Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 30#include <asm/apic.h>
 31#include <asm/syscalls.h>
 32#include <linux/uaccess.h>
 33#include <asm/mwait.h>
 34#include <asm/fpu/internal.h>
 35#include <asm/debugreg.h>
 36#include <asm/nmi.h>
 37#include <asm/tlbflush.h>
 38#include <asm/mce.h>
 39#include <asm/vm86.h>
 40#include <asm/switch_to.h>
 41#include <asm/desc.h>
 42#include <asm/prctl.h>
 43#include <asm/spec-ctrl.h>
 
 44#include <asm/proto.h>
 
 45
 46#include "process.h"
 47
 48/*
 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 51 * so they are allowed to end up in the .data..cacheline_aligned
 52 * section. Since TSS's are completely CPU-local, we want them
 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 54 */
 55__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 56	.x86_tss = {
 57		/*
 58		 * .sp0 is only used when entering ring 0 from a lower
 59		 * privilege level.  Since the init task never runs anything
 60		 * but ring 0 code, there is no need for a valid value here.
 61		 * Poison it.
 62		 */
 63		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 64
 65		/*
 66		 * .sp1 is cpu_current_top_of_stack.  The init task never
 67		 * runs user code, but cpu_current_top_of_stack should still
 68		 * be well defined before the first context switch.
 69		 */
 70		.sp1 = TOP_OF_INIT_STACK,
 71
 72#ifdef CONFIG_X86_32
 73		.ss0 = __KERNEL_DS,
 74		.ss1 = __KERNEL_CS,
 75		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 76#endif
 
 77	 },
 78#ifdef CONFIG_X86_32
 79	 /*
 80	  * Note that the .io_bitmap member must be extra-big. This is because
 81	  * the CPU will access an additional byte beyond the end of the IO
 82	  * permission bitmap. The extra byte must be all 1 bits, and must
 83	  * be within the limit.
 84	  */
 85	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 86#endif
 87};
 88EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 89
 90DEFINE_PER_CPU(bool, __tss_limit_invalid);
 91EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 92
 93/*
 94 * this gets called so that we can store lazy state into memory and copy the
 95 * current task into the new thread.
 96 */
 97int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 98{
 99	memcpy(dst, src, arch_task_struct_size);
100#ifdef CONFIG_VM86
101	dst->thread.vm86 = NULL;
102#endif
103
104	return fpu__copy(dst, src);
105}
106
107/*
108 * Free current thread data structures etc..
109 */
110void exit_thread(struct task_struct *tsk)
111{
112	struct thread_struct *t = &tsk->thread;
113	unsigned long *bp = t->io_bitmap_ptr;
114	struct fpu *fpu = &t->fpu;
115
116	if (bp) {
117		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119		t->io_bitmap_ptr = NULL;
120		clear_thread_flag(TIF_IO_BITMAP);
121		/*
122		 * Careful, clear this in the TSS too:
123		 */
124		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125		t->io_bitmap_max = 0;
126		put_cpu();
127		kfree(bp);
 
 
 
 
 
 
 
128	}
129
130	free_vm86(t);
 
 
131
132	fpu__drop(fpu);
 
 
 
 
 
 
 
 
 
 
 
 
133}
134
135void flush_thread(void)
136{
137	struct task_struct *tsk = current;
138
139	flush_ptrace_hw_breakpoint(tsk);
140	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141
142	fpu__clear(&tsk->thread.fpu);
 
143}
144
145void disable_TSC(void)
146{
147	preempt_disable();
148	if (!test_and_set_thread_flag(TIF_NOTSC))
149		/*
150		 * Must flip the CPU state synchronously with
151		 * TIF_NOTSC in the current running context.
152		 */
153		cr4_set_bits(X86_CR4_TSD);
154	preempt_enable();
155}
156
157static void enable_TSC(void)
158{
159	preempt_disable();
160	if (test_and_clear_thread_flag(TIF_NOTSC))
161		/*
162		 * Must flip the CPU state synchronously with
163		 * TIF_NOTSC in the current running context.
164		 */
165		cr4_clear_bits(X86_CR4_TSD);
166	preempt_enable();
167}
168
169int get_tsc_mode(unsigned long adr)
170{
171	unsigned int val;
172
173	if (test_thread_flag(TIF_NOTSC))
174		val = PR_TSC_SIGSEGV;
175	else
176		val = PR_TSC_ENABLE;
177
178	return put_user(val, (unsigned int __user *)adr);
179}
180
181int set_tsc_mode(unsigned int val)
182{
183	if (val == PR_TSC_SIGSEGV)
184		disable_TSC();
185	else if (val == PR_TSC_ENABLE)
186		enable_TSC();
187	else
188		return -EINVAL;
189
190	return 0;
191}
192
193DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194
195static void set_cpuid_faulting(bool on)
196{
197	u64 msrval;
198
199	msrval = this_cpu_read(msr_misc_features_shadow);
200	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202	this_cpu_write(msr_misc_features_shadow, msrval);
203	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204}
205
206static void disable_cpuid(void)
207{
208	preempt_disable();
209	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210		/*
211		 * Must flip the CPU state synchronously with
212		 * TIF_NOCPUID in the current running context.
213		 */
214		set_cpuid_faulting(true);
215	}
216	preempt_enable();
217}
218
219static void enable_cpuid(void)
220{
221	preempt_disable();
222	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223		/*
224		 * Must flip the CPU state synchronously with
225		 * TIF_NOCPUID in the current running context.
226		 */
227		set_cpuid_faulting(false);
228	}
229	preempt_enable();
230}
231
232static int get_cpuid_mode(void)
233{
234	return !test_thread_flag(TIF_NOCPUID);
235}
236
237static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238{
239	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
240		return -ENODEV;
241
242	if (cpuid_enabled)
243		enable_cpuid();
244	else
245		disable_cpuid();
246
247	return 0;
248}
249
250/*
251 * Called immediately after a successful exec.
252 */
253void arch_setup_new_exec(void)
254{
255	/* If cpuid was previously disabled for this task, re-enable it. */
256	if (test_thread_flag(TIF_NOCPUID))
257		enable_cpuid();
258
259	/*
260	 * Don't inherit TIF_SSBD across exec boundary when
261	 * PR_SPEC_DISABLE_NOEXEC is used.
262	 */
263	if (test_thread_flag(TIF_SSBD) &&
264	    task_spec_ssb_noexec(current)) {
265		clear_thread_flag(TIF_SSBD);
266		task_clear_spec_ssb_disable(current);
267		task_clear_spec_ssb_noexec(current);
268		speculation_ctrl_update(task_thread_info(current)->flags);
269	}
270}
271
272static inline void switch_to_bitmap(struct thread_struct *prev,
273				    struct thread_struct *next,
274				    unsigned long tifp, unsigned long tifn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275{
276	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 
 
 
 
 
 
 
 
 
 
 
 
277
278	if (tifn & _TIF_IO_BITMAP) {
279		/*
280		 * Copy the relevant range of the IO bitmap.
281		 * Normally this is 128 bytes or less:
282		 */
283		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
284		       max(prev->io_bitmap_max, next->io_bitmap_max));
285		/*
286		 * Make sure that the TSS limit is correct for the CPU
287		 * to notice the IO bitmap.
288		 */
289		refresh_tss_limit();
290	} else if (tifp & _TIF_IO_BITMAP) {
291		/*
292		 * Clear any possible leftover bits:
 
293		 */
294		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 
 
 
 
295	}
 
 
 
 
 
 
 
 
296}
 
 
 
297
298#ifdef CONFIG_SMP
299
300struct ssb_state {
301	struct ssb_state	*shared_state;
302	raw_spinlock_t		lock;
303	unsigned int		disable_state;
304	unsigned long		local_state;
305};
306
307#define LSTATE_SSB	0
308
309static DEFINE_PER_CPU(struct ssb_state, ssb_state);
310
311void speculative_store_bypass_ht_init(void)
312{
313	struct ssb_state *st = this_cpu_ptr(&ssb_state);
314	unsigned int this_cpu = smp_processor_id();
315	unsigned int cpu;
316
317	st->local_state = 0;
318
319	/*
320	 * Shared state setup happens once on the first bringup
321	 * of the CPU. It's not destroyed on CPU hotunplug.
322	 */
323	if (st->shared_state)
324		return;
325
326	raw_spin_lock_init(&st->lock);
327
328	/*
329	 * Go over HT siblings and check whether one of them has set up the
330	 * shared state pointer already.
331	 */
332	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
333		if (cpu == this_cpu)
334			continue;
335
336		if (!per_cpu(ssb_state, cpu).shared_state)
337			continue;
338
339		/* Link it to the state of the sibling: */
340		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
341		return;
342	}
343
344	/*
345	 * First HT sibling to come up on the core.  Link shared state of
346	 * the first HT sibling to itself. The siblings on the same core
347	 * which come up later will see the shared state pointer and link
348	 * themself to the state of this CPU.
349	 */
350	st->shared_state = st;
351}
352
353/*
354 * Logic is: First HT sibling enables SSBD for both siblings in the core
355 * and last sibling to disable it, disables it for the whole core. This how
356 * MSR_SPEC_CTRL works in "hardware":
357 *
358 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
359 */
360static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
361{
362	struct ssb_state *st = this_cpu_ptr(&ssb_state);
363	u64 msr = x86_amd_ls_cfg_base;
364
365	if (!static_cpu_has(X86_FEATURE_ZEN)) {
366		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
367		wrmsrl(MSR_AMD64_LS_CFG, msr);
368		return;
369	}
370
371	if (tifn & _TIF_SSBD) {
372		/*
373		 * Since this can race with prctl(), block reentry on the
374		 * same CPU.
375		 */
376		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
377			return;
378
379		msr |= x86_amd_ls_cfg_ssbd_mask;
380
381		raw_spin_lock(&st->shared_state->lock);
382		/* First sibling enables SSBD: */
383		if (!st->shared_state->disable_state)
384			wrmsrl(MSR_AMD64_LS_CFG, msr);
385		st->shared_state->disable_state++;
386		raw_spin_unlock(&st->shared_state->lock);
387	} else {
388		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
389			return;
390
391		raw_spin_lock(&st->shared_state->lock);
392		st->shared_state->disable_state--;
393		if (!st->shared_state->disable_state)
394			wrmsrl(MSR_AMD64_LS_CFG, msr);
395		raw_spin_unlock(&st->shared_state->lock);
396	}
397}
398#else
399static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
400{
401	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
402
403	wrmsrl(MSR_AMD64_LS_CFG, msr);
404}
405#endif
406
407static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
408{
409	/*
410	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411	 * so ssbd_tif_to_spec_ctrl() just works.
412	 */
413	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
414}
415
416/*
417 * Update the MSRs managing speculation control, during context switch.
418 *
419 * tifp: Previous task's thread flags
420 * tifn: Next task's thread flags
421 */
422static __always_inline void __speculation_ctrl_update(unsigned long tifp,
423						      unsigned long tifn)
424{
425	unsigned long tif_diff = tifp ^ tifn;
426	u64 msr = x86_spec_ctrl_base;
427	bool updmsr = false;
428
429	lockdep_assert_irqs_disabled();
430
431	/*
432	 * If TIF_SSBD is different, select the proper mitigation
433	 * method. Note that if SSBD mitigation is disabled or permanentely
434	 * enabled this branch can't be taken because nothing can set
435	 * TIF_SSBD.
436	 */
437	if (tif_diff & _TIF_SSBD) {
438		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
439			amd_set_ssb_virt_state(tifn);
440		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 
441			amd_set_core_ssb_state(tifn);
442		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
443			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
444			msr |= ssbd_tif_to_spec_ctrl(tifn);
445			updmsr  = true;
446		}
447	}
448
449	/*
450	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
451	 * otherwise avoid the MSR write.
452	 */
453	if (IS_ENABLED(CONFIG_SMP) &&
454	    static_branch_unlikely(&switch_to_cond_stibp)) {
455		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
456		msr |= stibp_tif_to_spec_ctrl(tifn);
457	}
458
459	if (updmsr)
460		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
461}
462
463static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
464{
465	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
466		if (task_spec_ssb_disable(tsk))
467			set_tsk_thread_flag(tsk, TIF_SSBD);
468		else
469			clear_tsk_thread_flag(tsk, TIF_SSBD);
470
471		if (task_spec_ib_disable(tsk))
472			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
473		else
474			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
475	}
476	/* Return the updated threadinfo flags*/
477	return task_thread_info(tsk)->flags;
478}
479
480void speculation_ctrl_update(unsigned long tif)
481{
482	unsigned long flags;
483
484	/* Forced update. Make sure all relevant TIF flags are different */
485	local_irq_save(flags);
486	__speculation_ctrl_update(~tif, tif);
487	local_irq_restore(flags);
488}
489
490/* Called from seccomp/prctl update */
491void speculation_ctrl_update_current(void)
492{
493	preempt_disable();
494	speculation_ctrl_update(speculation_ctrl_update_tif(current));
495	preempt_enable();
496}
497
 
 
 
 
 
 
 
 
 
 
 
498void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
499{
500	struct thread_struct *prev, *next;
501	unsigned long tifp, tifn;
502
503	prev = &prev_p->thread;
504	next = &next_p->thread;
505
506	tifn = READ_ONCE(task_thread_info(next_p)->flags);
507	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
508	switch_to_bitmap(prev, next, tifp, tifn);
 
509
510	propagate_user_return_notify(prev_p, next_p);
511
512	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
513	    arch_has_block_step()) {
514		unsigned long debugctl, msk;
515
516		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
517		debugctl &= ~DEBUGCTLMSR_BTF;
518		msk = tifn & _TIF_BLOCKSTEP;
519		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
520		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
521	}
522
523	if ((tifp ^ tifn) & _TIF_NOTSC)
524		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
525
526	if ((tifp ^ tifn) & _TIF_NOCPUID)
527		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
528
529	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
530		__speculation_ctrl_update(tifp, tifn);
531	} else {
532		speculation_ctrl_update_tif(prev_p);
533		tifn = speculation_ctrl_update_tif(next_p);
534
535		/* Enforce MSR update to ensure consistent state */
536		__speculation_ctrl_update(~tifn, tifn);
537	}
 
 
 
538}
539
540/*
541 * Idle related variables and functions
542 */
543unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
544EXPORT_SYMBOL(boot_option_idle_override);
545
546static void (*x86_idle)(void);
547
548#ifndef CONFIG_SMP
549static inline void play_dead(void)
550{
551	BUG();
552}
553#endif
554
555void arch_cpu_idle_enter(void)
556{
557	tsc_verify_tsc_adjust(false);
558	local_touch_nmi();
559}
560
561void arch_cpu_idle_dead(void)
562{
563	play_dead();
564}
565
566/*
567 * Called from the generic idle code.
568 */
569void arch_cpu_idle(void)
570{
571	x86_idle();
572}
573
574/*
575 * We use this if we don't have any better idle routine..
576 */
577void __cpuidle default_idle(void)
578{
579	trace_cpu_idle_rcuidle(1, smp_processor_id());
580	safe_halt();
581	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
582}
583#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
584EXPORT_SYMBOL(default_idle);
585#endif
586
587#ifdef CONFIG_XEN
588bool xen_set_default_idle(void)
589{
590	bool ret = !!x86_idle;
591
592	x86_idle = default_idle;
593
594	return ret;
595}
596#endif
597
598void stop_this_cpu(void *dummy)
599{
600	local_irq_disable();
601	/*
602	 * Remove this CPU:
603	 */
604	set_cpu_online(smp_processor_id(), false);
605	disable_local_APIC();
606	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
607
608	/*
609	 * Use wbinvd on processors that support SME. This provides support
610	 * for performing a successful kexec when going from SME inactive
611	 * to SME active (or vice-versa). The cache must be cleared so that
612	 * if there are entries with the same physical address, both with and
613	 * without the encryption bit, they don't race each other when flushed
614	 * and potentially end up with the wrong entry being committed to
615	 * memory.
616	 */
617	if (boot_cpu_has(X86_FEATURE_SME))
618		native_wbinvd();
619	for (;;) {
620		/*
621		 * Use native_halt() so that memory contents don't change
622		 * (stack usage and variables) after possibly issuing the
623		 * native_wbinvd() above.
624		 */
625		native_halt();
626	}
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
631 * states (local apic timer and TSC stop).
 
 
632 */
633static void amd_e400_idle(void)
634{
635	/*
636	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
637	 * gets set after static_cpu_has() places have been converted via
638	 * alternatives.
639	 */
640	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
641		default_idle();
642		return;
643	}
644
645	tick_broadcast_enter();
646
647	default_idle();
648
649	/*
650	 * The switch back from broadcast mode needs to be called with
651	 * interrupts disabled.
652	 */
653	local_irq_disable();
654	tick_broadcast_exit();
655	local_irq_enable();
656}
657
658/*
659 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
660 * We can't rely on cpuidle installing MWAIT, because it will not load
661 * on systems that support only C1 -- so the boot default must be MWAIT.
662 *
663 * Some AMD machines are the opposite, they depend on using HALT.
664 *
665 * So for default C1, which is used during boot until cpuidle loads,
666 * use MWAIT-C1 on Intel HW that has it, else use HALT.
667 */
668static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
669{
670	if (c->x86_vendor != X86_VENDOR_INTEL)
671		return 0;
672
673	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
674		return 0;
675
676	return 1;
677}
678
679/*
680 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
681 * with interrupts enabled and no flags, which is backwards compatible with the
682 * original MWAIT implementation.
683 */
684static __cpuidle void mwait_idle(void)
685{
686	if (!current_set_polling_and_test()) {
687		trace_cpu_idle_rcuidle(1, smp_processor_id());
688		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
689			mb(); /* quirk */
690			clflush((void *)&current_thread_info()->flags);
691			mb(); /* quirk */
692		}
693
694		__monitor((void *)&current_thread_info()->flags, 0, 0);
695		if (!need_resched())
696			__sti_mwait(0, 0);
697		else
698			local_irq_enable();
699		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
700	} else {
701		local_irq_enable();
702	}
703	__current_clr_polling();
704}
705
706void select_idle_routine(const struct cpuinfo_x86 *c)
707{
708#ifdef CONFIG_SMP
709	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
710		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
711#endif
712	if (x86_idle || boot_option_idle_override == IDLE_POLL)
713		return;
714
715	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
716		pr_info("using AMD E400 aware idle routine\n");
717		x86_idle = amd_e400_idle;
718	} else if (prefer_mwait_c1_over_halt(c)) {
719		pr_info("using mwait in idle threads\n");
720		x86_idle = mwait_idle;
721	} else
722		x86_idle = default_idle;
723}
724
725void amd_e400_c1e_apic_setup(void)
726{
727	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
728		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
729		local_irq_disable();
730		tick_broadcast_force();
731		local_irq_enable();
732	}
733}
734
735void __init arch_post_acpi_subsys_init(void)
736{
737	u32 lo, hi;
738
739	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
740		return;
741
742	/*
743	 * AMD E400 detection needs to happen after ACPI has been enabled. If
744	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
745	 * MSR_K8_INT_PENDING_MSG.
746	 */
747	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
748	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
749		return;
750
751	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
752
753	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
754		mark_tsc_unstable("TSC halt in AMD C1E");
755	pr_info("System has AMD C1E enabled\n");
756}
757
758static int __init idle_setup(char *str)
759{
760	if (!str)
761		return -EINVAL;
762
763	if (!strcmp(str, "poll")) {
764		pr_info("using polling idle threads\n");
765		boot_option_idle_override = IDLE_POLL;
766		cpu_idle_poll_ctrl(true);
767	} else if (!strcmp(str, "halt")) {
768		/*
769		 * When the boot option of idle=halt is added, halt is
770		 * forced to be used for CPU idle. In such case CPU C2/C3
771		 * won't be used again.
772		 * To continue to load the CPU idle driver, don't touch
773		 * the boot_option_idle_override.
774		 */
775		x86_idle = default_idle;
776		boot_option_idle_override = IDLE_HALT;
777	} else if (!strcmp(str, "nomwait")) {
778		/*
779		 * If the boot option of "idle=nomwait" is added,
780		 * it means that mwait will be disabled for CPU C2/C3
781		 * states. In such case it won't touch the variable
782		 * of boot_option_idle_override.
783		 */
784		boot_option_idle_override = IDLE_NOMWAIT;
785	} else
786		return -1;
787
788	return 0;
789}
790early_param("idle", idle_setup);
791
792unsigned long arch_align_stack(unsigned long sp)
793{
794	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
795		sp -= get_random_int() % 8192;
796	return sp & ~0xf;
797}
798
799unsigned long arch_randomize_brk(struct mm_struct *mm)
800{
801	return randomize_page(mm->brk, 0x02000000);
802}
803
804/*
805 * Called from fs/proc with a reference on @p to find the function
806 * which called into schedule(). This needs to be done carefully
807 * because the task might wake up and we might look at a stack
808 * changing under us.
809 */
810unsigned long get_wchan(struct task_struct *p)
811{
812	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
813	int count = 0;
814
815	if (p == current || p->state == TASK_RUNNING)
816		return 0;
817
818	if (!try_get_task_stack(p))
819		return 0;
820
821	start = (unsigned long)task_stack_page(p);
822	if (!start)
823		goto out;
824
825	/*
826	 * Layout of the stack page:
827	 *
828	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
829	 * PADDING
830	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
831	 * stack
832	 * ----------- bottom = start
833	 *
834	 * The tasks stack pointer points at the location where the
835	 * framepointer is stored. The data on the stack is:
836	 * ... IP FP ... IP FP
837	 *
838	 * We need to read FP and IP, so we need to adjust the upper
839	 * bound by another unsigned long.
840	 */
841	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
842	top -= 2 * sizeof(unsigned long);
843	bottom = start;
844
845	sp = READ_ONCE(p->thread.sp);
846	if (sp < bottom || sp > top)
847		goto out;
848
849	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
850	do {
851		if (fp < bottom || fp > top)
852			goto out;
853		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
854		if (!in_sched_functions(ip)) {
855			ret = ip;
856			goto out;
857		}
858		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
859	} while (count++ < 16 && p->state != TASK_RUNNING);
860
861out:
862	put_task_stack(p);
863	return ret;
864}
865
866long do_arch_prctl_common(struct task_struct *task, int option,
867			  unsigned long cpuid_enabled)
868{
869	switch (option) {
870	case ARCH_GET_CPUID:
871		return get_cpuid_mode();
872	case ARCH_SET_CPUID:
873		return set_cpuid_mode(task, cpuid_enabled);
874	}
875
876	return -EINVAL;
877}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
  24#include <linux/cpuidle.h>
  25#include <linux/acpi.h>
  26#include <linux/elf-randomize.h>
  27#include <trace/events/power.h>
  28#include <linux/hw_breakpoint.h>
  29#include <asm/cpu.h>
  30#include <asm/apic.h>
 
  31#include <linux/uaccess.h>
  32#include <asm/mwait.h>
  33#include <asm/fpu/internal.h>
  34#include <asm/debugreg.h>
  35#include <asm/nmi.h>
  36#include <asm/tlbflush.h>
  37#include <asm/mce.h>
  38#include <asm/vm86.h>
  39#include <asm/switch_to.h>
  40#include <asm/desc.h>
  41#include <asm/prctl.h>
  42#include <asm/spec-ctrl.h>
  43#include <asm/io_bitmap.h>
  44#include <asm/proto.h>
  45#include <asm/frame.h>
  46
  47#include "process.h"
  48
  49/*
  50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  52 * so they are allowed to end up in the .data..cacheline_aligned
  53 * section. Since TSS's are completely CPU-local, we want them
  54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  55 */
  56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  57	.x86_tss = {
  58		/*
  59		 * .sp0 is only used when entering ring 0 from a lower
  60		 * privilege level.  Since the init task never runs anything
  61		 * but ring 0 code, there is no need for a valid value here.
  62		 * Poison it.
  63		 */
  64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  65
  66#ifdef CONFIG_X86_32
 
 
 
 
  67		.sp1 = TOP_OF_INIT_STACK,
  68
 
  69		.ss0 = __KERNEL_DS,
  70		.ss1 = __KERNEL_CS,
 
  71#endif
  72		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  73	 },
 
 
 
 
 
 
 
 
 
  74};
  75EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  76
  77DEFINE_PER_CPU(bool, __tss_limit_invalid);
  78EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  79
  80/*
  81 * this gets called so that we can store lazy state into memory and copy the
  82 * current task into the new thread.
  83 */
  84int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  85{
  86	memcpy(dst, src, arch_task_struct_size);
  87#ifdef CONFIG_VM86
  88	dst->thread.vm86 = NULL;
  89#endif
  90	return fpu_clone(dst);
 
  91}
  92
  93/*
  94 * Free thread data structures etc..
  95 */
  96void exit_thread(struct task_struct *tsk)
  97{
  98	struct thread_struct *t = &tsk->thread;
 
  99	struct fpu *fpu = &t->fpu;
 100
 101	if (test_thread_flag(TIF_IO_BITMAP))
 102		io_bitmap_exit(tsk);
 103
 104	free_vm86(t);
 105
 106	fpu__drop(fpu);
 107}
 108
 109static int set_new_tls(struct task_struct *p, unsigned long tls)
 110{
 111	struct user_desc __user *utls = (struct user_desc __user *)tls;
 112
 113	if (in_ia32_syscall())
 114		return do_set_thread_area(p, -1, utls, 0);
 115	else
 116		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 117}
 118
 119int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
 120		struct task_struct *p, unsigned long tls)
 121{
 122	struct inactive_task_frame *frame;
 123	struct fork_frame *fork_frame;
 124	struct pt_regs *childregs;
 125	int ret = 0;
 126
 127	childregs = task_pt_regs(p);
 128	fork_frame = container_of(childregs, struct fork_frame, regs);
 129	frame = &fork_frame->frame;
 130
 131	frame->bp = encode_frame_pointer(childregs);
 132	frame->ret_addr = (unsigned long) ret_from_fork;
 133	p->thread.sp = (unsigned long) fork_frame;
 134	p->thread.io_bitmap = NULL;
 135	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 136
 137#ifdef CONFIG_X86_64
 138	current_save_fsgs();
 139	p->thread.fsindex = current->thread.fsindex;
 140	p->thread.fsbase = current->thread.fsbase;
 141	p->thread.gsindex = current->thread.gsindex;
 142	p->thread.gsbase = current->thread.gsbase;
 143
 144	savesegment(es, p->thread.es);
 145	savesegment(ds, p->thread.ds);
 146#else
 147	p->thread.sp0 = (unsigned long) (childregs + 1);
 148	/*
 149	 * Clear all status flags including IF and set fixed bit. 64bit
 150	 * does not have this initialization as the frame does not contain
 151	 * flags. The flags consistency (especially vs. AC) is there
 152	 * ensured via objtool, which lacks 32bit support.
 153	 */
 154	frame->flags = X86_EFLAGS_FIXED;
 155#endif
 156
 157	/* Kernel thread ? */
 158	if (unlikely(p->flags & PF_KTHREAD)) {
 159		p->thread.pkru = pkru_get_init_value();
 160		memset(childregs, 0, sizeof(struct pt_regs));
 161		kthread_frame_init(frame, sp, arg);
 162		return 0;
 163	}
 164
 165	/*
 166	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 167	 * is only valid when scheduled out.
 168	 */
 169	p->thread.pkru = read_pkru();
 170
 171	frame->bx = 0;
 172	*childregs = *current_pt_regs();
 173	childregs->ax = 0;
 174	if (sp)
 175		childregs->sp = sp;
 176
 177#ifdef CONFIG_X86_32
 178	task_user_gs(p) = get_user_gs(current_pt_regs());
 179#endif
 180
 181	if (unlikely(p->flags & PF_IO_WORKER)) {
 
 182		/*
 183		 * An IO thread is a user space thread, but it doesn't
 184		 * return to ret_after_fork().
 185		 *
 186		 * In order to indicate that to tools like gdb,
 187		 * we reset the stack and instruction pointers.
 188		 *
 189		 * It does the same kernel frame setup to return to a kernel
 190		 * function that a kernel thread does.
 191		 */
 192		childregs->sp = 0;
 193		childregs->ip = 0;
 194		kthread_frame_init(frame, sp, arg);
 195		return 0;
 196	}
 197
 198	/* Set a new TLS for the child thread? */
 199	if (clone_flags & CLONE_SETTLS)
 200		ret = set_new_tls(p, tls);
 201
 202	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 203		io_bitmap_share(p);
 204
 205	return ret;
 206}
 207
 208static void pkru_flush_thread(void)
 209{
 210	/*
 211	 * If PKRU is enabled the default PKRU value has to be loaded into
 212	 * the hardware right here (similar to context switch).
 213	 */
 214	pkru_write_default();
 215}
 216
 217void flush_thread(void)
 218{
 219	struct task_struct *tsk = current;
 220
 221	flush_ptrace_hw_breakpoint(tsk);
 222	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 223
 224	fpu_flush_thread();
 225	pkru_flush_thread();
 226}
 227
 228void disable_TSC(void)
 229{
 230	preempt_disable();
 231	if (!test_and_set_thread_flag(TIF_NOTSC))
 232		/*
 233		 * Must flip the CPU state synchronously with
 234		 * TIF_NOTSC in the current running context.
 235		 */
 236		cr4_set_bits(X86_CR4_TSD);
 237	preempt_enable();
 238}
 239
 240static void enable_TSC(void)
 241{
 242	preempt_disable();
 243	if (test_and_clear_thread_flag(TIF_NOTSC))
 244		/*
 245		 * Must flip the CPU state synchronously with
 246		 * TIF_NOTSC in the current running context.
 247		 */
 248		cr4_clear_bits(X86_CR4_TSD);
 249	preempt_enable();
 250}
 251
 252int get_tsc_mode(unsigned long adr)
 253{
 254	unsigned int val;
 255
 256	if (test_thread_flag(TIF_NOTSC))
 257		val = PR_TSC_SIGSEGV;
 258	else
 259		val = PR_TSC_ENABLE;
 260
 261	return put_user(val, (unsigned int __user *)adr);
 262}
 263
 264int set_tsc_mode(unsigned int val)
 265{
 266	if (val == PR_TSC_SIGSEGV)
 267		disable_TSC();
 268	else if (val == PR_TSC_ENABLE)
 269		enable_TSC();
 270	else
 271		return -EINVAL;
 272
 273	return 0;
 274}
 275
 276DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 277
 278static void set_cpuid_faulting(bool on)
 279{
 280	u64 msrval;
 281
 282	msrval = this_cpu_read(msr_misc_features_shadow);
 283	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 284	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 285	this_cpu_write(msr_misc_features_shadow, msrval);
 286	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 287}
 288
 289static void disable_cpuid(void)
 290{
 291	preempt_disable();
 292	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 293		/*
 294		 * Must flip the CPU state synchronously with
 295		 * TIF_NOCPUID in the current running context.
 296		 */
 297		set_cpuid_faulting(true);
 298	}
 299	preempt_enable();
 300}
 301
 302static void enable_cpuid(void)
 303{
 304	preempt_disable();
 305	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 306		/*
 307		 * Must flip the CPU state synchronously with
 308		 * TIF_NOCPUID in the current running context.
 309		 */
 310		set_cpuid_faulting(false);
 311	}
 312	preempt_enable();
 313}
 314
 315static int get_cpuid_mode(void)
 316{
 317	return !test_thread_flag(TIF_NOCPUID);
 318}
 319
 320static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
 321{
 322	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 323		return -ENODEV;
 324
 325	if (cpuid_enabled)
 326		enable_cpuid();
 327	else
 328		disable_cpuid();
 329
 330	return 0;
 331}
 332
 333/*
 334 * Called immediately after a successful exec.
 335 */
 336void arch_setup_new_exec(void)
 337{
 338	/* If cpuid was previously disabled for this task, re-enable it. */
 339	if (test_thread_flag(TIF_NOCPUID))
 340		enable_cpuid();
 341
 342	/*
 343	 * Don't inherit TIF_SSBD across exec boundary when
 344	 * PR_SPEC_DISABLE_NOEXEC is used.
 345	 */
 346	if (test_thread_flag(TIF_SSBD) &&
 347	    task_spec_ssb_noexec(current)) {
 348		clear_thread_flag(TIF_SSBD);
 349		task_clear_spec_ssb_disable(current);
 350		task_clear_spec_ssb_noexec(current);
 351		speculation_ctrl_update(task_thread_info(current)->flags);
 352	}
 353}
 354
 355#ifdef CONFIG_X86_IOPL_IOPERM
 356static inline void switch_to_bitmap(unsigned long tifp)
 357{
 358	/*
 359	 * Invalidate I/O bitmap if the previous task used it. This prevents
 360	 * any possible leakage of an active I/O bitmap.
 361	 *
 362	 * If the next task has an I/O bitmap it will handle it on exit to
 363	 * user mode.
 364	 */
 365	if (tifp & _TIF_IO_BITMAP)
 366		tss_invalidate_io_bitmap();
 367}
 368
 369static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 370{
 371	/*
 372	 * Copy at least the byte range of the incoming tasks bitmap which
 373	 * covers the permitted I/O ports.
 374	 *
 375	 * If the previous task which used an I/O bitmap had more bits
 376	 * permitted, then the copy needs to cover those as well so they
 377	 * get turned off.
 378	 */
 379	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 380	       max(tss->io_bitmap.prev_max, iobm->max));
 381
 382	/*
 383	 * Store the new max and the sequence number of this bitmap
 384	 * and a pointer to the bitmap itself.
 385	 */
 386	tss->io_bitmap.prev_max = iobm->max;
 387	tss->io_bitmap.prev_sequence = iobm->sequence;
 388}
 389
 390/**
 391 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
 392 */
 393void native_tss_update_io_bitmap(void)
 394{
 395	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 396	struct thread_struct *t = &current->thread;
 397	u16 *base = &tss->x86_tss.io_bitmap_base;
 398
 399	if (!test_thread_flag(TIF_IO_BITMAP)) {
 400		native_tss_invalidate_io_bitmap();
 401		return;
 402	}
 403
 404	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 405		*base = IO_BITMAP_OFFSET_VALID_ALL;
 406	} else {
 407		struct io_bitmap *iobm = t->io_bitmap;
 408
 
 
 
 
 
 
 
 
 
 
 
 
 
 409		/*
 410		 * Only copy bitmap data when the sequence number differs. The
 411		 * update time is accounted to the incoming task.
 412		 */
 413		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 414			tss_copy_io_bitmap(tss, iobm);
 415
 416		/* Enable the bitmap */
 417		*base = IO_BITMAP_OFFSET_VALID_MAP;
 418	}
 419
 420	/*
 421	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 422	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 423	 * access from user space to trigger a #GP because tbe bitmap is outside
 424	 * the TSS limit.
 425	 */
 426	refresh_tss_limit();
 427}
 428#else /* CONFIG_X86_IOPL_IOPERM */
 429static inline void switch_to_bitmap(unsigned long tifp) { }
 430#endif
 431
 432#ifdef CONFIG_SMP
 433
 434struct ssb_state {
 435	struct ssb_state	*shared_state;
 436	raw_spinlock_t		lock;
 437	unsigned int		disable_state;
 438	unsigned long		local_state;
 439};
 440
 441#define LSTATE_SSB	0
 442
 443static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 444
 445void speculative_store_bypass_ht_init(void)
 446{
 447	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 448	unsigned int this_cpu = smp_processor_id();
 449	unsigned int cpu;
 450
 451	st->local_state = 0;
 452
 453	/*
 454	 * Shared state setup happens once on the first bringup
 455	 * of the CPU. It's not destroyed on CPU hotunplug.
 456	 */
 457	if (st->shared_state)
 458		return;
 459
 460	raw_spin_lock_init(&st->lock);
 461
 462	/*
 463	 * Go over HT siblings and check whether one of them has set up the
 464	 * shared state pointer already.
 465	 */
 466	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 467		if (cpu == this_cpu)
 468			continue;
 469
 470		if (!per_cpu(ssb_state, cpu).shared_state)
 471			continue;
 472
 473		/* Link it to the state of the sibling: */
 474		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 475		return;
 476	}
 477
 478	/*
 479	 * First HT sibling to come up on the core.  Link shared state of
 480	 * the first HT sibling to itself. The siblings on the same core
 481	 * which come up later will see the shared state pointer and link
 482	 * themselves to the state of this CPU.
 483	 */
 484	st->shared_state = st;
 485}
 486
 487/*
 488 * Logic is: First HT sibling enables SSBD for both siblings in the core
 489 * and last sibling to disable it, disables it for the whole core. This how
 490 * MSR_SPEC_CTRL works in "hardware":
 491 *
 492 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 493 */
 494static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 495{
 496	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 497	u64 msr = x86_amd_ls_cfg_base;
 498
 499	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 500		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 501		wrmsrl(MSR_AMD64_LS_CFG, msr);
 502		return;
 503	}
 504
 505	if (tifn & _TIF_SSBD) {
 506		/*
 507		 * Since this can race with prctl(), block reentry on the
 508		 * same CPU.
 509		 */
 510		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 511			return;
 512
 513		msr |= x86_amd_ls_cfg_ssbd_mask;
 514
 515		raw_spin_lock(&st->shared_state->lock);
 516		/* First sibling enables SSBD: */
 517		if (!st->shared_state->disable_state)
 518			wrmsrl(MSR_AMD64_LS_CFG, msr);
 519		st->shared_state->disable_state++;
 520		raw_spin_unlock(&st->shared_state->lock);
 521	} else {
 522		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 523			return;
 524
 525		raw_spin_lock(&st->shared_state->lock);
 526		st->shared_state->disable_state--;
 527		if (!st->shared_state->disable_state)
 528			wrmsrl(MSR_AMD64_LS_CFG, msr);
 529		raw_spin_unlock(&st->shared_state->lock);
 530	}
 531}
 532#else
 533static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 534{
 535	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 536
 537	wrmsrl(MSR_AMD64_LS_CFG, msr);
 538}
 539#endif
 540
 541static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 542{
 543	/*
 544	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 545	 * so ssbd_tif_to_spec_ctrl() just works.
 546	 */
 547	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 548}
 549
 550/*
 551 * Update the MSRs managing speculation control, during context switch.
 552 *
 553 * tifp: Previous task's thread flags
 554 * tifn: Next task's thread flags
 555 */
 556static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 557						      unsigned long tifn)
 558{
 559	unsigned long tif_diff = tifp ^ tifn;
 560	u64 msr = x86_spec_ctrl_base;
 561	bool updmsr = false;
 562
 563	lockdep_assert_irqs_disabled();
 564
 565	/* Handle change of TIF_SSBD depending on the mitigation method. */
 566	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 567		if (tif_diff & _TIF_SSBD)
 
 
 
 
 
 568			amd_set_ssb_virt_state(tifn);
 569	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 570		if (tif_diff & _TIF_SSBD)
 571			amd_set_core_ssb_state(tifn);
 572	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 573		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 574		updmsr |= !!(tif_diff & _TIF_SSBD);
 575		msr |= ssbd_tif_to_spec_ctrl(tifn);
 
 576	}
 577
 578	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 
 
 
 579	if (IS_ENABLED(CONFIG_SMP) &&
 580	    static_branch_unlikely(&switch_to_cond_stibp)) {
 581		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 582		msr |= stibp_tif_to_spec_ctrl(tifn);
 583	}
 584
 585	if (updmsr)
 586		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 587}
 588
 589static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 590{
 591	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 592		if (task_spec_ssb_disable(tsk))
 593			set_tsk_thread_flag(tsk, TIF_SSBD);
 594		else
 595			clear_tsk_thread_flag(tsk, TIF_SSBD);
 596
 597		if (task_spec_ib_disable(tsk))
 598			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 599		else
 600			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 601	}
 602	/* Return the updated threadinfo flags*/
 603	return task_thread_info(tsk)->flags;
 604}
 605
 606void speculation_ctrl_update(unsigned long tif)
 607{
 608	unsigned long flags;
 609
 610	/* Forced update. Make sure all relevant TIF flags are different */
 611	local_irq_save(flags);
 612	__speculation_ctrl_update(~tif, tif);
 613	local_irq_restore(flags);
 614}
 615
 616/* Called from seccomp/prctl update */
 617void speculation_ctrl_update_current(void)
 618{
 619	preempt_disable();
 620	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 621	preempt_enable();
 622}
 623
 624static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 625{
 626	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 627
 628	newval = cr4 ^ mask;
 629	if (newval != cr4) {
 630		this_cpu_write(cpu_tlbstate.cr4, newval);
 631		__write_cr4(newval);
 632	}
 633}
 634
 635void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 636{
 
 637	unsigned long tifp, tifn;
 638
 
 
 
 639	tifn = READ_ONCE(task_thread_info(next_p)->flags);
 640	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
 641
 642	switch_to_bitmap(tifp);
 643
 644	propagate_user_return_notify(prev_p, next_p);
 645
 646	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 647	    arch_has_block_step()) {
 648		unsigned long debugctl, msk;
 649
 650		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 651		debugctl &= ~DEBUGCTLMSR_BTF;
 652		msk = tifn & _TIF_BLOCKSTEP;
 653		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 654		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 655	}
 656
 657	if ((tifp ^ tifn) & _TIF_NOTSC)
 658		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 659
 660	if ((tifp ^ tifn) & _TIF_NOCPUID)
 661		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 662
 663	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 664		__speculation_ctrl_update(tifp, tifn);
 665	} else {
 666		speculation_ctrl_update_tif(prev_p);
 667		tifn = speculation_ctrl_update_tif(next_p);
 668
 669		/* Enforce MSR update to ensure consistent state */
 670		__speculation_ctrl_update(~tifn, tifn);
 671	}
 672
 673	if ((tifp ^ tifn) & _TIF_SLD)
 674		switch_to_sld(tifn);
 675}
 676
 677/*
 678 * Idle related variables and functions
 679 */
 680unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 681EXPORT_SYMBOL(boot_option_idle_override);
 682
 683static void (*x86_idle)(void);
 684
 685#ifndef CONFIG_SMP
 686static inline void play_dead(void)
 687{
 688	BUG();
 689}
 690#endif
 691
 692void arch_cpu_idle_enter(void)
 693{
 694	tsc_verify_tsc_adjust(false);
 695	local_touch_nmi();
 696}
 697
 698void arch_cpu_idle_dead(void)
 699{
 700	play_dead();
 701}
 702
 703/*
 704 * Called from the generic idle code.
 705 */
 706void arch_cpu_idle(void)
 707{
 708	x86_idle();
 709}
 710
 711/*
 712 * We use this if we don't have any better idle routine..
 713 */
 714void __cpuidle default_idle(void)
 715{
 716	raw_safe_halt();
 
 
 717}
 718#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 719EXPORT_SYMBOL(default_idle);
 720#endif
 721
 722#ifdef CONFIG_XEN
 723bool xen_set_default_idle(void)
 724{
 725	bool ret = !!x86_idle;
 726
 727	x86_idle = default_idle;
 728
 729	return ret;
 730}
 731#endif
 732
 733void stop_this_cpu(void *dummy)
 734{
 735	local_irq_disable();
 736	/*
 737	 * Remove this CPU:
 738	 */
 739	set_cpu_online(smp_processor_id(), false);
 740	disable_local_APIC();
 741	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 742
 743	/*
 744	 * Use wbinvd on processors that support SME. This provides support
 745	 * for performing a successful kexec when going from SME inactive
 746	 * to SME active (or vice-versa). The cache must be cleared so that
 747	 * if there are entries with the same physical address, both with and
 748	 * without the encryption bit, they don't race each other when flushed
 749	 * and potentially end up with the wrong entry being committed to
 750	 * memory.
 751	 */
 752	if (boot_cpu_has(X86_FEATURE_SME))
 753		native_wbinvd();
 754	for (;;) {
 755		/*
 756		 * Use native_halt() so that memory contents don't change
 757		 * (stack usage and variables) after possibly issuing the
 758		 * native_wbinvd() above.
 759		 */
 760		native_halt();
 761	}
 762}
 763
 764/*
 765 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 766 * states (local apic timer and TSC stop).
 767 *
 768 * XXX this function is completely buggered vs RCU and tracing.
 769 */
 770static void amd_e400_idle(void)
 771{
 772	/*
 773	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 774	 * gets set after static_cpu_has() places have been converted via
 775	 * alternatives.
 776	 */
 777	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 778		default_idle();
 779		return;
 780	}
 781
 782	tick_broadcast_enter();
 783
 784	default_idle();
 785
 786	/*
 787	 * The switch back from broadcast mode needs to be called with
 788	 * interrupts disabled.
 789	 */
 790	raw_local_irq_disable();
 791	tick_broadcast_exit();
 792	raw_local_irq_enable();
 793}
 794
 795/*
 796 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 797 * We can't rely on cpuidle installing MWAIT, because it will not load
 798 * on systems that support only C1 -- so the boot default must be MWAIT.
 799 *
 800 * Some AMD machines are the opposite, they depend on using HALT.
 801 *
 802 * So for default C1, which is used during boot until cpuidle loads,
 803 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 804 */
 805static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 806{
 807	if (c->x86_vendor != X86_VENDOR_INTEL)
 808		return 0;
 809
 810	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
 811		return 0;
 812
 813	return 1;
 814}
 815
 816/*
 817 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 818 * with interrupts enabled and no flags, which is backwards compatible with the
 819 * original MWAIT implementation.
 820 */
 821static __cpuidle void mwait_idle(void)
 822{
 823	if (!current_set_polling_and_test()) {
 
 824		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 825			mb(); /* quirk */
 826			clflush((void *)&current_thread_info()->flags);
 827			mb(); /* quirk */
 828		}
 829
 830		__monitor((void *)&current_thread_info()->flags, 0, 0);
 831		if (!need_resched())
 832			__sti_mwait(0, 0);
 833		else
 834			raw_local_irq_enable();
 
 835	} else {
 836		raw_local_irq_enable();
 837	}
 838	__current_clr_polling();
 839}
 840
 841void select_idle_routine(const struct cpuinfo_x86 *c)
 842{
 843#ifdef CONFIG_SMP
 844	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 845		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 846#endif
 847	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 848		return;
 849
 850	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 851		pr_info("using AMD E400 aware idle routine\n");
 852		x86_idle = amd_e400_idle;
 853	} else if (prefer_mwait_c1_over_halt(c)) {
 854		pr_info("using mwait in idle threads\n");
 855		x86_idle = mwait_idle;
 856	} else
 857		x86_idle = default_idle;
 858}
 859
 860void amd_e400_c1e_apic_setup(void)
 861{
 862	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 863		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 864		local_irq_disable();
 865		tick_broadcast_force();
 866		local_irq_enable();
 867	}
 868}
 869
 870void __init arch_post_acpi_subsys_init(void)
 871{
 872	u32 lo, hi;
 873
 874	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 875		return;
 876
 877	/*
 878	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 879	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 880	 * MSR_K8_INT_PENDING_MSG.
 881	 */
 882	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 883	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 884		return;
 885
 886	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 887
 888	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 889		mark_tsc_unstable("TSC halt in AMD C1E");
 890	pr_info("System has AMD C1E enabled\n");
 891}
 892
 893static int __init idle_setup(char *str)
 894{
 895	if (!str)
 896		return -EINVAL;
 897
 898	if (!strcmp(str, "poll")) {
 899		pr_info("using polling idle threads\n");
 900		boot_option_idle_override = IDLE_POLL;
 901		cpu_idle_poll_ctrl(true);
 902	} else if (!strcmp(str, "halt")) {
 903		/*
 904		 * When the boot option of idle=halt is added, halt is
 905		 * forced to be used for CPU idle. In such case CPU C2/C3
 906		 * won't be used again.
 907		 * To continue to load the CPU idle driver, don't touch
 908		 * the boot_option_idle_override.
 909		 */
 910		x86_idle = default_idle;
 911		boot_option_idle_override = IDLE_HALT;
 912	} else if (!strcmp(str, "nomwait")) {
 913		/*
 914		 * If the boot option of "idle=nomwait" is added,
 915		 * it means that mwait will be disabled for CPU C2/C3
 916		 * states. In such case it won't touch the variable
 917		 * of boot_option_idle_override.
 918		 */
 919		boot_option_idle_override = IDLE_NOMWAIT;
 920	} else
 921		return -1;
 922
 923	return 0;
 924}
 925early_param("idle", idle_setup);
 926
 927unsigned long arch_align_stack(unsigned long sp)
 928{
 929	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 930		sp -= get_random_int() % 8192;
 931	return sp & ~0xf;
 932}
 933
 934unsigned long arch_randomize_brk(struct mm_struct *mm)
 935{
 936	return randomize_page(mm->brk, 0x02000000);
 937}
 938
 939/*
 940 * Called from fs/proc with a reference on @p to find the function
 941 * which called into schedule(). This needs to be done carefully
 942 * because the task might wake up and we might look at a stack
 943 * changing under us.
 944 */
 945unsigned long get_wchan(struct task_struct *p)
 946{
 947	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 948	int count = 0;
 949
 950	if (p == current || task_is_running(p))
 951		return 0;
 952
 953	if (!try_get_task_stack(p))
 954		return 0;
 955
 956	start = (unsigned long)task_stack_page(p);
 957	if (!start)
 958		goto out;
 959
 960	/*
 961	 * Layout of the stack page:
 962	 *
 963	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 964	 * PADDING
 965	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 966	 * stack
 967	 * ----------- bottom = start
 968	 *
 969	 * The tasks stack pointer points at the location where the
 970	 * framepointer is stored. The data on the stack is:
 971	 * ... IP FP ... IP FP
 972	 *
 973	 * We need to read FP and IP, so we need to adjust the upper
 974	 * bound by another unsigned long.
 975	 */
 976	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 977	top -= 2 * sizeof(unsigned long);
 978	bottom = start;
 979
 980	sp = READ_ONCE(p->thread.sp);
 981	if (sp < bottom || sp > top)
 982		goto out;
 983
 984	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
 985	do {
 986		if (fp < bottom || fp > top)
 987			goto out;
 988		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 989		if (!in_sched_functions(ip)) {
 990			ret = ip;
 991			goto out;
 992		}
 993		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 994	} while (count++ < 16 && !task_is_running(p));
 995
 996out:
 997	put_task_stack(p);
 998	return ret;
 999}
1000
1001long do_arch_prctl_common(struct task_struct *task, int option,
1002			  unsigned long cpuid_enabled)
1003{
1004	switch (option) {
1005	case ARCH_GET_CPUID:
1006		return get_cpuid_mode();
1007	case ARCH_SET_CPUID:
1008		return set_cpuid_mode(task, cpuid_enabled);
1009	}
1010
1011	return -EINVAL;
1012}