Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
 
 
 
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 
 220#undef W
 221
 222/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258	int i;
 259
 260	for (i = 0; i < insn->prefixes.nbytes; i++) {
 261		insn_attr_t attr;
 262
 263		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
 264		switch (attr) {
 265		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 266		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 267		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 270			return true;
 271		}
 272	}
 273	return false;
 274}
 275
 276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 277{
 278	u32 volatile *good_insns;
 279
 280	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 281	/* has the side-effect of processing the entire instruction */
 282	insn_get_length(insn);
 283	if (!insn_complete(insn))
 284		return -ENOEXEC;
 285
 
 
 286	if (is_prefix_bad(insn))
 287		return -ENOTSUPP;
 288
 289	/* We should not singlestep on the exception masking instructions */
 290	if (insn_masking_exception(insn))
 291		return -ENOTSUPP;
 292
 293	if (x86_64)
 294		good_insns = good_insns_64;
 295	else
 296		good_insns = good_insns_32;
 297
 298	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 299		return 0;
 300
 301	if (insn->opcode.nbytes == 2) {
 302		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 303			return 0;
 304	}
 305
 306	return -ENOTSUPP;
 307}
 308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309#ifdef CONFIG_X86_64
 310/*
 311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 312 * immediately.  Otherwise, rewrite the instruction so that it accesses
 313 * its memory operand indirectly through a scratch register.  Set
 314 * defparam->fixups accordingly. (The contents of the scratch register
 315 * will be saved before we single-step the modified instruction,
 316 * and restored afterward).
 
 317 *
 318 * We do this because a rip-relative instruction can access only a
 319 * relatively small area (+/- 2 GB from the instruction), and the XOL
 320 * area typically lies beyond that area.  At least for instructions
 321 * that store to memory, we can't execute the original instruction
 322 * and "fix things up" later, because the misdirected store could be
 323 * disastrous.
 324 *
 325 * Some useful facts about rip-relative instructions:
 326 *
 327 *  - There's always a modrm byte with bit layout "00 reg 101".
 328 *  - There's never a SIB byte.
 329 *  - The displacement is always 4 bytes.
 330 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 331 *    has no effect on rip-relative mode. It doesn't make modrm byte
 332 *    with r/m=101 refer to register 1101 = R13.
 333 */
 334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 
 335{
 336	u8 *cursor;
 337	u8 reg;
 338	u8 reg2;
 339
 
 
 
 
 340	if (!insn_rip_relative(insn))
 341		return;
 342
 343	/*
 344	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 345	 * Clear REX.b bit (extension of MODRM.rm field):
 346	 * we want to encode low numbered reg, not r8+.
 347	 */
 348	if (insn->rex_prefix.nbytes) {
 349		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 350		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 351		*cursor &= 0xfe;
 352	}
 353	/*
 354	 * Similar treatment for VEX3/EVEX prefix.
 355	 * TODO: add XOP treatment when insn decoder supports them
 356	 */
 357	if (insn->vex_prefix.nbytes >= 3) {
 358		/*
 359		 * vex2:     c5    rvvvvLpp   (has no b bit)
 360		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 361		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 362		 * Setting VEX3.b (setting because it has inverted meaning).
 363		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 364		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 365		 * For VEX3-encoded insns, VEX3.x value has no effect in
 366		 * non-SIB encoding, the change is superfluous but harmless.
 367		 */
 368		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 369		*cursor |= 0x60;
 370	}
 371
 372	/*
 373	 * Convert from rip-relative addressing to register-relative addressing
 374	 * via a scratch register.
 375	 *
 376	 * This is tricky since there are insns with modrm byte
 377	 * which also use registers not encoded in modrm byte:
 378	 * [i]div/[i]mul: implicitly use dx:ax
 379	 * shift ops: implicitly use cx
 380	 * cmpxchg: implicitly uses ax
 381	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 382	 *   Encoding: 0f c7/1 modrm
 383	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 384	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 385	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 386	 *   Example where none of bx,cx,dx can be used as scratch reg:
 387	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 388	 * [v]pcmpistri: implicitly uses cx, xmm0
 389	 * [v]pcmpistrm: implicitly uses xmm0
 390	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 391	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 392	 *   Evil SSE4.2 string comparison ops from hell.
 393	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 394	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 395	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 396	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 397	 *   and that it can have only register operands, not mem
 398	 *   (its modrm byte must have mode=11).
 399	 *   If these restrictions will ever be lifted,
 400	 *   we'll need code to prevent selection of di as scratch reg!
 401	 *
 402	 * Summary: I don't know any insns with modrm byte which
 403	 * use SI register implicitly. DI register is used only
 404	 * by one insn (maskmovq) and BX register is used
 405	 * only by one too (cmpxchg8b).
 406	 * BP is stack-segment based (may be a problem?).
 407	 * AX, DX, CX are off-limits (many implicit users).
 408	 * SP is unusable (it's stack pointer - think about "pop mem";
 409	 * also, rsp+disp32 needs sib encoding -> insn length change).
 410	 */
 411
 412	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 413	reg2 = 0xff;		/* Fetch vex.vvvv */
 414	if (insn->vex_prefix.nbytes)
 415		reg2 = insn->vex_prefix.bytes[2];
 416	/*
 417	 * TODO: add XOP vvvv reading.
 418	 *
 419	 * vex.vvvv field is in bits 6-3, bits are inverted.
 420	 * But in 32-bit mode, high-order bit may be ignored.
 421	 * Therefore, let's consider only 3 low-order bits.
 422	 */
 423	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 424	/*
 425	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 426	 *
 427	 * Choose scratch reg. Order is important: must not select bx
 428	 * if we can use si (cmpxchg8b case!)
 429	 */
 430	if (reg != 6 && reg2 != 6) {
 431		reg2 = 6;
 432		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 433	} else if (reg != 7 && reg2 != 7) {
 434		reg2 = 7;
 435		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 436		/* TODO (paranoia): force maskmovq to not use di */
 437	} else {
 438		reg2 = 3;
 439		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 440	}
 441	/*
 442	 * Point cursor at the modrm byte.  The next 4 bytes are the
 443	 * displacement.  Beyond the displacement, for some instructions,
 444	 * is the immediate operand.
 445	 */
 446	cursor = auprobe->insn + insn_offset_modrm(insn);
 
 
 447	/*
 448	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 449	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 450	 * 89 86 disp32  mov %eax,disp32(%rsi)
 451	 */
 452	*cursor = 0x80 | (reg << 3) | reg2;
 453}
 454
 455static inline unsigned long *
 456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 457{
 458	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 459		return &regs->si;
 460	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 461		return &regs->di;
 462	return &regs->bx;
 463}
 
 
 
 
 
 
 464
 465/*
 466 * If we're emulating a rip-relative instruction, save the contents
 467 * of the scratch register and store the target address in that register.
 468 */
 469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 470{
 471	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 472		struct uprobe_task *utask = current->utask;
 473		unsigned long *sr = scratch_reg(auprobe, regs);
 474
 475		utask->autask.saved_scratch_register = *sr;
 476		*sr = utask->vaddr + auprobe->defparam.ilen;
 
 
 477	}
 
 478}
 479
 480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 481{
 482	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 483		struct uprobe_task *utask = current->utask;
 484		unsigned long *sr = scratch_reg(auprobe, regs);
 485
 486		*sr = utask->autask.saved_scratch_register;
 
 
 
 
 
 
 
 
 
 
 487	}
 
 488}
 489#else /* 32-bit: */
 490/*
 491 * No RIP-relative addressing on 32-bit
 492 */
 493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 494{
 495}
 496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 497{
 
 
 
 498}
 499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 
 500{
 
 501}
 502#endif /* CONFIG_X86_64 */
 503
 504struct uprobe_xol_ops {
 505	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 506	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 508	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 509};
 510
 511static inline int sizeof_long(struct pt_regs *regs)
 512{
 513	/*
 514	 * Check registers for mode as in_xxx_syscall() does not apply here.
 515	 */
 516	return user_64bit_mode(regs) ? 8 : 4;
 517}
 
 518
 519static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 
 
 
 
 
 
 520{
 521	riprel_pre_xol(auprobe, regs);
 522	return 0;
 523}
 524
 525static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 526{
 527	unsigned long new_sp = regs->sp - sizeof_long(regs);
 
 528
 529	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 530		return -EFAULT;
 531
 532	regs->sp = new_sp;
 533	return 0;
 534}
 535
 
 536/*
 537 * We have to fix things up as follows:
 538 *
 539 * Typically, the new ip is relative to the copied instruction.  We need
 540 * to make it relative to the original instruction (FIX_IP).  Exceptions
 541 * are return instructions and absolute or indirect jump or call instructions.
 542 *
 543 * If the single-stepped instruction was a call, the return address that
 544 * is atop the stack is the address following the copied instruction.  We
 545 * need to make it the address following the original instruction (FIX_CALL).
 546 *
 547 * If the original instruction was a rip-relative instruction such as
 548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 550 * We need to restore the contents of the scratch register
 551 * (FIX_RIP_reg).
 552 */
 553static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 554{
 555	struct uprobe_task *utask = current->utask;
 556
 557	riprel_post_xol(auprobe, regs);
 558	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 559		long correction = utask->vaddr - utask->xol_vaddr;
 560		regs->ip += correction;
 561	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 562		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 563		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 564			return -ERESTART;
 565	}
 566	/* popf; tell the caller to not touch TF */
 567	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 568		utask->autask.saved_tf = true;
 569
 570	return 0;
 571}
 572
 573static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 574{
 575	riprel_post_xol(auprobe, regs);
 576}
 577
 578static const struct uprobe_xol_ops default_xol_ops = {
 579	.pre_xol  = default_pre_xol_op,
 580	.post_xol = default_post_xol_op,
 581	.abort	  = default_abort_op,
 582};
 583
 584static bool branch_is_call(struct arch_uprobe *auprobe)
 585{
 586	return auprobe->branch.opc1 == 0xe8;
 587}
 588
 589#define CASE_COND					\
 590	COND(70, 71, XF(OF))				\
 591	COND(72, 73, XF(CF))				\
 592	COND(74, 75, XF(ZF))				\
 593	COND(78, 79, XF(SF))				\
 594	COND(7a, 7b, XF(PF))				\
 595	COND(76, 77, XF(CF) || XF(ZF))			\
 596	COND(7c, 7d, XF(SF) != XF(OF))			\
 597	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 598
 599#define COND(op_y, op_n, expr)				\
 600	case 0x ## op_y: DO((expr) != 0)		\
 601	case 0x ## op_n: DO((expr) == 0)
 602
 603#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 604
 605static bool is_cond_jmp_opcode(u8 opcode)
 606{
 607	switch (opcode) {
 608	#define DO(expr)	\
 609		return true;
 610	CASE_COND
 611	#undef	DO
 612
 613	default:
 614		return false;
 615	}
 616}
 
 617
 618static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 
 
 
 
 
 619{
 620	unsigned long flags = regs->flags;
 621
 622	switch (auprobe->branch.opc1) {
 623	#define DO(expr)	\
 624		return expr;
 625	CASE_COND
 626	#undef	DO
 627
 628	default:	/* not a conditional jmp */
 629		return true;
 630	}
 631}
 632
 633#undef	XF
 634#undef	COND
 635#undef	CASE_COND
 636
 637static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 640	unsigned long offs = (long)auprobe->branch.offs;
 641
 642	if (branch_is_call(auprobe)) {
 643		/*
 644		 * If it fails we execute this (mangled, see the comment in
 645		 * branch_clear_offset) insn out-of-line. In the likely case
 646		 * this should trigger the trap, and the probed application
 647		 * should die or restart the same insn after it handles the
 648		 * signal, arch_uprobe_post_xol() won't be even called.
 649		 *
 650		 * But there is corner case, see the comment in ->post_xol().
 651		 */
 652		if (emulate_push_stack(regs, new_ip))
 653			return false;
 654	} else if (!check_jmp_cond(auprobe, regs)) {
 655		offs = 0;
 656	}
 657
 658	regs->ip = new_ip + offs;
 659	return true;
 660}
 661
 662static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 663{
 664	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 665
 666	if (emulate_push_stack(regs, *src_ptr))
 667		return false;
 668	regs->ip += auprobe->push.ilen;
 669	return true;
 670}
 671
 672static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 673{
 674	BUG_ON(!branch_is_call(auprobe));
 675	/*
 676	 * We can only get here if branch_emulate_op() failed to push the ret
 677	 * address _and_ another thread expanded our stack before the (mangled)
 678	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 679	 * We could also restore ->ip and try to call branch_emulate_op() again.
 680	 */
 681	regs->sp += sizeof_long(regs);
 682	return -ERESTART;
 683}
 684
 685static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 
 686{
 687	/*
 688	 * Turn this insn into "call 1f; 1:", this is what we will execute
 689	 * out-of-line if ->emulate() fails. We only need this to generate
 690	 * a trap, so that the probed task receives the correct signal with
 691	 * the properly filled siginfo.
 692	 *
 693	 * But see the comment in ->post_xol(), in the unlikely case it can
 694	 * succeed. So we need to ensure that the new ->ip can not fall into
 695	 * the non-canonical area and trigger #GP.
 696	 *
 697	 * We could turn it into (say) "pushf", but then we would need to
 698	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 699	 * of ->insn[] for set_orig_insn().
 700	 */
 701	memset(auprobe->insn + insn_offset_immediate(insn),
 702		0, insn->immediate.nbytes);
 703}
 704
 705static const struct uprobe_xol_ops branch_xol_ops = {
 706	.emulate  = branch_emulate_op,
 707	.post_xol = branch_post_xol_op,
 708};
 709
 710static const struct uprobe_xol_ops push_xol_ops = {
 711	.emulate  = push_emulate_op,
 712};
 713
 714/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 715static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 716{
 717	u8 opc1 = OPCODE1(insn);
 718	int i;
 719
 720	switch (opc1) {
 721	case 0xeb:	/* jmp 8 */
 722	case 0xe9:	/* jmp 32 */
 723	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 724		break;
 725
 726	case 0xe8:	/* call relative */
 727		branch_clear_offset(auprobe, insn);
 728		break;
 729
 730	case 0x0f:
 731		if (insn->opcode.nbytes != 2)
 732			return -ENOSYS;
 733		/*
 734		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 735		 * OPCODE1() of the "short" jmp which checks the same condition.
 
 
 736		 */
 737		opc1 = OPCODE2(insn) - 0x10;
 738		/* fall through */
 739	default:
 740		if (!is_cond_jmp_opcode(opc1))
 741			return -ENOSYS;
 742	}
 743
 744	/*
 745	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 746	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 747	 * No one uses these insns, reject any branch insns with such prefix.
 748	 */
 749	for (i = 0; i < insn->prefixes.nbytes; i++) {
 750		if (insn->prefixes.bytes[i] == 0x66)
 751			return -ENOTSUPP;
 752	}
 753
 754	auprobe->branch.opc1 = opc1;
 755	auprobe->branch.ilen = insn->length;
 756	auprobe->branch.offs = insn->immediate.value;
 757
 758	auprobe->ops = &branch_xol_ops;
 759	return 0;
 760}
 761
 762/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 763static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 764{
 765	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 766
 767	if (opc1 < 0x50 || opc1 > 0x57)
 768		return -ENOSYS;
 769
 770	if (insn->length > 2)
 771		return -ENOSYS;
 772	if (insn->length == 2) {
 773		/* only support rex_prefix 0x41 (x64 only) */
 774#ifdef CONFIG_X86_64
 775		if (insn->rex_prefix.nbytes != 1 ||
 776		    insn->rex_prefix.bytes[0] != 0x41)
 777			return -ENOSYS;
 778
 779		switch (opc1) {
 780		case 0x50:
 781			reg_offset = offsetof(struct pt_regs, r8);
 782			break;
 783		case 0x51:
 784			reg_offset = offsetof(struct pt_regs, r9);
 785			break;
 786		case 0x52:
 787			reg_offset = offsetof(struct pt_regs, r10);
 788			break;
 789		case 0x53:
 790			reg_offset = offsetof(struct pt_regs, r11);
 791			break;
 792		case 0x54:
 793			reg_offset = offsetof(struct pt_regs, r12);
 794			break;
 795		case 0x55:
 796			reg_offset = offsetof(struct pt_regs, r13);
 797			break;
 798		case 0x56:
 799			reg_offset = offsetof(struct pt_regs, r14);
 800			break;
 801		case 0x57:
 802			reg_offset = offsetof(struct pt_regs, r15);
 803			break;
 804		}
 805#else
 806		return -ENOSYS;
 807#endif
 808	} else {
 809		switch (opc1) {
 810		case 0x50:
 811			reg_offset = offsetof(struct pt_regs, ax);
 812			break;
 813		case 0x51:
 814			reg_offset = offsetof(struct pt_regs, cx);
 815			break;
 816		case 0x52:
 817			reg_offset = offsetof(struct pt_regs, dx);
 818			break;
 819		case 0x53:
 820			reg_offset = offsetof(struct pt_regs, bx);
 821			break;
 822		case 0x54:
 823			reg_offset = offsetof(struct pt_regs, sp);
 824			break;
 825		case 0x55:
 826			reg_offset = offsetof(struct pt_regs, bp);
 827			break;
 828		case 0x56:
 829			reg_offset = offsetof(struct pt_regs, si);
 830			break;
 831		case 0x57:
 832			reg_offset = offsetof(struct pt_regs, di);
 833			break;
 834		}
 835	}
 836
 837	auprobe->push.reg_offset = reg_offset;
 838	auprobe->push.ilen = insn->length;
 839	auprobe->ops = &push_xol_ops;
 840	return 0;
 841}
 842
 843/**
 844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 845 * @mm: the probed address space.
 846 * @arch_uprobe: the probepoint information.
 847 * @addr: virtual address at which to install the probepoint
 848 * Return 0 on success or a -ve number on error.
 849 */
 850int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 851{
 852	struct insn insn;
 853	u8 fix_ip_or_call = UPROBE_FIX_IP;
 854	int ret;
 855
 856	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 857	if (ret)
 858		return ret;
 859
 860	ret = branch_setup_xol_ops(auprobe, &insn);
 861	if (ret != -ENOSYS)
 862		return ret;
 863
 864	ret = push_setup_xol_ops(auprobe, &insn);
 865	if (ret != -ENOSYS)
 866		return ret;
 867
 868	/*
 869	 * Figure out which fixups default_post_xol_op() will need to perform,
 870	 * and annotate defparam->fixups accordingly.
 871	 */
 872	switch (OPCODE1(&insn)) {
 873	case 0x9d:		/* popf */
 874		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 875		break;
 876	case 0xc3:		/* ret or lret -- ip is correct */
 877	case 0xcb:
 878	case 0xc2:
 879	case 0xca:
 880	case 0xea:		/* jmp absolute -- ip is correct */
 881		fix_ip_or_call = 0;
 882		break;
 883	case 0x9a:		/* call absolute - Fix return addr, not ip */
 884		fix_ip_or_call = UPROBE_FIX_CALL;
 885		break;
 886	case 0xff:
 887		switch (MODRM_REG(&insn)) {
 888		case 2: case 3:			/* call or lcall, indirect */
 889			fix_ip_or_call = UPROBE_FIX_CALL;
 890			break;
 891		case 4: case 5:			/* jmp or ljmp, indirect */
 892			fix_ip_or_call = 0;
 893			break;
 894		}
 895		/* fall through */
 896	default:
 897		riprel_analyze(auprobe, &insn);
 898	}
 899
 900	auprobe->defparam.ilen = insn.length;
 901	auprobe->defparam.fixups |= fix_ip_or_call;
 902
 903	auprobe->ops = &default_xol_ops;
 904	return 0;
 905}
 906
 907/*
 908 * arch_uprobe_pre_xol - prepare to execute out of line.
 909 * @auprobe: the probepoint information.
 910 * @regs: reflects the saved user state of current task.
 911 */
 912int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 913{
 914	struct uprobe_task *utask = current->utask;
 915
 916	if (auprobe->ops->pre_xol) {
 917		int err = auprobe->ops->pre_xol(auprobe, regs);
 918		if (err)
 919			return err;
 920	}
 921
 922	regs->ip = utask->xol_vaddr;
 923	utask->autask.saved_trap_nr = current->thread.trap_nr;
 924	current->thread.trap_nr = UPROBE_TRAP_NR;
 925
 926	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 927	regs->flags |= X86_EFLAGS_TF;
 928	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 929		set_task_blockstep(current, false);
 930
 931	return 0;
 932}
 
 933
 934/*
 935 * If xol insn itself traps and generates a signal(Say,
 936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 937 * instruction jumps back to its own address. It is assumed that anything
 938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 939 *
 940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 943 */
 944bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 945{
 946	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 947		return true;
 948
 949	return false;
 950}
 951
 952/*
 953 * Called after single-stepping. To avoid the SMP problems that can
 954 * occur when we temporarily put back the original opcode to
 955 * single-step, we single-stepped a copy of the instruction.
 956 *
 957 * This function prepares to resume execution after the single-step.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958 */
 959int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 960{
 961	struct uprobe_task *utask = current->utask;
 962	bool send_sigtrap = utask->autask.saved_tf;
 963	int err = 0;
 964
 965	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 966	current->thread.trap_nr = utask->autask.saved_trap_nr;
 967
 968	if (auprobe->ops->post_xol) {
 969		err = auprobe->ops->post_xol(auprobe, regs);
 970		if (err) {
 971			/*
 972			 * Restore ->ip for restart or post mortem analysis.
 973			 * ->post_xol() must not return -ERESTART unless this
 974			 * is really possible.
 975			 */
 976			regs->ip = utask->vaddr;
 977			if (err == -ERESTART)
 978				err = 0;
 979			send_sigtrap = false;
 980		}
 981	}
 982	/*
 983	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 984	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 985	 * to examine the opcode to make it right.
 986	 */
 987	if (send_sigtrap)
 988		send_sig(SIGTRAP, current, 0);
 989
 990	if (!utask->autask.saved_tf)
 991		regs->flags &= ~X86_EFLAGS_TF;
 992
 993	return err;
 994}
 995
 996/* callback routine for handling exceptions. */
 997int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 998{
 999	struct die_args *args = data;
1000	struct pt_regs *regs = args->regs;
1001	int ret = NOTIFY_DONE;
1002
1003	/* We are only interested in userspace traps */
1004	if (regs && !user_mode(regs))
1005		return NOTIFY_DONE;
1006
1007	switch (val) {
1008	case DIE_INT3:
1009		if (uprobe_pre_sstep_notifier(regs))
1010			ret = NOTIFY_STOP;
1011
1012		break;
1013
1014	case DIE_DEBUG:
1015		if (uprobe_post_sstep_notifier(regs))
1016			ret = NOTIFY_STOP;
1017
1018	default:
1019		break;
1020	}
1021
1022	return ret;
1023}
1024
1025/*
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1029 */
1030void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031{
1032	struct uprobe_task *utask = current->utask;
1033
1034	if (auprobe->ops->abort)
1035		auprobe->ops->abort(auprobe, regs);
1036
1037	current->thread.trap_nr = utask->autask.saved_trap_nr;
1038	regs->ip = utask->vaddr;
1039	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040	if (!utask->autask.saved_tf)
1041		regs->flags &= ~X86_EFLAGS_TF;
1042}
1043
1044static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045{
1046	if (auprobe->ops->emulate)
1047		return auprobe->ops->emulate(auprobe, regs);
1048	return false;
1049}
1050
 
 
 
 
1051bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052{
1053	bool ret = __skip_sstep(auprobe, regs);
1054	if (ret && (regs->flags & X86_EFLAGS_TF))
1055		send_sig(SIGTRAP, current, 0);
1056	return ret;
1057}
1058
1059unsigned long
1060arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061{
1062	int rasize = sizeof_long(regs), nleft;
1063	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064
1065	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066		return -1;
 
1067
1068	/* check whether address has been already hijacked */
1069	if (orig_ret_vaddr == trampoline_vaddr)
1070		return orig_ret_vaddr;
1071
1072	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073	if (likely(!nleft))
1074		return orig_ret_vaddr;
1075
1076	if (nleft != rasize) {
1077		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078		       current->pid, regs->sp, regs->ip);
1079
1080		force_sig(SIGSEGV);
1081	}
1082
1083	return -1;
1084}
1085
1086bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087				struct pt_regs *regs)
1088{
1089	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090		return regs->sp < ret->stack;
1091	else
1092		return regs->sp <= ret->stack;
1093}
v3.5.6
 
  1/*
  2 * User-space Probes (UProbes) for x86
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2008-2011
 19 * Authors:
 20 *	Srikar Dronamraju
 21 *	Jim Keniston
 22 */
 23#include <linux/kernel.h>
 24#include <linux/sched.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/uaccess.h>
 28
 29#include <linux/kdebug.h>
 30#include <asm/processor.h>
 31#include <asm/insn.h>
 
 32
 33/* Post-execution fixups. */
 34
 35/* No fixup needed */
 36#define UPROBE_FIX_NONE		0x0
 37
 38/* Adjust IP back to vicinity of actual insn */
 39#define UPROBE_FIX_IP		0x1
 40
 41/* Adjust the return address of a call insn */
 42#define UPROBE_FIX_CALL	0x2
 
 
 
 43
 44#define UPROBE_FIX_RIP_AX	0x8000
 45#define UPROBE_FIX_RIP_CX	0x4000
 
 
 
 46
 47#define	UPROBE_TRAP_NR		UINT_MAX
 48
 49/* Adaptations for mhiramat x86 decoder v14. */
 50#define OPCODE1(insn)		((insn)->opcode.bytes[0])
 51#define OPCODE2(insn)		((insn)->opcode.bytes[1])
 52#define OPCODE3(insn)		((insn)->opcode.bytes[2])
 53#define MODRM_REG(insn)		X86_MODRM_REG(insn->modrm.value)
 54
 55#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 56	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 57	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 58	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 59	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 60	 << (row % 32))
 61
 62/*
 63 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 65 * some versions of gcc to think only *(unsigned long*) is used.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66 */
 
 67static volatile u32 good_insns_32[256 / 32] = {
 68	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 69	/*      ----------------------------------------------         */
 70	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
 71	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 72	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
 73	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
 74	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 75	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 76	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 77	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 78	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 79	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 80	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 81	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 82	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 83	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 84	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 85	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 86	/*      ----------------------------------------------         */
 87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 88};
 
 
 
 89
 90/* Using this for both 64-bit and 32-bit apps */
 91static volatile u32 good_2byte_insns[256 / 32] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 93	/*      ----------------------------------------------         */
 94	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
 95	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 96	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 97	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
 98	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 99	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
100	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
101	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
102	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
104	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
105	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
106	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
107	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
109	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
110	/*      ----------------------------------------------         */
111	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
112};
 
 
 
113
114#ifdef CONFIG_X86_64
115/* Good-instruction tables for 64-bit apps */
116static volatile u32 good_insns_64[256 / 32] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
118	/*      ----------------------------------------------         */
119	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
120	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
121	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
122	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
123	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
124	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
125	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
126	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
127	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
128	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
129	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
130	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
131	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
132	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
133	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
134	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
135	/*      ----------------------------------------------         */
136	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
137};
138#endif
139#undef W
140
141/*
142 * opcodes we'll probably never support:
143 *
144 *  6c-6d, e4-e5, ec-ed - in
145 *  6e-6f, e6-e7, ee-ef - out
146 *  cc, cd - int3, int
147 *  cf - iret
148 *  d6 - illegal instruction
149 *  f1 - int1/icebp
150 *  f4 - hlt
151 *  fa, fb - cli, sti
152 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
153 *
154 * invalid opcodes in 64-bit mode:
155 *
156 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
157 *  63 - we support this opcode in x86_64 but not in i386.
158 *
159 * opcodes we may need to refine support for:
160 *
161 *  0f - 2-byte instructions: For many of these instructions, the validity
162 *  depends on the prefix and/or the reg field.  On such instructions, we
163 *  just consider the opcode combination valid if it corresponds to any
164 *  valid instruction.
165 *
166 *  8f - Group 1 - only reg = 0 is OK
167 *  c6-c7 - Group 11 - only reg = 0 is OK
168 *  d9-df - fpu insns with some illegal encodings
169 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
170 *  certain floating-point instructions, such as addsd.
171 *
172 *  fe - Group 4 - only reg = 0 or 1 is OK
173 *  ff - Group 5 - only reg = 0-6 is OK
174 *
175 * others -- Do we need to support these?
176 *
177 *  0f - (floating-point?) prefetch instructions
178 *  07, 17, 1f - pop es, pop ss, pop ds
179 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
180 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
181 *  67 - addr16 prefix
182 *  ce - into
183 *  f0 - lock prefix
184 */
185
186/*
187 * TODO:
188 * - Where necessary, examine the modrm byte and allow only valid instructions
189 * in the different Groups and fpu instructions.
190 */
191
192static bool is_prefix_bad(struct insn *insn)
193{
194	int i;
195
196	for (i = 0; i < insn->prefixes.nbytes; i++) {
197		switch (insn->prefixes.bytes[i]) {
198		case 0x26:	/* INAT_PFX_ES   */
199		case 0x2E:	/* INAT_PFX_CS   */
200		case 0x36:	/* INAT_PFX_DS   */
201		case 0x3E:	/* INAT_PFX_SS   */
202		case 0xF0:	/* INAT_PFX_LOCK */
 
 
 
203			return true;
204		}
205	}
206	return false;
207}
208
209static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
210{
211	insn_init(insn, auprobe->insn, false);
 
 
 
 
 
 
212
213	/* Skip good instruction prefixes; reject "bad" ones. */
214	insn_get_opcode(insn);
215	if (is_prefix_bad(insn))
216		return -ENOTSUPP;
217
218	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
 
 
 
 
 
 
 
 
 
219		return 0;
220
221	if (insn->opcode.nbytes == 2) {
222		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
223			return 0;
224	}
225
226	return -ENOTSUPP;
227}
228
229/*
230 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
231 * annotate arch_uprobe->fixups accordingly.  To start with,
232 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
233 */
234static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
235{
236	bool fix_ip = true, fix_call = false;	/* defaults */
237	int reg;
238
239	insn_get_opcode(insn);	/* should be a nop */
240
241	switch (OPCODE1(insn)) {
242	case 0xc3:		/* ret/lret */
243	case 0xcb:
244	case 0xc2:
245	case 0xca:
246		/* ip is correct */
247		fix_ip = false;
248		break;
249	case 0xe8:		/* call relative - Fix return addr */
250		fix_call = true;
251		break;
252	case 0x9a:		/* call absolute - Fix return addr, not ip */
253		fix_call = true;
254		fix_ip = false;
255		break;
256	case 0xff:
257		insn_get_modrm(insn);
258		reg = MODRM_REG(insn);
259		if (reg == 2 || reg == 3) {
260			/* call or lcall, indirect */
261			/* Fix return addr; ip is correct. */
262			fix_call = true;
263			fix_ip = false;
264		} else if (reg == 4 || reg == 5) {
265			/* jmp or ljmp, indirect */
266			/* ip is correct. */
267			fix_ip = false;
268		}
269		break;
270	case 0xea:		/* jmp absolute -- ip is correct */
271		fix_ip = false;
272		break;
273	default:
274		break;
275	}
276	if (fix_ip)
277		auprobe->fixups |= UPROBE_FIX_IP;
278	if (fix_call)
279		auprobe->fixups |= UPROBE_FIX_CALL;
280}
281
282#ifdef CONFIG_X86_64
283/*
284 * If arch_uprobe->insn doesn't use rip-relative addressing, return
285 * immediately.  Otherwise, rewrite the instruction so that it accesses
286 * its memory operand indirectly through a scratch register.  Set
287 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
288 * accordingly.  (The contents of the scratch register will be saved
289 * before we single-step the modified instruction, and restored
290 * afterward.)
291 *
292 * We do this because a rip-relative instruction can access only a
293 * relatively small area (+/- 2 GB from the instruction), and the XOL
294 * area typically lies beyond that area.  At least for instructions
295 * that store to memory, we can't execute the original instruction
296 * and "fix things up" later, because the misdirected store could be
297 * disastrous.
298 *
299 * Some useful facts about rip-relative instructions:
300 *
301 *  - There's always a modrm byte.
302 *  - There's never a SIB byte.
303 *  - The displacement is always 4 bytes.
 
 
 
304 */
305static void
306handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
307{
308	u8 *cursor;
309	u8 reg;
 
310
311	if (mm->context.ia32_compat)
312		return;
313
314	auprobe->rip_rela_target_address = 0x0;
315	if (!insn_rip_relative(insn))
316		return;
317
318	/*
319	 * insn_rip_relative() would have decoded rex_prefix, modrm.
320	 * Clear REX.b bit (extension of MODRM.rm field):
321	 * we want to encode rax/rcx, not r8/r9.
322	 */
323	if (insn->rex_prefix.nbytes) {
324		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
325		*cursor &= 0xfe;	/* Clearing REX.B bit */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326	}
327
328	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329	 * Point cursor at the modrm byte.  The next 4 bytes are the
330	 * displacement.  Beyond the displacement, for some instructions,
331	 * is the immediate operand.
332	 */
333	cursor = auprobe->insn + insn_offset_modrm(insn);
334	insn_get_length(insn);
335
336	/*
337	 * Convert from rip-relative addressing to indirect addressing
338	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
339	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
340	 */
341	reg = MODRM_REG(insn);
342	if (reg == 0) {
343		/*
344		 * The register operand (if any) is either the A register
345		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
346		 * REX prefix) %r8.  In any case, we know the C register
347		 * is NOT the register operand, so we use %rcx (register
348		 * #1) for the scratch register.
349		 */
350		auprobe->fixups = UPROBE_FIX_RIP_CX;
351		/* Change modrm from 00 000 101 to 00 000 001. */
352		*cursor = 0x1;
353	} else {
354		/* Use %rax (register #0) for the scratch register. */
355		auprobe->fixups = UPROBE_FIX_RIP_AX;
356		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
357		*cursor = (reg << 3);
358	}
359
360	/* Target address = address of next instruction + (signed) offset */
361	auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
 
 
 
 
 
 
 
362
363	/* Displacement field is gone; slide immediate field (if any) over. */
364	if (insn->immediate.nbytes) {
365		cursor++;
366		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
367	}
368	return;
369}
370
371static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
372{
373	insn_init(insn, auprobe->insn, true);
 
 
374
375	/* Skip good instruction prefixes; reject "bad" ones. */
376	insn_get_opcode(insn);
377	if (is_prefix_bad(insn))
378		return -ENOTSUPP;
379
380	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
381		return 0;
382
383	if (insn->opcode.nbytes == 2) {
384		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
385			return 0;
386	}
387	return -ENOTSUPP;
388}
389
390static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
 
 
 
 
 
 
391{
392	if (mm->context.ia32_compat)
393		return validate_insn_32bits(auprobe, insn);
394	return validate_insn_64bits(auprobe, insn);
395}
396#else /* 32-bit: */
397static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
398{
399	/* No RIP-relative addressing on 32-bit */
400}
 
401
402static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm,  struct insn *insn)
 
 
 
 
 
 
 
403{
404	return validate_insn_32bits(auprobe, insn);
 
 
 
405}
406#endif /* CONFIG_X86_64 */
407
408/**
409 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
410 * @mm: the probed address space.
411 * @arch_uprobe: the probepoint information.
412 * Return 0 on success or a -ve number on error.
413 */
414int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm)
415{
416	int ret;
417	struct insn insn;
 
418
419	auprobe->fixups = 0;
420	ret = validate_insn_bits(auprobe, mm, &insn);
421	if (ret != 0)
422		return ret;
423
424	handle_riprel_insn(auprobe, mm, &insn);
425	prepare_fixups(auprobe, &insn);
426
 
427	return 0;
428}
429
430#ifdef CONFIG_X86_64
431/*
432 * If we're emulating a rip-relative instruction, save the contents
433 * of the scratch register and store the target address in that register.
 
 
 
 
 
 
 
 
 
 
 
 
 
434 */
435static void
436pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
437				struct arch_uprobe_task *autask)
438{
439	if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
440		autask->saved_scratch_register = regs->ax;
441		regs->ax = current->utask->vaddr;
442		regs->ax += auprobe->rip_rela_target_address;
443	} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
444		autask->saved_scratch_register = regs->cx;
445		regs->cx = current->utask->vaddr;
446		regs->cx += auprobe->rip_rela_target_address;
447	}
 
 
 
 
 
448}
449#else
450static void
451pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
452				struct arch_uprobe_task *autask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453{
454	/* No RIP-relative addressing on 32-bit */
 
 
 
 
 
 
 
 
455}
456#endif
457
458/*
459 * arch_uprobe_pre_xol - prepare to execute out of line.
460 * @auprobe: the probepoint information.
461 * @regs: reflects the saved user state of current task.
462 */
463int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
464{
465	struct arch_uprobe_task *autask;
466
467	autask = &current->utask->autask;
468	autask->saved_trap_nr = current->thread.trap_nr;
469	current->thread.trap_nr = UPROBE_TRAP_NR;
470	regs->ip = current->utask->xol_vaddr;
471	pre_xol_rip_insn(auprobe, regs, autask);
472
473	return 0;
 
 
474}
475
476/*
477 * This function is called by arch_uprobe_post_xol() to adjust the return
478 * address pushed by a call instruction executed out of line.
479 */
480static int adjust_ret_addr(unsigned long sp, long correction)
481{
482	int rasize, ncopied;
483	long ra = 0;
484
485	if (is_ia32_task())
486		rasize = 4;
487	else
488		rasize = 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489
490	ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
491	if (unlikely(ncopied))
492		return -EFAULT;
493
494	ra += correction;
495	ncopied = copy_to_user((void __user *)sp, &ra, rasize);
496	if (unlikely(ncopied))
497		return -EFAULT;
 
498
499	return 0;
 
 
 
 
 
 
 
 
 
 
500}
501
502#ifdef CONFIG_X86_64
503static bool is_riprel_insn(struct arch_uprobe *auprobe)
504{
505	return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506}
507
508static void
509handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
 
 
 
 
 
 
 
 
 
510{
511	if (is_riprel_insn(auprobe)) {
512		struct arch_uprobe_task *autask;
513
514		autask = &current->utask->autask;
515		if (auprobe->fixups & UPROBE_FIX_RIP_AX)
516			regs->ax = autask->saved_scratch_register;
517		else
518			regs->cx = autask->saved_scratch_register;
519
 
 
 
 
 
 
 
520		/*
521		 * The original instruction includes a displacement, and so
522		 * is 4 bytes longer than what we've just single-stepped.
523		 * Fall through to handle stuff like "jmpq *...(%rip)" and
524		 * "callq *...(%rip)".
525		 */
526		if (correction)
527			*correction += 4;
 
 
 
 
 
 
 
 
 
 
 
 
 
528	}
 
 
 
 
 
 
 
529}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530#else
531static void
532handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533{
534	/* No RIP-relative addressing on 32-bit */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535}
536#endif
537
538/*
539 * If xol insn itself traps and generates a signal(Say,
540 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
541 * instruction jumps back to its own address. It is assumed that anything
542 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
543 *
544 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
545 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
546 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
547 */
548bool arch_uprobe_xol_was_trapped(struct task_struct *t)
549{
550	if (t->thread.trap_nr != UPROBE_TRAP_NR)
551		return true;
552
553	return false;
554}
555
556/*
557 * Called after single-stepping. To avoid the SMP problems that can
558 * occur when we temporarily put back the original opcode to
559 * single-step, we single-stepped a copy of the instruction.
560 *
561 * This function prepares to resume execution after the single-step.
562 * We have to fix things up as follows:
563 *
564 * Typically, the new ip is relative to the copied instruction.  We need
565 * to make it relative to the original instruction (FIX_IP).  Exceptions
566 * are return instructions and absolute or indirect jump or call instructions.
567 *
568 * If the single-stepped instruction was a call, the return address that
569 * is atop the stack is the address following the copied instruction.  We
570 * need to make it the address following the original instruction (FIX_CALL).
571 *
572 * If the original instruction was a rip-relative instruction such as
573 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
574 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
575 * We need to restore the contents of the scratch register and adjust
576 * the ip, keeping in mind that the instruction we executed is 4 bytes
577 * shorter than the original instruction (since we squeezed out the offset
578 * field).  (FIX_RIP_AX or FIX_RIP_CX)
579 */
580int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
581{
582	struct uprobe_task *utask;
583	long correction;
584	int result = 0;
585
586	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 
587
588	utask = current->utask;
589	current->thread.trap_nr = utask->autask.saved_trap_nr;
590	correction = (long)(utask->vaddr - utask->xol_vaddr);
591	handle_riprel_post_xol(auprobe, regs, &correction);
592	if (auprobe->fixups & UPROBE_FIX_IP)
593		regs->ip += correction;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594
595	if (auprobe->fixups & UPROBE_FIX_CALL)
596		result = adjust_ret_addr(regs->sp, correction);
597
598	return result;
599}
600
601/* callback routine for handling exceptions. */
602int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
603{
604	struct die_args *args = data;
605	struct pt_regs *regs = args->regs;
606	int ret = NOTIFY_DONE;
607
608	/* We are only interested in userspace traps */
609	if (regs && !user_mode_vm(regs))
610		return NOTIFY_DONE;
611
612	switch (val) {
613	case DIE_INT3:
614		if (uprobe_pre_sstep_notifier(regs))
615			ret = NOTIFY_STOP;
616
617		break;
618
619	case DIE_DEBUG:
620		if (uprobe_post_sstep_notifier(regs))
621			ret = NOTIFY_STOP;
622
623	default:
624		break;
625	}
626
627	return ret;
628}
629
630/*
631 * This function gets called when XOL instruction either gets trapped or
632 * the thread has a fatal signal, so reset the instruction pointer to its
633 * probed address.
634 */
635void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
636{
637	struct uprobe_task *utask = current->utask;
638
 
 
 
639	current->thread.trap_nr = utask->autask.saved_trap_nr;
640	handle_riprel_post_xol(auprobe, regs, NULL);
641	instruction_pointer_set(regs, utask->vaddr);
 
 
 
 
 
 
 
 
 
642}
643
644/*
645 * Skip these instructions as per the currently known x86 ISA.
646 * 0x66* { 0x90 | 0x0f 0x1f | 0x0f 0x19 | 0x87 0xc0 }
647 */
648bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
649{
650	int i;
 
 
 
 
 
 
 
 
 
 
651
652	for (i = 0; i < MAX_UINSN_BYTES; i++) {
653		if ((auprobe->insn[i] == 0x66))
654			continue;
655
656		if (auprobe->insn[i] == 0x90)
657			return true;
 
658
659		if (i == (MAX_UINSN_BYTES - 1))
660			break;
 
661
662		if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x1f))
663			return true;
 
664
665		if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x19))
666			return true;
667
668		if ((auprobe->insn[i] == 0x87) && (auprobe->insn[i+1] == 0xc0))
669			return true;
670
671		break;
672	}
673	return false;
 
 
 
 
674}