Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#include "internal.h"
  57
  58#ifndef arch_mmap_check
  59#define arch_mmap_check(addr, len, flags)	(0)
  60#endif
  61
 
 
 
 
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  95 * MAP_PRIVATE:
  96 *								r: (no) no
  97 *								w: (no) no
  98 *								x: (yes) yes
  99 */
 100pgprot_t protection_map[16] __ro_after_init = {
 101	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 102	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 103};
 104
 105#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 106static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 107{
 108	return prot;
 109}
 110#endif
 111
 112pgprot_t vm_get_page_prot(unsigned long vm_flags)
 113{
 114	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 115				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 116			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 117
 118	return arch_filter_pgprot(ret);
 119}
 120EXPORT_SYMBOL(vm_get_page_prot);
 121
 122static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 123{
 124	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 125}
 126
 127/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 128void vma_set_page_prot(struct vm_area_struct *vma)
 129{
 130	unsigned long vm_flags = vma->vm_flags;
 131	pgprot_t vm_page_prot;
 132
 133	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 134	if (vma_wants_writenotify(vma, vm_page_prot)) {
 135		vm_flags &= ~VM_SHARED;
 136		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
 137	}
 138	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 139	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 140}
 141
 142/*
 143 * Requires inode->i_mapping->i_mmap_rwsem
 144 */
 145static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 146		struct file *file, struct address_space *mapping)
 147{
 148	if (vma->vm_flags & VM_DENYWRITE)
 149		atomic_inc(&file_inode(file)->i_writecount);
 150	if (vma->vm_flags & VM_SHARED)
 151		mapping_unmap_writable(mapping);
 152
 153	flush_dcache_mmap_lock(mapping);
 154	vma_interval_tree_remove(vma, &mapping->i_mmap);
 155	flush_dcache_mmap_unlock(mapping);
 156}
 157
 158/*
 159 * Unlink a file-based vm structure from its interval tree, to hide
 160 * vma from rmap and vmtruncate before freeing its page tables.
 161 */
 162void unlink_file_vma(struct vm_area_struct *vma)
 163{
 164	struct file *file = vma->vm_file;
 165
 166	if (file) {
 167		struct address_space *mapping = file->f_mapping;
 168		i_mmap_lock_write(mapping);
 169		__remove_shared_vm_struct(vma, file, mapping);
 170		i_mmap_unlock_write(mapping);
 171	}
 172}
 173
 174/*
 175 * Close a vm structure and free it, returning the next.
 176 */
 177static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 178{
 179	struct vm_area_struct *next = vma->vm_next;
 180
 181	might_sleep();
 182	if (vma->vm_ops && vma->vm_ops->close)
 183		vma->vm_ops->close(vma);
 184	if (vma->vm_file)
 185		fput(vma->vm_file);
 186	mpol_put(vma_policy(vma));
 187	vm_area_free(vma);
 188	return next;
 189}
 190
 191static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 192		struct list_head *uf);
 193SYSCALL_DEFINE1(brk, unsigned long, brk)
 194{
 195	unsigned long retval;
 196	unsigned long newbrk, oldbrk, origbrk;
 197	struct mm_struct *mm = current->mm;
 198	struct vm_area_struct *next;
 199	unsigned long min_brk;
 200	bool populate;
 201	bool downgraded = false;
 202	LIST_HEAD(uf);
 203
 204	brk = untagged_addr(brk);
 205
 206	if (down_write_killable(&mm->mmap_sem))
 207		return -EINTR;
 208
 209	origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212	/*
 213	 * CONFIG_COMPAT_BRK can still be overridden by setting
 214	 * randomize_va_space to 2, which will still cause mm->start_brk
 215	 * to be arbitrarily shifted
 216	 */
 217	if (current->brk_randomized)
 218		min_brk = mm->start_brk;
 219	else
 220		min_brk = mm->end_data;
 221#else
 222	min_brk = mm->start_brk;
 223#endif
 224	if (brk < min_brk)
 225		goto out;
 226
 227	/*
 228	 * Check against rlimit here. If this check is done later after the test
 229	 * of oldbrk with newbrk then it can escape the test and let the data
 230	 * segment grow beyond its set limit the in case where the limit is
 231	 * not page aligned -Ram Gupta
 232	 */
 233	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234			      mm->end_data, mm->start_data))
 235		goto out;
 236
 237	newbrk = PAGE_ALIGN(brk);
 238	oldbrk = PAGE_ALIGN(mm->brk);
 239	if (oldbrk == newbrk) {
 240		mm->brk = brk;
 241		goto success;
 242	}
 243
 244	/*
 245	 * Always allow shrinking brk.
 246	 * __do_munmap() may downgrade mmap_sem to read.
 247	 */
 248	if (brk <= mm->brk) {
 249		int ret;
 250
 251		/*
 252		 * mm->brk must to be protected by write mmap_sem so update it
 253		 * before downgrading mmap_sem. When __do_munmap() fails,
 254		 * mm->brk will be restored from origbrk.
 255		 */
 256		mm->brk = brk;
 257		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258		if (ret < 0) {
 259			mm->brk = origbrk;
 260			goto out;
 261		} else if (ret == 1) {
 262			downgraded = true;
 263		}
 264		goto success;
 265	}
 266
 267	/* Check against existing mmap mappings. */
 268	next = find_vma(mm, oldbrk);
 269	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270		goto out;
 271
 272	/* Ok, looks good - let it rip. */
 273	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274		goto out;
 275	mm->brk = brk;
 276
 277success:
 
 278	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279	if (downgraded)
 280		up_read(&mm->mmap_sem);
 281	else
 282		up_write(&mm->mmap_sem);
 283	userfaultfd_unmap_complete(mm, &uf);
 284	if (populate)
 285		mm_populate(oldbrk, newbrk - oldbrk);
 286	return brk;
 287
 288out:
 289	retval = origbrk;
 290	up_write(&mm->mmap_sem);
 291	return retval;
 292}
 293
 294static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 295{
 296	unsigned long gap, prev_end;
 297
 298	/*
 299	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 300	 * allow two stack_guard_gaps between them here, and when choosing
 301	 * an unmapped area; whereas when expanding we only require one.
 302	 * That's a little inconsistent, but keeps the code here simpler.
 303	 */
 304	gap = vm_start_gap(vma);
 305	if (vma->vm_prev) {
 306		prev_end = vm_end_gap(vma->vm_prev);
 307		if (gap > prev_end)
 308			gap -= prev_end;
 309		else
 310			gap = 0;
 311	}
 312	return gap;
 313}
 314
 315#ifdef CONFIG_DEBUG_VM_RB
 316static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 317{
 318	unsigned long max = vma_compute_gap(vma), subtree_gap;
 
 
 
 319	if (vma->vm_rb.rb_left) {
 320		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 321				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 322		if (subtree_gap > max)
 323			max = subtree_gap;
 324	}
 325	if (vma->vm_rb.rb_right) {
 326		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 327				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 328		if (subtree_gap > max)
 329			max = subtree_gap;
 330	}
 331	return max;
 332}
 333
 
 334static int browse_rb(struct mm_struct *mm)
 335{
 336	struct rb_root *root = &mm->mm_rb;
 337	int i = 0, j, bug = 0;
 338	struct rb_node *nd, *pn = NULL;
 339	unsigned long prev = 0, pend = 0;
 340
 341	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 342		struct vm_area_struct *vma;
 343		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 344		if (vma->vm_start < prev) {
 345			pr_emerg("vm_start %lx < prev %lx\n",
 346				  vma->vm_start, prev);
 347			bug = 1;
 348		}
 349		if (vma->vm_start < pend) {
 350			pr_emerg("vm_start %lx < pend %lx\n",
 351				  vma->vm_start, pend);
 352			bug = 1;
 353		}
 354		if (vma->vm_start > vma->vm_end) {
 355			pr_emerg("vm_start %lx > vm_end %lx\n",
 356				  vma->vm_start, vma->vm_end);
 357			bug = 1;
 358		}
 359		spin_lock(&mm->page_table_lock);
 360		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 361			pr_emerg("free gap %lx, correct %lx\n",
 362			       vma->rb_subtree_gap,
 363			       vma_compute_subtree_gap(vma));
 364			bug = 1;
 365		}
 366		spin_unlock(&mm->page_table_lock);
 367		i++;
 368		pn = nd;
 369		prev = vma->vm_start;
 370		pend = vma->vm_end;
 371	}
 372	j = 0;
 373	for (nd = pn; nd; nd = rb_prev(nd))
 374		j++;
 375	if (i != j) {
 376		pr_emerg("backwards %d, forwards %d\n", j, i);
 377		bug = 1;
 378	}
 379	return bug ? -1 : i;
 380}
 381
 382static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 383{
 384	struct rb_node *nd;
 385
 386	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 387		struct vm_area_struct *vma;
 388		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 389		VM_BUG_ON_VMA(vma != ignore &&
 390			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 391			vma);
 392	}
 393}
 394
 395static void validate_mm(struct mm_struct *mm)
 396{
 397	int bug = 0;
 398	int i = 0;
 399	unsigned long highest_address = 0;
 400	struct vm_area_struct *vma = mm->mmap;
 401
 402	while (vma) {
 403		struct anon_vma *anon_vma = vma->anon_vma;
 404		struct anon_vma_chain *avc;
 405
 406		if (anon_vma) {
 407			anon_vma_lock_read(anon_vma);
 408			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 409				anon_vma_interval_tree_verify(avc);
 410			anon_vma_unlock_read(anon_vma);
 411		}
 412
 413		highest_address = vm_end_gap(vma);
 414		vma = vma->vm_next;
 415		i++;
 416	}
 417	if (i != mm->map_count) {
 418		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 419		bug = 1;
 420	}
 421	if (highest_address != mm->highest_vm_end) {
 422		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 423			  mm->highest_vm_end, highest_address);
 424		bug = 1;
 425	}
 426	i = browse_rb(mm);
 427	if (i != mm->map_count) {
 428		if (i != -1)
 429			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 430		bug = 1;
 431	}
 432	VM_BUG_ON_MM(bug, mm);
 433}
 434#else
 435#define validate_mm_rb(root, ignore) do { } while (0)
 436#define validate_mm(mm) do { } while (0)
 437#endif
 438
 439RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 440			 struct vm_area_struct, vm_rb,
 441			 unsigned long, rb_subtree_gap, vma_compute_gap)
 442
 443/*
 444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 446 * in the rbtree.
 447 */
 448static void vma_gap_update(struct vm_area_struct *vma)
 449{
 450	/*
 451	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 452	 * a callback function that does exactly what we want.
 453	 */
 454	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 455}
 456
 457static inline void vma_rb_insert(struct vm_area_struct *vma,
 458				 struct rb_root *root)
 459{
 460	/* All rb_subtree_gap values must be consistent prior to insertion */
 461	validate_mm_rb(root, NULL);
 462
 463	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 464}
 465
 466static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 467{
 468	/*
 469	 * Note rb_erase_augmented is a fairly large inline function,
 470	 * so make sure we instantiate it only once with our desired
 471	 * augmented rbtree callbacks.
 472	 */
 473	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 474}
 475
 476static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 477						struct rb_root *root,
 478						struct vm_area_struct *ignore)
 479{
 480	/*
 481	 * All rb_subtree_gap values must be consistent prior to erase,
 482	 * with the possible exception of the "next" vma being erased if
 483	 * next->vm_start was reduced.
 484	 */
 485	validate_mm_rb(root, ignore);
 486
 487	__vma_rb_erase(vma, root);
 488}
 489
 490static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 491					 struct rb_root *root)
 492{
 493	/*
 494	 * All rb_subtree_gap values must be consistent prior to erase,
 495	 * with the possible exception of the vma being erased.
 496	 */
 497	validate_mm_rb(root, vma);
 498
 499	__vma_rb_erase(vma, root);
 
 
 
 
 
 500}
 501
 502/*
 503 * vma has some anon_vma assigned, and is already inserted on that
 504 * anon_vma's interval trees.
 505 *
 506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 507 * vma must be removed from the anon_vma's interval trees using
 508 * anon_vma_interval_tree_pre_update_vma().
 509 *
 510 * After the update, the vma will be reinserted using
 511 * anon_vma_interval_tree_post_update_vma().
 512 *
 513 * The entire update must be protected by exclusive mmap_sem and by
 514 * the root anon_vma's mutex.
 515 */
 516static inline void
 517anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 518{
 519	struct anon_vma_chain *avc;
 520
 521	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 522		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 523}
 524
 525static inline void
 526anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 527{
 528	struct anon_vma_chain *avc;
 529
 530	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 531		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 532}
 533
 534static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 535		unsigned long end, struct vm_area_struct **pprev,
 536		struct rb_node ***rb_link, struct rb_node **rb_parent)
 537{
 538	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 539
 540	__rb_link = &mm->mm_rb.rb_node;
 541	rb_prev = __rb_parent = NULL;
 542
 543	while (*__rb_link) {
 544		struct vm_area_struct *vma_tmp;
 545
 546		__rb_parent = *__rb_link;
 547		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 548
 549		if (vma_tmp->vm_end > addr) {
 550			/* Fail if an existing vma overlaps the area */
 551			if (vma_tmp->vm_start < end)
 552				return -ENOMEM;
 553			__rb_link = &__rb_parent->rb_left;
 554		} else {
 555			rb_prev = __rb_parent;
 556			__rb_link = &__rb_parent->rb_right;
 557		}
 558	}
 559
 560	*pprev = NULL;
 561	if (rb_prev)
 562		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 563	*rb_link = __rb_link;
 564	*rb_parent = __rb_parent;
 565	return 0;
 566}
 567
 568static unsigned long count_vma_pages_range(struct mm_struct *mm,
 569		unsigned long addr, unsigned long end)
 570{
 571	unsigned long nr_pages = 0;
 572	struct vm_area_struct *vma;
 573
 574	/* Find first overlaping mapping */
 575	vma = find_vma_intersection(mm, addr, end);
 576	if (!vma)
 577		return 0;
 578
 579	nr_pages = (min(end, vma->vm_end) -
 580		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 581
 582	/* Iterate over the rest of the overlaps */
 583	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 584		unsigned long overlap_len;
 585
 586		if (vma->vm_start > end)
 587			break;
 588
 589		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 590		nr_pages += overlap_len >> PAGE_SHIFT;
 591	}
 592
 593	return nr_pages;
 594}
 595
 596void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 597		struct rb_node **rb_link, struct rb_node *rb_parent)
 598{
 599	/* Update tracking information for the gap following the new vma. */
 600	if (vma->vm_next)
 601		vma_gap_update(vma->vm_next);
 602	else
 603		mm->highest_vm_end = vm_end_gap(vma);
 604
 605	/*
 606	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 607	 * correct insertion point for that vma. As a result, we could not
 608	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 609	 * So, we first insert the vma with a zero rb_subtree_gap value
 610	 * (to be consistent with what we did on the way down), and then
 611	 * immediately update the gap to the correct value. Finally we
 612	 * rebalance the rbtree after all augmented values have been set.
 613	 */
 614	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 615	vma->rb_subtree_gap = 0;
 616	vma_gap_update(vma);
 617	vma_rb_insert(vma, &mm->mm_rb);
 618}
 619
 620static void __vma_link_file(struct vm_area_struct *vma)
 621{
 622	struct file *file;
 623
 624	file = vma->vm_file;
 625	if (file) {
 626		struct address_space *mapping = file->f_mapping;
 627
 628		if (vma->vm_flags & VM_DENYWRITE)
 629			atomic_dec(&file_inode(file)->i_writecount);
 630		if (vma->vm_flags & VM_SHARED)
 631			atomic_inc(&mapping->i_mmap_writable);
 632
 633		flush_dcache_mmap_lock(mapping);
 634		vma_interval_tree_insert(vma, &mapping->i_mmap);
 635		flush_dcache_mmap_unlock(mapping);
 636	}
 637}
 638
 639static void
 640__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 641	struct vm_area_struct *prev, struct rb_node **rb_link,
 642	struct rb_node *rb_parent)
 643{
 644	__vma_link_list(mm, vma, prev, rb_parent);
 645	__vma_link_rb(mm, vma, rb_link, rb_parent);
 646}
 647
 648static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 649			struct vm_area_struct *prev, struct rb_node **rb_link,
 650			struct rb_node *rb_parent)
 651{
 652	struct address_space *mapping = NULL;
 653
 654	if (vma->vm_file) {
 655		mapping = vma->vm_file->f_mapping;
 656		i_mmap_lock_write(mapping);
 657	}
 658
 659	__vma_link(mm, vma, prev, rb_link, rb_parent);
 660	__vma_link_file(vma);
 661
 662	if (mapping)
 663		i_mmap_unlock_write(mapping);
 664
 665	mm->map_count++;
 666	validate_mm(mm);
 667}
 668
 669/*
 670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 671 * mm's list and rbtree.  It has already been inserted into the interval tree.
 672 */
 673static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 674{
 675	struct vm_area_struct *prev;
 676	struct rb_node **rb_link, *rb_parent;
 677
 678	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 679			   &prev, &rb_link, &rb_parent))
 680		BUG();
 681	__vma_link(mm, vma, prev, rb_link, rb_parent);
 682	mm->map_count++;
 683}
 684
 685static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 686						struct vm_area_struct *vma,
 687						struct vm_area_struct *prev,
 688						bool has_prev,
 689						struct vm_area_struct *ignore)
 690{
 691	struct vm_area_struct *next;
 692
 693	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 694	next = vma->vm_next;
 695	if (has_prev)
 696		prev->vm_next = next;
 697	else {
 698		prev = vma->vm_prev;
 699		if (prev)
 700			prev->vm_next = next;
 701		else
 702			mm->mmap = next;
 703	}
 704	if (next)
 705		next->vm_prev = prev;
 706
 707	/* Kill the cache */
 708	vmacache_invalidate(mm);
 709}
 710
 711static inline void __vma_unlink_prev(struct mm_struct *mm,
 712				     struct vm_area_struct *vma,
 713				     struct vm_area_struct *prev)
 714{
 715	__vma_unlink_common(mm, vma, prev, true, vma);
 716}
 717
 718/*
 719 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 720 * is already present in an i_mmap tree without adjusting the tree.
 721 * The following helper function should be used when such adjustments
 722 * are necessary.  The "insert" vma (if any) is to be inserted
 723 * before we drop the necessary locks.
 724 */
 725int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 726	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 727	struct vm_area_struct *expand)
 728{
 729	struct mm_struct *mm = vma->vm_mm;
 730	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 
 731	struct address_space *mapping = NULL;
 732	struct rb_root_cached *root = NULL;
 733	struct anon_vma *anon_vma = NULL;
 734	struct file *file = vma->vm_file;
 735	bool start_changed = false, end_changed = false;
 736	long adjust_next = 0;
 737	int remove_next = 0;
 738
 739	if (next && !insert) {
 740		struct vm_area_struct *exporter = NULL, *importer = NULL;
 741
 742		if (end >= next->vm_end) {
 743			/*
 744			 * vma expands, overlapping all the next, and
 745			 * perhaps the one after too (mprotect case 6).
 746			 * The only other cases that gets here are
 747			 * case 1, case 7 and case 8.
 748			 */
 749			if (next == expand) {
 750				/*
 751				 * The only case where we don't expand "vma"
 752				 * and we expand "next" instead is case 8.
 753				 */
 754				VM_WARN_ON(end != next->vm_end);
 755				/*
 756				 * remove_next == 3 means we're
 757				 * removing "vma" and that to do so we
 758				 * swapped "vma" and "next".
 759				 */
 760				remove_next = 3;
 761				VM_WARN_ON(file != next->vm_file);
 762				swap(vma, next);
 763			} else {
 764				VM_WARN_ON(expand != vma);
 765				/*
 766				 * case 1, 6, 7, remove_next == 2 is case 6,
 767				 * remove_next == 1 is case 1 or 7.
 768				 */
 769				remove_next = 1 + (end > next->vm_end);
 770				VM_WARN_ON(remove_next == 2 &&
 771					   end != next->vm_next->vm_end);
 772				VM_WARN_ON(remove_next == 1 &&
 773					   end != next->vm_end);
 774				/* trim end to next, for case 6 first pass */
 775				end = next->vm_end;
 776			}
 777
 778			exporter = next;
 779			importer = vma;
 780
 781			/*
 782			 * If next doesn't have anon_vma, import from vma after
 783			 * next, if the vma overlaps with it.
 784			 */
 785			if (remove_next == 2 && !next->anon_vma)
 786				exporter = next->vm_next;
 787
 788		} else if (end > next->vm_start) {
 789			/*
 790			 * vma expands, overlapping part of the next:
 791			 * mprotect case 5 shifting the boundary up.
 792			 */
 793			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 794			exporter = next;
 795			importer = vma;
 796			VM_WARN_ON(expand != importer);
 797		} else if (end < vma->vm_end) {
 798			/*
 799			 * vma shrinks, and !insert tells it's not
 800			 * split_vma inserting another: so it must be
 801			 * mprotect case 4 shifting the boundary down.
 802			 */
 803			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 804			exporter = vma;
 805			importer = next;
 806			VM_WARN_ON(expand != importer);
 807		}
 808
 809		/*
 810		 * Easily overlooked: when mprotect shifts the boundary,
 811		 * make sure the expanding vma has anon_vma set if the
 812		 * shrinking vma had, to cover any anon pages imported.
 813		 */
 814		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 815			int error;
 816
 817			importer->anon_vma = exporter->anon_vma;
 818			error = anon_vma_clone(importer, exporter);
 819			if (error)
 820				return error;
 821		}
 822	}
 823again:
 824	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 825
 826	if (file) {
 827		mapping = file->f_mapping;
 828		root = &mapping->i_mmap;
 829		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 830
 831		if (adjust_next)
 832			uprobe_munmap(next, next->vm_start, next->vm_end);
 833
 834		i_mmap_lock_write(mapping);
 835		if (insert) {
 836			/*
 837			 * Put into interval tree now, so instantiated pages
 838			 * are visible to arm/parisc __flush_dcache_page
 839			 * throughout; but we cannot insert into address
 840			 * space until vma start or end is updated.
 841			 */
 842			__vma_link_file(insert);
 843		}
 844	}
 845
 
 
 846	anon_vma = vma->anon_vma;
 847	if (!anon_vma && adjust_next)
 848		anon_vma = next->anon_vma;
 849	if (anon_vma) {
 850		VM_WARN_ON(adjust_next && next->anon_vma &&
 851			   anon_vma != next->anon_vma);
 852		anon_vma_lock_write(anon_vma);
 853		anon_vma_interval_tree_pre_update_vma(vma);
 854		if (adjust_next)
 855			anon_vma_interval_tree_pre_update_vma(next);
 856	}
 857
 858	if (root) {
 859		flush_dcache_mmap_lock(mapping);
 860		vma_interval_tree_remove(vma, root);
 861		if (adjust_next)
 862			vma_interval_tree_remove(next, root);
 863	}
 864
 865	if (start != vma->vm_start) {
 866		vma->vm_start = start;
 867		start_changed = true;
 868	}
 869	if (end != vma->vm_end) {
 870		vma->vm_end = end;
 871		end_changed = true;
 872	}
 873	vma->vm_pgoff = pgoff;
 874	if (adjust_next) {
 875		next->vm_start += adjust_next << PAGE_SHIFT;
 876		next->vm_pgoff += adjust_next;
 877	}
 878
 879	if (root) {
 880		if (adjust_next)
 881			vma_interval_tree_insert(next, root);
 882		vma_interval_tree_insert(vma, root);
 883		flush_dcache_mmap_unlock(mapping);
 884	}
 885
 886	if (remove_next) {
 887		/*
 888		 * vma_merge has merged next into vma, and needs
 889		 * us to remove next before dropping the locks.
 890		 */
 891		if (remove_next != 3)
 892			__vma_unlink_prev(mm, next, vma);
 893		else
 894			/*
 895			 * vma is not before next if they've been
 896			 * swapped.
 897			 *
 898			 * pre-swap() next->vm_start was reduced so
 899			 * tell validate_mm_rb to ignore pre-swap()
 900			 * "next" (which is stored in post-swap()
 901			 * "vma").
 902			 */
 903			__vma_unlink_common(mm, next, NULL, false, vma);
 904		if (file)
 905			__remove_shared_vm_struct(next, file, mapping);
 906	} else if (insert) {
 907		/*
 908		 * split_vma has split insert from vma, and needs
 909		 * us to insert it before dropping the locks
 910		 * (it may either follow vma or precede it).
 911		 */
 912		__insert_vm_struct(mm, insert);
 913	} else {
 914		if (start_changed)
 915			vma_gap_update(vma);
 916		if (end_changed) {
 917			if (!next)
 918				mm->highest_vm_end = vm_end_gap(vma);
 919			else if (!adjust_next)
 920				vma_gap_update(next);
 921		}
 922	}
 923
 924	if (anon_vma) {
 925		anon_vma_interval_tree_post_update_vma(vma);
 926		if (adjust_next)
 927			anon_vma_interval_tree_post_update_vma(next);
 928		anon_vma_unlock_write(anon_vma);
 929	}
 930	if (mapping)
 931		i_mmap_unlock_write(mapping);
 932
 933	if (root) {
 934		uprobe_mmap(vma);
 935
 936		if (adjust_next)
 937			uprobe_mmap(next);
 938	}
 939
 940	if (remove_next) {
 941		if (file) {
 942			uprobe_munmap(next, next->vm_start, next->vm_end);
 943			fput(file);
 944		}
 945		if (next->anon_vma)
 946			anon_vma_merge(vma, next);
 947		mm->map_count--;
 948		mpol_put(vma_policy(next));
 949		vm_area_free(next);
 950		/*
 951		 * In mprotect's case 6 (see comments on vma_merge),
 952		 * we must remove another next too. It would clutter
 953		 * up the code too much to do both in one go.
 954		 */
 955		if (remove_next != 3) {
 956			/*
 957			 * If "next" was removed and vma->vm_end was
 958			 * expanded (up) over it, in turn
 959			 * "next->vm_prev->vm_end" changed and the
 960			 * "vma->vm_next" gap must be updated.
 961			 */
 962			next = vma->vm_next;
 963		} else {
 964			/*
 965			 * For the scope of the comment "next" and
 966			 * "vma" considered pre-swap(): if "vma" was
 967			 * removed, next->vm_start was expanded (down)
 968			 * over it and the "next" gap must be updated.
 969			 * Because of the swap() the post-swap() "vma"
 970			 * actually points to pre-swap() "next"
 971			 * (post-swap() "next" as opposed is now a
 972			 * dangling pointer).
 973			 */
 974			next = vma;
 975		}
 976		if (remove_next == 2) {
 977			remove_next = 1;
 978			end = next->vm_end;
 979			goto again;
 980		}
 981		else if (next)
 982			vma_gap_update(next);
 983		else {
 984			/*
 985			 * If remove_next == 2 we obviously can't
 986			 * reach this path.
 987			 *
 988			 * If remove_next == 3 we can't reach this
 989			 * path because pre-swap() next is always not
 990			 * NULL. pre-swap() "next" is not being
 991			 * removed and its next->vm_end is not altered
 992			 * (and furthermore "end" already matches
 993			 * next->vm_end in remove_next == 3).
 994			 *
 995			 * We reach this only in the remove_next == 1
 996			 * case if the "next" vma that was removed was
 997			 * the highest vma of the mm. However in such
 998			 * case next->vm_end == "end" and the extended
 999			 * "vma" has vma->vm_end == next->vm_end so
1000			 * mm->highest_vm_end doesn't need any update
1001			 * in remove_next == 1 case.
1002			 */
1003			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1004		}
1005	}
1006	if (insert && file)
1007		uprobe_mmap(insert);
1008
1009	validate_mm(mm);
1010
1011	return 0;
1012}
1013
1014/*
1015 * If the vma has a ->close operation then the driver probably needs to release
1016 * per-vma resources, so we don't attempt to merge those.
1017 */
1018static inline int is_mergeable_vma(struct vm_area_struct *vma,
1019				struct file *file, unsigned long vm_flags,
1020				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1021{
1022	/*
1023	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1024	 * match the flags but dirty bit -- the caller should mark
1025	 * merged VMA as dirty. If dirty bit won't be excluded from
1026	 * comparison, we increase pressure on the memory system forcing
1027	 * the kernel to generate new VMAs when old one could be
1028	 * extended instead.
1029	 */
1030	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1031		return 0;
1032	if (vma->vm_file != file)
1033		return 0;
1034	if (vma->vm_ops && vma->vm_ops->close)
1035		return 0;
1036	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1037		return 0;
1038	return 1;
1039}
1040
1041static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1042					struct anon_vma *anon_vma2,
1043					struct vm_area_struct *vma)
1044{
1045	/*
1046	 * The list_is_singular() test is to avoid merging VMA cloned from
1047	 * parents. This can improve scalability caused by anon_vma lock.
1048	 */
1049	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1050		list_is_singular(&vma->anon_vma_chain)))
1051		return 1;
1052	return anon_vma1 == anon_vma2;
1053}
1054
1055/*
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * in front of (at a lower virtual address and file offset than) the vma.
1058 *
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061 *
1062 * We don't check here for the merged mmap wrapping around the end of pagecache
1063 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1064 * wrap, nor mmaps which cover the final page at index -1UL.
1065 */
1066static int
1067can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1068		     struct anon_vma *anon_vma, struct file *file,
1069		     pgoff_t vm_pgoff,
1070		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1071{
1072	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1073	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1074		if (vma->vm_pgoff == vm_pgoff)
1075			return 1;
1076	}
1077	return 0;
1078}
1079
1080/*
1081 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1082 * beyond (at a higher virtual address and file offset than) the vma.
1083 *
1084 * We cannot merge two vmas if they have differently assigned (non-NULL)
1085 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1086 */
1087static int
1088can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1089		    struct anon_vma *anon_vma, struct file *file,
1090		    pgoff_t vm_pgoff,
1091		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1092{
1093	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1094	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1095		pgoff_t vm_pglen;
1096		vm_pglen = vma_pages(vma);
1097		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1098			return 1;
1099	}
1100	return 0;
1101}
1102
1103/*
1104 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1105 * whether that can be merged with its predecessor or its successor.
1106 * Or both (it neatly fills a hole).
1107 *
1108 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1109 * certain not to be mapped by the time vma_merge is called; but when
1110 * called for mprotect, it is certain to be already mapped (either at
1111 * an offset within prev, or at the start of next), and the flags of
1112 * this area are about to be changed to vm_flags - and the no-change
1113 * case has already been eliminated.
1114 *
1115 * The following mprotect cases have to be considered, where AAAA is
1116 * the area passed down from mprotect_fixup, never extending beyond one
1117 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1118 *
1119 *     AAAA             AAAA                AAAA          AAAA
1120 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1121 *    cannot merge    might become    might become    might become
1122 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1123 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1124 *    mremap move:                                    PPPPXXXXXXXX 8
1125 *        AAAA
1126 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1127 *    might become    case 1 below    case 2 below    case 3 below
1128 *
1129 * It is important for case 8 that the vma NNNN overlapping the
1130 * region AAAA is never going to extended over XXXX. Instead XXXX must
1131 * be extended in region AAAA and NNNN must be removed. This way in
1132 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1133 * rmap_locks, the properties of the merged vma will be already
1134 * correct for the whole merged range. Some of those properties like
1135 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1136 * be correct for the whole merged range immediately after the
1137 * rmap_locks are released. Otherwise if XXXX would be removed and
1138 * NNNN would be extended over the XXXX range, remove_migration_ptes
1139 * or other rmap walkers (if working on addresses beyond the "end"
1140 * parameter) may establish ptes with the wrong permissions of NNNN
1141 * instead of the right permissions of XXXX.
1142 */
1143struct vm_area_struct *vma_merge(struct mm_struct *mm,
1144			struct vm_area_struct *prev, unsigned long addr,
1145			unsigned long end, unsigned long vm_flags,
1146			struct anon_vma *anon_vma, struct file *file,
1147			pgoff_t pgoff, struct mempolicy *policy,
1148			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1149{
1150	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1151	struct vm_area_struct *area, *next;
1152	int err;
1153
1154	/*
1155	 * We later require that vma->vm_flags == vm_flags,
1156	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1157	 */
1158	if (vm_flags & VM_SPECIAL)
1159		return NULL;
1160
1161	if (prev)
1162		next = prev->vm_next;
1163	else
1164		next = mm->mmap;
1165	area = next;
1166	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1167		next = next->vm_next;
1168
1169	/* verify some invariant that must be enforced by the caller */
1170	VM_WARN_ON(prev && addr <= prev->vm_start);
1171	VM_WARN_ON(area && end > area->vm_end);
1172	VM_WARN_ON(addr >= end);
1173
1174	/*
1175	 * Can it merge with the predecessor?
1176	 */
1177	if (prev && prev->vm_end == addr &&
1178			mpol_equal(vma_policy(prev), policy) &&
1179			can_vma_merge_after(prev, vm_flags,
1180					    anon_vma, file, pgoff,
1181					    vm_userfaultfd_ctx)) {
1182		/*
1183		 * OK, it can.  Can we now merge in the successor as well?
1184		 */
1185		if (next && end == next->vm_start &&
1186				mpol_equal(policy, vma_policy(next)) &&
1187				can_vma_merge_before(next, vm_flags,
1188						     anon_vma, file,
1189						     pgoff+pglen,
1190						     vm_userfaultfd_ctx) &&
1191				is_mergeable_anon_vma(prev->anon_vma,
1192						      next->anon_vma, NULL)) {
1193							/* cases 1, 6 */
1194			err = __vma_adjust(prev, prev->vm_start,
1195					 next->vm_end, prev->vm_pgoff, NULL,
1196					 prev);
1197		} else					/* cases 2, 5, 7 */
1198			err = __vma_adjust(prev, prev->vm_start,
1199					 end, prev->vm_pgoff, NULL, prev);
1200		if (err)
1201			return NULL;
1202		khugepaged_enter_vma_merge(prev, vm_flags);
1203		return prev;
1204	}
1205
1206	/*
1207	 * Can this new request be merged in front of next?
1208	 */
1209	if (next && end == next->vm_start &&
1210			mpol_equal(policy, vma_policy(next)) &&
1211			can_vma_merge_before(next, vm_flags,
1212					     anon_vma, file, pgoff+pglen,
1213					     vm_userfaultfd_ctx)) {
1214		if (prev && addr < prev->vm_end)	/* case 4 */
1215			err = __vma_adjust(prev, prev->vm_start,
1216					 addr, prev->vm_pgoff, NULL, next);
1217		else {					/* cases 3, 8 */
1218			err = __vma_adjust(area, addr, next->vm_end,
1219					 next->vm_pgoff - pglen, NULL, next);
1220			/*
1221			 * In case 3 area is already equal to next and
1222			 * this is a noop, but in case 8 "area" has
1223			 * been removed and next was expanded over it.
1224			 */
1225			area = next;
1226		}
1227		if (err)
1228			return NULL;
1229		khugepaged_enter_vma_merge(area, vm_flags);
1230		return area;
1231	}
1232
1233	return NULL;
1234}
1235
1236/*
1237 * Rough compatbility check to quickly see if it's even worth looking
1238 * at sharing an anon_vma.
1239 *
1240 * They need to have the same vm_file, and the flags can only differ
1241 * in things that mprotect may change.
1242 *
1243 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1244 * we can merge the two vma's. For example, we refuse to merge a vma if
1245 * there is a vm_ops->close() function, because that indicates that the
1246 * driver is doing some kind of reference counting. But that doesn't
1247 * really matter for the anon_vma sharing case.
1248 */
1249static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1250{
1251	return a->vm_end == b->vm_start &&
1252		mpol_equal(vma_policy(a), vma_policy(b)) &&
1253		a->vm_file == b->vm_file &&
1254		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1255		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1256}
1257
1258/*
1259 * Do some basic sanity checking to see if we can re-use the anon_vma
1260 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1261 * the same as 'old', the other will be the new one that is trying
1262 * to share the anon_vma.
1263 *
1264 * NOTE! This runs with mm_sem held for reading, so it is possible that
1265 * the anon_vma of 'old' is concurrently in the process of being set up
1266 * by another page fault trying to merge _that_. But that's ok: if it
1267 * is being set up, that automatically means that it will be a singleton
1268 * acceptable for merging, so we can do all of this optimistically. But
1269 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1270 *
1271 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1272 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1273 * is to return an anon_vma that is "complex" due to having gone through
1274 * a fork).
1275 *
1276 * We also make sure that the two vma's are compatible (adjacent,
1277 * and with the same memory policies). That's all stable, even with just
1278 * a read lock on the mm_sem.
1279 */
1280static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1281{
1282	if (anon_vma_compatible(a, b)) {
1283		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1284
1285		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1286			return anon_vma;
1287	}
1288	return NULL;
1289}
1290
1291/*
1292 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1293 * neighbouring vmas for a suitable anon_vma, before it goes off
1294 * to allocate a new anon_vma.  It checks because a repetitive
1295 * sequence of mprotects and faults may otherwise lead to distinct
1296 * anon_vmas being allocated, preventing vma merge in subsequent
1297 * mprotect.
1298 */
1299struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1300{
1301	struct anon_vma *anon_vma;
1302	struct vm_area_struct *near;
1303
1304	near = vma->vm_next;
1305	if (!near)
1306		goto try_prev;
1307
1308	anon_vma = reusable_anon_vma(near, vma, near);
1309	if (anon_vma)
1310		return anon_vma;
1311try_prev:
1312	near = vma->vm_prev;
1313	if (!near)
1314		goto none;
1315
1316	anon_vma = reusable_anon_vma(near, near, vma);
1317	if (anon_vma)
1318		return anon_vma;
1319none:
1320	/*
1321	 * There's no absolute need to look only at touching neighbours:
1322	 * we could search further afield for "compatible" anon_vmas.
1323	 * But it would probably just be a waste of time searching,
1324	 * or lead to too many vmas hanging off the same anon_vma.
1325	 * We're trying to allow mprotect remerging later on,
1326	 * not trying to minimize memory used for anon_vmas.
1327	 */
1328	return NULL;
1329}
1330
1331/*
1332 * If a hint addr is less than mmap_min_addr change hint to be as
1333 * low as possible but still greater than mmap_min_addr
1334 */
1335static inline unsigned long round_hint_to_min(unsigned long hint)
1336{
1337	hint &= PAGE_MASK;
1338	if (((void *)hint != NULL) &&
1339	    (hint < mmap_min_addr))
1340		return PAGE_ALIGN(mmap_min_addr);
1341	return hint;
1342}
1343
1344static inline int mlock_future_check(struct mm_struct *mm,
1345				     unsigned long flags,
1346				     unsigned long len)
1347{
1348	unsigned long locked, lock_limit;
1349
1350	/*  mlock MCL_FUTURE? */
1351	if (flags & VM_LOCKED) {
1352		locked = len >> PAGE_SHIFT;
1353		locked += mm->locked_vm;
1354		lock_limit = rlimit(RLIMIT_MEMLOCK);
1355		lock_limit >>= PAGE_SHIFT;
1356		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1357			return -EAGAIN;
1358	}
1359	return 0;
1360}
1361
1362static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1363{
1364	if (S_ISREG(inode->i_mode))
1365		return MAX_LFS_FILESIZE;
1366
1367	if (S_ISBLK(inode->i_mode))
1368		return MAX_LFS_FILESIZE;
1369
1370	if (S_ISSOCK(inode->i_mode))
1371		return MAX_LFS_FILESIZE;
1372
1373	/* Special "we do even unsigned file positions" case */
1374	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1375		return 0;
1376
1377	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1378	return ULONG_MAX;
1379}
1380
1381static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1382				unsigned long pgoff, unsigned long len)
1383{
1384	u64 maxsize = file_mmap_size_max(file, inode);
1385
1386	if (maxsize && len > maxsize)
1387		return false;
1388	maxsize -= len;
1389	if (pgoff > maxsize >> PAGE_SHIFT)
1390		return false;
1391	return true;
1392}
1393
1394/*
1395 * The caller must hold down_write(&current->mm->mmap_sem).
1396 */
1397unsigned long do_mmap(struct file *file, unsigned long addr,
1398			unsigned long len, unsigned long prot,
1399			unsigned long flags, vm_flags_t vm_flags,
1400			unsigned long pgoff, unsigned long *populate,
1401			struct list_head *uf)
1402{
1403	struct mm_struct *mm = current->mm;
1404	int pkey = 0;
1405
1406	*populate = 0;
1407
1408	if (!len)
1409		return -EINVAL;
1410
1411	/*
1412	 * Does the application expect PROT_READ to imply PROT_EXEC?
1413	 *
1414	 * (the exception is when the underlying filesystem is noexec
1415	 *  mounted, in which case we dont add PROT_EXEC.)
1416	 */
1417	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1418		if (!(file && path_noexec(&file->f_path)))
1419			prot |= PROT_EXEC;
1420
1421	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1422	if (flags & MAP_FIXED_NOREPLACE)
1423		flags |= MAP_FIXED;
1424
1425	if (!(flags & MAP_FIXED))
1426		addr = round_hint_to_min(addr);
1427
1428	/* Careful about overflows.. */
1429	len = PAGE_ALIGN(len);
1430	if (!len)
1431		return -ENOMEM;
1432
1433	/* offset overflow? */
1434	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1435		return -EOVERFLOW;
1436
1437	/* Too many mappings? */
1438	if (mm->map_count > sysctl_max_map_count)
1439		return -ENOMEM;
1440
1441	/* Obtain the address to map to. we verify (or select) it and ensure
1442	 * that it represents a valid section of the address space.
1443	 */
1444	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1445	if (offset_in_page(addr))
1446		return addr;
1447
1448	if (flags & MAP_FIXED_NOREPLACE) {
1449		struct vm_area_struct *vma = find_vma(mm, addr);
1450
1451		if (vma && vma->vm_start < addr + len)
1452			return -EEXIST;
1453	}
1454
1455	if (prot == PROT_EXEC) {
1456		pkey = execute_only_pkey(mm);
1457		if (pkey < 0)
1458			pkey = 0;
1459	}
1460
1461	/* Do simple checking here so the lower-level routines won't have
1462	 * to. we assume access permissions have been handled by the open
1463	 * of the memory object, so we don't do any here.
1464	 */
1465	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1466			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1467
1468	if (flags & MAP_LOCKED)
1469		if (!can_do_mlock())
1470			return -EPERM;
1471
1472	if (mlock_future_check(mm, vm_flags, len))
1473		return -EAGAIN;
1474
1475	if (file) {
1476		struct inode *inode = file_inode(file);
1477		unsigned long flags_mask;
1478
1479		if (!file_mmap_ok(file, inode, pgoff, len))
1480			return -EOVERFLOW;
1481
1482		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1483
1484		switch (flags & MAP_TYPE) {
1485		case MAP_SHARED:
1486			/*
1487			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1488			 * flags. E.g. MAP_SYNC is dangerous to use with
1489			 * MAP_SHARED as you don't know which consistency model
1490			 * you will get. We silently ignore unsupported flags
1491			 * with MAP_SHARED to preserve backward compatibility.
1492			 */
1493			flags &= LEGACY_MAP_MASK;
1494			/* fall through */
1495		case MAP_SHARED_VALIDATE:
1496			if (flags & ~flags_mask)
1497				return -EOPNOTSUPP;
1498			if (prot & PROT_WRITE) {
1499				if (!(file->f_mode & FMODE_WRITE))
1500					return -EACCES;
1501				if (IS_SWAPFILE(file->f_mapping->host))
1502					return -ETXTBSY;
1503			}
1504
1505			/*
1506			 * Make sure we don't allow writing to an append-only
1507			 * file..
1508			 */
1509			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1510				return -EACCES;
1511
1512			/*
1513			 * Make sure there are no mandatory locks on the file.
1514			 */
1515			if (locks_verify_locked(file))
1516				return -EAGAIN;
1517
1518			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519			if (!(file->f_mode & FMODE_WRITE))
1520				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1521
1522			/* fall through */
1523		case MAP_PRIVATE:
1524			if (!(file->f_mode & FMODE_READ))
1525				return -EACCES;
1526			if (path_noexec(&file->f_path)) {
1527				if (vm_flags & VM_EXEC)
1528					return -EPERM;
1529				vm_flags &= ~VM_MAYEXEC;
1530			}
1531
1532			if (!file->f_op->mmap)
1533				return -ENODEV;
1534			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1535				return -EINVAL;
1536			break;
1537
1538		default:
1539			return -EINVAL;
1540		}
1541	} else {
1542		switch (flags & MAP_TYPE) {
1543		case MAP_SHARED:
1544			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545				return -EINVAL;
1546			/*
1547			 * Ignore pgoff.
1548			 */
1549			pgoff = 0;
1550			vm_flags |= VM_SHARED | VM_MAYSHARE;
1551			break;
1552		case MAP_PRIVATE:
1553			/*
1554			 * Set pgoff according to addr for anon_vma.
1555			 */
1556			pgoff = addr >> PAGE_SHIFT;
1557			break;
1558		default:
1559			return -EINVAL;
1560		}
1561	}
1562
1563	/*
1564	 * Set 'VM_NORESERVE' if we should not account for the
1565	 * memory use of this mapping.
1566	 */
1567	if (flags & MAP_NORESERVE) {
1568		/* We honor MAP_NORESERVE if allowed to overcommit */
1569		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1570			vm_flags |= VM_NORESERVE;
1571
1572		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1573		if (file && is_file_hugepages(file))
1574			vm_flags |= VM_NORESERVE;
1575	}
1576
1577	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1578	if (!IS_ERR_VALUE(addr) &&
1579	    ((vm_flags & VM_LOCKED) ||
1580	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1581		*populate = len;
1582	return addr;
1583}
1584
1585unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1586			      unsigned long prot, unsigned long flags,
1587			      unsigned long fd, unsigned long pgoff)
1588{
1589	struct file *file = NULL;
1590	unsigned long retval;
1591
1592	addr = untagged_addr(addr);
1593
1594	if (!(flags & MAP_ANONYMOUS)) {
1595		audit_mmap_fd(fd, flags);
1596		file = fget(fd);
1597		if (!file)
1598			return -EBADF;
1599		if (is_file_hugepages(file))
1600			len = ALIGN(len, huge_page_size(hstate_file(file)));
1601		retval = -EINVAL;
1602		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1603			goto out_fput;
1604	} else if (flags & MAP_HUGETLB) {
1605		struct user_struct *user = NULL;
1606		struct hstate *hs;
1607
1608		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609		if (!hs)
1610			return -EINVAL;
1611
1612		len = ALIGN(len, huge_page_size(hs));
1613		/*
1614		 * VM_NORESERVE is used because the reservations will be
1615		 * taken when vm_ops->mmap() is called
1616		 * A dummy user value is used because we are not locking
1617		 * memory so no accounting is necessary
1618		 */
1619		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1620				VM_NORESERVE,
1621				&user, HUGETLB_ANONHUGE_INODE,
1622				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1623		if (IS_ERR(file))
1624			return PTR_ERR(file);
1625	}
1626
1627	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1628
1629	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1630out_fput:
1631	if (file)
1632		fput(file);
1633	return retval;
1634}
1635
1636SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1637		unsigned long, prot, unsigned long, flags,
1638		unsigned long, fd, unsigned long, pgoff)
1639{
1640	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1641}
1642
1643#ifdef __ARCH_WANT_SYS_OLD_MMAP
1644struct mmap_arg_struct {
1645	unsigned long addr;
1646	unsigned long len;
1647	unsigned long prot;
1648	unsigned long flags;
1649	unsigned long fd;
1650	unsigned long offset;
1651};
1652
1653SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1654{
1655	struct mmap_arg_struct a;
1656
1657	if (copy_from_user(&a, arg, sizeof(a)))
1658		return -EFAULT;
1659	if (offset_in_page(a.offset))
1660		return -EINVAL;
1661
1662	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1663			       a.offset >> PAGE_SHIFT);
1664}
1665#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1666
1667/*
1668 * Some shared mappings will want the pages marked read-only
1669 * to track write events. If so, we'll downgrade vm_page_prot
1670 * to the private version (using protection_map[] without the
1671 * VM_SHARED bit).
1672 */
1673int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1674{
1675	vm_flags_t vm_flags = vma->vm_flags;
1676	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1677
1678	/* If it was private or non-writable, the write bit is already clear */
1679	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1680		return 0;
1681
1682	/* The backer wishes to know when pages are first written to? */
1683	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1684		return 1;
1685
1686	/* The open routine did something to the protections that pgprot_modify
1687	 * won't preserve? */
1688	if (pgprot_val(vm_page_prot) !=
1689	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1690		return 0;
1691
1692	/* Do we need to track softdirty? */
1693	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1694		return 1;
1695
1696	/* Specialty mapping? */
1697	if (vm_flags & VM_PFNMAP)
1698		return 0;
1699
1700	/* Can the mapping track the dirty pages? */
1701	return vma->vm_file && vma->vm_file->f_mapping &&
1702		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1703}
1704
1705/*
1706 * We account for memory if it's a private writeable mapping,
1707 * not hugepages and VM_NORESERVE wasn't set.
1708 */
1709static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1710{
1711	/*
1712	 * hugetlb has its own accounting separate from the core VM
1713	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1714	 */
1715	if (file && is_file_hugepages(file))
1716		return 0;
1717
1718	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1719}
1720
1721unsigned long mmap_region(struct file *file, unsigned long addr,
1722		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1723		struct list_head *uf)
1724{
1725	struct mm_struct *mm = current->mm;
1726	struct vm_area_struct *vma, *prev;
1727	int error;
1728	struct rb_node **rb_link, *rb_parent;
1729	unsigned long charged = 0;
1730
1731	/* Check against address space limit. */
1732	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1733		unsigned long nr_pages;
1734
1735		/*
1736		 * MAP_FIXED may remove pages of mappings that intersects with
1737		 * requested mapping. Account for the pages it would unmap.
1738		 */
1739		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1740
1741		if (!may_expand_vm(mm, vm_flags,
1742					(len >> PAGE_SHIFT) - nr_pages))
1743			return -ENOMEM;
1744	}
1745
1746	/* Clear old maps */
1747	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1748			      &rb_parent)) {
1749		if (do_munmap(mm, addr, len, uf))
1750			return -ENOMEM;
1751	}
1752
1753	/*
1754	 * Private writable mapping: check memory availability
1755	 */
1756	if (accountable_mapping(file, vm_flags)) {
1757		charged = len >> PAGE_SHIFT;
1758		if (security_vm_enough_memory_mm(mm, charged))
1759			return -ENOMEM;
1760		vm_flags |= VM_ACCOUNT;
1761	}
1762
1763	/*
1764	 * Can we just expand an old mapping?
1765	 */
1766	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1768	if (vma)
1769		goto out;
1770
1771	/*
1772	 * Determine the object being mapped and call the appropriate
1773	 * specific mapper. the address has already been validated, but
1774	 * not unmapped, but the maps are removed from the list.
1775	 */
1776	vma = vm_area_alloc(mm);
1777	if (!vma) {
1778		error = -ENOMEM;
1779		goto unacct_error;
1780	}
1781
 
1782	vma->vm_start = addr;
1783	vma->vm_end = addr + len;
1784	vma->vm_flags = vm_flags;
1785	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786	vma->vm_pgoff = pgoff;
 
1787
1788	if (file) {
1789		if (vm_flags & VM_DENYWRITE) {
1790			error = deny_write_access(file);
1791			if (error)
1792				goto free_vma;
1793		}
1794		if (vm_flags & VM_SHARED) {
1795			error = mapping_map_writable(file->f_mapping);
1796			if (error)
1797				goto allow_write_and_free_vma;
1798		}
1799
1800		/* ->mmap() can change vma->vm_file, but must guarantee that
1801		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1802		 * and map writably if VM_SHARED is set. This usually means the
1803		 * new file must not have been exposed to user-space, yet.
1804		 */
1805		vma->vm_file = get_file(file);
1806		error = call_mmap(file, vma);
1807		if (error)
1808			goto unmap_and_free_vma;
1809
1810		/* Can addr have changed??
1811		 *
1812		 * Answer: Yes, several device drivers can do it in their
1813		 *         f_op->mmap method. -DaveM
1814		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1815		 *      be updated for vma_link()
1816		 */
1817		WARN_ON_ONCE(addr != vma->vm_start);
1818
1819		addr = vma->vm_start;
1820		vm_flags = vma->vm_flags;
1821	} else if (vm_flags & VM_SHARED) {
1822		error = shmem_zero_setup(vma);
1823		if (error)
1824			goto free_vma;
1825	} else {
1826		vma_set_anonymous(vma);
1827	}
1828
1829	vma_link(mm, vma, prev, rb_link, rb_parent);
1830	/* Once vma denies write, undo our temporary denial count */
1831	if (file) {
1832		if (vm_flags & VM_SHARED)
1833			mapping_unmap_writable(file->f_mapping);
1834		if (vm_flags & VM_DENYWRITE)
1835			allow_write_access(file);
1836	}
1837	file = vma->vm_file;
1838out:
1839	perf_event_mmap(vma);
1840
1841	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1842	if (vm_flags & VM_LOCKED) {
1843		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1844					is_vm_hugetlb_page(vma) ||
1845					vma == get_gate_vma(current->mm))
1846			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1847		else
1848			mm->locked_vm += (len >> PAGE_SHIFT);
 
 
1849	}
1850
1851	if (file)
1852		uprobe_mmap(vma);
1853
1854	/*
1855	 * New (or expanded) vma always get soft dirty status.
1856	 * Otherwise user-space soft-dirty page tracker won't
1857	 * be able to distinguish situation when vma area unmapped,
1858	 * then new mapped in-place (which must be aimed as
1859	 * a completely new data area).
1860	 */
1861	vma->vm_flags |= VM_SOFTDIRTY;
1862
1863	vma_set_page_prot(vma);
1864
1865	return addr;
1866
1867unmap_and_free_vma:
1868	vma->vm_file = NULL;
1869	fput(file);
1870
1871	/* Undo any partial mapping done by a device driver. */
1872	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1873	charged = 0;
1874	if (vm_flags & VM_SHARED)
1875		mapping_unmap_writable(file->f_mapping);
1876allow_write_and_free_vma:
1877	if (vm_flags & VM_DENYWRITE)
1878		allow_write_access(file);
1879free_vma:
1880	vm_area_free(vma);
1881unacct_error:
1882	if (charged)
1883		vm_unacct_memory(charged);
1884	return error;
1885}
1886
1887unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1888{
1889	/*
1890	 * We implement the search by looking for an rbtree node that
1891	 * immediately follows a suitable gap. That is,
1892	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1893	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1894	 * - gap_end - gap_start >= length
1895	 */
1896
1897	struct mm_struct *mm = current->mm;
1898	struct vm_area_struct *vma;
1899	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900
1901	/* Adjust search length to account for worst case alignment overhead */
1902	length = info->length + info->align_mask;
1903	if (length < info->length)
1904		return -ENOMEM;
1905
1906	/* Adjust search limits by the desired length */
1907	if (info->high_limit < length)
1908		return -ENOMEM;
1909	high_limit = info->high_limit - length;
1910
1911	if (info->low_limit > high_limit)
1912		return -ENOMEM;
1913	low_limit = info->low_limit + length;
1914
1915	/* Check if rbtree root looks promising */
1916	if (RB_EMPTY_ROOT(&mm->mm_rb))
1917		goto check_highest;
1918	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919	if (vma->rb_subtree_gap < length)
1920		goto check_highest;
1921
1922	while (true) {
1923		/* Visit left subtree if it looks promising */
1924		gap_end = vm_start_gap(vma);
1925		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1926			struct vm_area_struct *left =
1927				rb_entry(vma->vm_rb.rb_left,
1928					 struct vm_area_struct, vm_rb);
1929			if (left->rb_subtree_gap >= length) {
1930				vma = left;
1931				continue;
1932			}
1933		}
1934
1935		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1936check_current:
1937		/* Check if current node has a suitable gap */
1938		if (gap_start > high_limit)
1939			return -ENOMEM;
1940		if (gap_end >= low_limit &&
1941		    gap_end > gap_start && gap_end - gap_start >= length)
1942			goto found;
1943
1944		/* Visit right subtree if it looks promising */
1945		if (vma->vm_rb.rb_right) {
1946			struct vm_area_struct *right =
1947				rb_entry(vma->vm_rb.rb_right,
1948					 struct vm_area_struct, vm_rb);
1949			if (right->rb_subtree_gap >= length) {
1950				vma = right;
1951				continue;
1952			}
1953		}
1954
1955		/* Go back up the rbtree to find next candidate node */
1956		while (true) {
1957			struct rb_node *prev = &vma->vm_rb;
1958			if (!rb_parent(prev))
1959				goto check_highest;
1960			vma = rb_entry(rb_parent(prev),
1961				       struct vm_area_struct, vm_rb);
1962			if (prev == vma->vm_rb.rb_left) {
1963				gap_start = vm_end_gap(vma->vm_prev);
1964				gap_end = vm_start_gap(vma);
1965				goto check_current;
1966			}
1967		}
1968	}
1969
1970check_highest:
1971	/* Check highest gap, which does not precede any rbtree node */
1972	gap_start = mm->highest_vm_end;
1973	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1974	if (gap_start > high_limit)
1975		return -ENOMEM;
1976
1977found:
1978	/* We found a suitable gap. Clip it with the original low_limit. */
1979	if (gap_start < info->low_limit)
1980		gap_start = info->low_limit;
1981
1982	/* Adjust gap address to the desired alignment */
1983	gap_start += (info->align_offset - gap_start) & info->align_mask;
1984
1985	VM_BUG_ON(gap_start + info->length > info->high_limit);
1986	VM_BUG_ON(gap_start + info->length > gap_end);
1987	return gap_start;
1988}
1989
1990unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1991{
1992	struct mm_struct *mm = current->mm;
1993	struct vm_area_struct *vma;
1994	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1995
1996	/* Adjust search length to account for worst case alignment overhead */
1997	length = info->length + info->align_mask;
1998	if (length < info->length)
1999		return -ENOMEM;
2000
2001	/*
2002	 * Adjust search limits by the desired length.
2003	 * See implementation comment at top of unmapped_area().
2004	 */
2005	gap_end = info->high_limit;
2006	if (gap_end < length)
2007		return -ENOMEM;
2008	high_limit = gap_end - length;
2009
2010	if (info->low_limit > high_limit)
2011		return -ENOMEM;
2012	low_limit = info->low_limit + length;
2013
2014	/* Check highest gap, which does not precede any rbtree node */
2015	gap_start = mm->highest_vm_end;
2016	if (gap_start <= high_limit)
2017		goto found_highest;
2018
2019	/* Check if rbtree root looks promising */
2020	if (RB_EMPTY_ROOT(&mm->mm_rb))
2021		return -ENOMEM;
2022	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2023	if (vma->rb_subtree_gap < length)
2024		return -ENOMEM;
2025
2026	while (true) {
2027		/* Visit right subtree if it looks promising */
2028		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2029		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2030			struct vm_area_struct *right =
2031				rb_entry(vma->vm_rb.rb_right,
2032					 struct vm_area_struct, vm_rb);
2033			if (right->rb_subtree_gap >= length) {
2034				vma = right;
2035				continue;
2036			}
2037		}
2038
2039check_current:
2040		/* Check if current node has a suitable gap */
2041		gap_end = vm_start_gap(vma);
2042		if (gap_end < low_limit)
2043			return -ENOMEM;
2044		if (gap_start <= high_limit &&
2045		    gap_end > gap_start && gap_end - gap_start >= length)
2046			goto found;
2047
2048		/* Visit left subtree if it looks promising */
2049		if (vma->vm_rb.rb_left) {
2050			struct vm_area_struct *left =
2051				rb_entry(vma->vm_rb.rb_left,
2052					 struct vm_area_struct, vm_rb);
2053			if (left->rb_subtree_gap >= length) {
2054				vma = left;
2055				continue;
2056			}
2057		}
2058
2059		/* Go back up the rbtree to find next candidate node */
2060		while (true) {
2061			struct rb_node *prev = &vma->vm_rb;
2062			if (!rb_parent(prev))
2063				return -ENOMEM;
2064			vma = rb_entry(rb_parent(prev),
2065				       struct vm_area_struct, vm_rb);
2066			if (prev == vma->vm_rb.rb_right) {
2067				gap_start = vma->vm_prev ?
2068					vm_end_gap(vma->vm_prev) : 0;
2069				goto check_current;
2070			}
2071		}
2072	}
2073
2074found:
2075	/* We found a suitable gap. Clip it with the original high_limit. */
2076	if (gap_end > info->high_limit)
2077		gap_end = info->high_limit;
2078
2079found_highest:
2080	/* Compute highest gap address at the desired alignment */
2081	gap_end -= info->length;
2082	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2083
2084	VM_BUG_ON(gap_end < info->low_limit);
2085	VM_BUG_ON(gap_end < gap_start);
2086	return gap_end;
2087}
2088
2089
2090#ifndef arch_get_mmap_end
2091#define arch_get_mmap_end(addr)	(TASK_SIZE)
2092#endif
2093
2094#ifndef arch_get_mmap_base
2095#define arch_get_mmap_base(addr, base) (base)
2096#endif
2097
2098/* Get an address range which is currently unmapped.
2099 * For shmat() with addr=0.
2100 *
2101 * Ugly calling convention alert:
2102 * Return value with the low bits set means error value,
2103 * ie
2104 *	if (ret & ~PAGE_MASK)
2105 *		error = ret;
2106 *
2107 * This function "knows" that -ENOMEM has the bits set.
2108 */
2109#ifndef HAVE_ARCH_UNMAPPED_AREA
2110unsigned long
2111arch_get_unmapped_area(struct file *filp, unsigned long addr,
2112		unsigned long len, unsigned long pgoff, unsigned long flags)
2113{
2114	struct mm_struct *mm = current->mm;
2115	struct vm_area_struct *vma, *prev;
2116	struct vm_unmapped_area_info info;
2117	const unsigned long mmap_end = arch_get_mmap_end(addr);
2118
2119	if (len > mmap_end - mmap_min_addr)
2120		return -ENOMEM;
2121
2122	if (flags & MAP_FIXED)
2123		return addr;
2124
2125	if (addr) {
2126		addr = PAGE_ALIGN(addr);
2127		vma = find_vma_prev(mm, addr, &prev);
2128		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2129		    (!vma || addr + len <= vm_start_gap(vma)) &&
2130		    (!prev || addr >= vm_end_gap(prev)))
2131			return addr;
2132	}
2133
2134	info.flags = 0;
2135	info.length = len;
2136	info.low_limit = mm->mmap_base;
2137	info.high_limit = mmap_end;
2138	info.align_mask = 0;
2139	return vm_unmapped_area(&info);
2140}
2141#endif
2142
2143/*
2144 * This mmap-allocator allocates new areas top-down from below the
2145 * stack's low limit (the base):
2146 */
2147#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2148unsigned long
2149arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2150			  unsigned long len, unsigned long pgoff,
2151			  unsigned long flags)
2152{
2153	struct vm_area_struct *vma, *prev;
2154	struct mm_struct *mm = current->mm;
 
2155	struct vm_unmapped_area_info info;
2156	const unsigned long mmap_end = arch_get_mmap_end(addr);
2157
2158	/* requested length too big for entire address space */
2159	if (len > mmap_end - mmap_min_addr)
2160		return -ENOMEM;
2161
2162	if (flags & MAP_FIXED)
2163		return addr;
2164
2165	/* requesting a specific address */
2166	if (addr) {
2167		addr = PAGE_ALIGN(addr);
2168		vma = find_vma_prev(mm, addr, &prev);
2169		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2170				(!vma || addr + len <= vm_start_gap(vma)) &&
2171				(!prev || addr >= vm_end_gap(prev)))
2172			return addr;
2173	}
2174
2175	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2176	info.length = len;
2177	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2178	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2179	info.align_mask = 0;
2180	addr = vm_unmapped_area(&info);
2181
2182	/*
2183	 * A failed mmap() very likely causes application failure,
2184	 * so fall back to the bottom-up function here. This scenario
2185	 * can happen with large stack limits and large mmap()
2186	 * allocations.
2187	 */
2188	if (offset_in_page(addr)) {
2189		VM_BUG_ON(addr != -ENOMEM);
2190		info.flags = 0;
2191		info.low_limit = TASK_UNMAPPED_BASE;
2192		info.high_limit = mmap_end;
2193		addr = vm_unmapped_area(&info);
2194	}
2195
2196	return addr;
2197}
2198#endif
2199
2200unsigned long
2201get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2202		unsigned long pgoff, unsigned long flags)
2203{
2204	unsigned long (*get_area)(struct file *, unsigned long,
2205				  unsigned long, unsigned long, unsigned long);
2206
2207	unsigned long error = arch_mmap_check(addr, len, flags);
2208	if (error)
2209		return error;
2210
2211	/* Careful about overflows.. */
2212	if (len > TASK_SIZE)
2213		return -ENOMEM;
2214
2215	get_area = current->mm->get_unmapped_area;
2216	if (file) {
2217		if (file->f_op->get_unmapped_area)
2218			get_area = file->f_op->get_unmapped_area;
2219	} else if (flags & MAP_SHARED) {
2220		/*
2221		 * mmap_region() will call shmem_zero_setup() to create a file,
2222		 * so use shmem's get_unmapped_area in case it can be huge.
2223		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2224		 */
2225		pgoff = 0;
2226		get_area = shmem_get_unmapped_area;
2227	}
2228
2229	addr = get_area(file, addr, len, pgoff, flags);
2230	if (IS_ERR_VALUE(addr))
2231		return addr;
2232
2233	if (addr > TASK_SIZE - len)
2234		return -ENOMEM;
2235	if (offset_in_page(addr))
2236		return -EINVAL;
2237
 
2238	error = security_mmap_addr(addr);
2239	return error ? error : addr;
2240}
2241
2242EXPORT_SYMBOL(get_unmapped_area);
2243
2244/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2245struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2246{
2247	struct rb_node *rb_node;
2248	struct vm_area_struct *vma;
2249
2250	/* Check the cache first. */
2251	vma = vmacache_find(mm, addr);
2252	if (likely(vma))
2253		return vma;
2254
2255	rb_node = mm->mm_rb.rb_node;
2256
2257	while (rb_node) {
2258		struct vm_area_struct *tmp;
2259
2260		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2261
2262		if (tmp->vm_end > addr) {
2263			vma = tmp;
2264			if (tmp->vm_start <= addr)
2265				break;
2266			rb_node = rb_node->rb_left;
2267		} else
2268			rb_node = rb_node->rb_right;
2269	}
2270
2271	if (vma)
2272		vmacache_update(addr, vma);
2273	return vma;
2274}
2275
2276EXPORT_SYMBOL(find_vma);
2277
2278/*
2279 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2280 */
2281struct vm_area_struct *
2282find_vma_prev(struct mm_struct *mm, unsigned long addr,
2283			struct vm_area_struct **pprev)
2284{
2285	struct vm_area_struct *vma;
2286
2287	vma = find_vma(mm, addr);
2288	if (vma) {
2289		*pprev = vma->vm_prev;
2290	} else {
2291		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2292
2293		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
 
 
 
2294	}
2295	return vma;
2296}
2297
2298/*
2299 * Verify that the stack growth is acceptable and
2300 * update accounting. This is shared with both the
2301 * grow-up and grow-down cases.
2302 */
2303static int acct_stack_growth(struct vm_area_struct *vma,
2304			     unsigned long size, unsigned long grow)
2305{
2306	struct mm_struct *mm = vma->vm_mm;
2307	unsigned long new_start;
 
2308
2309	/* address space limit tests */
2310	if (!may_expand_vm(mm, vma->vm_flags, grow))
2311		return -ENOMEM;
2312
2313	/* Stack limit test */
2314	if (size > rlimit(RLIMIT_STACK))
 
 
 
2315		return -ENOMEM;
2316
2317	/* mlock limit tests */
2318	if (vma->vm_flags & VM_LOCKED) {
2319		unsigned long locked;
2320		unsigned long limit;
2321		locked = mm->locked_vm + grow;
2322		limit = rlimit(RLIMIT_MEMLOCK);
2323		limit >>= PAGE_SHIFT;
2324		if (locked > limit && !capable(CAP_IPC_LOCK))
2325			return -ENOMEM;
2326	}
2327
2328	/* Check to ensure the stack will not grow into a hugetlb-only region */
2329	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2330			vma->vm_end - size;
2331	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2332		return -EFAULT;
2333
2334	/*
2335	 * Overcommit..  This must be the final test, as it will
2336	 * update security statistics.
2337	 */
2338	if (security_vm_enough_memory_mm(mm, grow))
2339		return -ENOMEM;
2340
2341	return 0;
2342}
2343
2344#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2345/*
2346 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2347 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2348 */
2349int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2350{
2351	struct mm_struct *mm = vma->vm_mm;
2352	struct vm_area_struct *next;
2353	unsigned long gap_addr;
2354	int error = 0;
2355
2356	if (!(vma->vm_flags & VM_GROWSUP))
2357		return -EFAULT;
2358
2359	/* Guard against exceeding limits of the address space. */
2360	address &= PAGE_MASK;
2361	if (address >= (TASK_SIZE & PAGE_MASK))
 
2362		return -ENOMEM;
2363	address += PAGE_SIZE;
2364
2365	/* Enforce stack_guard_gap */
2366	gap_addr = address + stack_guard_gap;
2367
2368	/* Guard against overflow */
2369	if (gap_addr < address || gap_addr > TASK_SIZE)
2370		gap_addr = TASK_SIZE;
2371
2372	next = vma->vm_next;
2373	if (next && next->vm_start < gap_addr &&
2374			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2375		if (!(next->vm_flags & VM_GROWSUP))
2376			return -ENOMEM;
2377		/* Check that both stack segments have the same anon_vma? */
2378	}
2379
2380	/* We must make sure the anon_vma is allocated. */
2381	if (unlikely(anon_vma_prepare(vma)))
2382		return -ENOMEM;
2383
2384	/*
2385	 * vma->vm_start/vm_end cannot change under us because the caller
2386	 * is required to hold the mmap_sem in read mode.  We need the
2387	 * anon_vma lock to serialize against concurrent expand_stacks.
2388	 */
2389	anon_vma_lock_write(vma->anon_vma);
2390
2391	/* Somebody else might have raced and expanded it already */
2392	if (address > vma->vm_end) {
2393		unsigned long size, grow;
2394
2395		size = address - vma->vm_start;
2396		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2397
2398		error = -ENOMEM;
2399		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2400			error = acct_stack_growth(vma, size, grow);
2401			if (!error) {
2402				/*
2403				 * vma_gap_update() doesn't support concurrent
2404				 * updates, but we only hold a shared mmap_sem
2405				 * lock here, so we need to protect against
2406				 * concurrent vma expansions.
2407				 * anon_vma_lock_write() doesn't help here, as
2408				 * we don't guarantee that all growable vmas
2409				 * in a mm share the same root anon vma.
2410				 * So, we reuse mm->page_table_lock to guard
2411				 * against concurrent vma expansions.
2412				 */
2413				spin_lock(&mm->page_table_lock);
2414				if (vma->vm_flags & VM_LOCKED)
2415					mm->locked_vm += grow;
2416				vm_stat_account(mm, vma->vm_flags, grow);
2417				anon_vma_interval_tree_pre_update_vma(vma);
2418				vma->vm_end = address;
2419				anon_vma_interval_tree_post_update_vma(vma);
2420				if (vma->vm_next)
2421					vma_gap_update(vma->vm_next);
2422				else
2423					mm->highest_vm_end = vm_end_gap(vma);
2424				spin_unlock(&mm->page_table_lock);
2425
2426				perf_event_mmap(vma);
2427			}
2428		}
2429	}
2430	anon_vma_unlock_write(vma->anon_vma);
2431	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2432	validate_mm(mm);
2433	return error;
2434}
2435#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2436
2437/*
2438 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2439 */
2440int expand_downwards(struct vm_area_struct *vma,
2441				   unsigned long address)
2442{
2443	struct mm_struct *mm = vma->vm_mm;
2444	struct vm_area_struct *prev;
2445	int error = 0;
2446
2447	address &= PAGE_MASK;
2448	if (address < mmap_min_addr)
2449		return -EPERM;
2450
2451	/* Enforce stack_guard_gap */
2452	prev = vma->vm_prev;
2453	/* Check that both stack segments have the same anon_vma? */
2454	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2455			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2456		if (address - prev->vm_end < stack_guard_gap)
2457			return -ENOMEM;
2458	}
2459
2460	/* We must make sure the anon_vma is allocated. */
2461	if (unlikely(anon_vma_prepare(vma)))
2462		return -ENOMEM;
2463
2464	/*
2465	 * vma->vm_start/vm_end cannot change under us because the caller
2466	 * is required to hold the mmap_sem in read mode.  We need the
2467	 * anon_vma lock to serialize against concurrent expand_stacks.
2468	 */
2469	anon_vma_lock_write(vma->anon_vma);
2470
2471	/* Somebody else might have raced and expanded it already */
2472	if (address < vma->vm_start) {
2473		unsigned long size, grow;
2474
2475		size = vma->vm_end - address;
2476		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2477
2478		error = -ENOMEM;
2479		if (grow <= vma->vm_pgoff) {
2480			error = acct_stack_growth(vma, size, grow);
2481			if (!error) {
2482				/*
2483				 * vma_gap_update() doesn't support concurrent
2484				 * updates, but we only hold a shared mmap_sem
2485				 * lock here, so we need to protect against
2486				 * concurrent vma expansions.
2487				 * anon_vma_lock_write() doesn't help here, as
2488				 * we don't guarantee that all growable vmas
2489				 * in a mm share the same root anon vma.
2490				 * So, we reuse mm->page_table_lock to guard
2491				 * against concurrent vma expansions.
2492				 */
2493				spin_lock(&mm->page_table_lock);
2494				if (vma->vm_flags & VM_LOCKED)
2495					mm->locked_vm += grow;
2496				vm_stat_account(mm, vma->vm_flags, grow);
2497				anon_vma_interval_tree_pre_update_vma(vma);
2498				vma->vm_start = address;
2499				vma->vm_pgoff -= grow;
2500				anon_vma_interval_tree_post_update_vma(vma);
2501				vma_gap_update(vma);
2502				spin_unlock(&mm->page_table_lock);
2503
2504				perf_event_mmap(vma);
2505			}
2506		}
2507	}
2508	anon_vma_unlock_write(vma->anon_vma);
2509	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2510	validate_mm(mm);
2511	return error;
2512}
2513
2514/* enforced gap between the expanding stack and other mappings. */
2515unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2516
2517static int __init cmdline_parse_stack_guard_gap(char *p)
2518{
2519	unsigned long val;
2520	char *endptr;
2521
2522	val = simple_strtoul(p, &endptr, 10);
2523	if (!*endptr)
2524		stack_guard_gap = val << PAGE_SHIFT;
2525
2526	return 0;
2527}
2528__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2529
2530#ifdef CONFIG_STACK_GROWSUP
2531int expand_stack(struct vm_area_struct *vma, unsigned long address)
2532{
 
 
 
 
 
 
 
 
2533	return expand_upwards(vma, address);
2534}
2535
2536struct vm_area_struct *
2537find_extend_vma(struct mm_struct *mm, unsigned long addr)
2538{
2539	struct vm_area_struct *vma, *prev;
2540
2541	addr &= PAGE_MASK;
2542	vma = find_vma_prev(mm, addr, &prev);
2543	if (vma && (vma->vm_start <= addr))
2544		return vma;
2545	/* don't alter vm_end if the coredump is running */
2546	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2547		return NULL;
2548	if (prev->vm_flags & VM_LOCKED)
2549		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2550	return prev;
2551}
2552#else
2553int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554{
 
 
 
 
 
 
 
 
2555	return expand_downwards(vma, address);
2556}
2557
2558struct vm_area_struct *
2559find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560{
2561	struct vm_area_struct *vma;
2562	unsigned long start;
2563
2564	addr &= PAGE_MASK;
2565	vma = find_vma(mm, addr);
2566	if (!vma)
2567		return NULL;
2568	if (vma->vm_start <= addr)
2569		return vma;
2570	if (!(vma->vm_flags & VM_GROWSDOWN))
2571		return NULL;
2572	/* don't alter vm_start if the coredump is running */
2573	if (!mmget_still_valid(mm))
2574		return NULL;
2575	start = vma->vm_start;
2576	if (expand_stack(vma, addr))
2577		return NULL;
2578	if (vma->vm_flags & VM_LOCKED)
2579		populate_vma_page_range(vma, addr, start, NULL);
2580	return vma;
2581}
2582#endif
2583
2584EXPORT_SYMBOL_GPL(find_extend_vma);
2585
2586/*
2587 * Ok - we have the memory areas we should free on the vma list,
2588 * so release them, and do the vma updates.
2589 *
2590 * Called with the mm semaphore held.
2591 */
2592static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2593{
2594	unsigned long nr_accounted = 0;
2595
2596	/* Update high watermark before we lower total_vm */
2597	update_hiwater_vm(mm);
2598	do {
2599		long nrpages = vma_pages(vma);
2600
2601		if (vma->vm_flags & VM_ACCOUNT)
2602			nr_accounted += nrpages;
2603		vm_stat_account(mm, vma->vm_flags, -nrpages);
2604		vma = remove_vma(vma);
2605	} while (vma);
2606	vm_unacct_memory(nr_accounted);
2607	validate_mm(mm);
2608}
2609
2610/*
2611 * Get rid of page table information in the indicated region.
2612 *
2613 * Called with the mm semaphore held.
2614 */
2615static void unmap_region(struct mm_struct *mm,
2616		struct vm_area_struct *vma, struct vm_area_struct *prev,
2617		unsigned long start, unsigned long end)
2618{
2619	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2620	struct mmu_gather tlb;
2621
2622	lru_add_drain();
2623	tlb_gather_mmu(&tlb, mm, start, end);
2624	update_hiwater_rss(mm);
2625	unmap_vmas(&tlb, vma, start, end);
2626	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2627				 next ? next->vm_start : USER_PGTABLES_CEILING);
2628	tlb_finish_mmu(&tlb, start, end);
2629}
2630
2631/*
2632 * Create a list of vma's touched by the unmap, removing them from the mm's
2633 * vma list as we go..
2634 */
2635static void
2636detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2637	struct vm_area_struct *prev, unsigned long end)
2638{
2639	struct vm_area_struct **insertion_point;
2640	struct vm_area_struct *tail_vma = NULL;
2641
2642	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2643	vma->vm_prev = NULL;
2644	do {
2645		vma_rb_erase(vma, &mm->mm_rb);
2646		mm->map_count--;
2647		tail_vma = vma;
2648		vma = vma->vm_next;
2649	} while (vma && vma->vm_start < end);
2650	*insertion_point = vma;
2651	if (vma) {
2652		vma->vm_prev = prev;
2653		vma_gap_update(vma);
2654	} else
2655		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2656	tail_vma->vm_next = NULL;
2657
2658	/* Kill the cache */
2659	vmacache_invalidate(mm);
2660}
2661
2662/*
2663 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2664 * has already been checked or doesn't make sense to fail.
2665 */
2666int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2667		unsigned long addr, int new_below)
2668{
2669	struct vm_area_struct *new;
2670	int err;
2671
2672	if (vma->vm_ops && vma->vm_ops->split) {
2673		err = vma->vm_ops->split(vma, addr);
2674		if (err)
2675			return err;
2676	}
2677
2678	new = vm_area_dup(vma);
2679	if (!new)
2680		return -ENOMEM;
2681
 
 
 
 
 
2682	if (new_below)
2683		new->vm_end = addr;
2684	else {
2685		new->vm_start = addr;
2686		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2687	}
2688
2689	err = vma_dup_policy(vma, new);
2690	if (err)
2691		goto out_free_vma;
2692
2693	err = anon_vma_clone(new, vma);
2694	if (err)
2695		goto out_free_mpol;
2696
2697	if (new->vm_file)
2698		get_file(new->vm_file);
2699
2700	if (new->vm_ops && new->vm_ops->open)
2701		new->vm_ops->open(new);
2702
2703	if (new_below)
2704		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2705			((addr - new->vm_start) >> PAGE_SHIFT), new);
2706	else
2707		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2708
2709	/* Success. */
2710	if (!err)
2711		return 0;
2712
2713	/* Clean everything up if vma_adjust failed. */
2714	if (new->vm_ops && new->vm_ops->close)
2715		new->vm_ops->close(new);
2716	if (new->vm_file)
2717		fput(new->vm_file);
2718	unlink_anon_vmas(new);
2719 out_free_mpol:
2720	mpol_put(vma_policy(new));
2721 out_free_vma:
2722	vm_area_free(new);
2723	return err;
2724}
2725
2726/*
2727 * Split a vma into two pieces at address 'addr', a new vma is allocated
2728 * either for the first part or the tail.
2729 */
2730int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731	      unsigned long addr, int new_below)
2732{
2733	if (mm->map_count >= sysctl_max_map_count)
2734		return -ENOMEM;
2735
2736	return __split_vma(mm, vma, addr, new_below);
2737}
2738
2739/* Munmap is split into 2 main parts -- this part which finds
2740 * what needs doing, and the areas themselves, which do the
2741 * work.  This now handles partial unmappings.
2742 * Jeremy Fitzhardinge <jeremy@goop.org>
2743 */
2744int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2745		struct list_head *uf, bool downgrade)
2746{
2747	unsigned long end;
2748	struct vm_area_struct *vma, *prev, *last;
2749
2750	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2751		return -EINVAL;
2752
2753	len = PAGE_ALIGN(len);
2754	end = start + len;
2755	if (len == 0)
2756		return -EINVAL;
2757
2758	/*
2759	 * arch_unmap() might do unmaps itself.  It must be called
2760	 * and finish any rbtree manipulation before this code
2761	 * runs and also starts to manipulate the rbtree.
2762	 */
2763	arch_unmap(mm, start, end);
2764
2765	/* Find the first overlapping VMA */
2766	vma = find_vma(mm, start);
2767	if (!vma)
2768		return 0;
2769	prev = vma->vm_prev;
2770	/* we have  start < vma->vm_end  */
2771
2772	/* if it doesn't overlap, we have nothing.. */
 
2773	if (vma->vm_start >= end)
2774		return 0;
2775
2776	/*
2777	 * If we need to split any vma, do it now to save pain later.
2778	 *
2779	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2780	 * unmapped vm_area_struct will remain in use: so lower split_vma
2781	 * places tmp vma above, and higher split_vma places tmp vma below.
2782	 */
2783	if (start > vma->vm_start) {
2784		int error;
2785
2786		/*
2787		 * Make sure that map_count on return from munmap() will
2788		 * not exceed its limit; but let map_count go just above
2789		 * its limit temporarily, to help free resources as expected.
2790		 */
2791		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2792			return -ENOMEM;
2793
2794		error = __split_vma(mm, vma, start, 0);
2795		if (error)
2796			return error;
2797		prev = vma;
2798	}
2799
2800	/* Does it split the last one? */
2801	last = find_vma(mm, end);
2802	if (last && end > last->vm_start) {
2803		int error = __split_vma(mm, last, end, 1);
2804		if (error)
2805			return error;
2806	}
2807	vma = prev ? prev->vm_next : mm->mmap;
2808
2809	if (unlikely(uf)) {
2810		/*
2811		 * If userfaultfd_unmap_prep returns an error the vmas
2812		 * will remain splitted, but userland will get a
2813		 * highly unexpected error anyway. This is no
2814		 * different than the case where the first of the two
2815		 * __split_vma fails, but we don't undo the first
2816		 * split, despite we could. This is unlikely enough
2817		 * failure that it's not worth optimizing it for.
2818		 */
2819		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2820		if (error)
2821			return error;
2822	}
2823
2824	/*
2825	 * unlock any mlock()ed ranges before detaching vmas
2826	 */
2827	if (mm->locked_vm) {
2828		struct vm_area_struct *tmp = vma;
2829		while (tmp && tmp->vm_start < end) {
2830			if (tmp->vm_flags & VM_LOCKED) {
2831				mm->locked_vm -= vma_pages(tmp);
2832				munlock_vma_pages_all(tmp);
2833			}
2834
2835			tmp = tmp->vm_next;
2836		}
2837	}
2838
2839	/* Detach vmas from rbtree */
 
 
2840	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2841
2842	if (downgrade)
2843		downgrade_write(&mm->mmap_sem);
2844
2845	unmap_region(mm, vma, prev, start, end);
2846
 
 
2847	/* Fix up all other VM information */
2848	remove_vma_list(mm, vma);
2849
2850	return downgrade ? 1 : 0;
2851}
2852
2853int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2854	      struct list_head *uf)
2855{
2856	return __do_munmap(mm, start, len, uf, false);
2857}
2858
2859static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2860{
2861	int ret;
2862	struct mm_struct *mm = current->mm;
2863	LIST_HEAD(uf);
2864
2865	if (down_write_killable(&mm->mmap_sem))
2866		return -EINTR;
2867
2868	ret = __do_munmap(mm, start, len, &uf, downgrade);
2869	/*
2870	 * Returning 1 indicates mmap_sem is downgraded.
2871	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2872	 * it to 0 before return.
2873	 */
2874	if (ret == 1) {
2875		up_read(&mm->mmap_sem);
2876		ret = 0;
2877	} else
2878		up_write(&mm->mmap_sem);
2879
2880	userfaultfd_unmap_complete(mm, &uf);
2881	return ret;
2882}
2883
2884int vm_munmap(unsigned long start, size_t len)
2885{
2886	return __vm_munmap(start, len, false);
2887}
2888EXPORT_SYMBOL(vm_munmap);
2889
2890SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2891{
2892	addr = untagged_addr(addr);
2893	profile_munmap(addr);
2894	return __vm_munmap(addr, len, true);
2895}
2896
2897
2898/*
2899 * Emulation of deprecated remap_file_pages() syscall.
2900 */
2901SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2902		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2903{
2904
2905	struct mm_struct *mm = current->mm;
2906	struct vm_area_struct *vma;
2907	unsigned long populate = 0;
2908	unsigned long ret = -EINVAL;
2909	struct file *file;
2910
2911	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2912		     current->comm, current->pid);
2913
2914	if (prot)
2915		return ret;
2916	start = start & PAGE_MASK;
2917	size = size & PAGE_MASK;
2918
2919	if (start + size <= start)
2920		return ret;
2921
2922	/* Does pgoff wrap? */
2923	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2924		return ret;
2925
2926	if (down_write_killable(&mm->mmap_sem))
2927		return -EINTR;
2928
2929	vma = find_vma(mm, start);
2930
2931	if (!vma || !(vma->vm_flags & VM_SHARED))
2932		goto out;
2933
2934	if (start < vma->vm_start)
2935		goto out;
2936
2937	if (start + size > vma->vm_end) {
2938		struct vm_area_struct *next;
2939
2940		for (next = vma->vm_next; next; next = next->vm_next) {
2941			/* hole between vmas ? */
2942			if (next->vm_start != next->vm_prev->vm_end)
2943				goto out;
2944
2945			if (next->vm_file != vma->vm_file)
2946				goto out;
2947
2948			if (next->vm_flags != vma->vm_flags)
2949				goto out;
2950
2951			if (start + size <= next->vm_end)
2952				break;
2953		}
2954
2955		if (!next)
2956			goto out;
2957	}
2958
2959	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2960	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2961	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2962
2963	flags &= MAP_NONBLOCK;
2964	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2965	if (vma->vm_flags & VM_LOCKED) {
2966		struct vm_area_struct *tmp;
2967		flags |= MAP_LOCKED;
2968
2969		/* drop PG_Mlocked flag for over-mapped range */
2970		for (tmp = vma; tmp->vm_start >= start + size;
2971				tmp = tmp->vm_next) {
2972			/*
2973			 * Split pmd and munlock page on the border
2974			 * of the range.
2975			 */
2976			vma_adjust_trans_huge(tmp, start, start + size, 0);
2977
2978			munlock_vma_pages_range(tmp,
2979					max(tmp->vm_start, start),
2980					min(tmp->vm_end, start + size));
2981		}
2982	}
2983
2984	file = get_file(vma->vm_file);
2985	ret = do_mmap_pgoff(vma->vm_file, start, size,
2986			prot, flags, pgoff, &populate, NULL);
2987	fput(file);
2988out:
2989	up_write(&mm->mmap_sem);
2990	if (populate)
2991		mm_populate(ret, populate);
2992	if (!IS_ERR_VALUE(ret))
2993		ret = 0;
2994	return ret;
2995}
2996
 
 
 
 
 
 
 
 
 
 
2997/*
2998 *  this is really a simplified "do_mmap".  it only handles
2999 *  anonymous maps.  eventually we may be able to do some
3000 *  brk-specific accounting here.
3001 */
3002static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3003{
3004	struct mm_struct *mm = current->mm;
3005	struct vm_area_struct *vma, *prev;
 
3006	struct rb_node **rb_link, *rb_parent;
3007	pgoff_t pgoff = addr >> PAGE_SHIFT;
3008	int error;
3009
3010	/* Until we need other flags, refuse anything except VM_EXEC. */
3011	if ((flags & (~VM_EXEC)) != 0)
3012		return -EINVAL;
3013	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
3014
3015	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3016	if (offset_in_page(error))
3017		return error;
3018
3019	error = mlock_future_check(mm, mm->def_flags, len);
3020	if (error)
3021		return error;
3022
3023	/*
 
 
 
 
 
 
3024	 * Clear old maps.  this also does some error checking for us
3025	 */
3026	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3027			      &rb_parent)) {
3028		if (do_munmap(mm, addr, len, uf))
3029			return -ENOMEM;
3030	}
3031
3032	/* Check against address space limits *after* clearing old maps... */
3033	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3034		return -ENOMEM;
3035
3036	if (mm->map_count > sysctl_max_map_count)
3037		return -ENOMEM;
3038
3039	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3040		return -ENOMEM;
3041
3042	/* Can we just expand an old private anonymous mapping? */
3043	vma = vma_merge(mm, prev, addr, addr + len, flags,
3044			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3045	if (vma)
3046		goto out;
3047
3048	/*
3049	 * create a vma struct for an anonymous mapping
3050	 */
3051	vma = vm_area_alloc(mm);
3052	if (!vma) {
3053		vm_unacct_memory(len >> PAGE_SHIFT);
3054		return -ENOMEM;
3055	}
3056
3057	vma_set_anonymous(vma);
 
3058	vma->vm_start = addr;
3059	vma->vm_end = addr + len;
3060	vma->vm_pgoff = pgoff;
3061	vma->vm_flags = flags;
3062	vma->vm_page_prot = vm_get_page_prot(flags);
3063	vma_link(mm, vma, prev, rb_link, rb_parent);
3064out:
3065	perf_event_mmap(vma);
3066	mm->total_vm += len >> PAGE_SHIFT;
3067	mm->data_vm += len >> PAGE_SHIFT;
3068	if (flags & VM_LOCKED)
3069		mm->locked_vm += (len >> PAGE_SHIFT);
3070	vma->vm_flags |= VM_SOFTDIRTY;
3071	return 0;
3072}
3073
3074int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3075{
3076	struct mm_struct *mm = current->mm;
3077	unsigned long len;
3078	int ret;
3079	bool populate;
3080	LIST_HEAD(uf);
3081
3082	len = PAGE_ALIGN(request);
3083	if (len < request)
3084		return -ENOMEM;
3085	if (!len)
3086		return 0;
3087
3088	if (down_write_killable(&mm->mmap_sem))
3089		return -EINTR;
3090
3091	ret = do_brk_flags(addr, len, flags, &uf);
 
3092	populate = ((mm->def_flags & VM_LOCKED) != 0);
3093	up_write(&mm->mmap_sem);
3094	userfaultfd_unmap_complete(mm, &uf);
3095	if (populate && !ret)
3096		mm_populate(addr, len);
3097	return ret;
3098}
3099EXPORT_SYMBOL(vm_brk_flags);
3100
3101int vm_brk(unsigned long addr, unsigned long len)
3102{
3103	return vm_brk_flags(addr, len, 0);
3104}
3105EXPORT_SYMBOL(vm_brk);
3106
3107/* Release all mmaps. */
3108void exit_mmap(struct mm_struct *mm)
3109{
3110	struct mmu_gather tlb;
3111	struct vm_area_struct *vma;
3112	unsigned long nr_accounted = 0;
3113
3114	/* mm's last user has gone, and its about to be pulled down */
3115	mmu_notifier_release(mm);
3116
3117	if (unlikely(mm_is_oom_victim(mm))) {
3118		/*
3119		 * Manually reap the mm to free as much memory as possible.
3120		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3121		 * this mm from further consideration.  Taking mm->mmap_sem for
3122		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3123		 * reaper will not run on this mm again after mmap_sem is
3124		 * dropped.
3125		 *
3126		 * Nothing can be holding mm->mmap_sem here and the above call
3127		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3128		 * __oom_reap_task_mm() will not block.
3129		 *
3130		 * This needs to be done before calling munlock_vma_pages_all(),
3131		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3132		 * reliably test it.
3133		 */
3134		(void)__oom_reap_task_mm(mm);
3135
3136		set_bit(MMF_OOM_SKIP, &mm->flags);
3137		down_write(&mm->mmap_sem);
3138		up_write(&mm->mmap_sem);
3139	}
3140
3141	if (mm->locked_vm) {
3142		vma = mm->mmap;
3143		while (vma) {
3144			if (vma->vm_flags & VM_LOCKED)
3145				munlock_vma_pages_all(vma);
3146			vma = vma->vm_next;
3147		}
3148	}
3149
3150	arch_exit_mmap(mm);
3151
3152	vma = mm->mmap;
3153	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3154		return;
3155
3156	lru_add_drain();
3157	flush_cache_mm(mm);
3158	tlb_gather_mmu(&tlb, mm, 0, -1);
3159	/* update_hiwater_rss(mm) here? but nobody should be looking */
3160	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3161	unmap_vmas(&tlb, vma, 0, -1);
 
3162	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3163	tlb_finish_mmu(&tlb, 0, -1);
3164
3165	/*
3166	 * Walk the list again, actually closing and freeing it,
3167	 * with preemption enabled, without holding any MM locks.
3168	 */
3169	while (vma) {
3170		if (vma->vm_flags & VM_ACCOUNT)
3171			nr_accounted += vma_pages(vma);
3172		vma = remove_vma(vma);
3173	}
3174	vm_unacct_memory(nr_accounted);
3175}
3176
3177/* Insert vm structure into process list sorted by address
3178 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3179 * then i_mmap_rwsem is taken here.
3180 */
3181int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3182{
3183	struct vm_area_struct *prev;
3184	struct rb_node **rb_link, *rb_parent;
3185
3186	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3187			   &prev, &rb_link, &rb_parent))
3188		return -ENOMEM;
3189	if ((vma->vm_flags & VM_ACCOUNT) &&
3190	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3191		return -ENOMEM;
3192
3193	/*
3194	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3195	 * until its first write fault, when page's anon_vma and index
3196	 * are set.  But now set the vm_pgoff it will almost certainly
3197	 * end up with (unless mremap moves it elsewhere before that
3198	 * first wfault), so /proc/pid/maps tells a consistent story.
3199	 *
3200	 * By setting it to reflect the virtual start address of the
3201	 * vma, merges and splits can happen in a seamless way, just
3202	 * using the existing file pgoff checks and manipulations.
3203	 * Similarly in do_mmap_pgoff and in do_brk.
3204	 */
3205	if (vma_is_anonymous(vma)) {
3206		BUG_ON(vma->anon_vma);
3207		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3208	}
3209
3210	vma_link(mm, vma, prev, rb_link, rb_parent);
3211	return 0;
3212}
3213
3214/*
3215 * Copy the vma structure to a new location in the same mm,
3216 * prior to moving page table entries, to effect an mremap move.
3217 */
3218struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3219	unsigned long addr, unsigned long len, pgoff_t pgoff,
3220	bool *need_rmap_locks)
3221{
3222	struct vm_area_struct *vma = *vmap;
3223	unsigned long vma_start = vma->vm_start;
3224	struct mm_struct *mm = vma->vm_mm;
3225	struct vm_area_struct *new_vma, *prev;
3226	struct rb_node **rb_link, *rb_parent;
3227	bool faulted_in_anon_vma = true;
3228
3229	/*
3230	 * If anonymous vma has not yet been faulted, update new pgoff
3231	 * to match new location, to increase its chance of merging.
3232	 */
3233	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3234		pgoff = addr >> PAGE_SHIFT;
3235		faulted_in_anon_vma = false;
3236	}
3237
3238	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3239		return NULL;	/* should never get here */
3240	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3241			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3242			    vma->vm_userfaultfd_ctx);
3243	if (new_vma) {
3244		/*
3245		 * Source vma may have been merged into new_vma
3246		 */
3247		if (unlikely(vma_start >= new_vma->vm_start &&
3248			     vma_start < new_vma->vm_end)) {
3249			/*
3250			 * The only way we can get a vma_merge with
3251			 * self during an mremap is if the vma hasn't
3252			 * been faulted in yet and we were allowed to
3253			 * reset the dst vma->vm_pgoff to the
3254			 * destination address of the mremap to allow
3255			 * the merge to happen. mremap must change the
3256			 * vm_pgoff linearity between src and dst vmas
3257			 * (in turn preventing a vma_merge) to be
3258			 * safe. It is only safe to keep the vm_pgoff
3259			 * linear if there are no pages mapped yet.
3260			 */
3261			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3262			*vmap = vma = new_vma;
3263		}
3264		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3265	} else {
3266		new_vma = vm_area_dup(vma);
3267		if (!new_vma)
3268			goto out;
 
3269		new_vma->vm_start = addr;
3270		new_vma->vm_end = addr + len;
3271		new_vma->vm_pgoff = pgoff;
3272		if (vma_dup_policy(vma, new_vma))
3273			goto out_free_vma;
 
3274		if (anon_vma_clone(new_vma, vma))
3275			goto out_free_mempol;
3276		if (new_vma->vm_file)
3277			get_file(new_vma->vm_file);
3278		if (new_vma->vm_ops && new_vma->vm_ops->open)
3279			new_vma->vm_ops->open(new_vma);
3280		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3281		*need_rmap_locks = false;
3282	}
3283	return new_vma;
3284
3285out_free_mempol:
3286	mpol_put(vma_policy(new_vma));
3287out_free_vma:
3288	vm_area_free(new_vma);
3289out:
3290	return NULL;
3291}
3292
3293/*
3294 * Return true if the calling process may expand its vm space by the passed
3295 * number of pages
3296 */
3297bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3298{
3299	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3300		return false;
3301
3302	if (is_data_mapping(flags) &&
3303	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3304		/* Workaround for Valgrind */
3305		if (rlimit(RLIMIT_DATA) == 0 &&
3306		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3307			return true;
3308
3309		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3310			     current->comm, current->pid,
3311			     (mm->data_vm + npages) << PAGE_SHIFT,
3312			     rlimit(RLIMIT_DATA),
3313			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3314
3315		if (!ignore_rlimit_data)
3316			return false;
3317	}
3318
3319	return true;
3320}
3321
3322void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3323{
3324	mm->total_vm += npages;
3325
3326	if (is_exec_mapping(flags))
3327		mm->exec_vm += npages;
3328	else if (is_stack_mapping(flags))
3329		mm->stack_vm += npages;
3330	else if (is_data_mapping(flags))
3331		mm->data_vm += npages;
3332}
3333
3334static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
 
3335
3336/*
3337 * Having a close hook prevents vma merging regardless of flags.
3338 */
3339static void special_mapping_close(struct vm_area_struct *vma)
3340{
3341}
3342
3343static const char *special_mapping_name(struct vm_area_struct *vma)
3344{
3345	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3346}
3347
3348static int special_mapping_mremap(struct vm_area_struct *new_vma)
3349{
3350	struct vm_special_mapping *sm = new_vma->vm_private_data;
3351
3352	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3353		return -EFAULT;
3354
3355	if (sm->mremap)
3356		return sm->mremap(sm, new_vma);
3357
3358	return 0;
3359}
3360
3361static const struct vm_operations_struct special_mapping_vmops = {
3362	.close = special_mapping_close,
3363	.fault = special_mapping_fault,
3364	.mremap = special_mapping_mremap,
3365	.name = special_mapping_name,
3366};
3367
3368static const struct vm_operations_struct legacy_special_mapping_vmops = {
3369	.close = special_mapping_close,
3370	.fault = special_mapping_fault,
3371};
3372
3373static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
 
3374{
3375	struct vm_area_struct *vma = vmf->vma;
3376	pgoff_t pgoff;
3377	struct page **pages;
3378
3379	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3380		pages = vma->vm_private_data;
3381	} else {
3382		struct vm_special_mapping *sm = vma->vm_private_data;
3383
3384		if (sm->fault)
3385			return sm->fault(sm, vmf->vma, vmf);
3386
3387		pages = sm->pages;
3388	}
3389
3390	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3391		pgoff--;
3392
3393	if (*pages) {
3394		struct page *page = *pages;
3395		get_page(page);
3396		vmf->page = page;
3397		return 0;
3398	}
3399
3400	return VM_FAULT_SIGBUS;
3401}
3402
3403static struct vm_area_struct *__install_special_mapping(
3404	struct mm_struct *mm,
3405	unsigned long addr, unsigned long len,
3406	unsigned long vm_flags, void *priv,
3407	const struct vm_operations_struct *ops)
3408{
3409	int ret;
3410	struct vm_area_struct *vma;
3411
3412	vma = vm_area_alloc(mm);
3413	if (unlikely(vma == NULL))
3414		return ERR_PTR(-ENOMEM);
3415
 
 
3416	vma->vm_start = addr;
3417	vma->vm_end = addr + len;
3418
3419	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3420	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3421
3422	vma->vm_ops = ops;
3423	vma->vm_private_data = priv;
3424
3425	ret = insert_vm_struct(mm, vma);
3426	if (ret)
3427		goto out;
3428
3429	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3430
3431	perf_event_mmap(vma);
3432
3433	return vma;
3434
3435out:
3436	vm_area_free(vma);
3437	return ERR_PTR(ret);
3438}
3439
3440bool vma_is_special_mapping(const struct vm_area_struct *vma,
3441	const struct vm_special_mapping *sm)
3442{
3443	return vma->vm_private_data == sm &&
3444		(vma->vm_ops == &special_mapping_vmops ||
3445		 vma->vm_ops == &legacy_special_mapping_vmops);
3446}
3447
3448/*
3449 * Called with mm->mmap_sem held for writing.
3450 * Insert a new vma covering the given region, with the given flags.
3451 * Its pages are supplied by the given array of struct page *.
3452 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3453 * The region past the last page supplied will always produce SIGBUS.
3454 * The array pointer and the pages it points to are assumed to stay alive
3455 * for as long as this mapping might exist.
3456 */
3457struct vm_area_struct *_install_special_mapping(
3458	struct mm_struct *mm,
3459	unsigned long addr, unsigned long len,
3460	unsigned long vm_flags, const struct vm_special_mapping *spec)
3461{
3462	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3463					&special_mapping_vmops);
3464}
3465
3466int install_special_mapping(struct mm_struct *mm,
3467			    unsigned long addr, unsigned long len,
3468			    unsigned long vm_flags, struct page **pages)
3469{
3470	struct vm_area_struct *vma = __install_special_mapping(
3471		mm, addr, len, vm_flags, (void *)pages,
3472		&legacy_special_mapping_vmops);
3473
3474	return PTR_ERR_OR_ZERO(vma);
3475}
3476
3477static DEFINE_MUTEX(mm_all_locks_mutex);
3478
3479static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3480{
3481	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3482		/*
3483		 * The LSB of head.next can't change from under us
3484		 * because we hold the mm_all_locks_mutex.
3485		 */
3486		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3487		/*
3488		 * We can safely modify head.next after taking the
3489		 * anon_vma->root->rwsem. If some other vma in this mm shares
3490		 * the same anon_vma we won't take it again.
3491		 *
3492		 * No need of atomic instructions here, head.next
3493		 * can't change from under us thanks to the
3494		 * anon_vma->root->rwsem.
3495		 */
3496		if (__test_and_set_bit(0, (unsigned long *)
3497				       &anon_vma->root->rb_root.rb_root.rb_node))
3498			BUG();
3499	}
3500}
3501
3502static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3503{
3504	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3505		/*
3506		 * AS_MM_ALL_LOCKS can't change from under us because
3507		 * we hold the mm_all_locks_mutex.
3508		 *
3509		 * Operations on ->flags have to be atomic because
3510		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3511		 * mm_all_locks_mutex, there may be other cpus
3512		 * changing other bitflags in parallel to us.
3513		 */
3514		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3515			BUG();
3516		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3517	}
3518}
3519
3520/*
3521 * This operation locks against the VM for all pte/vma/mm related
3522 * operations that could ever happen on a certain mm. This includes
3523 * vmtruncate, try_to_unmap, and all page faults.
3524 *
3525 * The caller must take the mmap_sem in write mode before calling
3526 * mm_take_all_locks(). The caller isn't allowed to release the
3527 * mmap_sem until mm_drop_all_locks() returns.
3528 *
3529 * mmap_sem in write mode is required in order to block all operations
3530 * that could modify pagetables and free pages without need of
3531 * altering the vma layout. It's also needed in write mode to avoid new
3532 * anon_vmas to be associated with existing vmas.
3533 *
3534 * A single task can't take more than one mm_take_all_locks() in a row
3535 * or it would deadlock.
3536 *
3537 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3538 * mapping->flags avoid to take the same lock twice, if more than one
3539 * vma in this mm is backed by the same anon_vma or address_space.
3540 *
3541 * We take locks in following order, accordingly to comment at beginning
3542 * of mm/rmap.c:
3543 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3544 *     hugetlb mapping);
3545 *   - all i_mmap_rwsem locks;
3546 *   - all anon_vma->rwseml
3547 *
3548 * We can take all locks within these types randomly because the VM code
3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3550 * mm_all_locks_mutex.
3551 *
3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3553 * that may have to take thousand of locks.
3554 *
3555 * mm_take_all_locks() can fail if it's interrupted by signals.
3556 */
3557int mm_take_all_locks(struct mm_struct *mm)
3558{
3559	struct vm_area_struct *vma;
3560	struct anon_vma_chain *avc;
3561
3562	BUG_ON(down_read_trylock(&mm->mmap_sem));
3563
3564	mutex_lock(&mm_all_locks_mutex);
3565
3566	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567		if (signal_pending(current))
3568			goto out_unlock;
3569		if (vma->vm_file && vma->vm_file->f_mapping &&
3570				is_vm_hugetlb_page(vma))
3571			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572	}
3573
3574	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3575		if (signal_pending(current))
3576			goto out_unlock;
3577		if (vma->vm_file && vma->vm_file->f_mapping &&
3578				!is_vm_hugetlb_page(vma))
3579			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3580	}
3581
3582	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583		if (signal_pending(current))
3584			goto out_unlock;
3585		if (vma->anon_vma)
3586			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587				vm_lock_anon_vma(mm, avc->anon_vma);
3588	}
3589
3590	return 0;
3591
3592out_unlock:
3593	mm_drop_all_locks(mm);
3594	return -EINTR;
3595}
3596
3597static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3598{
3599	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3600		/*
3601		 * The LSB of head.next can't change to 0 from under
3602		 * us because we hold the mm_all_locks_mutex.
3603		 *
3604		 * We must however clear the bitflag before unlocking
3605		 * the vma so the users using the anon_vma->rb_root will
3606		 * never see our bitflag.
3607		 *
3608		 * No need of atomic instructions here, head.next
3609		 * can't change from under us until we release the
3610		 * anon_vma->root->rwsem.
3611		 */
3612		if (!__test_and_clear_bit(0, (unsigned long *)
3613					  &anon_vma->root->rb_root.rb_root.rb_node))
3614			BUG();
3615		anon_vma_unlock_write(anon_vma);
3616	}
3617}
3618
3619static void vm_unlock_mapping(struct address_space *mapping)
3620{
3621	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3622		/*
3623		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3624		 * because we hold the mm_all_locks_mutex.
3625		 */
3626		i_mmap_unlock_write(mapping);
3627		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3628					&mapping->flags))
3629			BUG();
3630	}
3631}
3632
3633/*
3634 * The mmap_sem cannot be released by the caller until
3635 * mm_drop_all_locks() returns.
3636 */
3637void mm_drop_all_locks(struct mm_struct *mm)
3638{
3639	struct vm_area_struct *vma;
3640	struct anon_vma_chain *avc;
3641
3642	BUG_ON(down_read_trylock(&mm->mmap_sem));
3643	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3644
3645	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3646		if (vma->anon_vma)
3647			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3648				vm_unlock_anon_vma(avc->anon_vma);
3649		if (vma->vm_file && vma->vm_file->f_mapping)
3650			vm_unlock_mapping(vma->vm_file->f_mapping);
3651	}
3652
3653	mutex_unlock(&mm_all_locks_mutex);
3654}
3655
3656/*
3657 * initialise the percpu counter for VM
3658 */
3659void __init mmap_init(void)
3660{
3661	int ret;
3662
3663	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3664	VM_BUG_ON(ret);
3665}
3666
3667/*
3668 * Initialise sysctl_user_reserve_kbytes.
3669 *
3670 * This is intended to prevent a user from starting a single memory hogging
3671 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3672 * mode.
3673 *
3674 * The default value is min(3% of free memory, 128MB)
3675 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3676 */
3677static int init_user_reserve(void)
3678{
3679	unsigned long free_kbytes;
3680
3681	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682
3683	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3684	return 0;
3685}
3686subsys_initcall(init_user_reserve);
3687
3688/*
3689 * Initialise sysctl_admin_reserve_kbytes.
3690 *
3691 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3692 * to log in and kill a memory hogging process.
3693 *
3694 * Systems with more than 256MB will reserve 8MB, enough to recover
3695 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3696 * only reserve 3% of free pages by default.
3697 */
3698static int init_admin_reserve(void)
3699{
3700	unsigned long free_kbytes;
3701
3702	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3703
3704	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3705	return 0;
3706}
3707subsys_initcall(init_admin_reserve);
3708
3709/*
3710 * Reinititalise user and admin reserves if memory is added or removed.
3711 *
3712 * The default user reserve max is 128MB, and the default max for the
3713 * admin reserve is 8MB. These are usually, but not always, enough to
3714 * enable recovery from a memory hogging process using login/sshd, a shell,
3715 * and tools like top. It may make sense to increase or even disable the
3716 * reserve depending on the existence of swap or variations in the recovery
3717 * tools. So, the admin may have changed them.
3718 *
3719 * If memory is added and the reserves have been eliminated or increased above
3720 * the default max, then we'll trust the admin.
3721 *
3722 * If memory is removed and there isn't enough free memory, then we
3723 * need to reset the reserves.
3724 *
3725 * Otherwise keep the reserve set by the admin.
3726 */
3727static int reserve_mem_notifier(struct notifier_block *nb,
3728			     unsigned long action, void *data)
3729{
3730	unsigned long tmp, free_kbytes;
3731
3732	switch (action) {
3733	case MEM_ONLINE:
3734		/* Default max is 128MB. Leave alone if modified by operator. */
3735		tmp = sysctl_user_reserve_kbytes;
3736		if (0 < tmp && tmp < (1UL << 17))
3737			init_user_reserve();
3738
3739		/* Default max is 8MB.  Leave alone if modified by operator. */
3740		tmp = sysctl_admin_reserve_kbytes;
3741		if (0 < tmp && tmp < (1UL << 13))
3742			init_admin_reserve();
3743
3744		break;
3745	case MEM_OFFLINE:
3746		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3747
3748		if (sysctl_user_reserve_kbytes > free_kbytes) {
3749			init_user_reserve();
3750			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3751				sysctl_user_reserve_kbytes);
3752		}
3753
3754		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3755			init_admin_reserve();
3756			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3757				sysctl_admin_reserve_kbytes);
3758		}
3759		break;
3760	default:
3761		break;
3762	}
3763	return NOTIFY_OK;
3764}
3765
3766static struct notifier_block reserve_mem_nb = {
3767	.notifier_call = reserve_mem_notifier,
3768};
3769
3770static int __meminit init_reserve_notifier(void)
3771{
3772	if (register_hotmemory_notifier(&reserve_mem_nb))
3773		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3774
3775	return 0;
3776}
3777subsys_initcall(init_reserve_notifier);
v4.6
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
 
  28#include <linux/profile.h>
  29#include <linux/export.h>
  30#include <linux/mount.h>
  31#include <linux/mempolicy.h>
  32#include <linux/rmap.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/mmdebug.h>
  35#include <linux/perf_event.h>
  36#include <linux/audit.h>
  37#include <linux/khugepaged.h>
  38#include <linux/uprobes.h>
  39#include <linux/rbtree_augmented.h>
  40#include <linux/notifier.h>
  41#include <linux/memory.h>
  42#include <linux/printk.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/moduleparam.h>
  45#include <linux/pkeys.h>
 
 
  46
  47#include <asm/uaccess.h>
  48#include <asm/cacheflush.h>
  49#include <asm/tlb.h>
  50#include <asm/mmu_context.h>
  51
  52#include "internal.h"
  53
  54#ifndef arch_mmap_check
  55#define arch_mmap_check(addr, len, flags)	(0)
  56#endif
  57
  58#ifndef arch_rebalance_pgtables
  59#define arch_rebalance_pgtables(addr, len)		(addr)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data = true;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
 
 
 
 
 
  94 */
  95pgprot_t protection_map[16] = {
  96	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  97	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  98};
  99
 
 
 
 
 
 
 
 100pgprot_t vm_get_page_prot(unsigned long vm_flags)
 101{
 102	return __pgprot(pgprot_val(protection_map[vm_flags &
 103				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 104			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 
 
 105}
 106EXPORT_SYMBOL(vm_get_page_prot);
 107
 108static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 109{
 110	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 111}
 112
 113/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 114void vma_set_page_prot(struct vm_area_struct *vma)
 115{
 116	unsigned long vm_flags = vma->vm_flags;
 
 117
 118	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 119	if (vma_wants_writenotify(vma)) {
 120		vm_flags &= ~VM_SHARED;
 121		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
 122						     vm_flags);
 123	}
 
 
 124}
 125
 126/*
 127 * Requires inode->i_mapping->i_mmap_rwsem
 128 */
 129static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 130		struct file *file, struct address_space *mapping)
 131{
 132	if (vma->vm_flags & VM_DENYWRITE)
 133		atomic_inc(&file_inode(file)->i_writecount);
 134	if (vma->vm_flags & VM_SHARED)
 135		mapping_unmap_writable(mapping);
 136
 137	flush_dcache_mmap_lock(mapping);
 138	vma_interval_tree_remove(vma, &mapping->i_mmap);
 139	flush_dcache_mmap_unlock(mapping);
 140}
 141
 142/*
 143 * Unlink a file-based vm structure from its interval tree, to hide
 144 * vma from rmap and vmtruncate before freeing its page tables.
 145 */
 146void unlink_file_vma(struct vm_area_struct *vma)
 147{
 148	struct file *file = vma->vm_file;
 149
 150	if (file) {
 151		struct address_space *mapping = file->f_mapping;
 152		i_mmap_lock_write(mapping);
 153		__remove_shared_vm_struct(vma, file, mapping);
 154		i_mmap_unlock_write(mapping);
 155	}
 156}
 157
 158/*
 159 * Close a vm structure and free it, returning the next.
 160 */
 161static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 162{
 163	struct vm_area_struct *next = vma->vm_next;
 164
 165	might_sleep();
 166	if (vma->vm_ops && vma->vm_ops->close)
 167		vma->vm_ops->close(vma);
 168	if (vma->vm_file)
 169		fput(vma->vm_file);
 170	mpol_put(vma_policy(vma));
 171	kmem_cache_free(vm_area_cachep, vma);
 172	return next;
 173}
 174
 175static unsigned long do_brk(unsigned long addr, unsigned long len);
 176
 177SYSCALL_DEFINE1(brk, unsigned long, brk)
 178{
 179	unsigned long retval;
 180	unsigned long newbrk, oldbrk;
 181	struct mm_struct *mm = current->mm;
 
 182	unsigned long min_brk;
 183	bool populate;
 
 
 
 
 184
 185	down_write(&mm->mmap_sem);
 
 
 
 186
 187#ifdef CONFIG_COMPAT_BRK
 188	/*
 189	 * CONFIG_COMPAT_BRK can still be overridden by setting
 190	 * randomize_va_space to 2, which will still cause mm->start_brk
 191	 * to be arbitrarily shifted
 192	 */
 193	if (current->brk_randomized)
 194		min_brk = mm->start_brk;
 195	else
 196		min_brk = mm->end_data;
 197#else
 198	min_brk = mm->start_brk;
 199#endif
 200	if (brk < min_brk)
 201		goto out;
 202
 203	/*
 204	 * Check against rlimit here. If this check is done later after the test
 205	 * of oldbrk with newbrk then it can escape the test and let the data
 206	 * segment grow beyond its set limit the in case where the limit is
 207	 * not page aligned -Ram Gupta
 208	 */
 209	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 210			      mm->end_data, mm->start_data))
 211		goto out;
 212
 213	newbrk = PAGE_ALIGN(brk);
 214	oldbrk = PAGE_ALIGN(mm->brk);
 215	if (oldbrk == newbrk)
 216		goto set_brk;
 
 
 217
 218	/* Always allow shrinking brk. */
 
 
 
 219	if (brk <= mm->brk) {
 220		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 221			goto set_brk;
 222		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	}
 224
 225	/* Check against existing mmap mappings. */
 226	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 227		goto out;
 228
 229	/* Ok, looks good - let it rip. */
 230	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 231		goto out;
 
 232
 233set_brk:
 234	mm->brk = brk;
 235	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 236	up_write(&mm->mmap_sem);
 
 
 
 
 237	if (populate)
 238		mm_populate(oldbrk, newbrk - oldbrk);
 239	return brk;
 240
 241out:
 242	retval = mm->brk;
 243	up_write(&mm->mmap_sem);
 244	return retval;
 245}
 246
 247static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248{
 249	unsigned long max, subtree_gap;
 250	max = vma->vm_start;
 251	if (vma->vm_prev)
 252		max -= vma->vm_prev->vm_end;
 253	if (vma->vm_rb.rb_left) {
 254		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 255				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 256		if (subtree_gap > max)
 257			max = subtree_gap;
 258	}
 259	if (vma->vm_rb.rb_right) {
 260		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 261				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 262		if (subtree_gap > max)
 263			max = subtree_gap;
 264	}
 265	return max;
 266}
 267
 268#ifdef CONFIG_DEBUG_VM_RB
 269static int browse_rb(struct mm_struct *mm)
 270{
 271	struct rb_root *root = &mm->mm_rb;
 272	int i = 0, j, bug = 0;
 273	struct rb_node *nd, *pn = NULL;
 274	unsigned long prev = 0, pend = 0;
 275
 276	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 277		struct vm_area_struct *vma;
 278		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 279		if (vma->vm_start < prev) {
 280			pr_emerg("vm_start %lx < prev %lx\n",
 281				  vma->vm_start, prev);
 282			bug = 1;
 283		}
 284		if (vma->vm_start < pend) {
 285			pr_emerg("vm_start %lx < pend %lx\n",
 286				  vma->vm_start, pend);
 287			bug = 1;
 288		}
 289		if (vma->vm_start > vma->vm_end) {
 290			pr_emerg("vm_start %lx > vm_end %lx\n",
 291				  vma->vm_start, vma->vm_end);
 292			bug = 1;
 293		}
 294		spin_lock(&mm->page_table_lock);
 295		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 296			pr_emerg("free gap %lx, correct %lx\n",
 297			       vma->rb_subtree_gap,
 298			       vma_compute_subtree_gap(vma));
 299			bug = 1;
 300		}
 301		spin_unlock(&mm->page_table_lock);
 302		i++;
 303		pn = nd;
 304		prev = vma->vm_start;
 305		pend = vma->vm_end;
 306	}
 307	j = 0;
 308	for (nd = pn; nd; nd = rb_prev(nd))
 309		j++;
 310	if (i != j) {
 311		pr_emerg("backwards %d, forwards %d\n", j, i);
 312		bug = 1;
 313	}
 314	return bug ? -1 : i;
 315}
 316
 317static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 318{
 319	struct rb_node *nd;
 320
 321	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 322		struct vm_area_struct *vma;
 323		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 324		VM_BUG_ON_VMA(vma != ignore &&
 325			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 326			vma);
 327	}
 328}
 329
 330static void validate_mm(struct mm_struct *mm)
 331{
 332	int bug = 0;
 333	int i = 0;
 334	unsigned long highest_address = 0;
 335	struct vm_area_struct *vma = mm->mmap;
 336
 337	while (vma) {
 338		struct anon_vma *anon_vma = vma->anon_vma;
 339		struct anon_vma_chain *avc;
 340
 341		if (anon_vma) {
 342			anon_vma_lock_read(anon_vma);
 343			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 344				anon_vma_interval_tree_verify(avc);
 345			anon_vma_unlock_read(anon_vma);
 346		}
 347
 348		highest_address = vma->vm_end;
 349		vma = vma->vm_next;
 350		i++;
 351	}
 352	if (i != mm->map_count) {
 353		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 354		bug = 1;
 355	}
 356	if (highest_address != mm->highest_vm_end) {
 357		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 358			  mm->highest_vm_end, highest_address);
 359		bug = 1;
 360	}
 361	i = browse_rb(mm);
 362	if (i != mm->map_count) {
 363		if (i != -1)
 364			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 365		bug = 1;
 366	}
 367	VM_BUG_ON_MM(bug, mm);
 368}
 369#else
 370#define validate_mm_rb(root, ignore) do { } while (0)
 371#define validate_mm(mm) do { } while (0)
 372#endif
 373
 374RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 375		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 
 376
 377/*
 378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 379 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 380 * in the rbtree.
 381 */
 382static void vma_gap_update(struct vm_area_struct *vma)
 383{
 384	/*
 385	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 386	 * function that does exacltly what we want.
 387	 */
 388	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 389}
 390
 391static inline void vma_rb_insert(struct vm_area_struct *vma,
 392				 struct rb_root *root)
 393{
 394	/* All rb_subtree_gap values must be consistent prior to insertion */
 395	validate_mm_rb(root, NULL);
 396
 397	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 398}
 399
 400static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401{
 402	/*
 403	 * All rb_subtree_gap values must be consistent prior to erase,
 404	 * with the possible exception of the vma being erased.
 405	 */
 406	validate_mm_rb(root, vma);
 407
 408	/*
 409	 * Note rb_erase_augmented is a fairly large inline function,
 410	 * so make sure we instantiate it only once with our desired
 411	 * augmented rbtree callbacks.
 412	 */
 413	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 414}
 415
 416/*
 417 * vma has some anon_vma assigned, and is already inserted on that
 418 * anon_vma's interval trees.
 419 *
 420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 421 * vma must be removed from the anon_vma's interval trees using
 422 * anon_vma_interval_tree_pre_update_vma().
 423 *
 424 * After the update, the vma will be reinserted using
 425 * anon_vma_interval_tree_post_update_vma().
 426 *
 427 * The entire update must be protected by exclusive mmap_sem and by
 428 * the root anon_vma's mutex.
 429 */
 430static inline void
 431anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 432{
 433	struct anon_vma_chain *avc;
 434
 435	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 436		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 437}
 438
 439static inline void
 440anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 441{
 442	struct anon_vma_chain *avc;
 443
 444	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 445		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 446}
 447
 448static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 449		unsigned long end, struct vm_area_struct **pprev,
 450		struct rb_node ***rb_link, struct rb_node **rb_parent)
 451{
 452	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 453
 454	__rb_link = &mm->mm_rb.rb_node;
 455	rb_prev = __rb_parent = NULL;
 456
 457	while (*__rb_link) {
 458		struct vm_area_struct *vma_tmp;
 459
 460		__rb_parent = *__rb_link;
 461		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 462
 463		if (vma_tmp->vm_end > addr) {
 464			/* Fail if an existing vma overlaps the area */
 465			if (vma_tmp->vm_start < end)
 466				return -ENOMEM;
 467			__rb_link = &__rb_parent->rb_left;
 468		} else {
 469			rb_prev = __rb_parent;
 470			__rb_link = &__rb_parent->rb_right;
 471		}
 472	}
 473
 474	*pprev = NULL;
 475	if (rb_prev)
 476		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 477	*rb_link = __rb_link;
 478	*rb_parent = __rb_parent;
 479	return 0;
 480}
 481
 482static unsigned long count_vma_pages_range(struct mm_struct *mm,
 483		unsigned long addr, unsigned long end)
 484{
 485	unsigned long nr_pages = 0;
 486	struct vm_area_struct *vma;
 487
 488	/* Find first overlaping mapping */
 489	vma = find_vma_intersection(mm, addr, end);
 490	if (!vma)
 491		return 0;
 492
 493	nr_pages = (min(end, vma->vm_end) -
 494		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 495
 496	/* Iterate over the rest of the overlaps */
 497	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 498		unsigned long overlap_len;
 499
 500		if (vma->vm_start > end)
 501			break;
 502
 503		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 504		nr_pages += overlap_len >> PAGE_SHIFT;
 505	}
 506
 507	return nr_pages;
 508}
 509
 510void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 511		struct rb_node **rb_link, struct rb_node *rb_parent)
 512{
 513	/* Update tracking information for the gap following the new vma. */
 514	if (vma->vm_next)
 515		vma_gap_update(vma->vm_next);
 516	else
 517		mm->highest_vm_end = vma->vm_end;
 518
 519	/*
 520	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 521	 * correct insertion point for that vma. As a result, we could not
 522	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 523	 * So, we first insert the vma with a zero rb_subtree_gap value
 524	 * (to be consistent with what we did on the way down), and then
 525	 * immediately update the gap to the correct value. Finally we
 526	 * rebalance the rbtree after all augmented values have been set.
 527	 */
 528	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 529	vma->rb_subtree_gap = 0;
 530	vma_gap_update(vma);
 531	vma_rb_insert(vma, &mm->mm_rb);
 532}
 533
 534static void __vma_link_file(struct vm_area_struct *vma)
 535{
 536	struct file *file;
 537
 538	file = vma->vm_file;
 539	if (file) {
 540		struct address_space *mapping = file->f_mapping;
 541
 542		if (vma->vm_flags & VM_DENYWRITE)
 543			atomic_dec(&file_inode(file)->i_writecount);
 544		if (vma->vm_flags & VM_SHARED)
 545			atomic_inc(&mapping->i_mmap_writable);
 546
 547		flush_dcache_mmap_lock(mapping);
 548		vma_interval_tree_insert(vma, &mapping->i_mmap);
 549		flush_dcache_mmap_unlock(mapping);
 550	}
 551}
 552
 553static void
 554__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 555	struct vm_area_struct *prev, struct rb_node **rb_link,
 556	struct rb_node *rb_parent)
 557{
 558	__vma_link_list(mm, vma, prev, rb_parent);
 559	__vma_link_rb(mm, vma, rb_link, rb_parent);
 560}
 561
 562static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 563			struct vm_area_struct *prev, struct rb_node **rb_link,
 564			struct rb_node *rb_parent)
 565{
 566	struct address_space *mapping = NULL;
 567
 568	if (vma->vm_file) {
 569		mapping = vma->vm_file->f_mapping;
 570		i_mmap_lock_write(mapping);
 571	}
 572
 573	__vma_link(mm, vma, prev, rb_link, rb_parent);
 574	__vma_link_file(vma);
 575
 576	if (mapping)
 577		i_mmap_unlock_write(mapping);
 578
 579	mm->map_count++;
 580	validate_mm(mm);
 581}
 582
 583/*
 584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 585 * mm's list and rbtree.  It has already been inserted into the interval tree.
 586 */
 587static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 588{
 589	struct vm_area_struct *prev;
 590	struct rb_node **rb_link, *rb_parent;
 591
 592	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 593			   &prev, &rb_link, &rb_parent))
 594		BUG();
 595	__vma_link(mm, vma, prev, rb_link, rb_parent);
 596	mm->map_count++;
 597}
 598
 599static inline void
 600__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 601		struct vm_area_struct *prev)
 
 
 602{
 603	struct vm_area_struct *next;
 604
 605	vma_rb_erase(vma, &mm->mm_rb);
 606	prev->vm_next = next = vma->vm_next;
 
 
 
 
 
 
 
 
 
 607	if (next)
 608		next->vm_prev = prev;
 609
 610	/* Kill the cache */
 611	vmacache_invalidate(mm);
 612}
 613
 
 
 
 
 
 
 
 614/*
 615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 616 * is already present in an i_mmap tree without adjusting the tree.
 617 * The following helper function should be used when such adjustments
 618 * are necessary.  The "insert" vma (if any) is to be inserted
 619 * before we drop the necessary locks.
 620 */
 621int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 622	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 
 623{
 624	struct mm_struct *mm = vma->vm_mm;
 625	struct vm_area_struct *next = vma->vm_next;
 626	struct vm_area_struct *importer = NULL;
 627	struct address_space *mapping = NULL;
 628	struct rb_root *root = NULL;
 629	struct anon_vma *anon_vma = NULL;
 630	struct file *file = vma->vm_file;
 631	bool start_changed = false, end_changed = false;
 632	long adjust_next = 0;
 633	int remove_next = 0;
 634
 635	if (next && !insert) {
 636		struct vm_area_struct *exporter = NULL;
 637
 638		if (end >= next->vm_end) {
 639			/*
 640			 * vma expands, overlapping all the next, and
 641			 * perhaps the one after too (mprotect case 6).
 
 
 642			 */
 643again:			remove_next = 1 + (end > next->vm_end);
 644			end = next->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645			exporter = next;
 646			importer = vma;
 
 
 
 
 
 
 
 
 647		} else if (end > next->vm_start) {
 648			/*
 649			 * vma expands, overlapping part of the next:
 650			 * mprotect case 5 shifting the boundary up.
 651			 */
 652			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 653			exporter = next;
 654			importer = vma;
 
 655		} else if (end < vma->vm_end) {
 656			/*
 657			 * vma shrinks, and !insert tells it's not
 658			 * split_vma inserting another: so it must be
 659			 * mprotect case 4 shifting the boundary down.
 660			 */
 661			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 662			exporter = vma;
 663			importer = next;
 
 664		}
 665
 666		/*
 667		 * Easily overlooked: when mprotect shifts the boundary,
 668		 * make sure the expanding vma has anon_vma set if the
 669		 * shrinking vma had, to cover any anon pages imported.
 670		 */
 671		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 672			int error;
 673
 674			importer->anon_vma = exporter->anon_vma;
 675			error = anon_vma_clone(importer, exporter);
 676			if (error)
 677				return error;
 678		}
 679	}
 
 
 680
 681	if (file) {
 682		mapping = file->f_mapping;
 683		root = &mapping->i_mmap;
 684		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 685
 686		if (adjust_next)
 687			uprobe_munmap(next, next->vm_start, next->vm_end);
 688
 689		i_mmap_lock_write(mapping);
 690		if (insert) {
 691			/*
 692			 * Put into interval tree now, so instantiated pages
 693			 * are visible to arm/parisc __flush_dcache_page
 694			 * throughout; but we cannot insert into address
 695			 * space until vma start or end is updated.
 696			 */
 697			__vma_link_file(insert);
 698		}
 699	}
 700
 701	vma_adjust_trans_huge(vma, start, end, adjust_next);
 702
 703	anon_vma = vma->anon_vma;
 704	if (!anon_vma && adjust_next)
 705		anon_vma = next->anon_vma;
 706	if (anon_vma) {
 707		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
 708			  anon_vma != next->anon_vma, next);
 709		anon_vma_lock_write(anon_vma);
 710		anon_vma_interval_tree_pre_update_vma(vma);
 711		if (adjust_next)
 712			anon_vma_interval_tree_pre_update_vma(next);
 713	}
 714
 715	if (root) {
 716		flush_dcache_mmap_lock(mapping);
 717		vma_interval_tree_remove(vma, root);
 718		if (adjust_next)
 719			vma_interval_tree_remove(next, root);
 720	}
 721
 722	if (start != vma->vm_start) {
 723		vma->vm_start = start;
 724		start_changed = true;
 725	}
 726	if (end != vma->vm_end) {
 727		vma->vm_end = end;
 728		end_changed = true;
 729	}
 730	vma->vm_pgoff = pgoff;
 731	if (adjust_next) {
 732		next->vm_start += adjust_next << PAGE_SHIFT;
 733		next->vm_pgoff += adjust_next;
 734	}
 735
 736	if (root) {
 737		if (adjust_next)
 738			vma_interval_tree_insert(next, root);
 739		vma_interval_tree_insert(vma, root);
 740		flush_dcache_mmap_unlock(mapping);
 741	}
 742
 743	if (remove_next) {
 744		/*
 745		 * vma_merge has merged next into vma, and needs
 746		 * us to remove next before dropping the locks.
 747		 */
 748		__vma_unlink(mm, next, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 749		if (file)
 750			__remove_shared_vm_struct(next, file, mapping);
 751	} else if (insert) {
 752		/*
 753		 * split_vma has split insert from vma, and needs
 754		 * us to insert it before dropping the locks
 755		 * (it may either follow vma or precede it).
 756		 */
 757		__insert_vm_struct(mm, insert);
 758	} else {
 759		if (start_changed)
 760			vma_gap_update(vma);
 761		if (end_changed) {
 762			if (!next)
 763				mm->highest_vm_end = end;
 764			else if (!adjust_next)
 765				vma_gap_update(next);
 766		}
 767	}
 768
 769	if (anon_vma) {
 770		anon_vma_interval_tree_post_update_vma(vma);
 771		if (adjust_next)
 772			anon_vma_interval_tree_post_update_vma(next);
 773		anon_vma_unlock_write(anon_vma);
 774	}
 775	if (mapping)
 776		i_mmap_unlock_write(mapping);
 777
 778	if (root) {
 779		uprobe_mmap(vma);
 780
 781		if (adjust_next)
 782			uprobe_mmap(next);
 783	}
 784
 785	if (remove_next) {
 786		if (file) {
 787			uprobe_munmap(next, next->vm_start, next->vm_end);
 788			fput(file);
 789		}
 790		if (next->anon_vma)
 791			anon_vma_merge(vma, next);
 792		mm->map_count--;
 793		mpol_put(vma_policy(next));
 794		kmem_cache_free(vm_area_cachep, next);
 795		/*
 796		 * In mprotect's case 6 (see comments on vma_merge),
 797		 * we must remove another next too. It would clutter
 798		 * up the code too much to do both in one go.
 799		 */
 800		next = vma->vm_next;
 801		if (remove_next == 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802			goto again;
 
 803		else if (next)
 804			vma_gap_update(next);
 805		else
 806			mm->highest_vm_end = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807	}
 808	if (insert && file)
 809		uprobe_mmap(insert);
 810
 811	validate_mm(mm);
 812
 813	return 0;
 814}
 815
 816/*
 817 * If the vma has a ->close operation then the driver probably needs to release
 818 * per-vma resources, so we don't attempt to merge those.
 819 */
 820static inline int is_mergeable_vma(struct vm_area_struct *vma,
 821				struct file *file, unsigned long vm_flags,
 822				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 823{
 824	/*
 825	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 826	 * match the flags but dirty bit -- the caller should mark
 827	 * merged VMA as dirty. If dirty bit won't be excluded from
 828	 * comparison, we increase pressue on the memory system forcing
 829	 * the kernel to generate new VMAs when old one could be
 830	 * extended instead.
 831	 */
 832	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 833		return 0;
 834	if (vma->vm_file != file)
 835		return 0;
 836	if (vma->vm_ops && vma->vm_ops->close)
 837		return 0;
 838	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 839		return 0;
 840	return 1;
 841}
 842
 843static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 844					struct anon_vma *anon_vma2,
 845					struct vm_area_struct *vma)
 846{
 847	/*
 848	 * The list_is_singular() test is to avoid merging VMA cloned from
 849	 * parents. This can improve scalability caused by anon_vma lock.
 850	 */
 851	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 852		list_is_singular(&vma->anon_vma_chain)))
 853		return 1;
 854	return anon_vma1 == anon_vma2;
 855}
 856
 857/*
 858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 859 * in front of (at a lower virtual address and file offset than) the vma.
 860 *
 861 * We cannot merge two vmas if they have differently assigned (non-NULL)
 862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 863 *
 864 * We don't check here for the merged mmap wrapping around the end of pagecache
 865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 866 * wrap, nor mmaps which cover the final page at index -1UL.
 867 */
 868static int
 869can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 870		     struct anon_vma *anon_vma, struct file *file,
 871		     pgoff_t vm_pgoff,
 872		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 873{
 874	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 875	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 876		if (vma->vm_pgoff == vm_pgoff)
 877			return 1;
 878	}
 879	return 0;
 880}
 881
 882/*
 883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 884 * beyond (at a higher virtual address and file offset than) the vma.
 885 *
 886 * We cannot merge two vmas if they have differently assigned (non-NULL)
 887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 888 */
 889static int
 890can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 891		    struct anon_vma *anon_vma, struct file *file,
 892		    pgoff_t vm_pgoff,
 893		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 894{
 895	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 896	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 897		pgoff_t vm_pglen;
 898		vm_pglen = vma_pages(vma);
 899		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 900			return 1;
 901	}
 902	return 0;
 903}
 904
 905/*
 906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 907 * whether that can be merged with its predecessor or its successor.
 908 * Or both (it neatly fills a hole).
 909 *
 910 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 911 * certain not to be mapped by the time vma_merge is called; but when
 912 * called for mprotect, it is certain to be already mapped (either at
 913 * an offset within prev, or at the start of next), and the flags of
 914 * this area are about to be changed to vm_flags - and the no-change
 915 * case has already been eliminated.
 916 *
 917 * The following mprotect cases have to be considered, where AAAA is
 918 * the area passed down from mprotect_fixup, never extending beyond one
 919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 920 *
 921 *     AAAA             AAAA                AAAA          AAAA
 922 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 923 *    cannot merge    might become    might become    might become
 924 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 925 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 926 *    mremap move:                                    PPPPNNNNNNNN 8
 927 *        AAAA
 928 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 929 *    might become    case 1 below    case 2 below    case 3 below
 930 *
 931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 
 
 
 
 
 
 
 
 
 
 
 933 */
 934struct vm_area_struct *vma_merge(struct mm_struct *mm,
 935			struct vm_area_struct *prev, unsigned long addr,
 936			unsigned long end, unsigned long vm_flags,
 937			struct anon_vma *anon_vma, struct file *file,
 938			pgoff_t pgoff, struct mempolicy *policy,
 939			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 940{
 941	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 942	struct vm_area_struct *area, *next;
 943	int err;
 944
 945	/*
 946	 * We later require that vma->vm_flags == vm_flags,
 947	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 948	 */
 949	if (vm_flags & VM_SPECIAL)
 950		return NULL;
 951
 952	if (prev)
 953		next = prev->vm_next;
 954	else
 955		next = mm->mmap;
 956	area = next;
 957	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 958		next = next->vm_next;
 959
 
 
 
 
 
 960	/*
 961	 * Can it merge with the predecessor?
 962	 */
 963	if (prev && prev->vm_end == addr &&
 964			mpol_equal(vma_policy(prev), policy) &&
 965			can_vma_merge_after(prev, vm_flags,
 966					    anon_vma, file, pgoff,
 967					    vm_userfaultfd_ctx)) {
 968		/*
 969		 * OK, it can.  Can we now merge in the successor as well?
 970		 */
 971		if (next && end == next->vm_start &&
 972				mpol_equal(policy, vma_policy(next)) &&
 973				can_vma_merge_before(next, vm_flags,
 974						     anon_vma, file,
 975						     pgoff+pglen,
 976						     vm_userfaultfd_ctx) &&
 977				is_mergeable_anon_vma(prev->anon_vma,
 978						      next->anon_vma, NULL)) {
 979							/* cases 1, 6 */
 980			err = vma_adjust(prev, prev->vm_start,
 981				next->vm_end, prev->vm_pgoff, NULL);
 
 982		} else					/* cases 2, 5, 7 */
 983			err = vma_adjust(prev, prev->vm_start,
 984				end, prev->vm_pgoff, NULL);
 985		if (err)
 986			return NULL;
 987		khugepaged_enter_vma_merge(prev, vm_flags);
 988		return prev;
 989	}
 990
 991	/*
 992	 * Can this new request be merged in front of next?
 993	 */
 994	if (next && end == next->vm_start &&
 995			mpol_equal(policy, vma_policy(next)) &&
 996			can_vma_merge_before(next, vm_flags,
 997					     anon_vma, file, pgoff+pglen,
 998					     vm_userfaultfd_ctx)) {
 999		if (prev && addr < prev->vm_end)	/* case 4 */
1000			err = vma_adjust(prev, prev->vm_start,
1001				addr, prev->vm_pgoff, NULL);
1002		else					/* cases 3, 8 */
1003			err = vma_adjust(area, addr, next->vm_end,
1004				next->vm_pgoff - pglen, NULL);
 
 
 
 
 
 
 
1005		if (err)
1006			return NULL;
1007		khugepaged_enter_vma_merge(area, vm_flags);
1008		return area;
1009	}
1010
1011	return NULL;
1012}
1013
1014/*
1015 * Rough compatbility check to quickly see if it's even worth looking
1016 * at sharing an anon_vma.
1017 *
1018 * They need to have the same vm_file, and the flags can only differ
1019 * in things that mprotect may change.
1020 *
1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022 * we can merge the two vma's. For example, we refuse to merge a vma if
1023 * there is a vm_ops->close() function, because that indicates that the
1024 * driver is doing some kind of reference counting. But that doesn't
1025 * really matter for the anon_vma sharing case.
1026 */
1027static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1028{
1029	return a->vm_end == b->vm_start &&
1030		mpol_equal(vma_policy(a), vma_policy(b)) &&
1031		a->vm_file == b->vm_file &&
1032		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1033		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1034}
1035
1036/*
1037 * Do some basic sanity checking to see if we can re-use the anon_vma
1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039 * the same as 'old', the other will be the new one that is trying
1040 * to share the anon_vma.
1041 *
1042 * NOTE! This runs with mm_sem held for reading, so it is possible that
1043 * the anon_vma of 'old' is concurrently in the process of being set up
1044 * by another page fault trying to merge _that_. But that's ok: if it
1045 * is being set up, that automatically means that it will be a singleton
1046 * acceptable for merging, so we can do all of this optimistically. But
1047 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1048 *
1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051 * is to return an anon_vma that is "complex" due to having gone through
1052 * a fork).
1053 *
1054 * We also make sure that the two vma's are compatible (adjacent,
1055 * and with the same memory policies). That's all stable, even with just
1056 * a read lock on the mm_sem.
1057 */
1058static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1059{
1060	if (anon_vma_compatible(a, b)) {
1061		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1062
1063		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1064			return anon_vma;
1065	}
1066	return NULL;
1067}
1068
1069/*
1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071 * neighbouring vmas for a suitable anon_vma, before it goes off
1072 * to allocate a new anon_vma.  It checks because a repetitive
1073 * sequence of mprotects and faults may otherwise lead to distinct
1074 * anon_vmas being allocated, preventing vma merge in subsequent
1075 * mprotect.
1076 */
1077struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1078{
1079	struct anon_vma *anon_vma;
1080	struct vm_area_struct *near;
1081
1082	near = vma->vm_next;
1083	if (!near)
1084		goto try_prev;
1085
1086	anon_vma = reusable_anon_vma(near, vma, near);
1087	if (anon_vma)
1088		return anon_vma;
1089try_prev:
1090	near = vma->vm_prev;
1091	if (!near)
1092		goto none;
1093
1094	anon_vma = reusable_anon_vma(near, near, vma);
1095	if (anon_vma)
1096		return anon_vma;
1097none:
1098	/*
1099	 * There's no absolute need to look only at touching neighbours:
1100	 * we could search further afield for "compatible" anon_vmas.
1101	 * But it would probably just be a waste of time searching,
1102	 * or lead to too many vmas hanging off the same anon_vma.
1103	 * We're trying to allow mprotect remerging later on,
1104	 * not trying to minimize memory used for anon_vmas.
1105	 */
1106	return NULL;
1107}
1108
1109/*
1110 * If a hint addr is less than mmap_min_addr change hint to be as
1111 * low as possible but still greater than mmap_min_addr
1112 */
1113static inline unsigned long round_hint_to_min(unsigned long hint)
1114{
1115	hint &= PAGE_MASK;
1116	if (((void *)hint != NULL) &&
1117	    (hint < mmap_min_addr))
1118		return PAGE_ALIGN(mmap_min_addr);
1119	return hint;
1120}
1121
1122static inline int mlock_future_check(struct mm_struct *mm,
1123				     unsigned long flags,
1124				     unsigned long len)
1125{
1126	unsigned long locked, lock_limit;
1127
1128	/*  mlock MCL_FUTURE? */
1129	if (flags & VM_LOCKED) {
1130		locked = len >> PAGE_SHIFT;
1131		locked += mm->locked_vm;
1132		lock_limit = rlimit(RLIMIT_MEMLOCK);
1133		lock_limit >>= PAGE_SHIFT;
1134		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1135			return -EAGAIN;
1136	}
1137	return 0;
1138}
1139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140/*
1141 * The caller must hold down_write(&current->mm->mmap_sem).
1142 */
1143unsigned long do_mmap(struct file *file, unsigned long addr,
1144			unsigned long len, unsigned long prot,
1145			unsigned long flags, vm_flags_t vm_flags,
1146			unsigned long pgoff, unsigned long *populate)
 
1147{
1148	struct mm_struct *mm = current->mm;
1149	int pkey = 0;
1150
1151	*populate = 0;
1152
1153	if (!len)
1154		return -EINVAL;
1155
1156	/*
1157	 * Does the application expect PROT_READ to imply PROT_EXEC?
1158	 *
1159	 * (the exception is when the underlying filesystem is noexec
1160	 *  mounted, in which case we dont add PROT_EXEC.)
1161	 */
1162	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1163		if (!(file && path_noexec(&file->f_path)))
1164			prot |= PROT_EXEC;
1165
 
 
 
 
1166	if (!(flags & MAP_FIXED))
1167		addr = round_hint_to_min(addr);
1168
1169	/* Careful about overflows.. */
1170	len = PAGE_ALIGN(len);
1171	if (!len)
1172		return -ENOMEM;
1173
1174	/* offset overflow? */
1175	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1176		return -EOVERFLOW;
1177
1178	/* Too many mappings? */
1179	if (mm->map_count > sysctl_max_map_count)
1180		return -ENOMEM;
1181
1182	/* Obtain the address to map to. we verify (or select) it and ensure
1183	 * that it represents a valid section of the address space.
1184	 */
1185	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1186	if (offset_in_page(addr))
1187		return addr;
1188
 
 
 
 
 
 
 
1189	if (prot == PROT_EXEC) {
1190		pkey = execute_only_pkey(mm);
1191		if (pkey < 0)
1192			pkey = 0;
1193	}
1194
1195	/* Do simple checking here so the lower-level routines won't have
1196	 * to. we assume access permissions have been handled by the open
1197	 * of the memory object, so we don't do any here.
1198	 */
1199	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1200			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1201
1202	if (flags & MAP_LOCKED)
1203		if (!can_do_mlock())
1204			return -EPERM;
1205
1206	if (mlock_future_check(mm, vm_flags, len))
1207		return -EAGAIN;
1208
1209	if (file) {
1210		struct inode *inode = file_inode(file);
 
 
 
 
 
 
1211
1212		switch (flags & MAP_TYPE) {
1213		case MAP_SHARED:
1214			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1215				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217			/*
1218			 * Make sure we don't allow writing to an append-only
1219			 * file..
1220			 */
1221			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1222				return -EACCES;
1223
1224			/*
1225			 * Make sure there are no mandatory locks on the file.
1226			 */
1227			if (locks_verify_locked(file))
1228				return -EAGAIN;
1229
1230			vm_flags |= VM_SHARED | VM_MAYSHARE;
1231			if (!(file->f_mode & FMODE_WRITE))
1232				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1233
1234			/* fall through */
1235		case MAP_PRIVATE:
1236			if (!(file->f_mode & FMODE_READ))
1237				return -EACCES;
1238			if (path_noexec(&file->f_path)) {
1239				if (vm_flags & VM_EXEC)
1240					return -EPERM;
1241				vm_flags &= ~VM_MAYEXEC;
1242			}
1243
1244			if (!file->f_op->mmap)
1245				return -ENODEV;
1246			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1247				return -EINVAL;
1248			break;
1249
1250		default:
1251			return -EINVAL;
1252		}
1253	} else {
1254		switch (flags & MAP_TYPE) {
1255		case MAP_SHARED:
1256			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1257				return -EINVAL;
1258			/*
1259			 * Ignore pgoff.
1260			 */
1261			pgoff = 0;
1262			vm_flags |= VM_SHARED | VM_MAYSHARE;
1263			break;
1264		case MAP_PRIVATE:
1265			/*
1266			 * Set pgoff according to addr for anon_vma.
1267			 */
1268			pgoff = addr >> PAGE_SHIFT;
1269			break;
1270		default:
1271			return -EINVAL;
1272		}
1273	}
1274
1275	/*
1276	 * Set 'VM_NORESERVE' if we should not account for the
1277	 * memory use of this mapping.
1278	 */
1279	if (flags & MAP_NORESERVE) {
1280		/* We honor MAP_NORESERVE if allowed to overcommit */
1281		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282			vm_flags |= VM_NORESERVE;
1283
1284		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285		if (file && is_file_hugepages(file))
1286			vm_flags |= VM_NORESERVE;
1287	}
1288
1289	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1290	if (!IS_ERR_VALUE(addr) &&
1291	    ((vm_flags & VM_LOCKED) ||
1292	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1293		*populate = len;
1294	return addr;
1295}
1296
1297SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1298		unsigned long, prot, unsigned long, flags,
1299		unsigned long, fd, unsigned long, pgoff)
1300{
1301	struct file *file = NULL;
1302	unsigned long retval;
1303
 
 
1304	if (!(flags & MAP_ANONYMOUS)) {
1305		audit_mmap_fd(fd, flags);
1306		file = fget(fd);
1307		if (!file)
1308			return -EBADF;
1309		if (is_file_hugepages(file))
1310			len = ALIGN(len, huge_page_size(hstate_file(file)));
1311		retval = -EINVAL;
1312		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1313			goto out_fput;
1314	} else if (flags & MAP_HUGETLB) {
1315		struct user_struct *user = NULL;
1316		struct hstate *hs;
1317
1318		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1319		if (!hs)
1320			return -EINVAL;
1321
1322		len = ALIGN(len, huge_page_size(hs));
1323		/*
1324		 * VM_NORESERVE is used because the reservations will be
1325		 * taken when vm_ops->mmap() is called
1326		 * A dummy user value is used because we are not locking
1327		 * memory so no accounting is necessary
1328		 */
1329		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1330				VM_NORESERVE,
1331				&user, HUGETLB_ANONHUGE_INODE,
1332				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1333		if (IS_ERR(file))
1334			return PTR_ERR(file);
1335	}
1336
1337	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1338
1339	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1340out_fput:
1341	if (file)
1342		fput(file);
1343	return retval;
1344}
1345
 
 
 
 
 
 
 
1346#ifdef __ARCH_WANT_SYS_OLD_MMAP
1347struct mmap_arg_struct {
1348	unsigned long addr;
1349	unsigned long len;
1350	unsigned long prot;
1351	unsigned long flags;
1352	unsigned long fd;
1353	unsigned long offset;
1354};
1355
1356SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1357{
1358	struct mmap_arg_struct a;
1359
1360	if (copy_from_user(&a, arg, sizeof(a)))
1361		return -EFAULT;
1362	if (offset_in_page(a.offset))
1363		return -EINVAL;
1364
1365	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1366			      a.offset >> PAGE_SHIFT);
1367}
1368#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1369
1370/*
1371 * Some shared mappigns will want the pages marked read-only
1372 * to track write events. If so, we'll downgrade vm_page_prot
1373 * to the private version (using protection_map[] without the
1374 * VM_SHARED bit).
1375 */
1376int vma_wants_writenotify(struct vm_area_struct *vma)
1377{
1378	vm_flags_t vm_flags = vma->vm_flags;
1379	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1380
1381	/* If it was private or non-writable, the write bit is already clear */
1382	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1383		return 0;
1384
1385	/* The backer wishes to know when pages are first written to? */
1386	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1387		return 1;
1388
1389	/* The open routine did something to the protections that pgprot_modify
1390	 * won't preserve? */
1391	if (pgprot_val(vma->vm_page_prot) !=
1392	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1393		return 0;
1394
1395	/* Do we need to track softdirty? */
1396	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1397		return 1;
1398
1399	/* Specialty mapping? */
1400	if (vm_flags & VM_PFNMAP)
1401		return 0;
1402
1403	/* Can the mapping track the dirty pages? */
1404	return vma->vm_file && vma->vm_file->f_mapping &&
1405		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1406}
1407
1408/*
1409 * We account for memory if it's a private writeable mapping,
1410 * not hugepages and VM_NORESERVE wasn't set.
1411 */
1412static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1413{
1414	/*
1415	 * hugetlb has its own accounting separate from the core VM
1416	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1417	 */
1418	if (file && is_file_hugepages(file))
1419		return 0;
1420
1421	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1422}
1423
1424unsigned long mmap_region(struct file *file, unsigned long addr,
1425		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
 
1426{
1427	struct mm_struct *mm = current->mm;
1428	struct vm_area_struct *vma, *prev;
1429	int error;
1430	struct rb_node **rb_link, *rb_parent;
1431	unsigned long charged = 0;
1432
1433	/* Check against address space limit. */
1434	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1435		unsigned long nr_pages;
1436
1437		/*
1438		 * MAP_FIXED may remove pages of mappings that intersects with
1439		 * requested mapping. Account for the pages it would unmap.
1440		 */
1441		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1442
1443		if (!may_expand_vm(mm, vm_flags,
1444					(len >> PAGE_SHIFT) - nr_pages))
1445			return -ENOMEM;
1446	}
1447
1448	/* Clear old maps */
1449	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1450			      &rb_parent)) {
1451		if (do_munmap(mm, addr, len))
1452			return -ENOMEM;
1453	}
1454
1455	/*
1456	 * Private writable mapping: check memory availability
1457	 */
1458	if (accountable_mapping(file, vm_flags)) {
1459		charged = len >> PAGE_SHIFT;
1460		if (security_vm_enough_memory_mm(mm, charged))
1461			return -ENOMEM;
1462		vm_flags |= VM_ACCOUNT;
1463	}
1464
1465	/*
1466	 * Can we just expand an old mapping?
1467	 */
1468	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1469			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1470	if (vma)
1471		goto out;
1472
1473	/*
1474	 * Determine the object being mapped and call the appropriate
1475	 * specific mapper. the address has already been validated, but
1476	 * not unmapped, but the maps are removed from the list.
1477	 */
1478	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1479	if (!vma) {
1480		error = -ENOMEM;
1481		goto unacct_error;
1482	}
1483
1484	vma->vm_mm = mm;
1485	vma->vm_start = addr;
1486	vma->vm_end = addr + len;
1487	vma->vm_flags = vm_flags;
1488	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1489	vma->vm_pgoff = pgoff;
1490	INIT_LIST_HEAD(&vma->anon_vma_chain);
1491
1492	if (file) {
1493		if (vm_flags & VM_DENYWRITE) {
1494			error = deny_write_access(file);
1495			if (error)
1496				goto free_vma;
1497		}
1498		if (vm_flags & VM_SHARED) {
1499			error = mapping_map_writable(file->f_mapping);
1500			if (error)
1501				goto allow_write_and_free_vma;
1502		}
1503
1504		/* ->mmap() can change vma->vm_file, but must guarantee that
1505		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506		 * and map writably if VM_SHARED is set. This usually means the
1507		 * new file must not have been exposed to user-space, yet.
1508		 */
1509		vma->vm_file = get_file(file);
1510		error = file->f_op->mmap(file, vma);
1511		if (error)
1512			goto unmap_and_free_vma;
1513
1514		/* Can addr have changed??
1515		 *
1516		 * Answer: Yes, several device drivers can do it in their
1517		 *         f_op->mmap method. -DaveM
1518		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519		 *      be updated for vma_link()
1520		 */
1521		WARN_ON_ONCE(addr != vma->vm_start);
1522
1523		addr = vma->vm_start;
1524		vm_flags = vma->vm_flags;
1525	} else if (vm_flags & VM_SHARED) {
1526		error = shmem_zero_setup(vma);
1527		if (error)
1528			goto free_vma;
 
 
1529	}
1530
1531	vma_link(mm, vma, prev, rb_link, rb_parent);
1532	/* Once vma denies write, undo our temporary denial count */
1533	if (file) {
1534		if (vm_flags & VM_SHARED)
1535			mapping_unmap_writable(file->f_mapping);
1536		if (vm_flags & VM_DENYWRITE)
1537			allow_write_access(file);
1538	}
1539	file = vma->vm_file;
1540out:
1541	perf_event_mmap(vma);
1542
1543	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1544	if (vm_flags & VM_LOCKED) {
1545		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1546					vma == get_gate_vma(current->mm)))
 
 
 
1547			mm->locked_vm += (len >> PAGE_SHIFT);
1548		else
1549			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1550	}
1551
1552	if (file)
1553		uprobe_mmap(vma);
1554
1555	/*
1556	 * New (or expanded) vma always get soft dirty status.
1557	 * Otherwise user-space soft-dirty page tracker won't
1558	 * be able to distinguish situation when vma area unmapped,
1559	 * then new mapped in-place (which must be aimed as
1560	 * a completely new data area).
1561	 */
1562	vma->vm_flags |= VM_SOFTDIRTY;
1563
1564	vma_set_page_prot(vma);
1565
1566	return addr;
1567
1568unmap_and_free_vma:
1569	vma->vm_file = NULL;
1570	fput(file);
1571
1572	/* Undo any partial mapping done by a device driver. */
1573	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1574	charged = 0;
1575	if (vm_flags & VM_SHARED)
1576		mapping_unmap_writable(file->f_mapping);
1577allow_write_and_free_vma:
1578	if (vm_flags & VM_DENYWRITE)
1579		allow_write_access(file);
1580free_vma:
1581	kmem_cache_free(vm_area_cachep, vma);
1582unacct_error:
1583	if (charged)
1584		vm_unacct_memory(charged);
1585	return error;
1586}
1587
1588unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1589{
1590	/*
1591	 * We implement the search by looking for an rbtree node that
1592	 * immediately follows a suitable gap. That is,
1593	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1595	 * - gap_end - gap_start >= length
1596	 */
1597
1598	struct mm_struct *mm = current->mm;
1599	struct vm_area_struct *vma;
1600	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1601
1602	/* Adjust search length to account for worst case alignment overhead */
1603	length = info->length + info->align_mask;
1604	if (length < info->length)
1605		return -ENOMEM;
1606
1607	/* Adjust search limits by the desired length */
1608	if (info->high_limit < length)
1609		return -ENOMEM;
1610	high_limit = info->high_limit - length;
1611
1612	if (info->low_limit > high_limit)
1613		return -ENOMEM;
1614	low_limit = info->low_limit + length;
1615
1616	/* Check if rbtree root looks promising */
1617	if (RB_EMPTY_ROOT(&mm->mm_rb))
1618		goto check_highest;
1619	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1620	if (vma->rb_subtree_gap < length)
1621		goto check_highest;
1622
1623	while (true) {
1624		/* Visit left subtree if it looks promising */
1625		gap_end = vma->vm_start;
1626		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1627			struct vm_area_struct *left =
1628				rb_entry(vma->vm_rb.rb_left,
1629					 struct vm_area_struct, vm_rb);
1630			if (left->rb_subtree_gap >= length) {
1631				vma = left;
1632				continue;
1633			}
1634		}
1635
1636		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1637check_current:
1638		/* Check if current node has a suitable gap */
1639		if (gap_start > high_limit)
1640			return -ENOMEM;
1641		if (gap_end >= low_limit && gap_end - gap_start >= length)
 
1642			goto found;
1643
1644		/* Visit right subtree if it looks promising */
1645		if (vma->vm_rb.rb_right) {
1646			struct vm_area_struct *right =
1647				rb_entry(vma->vm_rb.rb_right,
1648					 struct vm_area_struct, vm_rb);
1649			if (right->rb_subtree_gap >= length) {
1650				vma = right;
1651				continue;
1652			}
1653		}
1654
1655		/* Go back up the rbtree to find next candidate node */
1656		while (true) {
1657			struct rb_node *prev = &vma->vm_rb;
1658			if (!rb_parent(prev))
1659				goto check_highest;
1660			vma = rb_entry(rb_parent(prev),
1661				       struct vm_area_struct, vm_rb);
1662			if (prev == vma->vm_rb.rb_left) {
1663				gap_start = vma->vm_prev->vm_end;
1664				gap_end = vma->vm_start;
1665				goto check_current;
1666			}
1667		}
1668	}
1669
1670check_highest:
1671	/* Check highest gap, which does not precede any rbtree node */
1672	gap_start = mm->highest_vm_end;
1673	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1674	if (gap_start > high_limit)
1675		return -ENOMEM;
1676
1677found:
1678	/* We found a suitable gap. Clip it with the original low_limit. */
1679	if (gap_start < info->low_limit)
1680		gap_start = info->low_limit;
1681
1682	/* Adjust gap address to the desired alignment */
1683	gap_start += (info->align_offset - gap_start) & info->align_mask;
1684
1685	VM_BUG_ON(gap_start + info->length > info->high_limit);
1686	VM_BUG_ON(gap_start + info->length > gap_end);
1687	return gap_start;
1688}
1689
1690unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1691{
1692	struct mm_struct *mm = current->mm;
1693	struct vm_area_struct *vma;
1694	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695
1696	/* Adjust search length to account for worst case alignment overhead */
1697	length = info->length + info->align_mask;
1698	if (length < info->length)
1699		return -ENOMEM;
1700
1701	/*
1702	 * Adjust search limits by the desired length.
1703	 * See implementation comment at top of unmapped_area().
1704	 */
1705	gap_end = info->high_limit;
1706	if (gap_end < length)
1707		return -ENOMEM;
1708	high_limit = gap_end - length;
1709
1710	if (info->low_limit > high_limit)
1711		return -ENOMEM;
1712	low_limit = info->low_limit + length;
1713
1714	/* Check highest gap, which does not precede any rbtree node */
1715	gap_start = mm->highest_vm_end;
1716	if (gap_start <= high_limit)
1717		goto found_highest;
1718
1719	/* Check if rbtree root looks promising */
1720	if (RB_EMPTY_ROOT(&mm->mm_rb))
1721		return -ENOMEM;
1722	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1723	if (vma->rb_subtree_gap < length)
1724		return -ENOMEM;
1725
1726	while (true) {
1727		/* Visit right subtree if it looks promising */
1728		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1729		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1730			struct vm_area_struct *right =
1731				rb_entry(vma->vm_rb.rb_right,
1732					 struct vm_area_struct, vm_rb);
1733			if (right->rb_subtree_gap >= length) {
1734				vma = right;
1735				continue;
1736			}
1737		}
1738
1739check_current:
1740		/* Check if current node has a suitable gap */
1741		gap_end = vma->vm_start;
1742		if (gap_end < low_limit)
1743			return -ENOMEM;
1744		if (gap_start <= high_limit && gap_end - gap_start >= length)
 
1745			goto found;
1746
1747		/* Visit left subtree if it looks promising */
1748		if (vma->vm_rb.rb_left) {
1749			struct vm_area_struct *left =
1750				rb_entry(vma->vm_rb.rb_left,
1751					 struct vm_area_struct, vm_rb);
1752			if (left->rb_subtree_gap >= length) {
1753				vma = left;
1754				continue;
1755			}
1756		}
1757
1758		/* Go back up the rbtree to find next candidate node */
1759		while (true) {
1760			struct rb_node *prev = &vma->vm_rb;
1761			if (!rb_parent(prev))
1762				return -ENOMEM;
1763			vma = rb_entry(rb_parent(prev),
1764				       struct vm_area_struct, vm_rb);
1765			if (prev == vma->vm_rb.rb_right) {
1766				gap_start = vma->vm_prev ?
1767					vma->vm_prev->vm_end : 0;
1768				goto check_current;
1769			}
1770		}
1771	}
1772
1773found:
1774	/* We found a suitable gap. Clip it with the original high_limit. */
1775	if (gap_end > info->high_limit)
1776		gap_end = info->high_limit;
1777
1778found_highest:
1779	/* Compute highest gap address at the desired alignment */
1780	gap_end -= info->length;
1781	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1782
1783	VM_BUG_ON(gap_end < info->low_limit);
1784	VM_BUG_ON(gap_end < gap_start);
1785	return gap_end;
1786}
1787
 
 
 
 
 
 
 
 
 
1788/* Get an address range which is currently unmapped.
1789 * For shmat() with addr=0.
1790 *
1791 * Ugly calling convention alert:
1792 * Return value with the low bits set means error value,
1793 * ie
1794 *	if (ret & ~PAGE_MASK)
1795 *		error = ret;
1796 *
1797 * This function "knows" that -ENOMEM has the bits set.
1798 */
1799#ifndef HAVE_ARCH_UNMAPPED_AREA
1800unsigned long
1801arch_get_unmapped_area(struct file *filp, unsigned long addr,
1802		unsigned long len, unsigned long pgoff, unsigned long flags)
1803{
1804	struct mm_struct *mm = current->mm;
1805	struct vm_area_struct *vma;
1806	struct vm_unmapped_area_info info;
 
1807
1808	if (len > TASK_SIZE - mmap_min_addr)
1809		return -ENOMEM;
1810
1811	if (flags & MAP_FIXED)
1812		return addr;
1813
1814	if (addr) {
1815		addr = PAGE_ALIGN(addr);
1816		vma = find_vma(mm, addr);
1817		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1818		    (!vma || addr + len <= vma->vm_start))
 
1819			return addr;
1820	}
1821
1822	info.flags = 0;
1823	info.length = len;
1824	info.low_limit = mm->mmap_base;
1825	info.high_limit = TASK_SIZE;
1826	info.align_mask = 0;
1827	return vm_unmapped_area(&info);
1828}
1829#endif
1830
1831/*
1832 * This mmap-allocator allocates new areas top-down from below the
1833 * stack's low limit (the base):
1834 */
1835#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836unsigned long
1837arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838			  const unsigned long len, const unsigned long pgoff,
1839			  const unsigned long flags)
1840{
1841	struct vm_area_struct *vma;
1842	struct mm_struct *mm = current->mm;
1843	unsigned long addr = addr0;
1844	struct vm_unmapped_area_info info;
 
1845
1846	/* requested length too big for entire address space */
1847	if (len > TASK_SIZE - mmap_min_addr)
1848		return -ENOMEM;
1849
1850	if (flags & MAP_FIXED)
1851		return addr;
1852
1853	/* requesting a specific address */
1854	if (addr) {
1855		addr = PAGE_ALIGN(addr);
1856		vma = find_vma(mm, addr);
1857		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1858				(!vma || addr + len <= vma->vm_start))
 
1859			return addr;
1860	}
1861
1862	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863	info.length = len;
1864	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1865	info.high_limit = mm->mmap_base;
1866	info.align_mask = 0;
1867	addr = vm_unmapped_area(&info);
1868
1869	/*
1870	 * A failed mmap() very likely causes application failure,
1871	 * so fall back to the bottom-up function here. This scenario
1872	 * can happen with large stack limits and large mmap()
1873	 * allocations.
1874	 */
1875	if (offset_in_page(addr)) {
1876		VM_BUG_ON(addr != -ENOMEM);
1877		info.flags = 0;
1878		info.low_limit = TASK_UNMAPPED_BASE;
1879		info.high_limit = TASK_SIZE;
1880		addr = vm_unmapped_area(&info);
1881	}
1882
1883	return addr;
1884}
1885#endif
1886
1887unsigned long
1888get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1889		unsigned long pgoff, unsigned long flags)
1890{
1891	unsigned long (*get_area)(struct file *, unsigned long,
1892				  unsigned long, unsigned long, unsigned long);
1893
1894	unsigned long error = arch_mmap_check(addr, len, flags);
1895	if (error)
1896		return error;
1897
1898	/* Careful about overflows.. */
1899	if (len > TASK_SIZE)
1900		return -ENOMEM;
1901
1902	get_area = current->mm->get_unmapped_area;
1903	if (file && file->f_op->get_unmapped_area)
1904		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
1905	addr = get_area(file, addr, len, pgoff, flags);
1906	if (IS_ERR_VALUE(addr))
1907		return addr;
1908
1909	if (addr > TASK_SIZE - len)
1910		return -ENOMEM;
1911	if (offset_in_page(addr))
1912		return -EINVAL;
1913
1914	addr = arch_rebalance_pgtables(addr, len);
1915	error = security_mmap_addr(addr);
1916	return error ? error : addr;
1917}
1918
1919EXPORT_SYMBOL(get_unmapped_area);
1920
1921/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1922struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1923{
1924	struct rb_node *rb_node;
1925	struct vm_area_struct *vma;
1926
1927	/* Check the cache first. */
1928	vma = vmacache_find(mm, addr);
1929	if (likely(vma))
1930		return vma;
1931
1932	rb_node = mm->mm_rb.rb_node;
1933
1934	while (rb_node) {
1935		struct vm_area_struct *tmp;
1936
1937		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1938
1939		if (tmp->vm_end > addr) {
1940			vma = tmp;
1941			if (tmp->vm_start <= addr)
1942				break;
1943			rb_node = rb_node->rb_left;
1944		} else
1945			rb_node = rb_node->rb_right;
1946	}
1947
1948	if (vma)
1949		vmacache_update(addr, vma);
1950	return vma;
1951}
1952
1953EXPORT_SYMBOL(find_vma);
1954
1955/*
1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1957 */
1958struct vm_area_struct *
1959find_vma_prev(struct mm_struct *mm, unsigned long addr,
1960			struct vm_area_struct **pprev)
1961{
1962	struct vm_area_struct *vma;
1963
1964	vma = find_vma(mm, addr);
1965	if (vma) {
1966		*pprev = vma->vm_prev;
1967	} else {
1968		struct rb_node *rb_node = mm->mm_rb.rb_node;
1969		*pprev = NULL;
1970		while (rb_node) {
1971			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1972			rb_node = rb_node->rb_right;
1973		}
1974	}
1975	return vma;
1976}
1977
1978/*
1979 * Verify that the stack growth is acceptable and
1980 * update accounting. This is shared with both the
1981 * grow-up and grow-down cases.
1982 */
1983static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
1984{
1985	struct mm_struct *mm = vma->vm_mm;
1986	struct rlimit *rlim = current->signal->rlim;
1987	unsigned long new_start, actual_size;
1988
1989	/* address space limit tests */
1990	if (!may_expand_vm(mm, vma->vm_flags, grow))
1991		return -ENOMEM;
1992
1993	/* Stack limit test */
1994	actual_size = size;
1995	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1996		actual_size -= PAGE_SIZE;
1997	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1998		return -ENOMEM;
1999
2000	/* mlock limit tests */
2001	if (vma->vm_flags & VM_LOCKED) {
2002		unsigned long locked;
2003		unsigned long limit;
2004		locked = mm->locked_vm + grow;
2005		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2006		limit >>= PAGE_SHIFT;
2007		if (locked > limit && !capable(CAP_IPC_LOCK))
2008			return -ENOMEM;
2009	}
2010
2011	/* Check to ensure the stack will not grow into a hugetlb-only region */
2012	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2013			vma->vm_end - size;
2014	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2015		return -EFAULT;
2016
2017	/*
2018	 * Overcommit..  This must be the final test, as it will
2019	 * update security statistics.
2020	 */
2021	if (security_vm_enough_memory_mm(mm, grow))
2022		return -ENOMEM;
2023
2024	return 0;
2025}
2026
2027#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2028/*
2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2031 */
2032int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
 
 
2035	int error = 0;
2036
2037	if (!(vma->vm_flags & VM_GROWSUP))
2038		return -EFAULT;
2039
2040	/* Guard against wrapping around to address 0. */
2041	if (address < PAGE_ALIGN(address+4))
2042		address = PAGE_ALIGN(address+4);
2043	else
2044		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	/* We must make sure the anon_vma is allocated. */
2047	if (unlikely(anon_vma_prepare(vma)))
2048		return -ENOMEM;
2049
2050	/*
2051	 * vma->vm_start/vm_end cannot change under us because the caller
2052	 * is required to hold the mmap_sem in read mode.  We need the
2053	 * anon_vma lock to serialize against concurrent expand_stacks.
2054	 */
2055	anon_vma_lock_write(vma->anon_vma);
2056
2057	/* Somebody else might have raced and expanded it already */
2058	if (address > vma->vm_end) {
2059		unsigned long size, grow;
2060
2061		size = address - vma->vm_start;
2062		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063
2064		error = -ENOMEM;
2065		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066			error = acct_stack_growth(vma, size, grow);
2067			if (!error) {
2068				/*
2069				 * vma_gap_update() doesn't support concurrent
2070				 * updates, but we only hold a shared mmap_sem
2071				 * lock here, so we need to protect against
2072				 * concurrent vma expansions.
2073				 * anon_vma_lock_write() doesn't help here, as
2074				 * we don't guarantee that all growable vmas
2075				 * in a mm share the same root anon vma.
2076				 * So, we reuse mm->page_table_lock to guard
2077				 * against concurrent vma expansions.
2078				 */
2079				spin_lock(&mm->page_table_lock);
2080				if (vma->vm_flags & VM_LOCKED)
2081					mm->locked_vm += grow;
2082				vm_stat_account(mm, vma->vm_flags, grow);
2083				anon_vma_interval_tree_pre_update_vma(vma);
2084				vma->vm_end = address;
2085				anon_vma_interval_tree_post_update_vma(vma);
2086				if (vma->vm_next)
2087					vma_gap_update(vma->vm_next);
2088				else
2089					mm->highest_vm_end = address;
2090				spin_unlock(&mm->page_table_lock);
2091
2092				perf_event_mmap(vma);
2093			}
2094		}
2095	}
2096	anon_vma_unlock_write(vma->anon_vma);
2097	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2098	validate_mm(mm);
2099	return error;
2100}
2101#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2102
2103/*
2104 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2105 */
2106int expand_downwards(struct vm_area_struct *vma,
2107				   unsigned long address)
2108{
2109	struct mm_struct *mm = vma->vm_mm;
2110	int error;
 
2111
2112	address &= PAGE_MASK;
2113	error = security_mmap_addr(address);
2114	if (error)
2115		return error;
 
 
 
 
 
 
 
 
2116
2117	/* We must make sure the anon_vma is allocated. */
2118	if (unlikely(anon_vma_prepare(vma)))
2119		return -ENOMEM;
2120
2121	/*
2122	 * vma->vm_start/vm_end cannot change under us because the caller
2123	 * is required to hold the mmap_sem in read mode.  We need the
2124	 * anon_vma lock to serialize against concurrent expand_stacks.
2125	 */
2126	anon_vma_lock_write(vma->anon_vma);
2127
2128	/* Somebody else might have raced and expanded it already */
2129	if (address < vma->vm_start) {
2130		unsigned long size, grow;
2131
2132		size = vma->vm_end - address;
2133		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2134
2135		error = -ENOMEM;
2136		if (grow <= vma->vm_pgoff) {
2137			error = acct_stack_growth(vma, size, grow);
2138			if (!error) {
2139				/*
2140				 * vma_gap_update() doesn't support concurrent
2141				 * updates, but we only hold a shared mmap_sem
2142				 * lock here, so we need to protect against
2143				 * concurrent vma expansions.
2144				 * anon_vma_lock_write() doesn't help here, as
2145				 * we don't guarantee that all growable vmas
2146				 * in a mm share the same root anon vma.
2147				 * So, we reuse mm->page_table_lock to guard
2148				 * against concurrent vma expansions.
2149				 */
2150				spin_lock(&mm->page_table_lock);
2151				if (vma->vm_flags & VM_LOCKED)
2152					mm->locked_vm += grow;
2153				vm_stat_account(mm, vma->vm_flags, grow);
2154				anon_vma_interval_tree_pre_update_vma(vma);
2155				vma->vm_start = address;
2156				vma->vm_pgoff -= grow;
2157				anon_vma_interval_tree_post_update_vma(vma);
2158				vma_gap_update(vma);
2159				spin_unlock(&mm->page_table_lock);
2160
2161				perf_event_mmap(vma);
2162			}
2163		}
2164	}
2165	anon_vma_unlock_write(vma->anon_vma);
2166	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2167	validate_mm(mm);
2168	return error;
2169}
2170
2171/*
2172 * Note how expand_stack() refuses to expand the stack all the way to
2173 * abut the next virtual mapping, *unless* that mapping itself is also
2174 * a stack mapping. We want to leave room for a guard page, after all
2175 * (the guard page itself is not added here, that is done by the
2176 * actual page faulting logic)
2177 *
2178 * This matches the behavior of the guard page logic (see mm/memory.c:
2179 * check_stack_guard_page()), which only allows the guard page to be
2180 * removed under these circumstances.
2181 */
 
 
 
 
 
2182#ifdef CONFIG_STACK_GROWSUP
2183int expand_stack(struct vm_area_struct *vma, unsigned long address)
2184{
2185	struct vm_area_struct *next;
2186
2187	address &= PAGE_MASK;
2188	next = vma->vm_next;
2189	if (next && next->vm_start == address + PAGE_SIZE) {
2190		if (!(next->vm_flags & VM_GROWSUP))
2191			return -ENOMEM;
2192	}
2193	return expand_upwards(vma, address);
2194}
2195
2196struct vm_area_struct *
2197find_extend_vma(struct mm_struct *mm, unsigned long addr)
2198{
2199	struct vm_area_struct *vma, *prev;
2200
2201	addr &= PAGE_MASK;
2202	vma = find_vma_prev(mm, addr, &prev);
2203	if (vma && (vma->vm_start <= addr))
2204		return vma;
2205	if (!prev || expand_stack(prev, addr))
 
2206		return NULL;
2207	if (prev->vm_flags & VM_LOCKED)
2208		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2209	return prev;
2210}
2211#else
2212int expand_stack(struct vm_area_struct *vma, unsigned long address)
2213{
2214	struct vm_area_struct *prev;
2215
2216	address &= PAGE_MASK;
2217	prev = vma->vm_prev;
2218	if (prev && prev->vm_end == address) {
2219		if (!(prev->vm_flags & VM_GROWSDOWN))
2220			return -ENOMEM;
2221	}
2222	return expand_downwards(vma, address);
2223}
2224
2225struct vm_area_struct *
2226find_extend_vma(struct mm_struct *mm, unsigned long addr)
2227{
2228	struct vm_area_struct *vma;
2229	unsigned long start;
2230
2231	addr &= PAGE_MASK;
2232	vma = find_vma(mm, addr);
2233	if (!vma)
2234		return NULL;
2235	if (vma->vm_start <= addr)
2236		return vma;
2237	if (!(vma->vm_flags & VM_GROWSDOWN))
2238		return NULL;
 
 
 
2239	start = vma->vm_start;
2240	if (expand_stack(vma, addr))
2241		return NULL;
2242	if (vma->vm_flags & VM_LOCKED)
2243		populate_vma_page_range(vma, addr, start, NULL);
2244	return vma;
2245}
2246#endif
2247
2248EXPORT_SYMBOL_GPL(find_extend_vma);
2249
2250/*
2251 * Ok - we have the memory areas we should free on the vma list,
2252 * so release them, and do the vma updates.
2253 *
2254 * Called with the mm semaphore held.
2255 */
2256static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2257{
2258	unsigned long nr_accounted = 0;
2259
2260	/* Update high watermark before we lower total_vm */
2261	update_hiwater_vm(mm);
2262	do {
2263		long nrpages = vma_pages(vma);
2264
2265		if (vma->vm_flags & VM_ACCOUNT)
2266			nr_accounted += nrpages;
2267		vm_stat_account(mm, vma->vm_flags, -nrpages);
2268		vma = remove_vma(vma);
2269	} while (vma);
2270	vm_unacct_memory(nr_accounted);
2271	validate_mm(mm);
2272}
2273
2274/*
2275 * Get rid of page table information in the indicated region.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279static void unmap_region(struct mm_struct *mm,
2280		struct vm_area_struct *vma, struct vm_area_struct *prev,
2281		unsigned long start, unsigned long end)
2282{
2283	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2284	struct mmu_gather tlb;
2285
2286	lru_add_drain();
2287	tlb_gather_mmu(&tlb, mm, start, end);
2288	update_hiwater_rss(mm);
2289	unmap_vmas(&tlb, vma, start, end);
2290	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2291				 next ? next->vm_start : USER_PGTABLES_CEILING);
2292	tlb_finish_mmu(&tlb, start, end);
2293}
2294
2295/*
2296 * Create a list of vma's touched by the unmap, removing them from the mm's
2297 * vma list as we go..
2298 */
2299static void
2300detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2301	struct vm_area_struct *prev, unsigned long end)
2302{
2303	struct vm_area_struct **insertion_point;
2304	struct vm_area_struct *tail_vma = NULL;
2305
2306	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2307	vma->vm_prev = NULL;
2308	do {
2309		vma_rb_erase(vma, &mm->mm_rb);
2310		mm->map_count--;
2311		tail_vma = vma;
2312		vma = vma->vm_next;
2313	} while (vma && vma->vm_start < end);
2314	*insertion_point = vma;
2315	if (vma) {
2316		vma->vm_prev = prev;
2317		vma_gap_update(vma);
2318	} else
2319		mm->highest_vm_end = prev ? prev->vm_end : 0;
2320	tail_vma->vm_next = NULL;
2321
2322	/* Kill the cache */
2323	vmacache_invalidate(mm);
2324}
2325
2326/*
2327 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2328 * munmap path where it doesn't make sense to fail.
2329 */
2330static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2331	      unsigned long addr, int new_below)
2332{
2333	struct vm_area_struct *new;
2334	int err;
2335
2336	if (is_vm_hugetlb_page(vma) && (addr &
2337					~(huge_page_mask(hstate_vma(vma)))))
2338		return -EINVAL;
 
 
2339
2340	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2341	if (!new)
2342		return -ENOMEM;
2343
2344	/* most fields are the same, copy all, and then fixup */
2345	*new = *vma;
2346
2347	INIT_LIST_HEAD(&new->anon_vma_chain);
2348
2349	if (new_below)
2350		new->vm_end = addr;
2351	else {
2352		new->vm_start = addr;
2353		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354	}
2355
2356	err = vma_dup_policy(vma, new);
2357	if (err)
2358		goto out_free_vma;
2359
2360	err = anon_vma_clone(new, vma);
2361	if (err)
2362		goto out_free_mpol;
2363
2364	if (new->vm_file)
2365		get_file(new->vm_file);
2366
2367	if (new->vm_ops && new->vm_ops->open)
2368		new->vm_ops->open(new);
2369
2370	if (new_below)
2371		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372			((addr - new->vm_start) >> PAGE_SHIFT), new);
2373	else
2374		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375
2376	/* Success. */
2377	if (!err)
2378		return 0;
2379
2380	/* Clean everything up if vma_adjust failed. */
2381	if (new->vm_ops && new->vm_ops->close)
2382		new->vm_ops->close(new);
2383	if (new->vm_file)
2384		fput(new->vm_file);
2385	unlink_anon_vmas(new);
2386 out_free_mpol:
2387	mpol_put(vma_policy(new));
2388 out_free_vma:
2389	kmem_cache_free(vm_area_cachep, new);
2390	return err;
2391}
2392
2393/*
2394 * Split a vma into two pieces at address 'addr', a new vma is allocated
2395 * either for the first part or the tail.
2396 */
2397int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2398	      unsigned long addr, int new_below)
2399{
2400	if (mm->map_count >= sysctl_max_map_count)
2401		return -ENOMEM;
2402
2403	return __split_vma(mm, vma, addr, new_below);
2404}
2405
2406/* Munmap is split into 2 main parts -- this part which finds
2407 * what needs doing, and the areas themselves, which do the
2408 * work.  This now handles partial unmappings.
2409 * Jeremy Fitzhardinge <jeremy@goop.org>
2410 */
2411int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
2412{
2413	unsigned long end;
2414	struct vm_area_struct *vma, *prev, *last;
2415
2416	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2417		return -EINVAL;
2418
2419	len = PAGE_ALIGN(len);
 
2420	if (len == 0)
2421		return -EINVAL;
2422
 
 
 
 
 
 
 
2423	/* Find the first overlapping VMA */
2424	vma = find_vma(mm, start);
2425	if (!vma)
2426		return 0;
2427	prev = vma->vm_prev;
2428	/* we have  start < vma->vm_end  */
2429
2430	/* if it doesn't overlap, we have nothing.. */
2431	end = start + len;
2432	if (vma->vm_start >= end)
2433		return 0;
2434
2435	/*
2436	 * If we need to split any vma, do it now to save pain later.
2437	 *
2438	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439	 * unmapped vm_area_struct will remain in use: so lower split_vma
2440	 * places tmp vma above, and higher split_vma places tmp vma below.
2441	 */
2442	if (start > vma->vm_start) {
2443		int error;
2444
2445		/*
2446		 * Make sure that map_count on return from munmap() will
2447		 * not exceed its limit; but let map_count go just above
2448		 * its limit temporarily, to help free resources as expected.
2449		 */
2450		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451			return -ENOMEM;
2452
2453		error = __split_vma(mm, vma, start, 0);
2454		if (error)
2455			return error;
2456		prev = vma;
2457	}
2458
2459	/* Does it split the last one? */
2460	last = find_vma(mm, end);
2461	if (last && end > last->vm_start) {
2462		int error = __split_vma(mm, last, end, 1);
2463		if (error)
2464			return error;
2465	}
2466	vma = prev ? prev->vm_next : mm->mmap;
2467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468	/*
2469	 * unlock any mlock()ed ranges before detaching vmas
2470	 */
2471	if (mm->locked_vm) {
2472		struct vm_area_struct *tmp = vma;
2473		while (tmp && tmp->vm_start < end) {
2474			if (tmp->vm_flags & VM_LOCKED) {
2475				mm->locked_vm -= vma_pages(tmp);
2476				munlock_vma_pages_all(tmp);
2477			}
 
2478			tmp = tmp->vm_next;
2479		}
2480	}
2481
2482	/*
2483	 * Remove the vma's, and unmap the actual pages
2484	 */
2485	detach_vmas_to_be_unmapped(mm, vma, prev, end);
 
 
 
 
2486	unmap_region(mm, vma, prev, start, end);
2487
2488	arch_unmap(mm, vma, start, end);
2489
2490	/* Fix up all other VM information */
2491	remove_vma_list(mm, vma);
2492
2493	return 0;
 
 
 
 
 
 
2494}
2495
2496int vm_munmap(unsigned long start, size_t len)
2497{
2498	int ret;
2499	struct mm_struct *mm = current->mm;
 
2500
2501	down_write(&mm->mmap_sem);
2502	ret = do_munmap(mm, start, len);
2503	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
2504	return ret;
2505}
 
 
 
 
 
2506EXPORT_SYMBOL(vm_munmap);
2507
2508SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2509{
 
2510	profile_munmap(addr);
2511	return vm_munmap(addr, len);
2512}
2513
2514
2515/*
2516 * Emulation of deprecated remap_file_pages() syscall.
2517 */
2518SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2519		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2520{
2521
2522	struct mm_struct *mm = current->mm;
2523	struct vm_area_struct *vma;
2524	unsigned long populate = 0;
2525	unsigned long ret = -EINVAL;
2526	struct file *file;
2527
2528	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529		     current->comm, current->pid);
2530
2531	if (prot)
2532		return ret;
2533	start = start & PAGE_MASK;
2534	size = size & PAGE_MASK;
2535
2536	if (start + size <= start)
2537		return ret;
2538
2539	/* Does pgoff wrap? */
2540	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2541		return ret;
2542
2543	down_write(&mm->mmap_sem);
 
 
2544	vma = find_vma(mm, start);
2545
2546	if (!vma || !(vma->vm_flags & VM_SHARED))
2547		goto out;
2548
2549	if (start < vma->vm_start)
2550		goto out;
2551
2552	if (start + size > vma->vm_end) {
2553		struct vm_area_struct *next;
2554
2555		for (next = vma->vm_next; next; next = next->vm_next) {
2556			/* hole between vmas ? */
2557			if (next->vm_start != next->vm_prev->vm_end)
2558				goto out;
2559
2560			if (next->vm_file != vma->vm_file)
2561				goto out;
2562
2563			if (next->vm_flags != vma->vm_flags)
2564				goto out;
2565
2566			if (start + size <= next->vm_end)
2567				break;
2568		}
2569
2570		if (!next)
2571			goto out;
2572	}
2573
2574	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2575	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2576	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2577
2578	flags &= MAP_NONBLOCK;
2579	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2580	if (vma->vm_flags & VM_LOCKED) {
2581		struct vm_area_struct *tmp;
2582		flags |= MAP_LOCKED;
2583
2584		/* drop PG_Mlocked flag for over-mapped range */
2585		for (tmp = vma; tmp->vm_start >= start + size;
2586				tmp = tmp->vm_next) {
 
 
 
 
 
 
2587			munlock_vma_pages_range(tmp,
2588					max(tmp->vm_start, start),
2589					min(tmp->vm_end, start + size));
2590		}
2591	}
2592
2593	file = get_file(vma->vm_file);
2594	ret = do_mmap_pgoff(vma->vm_file, start, size,
2595			prot, flags, pgoff, &populate);
2596	fput(file);
2597out:
2598	up_write(&mm->mmap_sem);
2599	if (populate)
2600		mm_populate(ret, populate);
2601	if (!IS_ERR_VALUE(ret))
2602		ret = 0;
2603	return ret;
2604}
2605
2606static inline void verify_mm_writelocked(struct mm_struct *mm)
2607{
2608#ifdef CONFIG_DEBUG_VM
2609	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2610		WARN_ON(1);
2611		up_read(&mm->mmap_sem);
2612	}
2613#endif
2614}
2615
2616/*
2617 *  this is really a simplified "do_mmap".  it only handles
2618 *  anonymous maps.  eventually we may be able to do some
2619 *  brk-specific accounting here.
2620 */
2621static unsigned long do_brk(unsigned long addr, unsigned long len)
2622{
2623	struct mm_struct *mm = current->mm;
2624	struct vm_area_struct *vma, *prev;
2625	unsigned long flags;
2626	struct rb_node **rb_link, *rb_parent;
2627	pgoff_t pgoff = addr >> PAGE_SHIFT;
2628	int error;
2629
2630	len = PAGE_ALIGN(len);
2631	if (!len)
2632		return addr;
2633
2634	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2635
2636	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2637	if (offset_in_page(error))
2638		return error;
2639
2640	error = mlock_future_check(mm, mm->def_flags, len);
2641	if (error)
2642		return error;
2643
2644	/*
2645	 * mm->mmap_sem is required to protect against another thread
2646	 * changing the mappings in case we sleep.
2647	 */
2648	verify_mm_writelocked(mm);
2649
2650	/*
2651	 * Clear old maps.  this also does some error checking for us
2652	 */
2653	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2654			      &rb_parent)) {
2655		if (do_munmap(mm, addr, len))
2656			return -ENOMEM;
2657	}
2658
2659	/* Check against address space limits *after* clearing old maps... */
2660	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2661		return -ENOMEM;
2662
2663	if (mm->map_count > sysctl_max_map_count)
2664		return -ENOMEM;
2665
2666	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2667		return -ENOMEM;
2668
2669	/* Can we just expand an old private anonymous mapping? */
2670	vma = vma_merge(mm, prev, addr, addr + len, flags,
2671			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2672	if (vma)
2673		goto out;
2674
2675	/*
2676	 * create a vma struct for an anonymous mapping
2677	 */
2678	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2679	if (!vma) {
2680		vm_unacct_memory(len >> PAGE_SHIFT);
2681		return -ENOMEM;
2682	}
2683
2684	INIT_LIST_HEAD(&vma->anon_vma_chain);
2685	vma->vm_mm = mm;
2686	vma->vm_start = addr;
2687	vma->vm_end = addr + len;
2688	vma->vm_pgoff = pgoff;
2689	vma->vm_flags = flags;
2690	vma->vm_page_prot = vm_get_page_prot(flags);
2691	vma_link(mm, vma, prev, rb_link, rb_parent);
2692out:
2693	perf_event_mmap(vma);
2694	mm->total_vm += len >> PAGE_SHIFT;
2695	mm->data_vm += len >> PAGE_SHIFT;
2696	if (flags & VM_LOCKED)
2697		mm->locked_vm += (len >> PAGE_SHIFT);
2698	vma->vm_flags |= VM_SOFTDIRTY;
2699	return addr;
2700}
2701
2702unsigned long vm_brk(unsigned long addr, unsigned long len)
2703{
2704	struct mm_struct *mm = current->mm;
2705	unsigned long ret;
 
2706	bool populate;
 
 
 
 
 
 
 
 
 
 
2707
2708	down_write(&mm->mmap_sem);
2709	ret = do_brk(addr, len);
2710	populate = ((mm->def_flags & VM_LOCKED) != 0);
2711	up_write(&mm->mmap_sem);
2712	if (populate)
 
2713		mm_populate(addr, len);
2714	return ret;
2715}
 
 
 
 
 
 
2716EXPORT_SYMBOL(vm_brk);
2717
2718/* Release all mmaps. */
2719void exit_mmap(struct mm_struct *mm)
2720{
2721	struct mmu_gather tlb;
2722	struct vm_area_struct *vma;
2723	unsigned long nr_accounted = 0;
2724
2725	/* mm's last user has gone, and its about to be pulled down */
2726	mmu_notifier_release(mm);
2727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2728	if (mm->locked_vm) {
2729		vma = mm->mmap;
2730		while (vma) {
2731			if (vma->vm_flags & VM_LOCKED)
2732				munlock_vma_pages_all(vma);
2733			vma = vma->vm_next;
2734		}
2735	}
2736
2737	arch_exit_mmap(mm);
2738
2739	vma = mm->mmap;
2740	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2741		return;
2742
2743	lru_add_drain();
2744	flush_cache_mm(mm);
2745	tlb_gather_mmu(&tlb, mm, 0, -1);
2746	/* update_hiwater_rss(mm) here? but nobody should be looking */
2747	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2748	unmap_vmas(&tlb, vma, 0, -1);
2749
2750	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2751	tlb_finish_mmu(&tlb, 0, -1);
2752
2753	/*
2754	 * Walk the list again, actually closing and freeing it,
2755	 * with preemption enabled, without holding any MM locks.
2756	 */
2757	while (vma) {
2758		if (vma->vm_flags & VM_ACCOUNT)
2759			nr_accounted += vma_pages(vma);
2760		vma = remove_vma(vma);
2761	}
2762	vm_unacct_memory(nr_accounted);
2763}
2764
2765/* Insert vm structure into process list sorted by address
2766 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2767 * then i_mmap_rwsem is taken here.
2768 */
2769int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2770{
2771	struct vm_area_struct *prev;
2772	struct rb_node **rb_link, *rb_parent;
2773
2774	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2775			   &prev, &rb_link, &rb_parent))
2776		return -ENOMEM;
2777	if ((vma->vm_flags & VM_ACCOUNT) &&
2778	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2779		return -ENOMEM;
2780
2781	/*
2782	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783	 * until its first write fault, when page's anon_vma and index
2784	 * are set.  But now set the vm_pgoff it will almost certainly
2785	 * end up with (unless mremap moves it elsewhere before that
2786	 * first wfault), so /proc/pid/maps tells a consistent story.
2787	 *
2788	 * By setting it to reflect the virtual start address of the
2789	 * vma, merges and splits can happen in a seamless way, just
2790	 * using the existing file pgoff checks and manipulations.
2791	 * Similarly in do_mmap_pgoff and in do_brk.
2792	 */
2793	if (vma_is_anonymous(vma)) {
2794		BUG_ON(vma->anon_vma);
2795		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2796	}
2797
2798	vma_link(mm, vma, prev, rb_link, rb_parent);
2799	return 0;
2800}
2801
2802/*
2803 * Copy the vma structure to a new location in the same mm,
2804 * prior to moving page table entries, to effect an mremap move.
2805 */
2806struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2807	unsigned long addr, unsigned long len, pgoff_t pgoff,
2808	bool *need_rmap_locks)
2809{
2810	struct vm_area_struct *vma = *vmap;
2811	unsigned long vma_start = vma->vm_start;
2812	struct mm_struct *mm = vma->vm_mm;
2813	struct vm_area_struct *new_vma, *prev;
2814	struct rb_node **rb_link, *rb_parent;
2815	bool faulted_in_anon_vma = true;
2816
2817	/*
2818	 * If anonymous vma has not yet been faulted, update new pgoff
2819	 * to match new location, to increase its chance of merging.
2820	 */
2821	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2822		pgoff = addr >> PAGE_SHIFT;
2823		faulted_in_anon_vma = false;
2824	}
2825
2826	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2827		return NULL;	/* should never get here */
2828	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2829			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2830			    vma->vm_userfaultfd_ctx);
2831	if (new_vma) {
2832		/*
2833		 * Source vma may have been merged into new_vma
2834		 */
2835		if (unlikely(vma_start >= new_vma->vm_start &&
2836			     vma_start < new_vma->vm_end)) {
2837			/*
2838			 * The only way we can get a vma_merge with
2839			 * self during an mremap is if the vma hasn't
2840			 * been faulted in yet and we were allowed to
2841			 * reset the dst vma->vm_pgoff to the
2842			 * destination address of the mremap to allow
2843			 * the merge to happen. mremap must change the
2844			 * vm_pgoff linearity between src and dst vmas
2845			 * (in turn preventing a vma_merge) to be
2846			 * safe. It is only safe to keep the vm_pgoff
2847			 * linear if there are no pages mapped yet.
2848			 */
2849			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2850			*vmap = vma = new_vma;
2851		}
2852		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2853	} else {
2854		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2855		if (!new_vma)
2856			goto out;
2857		*new_vma = *vma;
2858		new_vma->vm_start = addr;
2859		new_vma->vm_end = addr + len;
2860		new_vma->vm_pgoff = pgoff;
2861		if (vma_dup_policy(vma, new_vma))
2862			goto out_free_vma;
2863		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2864		if (anon_vma_clone(new_vma, vma))
2865			goto out_free_mempol;
2866		if (new_vma->vm_file)
2867			get_file(new_vma->vm_file);
2868		if (new_vma->vm_ops && new_vma->vm_ops->open)
2869			new_vma->vm_ops->open(new_vma);
2870		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2871		*need_rmap_locks = false;
2872	}
2873	return new_vma;
2874
2875out_free_mempol:
2876	mpol_put(vma_policy(new_vma));
2877out_free_vma:
2878	kmem_cache_free(vm_area_cachep, new_vma);
2879out:
2880	return NULL;
2881}
2882
2883/*
2884 * Return true if the calling process may expand its vm space by the passed
2885 * number of pages
2886 */
2887bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2888{
2889	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2890		return false;
2891
2892	if (is_data_mapping(flags) &&
2893	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2894		if (ignore_rlimit_data)
2895			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2896				     current->comm, current->pid,
2897				     (mm->data_vm + npages) << PAGE_SHIFT,
2898				     rlimit(RLIMIT_DATA));
2899		else
 
 
 
 
 
 
2900			return false;
2901	}
2902
2903	return true;
2904}
2905
2906void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2907{
2908	mm->total_vm += npages;
2909
2910	if (is_exec_mapping(flags))
2911		mm->exec_vm += npages;
2912	else if (is_stack_mapping(flags))
2913		mm->stack_vm += npages;
2914	else if (is_data_mapping(flags))
2915		mm->data_vm += npages;
2916}
2917
2918static int special_mapping_fault(struct vm_area_struct *vma,
2919				 struct vm_fault *vmf);
2920
2921/*
2922 * Having a close hook prevents vma merging regardless of flags.
2923 */
2924static void special_mapping_close(struct vm_area_struct *vma)
2925{
2926}
2927
2928static const char *special_mapping_name(struct vm_area_struct *vma)
2929{
2930	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2931}
2932
 
 
 
 
 
 
 
 
 
 
 
 
 
2933static const struct vm_operations_struct special_mapping_vmops = {
2934	.close = special_mapping_close,
2935	.fault = special_mapping_fault,
 
2936	.name = special_mapping_name,
2937};
2938
2939static const struct vm_operations_struct legacy_special_mapping_vmops = {
2940	.close = special_mapping_close,
2941	.fault = special_mapping_fault,
2942};
2943
2944static int special_mapping_fault(struct vm_area_struct *vma,
2945				struct vm_fault *vmf)
2946{
 
2947	pgoff_t pgoff;
2948	struct page **pages;
2949
2950	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2951		pages = vma->vm_private_data;
2952	} else {
2953		struct vm_special_mapping *sm = vma->vm_private_data;
2954
2955		if (sm->fault)
2956			return sm->fault(sm, vma, vmf);
2957
2958		pages = sm->pages;
2959	}
2960
2961	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2962		pgoff--;
2963
2964	if (*pages) {
2965		struct page *page = *pages;
2966		get_page(page);
2967		vmf->page = page;
2968		return 0;
2969	}
2970
2971	return VM_FAULT_SIGBUS;
2972}
2973
2974static struct vm_area_struct *__install_special_mapping(
2975	struct mm_struct *mm,
2976	unsigned long addr, unsigned long len,
2977	unsigned long vm_flags, void *priv,
2978	const struct vm_operations_struct *ops)
2979{
2980	int ret;
2981	struct vm_area_struct *vma;
2982
2983	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2984	if (unlikely(vma == NULL))
2985		return ERR_PTR(-ENOMEM);
2986
2987	INIT_LIST_HEAD(&vma->anon_vma_chain);
2988	vma->vm_mm = mm;
2989	vma->vm_start = addr;
2990	vma->vm_end = addr + len;
2991
2992	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2993	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2994
2995	vma->vm_ops = ops;
2996	vma->vm_private_data = priv;
2997
2998	ret = insert_vm_struct(mm, vma);
2999	if (ret)
3000		goto out;
3001
3002	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3003
3004	perf_event_mmap(vma);
3005
3006	return vma;
3007
3008out:
3009	kmem_cache_free(vm_area_cachep, vma);
3010	return ERR_PTR(ret);
3011}
3012
 
 
 
 
 
 
 
 
3013/*
3014 * Called with mm->mmap_sem held for writing.
3015 * Insert a new vma covering the given region, with the given flags.
3016 * Its pages are supplied by the given array of struct page *.
3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018 * The region past the last page supplied will always produce SIGBUS.
3019 * The array pointer and the pages it points to are assumed to stay alive
3020 * for as long as this mapping might exist.
3021 */
3022struct vm_area_struct *_install_special_mapping(
3023	struct mm_struct *mm,
3024	unsigned long addr, unsigned long len,
3025	unsigned long vm_flags, const struct vm_special_mapping *spec)
3026{
3027	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3028					&special_mapping_vmops);
3029}
3030
3031int install_special_mapping(struct mm_struct *mm,
3032			    unsigned long addr, unsigned long len,
3033			    unsigned long vm_flags, struct page **pages)
3034{
3035	struct vm_area_struct *vma = __install_special_mapping(
3036		mm, addr, len, vm_flags, (void *)pages,
3037		&legacy_special_mapping_vmops);
3038
3039	return PTR_ERR_OR_ZERO(vma);
3040}
3041
3042static DEFINE_MUTEX(mm_all_locks_mutex);
3043
3044static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3045{
3046	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3047		/*
3048		 * The LSB of head.next can't change from under us
3049		 * because we hold the mm_all_locks_mutex.
3050		 */
3051		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3052		/*
3053		 * We can safely modify head.next after taking the
3054		 * anon_vma->root->rwsem. If some other vma in this mm shares
3055		 * the same anon_vma we won't take it again.
3056		 *
3057		 * No need of atomic instructions here, head.next
3058		 * can't change from under us thanks to the
3059		 * anon_vma->root->rwsem.
3060		 */
3061		if (__test_and_set_bit(0, (unsigned long *)
3062				       &anon_vma->root->rb_root.rb_node))
3063			BUG();
3064	}
3065}
3066
3067static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3068{
3069	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3070		/*
3071		 * AS_MM_ALL_LOCKS can't change from under us because
3072		 * we hold the mm_all_locks_mutex.
3073		 *
3074		 * Operations on ->flags have to be atomic because
3075		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076		 * mm_all_locks_mutex, there may be other cpus
3077		 * changing other bitflags in parallel to us.
3078		 */
3079		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3080			BUG();
3081		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3082	}
3083}
3084
3085/*
3086 * This operation locks against the VM for all pte/vma/mm related
3087 * operations that could ever happen on a certain mm. This includes
3088 * vmtruncate, try_to_unmap, and all page faults.
3089 *
3090 * The caller must take the mmap_sem in write mode before calling
3091 * mm_take_all_locks(). The caller isn't allowed to release the
3092 * mmap_sem until mm_drop_all_locks() returns.
3093 *
3094 * mmap_sem in write mode is required in order to block all operations
3095 * that could modify pagetables and free pages without need of
3096 * altering the vma layout. It's also needed in write mode to avoid new
3097 * anon_vmas to be associated with existing vmas.
3098 *
3099 * A single task can't take more than one mm_take_all_locks() in a row
3100 * or it would deadlock.
3101 *
3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103 * mapping->flags avoid to take the same lock twice, if more than one
3104 * vma in this mm is backed by the same anon_vma or address_space.
3105 *
3106 * We take locks in following order, accordingly to comment at beginning
3107 * of mm/rmap.c:
3108 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3109 *     hugetlb mapping);
3110 *   - all i_mmap_rwsem locks;
3111 *   - all anon_vma->rwseml
3112 *
3113 * We can take all locks within these types randomly because the VM code
3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115 * mm_all_locks_mutex.
3116 *
3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118 * that may have to take thousand of locks.
3119 *
3120 * mm_take_all_locks() can fail if it's interrupted by signals.
3121 */
3122int mm_take_all_locks(struct mm_struct *mm)
3123{
3124	struct vm_area_struct *vma;
3125	struct anon_vma_chain *avc;
3126
3127	BUG_ON(down_read_trylock(&mm->mmap_sem));
3128
3129	mutex_lock(&mm_all_locks_mutex);
3130
3131	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132		if (signal_pending(current))
3133			goto out_unlock;
3134		if (vma->vm_file && vma->vm_file->f_mapping &&
3135				is_vm_hugetlb_page(vma))
3136			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137	}
3138
3139	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140		if (signal_pending(current))
3141			goto out_unlock;
3142		if (vma->vm_file && vma->vm_file->f_mapping &&
3143				!is_vm_hugetlb_page(vma))
3144			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3145	}
3146
3147	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3148		if (signal_pending(current))
3149			goto out_unlock;
3150		if (vma->anon_vma)
3151			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3152				vm_lock_anon_vma(mm, avc->anon_vma);
3153	}
3154
3155	return 0;
3156
3157out_unlock:
3158	mm_drop_all_locks(mm);
3159	return -EINTR;
3160}
3161
3162static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3163{
3164	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165		/*
3166		 * The LSB of head.next can't change to 0 from under
3167		 * us because we hold the mm_all_locks_mutex.
3168		 *
3169		 * We must however clear the bitflag before unlocking
3170		 * the vma so the users using the anon_vma->rb_root will
3171		 * never see our bitflag.
3172		 *
3173		 * No need of atomic instructions here, head.next
3174		 * can't change from under us until we release the
3175		 * anon_vma->root->rwsem.
3176		 */
3177		if (!__test_and_clear_bit(0, (unsigned long *)
3178					  &anon_vma->root->rb_root.rb_node))
3179			BUG();
3180		anon_vma_unlock_write(anon_vma);
3181	}
3182}
3183
3184static void vm_unlock_mapping(struct address_space *mapping)
3185{
3186	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3187		/*
3188		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189		 * because we hold the mm_all_locks_mutex.
3190		 */
3191		i_mmap_unlock_write(mapping);
3192		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3193					&mapping->flags))
3194			BUG();
3195	}
3196}
3197
3198/*
3199 * The mmap_sem cannot be released by the caller until
3200 * mm_drop_all_locks() returns.
3201 */
3202void mm_drop_all_locks(struct mm_struct *mm)
3203{
3204	struct vm_area_struct *vma;
3205	struct anon_vma_chain *avc;
3206
3207	BUG_ON(down_read_trylock(&mm->mmap_sem));
3208	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3209
3210	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3211		if (vma->anon_vma)
3212			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3213				vm_unlock_anon_vma(avc->anon_vma);
3214		if (vma->vm_file && vma->vm_file->f_mapping)
3215			vm_unlock_mapping(vma->vm_file->f_mapping);
3216	}
3217
3218	mutex_unlock(&mm_all_locks_mutex);
3219}
3220
3221/*
3222 * initialise the VMA slab
3223 */
3224void __init mmap_init(void)
3225{
3226	int ret;
3227
3228	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3229	VM_BUG_ON(ret);
3230}
3231
3232/*
3233 * Initialise sysctl_user_reserve_kbytes.
3234 *
3235 * This is intended to prevent a user from starting a single memory hogging
3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3237 * mode.
3238 *
3239 * The default value is min(3% of free memory, 128MB)
3240 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3241 */
3242static int init_user_reserve(void)
3243{
3244	unsigned long free_kbytes;
3245
3246	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3247
3248	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3249	return 0;
3250}
3251subsys_initcall(init_user_reserve);
3252
3253/*
3254 * Initialise sysctl_admin_reserve_kbytes.
3255 *
3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257 * to log in and kill a memory hogging process.
3258 *
3259 * Systems with more than 256MB will reserve 8MB, enough to recover
3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261 * only reserve 3% of free pages by default.
3262 */
3263static int init_admin_reserve(void)
3264{
3265	unsigned long free_kbytes;
3266
3267	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3268
3269	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3270	return 0;
3271}
3272subsys_initcall(init_admin_reserve);
3273
3274/*
3275 * Reinititalise user and admin reserves if memory is added or removed.
3276 *
3277 * The default user reserve max is 128MB, and the default max for the
3278 * admin reserve is 8MB. These are usually, but not always, enough to
3279 * enable recovery from a memory hogging process using login/sshd, a shell,
3280 * and tools like top. It may make sense to increase or even disable the
3281 * reserve depending on the existence of swap or variations in the recovery
3282 * tools. So, the admin may have changed them.
3283 *
3284 * If memory is added and the reserves have been eliminated or increased above
3285 * the default max, then we'll trust the admin.
3286 *
3287 * If memory is removed and there isn't enough free memory, then we
3288 * need to reset the reserves.
3289 *
3290 * Otherwise keep the reserve set by the admin.
3291 */
3292static int reserve_mem_notifier(struct notifier_block *nb,
3293			     unsigned long action, void *data)
3294{
3295	unsigned long tmp, free_kbytes;
3296
3297	switch (action) {
3298	case MEM_ONLINE:
3299		/* Default max is 128MB. Leave alone if modified by operator. */
3300		tmp = sysctl_user_reserve_kbytes;
3301		if (0 < tmp && tmp < (1UL << 17))
3302			init_user_reserve();
3303
3304		/* Default max is 8MB.  Leave alone if modified by operator. */
3305		tmp = sysctl_admin_reserve_kbytes;
3306		if (0 < tmp && tmp < (1UL << 13))
3307			init_admin_reserve();
3308
3309		break;
3310	case MEM_OFFLINE:
3311		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313		if (sysctl_user_reserve_kbytes > free_kbytes) {
3314			init_user_reserve();
3315			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316				sysctl_user_reserve_kbytes);
3317		}
3318
3319		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3320			init_admin_reserve();
3321			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322				sysctl_admin_reserve_kbytes);
3323		}
3324		break;
3325	default:
3326		break;
3327	}
3328	return NOTIFY_OK;
3329}
3330
3331static struct notifier_block reserve_mem_nb = {
3332	.notifier_call = reserve_mem_notifier,
3333};
3334
3335static int __meminit init_reserve_notifier(void)
3336{
3337	if (register_hotmemory_notifier(&reserve_mem_nb))
3338		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3339
3340	return 0;
3341}
3342subsys_initcall(init_reserve_notifier);