Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
  29#include <linux/swap.h>
  30#include <linux/timex.h>
  31#include <linux/jiffies.h>
  32#include <linux/cpuset.h>
  33#include <linux/export.h>
  34#include <linux/notifier.h>
  35#include <linux/memcontrol.h>
  36#include <linux/mempolicy.h>
  37#include <linux/security.h>
  38#include <linux/ptrace.h>
  39#include <linux/freezer.h>
  40#include <linux/ftrace.h>
  41#include <linux/ratelimit.h>
  42#include <linux/kthread.h>
  43#include <linux/init.h>
  44#include <linux/mmu_notifier.h>
  45
  46#include <asm/tlb.h>
  47#include "internal.h"
  48#include "slab.h"
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/oom.h>
  52
  53int sysctl_panic_on_oom;
  54int sysctl_oom_kill_allocating_task;
  55int sysctl_oom_dump_tasks = 1;
  56
  57/*
  58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  60 * from different domains).
  61 *
  62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  63 * and mark_oom_victim
  64 */
  65DEFINE_MUTEX(oom_lock);
  66
  67static inline bool is_memcg_oom(struct oom_control *oc)
  68{
  69	return oc->memcg != NULL;
  70}
  71
  72#ifdef CONFIG_NUMA
  73/**
  74 * oom_cpuset_eligible() - check task eligiblity for kill
  75 * @start: task struct of which task to consider
  76 * @oc: pointer to struct oom_control
  77 *
  78 * Task eligibility is determined by whether or not a candidate task, @tsk,
  79 * shares the same mempolicy nodes as current if it is bound by such a policy
  80 * and whether or not it has the same set of allowed cpuset nodes.
  81 *
  82 * This function is assuming oom-killer context and 'current' has triggered
  83 * the oom-killer.
  84 */
  85static bool oom_cpuset_eligible(struct task_struct *start,
  86				struct oom_control *oc)
  87{
  88	struct task_struct *tsk;
  89	bool ret = false;
  90	const nodemask_t *mask = oc->nodemask;
  91
  92	if (is_memcg_oom(oc))
  93		return true;
  94
  95	rcu_read_lock();
  96	for_each_thread(start, tsk) {
  97		if (mask) {
  98			/*
  99			 * If this is a mempolicy constrained oom, tsk's
 100			 * cpuset is irrelevant.  Only return true if its
 101			 * mempolicy intersects current, otherwise it may be
 102			 * needlessly killed.
 103			 */
 104			ret = mempolicy_nodemask_intersects(tsk, mask);
 105		} else {
 106			/*
 107			 * This is not a mempolicy constrained oom, so only
 108			 * check the mems of tsk's cpuset.
 109			 */
 110			ret = cpuset_mems_allowed_intersects(current, tsk);
 111		}
 112		if (ret)
 113			break;
 114	}
 115	rcu_read_unlock();
 116
 117	return ret;
 118}
 119#else
 120static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 
 121{
 122	return true;
 123}
 124#endif /* CONFIG_NUMA */
 125
 126/*
 127 * The process p may have detached its own ->mm while exiting or through
 128 * use_mm(), but one or more of its subthreads may still have a valid
 129 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 130 * task_lock() held.
 131 */
 132struct task_struct *find_lock_task_mm(struct task_struct *p)
 133{
 134	struct task_struct *t;
 135
 136	rcu_read_lock();
 137
 138	for_each_thread(p, t) {
 139		task_lock(t);
 140		if (likely(t->mm))
 141			goto found;
 142		task_unlock(t);
 143	}
 144	t = NULL;
 145found:
 146	rcu_read_unlock();
 147
 148	return t;
 149}
 150
 151/*
 152 * order == -1 means the oom kill is required by sysrq, otherwise only
 153 * for display purposes.
 154 */
 155static inline bool is_sysrq_oom(struct oom_control *oc)
 156{
 157	return oc->order == -1;
 158}
 159
 160/* return true if the task is not adequate as candidate victim task. */
 161static bool oom_unkillable_task(struct task_struct *p)
 
 162{
 163	if (is_global_init(p))
 164		return true;
 165	if (p->flags & PF_KTHREAD)
 166		return true;
 167	return false;
 168}
 169
 170/*
 171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 172 * than all user memory (LRU pages)
 173 */
 174static bool is_dump_unreclaim_slabs(void)
 175{
 176	unsigned long nr_lru;
 177
 178	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 179		 global_node_page_state(NR_INACTIVE_ANON) +
 180		 global_node_page_state(NR_ACTIVE_FILE) +
 181		 global_node_page_state(NR_INACTIVE_FILE) +
 182		 global_node_page_state(NR_ISOLATED_ANON) +
 183		 global_node_page_state(NR_ISOLATED_FILE) +
 184		 global_node_page_state(NR_UNEVICTABLE);
 185
 186	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 187}
 188
 189/**
 190 * oom_badness - heuristic function to determine which candidate task to kill
 191 * @p: task struct of which task we should calculate
 192 * @totalpages: total present RAM allowed for page allocation
 193 *
 194 * The heuristic for determining which task to kill is made to be as simple and
 195 * predictable as possible.  The goal is to return the highest value for the
 196 * task consuming the most memory to avoid subsequent oom failures.
 197 */
 198unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
 
 199{
 200	long points;
 201	long adj;
 202
 203	if (oom_unkillable_task(p))
 204		return 0;
 205
 206	p = find_lock_task_mm(p);
 207	if (!p)
 208		return 0;
 209
 210	/*
 211	 * Do not even consider tasks which are explicitly marked oom
 212	 * unkillable or have been already oom reaped or the are in
 213	 * the middle of vfork
 214	 */
 215	adj = (long)p->signal->oom_score_adj;
 216	if (adj == OOM_SCORE_ADJ_MIN ||
 217			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 218			in_vfork(p)) {
 219		task_unlock(p);
 220		return 0;
 221	}
 222
 223	/*
 224	 * The baseline for the badness score is the proportion of RAM that each
 225	 * task's rss, pagetable and swap space use.
 226	 */
 227	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 228		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 229	task_unlock(p);
 230
 
 
 
 
 
 
 
 231	/* Normalize to oom_score_adj units */
 232	adj *= totalpages / 1000;
 233	points += adj;
 234
 235	/*
 236	 * Never return 0 for an eligible task regardless of the root bonus and
 237	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 238	 */
 239	return points > 0 ? points : 1;
 240}
 241
 242static const char * const oom_constraint_text[] = {
 243	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 244	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 245	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 246	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 247};
 248
 249/*
 250 * Determine the type of allocation constraint.
 251 */
 252static enum oom_constraint constrained_alloc(struct oom_control *oc)
 
 
 253{
 254	struct zone *zone;
 255	struct zoneref *z;
 256	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 257	bool cpuset_limited = false;
 258	int nid;
 259
 260	if (is_memcg_oom(oc)) {
 261		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 262		return CONSTRAINT_MEMCG;
 263	}
 264
 265	/* Default to all available memory */
 266	oc->totalpages = totalram_pages() + total_swap_pages;
 267
 268	if (!IS_ENABLED(CONFIG_NUMA))
 269		return CONSTRAINT_NONE;
 270
 271	if (!oc->zonelist)
 272		return CONSTRAINT_NONE;
 273	/*
 274	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 275	 * to kill current.We have to random task kill in this case.
 276	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 277	 */
 278	if (oc->gfp_mask & __GFP_THISNODE)
 279		return CONSTRAINT_NONE;
 280
 281	/*
 282	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 283	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 284	 * is enforced in get_page_from_freelist().
 285	 */
 286	if (oc->nodemask &&
 287	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 288		oc->totalpages = total_swap_pages;
 289		for_each_node_mask(nid, *oc->nodemask)
 290			oc->totalpages += node_present_pages(nid);
 291		return CONSTRAINT_MEMORY_POLICY;
 292	}
 293
 294	/* Check this allocation failure is caused by cpuset's wall function */
 295	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 296			high_zoneidx, oc->nodemask)
 297		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 298			cpuset_limited = true;
 299
 300	if (cpuset_limited) {
 301		oc->totalpages = total_swap_pages;
 302		for_each_node_mask(nid, cpuset_current_mems_allowed)
 303			oc->totalpages += node_present_pages(nid);
 304		return CONSTRAINT_CPUSET;
 305	}
 306	return CONSTRAINT_NONE;
 307}
 308
 309static int oom_evaluate_task(struct task_struct *task, void *arg)
 
 310{
 311	struct oom_control *oc = arg;
 312	unsigned long points;
 313
 314	if (oom_unkillable_task(task))
 315		goto next;
 316
 317	/* p may not have freeable memory in nodemask */
 318	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 319		goto next;
 
 
 320
 321	/*
 322	 * This task already has access to memory reserves and is being killed.
 323	 * Don't allow any other task to have access to the reserves unless
 324	 * the task has MMF_OOM_SKIP because chances that it would release
 325	 * any memory is quite low.
 326	 */
 327	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 328		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 329			goto next;
 330		goto abort;
 331	}
 
 
 332
 333	/*
 334	 * If task is allocating a lot of memory and has been marked to be
 335	 * killed first if it triggers an oom, then select it.
 336	 */
 337	if (oom_task_origin(task)) {
 338		points = ULONG_MAX;
 339		goto select;
 340	}
 341
 342	points = oom_badness(task, oc->totalpages);
 343	if (!points || points < oc->chosen_points)
 344		goto next;
 345
 346select:
 347	if (oc->chosen)
 348		put_task_struct(oc->chosen);
 349	get_task_struct(task);
 350	oc->chosen = task;
 351	oc->chosen_points = points;
 352next:
 353	return 0;
 354abort:
 355	if (oc->chosen)
 356		put_task_struct(oc->chosen);
 357	oc->chosen = (void *)-1UL;
 358	return 1;
 359}
 360
 361/*
 362 * Simple selection loop. We choose the process with the highest number of
 363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 364 */
 365static void select_bad_process(struct oom_control *oc)
 
 366{
 367	if (is_memcg_oom(oc))
 368		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 369	else {
 370		struct task_struct *p;
 371
 372		rcu_read_lock();
 373		for_each_process(p)
 374			if (oom_evaluate_task(p, oc))
 375				break;
 376		rcu_read_unlock();
 377	}
 378}
 379
 380static int dump_task(struct task_struct *p, void *arg)
 381{
 382	struct oom_control *oc = arg;
 383	struct task_struct *task;
 384
 385	if (oom_unkillable_task(p))
 386		return 0;
 
 387
 388	/* p may not have freeable memory in nodemask */
 389	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 390		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392	task = find_lock_task_mm(p);
 393	if (!task) {
 394		/*
 395		 * This is a kthread or all of p's threads have already
 396		 * detached their mm's.  There's no need to report
 397		 * them; they can't be oom killed anyway.
 398		 */
 399		return 0;
 400	}
 
 
 
 401
 402	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 403		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 404		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 405		mm_pgtables_bytes(task->mm),
 406		get_mm_counter(task->mm, MM_SWAPENTS),
 407		task->signal->oom_score_adj, task->comm);
 408	task_unlock(task);
 409
 410	return 0;
 411}
 412
 413/**
 414 * dump_tasks - dump current memory state of all system tasks
 415 * @oc: pointer to struct oom_control
 
 416 *
 417 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 419 * are not shown.
 420 * State information includes task's pid, uid, tgid, vm size, rss,
 421 * pgtables_bytes, swapents, oom_score_adj value, and name.
 422 */
 423static void dump_tasks(struct oom_control *oc)
 424{
 425	pr_info("Tasks state (memory values in pages):\n");
 426	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 427
 428	if (is_memcg_oom(oc))
 429		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 430	else {
 431		struct task_struct *p;
 
 432
 433		rcu_read_lock();
 434		for_each_process(p)
 435			dump_task(p, oc);
 436		rcu_read_unlock();
 437	}
 438}
 
 
 
 439
 440static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 441{
 442	/* one line summary of the oom killer context. */
 443	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 444			oom_constraint_text[oc->constraint],
 445			nodemask_pr_args(oc->nodemask));
 446	cpuset_print_current_mems_allowed();
 447	mem_cgroup_print_oom_context(oc->memcg, victim);
 448	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 449		from_kuid(&init_user_ns, task_uid(victim)));
 450}
 451
 452static void dump_header(struct oom_control *oc, struct task_struct *p)
 
 453{
 454	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 455		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 456			current->signal->oom_score_adj);
 457	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 458		pr_warn("COMPACTION is disabled!!!\n");
 459
 
 460	dump_stack();
 461	if (is_memcg_oom(oc))
 462		mem_cgroup_print_oom_meminfo(oc->memcg);
 463	else {
 464		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 465		if (is_dump_unreclaim_slabs())
 466			dump_unreclaimable_slab();
 467	}
 468	if (sysctl_oom_dump_tasks)
 469		dump_tasks(oc);
 470	if (p)
 471		dump_oom_summary(oc, p);
 472}
 473
 474/*
 475 * Number of OOM victims in flight
 476 */
 477static atomic_t oom_victims = ATOMIC_INIT(0);
 478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 479
 480static bool oom_killer_disabled __read_mostly;
 481
 482#define K(x) ((x) << (PAGE_SHIFT-10))
 483
 484/*
 485 * task->mm can be NULL if the task is the exited group leader.  So to
 486 * determine whether the task is using a particular mm, we examine all the
 487 * task's threads: if one of those is using this mm then this task was also
 488 * using it.
 489 */
 490bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 491{
 492	struct task_struct *t;
 493
 494	for_each_thread(p, t) {
 495		struct mm_struct *t_mm = READ_ONCE(t->mm);
 496		if (t_mm)
 497			return t_mm == mm;
 498	}
 499	return false;
 500}
 501
 502#ifdef CONFIG_MMU
 503/*
 504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 505 * victim (if that is possible) to help the OOM killer to move on.
 506 */
 507static struct task_struct *oom_reaper_th;
 508static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 509static struct task_struct *oom_reaper_list;
 510static DEFINE_SPINLOCK(oom_reaper_lock);
 511
 512bool __oom_reap_task_mm(struct mm_struct *mm)
 
 513{
 
 514	struct vm_area_struct *vma;
 
 
 
 
 515	bool ret = true;
 516
 517	/*
 518	 * Tell all users of get_user/copy_from_user etc... that the content
 519	 * is no longer stable. No barriers really needed because unmapping
 520	 * should imply barriers already and the reader would hit a page fault
 521	 * if it stumbled over a reaped memory.
 522	 */
 523	set_bit(MMF_UNSTABLE, &mm->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524
 
 525	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 526		if (!can_madv_lru_vma(vma))
 
 
 
 
 
 
 
 527			continue;
 528
 529		/*
 530		 * Only anonymous pages have a good chance to be dropped
 531		 * without additional steps which we cannot afford as we
 532		 * are OOM already.
 533		 *
 534		 * We do not even care about fs backed pages because all
 535		 * which are reclaimable have already been reclaimed and
 536		 * we do not want to block exit_mmap by keeping mm ref
 537		 * count elevated without a good reason.
 538		 */
 539		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 540			struct mmu_notifier_range range;
 541			struct mmu_gather tlb;
 542
 543			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 544						vma, mm, vma->vm_start,
 545						vma->vm_end);
 546			tlb_gather_mmu(&tlb, mm, range.start, range.end);
 547			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 548				tlb_finish_mmu(&tlb, range.start, range.end);
 549				ret = false;
 550				continue;
 551			}
 552			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 553			mmu_notifier_invalidate_range_end(&range);
 554			tlb_finish_mmu(&tlb, range.start, range.end);
 555		}
 556	}
 557
 558	return ret;
 559}
 560
 561/*
 562 * Reaps the address space of the give task.
 563 *
 564 * Returns true on success and false if none or part of the address space
 565 * has been reclaimed and the caller should retry later.
 566 */
 567static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 568{
 569	bool ret = true;
 570
 571	if (!down_read_trylock(&mm->mmap_sem)) {
 572		trace_skip_task_reaping(tsk->pid);
 573		return false;
 574	}
 575
 576	/*
 577	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 578	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 579	 * under mmap_sem for reading because it serializes against the
 580	 * down_write();up_write() cycle in exit_mmap().
 581	 */
 582	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 583		trace_skip_task_reaping(tsk->pid);
 584		goto out_unlock;
 585	}
 586
 587	trace_start_task_reaping(tsk->pid);
 588
 589	/* failed to reap part of the address space. Try again later */
 590	ret = __oom_reap_task_mm(mm);
 591	if (!ret)
 592		goto out_finish;
 593
 594	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 595			task_pid_nr(tsk), tsk->comm,
 596			K(get_mm_counter(mm, MM_ANONPAGES)),
 597			K(get_mm_counter(mm, MM_FILEPAGES)),
 598			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 599out_finish:
 600	trace_finish_task_reaping(tsk->pid);
 601out_unlock:
 602	up_read(&mm->mmap_sem);
 603
 
 
 
 
 
 
 
 
 
 
 
 604	return ret;
 605}
 606
 607#define MAX_OOM_REAP_RETRIES 10
 608static void oom_reap_task(struct task_struct *tsk)
 609{
 610	int attempts = 0;
 611	struct mm_struct *mm = tsk->signal->oom_mm;
 612
 613	/* Retry the down_read_trylock(mmap_sem) a few times */
 614	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 615		schedule_timeout_idle(HZ/10);
 616
 617	if (attempts <= MAX_OOM_REAP_RETRIES ||
 618	    test_bit(MMF_OOM_SKIP, &mm->flags))
 619		goto done;
 620
 621	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 622		task_pid_nr(tsk), tsk->comm);
 623	debug_show_all_locks();
 624
 625done:
 626	tsk->oom_reaper_list = NULL;
 627
 628	/*
 629	 * Hide this mm from OOM killer because it has been either reaped or
 630	 * somebody can't call up_write(mmap_sem).
 631	 */
 632	set_bit(MMF_OOM_SKIP, &mm->flags);
 633
 634	/* Drop a reference taken by wake_oom_reaper */
 635	put_task_struct(tsk);
 636}
 637
 638static int oom_reaper(void *unused)
 639{
 
 
 640	while (true) {
 641		struct task_struct *tsk = NULL;
 642
 643		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 644		spin_lock(&oom_reaper_lock);
 645		if (oom_reaper_list != NULL) {
 646			tsk = oom_reaper_list;
 647			oom_reaper_list = tsk->oom_reaper_list;
 648		}
 649		spin_unlock(&oom_reaper_lock);
 650
 651		if (tsk)
 652			oom_reap_task(tsk);
 653	}
 654
 655	return 0;
 656}
 657
 658static void wake_oom_reaper(struct task_struct *tsk)
 659{
 660	/* mm is already queued? */
 661	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 
 
 
 662		return;
 663
 664	get_task_struct(tsk);
 665
 666	spin_lock(&oom_reaper_lock);
 667	tsk->oom_reaper_list = oom_reaper_list;
 668	oom_reaper_list = tsk;
 669	spin_unlock(&oom_reaper_lock);
 670	trace_wake_reaper(tsk->pid);
 671	wake_up(&oom_reaper_wait);
 672}
 673
 674static int __init oom_init(void)
 675{
 676	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 
 
 
 
 
 677	return 0;
 678}
 679subsys_initcall(oom_init)
 680#else
 681static inline void wake_oom_reaper(struct task_struct *tsk)
 682{
 683}
 684#endif /* CONFIG_MMU */
 685
 686/**
 687 * mark_oom_victim - mark the given task as OOM victim
 688 * @tsk: task to mark
 689 *
 690 * Has to be called with oom_lock held and never after
 691 * oom has been disabled already.
 692 *
 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 694 * under task_lock or operate on the current).
 695 */
 696static void mark_oom_victim(struct task_struct *tsk)
 697{
 698	struct mm_struct *mm = tsk->mm;
 699
 700	WARN_ON(oom_killer_disabled);
 701	/* OOM killer might race with memcg OOM */
 702	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 703		return;
 704
 705	/* oom_mm is bound to the signal struct life time. */
 706	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 707		mmgrab(tsk->signal->oom_mm);
 708		set_bit(MMF_OOM_VICTIM, &mm->flags);
 709	}
 710
 711	/*
 712	 * Make sure that the task is woken up from uninterruptible sleep
 713	 * if it is frozen because OOM killer wouldn't be able to free
 714	 * any memory and livelock. freezing_slow_path will tell the freezer
 715	 * that TIF_MEMDIE tasks should be ignored.
 716	 */
 717	__thaw_task(tsk);
 718	atomic_inc(&oom_victims);
 719	trace_mark_victim(tsk->pid);
 720}
 721
 722/**
 723 * exit_oom_victim - note the exit of an OOM victim
 724 */
 725void exit_oom_victim(void)
 726{
 727	clear_thread_flag(TIF_MEMDIE);
 
 728
 729	if (!atomic_dec_return(&oom_victims))
 730		wake_up_all(&oom_victims_wait);
 731}
 732
 733/**
 734 * oom_killer_enable - enable OOM killer
 735 */
 736void oom_killer_enable(void)
 737{
 738	oom_killer_disabled = false;
 739	pr_info("OOM killer enabled.\n");
 740}
 741
 742/**
 743 * oom_killer_disable - disable OOM killer
 744 * @timeout: maximum timeout to wait for oom victims in jiffies
 745 *
 746 * Forces all page allocations to fail rather than trigger OOM killer.
 747 * Will block and wait until all OOM victims are killed or the given
 748 * timeout expires.
 749 *
 750 * The function cannot be called when there are runnable user tasks because
 751 * the userspace would see unexpected allocation failures as a result. Any
 752 * new usage of this function should be consulted with MM people.
 753 *
 754 * Returns true if successful and false if the OOM killer cannot be
 755 * disabled.
 756 */
 757bool oom_killer_disable(signed long timeout)
 758{
 759	signed long ret;
 760
 761	/*
 762	 * Make sure to not race with an ongoing OOM killer. Check that the
 763	 * current is not killed (possibly due to sharing the victim's memory).
 764	 */
 765	if (mutex_lock_killable(&oom_lock))
 766		return false;
 767	oom_killer_disabled = true;
 768	mutex_unlock(&oom_lock);
 769
 770	ret = wait_event_interruptible_timeout(oom_victims_wait,
 771			!atomic_read(&oom_victims), timeout);
 772	if (ret <= 0) {
 773		oom_killer_enable();
 774		return false;
 775	}
 776	pr_info("OOM killer disabled.\n");
 777
 778	return true;
 779}
 780
 781static inline bool __task_will_free_mem(struct task_struct *task)
 
 
 
 782{
 783	struct signal_struct *sig = task->signal;
 784
 785	/*
 786	 * A coredumping process may sleep for an extended period in exit_mm(),
 787	 * so the oom killer cannot assume that the process will promptly exit
 788	 * and release memory.
 789	 */
 790	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 791		return false;
 792
 793	if (sig->flags & SIGNAL_GROUP_EXIT)
 794		return true;
 795
 796	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 797		return true;
 
 
 
 
 
 
 
 798
 
 
 
 
 
 799	return false;
 800}
 801
 802/*
 803 * Checks whether the given task is dying or exiting and likely to
 804 * release its address space. This means that all threads and processes
 805 * sharing the same mm have to be killed or exiting.
 806 * Caller has to make sure that task->mm is stable (hold task_lock or
 807 * it operates on the current).
 808 */
 809static bool task_will_free_mem(struct task_struct *task)
 
 
 810{
 811	struct mm_struct *mm = task->mm;
 812	struct task_struct *p;
 813	bool ret = true;
 
 
 
 
 
 814
 815	/*
 816	 * Skip tasks without mm because it might have passed its exit_mm and
 817	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 818	 * on that for now. We can consider find_lock_task_mm in future.
 819	 */
 820	if (!mm)
 821		return false;
 822
 823	if (!__task_will_free_mem(task))
 824		return false;
 
 
 
 825
 826	/*
 827	 * This task has already been drained by the oom reaper so there are
 828	 * only small chances it will free some more
 829	 */
 830	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 831		return false;
 832
 833	if (atomic_read(&mm->mm_users) <= 1)
 834		return true;
 835
 836	/*
 837	 * Make sure that all tasks which share the mm with the given tasks
 838	 * are dying as well to make sure that a) nobody pins its mm and
 839	 * b) the task is also reapable by the oom reaper.
 
 840	 */
 841	rcu_read_lock();
 842	for_each_process(p) {
 843		if (!process_shares_mm(p, mm))
 844			continue;
 845		if (same_thread_group(task, p))
 846			continue;
 847		ret = __task_will_free_mem(p);
 848		if (!ret)
 849			break;
 850	}
 851	rcu_read_unlock();
 852
 853	return ret;
 854}
 855
 856static void __oom_kill_process(struct task_struct *victim, const char *message)
 857{
 858	struct task_struct *p;
 859	struct mm_struct *mm;
 860	bool can_oom_reap = true;
 
 
 
 
 
 
 
 
 
 
 
 861
 862	p = find_lock_task_mm(victim);
 863	if (!p) {
 864		put_task_struct(victim);
 865		return;
 866	} else if (victim != p) {
 867		get_task_struct(p);
 868		put_task_struct(victim);
 869		victim = p;
 870	}
 871
 872	/* Get a reference to safely compare mm after task_unlock(victim) */
 873	mm = victim->mm;
 874	mmgrab(mm);
 875
 876	/* Raise event before sending signal: task reaper must see this */
 877	count_vm_event(OOM_KILL);
 878	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 879
 880	/*
 881	 * We should send SIGKILL before granting access to memory reserves
 882	 * in order to prevent the OOM victim from depleting the memory
 883	 * reserves from the user space under its control.
 884	 */
 885	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 886	mark_oom_victim(victim);
 887	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 888		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 889		K(get_mm_counter(mm, MM_ANONPAGES)),
 890		K(get_mm_counter(mm, MM_FILEPAGES)),
 891		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 892		from_kuid(&init_user_ns, task_uid(victim)),
 893		mm_pgtables_bytes(mm), victim->signal->oom_score_adj);
 894	task_unlock(victim);
 895
 896	/*
 897	 * Kill all user processes sharing victim->mm in other thread groups, if
 898	 * any.  They don't get access to memory reserves, though, to avoid
 899	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 900	 * oom killed thread cannot exit because it requires the semaphore and
 901	 * its contended by another thread trying to allocate memory itself.
 902	 * That thread will now get access to memory reserves since it has a
 903	 * pending fatal signal.
 904	 */
 905	rcu_read_lock();
 906	for_each_process(p) {
 907		if (!process_shares_mm(p, mm))
 908			continue;
 909		if (same_thread_group(p, victim))
 910			continue;
 911		if (is_global_init(p)) {
 
 
 
 
 
 
 912			can_oom_reap = false;
 913			set_bit(MMF_OOM_SKIP, &mm->flags);
 914			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 915					task_pid_nr(victim), victim->comm,
 916					task_pid_nr(p), p->comm);
 917			continue;
 918		}
 919		/*
 920		 * No use_mm() user needs to read from the userspace so we are
 921		 * ok to reap it.
 922		 */
 923		if (unlikely(p->flags & PF_KTHREAD))
 924			continue;
 925		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 926	}
 927	rcu_read_unlock();
 928
 929	if (can_oom_reap)
 930		wake_oom_reaper(victim);
 931
 932	mmdrop(mm);
 933	put_task_struct(victim);
 934}
 935#undef K
 936
 937/*
 938 * Kill provided task unless it's secured by setting
 939 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 940 */
 941static int oom_kill_memcg_member(struct task_struct *task, void *message)
 942{
 943	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 944	    !is_global_init(task)) {
 945		get_task_struct(task);
 946		__oom_kill_process(task, message);
 947	}
 948	return 0;
 949}
 950
 951static void oom_kill_process(struct oom_control *oc, const char *message)
 952{
 953	struct task_struct *victim = oc->chosen;
 954	struct mem_cgroup *oom_group;
 955	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 956					      DEFAULT_RATELIMIT_BURST);
 957
 958	/*
 959	 * If the task is already exiting, don't alarm the sysadmin or kill
 960	 * its children or threads, just give it access to memory reserves
 961	 * so it can die quickly
 962	 */
 963	task_lock(victim);
 964	if (task_will_free_mem(victim)) {
 965		mark_oom_victim(victim);
 966		wake_oom_reaper(victim);
 967		task_unlock(victim);
 968		put_task_struct(victim);
 969		return;
 970	}
 971	task_unlock(victim);
 972
 973	if (__ratelimit(&oom_rs))
 974		dump_header(oc, victim);
 975
 976	/*
 977	 * Do we need to kill the entire memory cgroup?
 978	 * Or even one of the ancestor memory cgroups?
 979	 * Check this out before killing the victim task.
 980	 */
 981	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 982
 983	__oom_kill_process(victim, message);
 984
 985	/*
 986	 * If necessary, kill all tasks in the selected memory cgroup.
 987	 */
 988	if (oom_group) {
 989		mem_cgroup_print_oom_group(oom_group);
 990		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 991				      (void*)message);
 992		mem_cgroup_put(oom_group);
 993	}
 994}
 995
 996/*
 997 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 998 */
 999static void check_panic_on_oom(struct oom_control *oc)
 
1000{
1001	if (likely(!sysctl_panic_on_oom))
1002		return;
1003	if (sysctl_panic_on_oom != 2) {
1004		/*
1005		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006		 * does not panic for cpuset, mempolicy, or memcg allocation
1007		 * failures.
1008		 */
1009		if (oc->constraint != CONSTRAINT_NONE)
1010			return;
1011	}
1012	/* Do not panic for oom kills triggered by sysrq */
1013	if (is_sysrq_oom(oc))
1014		return;
1015	dump_header(oc, NULL);
1016	panic("Out of memory: %s panic_on_oom is enabled\n",
1017		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1018}
1019
1020static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1021
1022int register_oom_notifier(struct notifier_block *nb)
1023{
1024	return blocking_notifier_chain_register(&oom_notify_list, nb);
1025}
1026EXPORT_SYMBOL_GPL(register_oom_notifier);
1027
1028int unregister_oom_notifier(struct notifier_block *nb)
1029{
1030	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1031}
1032EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1033
1034/**
1035 * out_of_memory - kill the "best" process when we run out of memory
1036 * @oc: pointer to struct oom_control
1037 *
1038 * If we run out of memory, we have the choice between either
1039 * killing a random task (bad), letting the system crash (worse)
1040 * OR try to be smart about which process to kill. Note that we
1041 * don't have to be perfect here, we just have to be good.
1042 */
1043bool out_of_memory(struct oom_control *oc)
1044{
 
 
1045	unsigned long freed = 0;
 
 
1046
1047	if (oom_killer_disabled)
1048		return false;
1049
1050	if (!is_memcg_oom(oc)) {
1051		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1052		if (freed > 0)
1053			/* Got some memory back in the last second. */
1054			return true;
1055	}
1056
1057	/*
1058	 * If current has a pending SIGKILL or is exiting, then automatically
1059	 * select it.  The goal is to allow it to allocate so that it may
1060	 * quickly exit and free its memory.
 
 
 
1061	 */
1062	if (task_will_free_mem(current)) {
 
1063		mark_oom_victim(current);
1064		wake_oom_reaper(current);
1065		return true;
1066	}
1067
1068	/*
1069	 * The OOM killer does not compensate for IO-less reclaim.
1070	 * pagefault_out_of_memory lost its gfp context so we have to
1071	 * make sure exclude 0 mask - all other users should have at least
1072	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1074	 */
1075	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1076		return true;
1077
1078	/*
1079	 * Check if there were limitations on the allocation (only relevant for
1080	 * NUMA and memcg) that may require different handling.
1081	 */
1082	oc->constraint = constrained_alloc(oc);
1083	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1084		oc->nodemask = NULL;
1085	check_panic_on_oom(oc);
1086
1087	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1088	    current->mm && !oom_unkillable_task(current) &&
1089	    oom_cpuset_eligible(current, oc) &&
1090	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1091		get_task_struct(current);
1092		oc->chosen = current;
1093		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1094		return true;
1095	}
1096
1097	select_bad_process(oc);
1098	/* Found nothing?!?! */
1099	if (!oc->chosen) {
1100		dump_header(oc, NULL);
1101		pr_warn("Out of memory and no killable processes...\n");
 
 
 
 
1102		/*
1103		 * If we got here due to an actual allocation at the
1104		 * system level, we cannot survive this and will enter
1105		 * an endless loop in the allocator. Bail out now.
1106		 */
1107		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1108			panic("System is deadlocked on memory\n");
1109	}
1110	if (oc->chosen && oc->chosen != (void *)-1UL)
1111		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1112				 "Memory cgroup out of memory");
1113	return !!oc->chosen;
1114}
1115
1116/*
1117 * The pagefault handler calls here because it is out of memory, so kill a
1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119 * killing is already in progress so do nothing.
1120 */
1121void pagefault_out_of_memory(void)
1122{
1123	struct oom_control oc = {
1124		.zonelist = NULL,
1125		.nodemask = NULL,
1126		.memcg = NULL,
1127		.gfp_mask = 0,
1128		.order = 0,
1129	};
1130
1131	if (mem_cgroup_oom_synchronize(true))
1132		return;
1133
1134	if (!mutex_trylock(&oom_lock))
1135		return;
1136	out_of_memory(&oc);
 
 
 
 
 
 
 
 
 
 
1137	mutex_unlock(&oom_lock);
1138}
v4.6
 
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 
 
 
 25#include <linux/swap.h>
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/export.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 35#include <linux/freezer.h>
 36#include <linux/ftrace.h>
 37#include <linux/ratelimit.h>
 38#include <linux/kthread.h>
 39#include <linux/init.h>
 
 40
 41#include <asm/tlb.h>
 42#include "internal.h"
 
 43
 44#define CREATE_TRACE_POINTS
 45#include <trace/events/oom.h>
 46
 47int sysctl_panic_on_oom;
 48int sysctl_oom_kill_allocating_task;
 49int sysctl_oom_dump_tasks = 1;
 50
 
 
 
 
 
 
 
 
 51DEFINE_MUTEX(oom_lock);
 52
 
 
 
 
 
 53#ifdef CONFIG_NUMA
 54/**
 55 * has_intersects_mems_allowed() - check task eligiblity for kill
 56 * @start: task struct of which task to consider
 57 * @mask: nodemask passed to page allocator for mempolicy ooms
 58 *
 59 * Task eligibility is determined by whether or not a candidate task, @tsk,
 60 * shares the same mempolicy nodes as current if it is bound by such a policy
 61 * and whether or not it has the same set of allowed cpuset nodes.
 
 
 
 62 */
 63static bool has_intersects_mems_allowed(struct task_struct *start,
 64					const nodemask_t *mask)
 65{
 66	struct task_struct *tsk;
 67	bool ret = false;
 
 
 
 
 68
 69	rcu_read_lock();
 70	for_each_thread(start, tsk) {
 71		if (mask) {
 72			/*
 73			 * If this is a mempolicy constrained oom, tsk's
 74			 * cpuset is irrelevant.  Only return true if its
 75			 * mempolicy intersects current, otherwise it may be
 76			 * needlessly killed.
 77			 */
 78			ret = mempolicy_nodemask_intersects(tsk, mask);
 79		} else {
 80			/*
 81			 * This is not a mempolicy constrained oom, so only
 82			 * check the mems of tsk's cpuset.
 83			 */
 84			ret = cpuset_mems_allowed_intersects(current, tsk);
 85		}
 86		if (ret)
 87			break;
 88	}
 89	rcu_read_unlock();
 90
 91	return ret;
 92}
 93#else
 94static bool has_intersects_mems_allowed(struct task_struct *tsk,
 95					const nodemask_t *mask)
 96{
 97	return true;
 98}
 99#endif /* CONFIG_NUMA */
100
101/*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107struct task_struct *find_lock_task_mm(struct task_struct *p)
108{
109	struct task_struct *t;
110
111	rcu_read_lock();
112
113	for_each_thread(p, t) {
114		task_lock(t);
115		if (likely(t->mm))
116			goto found;
117		task_unlock(t);
118	}
119	t = NULL;
120found:
121	rcu_read_unlock();
122
123	return t;
124}
125
126/*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130static inline bool is_sysrq_oom(struct oom_control *oc)
131{
132	return oc->order == -1;
133}
134
135/* return true if the task is not adequate as candidate victim task. */
136static bool oom_unkillable_task(struct task_struct *p,
137		struct mem_cgroup *memcg, const nodemask_t *nodemask)
138{
139	if (is_global_init(p))
140		return true;
141	if (p->flags & PF_KTHREAD)
142		return true;
 
 
143
144	/* When mem_cgroup_out_of_memory() and p is not member of the group */
145	if (memcg && !task_in_mem_cgroup(p, memcg))
146		return true;
 
 
 
 
147
148	/* p may not have freeable memory in nodemask */
149	if (!has_intersects_mems_allowed(p, nodemask))
150		return true;
 
 
 
 
151
152	return false;
153}
154
155/**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible.  The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165			  const nodemask_t *nodemask, unsigned long totalpages)
166{
167	long points;
168	long adj;
169
170	if (oom_unkillable_task(p, memcg, nodemask))
171		return 0;
172
173	p = find_lock_task_mm(p);
174	if (!p)
175		return 0;
176
 
 
 
 
 
177	adj = (long)p->signal->oom_score_adj;
178	if (adj == OOM_SCORE_ADJ_MIN) {
 
 
179		task_unlock(p);
180		return 0;
181	}
182
183	/*
184	 * The baseline for the badness score is the proportion of RAM that each
185	 * task's rss, pagetable and swap space use.
186	 */
187	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
189	task_unlock(p);
190
191	/*
192	 * Root processes get 3% bonus, just like the __vm_enough_memory()
193	 * implementation used by LSMs.
194	 */
195	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196		points -= (points * 3) / 100;
197
198	/* Normalize to oom_score_adj units */
199	adj *= totalpages / 1000;
200	points += adj;
201
202	/*
203	 * Never return 0 for an eligible task regardless of the root bonus and
204	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
205	 */
206	return points > 0 ? points : 1;
207}
208
 
 
 
 
 
 
 
209/*
210 * Determine the type of allocation constraint.
211 */
212#ifdef CONFIG_NUMA
213static enum oom_constraint constrained_alloc(struct oom_control *oc,
214					     unsigned long *totalpages)
215{
216	struct zone *zone;
217	struct zoneref *z;
218	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219	bool cpuset_limited = false;
220	int nid;
221
 
 
 
 
 
222	/* Default to all available memory */
223	*totalpages = totalram_pages + total_swap_pages;
 
 
 
224
225	if (!oc->zonelist)
226		return CONSTRAINT_NONE;
227	/*
228	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229	 * to kill current.We have to random task kill in this case.
230	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
231	 */
232	if (oc->gfp_mask & __GFP_THISNODE)
233		return CONSTRAINT_NONE;
234
235	/*
236	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237	 * the page allocator means a mempolicy is in effect.  Cpuset policy
238	 * is enforced in get_page_from_freelist().
239	 */
240	if (oc->nodemask &&
241	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242		*totalpages = total_swap_pages;
243		for_each_node_mask(nid, *oc->nodemask)
244			*totalpages += node_spanned_pages(nid);
245		return CONSTRAINT_MEMORY_POLICY;
246	}
247
248	/* Check this allocation failure is caused by cpuset's wall function */
249	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250			high_zoneidx, oc->nodemask)
251		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252			cpuset_limited = true;
253
254	if (cpuset_limited) {
255		*totalpages = total_swap_pages;
256		for_each_node_mask(nid, cpuset_current_mems_allowed)
257			*totalpages += node_spanned_pages(nid);
258		return CONSTRAINT_CPUSET;
259	}
260	return CONSTRAINT_NONE;
261}
262#else
263static enum oom_constraint constrained_alloc(struct oom_control *oc,
264					     unsigned long *totalpages)
265{
266	*totalpages = totalram_pages + total_swap_pages;
267	return CONSTRAINT_NONE;
268}
269#endif
 
270
271enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272			struct task_struct *task, unsigned long totalpages)
273{
274	if (oom_unkillable_task(task, NULL, oc->nodemask))
275		return OOM_SCAN_CONTINUE;
276
277	/*
278	 * This task already has access to memory reserves and is being killed.
279	 * Don't allow any other task to have access to the reserves.
 
 
280	 */
281	if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282		if (!is_sysrq_oom(oc))
283			return OOM_SCAN_ABORT;
 
284	}
285	if (!task->mm)
286		return OOM_SCAN_CONTINUE;
287
288	/*
289	 * If task is allocating a lot of memory and has been marked to be
290	 * killed first if it triggers an oom, then select it.
291	 */
292	if (oom_task_origin(task))
293		return OOM_SCAN_SELECT;
294
295	return OOM_SCAN_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
298/*
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'.  Returns -1 on scan abort.
301 */
302static struct task_struct *select_bad_process(struct oom_control *oc,
303		unsigned int *ppoints, unsigned long totalpages)
304{
305	struct task_struct *g, *p;
306	struct task_struct *chosen = NULL;
307	unsigned long chosen_points = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308
309	rcu_read_lock();
310	for_each_process_thread(g, p) {
311		unsigned int points;
312
313		switch (oom_scan_process_thread(oc, p, totalpages)) {
314		case OOM_SCAN_SELECT:
315			chosen = p;
316			chosen_points = ULONG_MAX;
317			/* fall through */
318		case OOM_SCAN_CONTINUE:
319			continue;
320		case OOM_SCAN_ABORT:
321			rcu_read_unlock();
322			return (struct task_struct *)(-1UL);
323		case OOM_SCAN_OK:
324			break;
325		};
326		points = oom_badness(p, NULL, oc->nodemask, totalpages);
327		if (!points || points < chosen_points)
328			continue;
329		/* Prefer thread group leaders for display purposes */
330		if (points == chosen_points && thread_group_leader(chosen))
331			continue;
332
333		chosen = p;
334		chosen_points = points;
 
 
 
 
 
 
335	}
336	if (chosen)
337		get_task_struct(chosen);
338	rcu_read_unlock();
339
340	*ppoints = chosen_points * 1000 / totalpages;
341	return chosen;
 
 
 
 
 
 
 
342}
343
344/**
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
348 *
349 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
351 * are not shown.
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
354 */
355static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
356{
357	struct task_struct *p;
358	struct task_struct *task;
359
360	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
361	rcu_read_lock();
362	for_each_process(p) {
363		if (oom_unkillable_task(p, memcg, nodemask))
364			continue;
365
366		task = find_lock_task_mm(p);
367		if (!task) {
368			/*
369			 * This is a kthread or all of p's threads have already
370			 * detached their mm's.  There's no need to report
371			 * them; they can't be oom killed anyway.
372			 */
373			continue;
374		}
375
376		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
377			task->pid, from_kuid(&init_user_ns, task_uid(task)),
378			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379			atomic_long_read(&task->mm->nr_ptes),
380			mm_nr_pmds(task->mm),
381			get_mm_counter(task->mm, MM_SWAPENTS),
382			task->signal->oom_score_adj, task->comm);
383		task_unlock(task);
384	}
385	rcu_read_unlock();
386}
387
388static void dump_header(struct oom_control *oc, struct task_struct *p,
389			struct mem_cgroup *memcg)
390{
391	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393		current->signal->oom_score_adj);
 
 
394
395	cpuset_print_current_mems_allowed();
396	dump_stack();
397	if (memcg)
398		mem_cgroup_print_oom_info(memcg, p);
399	else
400		show_mem(SHOW_MEM_FILTER_NODES);
 
 
 
401	if (sysctl_oom_dump_tasks)
402		dump_tasks(memcg, oc->nodemask);
 
 
403}
404
405/*
406 * Number of OOM victims in flight
407 */
408static atomic_t oom_victims = ATOMIC_INIT(0);
409static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
410
411bool oom_killer_disabled __read_mostly;
412
413#define K(x) ((x) << (PAGE_SHIFT-10))
414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415#ifdef CONFIG_MMU
416/*
417 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
418 * victim (if that is possible) to help the OOM killer to move on.
419 */
420static struct task_struct *oom_reaper_th;
421static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
422static struct task_struct *oom_reaper_list;
423static DEFINE_SPINLOCK(oom_reaper_lock);
424
425
426static bool __oom_reap_task(struct task_struct *tsk)
427{
428	struct mmu_gather tlb;
429	struct vm_area_struct *vma;
430	struct mm_struct *mm;
431	struct task_struct *p;
432	struct zap_details details = {.check_swap_entries = true,
433				      .ignore_dirty = true};
434	bool ret = true;
435
436	/*
437	 * Make sure we find the associated mm_struct even when the particular
438	 * thread has already terminated and cleared its mm.
439	 * We might have race with exit path so consider our work done if there
440	 * is no mm.
441	 */
442	p = find_lock_task_mm(tsk);
443	if (!p)
444		return true;
445
446	mm = p->mm;
447	if (!atomic_inc_not_zero(&mm->mm_users)) {
448		task_unlock(p);
449		return true;
450	}
451
452	task_unlock(p);
453
454	if (!down_read_trylock(&mm->mmap_sem)) {
455		ret = false;
456		goto out;
457	}
458
459	tlb_gather_mmu(&tlb, mm, 0, -1);
460	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
461		if (is_vm_hugetlb_page(vma))
462			continue;
463
464		/*
465		 * mlocked VMAs require explicit munlocking before unmap.
466		 * Let's keep it simple here and skip such VMAs.
467		 */
468		if (vma->vm_flags & VM_LOCKED)
469			continue;
470
471		/*
472		 * Only anonymous pages have a good chance to be dropped
473		 * without additional steps which we cannot afford as we
474		 * are OOM already.
475		 *
476		 * We do not even care about fs backed pages because all
477		 * which are reclaimable have already been reclaimed and
478		 * we do not want to block exit_mmap by keeping mm ref
479		 * count elevated without a good reason.
480		 */
481		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
482			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
483					 &details);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484	}
485	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
487			task_pid_nr(tsk), tsk->comm,
488			K(get_mm_counter(mm, MM_ANONPAGES)),
489			K(get_mm_counter(mm, MM_FILEPAGES)),
490			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 
 
 
491	up_read(&mm->mmap_sem);
492
493	/*
494	 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
495	 * reasonably reclaimable memory anymore. OOM killer can continue
496	 * by selecting other victim if unmapping hasn't led to any
497	 * improvements. This also means that selecting this task doesn't
498	 * make any sense.
499	 */
500	tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
501	exit_oom_victim(tsk);
502out:
503	mmput(mm);
504	return ret;
505}
506
507#define MAX_OOM_REAP_RETRIES 10
508static void oom_reap_task(struct task_struct *tsk)
509{
510	int attempts = 0;
 
511
512	/* Retry the down_read_trylock(mmap_sem) a few times */
513	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
514		schedule_timeout_idle(HZ/10);
515
516	if (attempts > MAX_OOM_REAP_RETRIES) {
517		pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
518				task_pid_nr(tsk), tsk->comm);
519		debug_show_all_locks();
520	}
 
 
 
 
 
 
 
 
 
 
 
521
522	/* Drop a reference taken by wake_oom_reaper */
523	put_task_struct(tsk);
524}
525
526static int oom_reaper(void *unused)
527{
528	set_freezable();
529
530	while (true) {
531		struct task_struct *tsk = NULL;
532
533		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
534		spin_lock(&oom_reaper_lock);
535		if (oom_reaper_list != NULL) {
536			tsk = oom_reaper_list;
537			oom_reaper_list = tsk->oom_reaper_list;
538		}
539		spin_unlock(&oom_reaper_lock);
540
541		if (tsk)
542			oom_reap_task(tsk);
543	}
544
545	return 0;
546}
547
548static void wake_oom_reaper(struct task_struct *tsk)
549{
550	if (!oom_reaper_th)
551		return;
552
553	/* tsk is already queued? */
554	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
555		return;
556
557	get_task_struct(tsk);
558
559	spin_lock(&oom_reaper_lock);
560	tsk->oom_reaper_list = oom_reaper_list;
561	oom_reaper_list = tsk;
562	spin_unlock(&oom_reaper_lock);
 
563	wake_up(&oom_reaper_wait);
564}
565
566static int __init oom_init(void)
567{
568	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
569	if (IS_ERR(oom_reaper_th)) {
570		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
571				PTR_ERR(oom_reaper_th));
572		oom_reaper_th = NULL;
573	}
574	return 0;
575}
576subsys_initcall(oom_init)
577#else
578static void wake_oom_reaper(struct task_struct *tsk)
579{
580}
581#endif
582
583/**
584 * mark_oom_victim - mark the given task as OOM victim
585 * @tsk: task to mark
586 *
587 * Has to be called with oom_lock held and never after
588 * oom has been disabled already.
 
 
 
589 */
590void mark_oom_victim(struct task_struct *tsk)
591{
 
 
592	WARN_ON(oom_killer_disabled);
593	/* OOM killer might race with memcg OOM */
594	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
595		return;
 
 
 
 
 
 
 
596	/*
597	 * Make sure that the task is woken up from uninterruptible sleep
598	 * if it is frozen because OOM killer wouldn't be able to free
599	 * any memory and livelock. freezing_slow_path will tell the freezer
600	 * that TIF_MEMDIE tasks should be ignored.
601	 */
602	__thaw_task(tsk);
603	atomic_inc(&oom_victims);
 
604}
605
606/**
607 * exit_oom_victim - note the exit of an OOM victim
608 */
609void exit_oom_victim(struct task_struct *tsk)
610{
611	if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
612		return;
613
614	if (!atomic_dec_return(&oom_victims))
615		wake_up_all(&oom_victims_wait);
616}
617
618/**
 
 
 
 
 
 
 
 
 
619 * oom_killer_disable - disable OOM killer
 
620 *
621 * Forces all page allocations to fail rather than trigger OOM killer.
622 * Will block and wait until all OOM victims are killed.
 
623 *
624 * The function cannot be called when there are runnable user tasks because
625 * the userspace would see unexpected allocation failures as a result. Any
626 * new usage of this function should be consulted with MM people.
627 *
628 * Returns true if successful and false if the OOM killer cannot be
629 * disabled.
630 */
631bool oom_killer_disable(void)
632{
 
 
633	/*
634	 * Make sure to not race with an ongoing OOM killer. Check that the
635	 * current is not killed (possibly due to sharing the victim's memory).
636	 */
637	if (mutex_lock_killable(&oom_lock))
638		return false;
639	oom_killer_disabled = true;
640	mutex_unlock(&oom_lock);
641
642	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
 
 
 
 
 
 
643
644	return true;
645}
646
647/**
648 * oom_killer_enable - enable OOM killer
649 */
650void oom_killer_enable(void)
651{
652	oom_killer_disabled = false;
653}
 
 
 
 
 
 
 
 
 
 
654
655/*
656 * task->mm can be NULL if the task is the exited group leader.  So to
657 * determine whether the task is using a particular mm, we examine all the
658 * task's threads: if one of those is using this mm then this task was also
659 * using it.
660 */
661static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
662{
663	struct task_struct *t;
664
665	for_each_thread(p, t) {
666		struct mm_struct *t_mm = READ_ONCE(t->mm);
667		if (t_mm)
668			return t_mm == mm;
669	}
670	return false;
671}
672
673/*
674 * Must be called while holding a reference to p, which will be released upon
675 * returning.
 
 
 
676 */
677void oom_kill_process(struct oom_control *oc, struct task_struct *p,
678		      unsigned int points, unsigned long totalpages,
679		      struct mem_cgroup *memcg, const char *message)
680{
681	struct task_struct *victim = p;
682	struct task_struct *child;
683	struct task_struct *t;
684	struct mm_struct *mm;
685	unsigned int victim_points = 0;
686	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
687					      DEFAULT_RATELIMIT_BURST);
688	bool can_oom_reap = true;
689
690	/*
691	 * If the task is already exiting, don't alarm the sysadmin or kill
692	 * its children or threads, just set TIF_MEMDIE so it can die quickly
 
693	 */
694	task_lock(p);
695	if (p->mm && task_will_free_mem(p)) {
696		mark_oom_victim(p);
697		task_unlock(p);
698		put_task_struct(p);
699		return;
700	}
701	task_unlock(p);
702
703	if (__ratelimit(&oom_rs))
704		dump_header(oc, p, memcg);
 
 
 
 
705
706	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
707		message, task_pid_nr(p), p->comm, points);
708
709	/*
710	 * If any of p's children has a different mm and is eligible for kill,
711	 * the one with the highest oom_badness() score is sacrificed for its
712	 * parent.  This attempts to lose the minimal amount of work done while
713	 * still freeing memory.
714	 */
715	read_lock(&tasklist_lock);
716	for_each_thread(p, t) {
717		list_for_each_entry(child, &t->children, sibling) {
718			unsigned int child_points;
 
 
 
 
 
 
 
 
 
 
719
720			if (process_shares_mm(child, p->mm))
721				continue;
722			/*
723			 * oom_badness() returns 0 if the thread is unkillable
724			 */
725			child_points = oom_badness(child, memcg, oc->nodemask,
726								totalpages);
727			if (child_points > victim_points) {
728				put_task_struct(victim);
729				victim = child;
730				victim_points = child_points;
731				get_task_struct(victim);
732			}
733		}
734	}
735	read_unlock(&tasklist_lock);
736
737	p = find_lock_task_mm(victim);
738	if (!p) {
739		put_task_struct(victim);
740		return;
741	} else if (victim != p) {
742		get_task_struct(p);
743		put_task_struct(victim);
744		victim = p;
745	}
746
747	/* Get a reference to safely compare mm after task_unlock(victim) */
748	mm = victim->mm;
749	atomic_inc(&mm->mm_count);
 
 
 
 
 
750	/*
751	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
752	 * the OOM victim from depleting the memory reserves from the user
753	 * space under its control.
754	 */
755	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
756	mark_oom_victim(victim);
757	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
758		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
759		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
760		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
761		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 
 
762	task_unlock(victim);
763
764	/*
765	 * Kill all user processes sharing victim->mm in other thread groups, if
766	 * any.  They don't get access to memory reserves, though, to avoid
767	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
768	 * oom killed thread cannot exit because it requires the semaphore and
769	 * its contended by another thread trying to allocate memory itself.
770	 * That thread will now get access to memory reserves since it has a
771	 * pending fatal signal.
772	 */
773	rcu_read_lock();
774	for_each_process(p) {
775		if (!process_shares_mm(p, mm))
776			continue;
777		if (same_thread_group(p, victim))
778			continue;
779		if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
780		    p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
781			/*
782			 * We cannot use oom_reaper for the mm shared by this
783			 * process because it wouldn't get killed and so the
784			 * memory might be still used.
785			 */
786			can_oom_reap = false;
 
 
 
 
787			continue;
788		}
789		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
 
 
 
 
 
 
790	}
791	rcu_read_unlock();
792
793	if (can_oom_reap)
794		wake_oom_reaper(victim);
795
796	mmdrop(mm);
797	put_task_struct(victim);
798}
799#undef K
800
801/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
803 */
804void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
805			struct mem_cgroup *memcg)
806{
807	if (likely(!sysctl_panic_on_oom))
808		return;
809	if (sysctl_panic_on_oom != 2) {
810		/*
811		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
812		 * does not panic for cpuset, mempolicy, or memcg allocation
813		 * failures.
814		 */
815		if (constraint != CONSTRAINT_NONE)
816			return;
817	}
818	/* Do not panic for oom kills triggered by sysrq */
819	if (is_sysrq_oom(oc))
820		return;
821	dump_header(oc, NULL, memcg);
822	panic("Out of memory: %s panic_on_oom is enabled\n",
823		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
824}
825
826static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
827
828int register_oom_notifier(struct notifier_block *nb)
829{
830	return blocking_notifier_chain_register(&oom_notify_list, nb);
831}
832EXPORT_SYMBOL_GPL(register_oom_notifier);
833
834int unregister_oom_notifier(struct notifier_block *nb)
835{
836	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
837}
838EXPORT_SYMBOL_GPL(unregister_oom_notifier);
839
840/**
841 * out_of_memory - kill the "best" process when we run out of memory
842 * @oc: pointer to struct oom_control
843 *
844 * If we run out of memory, we have the choice between either
845 * killing a random task (bad), letting the system crash (worse)
846 * OR try to be smart about which process to kill. Note that we
847 * don't have to be perfect here, we just have to be good.
848 */
849bool out_of_memory(struct oom_control *oc)
850{
851	struct task_struct *p;
852	unsigned long totalpages;
853	unsigned long freed = 0;
854	unsigned int uninitialized_var(points);
855	enum oom_constraint constraint = CONSTRAINT_NONE;
856
857	if (oom_killer_disabled)
858		return false;
859
860	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
861	if (freed > 0)
862		/* Got some memory back in the last second. */
863		return true;
 
 
864
865	/*
866	 * If current has a pending SIGKILL or is exiting, then automatically
867	 * select it.  The goal is to allow it to allocate so that it may
868	 * quickly exit and free its memory.
869	 *
870	 * But don't select if current has already released its mm and cleared
871	 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
872	 */
873	if (current->mm &&
874	    (fatal_signal_pending(current) || task_will_free_mem(current))) {
875		mark_oom_victim(current);
 
876		return true;
877	}
878
879	/*
 
 
 
 
 
 
 
 
 
 
880	 * Check if there were limitations on the allocation (only relevant for
881	 * NUMA) that may require different handling.
882	 */
883	constraint = constrained_alloc(oc, &totalpages);
884	if (constraint != CONSTRAINT_MEMORY_POLICY)
885		oc->nodemask = NULL;
886	check_panic_on_oom(oc, constraint, NULL);
887
888	if (sysctl_oom_kill_allocating_task && current->mm &&
889	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
 
890	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
891		get_task_struct(current);
892		oom_kill_process(oc, current, 0, totalpages, NULL,
893				 "Out of memory (oom_kill_allocating_task)");
894		return true;
895	}
896
897	p = select_bad_process(oc, &points, totalpages);
898	/* Found nothing?!?! Either we hang forever, or we panic. */
899	if (!p && !is_sysrq_oom(oc)) {
900		dump_header(oc, NULL, NULL);
901		panic("Out of memory and no killable processes...\n");
902	}
903	if (p && p != (void *)-1UL) {
904		oom_kill_process(oc, p, points, totalpages, NULL,
905				 "Out of memory");
906		/*
907		 * Give the killed process a good chance to exit before trying
908		 * to allocate memory again.
 
909		 */
910		schedule_timeout_killable(1);
 
911	}
912	return true;
 
 
 
913}
914
915/*
916 * The pagefault handler calls here because it is out of memory, so kill a
917 * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
918 * parallel oom killing is already in progress so do nothing.
919 */
920void pagefault_out_of_memory(void)
921{
922	struct oom_control oc = {
923		.zonelist = NULL,
924		.nodemask = NULL,
 
925		.gfp_mask = 0,
926		.order = 0,
927	};
928
929	if (mem_cgroup_oom_synchronize(true))
930		return;
931
932	if (!mutex_trylock(&oom_lock))
933		return;
934
935	if (!out_of_memory(&oc)) {
936		/*
937		 * There shouldn't be any user tasks runnable while the
938		 * OOM killer is disabled, so the current task has to
939		 * be a racing OOM victim for which oom_killer_disable()
940		 * is waiting for.
941		 */
942		WARN_ON(test_thread_flag(TIF_MEMDIE));
943	}
944
945	mutex_unlock(&oom_lock);
946}