructions, such as addsd.
174 *
175 * fe - Group 4 - only reg = 0 or 1 is OK
176 * ff - Group 5 - only reg = 0-6 is OK
177 *
178 * others -- Do we need to support these?
179 *
180 * 0f - (floating-point?) prefetch instructions
181 * 07, 17, 1f - pop es, pop ss, pop ds
182 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
183 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
184 * 67 - addr16 prefix
185 * ce - into
186 * f0 - lock prefix
187 */
188
189/*
190 * TODO:
191 * - Where necessary, examine the modrm byte and allow only valid instructions
192 * in the different Groups and fpu instructions.
193 */
194
195static bool is_prefix_bad(struct insn *insn)
196{
197 int i;
198
199 for (i = 0; i < insn->prefixes.nbytes; i++) {
200 switch (insn->prefixes.bytes[i]) {
201 case 0x26: /* INAT_PFX_ES */
202 case 0x2E: /* INAT_PFX_CS */
203 case 0x36: /* INAT_PFX_DS */
204 case 0x3E: /* INAT_PFX_SS */
205 case 0xF0: /* INAT_PFX_LOCK */
206 return true;
207 }
208 }
209 return false;
210}
211
212static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
213{
214 insn_init(insn, auprobe->insn, false);
215
216 /* Skip good instruction prefixes; reject "bad" ones. */
217 insn_get_opcode(insn);
218 if (is_prefix_bad(insn))
219 return -ENOTSUPP;
220
221 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
222 return 0;
223
224 if (insn->opcode.nbytes == 2) {
225 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
226 return 0;
227 }
228
229 return -ENOTSUPP;
230}
231
232/*
233 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
234 * annotate arch_uprobe->fixups accordingly. To start with,
235 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
236 */
237static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
238{
239 bool fix_ip = true, fix_call = false; /* defaults */
240 int reg;
241
242 insn_get_opcode(insn); /* should be a nop */
243
244 switch (OPCODE1(insn)) {
245 case 0x9d:
246 /* popf */
247 auprobe->fixups |= UPROBE_FIX_SETF;
248 break;
249 case 0xc3: /* ret/lret */
250 case 0xcb:
251 case 0xc2:
252 case 0xca:
253 /* ip is correct */
254 fix_ip = false;
255 break;
256 case 0xe8: /* call relative - Fix return addr */
257 fix_call = true;
258 break;
259 case 0x9a: /* call absolute - Fix return addr, not ip */
260 fix_call = true;
261 fix_ip = false;
262 break;
263 case 0xff:
264 insn_get_modrm(insn);
265 reg = MODRM_REG(insn);
266 if (reg == 2 || reg == 3) {
267 /* call or lcall, indirect */
268 /* Fix return addr; ip is correct. */
269 fix_call = true;
270 fix_ip = false;
271 } else if (reg == 4 || reg == 5) {
272 /* jmp or ljmp, indirect */
273 /* ip is correct. */
274 fix_ip = false;
275 }
276 break;
277 case 0xea: /* jmp absolute -- ip is correct */
278 fix_ip = false;
279 break;
280 default:
281 break;
282 }
283 if (fix_ip)
284 auprobe->fixups |= UPROBE_FIX_IP;
285 if (fix_call)
286 auprobe->fixups |= UPROBE_FIX_CALL;
287}
288
289#ifdef CONFIG_X86_64
290/*
291 * If arch_uprobe->insn doesn't use rip-relative addressing, return
292 * immediately. Otherwise, rewrite the instruction so that it accesses
293 * its memory operand indirectly through a scratch register. Set
294 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
295 * accordingly. (The contents of the scratch register will be saved
296 * before we single-step the modified instruction, and restored
297 * afterward.)
298 *
299 * We do this because a rip-relative instruction can access only a
300 * relatively small area (+/- 2 GB from the instruction), and the XOL
301 * area typically lies beyond that area. At least for instructions
302 * that store to memory, we can't execute the original instruction
303 * and "fix things up" later, because the misdirected store could be
304 * disastrous.
305 *
306 * Some useful facts about rip-relative instructions:
307 *
308 * - There's always a modrm byte.
309 * - There's never a SIB byte.
310 * - The displacement is always 4 bytes.
311 */
312static void
313handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
314{
315 u8 *cursor;
316 u8 reg;
317
318 if (mm->context.ia32_compat)
319 return;
320
321 auprobe->rip_rela_target_address = 0x0;
322 if (!insn_rip_relative(insn))
323 return;
324
325 /*
326 * insn_rip_relative() would have decoded rex_prefix, modrm.
327 * Clear REX.b bit (extension of MODRM.rm field):
328 * we want to encode rax/rcx, not r8/r9.
329 */
330 if (insn->rex_prefix.nbytes) {
331 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
332 *cursor &= 0xfe; /* Clearing REX.B bit */
333 }
334
335 /*
336 * Point cursor at the modrm byte. The next 4 bytes are the
337 * displacement. Beyond the displacement, for some instructions,
338 * is the immediate operand.
339 */
340 cursor = auprobe->insn + insn_offset_modrm(insn);
341 insn_get_length(insn);
342
343 /*
344 * Convert from rip-relative addressing to indirect addressing
345 * via a scratch register. Change the r/m field from 0x5 (%rip)
346 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
347 */
348 reg = MODRM_REG(insn);
349 if (reg == 0) {
350 /*
351 * The register operand (if any) is either the A register
352 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
353 * REX prefix) %r8. In any case, we know the C register
354 * is NOT the register operand, so we use %rcx (register
355 * #1) for the scratch register.
356 */
357 auprobe->fixups = UPROBE_FIX_RIP_CX;
358 /* Change modrm from 00 000 101 to 00 000 001. */
359 *cursor = 0x1;
360 } else {
361 /* Use %rax (register #0) for the scratch register. */
362 auprobe->fixups = UPROBE_FIX_RIP_AX;
363 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
364 *cursor = (reg << 3);
365 }
366
367 /* Target address = address of next instruction + (signed) offset */
368 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
369
370 /* Displacement field is gone; slide immediate field (if any) over. */
371 if (insn->immediate.nbytes) {
372 cursor++;
373 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
374 }
375 return;
376}
377
378static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
379{
380 insn_init(insn, auprobe->insn, true);
381
382 /* Skip good instruction prefixes; reject "bad" ones. */
383 insn_get_opcode(insn);
384 if (is_prefix_bad(insn))
385 return -ENOTSUPP;
386
387 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
388 return 0;
389
390 if (insn->opcode.nbytes == 2) {
391 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
392 return 0;
393 }
394 return -ENOTSUPP;
395}
396
397static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
398{
399 if (mm->context.ia32_compat)
400 return validate_insn_32bits(auprobe, insn);
401 return validate_insn_64bits(auprobe, insn);
402}
403#else /* 32-bit: */
404static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
405{
406 /* No RIP-relative addressing on 32-bit */
407}
408
409static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
410{
411 return validate_insn_32bits(auprobe, insn);
412}
413#endif /* CONFIG_X86_64 */
414
415/**
416 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
417 * @mm: the probed address space.
418 * @arch_uprobe: the probepoint information.
419 * @addr: virtual address at which to install the probepoint
420 * Return 0 on success or a -ve number on error.
421 */
422int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
423{
424 int ret;
425 struct insn insn;
426
427 auprobe->fixups = 0;
428 ret = validate_insn_bits(auprobe, mm, &insn);
429 if (ret != 0)
430 return ret;
431
432 handle_riprel_insn(auprobe, mm, &insn);
433 prepare_fixups(auprobe, &insn);
434
435 return 0;
436}
437
438#ifdef CONFIG_X86_64
439/*
440 * If we're emulating a rip-relative instruction, save the contents
441 * of the scratch register and store the target address in that register.
442 */
443static void
444pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
445 struct arch_uprobe_task *autask)
446{
447 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
448 autask->saved_scratch_register = regs->ax;
449 regs->ax = current->utask->vaddr;
450 regs->ax += auprobe->rip_rela_target_address;
451 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
452 autask->saved_scratch_register = regs->cx;
453 regs->cx = current->utask->vaddr;
454 regs->cx += auprobe->rip_rela_target_address;
455 }
456}
457#else
458static void
459pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
460 struct arch_uprobe_task *autask)
461{
462 /* No RIP-relative addressing on 32-bit */
463}
464#endif
465
466/*
467 * arch_uprobe_pre_xol - prepare to execute out of line.
468 * @auprobe: the probepoint information.
469 * @regs: reflects the saved user state of current task.
470 */
471int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
472{
473 struct arch_uprobe_task *autask;
474
475 autask = ¤t->utask->autask;
476 autask->saved_trap_nr = current->thread.trap_nr;
477 current->thread.trap_nr = UPROBE_TRAP_NR;
478 regs->ip = current->utask->xol_vaddr;
479 pre_xol_rip_insn(auprobe, regs, autask);
480
481 autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
482 regs->flags |= X86_EFLAGS_TF;
483 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
484 set_task_blockstep(current, false);
485
486 return 0;
487}
488
489/*
490 * This function is called by arch_uprobe_post_xol() to adjust the return
491 * address pushed by a call instruction executed out of line.
492 */
493static int adjust_ret_addr(unsigned long sp, long correction)
494{
495 int rasize, ncopied;
496 long ra = 0;
497
498 if (is_ia32_task())
499 rasize = 4;
500 else
501 rasize = 8;
502
503 ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
504 if (unlikely(ncopied))
505 return -EFAULT;
506
507 ra += correction;
508 ncopied = copy_to_user((void __user *)sp, &ra, rasize);
509 if (unlikely(ncopied))
510 return -EFAULT;
511
512 return 0;
513}
514
515#ifdef CONFIG_X86_64
516static bool is_riprel_insn(struct arch_uprobe *auprobe)
517{
518 return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
519}
520
521static void
522handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
523{
524 if (is_riprel_insn(auprobe)) {
525 struct arch_uprobe_task *autask;
526
527 autask = ¤t->utask->autask;
528 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
529 regs->ax = autask->saved_scratch_register;
530 else
531 regs->cx = autask->saved_scratch_register;
532
533 /*
534 * The original instruction includes a displacement, and so
535 * is 4 bytes longer than what we've just single-stepped.
536 * Fall through to handle stuff like "jmpq *...(%rip)" and
537 * "callq *...(%rip)".
538 */
539 if (correction)
540 *correction += 4;
541 }
542}
543#else
544static void
545handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
546{
547 /* No RIP-relative addressing on 32-bit */
548}
549#endif
550
551/*
552 * If xol insn itself traps and generates a signal(Say,
553 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
554 * instruction jumps back to its own address. It is assumed that anything
555 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
556 *
557 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
558 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
559 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
560 */
561bool arch_uprobe_xol_was_trapped(struct task_struct *t)
562{
563 if (t->thread.trap_nr != UPROBE_TRAP_NR)
564 return true;
565
566 return false;
567}
568
569/*
570 * Called after single-stepping. To avoid the SMP problems that can
571 * occur when we temporarily put back the original opcode to
572 * single-step, we single-stepped a copy of the instruction.
573 *
574 * This function prepares to resume execution after the single-step.
575 * We have to fix things up as follows:
576 *
577 * Typically, the new ip is relative to the copied instruction. We need
578 * to make it relative to the original instruction (FIX_IP). Exceptions
579 * are return instructions and absolute or indirect jump or call instructions.
580 *
581 * If the single-stepped instruction was a call, the return address that
582 * is atop the stack is the address following the copied instruction. We
583 * need to make it the address following the original instruction (FIX_CALL).
584 *
585 * If the original instruction was a rip-relative instruction such as
586 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
587 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
588 * We need to restore the contents of the scratch register and adjust
589 * the ip, keeping in mind that the instruction we executed is 4 bytes
590 * shorter than the original instruction (since we squeezed out the offset
591 * field). (FIX_RIP_AX or FIX_RIP_CX)
592 */
593int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
594{
595 struct uprobe_task *utask;
596 long correction;
597 int result = 0;
598
599 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
600
601 utask = current->utask;
602 current->thread.trap_nr = utask->autask.saved_trap_nr;
603 correction = (long)(utask->vaddr - utask->xol_vaddr);
604 handle_riprel_post_xol(auprobe, regs, &correction);
605 if (auprobe->fixups & UPROBE_FIX_IP)
606 regs->ip += correction;
607
608 if (auprobe->fixups & UPROBE_FIX_CALL)
609 result = adjust_ret_addr(regs->sp, correction);
610
611 /*
612 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
613 * so we can get an extra SIGTRAP if we do not clear TF. We need
614 * to examine the opcode to make it right.
615 */
616 if (utask->autask.saved_tf)
617 send_sig(SIGTRAP, current, 0);
618 else if (!(auprobe->fixups & UPROBE_FIX_SETF))
619 regs->flags &= ~X86_EFLAGS_TF;
620
621 return result;
622}
623
624/* callback routine for handling exceptions. */
625int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
626{
627 struct die_args *args = data;
628 struct pt_regs *regs = args->regs;
629 int ret = NOTIFY_DONE;
630
631 /* We are only interested in userspace traps */
632 if (regs && !user_mode_vm(regs))
633 return NOTIFY_DONE;
634
635 switch (val) {
636 case DIE_INT3:
637 if (uprobe_pre_sstep_notifier(regs))
638 ret = NOTIFY_STOP;
639
640 break;
641
642 case DIE_DEBUG:
643 if (uprobe_post_sstep_notifier(regs))
644 ret = NOTIFY_STOP;
645
646 default:
647 break;
648 }
649
650 return ret;
651}
652
653/*
654 * This function gets called when XOL instruction either gets trapped or
655 * the thread has a fatal signal, so reset the instruction pointer to its
656 * probed address.
657 */
658void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
659{
660 struct uprobe_task *utask = current->utask;
661
662 current->thread.trap_nr = utask->autask.saved_trap_nr;
663 handle_riprel_post_xol(auprobe, regs, NULL);
664 instruction_pointer_set(regs, utask->vaddr);
665
666 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
667 if (!utask->autask.saved_tf)
668 regs->flags &= ~X86_EFLAGS_TF;
669}
670
671/*
672 * Skip these instructions as per the currently known x86 ISA.
673 * rep=0x66*; nop=0x90
674 */
675static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
676{
677 int i;
678
679 for (i = 0; i < MAX_UINSN_BYTES; i++) {
680 if (auprobe->insn[i] == 0x66)
681 continue;
682
683 if (auprobe->insn[i] == 0x90) {
684 regs->ip += i + 1;
685 return true;
686 }
687
688 break;
689 }
690 return false;
691}
692
693bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
694{
695 bool ret = __skip_sstep(auprobe, regs);
696 if (ret && (regs->flags & X86_EFLAGS_TF))
697 send_sig(SIGTRAP, current, 0);
698 return ret;
699}
700
701unsigned long
702arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
703{
704 int rasize, ncopied;
705 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
706
707 rasize = is_ia32_task() ? 4 : 8;
708 ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize);
709 if (unlikely(ncopied))
710 return -1;
711
712 /* check whether address has been already hijacked */
713 if (orig_ret_vaddr == trampoline_vaddr)
714 return orig_ret_vaddr;
715
716 ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
717 if (likely(!ncopied))
718 return orig_ret_vaddr;
719
720 if (ncopied != rasize) {
721 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
722 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
723
724 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
725 }
726
727 return -1;
728}