Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
 
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#include "internal.h"
  57
  58#ifndef arch_mmap_check
  59#define arch_mmap_check(addr, len, flags)	(0)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  95 * MAP_PRIVATE:
  96 *								r: (no) no
  97 *								w: (no) no
  98 *								x: (yes) yes
  99 */
 100pgprot_t protection_map[16] __ro_after_init = {
 101	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 102	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 103};
 104
 105#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 106static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 107{
 108	return prot;
 109}
 110#endif
 111
 112pgprot_t vm_get_page_prot(unsigned long vm_flags)
 113{
 114	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 115				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 116			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 117
 118	return arch_filter_pgprot(ret);
 119}
 120EXPORT_SYMBOL(vm_get_page_prot);
 121
 122static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123{
 124	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 125}
 
 126
 127/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 128void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129{
 130	unsigned long vm_flags = vma->vm_flags;
 131	pgprot_t vm_page_prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 134	if (vma_wants_writenotify(vma, vm_page_prot)) {
 135		vm_flags &= ~VM_SHARED;
 136		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
 
 
 
 
 
 137	}
 138	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 139	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140}
 141
 142/*
 143 * Requires inode->i_mapping->i_mmap_rwsem
 144 */
 145static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 146		struct file *file, struct address_space *mapping)
 147{
 148	if (vma->vm_flags & VM_DENYWRITE)
 149		atomic_inc(&file_inode(file)->i_writecount);
 150	if (vma->vm_flags & VM_SHARED)
 151		mapping_unmap_writable(mapping);
 152
 153	flush_dcache_mmap_lock(mapping);
 154	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 155	flush_dcache_mmap_unlock(mapping);
 156}
 157
 158/*
 159 * Unlink a file-based vm structure from its interval tree, to hide
 160 * vma from rmap and vmtruncate before freeing its page tables.
 161 */
 162void unlink_file_vma(struct vm_area_struct *vma)
 163{
 164	struct file *file = vma->vm_file;
 165
 166	if (file) {
 167		struct address_space *mapping = file->f_mapping;
 168		i_mmap_lock_write(mapping);
 169		__remove_shared_vm_struct(vma, file, mapping);
 170		i_mmap_unlock_write(mapping);
 171	}
 172}
 173
 174/*
 175 * Close a vm structure and free it, returning the next.
 176 */
 177static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 178{
 179	struct vm_area_struct *next = vma->vm_next;
 180
 181	might_sleep();
 182	if (vma->vm_ops && vma->vm_ops->close)
 183		vma->vm_ops->close(vma);
 184	if (vma->vm_file)
 185		fput(vma->vm_file);
 186	mpol_put(vma_policy(vma));
 187	vm_area_free(vma);
 188	return next;
 189}
 190
 191static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 192		struct list_head *uf);
 193SYSCALL_DEFINE1(brk, unsigned long, brk)
 194{
 195	unsigned long retval;
 196	unsigned long newbrk, oldbrk, origbrk;
 197	struct mm_struct *mm = current->mm;
 198	struct vm_area_struct *next;
 199	unsigned long min_brk;
 200	bool populate;
 201	bool downgraded = false;
 202	LIST_HEAD(uf);
 203
 204	brk = untagged_addr(brk);
 205
 206	if (down_write_killable(&mm->mmap_sem))
 207		return -EINTR;
 208
 209	origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212	/*
 213	 * CONFIG_COMPAT_BRK can still be overridden by setting
 214	 * randomize_va_space to 2, which will still cause mm->start_brk
 215	 * to be arbitrarily shifted
 216	 */
 217	if (current->brk_randomized)
 218		min_brk = mm->start_brk;
 219	else
 220		min_brk = mm->end_data;
 221#else
 222	min_brk = mm->start_brk;
 223#endif
 224	if (brk < min_brk)
 225		goto out;
 226
 227	/*
 228	 * Check against rlimit here. If this check is done later after the test
 229	 * of oldbrk with newbrk then it can escape the test and let the data
 230	 * segment grow beyond its set limit the in case where the limit is
 231	 * not page aligned -Ram Gupta
 232	 */
 233	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234			      mm->end_data, mm->start_data))
 
 235		goto out;
 236
 237	newbrk = PAGE_ALIGN(brk);
 238	oldbrk = PAGE_ALIGN(mm->brk);
 239	if (oldbrk == newbrk) {
 240		mm->brk = brk;
 241		goto success;
 242	}
 243
 244	/*
 245	 * Always allow shrinking brk.
 246	 * __do_munmap() may downgrade mmap_sem to read.
 247	 */
 248	if (brk <= mm->brk) {
 249		int ret;
 250
 251		/*
 252		 * mm->brk must to be protected by write mmap_sem so update it
 253		 * before downgrading mmap_sem. When __do_munmap() fails,
 254		 * mm->brk will be restored from origbrk.
 255		 */
 256		mm->brk = brk;
 257		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258		if (ret < 0) {
 259			mm->brk = origbrk;
 260			goto out;
 261		} else if (ret == 1) {
 262			downgraded = true;
 263		}
 264		goto success;
 265	}
 266
 267	/* Check against existing mmap mappings. */
 268	next = find_vma(mm, oldbrk);
 269	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270		goto out;
 271
 272	/* Ok, looks good - let it rip. */
 273	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274		goto out;
 275	mm->brk = brk;
 276
 277success:
 
 278	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279	if (downgraded)
 280		up_read(&mm->mmap_sem);
 281	else
 282		up_write(&mm->mmap_sem);
 283	userfaultfd_unmap_complete(mm, &uf);
 284	if (populate)
 285		mm_populate(oldbrk, newbrk - oldbrk);
 286	return brk;
 287
 288out:
 289	retval = origbrk;
 290	up_write(&mm->mmap_sem);
 291	return retval;
 292}
 293
 294static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 295{
 296	unsigned long gap, prev_end;
 297
 298	/*
 299	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 300	 * allow two stack_guard_gaps between them here, and when choosing
 301	 * an unmapped area; whereas when expanding we only require one.
 302	 * That's a little inconsistent, but keeps the code here simpler.
 303	 */
 304	gap = vm_start_gap(vma);
 305	if (vma->vm_prev) {
 306		prev_end = vm_end_gap(vma->vm_prev);
 307		if (gap > prev_end)
 308			gap -= prev_end;
 309		else
 310			gap = 0;
 311	}
 312	return gap;
 313}
 314
 315#ifdef CONFIG_DEBUG_VM_RB
 316static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 317{
 318	unsigned long max = vma_compute_gap(vma), subtree_gap;
 319	if (vma->vm_rb.rb_left) {
 320		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 321				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 322		if (subtree_gap > max)
 323			max = subtree_gap;
 324	}
 325	if (vma->vm_rb.rb_right) {
 326		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 327				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 328		if (subtree_gap > max)
 329			max = subtree_gap;
 330	}
 331	return max;
 332}
 333
 334static int browse_rb(struct mm_struct *mm)
 
 335{
 336	struct rb_root *root = &mm->mm_rb;
 337	int i = 0, j, bug = 0;
 338	struct rb_node *nd, *pn = NULL;
 339	unsigned long prev = 0, pend = 0;
 340
 341	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 342		struct vm_area_struct *vma;
 343		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 344		if (vma->vm_start < prev) {
 345			pr_emerg("vm_start %lx < prev %lx\n",
 346				  vma->vm_start, prev);
 347			bug = 1;
 348		}
 349		if (vma->vm_start < pend) {
 350			pr_emerg("vm_start %lx < pend %lx\n",
 351				  vma->vm_start, pend);
 352			bug = 1;
 353		}
 354		if (vma->vm_start > vma->vm_end) {
 355			pr_emerg("vm_start %lx > vm_end %lx\n",
 356				  vma->vm_start, vma->vm_end);
 357			bug = 1;
 358		}
 359		spin_lock(&mm->page_table_lock);
 360		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 361			pr_emerg("free gap %lx, correct %lx\n",
 362			       vma->rb_subtree_gap,
 363			       vma_compute_subtree_gap(vma));
 364			bug = 1;
 365		}
 366		spin_unlock(&mm->page_table_lock);
 367		i++;
 368		pn = nd;
 369		prev = vma->vm_start;
 370		pend = vma->vm_end;
 371	}
 372	j = 0;
 373	for (nd = pn; nd; nd = rb_prev(nd))
 374		j++;
 375	if (i != j) {
 376		pr_emerg("backwards %d, forwards %d\n", j, i);
 377		bug = 1;
 378	}
 379	return bug ? -1 : i;
 380}
 381
 382static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 383{
 384	struct rb_node *nd;
 385
 386	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 387		struct vm_area_struct *vma;
 388		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 389		VM_BUG_ON_VMA(vma != ignore &&
 390			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 391			vma);
 392	}
 393}
 394
 395static void validate_mm(struct mm_struct *mm)
 396{
 397	int bug = 0;
 398	int i = 0;
 399	unsigned long highest_address = 0;
 400	struct vm_area_struct *vma = mm->mmap;
 401
 402	while (vma) {
 403		struct anon_vma *anon_vma = vma->anon_vma;
 404		struct anon_vma_chain *avc;
 405
 406		if (anon_vma) {
 407			anon_vma_lock_read(anon_vma);
 408			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 409				anon_vma_interval_tree_verify(avc);
 410			anon_vma_unlock_read(anon_vma);
 411		}
 412
 413		highest_address = vm_end_gap(vma);
 414		vma = vma->vm_next;
 415		i++;
 416	}
 417	if (i != mm->map_count) {
 418		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 419		bug = 1;
 420	}
 421	if (highest_address != mm->highest_vm_end) {
 422		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 423			  mm->highest_vm_end, highest_address);
 424		bug = 1;
 425	}
 426	i = browse_rb(mm);
 427	if (i != mm->map_count) {
 428		if (i != -1)
 429			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 430		bug = 1;
 431	}
 432	VM_BUG_ON_MM(bug, mm);
 433}
 434#else
 435#define validate_mm_rb(root, ignore) do { } while (0)
 436#define validate_mm(mm) do { } while (0)
 437#endif
 438
 439RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 440			 struct vm_area_struct, vm_rb,
 441			 unsigned long, rb_subtree_gap, vma_compute_gap)
 442
 443/*
 444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 446 * in the rbtree.
 447 */
 448static void vma_gap_update(struct vm_area_struct *vma)
 449{
 450	/*
 451	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 452	 * a callback function that does exactly what we want.
 453	 */
 454	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 455}
 456
 457static inline void vma_rb_insert(struct vm_area_struct *vma,
 458				 struct rb_root *root)
 459{
 460	/* All rb_subtree_gap values must be consistent prior to insertion */
 461	validate_mm_rb(root, NULL);
 462
 463	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 464}
 465
 466static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 467{
 468	/*
 469	 * Note rb_erase_augmented is a fairly large inline function,
 470	 * so make sure we instantiate it only once with our desired
 471	 * augmented rbtree callbacks.
 472	 */
 473	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 474}
 475
 476static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 477						struct rb_root *root,
 478						struct vm_area_struct *ignore)
 479{
 480	/*
 481	 * All rb_subtree_gap values must be consistent prior to erase,
 482	 * with the possible exception of the "next" vma being erased if
 483	 * next->vm_start was reduced.
 484	 */
 485	validate_mm_rb(root, ignore);
 486
 487	__vma_rb_erase(vma, root);
 488}
 489
 490static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 491					 struct rb_root *root)
 492{
 493	/*
 494	 * All rb_subtree_gap values must be consistent prior to erase,
 495	 * with the possible exception of the vma being erased.
 496	 */
 497	validate_mm_rb(root, vma);
 498
 499	__vma_rb_erase(vma, root);
 
 
 
 
 
 500}
 501
 502/*
 503 * vma has some anon_vma assigned, and is already inserted on that
 504 * anon_vma's interval trees.
 505 *
 506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 507 * vma must be removed from the anon_vma's interval trees using
 508 * anon_vma_interval_tree_pre_update_vma().
 509 *
 510 * After the update, the vma will be reinserted using
 511 * anon_vma_interval_tree_post_update_vma().
 512 *
 513 * The entire update must be protected by exclusive mmap_sem and by
 514 * the root anon_vma's mutex.
 515 */
 516static inline void
 517anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 518{
 519	struct anon_vma_chain *avc;
 520
 521	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 522		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 523}
 524
 525static inline void
 526anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 527{
 528	struct anon_vma_chain *avc;
 529
 530	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 531		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 532}
 533
 534static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 535		unsigned long end, struct vm_area_struct **pprev,
 536		struct rb_node ***rb_link, struct rb_node **rb_parent)
 537{
 538	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 539
 540	__rb_link = &mm->mm_rb.rb_node;
 541	rb_prev = __rb_parent = NULL;
 542
 543	while (*__rb_link) {
 544		struct vm_area_struct *vma_tmp;
 545
 546		__rb_parent = *__rb_link;
 547		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 548
 549		if (vma_tmp->vm_end > addr) {
 550			/* Fail if an existing vma overlaps the area */
 551			if (vma_tmp->vm_start < end)
 552				return -ENOMEM;
 553			__rb_link = &__rb_parent->rb_left;
 554		} else {
 555			rb_prev = __rb_parent;
 556			__rb_link = &__rb_parent->rb_right;
 557		}
 558	}
 559
 560	*pprev = NULL;
 561	if (rb_prev)
 562		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 563	*rb_link = __rb_link;
 564	*rb_parent = __rb_parent;
 565	return 0;
 566}
 567
 568static unsigned long count_vma_pages_range(struct mm_struct *mm,
 569		unsigned long addr, unsigned long end)
 570{
 571	unsigned long nr_pages = 0;
 572	struct vm_area_struct *vma;
 573
 574	/* Find first overlaping mapping */
 575	vma = find_vma_intersection(mm, addr, end);
 576	if (!vma)
 577		return 0;
 578
 579	nr_pages = (min(end, vma->vm_end) -
 580		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 581
 582	/* Iterate over the rest of the overlaps */
 583	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 584		unsigned long overlap_len;
 585
 586		if (vma->vm_start > end)
 587			break;
 588
 589		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 590		nr_pages += overlap_len >> PAGE_SHIFT;
 591	}
 592
 593	return nr_pages;
 594}
 595
 596void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 597		struct rb_node **rb_link, struct rb_node *rb_parent)
 598{
 599	/* Update tracking information for the gap following the new vma. */
 600	if (vma->vm_next)
 601		vma_gap_update(vma->vm_next);
 602	else
 603		mm->highest_vm_end = vm_end_gap(vma);
 604
 605	/*
 606	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 607	 * correct insertion point for that vma. As a result, we could not
 608	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 609	 * So, we first insert the vma with a zero rb_subtree_gap value
 610	 * (to be consistent with what we did on the way down), and then
 611	 * immediately update the gap to the correct value. Finally we
 612	 * rebalance the rbtree after all augmented values have been set.
 613	 */
 614	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 615	vma->rb_subtree_gap = 0;
 616	vma_gap_update(vma);
 617	vma_rb_insert(vma, &mm->mm_rb);
 618}
 619
 620static void __vma_link_file(struct vm_area_struct *vma)
 621{
 622	struct file *file;
 623
 624	file = vma->vm_file;
 625	if (file) {
 626		struct address_space *mapping = file->f_mapping;
 627
 628		if (vma->vm_flags & VM_DENYWRITE)
 629			atomic_dec(&file_inode(file)->i_writecount);
 630		if (vma->vm_flags & VM_SHARED)
 631			atomic_inc(&mapping->i_mmap_writable);
 632
 633		flush_dcache_mmap_lock(mapping);
 634		vma_interval_tree_insert(vma, &mapping->i_mmap);
 
 
 
 635		flush_dcache_mmap_unlock(mapping);
 636	}
 637}
 638
 639static void
 640__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 641	struct vm_area_struct *prev, struct rb_node **rb_link,
 642	struct rb_node *rb_parent)
 643{
 644	__vma_link_list(mm, vma, prev, rb_parent);
 645	__vma_link_rb(mm, vma, rb_link, rb_parent);
 646}
 647
 648static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 649			struct vm_area_struct *prev, struct rb_node **rb_link,
 650			struct rb_node *rb_parent)
 651{
 652	struct address_space *mapping = NULL;
 653
 654	if (vma->vm_file) {
 655		mapping = vma->vm_file->f_mapping;
 656		i_mmap_lock_write(mapping);
 657	}
 
 658
 659	__vma_link(mm, vma, prev, rb_link, rb_parent);
 660	__vma_link_file(vma);
 661
 662	if (mapping)
 663		i_mmap_unlock_write(mapping);
 664
 665	mm->map_count++;
 666	validate_mm(mm);
 667}
 668
 669/*
 670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 671 * mm's list and rbtree.  It has already been inserted into the interval tree.
 672 */
 673static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 674{
 675	struct vm_area_struct *prev;
 676	struct rb_node **rb_link, *rb_parent;
 677
 678	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 679			   &prev, &rb_link, &rb_parent))
 680		BUG();
 681	__vma_link(mm, vma, prev, rb_link, rb_parent);
 682	mm->map_count++;
 683}
 684
 685static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 686						struct vm_area_struct *vma,
 687						struct vm_area_struct *prev,
 688						bool has_prev,
 689						struct vm_area_struct *ignore)
 690{
 691	struct vm_area_struct *next;
 692
 693	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 694	next = vma->vm_next;
 695	if (has_prev)
 696		prev->vm_next = next;
 697	else {
 698		prev = vma->vm_prev;
 699		if (prev)
 700			prev->vm_next = next;
 701		else
 702			mm->mmap = next;
 703	}
 704	if (next)
 705		next->vm_prev = prev;
 706
 707	/* Kill the cache */
 708	vmacache_invalidate(mm);
 709}
 710
 711static inline void __vma_unlink_prev(struct mm_struct *mm,
 712				     struct vm_area_struct *vma,
 713				     struct vm_area_struct *prev)
 714{
 715	__vma_unlink_common(mm, vma, prev, true, vma);
 716}
 717
 718/*
 719 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 720 * is already present in an i_mmap tree without adjusting the tree.
 721 * The following helper function should be used when such adjustments
 722 * are necessary.  The "insert" vma (if any) is to be inserted
 723 * before we drop the necessary locks.
 724 */
 725int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 726	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 727	struct vm_area_struct *expand)
 728{
 729	struct mm_struct *mm = vma->vm_mm;
 730	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 
 731	struct address_space *mapping = NULL;
 732	struct rb_root_cached *root = NULL;
 733	struct anon_vma *anon_vma = NULL;
 734	struct file *file = vma->vm_file;
 735	bool start_changed = false, end_changed = false;
 736	long adjust_next = 0;
 737	int remove_next = 0;
 738
 739	if (next && !insert) {
 740		struct vm_area_struct *exporter = NULL, *importer = NULL;
 741
 742		if (end >= next->vm_end) {
 743			/*
 744			 * vma expands, overlapping all the next, and
 745			 * perhaps the one after too (mprotect case 6).
 746			 * The only other cases that gets here are
 747			 * case 1, case 7 and case 8.
 748			 */
 749			if (next == expand) {
 750				/*
 751				 * The only case where we don't expand "vma"
 752				 * and we expand "next" instead is case 8.
 753				 */
 754				VM_WARN_ON(end != next->vm_end);
 755				/*
 756				 * remove_next == 3 means we're
 757				 * removing "vma" and that to do so we
 758				 * swapped "vma" and "next".
 759				 */
 760				remove_next = 3;
 761				VM_WARN_ON(file != next->vm_file);
 762				swap(vma, next);
 763			} else {
 764				VM_WARN_ON(expand != vma);
 765				/*
 766				 * case 1, 6, 7, remove_next == 2 is case 6,
 767				 * remove_next == 1 is case 1 or 7.
 768				 */
 769				remove_next = 1 + (end > next->vm_end);
 770				VM_WARN_ON(remove_next == 2 &&
 771					   end != next->vm_next->vm_end);
 772				VM_WARN_ON(remove_next == 1 &&
 773					   end != next->vm_end);
 774				/* trim end to next, for case 6 first pass */
 775				end = next->vm_end;
 776			}
 777
 778			exporter = next;
 779			importer = vma;
 780
 781			/*
 782			 * If next doesn't have anon_vma, import from vma after
 783			 * next, if the vma overlaps with it.
 784			 */
 785			if (remove_next == 2 && !next->anon_vma)
 786				exporter = next->vm_next;
 787
 788		} else if (end > next->vm_start) {
 789			/*
 790			 * vma expands, overlapping part of the next:
 791			 * mprotect case 5 shifting the boundary up.
 792			 */
 793			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 794			exporter = next;
 795			importer = vma;
 796			VM_WARN_ON(expand != importer);
 797		} else if (end < vma->vm_end) {
 798			/*
 799			 * vma shrinks, and !insert tells it's not
 800			 * split_vma inserting another: so it must be
 801			 * mprotect case 4 shifting the boundary down.
 802			 */
 803			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 804			exporter = vma;
 805			importer = next;
 806			VM_WARN_ON(expand != importer);
 807		}
 808
 809		/*
 810		 * Easily overlooked: when mprotect shifts the boundary,
 811		 * make sure the expanding vma has anon_vma set if the
 812		 * shrinking vma had, to cover any anon pages imported.
 813		 */
 814		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 815			int error;
 816
 817			importer->anon_vma = exporter->anon_vma;
 818			error = anon_vma_clone(importer, exporter);
 819			if (error)
 820				return error;
 821		}
 822	}
 823again:
 824	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 825
 826	if (file) {
 827		mapping = file->f_mapping;
 828		root = &mapping->i_mmap;
 829		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 
 830
 831		if (adjust_next)
 832			uprobe_munmap(next, next->vm_start, next->vm_end);
 
 
 833
 834		i_mmap_lock_write(mapping);
 835		if (insert) {
 836			/*
 837			 * Put into interval tree now, so instantiated pages
 838			 * are visible to arm/parisc __flush_dcache_page
 839			 * throughout; but we cannot insert into address
 840			 * space until vma start or end is updated.
 841			 */
 842			__vma_link_file(insert);
 843		}
 844	}
 845
 
 
 846	anon_vma = vma->anon_vma;
 847	if (!anon_vma && adjust_next)
 848		anon_vma = next->anon_vma;
 849	if (anon_vma) {
 850		VM_WARN_ON(adjust_next && next->anon_vma &&
 851			   anon_vma != next->anon_vma);
 852		anon_vma_lock_write(anon_vma);
 853		anon_vma_interval_tree_pre_update_vma(vma);
 854		if (adjust_next)
 855			anon_vma_interval_tree_pre_update_vma(next);
 856	}
 857
 858	if (root) {
 859		flush_dcache_mmap_lock(mapping);
 860		vma_interval_tree_remove(vma, root);
 861		if (adjust_next)
 862			vma_interval_tree_remove(next, root);
 863	}
 864
 865	if (start != vma->vm_start) {
 866		vma->vm_start = start;
 867		start_changed = true;
 868	}
 869	if (end != vma->vm_end) {
 870		vma->vm_end = end;
 871		end_changed = true;
 872	}
 873	vma->vm_pgoff = pgoff;
 874	if (adjust_next) {
 875		next->vm_start += adjust_next << PAGE_SHIFT;
 876		next->vm_pgoff += adjust_next;
 877	}
 878
 879	if (root) {
 880		if (adjust_next)
 881			vma_interval_tree_insert(next, root);
 882		vma_interval_tree_insert(vma, root);
 883		flush_dcache_mmap_unlock(mapping);
 884	}
 885
 886	if (remove_next) {
 887		/*
 888		 * vma_merge has merged next into vma, and needs
 889		 * us to remove next before dropping the locks.
 890		 */
 891		if (remove_next != 3)
 892			__vma_unlink_prev(mm, next, vma);
 893		else
 894			/*
 895			 * vma is not before next if they've been
 896			 * swapped.
 897			 *
 898			 * pre-swap() next->vm_start was reduced so
 899			 * tell validate_mm_rb to ignore pre-swap()
 900			 * "next" (which is stored in post-swap()
 901			 * "vma").
 902			 */
 903			__vma_unlink_common(mm, next, NULL, false, vma);
 904		if (file)
 905			__remove_shared_vm_struct(next, file, mapping);
 906	} else if (insert) {
 907		/*
 908		 * split_vma has split insert from vma, and needs
 909		 * us to insert it before dropping the locks
 910		 * (it may either follow vma or precede it).
 911		 */
 912		__insert_vm_struct(mm, insert);
 913	} else {
 914		if (start_changed)
 915			vma_gap_update(vma);
 916		if (end_changed) {
 917			if (!next)
 918				mm->highest_vm_end = vm_end_gap(vma);
 919			else if (!adjust_next)
 920				vma_gap_update(next);
 921		}
 922	}
 923
 924	if (anon_vma) {
 925		anon_vma_interval_tree_post_update_vma(vma);
 926		if (adjust_next)
 927			anon_vma_interval_tree_post_update_vma(next);
 928		anon_vma_unlock_write(anon_vma);
 929	}
 930	if (mapping)
 931		i_mmap_unlock_write(mapping);
 932
 933	if (root) {
 934		uprobe_mmap(vma);
 935
 936		if (adjust_next)
 937			uprobe_mmap(next);
 938	}
 939
 940	if (remove_next) {
 941		if (file) {
 942			uprobe_munmap(next, next->vm_start, next->vm_end);
 943			fput(file);
 944		}
 945		if (next->anon_vma)
 946			anon_vma_merge(vma, next);
 947		mm->map_count--;
 948		mpol_put(vma_policy(next));
 949		vm_area_free(next);
 950		/*
 951		 * In mprotect's case 6 (see comments on vma_merge),
 952		 * we must remove another next too. It would clutter
 953		 * up the code too much to do both in one go.
 954		 */
 955		if (remove_next != 3) {
 956			/*
 957			 * If "next" was removed and vma->vm_end was
 958			 * expanded (up) over it, in turn
 959			 * "next->vm_prev->vm_end" changed and the
 960			 * "vma->vm_next" gap must be updated.
 961			 */
 962			next = vma->vm_next;
 963		} else {
 964			/*
 965			 * For the scope of the comment "next" and
 966			 * "vma" considered pre-swap(): if "vma" was
 967			 * removed, next->vm_start was expanded (down)
 968			 * over it and the "next" gap must be updated.
 969			 * Because of the swap() the post-swap() "vma"
 970			 * actually points to pre-swap() "next"
 971			 * (post-swap() "next" as opposed is now a
 972			 * dangling pointer).
 973			 */
 974			next = vma;
 975		}
 976		if (remove_next == 2) {
 977			remove_next = 1;
 978			end = next->vm_end;
 979			goto again;
 980		}
 981		else if (next)
 982			vma_gap_update(next);
 983		else {
 984			/*
 985			 * If remove_next == 2 we obviously can't
 986			 * reach this path.
 987			 *
 988			 * If remove_next == 3 we can't reach this
 989			 * path because pre-swap() next is always not
 990			 * NULL. pre-swap() "next" is not being
 991			 * removed and its next->vm_end is not altered
 992			 * (and furthermore "end" already matches
 993			 * next->vm_end in remove_next == 3).
 994			 *
 995			 * We reach this only in the remove_next == 1
 996			 * case if the "next" vma that was removed was
 997			 * the highest vma of the mm. However in such
 998			 * case next->vm_end == "end" and the extended
 999			 * "vma" has vma->vm_end == next->vm_end so
1000			 * mm->highest_vm_end doesn't need any update
1001			 * in remove_next == 1 case.
1002			 */
1003			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1004		}
1005	}
1006	if (insert && file)
1007		uprobe_mmap(insert);
1008
1009	validate_mm(mm);
1010
1011	return 0;
1012}
1013
1014/*
1015 * If the vma has a ->close operation then the driver probably needs to release
1016 * per-vma resources, so we don't attempt to merge those.
1017 */
1018static inline int is_mergeable_vma(struct vm_area_struct *vma,
1019				struct file *file, unsigned long vm_flags,
1020				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1021{
1022	/*
1023	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1024	 * match the flags but dirty bit -- the caller should mark
1025	 * merged VMA as dirty. If dirty bit won't be excluded from
1026	 * comparison, we increase pressure on the memory system forcing
1027	 * the kernel to generate new VMAs when old one could be
1028	 * extended instead.
1029	 */
1030	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1031		return 0;
1032	if (vma->vm_file != file)
1033		return 0;
1034	if (vma->vm_ops && vma->vm_ops->close)
1035		return 0;
1036	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1037		return 0;
1038	return 1;
1039}
1040
1041static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1042					struct anon_vma *anon_vma2,
1043					struct vm_area_struct *vma)
1044{
1045	/*
1046	 * The list_is_singular() test is to avoid merging VMA cloned from
1047	 * parents. This can improve scalability caused by anon_vma lock.
1048	 */
1049	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1050		list_is_singular(&vma->anon_vma_chain)))
1051		return 1;
1052	return anon_vma1 == anon_vma2;
1053}
1054
1055/*
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * in front of (at a lower virtual address and file offset than) the vma.
1058 *
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061 *
1062 * We don't check here for the merged mmap wrapping around the end of pagecache
1063 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1064 * wrap, nor mmaps which cover the final page at index -1UL.
1065 */
1066static int
1067can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1068		     struct anon_vma *anon_vma, struct file *file,
1069		     pgoff_t vm_pgoff,
1070		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1071{
1072	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1073	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1074		if (vma->vm_pgoff == vm_pgoff)
1075			return 1;
1076	}
1077	return 0;
1078}
1079
1080/*
1081 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1082 * beyond (at a higher virtual address and file offset than) the vma.
1083 *
1084 * We cannot merge two vmas if they have differently assigned (non-NULL)
1085 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1086 */
1087static int
1088can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1089		    struct anon_vma *anon_vma, struct file *file,
1090		    pgoff_t vm_pgoff,
1091		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1092{
1093	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1094	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1095		pgoff_t vm_pglen;
1096		vm_pglen = vma_pages(vma);
1097		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1098			return 1;
1099	}
1100	return 0;
1101}
1102
1103/*
1104 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1105 * whether that can be merged with its predecessor or its successor.
1106 * Or both (it neatly fills a hole).
1107 *
1108 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1109 * certain not to be mapped by the time vma_merge is called; but when
1110 * called for mprotect, it is certain to be already mapped (either at
1111 * an offset within prev, or at the start of next), and the flags of
1112 * this area are about to be changed to vm_flags - and the no-change
1113 * case has already been eliminated.
1114 *
1115 * The following mprotect cases have to be considered, where AAAA is
1116 * the area passed down from mprotect_fixup, never extending beyond one
1117 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1118 *
1119 *     AAAA             AAAA                AAAA          AAAA
1120 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1121 *    cannot merge    might become    might become    might become
1122 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1123 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1124 *    mremap move:                                    PPPPXXXXXXXX 8
1125 *        AAAA
1126 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1127 *    might become    case 1 below    case 2 below    case 3 below
1128 *
1129 * It is important for case 8 that the vma NNNN overlapping the
1130 * region AAAA is never going to extended over XXXX. Instead XXXX must
1131 * be extended in region AAAA and NNNN must be removed. This way in
1132 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1133 * rmap_locks, the properties of the merged vma will be already
1134 * correct for the whole merged range. Some of those properties like
1135 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1136 * be correct for the whole merged range immediately after the
1137 * rmap_locks are released. Otherwise if XXXX would be removed and
1138 * NNNN would be extended over the XXXX range, remove_migration_ptes
1139 * or other rmap walkers (if working on addresses beyond the "end"
1140 * parameter) may establish ptes with the wrong permissions of NNNN
1141 * instead of the right permissions of XXXX.
1142 */
1143struct vm_area_struct *vma_merge(struct mm_struct *mm,
1144			struct vm_area_struct *prev, unsigned long addr,
1145			unsigned long end, unsigned long vm_flags,
1146			struct anon_vma *anon_vma, struct file *file,
1147			pgoff_t pgoff, struct mempolicy *policy,
1148			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1149{
1150	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1151	struct vm_area_struct *area, *next;
1152	int err;
1153
1154	/*
1155	 * We later require that vma->vm_flags == vm_flags,
1156	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1157	 */
1158	if (vm_flags & VM_SPECIAL)
1159		return NULL;
1160
1161	if (prev)
1162		next = prev->vm_next;
1163	else
1164		next = mm->mmap;
1165	area = next;
1166	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1167		next = next->vm_next;
1168
1169	/* verify some invariant that must be enforced by the caller */
1170	VM_WARN_ON(prev && addr <= prev->vm_start);
1171	VM_WARN_ON(area && end > area->vm_end);
1172	VM_WARN_ON(addr >= end);
1173
1174	/*
1175	 * Can it merge with the predecessor?
1176	 */
1177	if (prev && prev->vm_end == addr &&
1178			mpol_equal(vma_policy(prev), policy) &&
1179			can_vma_merge_after(prev, vm_flags,
1180					    anon_vma, file, pgoff,
1181					    vm_userfaultfd_ctx)) {
1182		/*
1183		 * OK, it can.  Can we now merge in the successor as well?
1184		 */
1185		if (next && end == next->vm_start &&
1186				mpol_equal(policy, vma_policy(next)) &&
1187				can_vma_merge_before(next, vm_flags,
1188						     anon_vma, file,
1189						     pgoff+pglen,
1190						     vm_userfaultfd_ctx) &&
1191				is_mergeable_anon_vma(prev->anon_vma,
1192						      next->anon_vma, NULL)) {
1193							/* cases 1, 6 */
1194			err = __vma_adjust(prev, prev->vm_start,
1195					 next->vm_end, prev->vm_pgoff, NULL,
1196					 prev);
1197		} else					/* cases 2, 5, 7 */
1198			err = __vma_adjust(prev, prev->vm_start,
1199					 end, prev->vm_pgoff, NULL, prev);
1200		if (err)
1201			return NULL;
1202		khugepaged_enter_vma_merge(prev, vm_flags);
1203		return prev;
1204	}
1205
1206	/*
1207	 * Can this new request be merged in front of next?
1208	 */
1209	if (next && end == next->vm_start &&
1210			mpol_equal(policy, vma_policy(next)) &&
1211			can_vma_merge_before(next, vm_flags,
1212					     anon_vma, file, pgoff+pglen,
1213					     vm_userfaultfd_ctx)) {
1214		if (prev && addr < prev->vm_end)	/* case 4 */
1215			err = __vma_adjust(prev, prev->vm_start,
1216					 addr, prev->vm_pgoff, NULL, next);
1217		else {					/* cases 3, 8 */
1218			err = __vma_adjust(area, addr, next->vm_end,
1219					 next->vm_pgoff - pglen, NULL, next);
1220			/*
1221			 * In case 3 area is already equal to next and
1222			 * this is a noop, but in case 8 "area" has
1223			 * been removed and next was expanded over it.
1224			 */
1225			area = next;
1226		}
1227		if (err)
1228			return NULL;
1229		khugepaged_enter_vma_merge(area, vm_flags);
1230		return area;
1231	}
1232
1233	return NULL;
1234}
1235
1236/*
1237 * Rough compatbility check to quickly see if it's even worth looking
1238 * at sharing an anon_vma.
1239 *
1240 * They need to have the same vm_file, and the flags can only differ
1241 * in things that mprotect may change.
1242 *
1243 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1244 * we can merge the two vma's. For example, we refuse to merge a vma if
1245 * there is a vm_ops->close() function, because that indicates that the
1246 * driver is doing some kind of reference counting. But that doesn't
1247 * really matter for the anon_vma sharing case.
1248 */
1249static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1250{
1251	return a->vm_end == b->vm_start &&
1252		mpol_equal(vma_policy(a), vma_policy(b)) &&
1253		a->vm_file == b->vm_file &&
1254		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1255		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1256}
1257
1258/*
1259 * Do some basic sanity checking to see if we can re-use the anon_vma
1260 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1261 * the same as 'old', the other will be the new one that is trying
1262 * to share the anon_vma.
1263 *
1264 * NOTE! This runs with mm_sem held for reading, so it is possible that
1265 * the anon_vma of 'old' is concurrently in the process of being set up
1266 * by another page fault trying to merge _that_. But that's ok: if it
1267 * is being set up, that automatically means that it will be a singleton
1268 * acceptable for merging, so we can do all of this optimistically. But
1269 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1270 *
1271 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1272 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1273 * is to return an anon_vma that is "complex" due to having gone through
1274 * a fork).
1275 *
1276 * We also make sure that the two vma's are compatible (adjacent,
1277 * and with the same memory policies). That's all stable, even with just
1278 * a read lock on the mm_sem.
1279 */
1280static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1281{
1282	if (anon_vma_compatible(a, b)) {
1283		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1284
1285		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1286			return anon_vma;
1287	}
1288	return NULL;
1289}
1290
1291/*
1292 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1293 * neighbouring vmas for a suitable anon_vma, before it goes off
1294 * to allocate a new anon_vma.  It checks because a repetitive
1295 * sequence of mprotects and faults may otherwise lead to distinct
1296 * anon_vmas being allocated, preventing vma merge in subsequent
1297 * mprotect.
1298 */
1299struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1300{
1301	struct anon_vma *anon_vma;
1302	struct vm_area_struct *near;
1303
1304	near = vma->vm_next;
1305	if (!near)
1306		goto try_prev;
1307
1308	anon_vma = reusable_anon_vma(near, vma, near);
1309	if (anon_vma)
1310		return anon_vma;
1311try_prev:
1312	near = vma->vm_prev;
1313	if (!near)
1314		goto none;
1315
1316	anon_vma = reusable_anon_vma(near, near, vma);
1317	if (anon_vma)
1318		return anon_vma;
1319none:
1320	/*
1321	 * There's no absolute need to look only at touching neighbours:
1322	 * we could search further afield for "compatible" anon_vmas.
1323	 * But it would probably just be a waste of time searching,
1324	 * or lead to too many vmas hanging off the same anon_vma.
1325	 * We're trying to allow mprotect remerging later on,
1326	 * not trying to minimize memory used for anon_vmas.
1327	 */
1328	return NULL;
1329}
1330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331/*
1332 * If a hint addr is less than mmap_min_addr change hint to be as
1333 * low as possible but still greater than mmap_min_addr
1334 */
1335static inline unsigned long round_hint_to_min(unsigned long hint)
1336{
1337	hint &= PAGE_MASK;
1338	if (((void *)hint != NULL) &&
1339	    (hint < mmap_min_addr))
1340		return PAGE_ALIGN(mmap_min_addr);
1341	return hint;
1342}
1343
1344static inline int mlock_future_check(struct mm_struct *mm,
1345				     unsigned long flags,
1346				     unsigned long len)
1347{
1348	unsigned long locked, lock_limit;
1349
1350	/*  mlock MCL_FUTURE? */
1351	if (flags & VM_LOCKED) {
1352		locked = len >> PAGE_SHIFT;
1353		locked += mm->locked_vm;
1354		lock_limit = rlimit(RLIMIT_MEMLOCK);
1355		lock_limit >>= PAGE_SHIFT;
1356		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1357			return -EAGAIN;
1358	}
1359	return 0;
1360}
1361
1362static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1363{
1364	if (S_ISREG(inode->i_mode))
1365		return MAX_LFS_FILESIZE;
1366
1367	if (S_ISBLK(inode->i_mode))
1368		return MAX_LFS_FILESIZE;
1369
1370	if (S_ISSOCK(inode->i_mode))
1371		return MAX_LFS_FILESIZE;
1372
1373	/* Special "we do even unsigned file positions" case */
1374	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1375		return 0;
1376
1377	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1378	return ULONG_MAX;
1379}
1380
1381static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1382				unsigned long pgoff, unsigned long len)
1383{
1384	u64 maxsize = file_mmap_size_max(file, inode);
1385
1386	if (maxsize && len > maxsize)
1387		return false;
1388	maxsize -= len;
1389	if (pgoff > maxsize >> PAGE_SHIFT)
1390		return false;
1391	return true;
1392}
1393
1394/*
1395 * The caller must hold down_write(&current->mm->mmap_sem).
1396 */
1397unsigned long do_mmap(struct file *file, unsigned long addr,
 
1398			unsigned long len, unsigned long prot,
1399			unsigned long flags, vm_flags_t vm_flags,
1400			unsigned long pgoff, unsigned long *populate,
1401			struct list_head *uf)
1402{
1403	struct mm_struct *mm = current->mm;
1404	int pkey = 0;
1405
1406	*populate = 0;
1407
1408	if (!len)
1409		return -EINVAL;
1410
1411	/*
1412	 * Does the application expect PROT_READ to imply PROT_EXEC?
1413	 *
1414	 * (the exception is when the underlying filesystem is noexec
1415	 *  mounted, in which case we dont add PROT_EXEC.)
1416	 */
1417	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1418		if (!(file && path_noexec(&file->f_path)))
1419			prot |= PROT_EXEC;
1420
1421	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1422	if (flags & MAP_FIXED_NOREPLACE)
1423		flags |= MAP_FIXED;
1424
1425	if (!(flags & MAP_FIXED))
1426		addr = round_hint_to_min(addr);
1427
1428	/* Careful about overflows.. */
1429	len = PAGE_ALIGN(len);
1430	if (!len)
1431		return -ENOMEM;
1432
1433	/* offset overflow? */
1434	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1435		return -EOVERFLOW;
1436
1437	/* Too many mappings? */
1438	if (mm->map_count > sysctl_max_map_count)
1439		return -ENOMEM;
1440
1441	/* Obtain the address to map to. we verify (or select) it and ensure
1442	 * that it represents a valid section of the address space.
1443	 */
1444	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1445	if (offset_in_page(addr))
1446		return addr;
1447
1448	if (flags & MAP_FIXED_NOREPLACE) {
1449		struct vm_area_struct *vma = find_vma(mm, addr);
1450
1451		if (vma && vma->vm_start < addr + len)
1452			return -EEXIST;
1453	}
1454
1455	if (prot == PROT_EXEC) {
1456		pkey = execute_only_pkey(mm);
1457		if (pkey < 0)
1458			pkey = 0;
1459	}
1460
1461	/* Do simple checking here so the lower-level routines won't have
1462	 * to. we assume access permissions have been handled by the open
1463	 * of the memory object, so we don't do any here.
1464	 */
1465	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1466			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1467
1468	if (flags & MAP_LOCKED)
1469		if (!can_do_mlock())
1470			return -EPERM;
1471
1472	if (mlock_future_check(mm, vm_flags, len))
1473		return -EAGAIN;
1474
1475	if (file) {
1476		struct inode *inode = file_inode(file);
1477		unsigned long flags_mask;
1478
1479		if (!file_mmap_ok(file, inode, pgoff, len))
1480			return -EOVERFLOW;
1481
1482		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1483
1484		switch (flags & MAP_TYPE) {
1485		case MAP_SHARED:
1486			/*
1487			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1488			 * flags. E.g. MAP_SYNC is dangerous to use with
1489			 * MAP_SHARED as you don't know which consistency model
1490			 * you will get. We silently ignore unsupported flags
1491			 * with MAP_SHARED to preserve backward compatibility.
1492			 */
1493			flags &= LEGACY_MAP_MASK;
1494			/* fall through */
1495		case MAP_SHARED_VALIDATE:
1496			if (flags & ~flags_mask)
1497				return -EOPNOTSUPP;
1498			if (prot & PROT_WRITE) {
1499				if (!(file->f_mode & FMODE_WRITE))
1500					return -EACCES;
1501				if (IS_SWAPFILE(file->f_mapping->host))
1502					return -ETXTBSY;
1503			}
1504
1505			/*
1506			 * Make sure we don't allow writing to an append-only
1507			 * file..
1508			 */
1509			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1510				return -EACCES;
1511
1512			/*
1513			 * Make sure there are no mandatory locks on the file.
1514			 */
1515			if (locks_verify_locked(file))
1516				return -EAGAIN;
1517
1518			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519			if (!(file->f_mode & FMODE_WRITE))
1520				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1521
1522			/* fall through */
1523		case MAP_PRIVATE:
1524			if (!(file->f_mode & FMODE_READ))
1525				return -EACCES;
1526			if (path_noexec(&file->f_path)) {
1527				if (vm_flags & VM_EXEC)
1528					return -EPERM;
1529				vm_flags &= ~VM_MAYEXEC;
1530			}
1531
1532			if (!file->f_op->mmap)
1533				return -ENODEV;
1534			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1535				return -EINVAL;
1536			break;
1537
1538		default:
1539			return -EINVAL;
1540		}
1541	} else {
1542		switch (flags & MAP_TYPE) {
1543		case MAP_SHARED:
1544			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545				return -EINVAL;
1546			/*
1547			 * Ignore pgoff.
1548			 */
1549			pgoff = 0;
1550			vm_flags |= VM_SHARED | VM_MAYSHARE;
1551			break;
1552		case MAP_PRIVATE:
1553			/*
1554			 * Set pgoff according to addr for anon_vma.
1555			 */
1556			pgoff = addr >> PAGE_SHIFT;
1557			break;
1558		default:
1559			return -EINVAL;
1560		}
1561	}
1562
1563	/*
1564	 * Set 'VM_NORESERVE' if we should not account for the
1565	 * memory use of this mapping.
1566	 */
1567	if (flags & MAP_NORESERVE) {
1568		/* We honor MAP_NORESERVE if allowed to overcommit */
1569		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1570			vm_flags |= VM_NORESERVE;
1571
1572		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1573		if (file && is_file_hugepages(file))
1574			vm_flags |= VM_NORESERVE;
1575	}
1576
1577	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1578	if (!IS_ERR_VALUE(addr) &&
1579	    ((vm_flags & VM_LOCKED) ||
1580	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1581		*populate = len;
1582	return addr;
1583}
1584
1585unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1586			      unsigned long prot, unsigned long flags,
1587			      unsigned long fd, unsigned long pgoff)
1588{
1589	struct file *file = NULL;
1590	unsigned long retval;
1591
1592	addr = untagged_addr(addr);
1593
1594	if (!(flags & MAP_ANONYMOUS)) {
1595		audit_mmap_fd(fd, flags);
1596		file = fget(fd);
1597		if (!file)
1598			return -EBADF;
1599		if (is_file_hugepages(file))
1600			len = ALIGN(len, huge_page_size(hstate_file(file)));
1601		retval = -EINVAL;
1602		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1603			goto out_fput;
1604	} else if (flags & MAP_HUGETLB) {
1605		struct user_struct *user = NULL;
1606		struct hstate *hs;
1607
1608		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609		if (!hs)
1610			return -EINVAL;
1611
1612		len = ALIGN(len, huge_page_size(hs));
1613		/*
1614		 * VM_NORESERVE is used because the reservations will be
1615		 * taken when vm_ops->mmap() is called
1616		 * A dummy user value is used because we are not locking
1617		 * memory so no accounting is necessary
1618		 */
1619		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1620				VM_NORESERVE,
1621				&user, HUGETLB_ANONHUGE_INODE,
1622				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1623		if (IS_ERR(file))
1624			return PTR_ERR(file);
1625	}
1626
1627	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1628
1629	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1630out_fput:
1631	if (file)
1632		fput(file);
 
1633	return retval;
1634}
1635
1636SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1637		unsigned long, prot, unsigned long, flags,
1638		unsigned long, fd, unsigned long, pgoff)
1639{
1640	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1641}
1642
1643#ifdef __ARCH_WANT_SYS_OLD_MMAP
1644struct mmap_arg_struct {
1645	unsigned long addr;
1646	unsigned long len;
1647	unsigned long prot;
1648	unsigned long flags;
1649	unsigned long fd;
1650	unsigned long offset;
1651};
1652
1653SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1654{
1655	struct mmap_arg_struct a;
1656
1657	if (copy_from_user(&a, arg, sizeof(a)))
1658		return -EFAULT;
1659	if (offset_in_page(a.offset))
1660		return -EINVAL;
1661
1662	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1663			       a.offset >> PAGE_SHIFT);
1664}
1665#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1666
1667/*
1668 * Some shared mappings will want the pages marked read-only
1669 * to track write events. If so, we'll downgrade vm_page_prot
1670 * to the private version (using protection_map[] without the
1671 * VM_SHARED bit).
1672 */
1673int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1674{
1675	vm_flags_t vm_flags = vma->vm_flags;
1676	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1677
1678	/* If it was private or non-writable, the write bit is already clear */
1679	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1680		return 0;
1681
1682	/* The backer wishes to know when pages are first written to? */
1683	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1684		return 1;
1685
1686	/* The open routine did something to the protections that pgprot_modify
1687	 * won't preserve? */
1688	if (pgprot_val(vm_page_prot) !=
1689	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1690		return 0;
1691
1692	/* Do we need to track softdirty? */
1693	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1694		return 1;
1695
1696	/* Specialty mapping? */
1697	if (vm_flags & VM_PFNMAP)
1698		return 0;
1699
1700	/* Can the mapping track the dirty pages? */
1701	return vma->vm_file && vma->vm_file->f_mapping &&
1702		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1703}
1704
1705/*
1706 * We account for memory if it's a private writeable mapping,
1707 * not hugepages and VM_NORESERVE wasn't set.
1708 */
1709static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1710{
1711	/*
1712	 * hugetlb has its own accounting separate from the core VM
1713	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1714	 */
1715	if (file && is_file_hugepages(file))
1716		return 0;
1717
1718	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1719}
1720
1721unsigned long mmap_region(struct file *file, unsigned long addr,
1722		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1723		struct list_head *uf)
1724{
1725	struct mm_struct *mm = current->mm;
1726	struct vm_area_struct *vma, *prev;
1727	int error;
1728	struct rb_node **rb_link, *rb_parent;
1729	unsigned long charged = 0;
1730
1731	/* Check against address space limit. */
1732	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1733		unsigned long nr_pages;
1734
1735		/*
1736		 * MAP_FIXED may remove pages of mappings that intersects with
1737		 * requested mapping. Account for the pages it would unmap.
1738		 */
 
 
 
1739		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1740
1741		if (!may_expand_vm(mm, vm_flags,
1742					(len >> PAGE_SHIFT) - nr_pages))
1743			return -ENOMEM;
1744	}
1745
1746	/* Clear old maps */
1747	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1748			      &rb_parent)) {
1749		if (do_munmap(mm, addr, len, uf))
 
1750			return -ENOMEM;
 
1751	}
1752
1753	/*
1754	 * Private writable mapping: check memory availability
1755	 */
1756	if (accountable_mapping(file, vm_flags)) {
1757		charged = len >> PAGE_SHIFT;
1758		if (security_vm_enough_memory_mm(mm, charged))
1759			return -ENOMEM;
1760		vm_flags |= VM_ACCOUNT;
1761	}
1762
1763	/*
1764	 * Can we just expand an old mapping?
1765	 */
1766	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1768	if (vma)
1769		goto out;
1770
1771	/*
1772	 * Determine the object being mapped and call the appropriate
1773	 * specific mapper. the address has already been validated, but
1774	 * not unmapped, but the maps are removed from the list.
1775	 */
1776	vma = vm_area_alloc(mm);
1777	if (!vma) {
1778		error = -ENOMEM;
1779		goto unacct_error;
1780	}
1781
 
1782	vma->vm_start = addr;
1783	vma->vm_end = addr + len;
1784	vma->vm_flags = vm_flags;
1785	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786	vma->vm_pgoff = pgoff;
 
1787
1788	if (file) {
1789		if (vm_flags & VM_DENYWRITE) {
1790			error = deny_write_access(file);
1791			if (error)
1792				goto free_vma;
1793		}
1794		if (vm_flags & VM_SHARED) {
1795			error = mapping_map_writable(file->f_mapping);
1796			if (error)
1797				goto allow_write_and_free_vma;
1798		}
1799
1800		/* ->mmap() can change vma->vm_file, but must guarantee that
1801		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1802		 * and map writably if VM_SHARED is set. This usually means the
1803		 * new file must not have been exposed to user-space, yet.
1804		 */
1805		vma->vm_file = get_file(file);
1806		error = call_mmap(file, vma);
1807		if (error)
1808			goto unmap_and_free_vma;
1809
1810		/* Can addr have changed??
1811		 *
1812		 * Answer: Yes, several device drivers can do it in their
1813		 *         f_op->mmap method. -DaveM
1814		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1815		 *      be updated for vma_link()
1816		 */
1817		WARN_ON_ONCE(addr != vma->vm_start);
1818
1819		addr = vma->vm_start;
1820		vm_flags = vma->vm_flags;
1821	} else if (vm_flags & VM_SHARED) {
1822		error = shmem_zero_setup(vma);
1823		if (error)
1824			goto free_vma;
1825	} else {
1826		vma_set_anonymous(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
1827	}
1828
1829	vma_link(mm, vma, prev, rb_link, rb_parent);
1830	/* Once vma denies write, undo our temporary denial count */
1831	if (file) {
1832		if (vm_flags & VM_SHARED)
1833			mapping_unmap_writable(file->f_mapping);
1834		if (vm_flags & VM_DENYWRITE)
1835			allow_write_access(file);
1836	}
1837	file = vma->vm_file;
1838out:
1839	perf_event_mmap(vma);
1840
1841	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1842	if (vm_flags & VM_LOCKED) {
1843		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1844					is_vm_hugetlb_page(vma) ||
1845					vma == get_gate_vma(current->mm))
1846			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1847		else
1848			mm->locked_vm += (len >> PAGE_SHIFT);
 
 
1849	}
1850
1851	if (file)
1852		uprobe_mmap(vma);
1853
1854	/*
1855	 * New (or expanded) vma always get soft dirty status.
1856	 * Otherwise user-space soft-dirty page tracker won't
1857	 * be able to distinguish situation when vma area unmapped,
1858	 * then new mapped in-place (which must be aimed as
1859	 * a completely new data area).
1860	 */
1861	vma->vm_flags |= VM_SOFTDIRTY;
1862
1863	vma_set_page_prot(vma);
1864
1865	return addr;
1866
1867unmap_and_free_vma:
 
 
1868	vma->vm_file = NULL;
1869	fput(file);
1870
1871	/* Undo any partial mapping done by a device driver. */
1872	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1873	charged = 0;
1874	if (vm_flags & VM_SHARED)
1875		mapping_unmap_writable(file->f_mapping);
1876allow_write_and_free_vma:
1877	if (vm_flags & VM_DENYWRITE)
1878		allow_write_access(file);
1879free_vma:
1880	vm_area_free(vma);
1881unacct_error:
1882	if (charged)
1883		vm_unacct_memory(charged);
1884	return error;
1885}
1886
1887unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1888{
1889	/*
1890	 * We implement the search by looking for an rbtree node that
1891	 * immediately follows a suitable gap. That is,
1892	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1893	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1894	 * - gap_end - gap_start >= length
1895	 */
1896
1897	struct mm_struct *mm = current->mm;
1898	struct vm_area_struct *vma;
1899	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900
1901	/* Adjust search length to account for worst case alignment overhead */
1902	length = info->length + info->align_mask;
1903	if (length < info->length)
1904		return -ENOMEM;
1905
1906	/* Adjust search limits by the desired length */
1907	if (info->high_limit < length)
1908		return -ENOMEM;
1909	high_limit = info->high_limit - length;
1910
1911	if (info->low_limit > high_limit)
1912		return -ENOMEM;
1913	low_limit = info->low_limit + length;
1914
1915	/* Check if rbtree root looks promising */
1916	if (RB_EMPTY_ROOT(&mm->mm_rb))
1917		goto check_highest;
1918	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919	if (vma->rb_subtree_gap < length)
1920		goto check_highest;
1921
1922	while (true) {
1923		/* Visit left subtree if it looks promising */
1924		gap_end = vm_start_gap(vma);
1925		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1926			struct vm_area_struct *left =
1927				rb_entry(vma->vm_rb.rb_left,
1928					 struct vm_area_struct, vm_rb);
1929			if (left->rb_subtree_gap >= length) {
1930				vma = left;
1931				continue;
1932			}
1933		}
1934
1935		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1936check_current:
1937		/* Check if current node has a suitable gap */
1938		if (gap_start > high_limit)
1939			return -ENOMEM;
1940		if (gap_end >= low_limit &&
1941		    gap_end > gap_start && gap_end - gap_start >= length)
1942			goto found;
1943
1944		/* Visit right subtree if it looks promising */
1945		if (vma->vm_rb.rb_right) {
1946			struct vm_area_struct *right =
1947				rb_entry(vma->vm_rb.rb_right,
1948					 struct vm_area_struct, vm_rb);
1949			if (right->rb_subtree_gap >= length) {
1950				vma = right;
1951				continue;
1952			}
1953		}
1954
1955		/* Go back up the rbtree to find next candidate node */
1956		while (true) {
1957			struct rb_node *prev = &vma->vm_rb;
1958			if (!rb_parent(prev))
1959				goto check_highest;
1960			vma = rb_entry(rb_parent(prev),
1961				       struct vm_area_struct, vm_rb);
1962			if (prev == vma->vm_rb.rb_left) {
1963				gap_start = vm_end_gap(vma->vm_prev);
1964				gap_end = vm_start_gap(vma);
1965				goto check_current;
1966			}
1967		}
1968	}
1969
1970check_highest:
1971	/* Check highest gap, which does not precede any rbtree node */
1972	gap_start = mm->highest_vm_end;
1973	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1974	if (gap_start > high_limit)
1975		return -ENOMEM;
1976
1977found:
1978	/* We found a suitable gap. Clip it with the original low_limit. */
1979	if (gap_start < info->low_limit)
1980		gap_start = info->low_limit;
1981
1982	/* Adjust gap address to the desired alignment */
1983	gap_start += (info->align_offset - gap_start) & info->align_mask;
1984
1985	VM_BUG_ON(gap_start + info->length > info->high_limit);
1986	VM_BUG_ON(gap_start + info->length > gap_end);
1987	return gap_start;
1988}
1989
1990unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1991{
1992	struct mm_struct *mm = current->mm;
1993	struct vm_area_struct *vma;
1994	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1995
1996	/* Adjust search length to account for worst case alignment overhead */
1997	length = info->length + info->align_mask;
1998	if (length < info->length)
1999		return -ENOMEM;
2000
2001	/*
2002	 * Adjust search limits by the desired length.
2003	 * See implementation comment at top of unmapped_area().
2004	 */
2005	gap_end = info->high_limit;
2006	if (gap_end < length)
2007		return -ENOMEM;
2008	high_limit = gap_end - length;
2009
2010	if (info->low_limit > high_limit)
2011		return -ENOMEM;
2012	low_limit = info->low_limit + length;
2013
2014	/* Check highest gap, which does not precede any rbtree node */
2015	gap_start = mm->highest_vm_end;
2016	if (gap_start <= high_limit)
2017		goto found_highest;
2018
2019	/* Check if rbtree root looks promising */
2020	if (RB_EMPTY_ROOT(&mm->mm_rb))
2021		return -ENOMEM;
2022	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2023	if (vma->rb_subtree_gap < length)
2024		return -ENOMEM;
2025
2026	while (true) {
2027		/* Visit right subtree if it looks promising */
2028		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2029		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2030			struct vm_area_struct *right =
2031				rb_entry(vma->vm_rb.rb_right,
2032					 struct vm_area_struct, vm_rb);
2033			if (right->rb_subtree_gap >= length) {
2034				vma = right;
2035				continue;
2036			}
2037		}
2038
2039check_current:
2040		/* Check if current node has a suitable gap */
2041		gap_end = vm_start_gap(vma);
2042		if (gap_end < low_limit)
2043			return -ENOMEM;
2044		if (gap_start <= high_limit &&
2045		    gap_end > gap_start && gap_end - gap_start >= length)
2046			goto found;
2047
2048		/* Visit left subtree if it looks promising */
2049		if (vma->vm_rb.rb_left) {
2050			struct vm_area_struct *left =
2051				rb_entry(vma->vm_rb.rb_left,
2052					 struct vm_area_struct, vm_rb);
2053			if (left->rb_subtree_gap >= length) {
2054				vma = left;
2055				continue;
2056			}
2057		}
2058
2059		/* Go back up the rbtree to find next candidate node */
2060		while (true) {
2061			struct rb_node *prev = &vma->vm_rb;
2062			if (!rb_parent(prev))
2063				return -ENOMEM;
2064			vma = rb_entry(rb_parent(prev),
2065				       struct vm_area_struct, vm_rb);
2066			if (prev == vma->vm_rb.rb_right) {
2067				gap_start = vma->vm_prev ?
2068					vm_end_gap(vma->vm_prev) : 0;
2069				goto check_current;
2070			}
2071		}
2072	}
2073
2074found:
2075	/* We found a suitable gap. Clip it with the original high_limit. */
2076	if (gap_end > info->high_limit)
2077		gap_end = info->high_limit;
2078
2079found_highest:
2080	/* Compute highest gap address at the desired alignment */
2081	gap_end -= info->length;
2082	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2083
2084	VM_BUG_ON(gap_end < info->low_limit);
2085	VM_BUG_ON(gap_end < gap_start);
2086	return gap_end;
2087}
2088
2089
2090#ifndef arch_get_mmap_end
2091#define arch_get_mmap_end(addr)	(TASK_SIZE)
2092#endif
2093
2094#ifndef arch_get_mmap_base
2095#define arch_get_mmap_base(addr, base) (base)
2096#endif
2097
2098/* Get an address range which is currently unmapped.
2099 * For shmat() with addr=0.
2100 *
2101 * Ugly calling convention alert:
2102 * Return value with the low bits set means error value,
2103 * ie
2104 *	if (ret & ~PAGE_MASK)
2105 *		error = ret;
2106 *
2107 * This function "knows" that -ENOMEM has the bits set.
2108 */
2109#ifndef HAVE_ARCH_UNMAPPED_AREA
2110unsigned long
2111arch_get_unmapped_area(struct file *filp, unsigned long addr,
2112		unsigned long len, unsigned long pgoff, unsigned long flags)
2113{
2114	struct mm_struct *mm = current->mm;
2115	struct vm_area_struct *vma, *prev;
2116	struct vm_unmapped_area_info info;
2117	const unsigned long mmap_end = arch_get_mmap_end(addr);
2118
2119	if (len > mmap_end - mmap_min_addr)
2120		return -ENOMEM;
2121
2122	if (flags & MAP_FIXED)
2123		return addr;
2124
2125	if (addr) {
2126		addr = PAGE_ALIGN(addr);
2127		vma = find_vma_prev(mm, addr, &prev);
2128		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2129		    (!vma || addr + len <= vm_start_gap(vma)) &&
2130		    (!prev || addr >= vm_end_gap(prev)))
2131			return addr;
2132	}
2133
2134	info.flags = 0;
2135	info.length = len;
2136	info.low_limit = mm->mmap_base;
2137	info.high_limit = mmap_end;
2138	info.align_mask = 0;
2139	return vm_unmapped_area(&info);
2140}
2141#endif
2142
2143/*
2144 * This mmap-allocator allocates new areas top-down from below the
2145 * stack's low limit (the base):
2146 */
2147#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2148unsigned long
2149arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2150			  unsigned long len, unsigned long pgoff,
2151			  unsigned long flags)
2152{
2153	struct vm_area_struct *vma, *prev;
2154	struct mm_struct *mm = current->mm;
 
2155	struct vm_unmapped_area_info info;
2156	const unsigned long mmap_end = arch_get_mmap_end(addr);
2157
2158	/* requested length too big for entire address space */
2159	if (len > mmap_end - mmap_min_addr)
2160		return -ENOMEM;
2161
2162	if (flags & MAP_FIXED)
2163		return addr;
2164
2165	/* requesting a specific address */
2166	if (addr) {
2167		addr = PAGE_ALIGN(addr);
2168		vma = find_vma_prev(mm, addr, &prev);
2169		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2170				(!vma || addr + len <= vm_start_gap(vma)) &&
2171				(!prev || addr >= vm_end_gap(prev)))
2172			return addr;
2173	}
2174
2175	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2176	info.length = len;
2177	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2178	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2179	info.align_mask = 0;
2180	addr = vm_unmapped_area(&info);
2181
2182	/*
2183	 * A failed mmap() very likely causes application failure,
2184	 * so fall back to the bottom-up function here. This scenario
2185	 * can happen with large stack limits and large mmap()
2186	 * allocations.
2187	 */
2188	if (offset_in_page(addr)) {
2189		VM_BUG_ON(addr != -ENOMEM);
2190		info.flags = 0;
2191		info.low_limit = TASK_UNMAPPED_BASE;
2192		info.high_limit = mmap_end;
2193		addr = vm_unmapped_area(&info);
2194	}
2195
2196	return addr;
2197}
2198#endif
2199
2200unsigned long
2201get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2202		unsigned long pgoff, unsigned long flags)
2203{
2204	unsigned long (*get_area)(struct file *, unsigned long,
2205				  unsigned long, unsigned long, unsigned long);
2206
2207	unsigned long error = arch_mmap_check(addr, len, flags);
2208	if (error)
2209		return error;
2210
2211	/* Careful about overflows.. */
2212	if (len > TASK_SIZE)
2213		return -ENOMEM;
2214
2215	get_area = current->mm->get_unmapped_area;
2216	if (file) {
2217		if (file->f_op->get_unmapped_area)
2218			get_area = file->f_op->get_unmapped_area;
2219	} else if (flags & MAP_SHARED) {
2220		/*
2221		 * mmap_region() will call shmem_zero_setup() to create a file,
2222		 * so use shmem's get_unmapped_area in case it can be huge.
2223		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2224		 */
2225		pgoff = 0;
2226		get_area = shmem_get_unmapped_area;
2227	}
2228
2229	addr = get_area(file, addr, len, pgoff, flags);
2230	if (IS_ERR_VALUE(addr))
2231		return addr;
2232
2233	if (addr > TASK_SIZE - len)
2234		return -ENOMEM;
2235	if (offset_in_page(addr))
2236		return -EINVAL;
2237
 
2238	error = security_mmap_addr(addr);
2239	return error ? error : addr;
2240}
2241
2242EXPORT_SYMBOL(get_unmapped_area);
2243
2244/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2245struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2246{
2247	struct rb_node *rb_node;
2248	struct vm_area_struct *vma;
2249
2250	/* Check the cache first. */
2251	vma = vmacache_find(mm, addr);
2252	if (likely(vma))
2253		return vma;
2254
2255	rb_node = mm->mm_rb.rb_node;
 
2256
2257	while (rb_node) {
2258		struct vm_area_struct *tmp;
2259
2260		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2261
2262		if (tmp->vm_end > addr) {
2263			vma = tmp;
2264			if (tmp->vm_start <= addr)
2265				break;
2266			rb_node = rb_node->rb_left;
2267		} else
2268			rb_node = rb_node->rb_right;
2269	}
2270
2271	if (vma)
2272		vmacache_update(addr, vma);
2273	return vma;
2274}
2275
2276EXPORT_SYMBOL(find_vma);
2277
2278/*
2279 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2280 */
2281struct vm_area_struct *
2282find_vma_prev(struct mm_struct *mm, unsigned long addr,
2283			struct vm_area_struct **pprev)
2284{
2285	struct vm_area_struct *vma;
2286
2287	vma = find_vma(mm, addr);
2288	if (vma) {
2289		*pprev = vma->vm_prev;
2290	} else {
2291		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2292
2293		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
 
 
 
2294	}
2295	return vma;
2296}
2297
2298/*
2299 * Verify that the stack growth is acceptable and
2300 * update accounting. This is shared with both the
2301 * grow-up and grow-down cases.
2302 */
2303static int acct_stack_growth(struct vm_area_struct *vma,
2304			     unsigned long size, unsigned long grow)
2305{
2306	struct mm_struct *mm = vma->vm_mm;
 
2307	unsigned long new_start;
2308
2309	/* address space limit tests */
2310	if (!may_expand_vm(mm, vma->vm_flags, grow))
2311		return -ENOMEM;
2312
2313	/* Stack limit test */
2314	if (size > rlimit(RLIMIT_STACK))
2315		return -ENOMEM;
2316
2317	/* mlock limit tests */
2318	if (vma->vm_flags & VM_LOCKED) {
2319		unsigned long locked;
2320		unsigned long limit;
2321		locked = mm->locked_vm + grow;
2322		limit = rlimit(RLIMIT_MEMLOCK);
2323		limit >>= PAGE_SHIFT;
2324		if (locked > limit && !capable(CAP_IPC_LOCK))
2325			return -ENOMEM;
2326	}
2327
2328	/* Check to ensure the stack will not grow into a hugetlb-only region */
2329	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2330			vma->vm_end - size;
2331	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2332		return -EFAULT;
2333
2334	/*
2335	 * Overcommit..  This must be the final test, as it will
2336	 * update security statistics.
2337	 */
2338	if (security_vm_enough_memory_mm(mm, grow))
2339		return -ENOMEM;
2340
 
 
 
 
2341	return 0;
2342}
2343
2344#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2345/*
2346 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2347 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2348 */
2349int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2350{
2351	struct mm_struct *mm = vma->vm_mm;
2352	struct vm_area_struct *next;
2353	unsigned long gap_addr;
2354	int error = 0;
2355
2356	if (!(vma->vm_flags & VM_GROWSUP))
2357		return -EFAULT;
2358
2359	/* Guard against exceeding limits of the address space. */
2360	address &= PAGE_MASK;
2361	if (address >= (TASK_SIZE & PAGE_MASK))
2362		return -ENOMEM;
2363	address += PAGE_SIZE;
2364
2365	/* Enforce stack_guard_gap */
2366	gap_addr = address + stack_guard_gap;
2367
2368	/* Guard against overflow */
2369	if (gap_addr < address || gap_addr > TASK_SIZE)
2370		gap_addr = TASK_SIZE;
2371
2372	next = vma->vm_next;
2373	if (next && next->vm_start < gap_addr &&
2374			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2375		if (!(next->vm_flags & VM_GROWSUP))
2376			return -ENOMEM;
2377		/* Check that both stack segments have the same anon_vma? */
2378	}
2379
2380	/* We must make sure the anon_vma is allocated. */
2381	if (unlikely(anon_vma_prepare(vma)))
2382		return -ENOMEM;
 
2383
2384	/*
2385	 * vma->vm_start/vm_end cannot change under us because the caller
2386	 * is required to hold the mmap_sem in read mode.  We need the
2387	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2388	 */
2389	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2390
2391	/* Somebody else might have raced and expanded it already */
2392	if (address > vma->vm_end) {
2393		unsigned long size, grow;
2394
2395		size = address - vma->vm_start;
2396		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2397
2398		error = -ENOMEM;
2399		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2400			error = acct_stack_growth(vma, size, grow);
2401			if (!error) {
2402				/*
2403				 * vma_gap_update() doesn't support concurrent
2404				 * updates, but we only hold a shared mmap_sem
2405				 * lock here, so we need to protect against
2406				 * concurrent vma expansions.
2407				 * anon_vma_lock_write() doesn't help here, as
2408				 * we don't guarantee that all growable vmas
2409				 * in a mm share the same root anon vma.
2410				 * So, we reuse mm->page_table_lock to guard
2411				 * against concurrent vma expansions.
2412				 */
2413				spin_lock(&mm->page_table_lock);
2414				if (vma->vm_flags & VM_LOCKED)
2415					mm->locked_vm += grow;
2416				vm_stat_account(mm, vma->vm_flags, grow);
2417				anon_vma_interval_tree_pre_update_vma(vma);
2418				vma->vm_end = address;
2419				anon_vma_interval_tree_post_update_vma(vma);
2420				if (vma->vm_next)
2421					vma_gap_update(vma->vm_next);
2422				else
2423					mm->highest_vm_end = vm_end_gap(vma);
2424				spin_unlock(&mm->page_table_lock);
2425
2426				perf_event_mmap(vma);
2427			}
2428		}
2429	}
2430	anon_vma_unlock_write(vma->anon_vma);
2431	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2432	validate_mm(mm);
2433	return error;
2434}
2435#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2436
2437/*
2438 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2439 */
2440int expand_downwards(struct vm_area_struct *vma,
2441				   unsigned long address)
2442{
2443	struct mm_struct *mm = vma->vm_mm;
2444	struct vm_area_struct *prev;
2445	int error = 0;
2446
2447	address &= PAGE_MASK;
2448	if (address < mmap_min_addr)
2449		return -EPERM;
2450
2451	/* Enforce stack_guard_gap */
2452	prev = vma->vm_prev;
2453	/* Check that both stack segments have the same anon_vma? */
2454	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2455			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2456		if (address - prev->vm_end < stack_guard_gap)
2457			return -ENOMEM;
2458	}
2459
2460	/* We must make sure the anon_vma is allocated. */
 
 
 
2461	if (unlikely(anon_vma_prepare(vma)))
2462		return -ENOMEM;
2463
 
 
 
 
 
 
 
2464	/*
2465	 * vma->vm_start/vm_end cannot change under us because the caller
2466	 * is required to hold the mmap_sem in read mode.  We need the
2467	 * anon_vma lock to serialize against concurrent expand_stacks.
2468	 */
2469	anon_vma_lock_write(vma->anon_vma);
2470
2471	/* Somebody else might have raced and expanded it already */
2472	if (address < vma->vm_start) {
2473		unsigned long size, grow;
2474
2475		size = vma->vm_end - address;
2476		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2477
2478		error = -ENOMEM;
2479		if (grow <= vma->vm_pgoff) {
2480			error = acct_stack_growth(vma, size, grow);
2481			if (!error) {
2482				/*
2483				 * vma_gap_update() doesn't support concurrent
2484				 * updates, but we only hold a shared mmap_sem
2485				 * lock here, so we need to protect against
2486				 * concurrent vma expansions.
2487				 * anon_vma_lock_write() doesn't help here, as
2488				 * we don't guarantee that all growable vmas
2489				 * in a mm share the same root anon vma.
2490				 * So, we reuse mm->page_table_lock to guard
2491				 * against concurrent vma expansions.
2492				 */
2493				spin_lock(&mm->page_table_lock);
2494				if (vma->vm_flags & VM_LOCKED)
2495					mm->locked_vm += grow;
2496				vm_stat_account(mm, vma->vm_flags, grow);
2497				anon_vma_interval_tree_pre_update_vma(vma);
2498				vma->vm_start = address;
2499				vma->vm_pgoff -= grow;
2500				anon_vma_interval_tree_post_update_vma(vma);
2501				vma_gap_update(vma);
2502				spin_unlock(&mm->page_table_lock);
2503
2504				perf_event_mmap(vma);
2505			}
2506		}
2507	}
2508	anon_vma_unlock_write(vma->anon_vma);
2509	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2510	validate_mm(mm);
2511	return error;
2512}
2513
2514/* enforced gap between the expanding stack and other mappings. */
2515unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2516
2517static int __init cmdline_parse_stack_guard_gap(char *p)
2518{
2519	unsigned long val;
2520	char *endptr;
2521
2522	val = simple_strtoul(p, &endptr, 10);
2523	if (!*endptr)
2524		stack_guard_gap = val << PAGE_SHIFT;
2525
2526	return 0;
2527}
2528__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2529
2530#ifdef CONFIG_STACK_GROWSUP
2531int expand_stack(struct vm_area_struct *vma, unsigned long address)
2532{
 
 
 
 
 
 
 
 
2533	return expand_upwards(vma, address);
2534}
2535
2536struct vm_area_struct *
2537find_extend_vma(struct mm_struct *mm, unsigned long addr)
2538{
2539	struct vm_area_struct *vma, *prev;
2540
2541	addr &= PAGE_MASK;
2542	vma = find_vma_prev(mm, addr, &prev);
2543	if (vma && (vma->vm_start <= addr))
2544		return vma;
2545	/* don't alter vm_end if the coredump is running */
2546	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2547		return NULL;
2548	if (prev->vm_flags & VM_LOCKED)
2549		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2550	return prev;
2551}
2552#else
2553int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554{
 
 
 
 
 
 
 
 
2555	return expand_downwards(vma, address);
2556}
2557
2558struct vm_area_struct *
2559find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560{
2561	struct vm_area_struct *vma;
2562	unsigned long start;
2563
2564	addr &= PAGE_MASK;
2565	vma = find_vma(mm, addr);
2566	if (!vma)
2567		return NULL;
2568	if (vma->vm_start <= addr)
2569		return vma;
2570	if (!(vma->vm_flags & VM_GROWSDOWN))
2571		return NULL;
2572	/* don't alter vm_start if the coredump is running */
2573	if (!mmget_still_valid(mm))
2574		return NULL;
2575	start = vma->vm_start;
2576	if (expand_stack(vma, addr))
2577		return NULL;
2578	if (vma->vm_flags & VM_LOCKED)
2579		populate_vma_page_range(vma, addr, start, NULL);
2580	return vma;
2581}
2582#endif
2583
2584EXPORT_SYMBOL_GPL(find_extend_vma);
2585
2586/*
2587 * Ok - we have the memory areas we should free on the vma list,
2588 * so release them, and do the vma updates.
2589 *
2590 * Called with the mm semaphore held.
2591 */
2592static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2593{
2594	unsigned long nr_accounted = 0;
2595
2596	/* Update high watermark before we lower total_vm */
2597	update_hiwater_vm(mm);
2598	do {
2599		long nrpages = vma_pages(vma);
2600
2601		if (vma->vm_flags & VM_ACCOUNT)
2602			nr_accounted += nrpages;
2603		vm_stat_account(mm, vma->vm_flags, -nrpages);
2604		vma = remove_vma(vma);
2605	} while (vma);
2606	vm_unacct_memory(nr_accounted);
2607	validate_mm(mm);
2608}
2609
2610/*
2611 * Get rid of page table information in the indicated region.
2612 *
2613 * Called with the mm semaphore held.
2614 */
2615static void unmap_region(struct mm_struct *mm,
2616		struct vm_area_struct *vma, struct vm_area_struct *prev,
2617		unsigned long start, unsigned long end)
2618{
2619	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2620	struct mmu_gather tlb;
2621
2622	lru_add_drain();
2623	tlb_gather_mmu(&tlb, mm, start, end);
2624	update_hiwater_rss(mm);
2625	unmap_vmas(&tlb, vma, start, end);
2626	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2627				 next ? next->vm_start : USER_PGTABLES_CEILING);
2628	tlb_finish_mmu(&tlb, start, end);
2629}
2630
2631/*
2632 * Create a list of vma's touched by the unmap, removing them from the mm's
2633 * vma list as we go..
2634 */
2635static void
2636detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2637	struct vm_area_struct *prev, unsigned long end)
2638{
2639	struct vm_area_struct **insertion_point;
2640	struct vm_area_struct *tail_vma = NULL;
2641
2642	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2643	vma->vm_prev = NULL;
2644	do {
2645		vma_rb_erase(vma, &mm->mm_rb);
2646		mm->map_count--;
2647		tail_vma = vma;
2648		vma = vma->vm_next;
2649	} while (vma && vma->vm_start < end);
2650	*insertion_point = vma;
2651	if (vma) {
2652		vma->vm_prev = prev;
2653		vma_gap_update(vma);
2654	} else
2655		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2656	tail_vma->vm_next = NULL;
2657
2658	/* Kill the cache */
2659	vmacache_invalidate(mm);
2660}
2661
2662/*
2663 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2664 * has already been checked or doesn't make sense to fail.
2665 */
2666int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2667		unsigned long addr, int new_below)
2668{
2669	struct vm_area_struct *new;
2670	int err;
2671
2672	if (vma->vm_ops && vma->vm_ops->split) {
2673		err = vma->vm_ops->split(vma, addr);
2674		if (err)
2675			return err;
2676	}
2677
2678	new = vm_area_dup(vma);
2679	if (!new)
2680		return -ENOMEM;
 
 
 
 
 
2681
2682	if (new_below)
2683		new->vm_end = addr;
2684	else {
2685		new->vm_start = addr;
2686		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2687	}
2688
2689	err = vma_dup_policy(vma, new);
2690	if (err)
2691		goto out_free_vma;
2692
2693	err = anon_vma_clone(new, vma);
2694	if (err)
2695		goto out_free_mpol;
2696
2697	if (new->vm_file)
2698		get_file(new->vm_file);
2699
2700	if (new->vm_ops && new->vm_ops->open)
2701		new->vm_ops->open(new);
2702
2703	if (new_below)
2704		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2705			((addr - new->vm_start) >> PAGE_SHIFT), new);
2706	else
2707		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2708
2709	/* Success. */
2710	if (!err)
2711		return 0;
2712
2713	/* Clean everything up if vma_adjust failed. */
2714	if (new->vm_ops && new->vm_ops->close)
2715		new->vm_ops->close(new);
2716	if (new->vm_file)
2717		fput(new->vm_file);
2718	unlink_anon_vmas(new);
2719 out_free_mpol:
2720	mpol_put(vma_policy(new));
2721 out_free_vma:
2722	vm_area_free(new);
 
2723	return err;
2724}
2725
2726/*
2727 * Split a vma into two pieces at address 'addr', a new vma is allocated
2728 * either for the first part or the tail.
2729 */
2730int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731	      unsigned long addr, int new_below)
2732{
2733	if (mm->map_count >= sysctl_max_map_count)
2734		return -ENOMEM;
2735
2736	return __split_vma(mm, vma, addr, new_below);
2737}
2738
2739/* Munmap is split into 2 main parts -- this part which finds
2740 * what needs doing, and the areas themselves, which do the
2741 * work.  This now handles partial unmappings.
2742 * Jeremy Fitzhardinge <jeremy@goop.org>
2743 */
2744int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2745		struct list_head *uf, bool downgrade)
2746{
2747	unsigned long end;
2748	struct vm_area_struct *vma, *prev, *last;
2749
2750	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2751		return -EINVAL;
2752
2753	len = PAGE_ALIGN(len);
2754	end = start + len;
2755	if (len == 0)
2756		return -EINVAL;
2757
2758	/*
2759	 * arch_unmap() might do unmaps itself.  It must be called
2760	 * and finish any rbtree manipulation before this code
2761	 * runs and also starts to manipulate the rbtree.
2762	 */
2763	arch_unmap(mm, start, end);
2764
2765	/* Find the first overlapping VMA */
2766	vma = find_vma(mm, start);
2767	if (!vma)
2768		return 0;
2769	prev = vma->vm_prev;
2770	/* we have  start < vma->vm_end  */
2771
2772	/* if it doesn't overlap, we have nothing.. */
 
2773	if (vma->vm_start >= end)
2774		return 0;
2775
2776	/*
2777	 * If we need to split any vma, do it now to save pain later.
2778	 *
2779	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2780	 * unmapped vm_area_struct will remain in use: so lower split_vma
2781	 * places tmp vma above, and higher split_vma places tmp vma below.
2782	 */
2783	if (start > vma->vm_start) {
2784		int error;
2785
2786		/*
2787		 * Make sure that map_count on return from munmap() will
2788		 * not exceed its limit; but let map_count go just above
2789		 * its limit temporarily, to help free resources as expected.
2790		 */
2791		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2792			return -ENOMEM;
2793
2794		error = __split_vma(mm, vma, start, 0);
2795		if (error)
2796			return error;
2797		prev = vma;
2798	}
2799
2800	/* Does it split the last one? */
2801	last = find_vma(mm, end);
2802	if (last && end > last->vm_start) {
2803		int error = __split_vma(mm, last, end, 1);
2804		if (error)
2805			return error;
2806	}
2807	vma = prev ? prev->vm_next : mm->mmap;
2808
2809	if (unlikely(uf)) {
2810		/*
2811		 * If userfaultfd_unmap_prep returns an error the vmas
2812		 * will remain splitted, but userland will get a
2813		 * highly unexpected error anyway. This is no
2814		 * different than the case where the first of the two
2815		 * __split_vma fails, but we don't undo the first
2816		 * split, despite we could. This is unlikely enough
2817		 * failure that it's not worth optimizing it for.
2818		 */
2819		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2820		if (error)
2821			return error;
2822	}
2823
2824	/*
2825	 * unlock any mlock()ed ranges before detaching vmas
2826	 */
2827	if (mm->locked_vm) {
2828		struct vm_area_struct *tmp = vma;
2829		while (tmp && tmp->vm_start < end) {
2830			if (tmp->vm_flags & VM_LOCKED) {
2831				mm->locked_vm -= vma_pages(tmp);
2832				munlock_vma_pages_all(tmp);
2833			}
2834
2835			tmp = tmp->vm_next;
2836		}
2837	}
2838
2839	/* Detach vmas from rbtree */
 
 
2840	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2841
2842	if (downgrade)
2843		downgrade_write(&mm->mmap_sem);
2844
2845	unmap_region(mm, vma, prev, start, end);
2846
2847	/* Fix up all other VM information */
2848	remove_vma_list(mm, vma);
2849
2850	return downgrade ? 1 : 0;
2851}
2852
2853int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2854	      struct list_head *uf)
2855{
2856	return __do_munmap(mm, start, len, uf, false);
2857}
2858
2859static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2860{
2861	int ret;
2862	struct mm_struct *mm = current->mm;
2863	LIST_HEAD(uf);
2864
2865	if (down_write_killable(&mm->mmap_sem))
2866		return -EINTR;
2867
2868	ret = __do_munmap(mm, start, len, &uf, downgrade);
2869	/*
2870	 * Returning 1 indicates mmap_sem is downgraded.
2871	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2872	 * it to 0 before return.
2873	 */
2874	if (ret == 1) {
2875		up_read(&mm->mmap_sem);
2876		ret = 0;
2877	} else
2878		up_write(&mm->mmap_sem);
2879
2880	userfaultfd_unmap_complete(mm, &uf);
2881	return ret;
2882}
2883
2884int vm_munmap(unsigned long start, size_t len)
2885{
2886	return __vm_munmap(start, len, false);
2887}
2888EXPORT_SYMBOL(vm_munmap);
2889
2890SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2891{
2892	addr = untagged_addr(addr);
2893	profile_munmap(addr);
2894	return __vm_munmap(addr, len, true);
2895}
2896
2897
2898/*
2899 * Emulation of deprecated remap_file_pages() syscall.
2900 */
2901SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2902		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2903{
2904
2905	struct mm_struct *mm = current->mm;
2906	struct vm_area_struct *vma;
2907	unsigned long populate = 0;
2908	unsigned long ret = -EINVAL;
2909	struct file *file;
2910
2911	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2912		     current->comm, current->pid);
2913
2914	if (prot)
2915		return ret;
2916	start = start & PAGE_MASK;
2917	size = size & PAGE_MASK;
2918
2919	if (start + size <= start)
2920		return ret;
2921
2922	/* Does pgoff wrap? */
2923	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2924		return ret;
2925
2926	if (down_write_killable(&mm->mmap_sem))
2927		return -EINTR;
2928
2929	vma = find_vma(mm, start);
2930
2931	if (!vma || !(vma->vm_flags & VM_SHARED))
2932		goto out;
2933
2934	if (start < vma->vm_start)
2935		goto out;
2936
2937	if (start + size > vma->vm_end) {
2938		struct vm_area_struct *next;
2939
2940		for (next = vma->vm_next; next; next = next->vm_next) {
2941			/* hole between vmas ? */
2942			if (next->vm_start != next->vm_prev->vm_end)
2943				goto out;
2944
2945			if (next->vm_file != vma->vm_file)
2946				goto out;
2947
2948			if (next->vm_flags != vma->vm_flags)
2949				goto out;
2950
2951			if (start + size <= next->vm_end)
2952				break;
2953		}
2954
2955		if (!next)
2956			goto out;
2957	}
2958
2959	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2960	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2961	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2962
2963	flags &= MAP_NONBLOCK;
2964	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2965	if (vma->vm_flags & VM_LOCKED) {
2966		struct vm_area_struct *tmp;
2967		flags |= MAP_LOCKED;
2968
2969		/* drop PG_Mlocked flag for over-mapped range */
2970		for (tmp = vma; tmp->vm_start >= start + size;
2971				tmp = tmp->vm_next) {
2972			/*
2973			 * Split pmd and munlock page on the border
2974			 * of the range.
2975			 */
2976			vma_adjust_trans_huge(tmp, start, start + size, 0);
2977
2978			munlock_vma_pages_range(tmp,
2979					max(tmp->vm_start, start),
2980					min(tmp->vm_end, start + size));
2981		}
2982	}
2983
2984	file = get_file(vma->vm_file);
2985	ret = do_mmap_pgoff(vma->vm_file, start, size,
2986			prot, flags, pgoff, &populate, NULL);
2987	fput(file);
2988out:
2989	up_write(&mm->mmap_sem);
2990	if (populate)
2991		mm_populate(ret, populate);
2992	if (!IS_ERR_VALUE(ret))
2993		ret = 0;
2994	return ret;
2995}
2996
2997/*
2998 *  this is really a simplified "do_mmap".  it only handles
2999 *  anonymous maps.  eventually we may be able to do some
3000 *  brk-specific accounting here.
3001 */
3002static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3003{
3004	struct mm_struct *mm = current->mm;
3005	struct vm_area_struct *vma, *prev;
3006	struct rb_node **rb_link, *rb_parent;
 
3007	pgoff_t pgoff = addr >> PAGE_SHIFT;
3008	int error;
3009
3010	/* Until we need other flags, refuse anything except VM_EXEC. */
3011	if ((flags & (~VM_EXEC)) != 0)
3012		return -EINVAL;
3013	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
3014
3015	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3016	if (offset_in_page(error))
3017		return error;
3018
3019	error = mlock_future_check(mm, mm->def_flags, len);
3020	if (error)
3021		return error;
3022
3023	/*
 
 
 
 
 
 
3024	 * Clear old maps.  this also does some error checking for us
3025	 */
3026	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3027			      &rb_parent)) {
3028		if (do_munmap(mm, addr, len, uf))
3029			return -ENOMEM;
 
3030	}
3031
3032	/* Check against address space limits *after* clearing old maps... */
3033	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3034		return -ENOMEM;
3035
3036	if (mm->map_count > sysctl_max_map_count)
3037		return -ENOMEM;
3038
3039	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3040		return -ENOMEM;
3041
3042	/* Can we just expand an old private anonymous mapping? */
3043	vma = vma_merge(mm, prev, addr, addr + len, flags,
3044			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3045	if (vma)
3046		goto out;
3047
3048	/*
3049	 * create a vma struct for an anonymous mapping
3050	 */
3051	vma = vm_area_alloc(mm);
3052	if (!vma) {
3053		vm_unacct_memory(len >> PAGE_SHIFT);
3054		return -ENOMEM;
3055	}
3056
3057	vma_set_anonymous(vma);
 
3058	vma->vm_start = addr;
3059	vma->vm_end = addr + len;
3060	vma->vm_pgoff = pgoff;
3061	vma->vm_flags = flags;
3062	vma->vm_page_prot = vm_get_page_prot(flags);
3063	vma_link(mm, vma, prev, rb_link, rb_parent);
3064out:
3065	perf_event_mmap(vma);
3066	mm->total_vm += len >> PAGE_SHIFT;
3067	mm->data_vm += len >> PAGE_SHIFT;
3068	if (flags & VM_LOCKED)
3069		mm->locked_vm += (len >> PAGE_SHIFT);
3070	vma->vm_flags |= VM_SOFTDIRTY;
3071	return 0;
3072}
3073
3074int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3075{
3076	struct mm_struct *mm = current->mm;
3077	unsigned long len;
3078	int ret;
3079	bool populate;
3080	LIST_HEAD(uf);
3081
3082	len = PAGE_ALIGN(request);
3083	if (len < request)
3084		return -ENOMEM;
3085	if (!len)
3086		return 0;
3087
3088	if (down_write_killable(&mm->mmap_sem))
3089		return -EINTR;
3090
3091	ret = do_brk_flags(addr, len, flags, &uf);
3092	populate = ((mm->def_flags & VM_LOCKED) != 0);
3093	up_write(&mm->mmap_sem);
3094	userfaultfd_unmap_complete(mm, &uf);
3095	if (populate && !ret)
3096		mm_populate(addr, len);
3097	return ret;
3098}
3099EXPORT_SYMBOL(vm_brk_flags);
3100
3101int vm_brk(unsigned long addr, unsigned long len)
3102{
3103	return vm_brk_flags(addr, len, 0);
3104}
3105EXPORT_SYMBOL(vm_brk);
3106
3107/* Release all mmaps. */
3108void exit_mmap(struct mm_struct *mm)
3109{
3110	struct mmu_gather tlb;
3111	struct vm_area_struct *vma;
3112	unsigned long nr_accounted = 0;
3113
3114	/* mm's last user has gone, and its about to be pulled down */
3115	mmu_notifier_release(mm);
3116
3117	if (unlikely(mm_is_oom_victim(mm))) {
3118		/*
3119		 * Manually reap the mm to free as much memory as possible.
3120		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3121		 * this mm from further consideration.  Taking mm->mmap_sem for
3122		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3123		 * reaper will not run on this mm again after mmap_sem is
3124		 * dropped.
3125		 *
3126		 * Nothing can be holding mm->mmap_sem here and the above call
3127		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3128		 * __oom_reap_task_mm() will not block.
3129		 *
3130		 * This needs to be done before calling munlock_vma_pages_all(),
3131		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3132		 * reliably test it.
3133		 */
3134		(void)__oom_reap_task_mm(mm);
3135
3136		set_bit(MMF_OOM_SKIP, &mm->flags);
3137		down_write(&mm->mmap_sem);
3138		up_write(&mm->mmap_sem);
3139	}
3140
3141	if (mm->locked_vm) {
3142		vma = mm->mmap;
3143		while (vma) {
3144			if (vma->vm_flags & VM_LOCKED)
3145				munlock_vma_pages_all(vma);
3146			vma = vma->vm_next;
3147		}
3148	}
3149
3150	arch_exit_mmap(mm);
3151
3152	vma = mm->mmap;
3153	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3154		return;
3155
3156	lru_add_drain();
3157	flush_cache_mm(mm);
3158	tlb_gather_mmu(&tlb, mm, 0, -1);
3159	/* update_hiwater_rss(mm) here? but nobody should be looking */
3160	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3161	unmap_vmas(&tlb, vma, 0, -1);
 
3162	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3163	tlb_finish_mmu(&tlb, 0, -1);
3164
3165	/*
3166	 * Walk the list again, actually closing and freeing it,
3167	 * with preemption enabled, without holding any MM locks.
3168	 */
3169	while (vma) {
3170		if (vma->vm_flags & VM_ACCOUNT)
3171			nr_accounted += vma_pages(vma);
3172		vma = remove_vma(vma);
3173	}
3174	vm_unacct_memory(nr_accounted);
 
 
 
3175}
3176
3177/* Insert vm structure into process list sorted by address
3178 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3179 * then i_mmap_rwsem is taken here.
3180 */
3181int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3182{
3183	struct vm_area_struct *prev;
3184	struct rb_node **rb_link, *rb_parent;
3185
3186	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3187			   &prev, &rb_link, &rb_parent))
3188		return -ENOMEM;
3189	if ((vma->vm_flags & VM_ACCOUNT) &&
3190	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3191		return -ENOMEM;
3192
3193	/*
3194	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3195	 * until its first write fault, when page's anon_vma and index
3196	 * are set.  But now set the vm_pgoff it will almost certainly
3197	 * end up with (unless mremap moves it elsewhere before that
3198	 * first wfault), so /proc/pid/maps tells a consistent story.
3199	 *
3200	 * By setting it to reflect the virtual start address of the
3201	 * vma, merges and splits can happen in a seamless way, just
3202	 * using the existing file pgoff checks and manipulations.
3203	 * Similarly in do_mmap_pgoff and in do_brk.
3204	 */
3205	if (vma_is_anonymous(vma)) {
3206		BUG_ON(vma->anon_vma);
3207		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3208	}
 
 
 
 
 
 
3209
3210	vma_link(mm, vma, prev, rb_link, rb_parent);
3211	return 0;
3212}
3213
3214/*
3215 * Copy the vma structure to a new location in the same mm,
3216 * prior to moving page table entries, to effect an mremap move.
3217 */
3218struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3219	unsigned long addr, unsigned long len, pgoff_t pgoff,
3220	bool *need_rmap_locks)
3221{
3222	struct vm_area_struct *vma = *vmap;
3223	unsigned long vma_start = vma->vm_start;
3224	struct mm_struct *mm = vma->vm_mm;
3225	struct vm_area_struct *new_vma, *prev;
3226	struct rb_node **rb_link, *rb_parent;
3227	bool faulted_in_anon_vma = true;
3228
3229	/*
3230	 * If anonymous vma has not yet been faulted, update new pgoff
3231	 * to match new location, to increase its chance of merging.
3232	 */
3233	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3234		pgoff = addr >> PAGE_SHIFT;
3235		faulted_in_anon_vma = false;
3236	}
3237
3238	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3239		return NULL;	/* should never get here */
3240	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3241			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3242			    vma->vm_userfaultfd_ctx);
3243	if (new_vma) {
3244		/*
3245		 * Source vma may have been merged into new_vma
3246		 */
3247		if (unlikely(vma_start >= new_vma->vm_start &&
3248			     vma_start < new_vma->vm_end)) {
3249			/*
3250			 * The only way we can get a vma_merge with
3251			 * self during an mremap is if the vma hasn't
3252			 * been faulted in yet and we were allowed to
3253			 * reset the dst vma->vm_pgoff to the
3254			 * destination address of the mremap to allow
3255			 * the merge to happen. mremap must change the
3256			 * vm_pgoff linearity between src and dst vmas
3257			 * (in turn preventing a vma_merge) to be
3258			 * safe. It is only safe to keep the vm_pgoff
3259			 * linear if there are no pages mapped yet.
3260			 */
3261			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3262			*vmap = vma = new_vma;
3263		}
3264		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3265	} else {
3266		new_vma = vm_area_dup(vma);
3267		if (!new_vma)
3268			goto out;
3269		new_vma->vm_start = addr;
3270		new_vma->vm_end = addr + len;
3271		new_vma->vm_pgoff = pgoff;
3272		if (vma_dup_policy(vma, new_vma))
3273			goto out_free_vma;
3274		if (anon_vma_clone(new_vma, vma))
3275			goto out_free_mempol;
3276		if (new_vma->vm_file)
3277			get_file(new_vma->vm_file);
3278		if (new_vma->vm_ops && new_vma->vm_ops->open)
3279			new_vma->vm_ops->open(new_vma);
3280		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3281		*need_rmap_locks = false;
 
 
3282	}
3283	return new_vma;
3284
3285out_free_mempol:
3286	mpol_put(vma_policy(new_vma));
3287out_free_vma:
3288	vm_area_free(new_vma);
3289out:
3290	return NULL;
3291}
3292
3293/*
3294 * Return true if the calling process may expand its vm space by the passed
3295 * number of pages
3296 */
3297bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3298{
3299	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3300		return false;
3301
3302	if (is_data_mapping(flags) &&
3303	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3304		/* Workaround for Valgrind */
3305		if (rlimit(RLIMIT_DATA) == 0 &&
3306		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3307			return true;
3308
3309		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3310			     current->comm, current->pid,
3311			     (mm->data_vm + npages) << PAGE_SHIFT,
3312			     rlimit(RLIMIT_DATA),
3313			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3314
3315		if (!ignore_rlimit_data)
3316			return false;
3317	}
3318
3319	return true;
3320}
3321
3322void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3323{
3324	mm->total_vm += npages;
3325
3326	if (is_exec_mapping(flags))
3327		mm->exec_vm += npages;
3328	else if (is_stack_mapping(flags))
3329		mm->stack_vm += npages;
3330	else if (is_data_mapping(flags))
3331		mm->data_vm += npages;
3332}
3333
3334static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3335
3336/*
3337 * Having a close hook prevents vma merging regardless of flags.
3338 */
3339static void special_mapping_close(struct vm_area_struct *vma)
3340{
3341}
3342
3343static const char *special_mapping_name(struct vm_area_struct *vma)
3344{
3345	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3346}
3347
3348static int special_mapping_mremap(struct vm_area_struct *new_vma)
3349{
3350	struct vm_special_mapping *sm = new_vma->vm_private_data;
3351
3352	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3353		return -EFAULT;
3354
3355	if (sm->mremap)
3356		return sm->mremap(sm, new_vma);
3357
3358	return 0;
3359}
3360
3361static const struct vm_operations_struct special_mapping_vmops = {
3362	.close = special_mapping_close,
3363	.fault = special_mapping_fault,
3364	.mremap = special_mapping_mremap,
3365	.name = special_mapping_name,
3366};
3367
3368static const struct vm_operations_struct legacy_special_mapping_vmops = {
3369	.close = special_mapping_close,
3370	.fault = special_mapping_fault,
3371};
3372
3373static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
 
3374{
3375	struct vm_area_struct *vma = vmf->vma;
3376	pgoff_t pgoff;
3377	struct page **pages;
3378
3379	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3380		pages = vma->vm_private_data;
3381	} else {
3382		struct vm_special_mapping *sm = vma->vm_private_data;
3383
3384		if (sm->fault)
3385			return sm->fault(sm, vmf->vma, vmf);
3386
3387		pages = sm->pages;
3388	}
3389
3390	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3391		pgoff--;
3392
3393	if (*pages) {
3394		struct page *page = *pages;
3395		get_page(page);
3396		vmf->page = page;
3397		return 0;
3398	}
3399
3400	return VM_FAULT_SIGBUS;
3401}
3402
3403static struct vm_area_struct *__install_special_mapping(
3404	struct mm_struct *mm,
3405	unsigned long addr, unsigned long len,
3406	unsigned long vm_flags, void *priv,
3407	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408{
3409	int ret;
3410	struct vm_area_struct *vma;
3411
3412	vma = vm_area_alloc(mm);
3413	if (unlikely(vma == NULL))
3414		return ERR_PTR(-ENOMEM);
3415
 
 
3416	vma->vm_start = addr;
3417	vma->vm_end = addr + len;
3418
3419	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3420	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3421
3422	vma->vm_ops = ops;
3423	vma->vm_private_data = priv;
3424
3425	ret = insert_vm_struct(mm, vma);
3426	if (ret)
3427		goto out;
3428
3429	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3430
3431	perf_event_mmap(vma);
3432
3433	return vma;
3434
3435out:
3436	vm_area_free(vma);
3437	return ERR_PTR(ret);
3438}
3439
3440bool vma_is_special_mapping(const struct vm_area_struct *vma,
3441	const struct vm_special_mapping *sm)
3442{
3443	return vma->vm_private_data == sm &&
3444		(vma->vm_ops == &special_mapping_vmops ||
3445		 vma->vm_ops == &legacy_special_mapping_vmops);
3446}
3447
3448/*
3449 * Called with mm->mmap_sem held for writing.
3450 * Insert a new vma covering the given region, with the given flags.
3451 * Its pages are supplied by the given array of struct page *.
3452 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3453 * The region past the last page supplied will always produce SIGBUS.
3454 * The array pointer and the pages it points to are assumed to stay alive
3455 * for as long as this mapping might exist.
3456 */
3457struct vm_area_struct *_install_special_mapping(
3458	struct mm_struct *mm,
3459	unsigned long addr, unsigned long len,
3460	unsigned long vm_flags, const struct vm_special_mapping *spec)
3461{
3462	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3463					&special_mapping_vmops);
3464}
3465
3466int install_special_mapping(struct mm_struct *mm,
3467			    unsigned long addr, unsigned long len,
3468			    unsigned long vm_flags, struct page **pages)
3469{
3470	struct vm_area_struct *vma = __install_special_mapping(
3471		mm, addr, len, vm_flags, (void *)pages,
3472		&legacy_special_mapping_vmops);
3473
3474	return PTR_ERR_OR_ZERO(vma);
 
 
3475}
3476
3477static DEFINE_MUTEX(mm_all_locks_mutex);
3478
3479static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3480{
3481	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3482		/*
3483		 * The LSB of head.next can't change from under us
3484		 * because we hold the mm_all_locks_mutex.
3485		 */
3486		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3487		/*
3488		 * We can safely modify head.next after taking the
3489		 * anon_vma->root->rwsem. If some other vma in this mm shares
3490		 * the same anon_vma we won't take it again.
3491		 *
3492		 * No need of atomic instructions here, head.next
3493		 * can't change from under us thanks to the
3494		 * anon_vma->root->rwsem.
3495		 */
3496		if (__test_and_set_bit(0, (unsigned long *)
3497				       &anon_vma->root->rb_root.rb_root.rb_node))
3498			BUG();
3499	}
3500}
3501
3502static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3503{
3504	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3505		/*
3506		 * AS_MM_ALL_LOCKS can't change from under us because
3507		 * we hold the mm_all_locks_mutex.
3508		 *
3509		 * Operations on ->flags have to be atomic because
3510		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3511		 * mm_all_locks_mutex, there may be other cpus
3512		 * changing other bitflags in parallel to us.
3513		 */
3514		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3515			BUG();
3516		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3517	}
3518}
3519
3520/*
3521 * This operation locks against the VM for all pte/vma/mm related
3522 * operations that could ever happen on a certain mm. This includes
3523 * vmtruncate, try_to_unmap, and all page faults.
3524 *
3525 * The caller must take the mmap_sem in write mode before calling
3526 * mm_take_all_locks(). The caller isn't allowed to release the
3527 * mmap_sem until mm_drop_all_locks() returns.
3528 *
3529 * mmap_sem in write mode is required in order to block all operations
3530 * that could modify pagetables and free pages without need of
3531 * altering the vma layout. It's also needed in write mode to avoid new
 
3532 * anon_vmas to be associated with existing vmas.
3533 *
3534 * A single task can't take more than one mm_take_all_locks() in a row
3535 * or it would deadlock.
3536 *
3537 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3538 * mapping->flags avoid to take the same lock twice, if more than one
3539 * vma in this mm is backed by the same anon_vma or address_space.
3540 *
3541 * We take locks in following order, accordingly to comment at beginning
3542 * of mm/rmap.c:
3543 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3544 *     hugetlb mapping);
3545 *   - all i_mmap_rwsem locks;
3546 *   - all anon_vma->rwseml
3547 *
3548 * We can take all locks within these types randomly because the VM code
3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3550 * mm_all_locks_mutex.
3551 *
3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3553 * that may have to take thousand of locks.
3554 *
3555 * mm_take_all_locks() can fail if it's interrupted by signals.
3556 */
3557int mm_take_all_locks(struct mm_struct *mm)
3558{
3559	struct vm_area_struct *vma;
3560	struct anon_vma_chain *avc;
3561
3562	BUG_ON(down_read_trylock(&mm->mmap_sem));
3563
3564	mutex_lock(&mm_all_locks_mutex);
3565
3566	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567		if (signal_pending(current))
3568			goto out_unlock;
3569		if (vma->vm_file && vma->vm_file->f_mapping &&
3570				is_vm_hugetlb_page(vma))
3571			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572	}
3573
3574	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3575		if (signal_pending(current))
3576			goto out_unlock;
3577		if (vma->vm_file && vma->vm_file->f_mapping &&
3578				!is_vm_hugetlb_page(vma))
3579			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3580	}
3581
3582	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583		if (signal_pending(current))
3584			goto out_unlock;
3585		if (vma->anon_vma)
3586			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587				vm_lock_anon_vma(mm, avc->anon_vma);
3588	}
3589
3590	return 0;
3591
3592out_unlock:
3593	mm_drop_all_locks(mm);
3594	return -EINTR;
3595}
3596
3597static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3598{
3599	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3600		/*
3601		 * The LSB of head.next can't change to 0 from under
3602		 * us because we hold the mm_all_locks_mutex.
3603		 *
3604		 * We must however clear the bitflag before unlocking
3605		 * the vma so the users using the anon_vma->rb_root will
3606		 * never see our bitflag.
3607		 *
3608		 * No need of atomic instructions here, head.next
3609		 * can't change from under us until we release the
3610		 * anon_vma->root->rwsem.
3611		 */
3612		if (!__test_and_clear_bit(0, (unsigned long *)
3613					  &anon_vma->root->rb_root.rb_root.rb_node))
3614			BUG();
3615		anon_vma_unlock_write(anon_vma);
3616	}
3617}
3618
3619static void vm_unlock_mapping(struct address_space *mapping)
3620{
3621	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3622		/*
3623		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3624		 * because we hold the mm_all_locks_mutex.
3625		 */
3626		i_mmap_unlock_write(mapping);
3627		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3628					&mapping->flags))
3629			BUG();
3630	}
3631}
3632
3633/*
3634 * The mmap_sem cannot be released by the caller until
3635 * mm_drop_all_locks() returns.
3636 */
3637void mm_drop_all_locks(struct mm_struct *mm)
3638{
3639	struct vm_area_struct *vma;
3640	struct anon_vma_chain *avc;
3641
3642	BUG_ON(down_read_trylock(&mm->mmap_sem));
3643	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3644
3645	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3646		if (vma->anon_vma)
3647			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3648				vm_unlock_anon_vma(avc->anon_vma);
3649		if (vma->vm_file && vma->vm_file->f_mapping)
3650			vm_unlock_mapping(vma->vm_file->f_mapping);
3651	}
3652
3653	mutex_unlock(&mm_all_locks_mutex);
3654}
3655
3656/*
3657 * initialise the percpu counter for VM
3658 */
3659void __init mmap_init(void)
3660{
3661	int ret;
3662
3663	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3664	VM_BUG_ON(ret);
3665}
3666
3667/*
3668 * Initialise sysctl_user_reserve_kbytes.
3669 *
3670 * This is intended to prevent a user from starting a single memory hogging
3671 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3672 * mode.
3673 *
3674 * The default value is min(3% of free memory, 128MB)
3675 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3676 */
3677static int init_user_reserve(void)
3678{
3679	unsigned long free_kbytes;
3680
3681	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682
3683	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3684	return 0;
3685}
3686subsys_initcall(init_user_reserve);
3687
3688/*
3689 * Initialise sysctl_admin_reserve_kbytes.
3690 *
3691 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3692 * to log in and kill a memory hogging process.
3693 *
3694 * Systems with more than 256MB will reserve 8MB, enough to recover
3695 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3696 * only reserve 3% of free pages by default.
3697 */
3698static int init_admin_reserve(void)
3699{
3700	unsigned long free_kbytes;
3701
3702	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3703
3704	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3705	return 0;
3706}
3707subsys_initcall(init_admin_reserve);
3708
3709/*
3710 * Reinititalise user and admin reserves if memory is added or removed.
3711 *
3712 * The default user reserve max is 128MB, and the default max for the
3713 * admin reserve is 8MB. These are usually, but not always, enough to
3714 * enable recovery from a memory hogging process using login/sshd, a shell,
3715 * and tools like top. It may make sense to increase or even disable the
3716 * reserve depending on the existence of swap or variations in the recovery
3717 * tools. So, the admin may have changed them.
3718 *
3719 * If memory is added and the reserves have been eliminated or increased above
3720 * the default max, then we'll trust the admin.
3721 *
3722 * If memory is removed and there isn't enough free memory, then we
3723 * need to reset the reserves.
3724 *
3725 * Otherwise keep the reserve set by the admin.
3726 */
3727static int reserve_mem_notifier(struct notifier_block *nb,
3728			     unsigned long action, void *data)
3729{
3730	unsigned long tmp, free_kbytes;
3731
3732	switch (action) {
3733	case MEM_ONLINE:
3734		/* Default max is 128MB. Leave alone if modified by operator. */
3735		tmp = sysctl_user_reserve_kbytes;
3736		if (0 < tmp && tmp < (1UL << 17))
3737			init_user_reserve();
3738
3739		/* Default max is 8MB.  Leave alone if modified by operator. */
3740		tmp = sysctl_admin_reserve_kbytes;
3741		if (0 < tmp && tmp < (1UL << 13))
3742			init_admin_reserve();
3743
3744		break;
3745	case MEM_OFFLINE:
3746		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3747
3748		if (sysctl_user_reserve_kbytes > free_kbytes) {
3749			init_user_reserve();
3750			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3751				sysctl_user_reserve_kbytes);
3752		}
3753
3754		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3755			init_admin_reserve();
3756			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3757				sysctl_admin_reserve_kbytes);
3758		}
3759		break;
3760	default:
3761		break;
3762	}
3763	return NOTIFY_OK;
3764}
3765
3766static struct notifier_block reserve_mem_nb = {
3767	.notifier_call = reserve_mem_notifier,
3768};
3769
3770static int __meminit init_reserve_notifier(void)
3771{
3772	if (register_hotmemory_notifier(&reserve_mem_nb))
3773		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3774
3775	return 0;
3776}
3777subsys_initcall(init_reserve_notifier);
v3.15
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/backing-dev.h>
  12#include <linux/mm.h>
  13#include <linux/vmacache.h>
  14#include <linux/shm.h>
  15#include <linux/mman.h>
  16#include <linux/pagemap.h>
  17#include <linux/swap.h>
  18#include <linux/syscalls.h>
  19#include <linux/capability.h>
  20#include <linux/init.h>
  21#include <linux/file.h>
  22#include <linux/fs.h>
  23#include <linux/personality.h>
  24#include <linux/security.h>
  25#include <linux/hugetlb.h>
 
  26#include <linux/profile.h>
  27#include <linux/export.h>
  28#include <linux/mount.h>
  29#include <linux/mempolicy.h>
  30#include <linux/rmap.h>
  31#include <linux/mmu_notifier.h>
 
  32#include <linux/perf_event.h>
  33#include <linux/audit.h>
  34#include <linux/khugepaged.h>
  35#include <linux/uprobes.h>
  36#include <linux/rbtree_augmented.h>
  37#include <linux/sched/sysctl.h>
  38#include <linux/notifier.h>
  39#include <linux/memory.h>
 
 
 
 
 
 
  40
  41#include <asm/uaccess.h>
  42#include <asm/cacheflush.h>
  43#include <asm/tlb.h>
  44#include <asm/mmu_context.h>
  45
  46#include "internal.h"
  47
  48#ifndef arch_mmap_check
  49#define arch_mmap_check(addr, len, flags)	(0)
  50#endif
  51
  52#ifndef arch_rebalance_pgtables
  53#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
 
 
 
 
 
  54#endif
  55
 
 
 
  56static void unmap_region(struct mm_struct *mm,
  57		struct vm_area_struct *vma, struct vm_area_struct *prev,
  58		unsigned long start, unsigned long end);
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
 
 
 
 
 
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
 
 
 
 
 
 
 
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 
 
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90unsigned long sysctl_overcommit_kbytes __read_mostly;
  91int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  92unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  93unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  94/*
  95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  96 * other variables. It can be updated by several CPUs frequently.
  97 */
  98struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  99
 100/*
 101 * The global memory commitment made in the system can be a metric
 102 * that can be used to drive ballooning decisions when Linux is hosted
 103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 104 * balancing memory across competing virtual machines that are hosted.
 105 * Several metrics drive this policy engine including the guest reported
 106 * memory commitment.
 107 */
 108unsigned long vm_memory_committed(void)
 109{
 110	return percpu_counter_read_positive(&vm_committed_as);
 111}
 112EXPORT_SYMBOL_GPL(vm_memory_committed);
 113
 114/*
 115 * Check that a process has enough memory to allocate a new virtual
 116 * mapping. 0 means there is enough memory for the allocation to
 117 * succeed and -ENOMEM implies there is not.
 118 *
 119 * We currently support three overcommit policies, which are set via the
 120 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 121 *
 122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 123 * Additional code 2002 Jul 20 by Robert Love.
 124 *
 125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 126 *
 127 * Note this is a helper function intended to be used by LSMs which
 128 * wish to use this logic.
 129 */
 130int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 131{
 132	unsigned long free, allowed, reserve;
 133
 134	vm_acct_memory(pages);
 135
 136	/*
 137	 * Sometimes we want to use more memory than we have
 138	 */
 139	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 140		return 0;
 141
 142	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 143		free = global_page_state(NR_FREE_PAGES);
 144		free += global_page_state(NR_FILE_PAGES);
 145
 146		/*
 147		 * shmem pages shouldn't be counted as free in this
 148		 * case, they can't be purged, only swapped out, and
 149		 * that won't affect the overall amount of available
 150		 * memory in the system.
 151		 */
 152		free -= global_page_state(NR_SHMEM);
 153
 154		free += get_nr_swap_pages();
 155
 156		/*
 157		 * Any slabs which are created with the
 158		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 159		 * which are reclaimable, under pressure.  The dentry
 160		 * cache and most inode caches should fall into this
 161		 */
 162		free += global_page_state(NR_SLAB_RECLAIMABLE);
 163
 164		/*
 165		 * Leave reserved pages. The pages are not for anonymous pages.
 166		 */
 167		if (free <= totalreserve_pages)
 168			goto error;
 169		else
 170			free -= totalreserve_pages;
 171
 172		/*
 173		 * Reserve some for root
 174		 */
 175		if (!cap_sys_admin)
 176			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 177
 178		if (free > pages)
 179			return 0;
 180
 181		goto error;
 182	}
 183
 184	allowed = vm_commit_limit();
 185	/*
 186	 * Reserve some for root
 187	 */
 188	if (!cap_sys_admin)
 189		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 190
 191	/*
 192	 * Don't let a single process grow so big a user can't recover
 193	 */
 194	if (mm) {
 195		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 196		allowed -= min(mm->total_vm / 32, reserve);
 197	}
 198
 199	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 200		return 0;
 201error:
 202	vm_unacct_memory(pages);
 203
 204	return -ENOMEM;
 205}
 206
 207/*
 208 * Requires inode->i_mapping->i_mmap_mutex
 209 */
 210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 211		struct file *file, struct address_space *mapping)
 212{
 213	if (vma->vm_flags & VM_DENYWRITE)
 214		atomic_inc(&file_inode(file)->i_writecount);
 215	if (vma->vm_flags & VM_SHARED)
 216		mapping->i_mmap_writable--;
 217
 218	flush_dcache_mmap_lock(mapping);
 219	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 220		list_del_init(&vma->shared.nonlinear);
 221	else
 222		vma_interval_tree_remove(vma, &mapping->i_mmap);
 223	flush_dcache_mmap_unlock(mapping);
 224}
 225
 226/*
 227 * Unlink a file-based vm structure from its interval tree, to hide
 228 * vma from rmap and vmtruncate before freeing its page tables.
 229 */
 230void unlink_file_vma(struct vm_area_struct *vma)
 231{
 232	struct file *file = vma->vm_file;
 233
 234	if (file) {
 235		struct address_space *mapping = file->f_mapping;
 236		mutex_lock(&mapping->i_mmap_mutex);
 237		__remove_shared_vm_struct(vma, file, mapping);
 238		mutex_unlock(&mapping->i_mmap_mutex);
 239	}
 240}
 241
 242/*
 243 * Close a vm structure and free it, returning the next.
 244 */
 245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 246{
 247	struct vm_area_struct *next = vma->vm_next;
 248
 249	might_sleep();
 250	if (vma->vm_ops && vma->vm_ops->close)
 251		vma->vm_ops->close(vma);
 252	if (vma->vm_file)
 253		fput(vma->vm_file);
 254	mpol_put(vma_policy(vma));
 255	kmem_cache_free(vm_area_cachep, vma);
 256	return next;
 257}
 258
 259static unsigned long do_brk(unsigned long addr, unsigned long len);
 260
 261SYSCALL_DEFINE1(brk, unsigned long, brk)
 262{
 263	unsigned long rlim, retval;
 264	unsigned long newbrk, oldbrk;
 265	struct mm_struct *mm = current->mm;
 
 266	unsigned long min_brk;
 267	bool populate;
 
 
 
 
 
 
 
 268
 269	down_write(&mm->mmap_sem);
 270
 271#ifdef CONFIG_COMPAT_BRK
 272	/*
 273	 * CONFIG_COMPAT_BRK can still be overridden by setting
 274	 * randomize_va_space to 2, which will still cause mm->start_brk
 275	 * to be arbitrarily shifted
 276	 */
 277	if (current->brk_randomized)
 278		min_brk = mm->start_brk;
 279	else
 280		min_brk = mm->end_data;
 281#else
 282	min_brk = mm->start_brk;
 283#endif
 284	if (brk < min_brk)
 285		goto out;
 286
 287	/*
 288	 * Check against rlimit here. If this check is done later after the test
 289	 * of oldbrk with newbrk then it can escape the test and let the data
 290	 * segment grow beyond its set limit the in case where the limit is
 291	 * not page aligned -Ram Gupta
 292	 */
 293	rlim = rlimit(RLIMIT_DATA);
 294	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 295			(mm->end_data - mm->start_data) > rlim)
 296		goto out;
 297
 298	newbrk = PAGE_ALIGN(brk);
 299	oldbrk = PAGE_ALIGN(mm->brk);
 300	if (oldbrk == newbrk)
 301		goto set_brk;
 
 
 302
 303	/* Always allow shrinking brk. */
 
 
 
 304	if (brk <= mm->brk) {
 305		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 306			goto set_brk;
 307		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 308	}
 309
 310	/* Check against existing mmap mappings. */
 311	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 312		goto out;
 313
 314	/* Ok, looks good - let it rip. */
 315	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 316		goto out;
 
 317
 318set_brk:
 319	mm->brk = brk;
 320	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 321	up_write(&mm->mmap_sem);
 
 
 
 
 322	if (populate)
 323		mm_populate(oldbrk, newbrk - oldbrk);
 324	return brk;
 325
 326out:
 327	retval = mm->brk;
 328	up_write(&mm->mmap_sem);
 329	return retval;
 330}
 331
 332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 333{
 334	unsigned long max, subtree_gap;
 335	max = vma->vm_start;
 336	if (vma->vm_prev)
 337		max -= vma->vm_prev->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338	if (vma->vm_rb.rb_left) {
 339		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 340				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 341		if (subtree_gap > max)
 342			max = subtree_gap;
 343	}
 344	if (vma->vm_rb.rb_right) {
 345		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 346				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 347		if (subtree_gap > max)
 348			max = subtree_gap;
 349	}
 350	return max;
 351}
 352
 353#ifdef CONFIG_DEBUG_VM_RB
 354static int browse_rb(struct rb_root *root)
 355{
 
 356	int i = 0, j, bug = 0;
 357	struct rb_node *nd, *pn = NULL;
 358	unsigned long prev = 0, pend = 0;
 359
 360	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 361		struct vm_area_struct *vma;
 362		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 363		if (vma->vm_start < prev) {
 364			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
 
 365			bug = 1;
 366		}
 367		if (vma->vm_start < pend) {
 368			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 
 369			bug = 1;
 370		}
 371		if (vma->vm_start > vma->vm_end) {
 372			printk("vm_end %lx < vm_start %lx\n",
 373				vma->vm_end, vma->vm_start);
 374			bug = 1;
 375		}
 
 376		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 377			printk("free gap %lx, correct %lx\n",
 378			       vma->rb_subtree_gap,
 379			       vma_compute_subtree_gap(vma));
 380			bug = 1;
 381		}
 
 382		i++;
 383		pn = nd;
 384		prev = vma->vm_start;
 385		pend = vma->vm_end;
 386	}
 387	j = 0;
 388	for (nd = pn; nd; nd = rb_prev(nd))
 389		j++;
 390	if (i != j) {
 391		printk("backwards %d, forwards %d\n", j, i);
 392		bug = 1;
 393	}
 394	return bug ? -1 : i;
 395}
 396
 397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 398{
 399	struct rb_node *nd;
 400
 401	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 402		struct vm_area_struct *vma;
 403		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 404		BUG_ON(vma != ignore &&
 405		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
 
 406	}
 407}
 408
 409static void validate_mm(struct mm_struct *mm)
 410{
 411	int bug = 0;
 412	int i = 0;
 413	unsigned long highest_address = 0;
 414	struct vm_area_struct *vma = mm->mmap;
 
 415	while (vma) {
 
 416		struct anon_vma_chain *avc;
 417		vma_lock_anon_vma(vma);
 418		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 419			anon_vma_interval_tree_verify(avc);
 420		vma_unlock_anon_vma(vma);
 421		highest_address = vma->vm_end;
 
 
 
 
 422		vma = vma->vm_next;
 423		i++;
 424	}
 425	if (i != mm->map_count) {
 426		printk("map_count %d vm_next %d\n", mm->map_count, i);
 427		bug = 1;
 428	}
 429	if (highest_address != mm->highest_vm_end) {
 430		printk("mm->highest_vm_end %lx, found %lx\n",
 431		       mm->highest_vm_end, highest_address);
 432		bug = 1;
 433	}
 434	i = browse_rb(&mm->mm_rb);
 435	if (i != mm->map_count) {
 436		printk("map_count %d rb %d\n", mm->map_count, i);
 
 437		bug = 1;
 438	}
 439	BUG_ON(bug);
 440}
 441#else
 442#define validate_mm_rb(root, ignore) do { } while (0)
 443#define validate_mm(mm) do { } while (0)
 444#endif
 445
 446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 447		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 
 448
 449/*
 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 452 * in the rbtree.
 453 */
 454static void vma_gap_update(struct vm_area_struct *vma)
 455{
 456	/*
 457	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 458	 * function that does exacltly what we want.
 459	 */
 460	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 461}
 462
 463static inline void vma_rb_insert(struct vm_area_struct *vma,
 464				 struct rb_root *root)
 465{
 466	/* All rb_subtree_gap values must be consistent prior to insertion */
 467	validate_mm_rb(root, NULL);
 468
 469	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 470}
 471
 472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473{
 474	/*
 475	 * All rb_subtree_gap values must be consistent prior to erase,
 476	 * with the possible exception of the vma being erased.
 477	 */
 478	validate_mm_rb(root, vma);
 479
 480	/*
 481	 * Note rb_erase_augmented is a fairly large inline function,
 482	 * so make sure we instantiate it only once with our desired
 483	 * augmented rbtree callbacks.
 484	 */
 485	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 486}
 487
 488/*
 489 * vma has some anon_vma assigned, and is already inserted on that
 490 * anon_vma's interval trees.
 491 *
 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 493 * vma must be removed from the anon_vma's interval trees using
 494 * anon_vma_interval_tree_pre_update_vma().
 495 *
 496 * After the update, the vma will be reinserted using
 497 * anon_vma_interval_tree_post_update_vma().
 498 *
 499 * The entire update must be protected by exclusive mmap_sem and by
 500 * the root anon_vma's mutex.
 501 */
 502static inline void
 503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 504{
 505	struct anon_vma_chain *avc;
 506
 507	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 508		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 509}
 510
 511static inline void
 512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 513{
 514	struct anon_vma_chain *avc;
 515
 516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 521		unsigned long end, struct vm_area_struct **pprev,
 522		struct rb_node ***rb_link, struct rb_node **rb_parent)
 523{
 524	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 525
 526	__rb_link = &mm->mm_rb.rb_node;
 527	rb_prev = __rb_parent = NULL;
 528
 529	while (*__rb_link) {
 530		struct vm_area_struct *vma_tmp;
 531
 532		__rb_parent = *__rb_link;
 533		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 534
 535		if (vma_tmp->vm_end > addr) {
 536			/* Fail if an existing vma overlaps the area */
 537			if (vma_tmp->vm_start < end)
 538				return -ENOMEM;
 539			__rb_link = &__rb_parent->rb_left;
 540		} else {
 541			rb_prev = __rb_parent;
 542			__rb_link = &__rb_parent->rb_right;
 543		}
 544	}
 545
 546	*pprev = NULL;
 547	if (rb_prev)
 548		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 549	*rb_link = __rb_link;
 550	*rb_parent = __rb_parent;
 551	return 0;
 552}
 553
 554static unsigned long count_vma_pages_range(struct mm_struct *mm,
 555		unsigned long addr, unsigned long end)
 556{
 557	unsigned long nr_pages = 0;
 558	struct vm_area_struct *vma;
 559
 560	/* Find first overlaping mapping */
 561	vma = find_vma_intersection(mm, addr, end);
 562	if (!vma)
 563		return 0;
 564
 565	nr_pages = (min(end, vma->vm_end) -
 566		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 567
 568	/* Iterate over the rest of the overlaps */
 569	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 570		unsigned long overlap_len;
 571
 572		if (vma->vm_start > end)
 573			break;
 574
 575		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 576		nr_pages += overlap_len >> PAGE_SHIFT;
 577	}
 578
 579	return nr_pages;
 580}
 581
 582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 583		struct rb_node **rb_link, struct rb_node *rb_parent)
 584{
 585	/* Update tracking information for the gap following the new vma. */
 586	if (vma->vm_next)
 587		vma_gap_update(vma->vm_next);
 588	else
 589		mm->highest_vm_end = vma->vm_end;
 590
 591	/*
 592	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 593	 * correct insertion point for that vma. As a result, we could not
 594	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 595	 * So, we first insert the vma with a zero rb_subtree_gap value
 596	 * (to be consistent with what we did on the way down), and then
 597	 * immediately update the gap to the correct value. Finally we
 598	 * rebalance the rbtree after all augmented values have been set.
 599	 */
 600	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 601	vma->rb_subtree_gap = 0;
 602	vma_gap_update(vma);
 603	vma_rb_insert(vma, &mm->mm_rb);
 604}
 605
 606static void __vma_link_file(struct vm_area_struct *vma)
 607{
 608	struct file *file;
 609
 610	file = vma->vm_file;
 611	if (file) {
 612		struct address_space *mapping = file->f_mapping;
 613
 614		if (vma->vm_flags & VM_DENYWRITE)
 615			atomic_dec(&file_inode(file)->i_writecount);
 616		if (vma->vm_flags & VM_SHARED)
 617			mapping->i_mmap_writable++;
 618
 619		flush_dcache_mmap_lock(mapping);
 620		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 621			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 622		else
 623			vma_interval_tree_insert(vma, &mapping->i_mmap);
 624		flush_dcache_mmap_unlock(mapping);
 625	}
 626}
 627
 628static void
 629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 630	struct vm_area_struct *prev, struct rb_node **rb_link,
 631	struct rb_node *rb_parent)
 632{
 633	__vma_link_list(mm, vma, prev, rb_parent);
 634	__vma_link_rb(mm, vma, rb_link, rb_parent);
 635}
 636
 637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 638			struct vm_area_struct *prev, struct rb_node **rb_link,
 639			struct rb_node *rb_parent)
 640{
 641	struct address_space *mapping = NULL;
 642
 643	if (vma->vm_file)
 644		mapping = vma->vm_file->f_mapping;
 645
 646	if (mapping)
 647		mutex_lock(&mapping->i_mmap_mutex);
 648
 649	__vma_link(mm, vma, prev, rb_link, rb_parent);
 650	__vma_link_file(vma);
 651
 652	if (mapping)
 653		mutex_unlock(&mapping->i_mmap_mutex);
 654
 655	mm->map_count++;
 656	validate_mm(mm);
 657}
 658
 659/*
 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 661 * mm's list and rbtree.  It has already been inserted into the interval tree.
 662 */
 663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 664{
 665	struct vm_area_struct *prev;
 666	struct rb_node **rb_link, *rb_parent;
 667
 668	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 669			   &prev, &rb_link, &rb_parent))
 670		BUG();
 671	__vma_link(mm, vma, prev, rb_link, rb_parent);
 672	mm->map_count++;
 673}
 674
 675static inline void
 676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 677		struct vm_area_struct *prev)
 
 
 678{
 679	struct vm_area_struct *next;
 680
 681	vma_rb_erase(vma, &mm->mm_rb);
 682	prev->vm_next = next = vma->vm_next;
 
 
 
 
 
 
 
 
 
 683	if (next)
 684		next->vm_prev = prev;
 685
 686	/* Kill the cache */
 687	vmacache_invalidate(mm);
 688}
 689
 
 
 
 
 
 
 
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 
 699{
 700	struct mm_struct *mm = vma->vm_mm;
 701	struct vm_area_struct *next = vma->vm_next;
 702	struct vm_area_struct *importer = NULL;
 703	struct address_space *mapping = NULL;
 704	struct rb_root *root = NULL;
 705	struct anon_vma *anon_vma = NULL;
 706	struct file *file = vma->vm_file;
 707	bool start_changed = false, end_changed = false;
 708	long adjust_next = 0;
 709	int remove_next = 0;
 710
 711	if (next && !insert) {
 712		struct vm_area_struct *exporter = NULL;
 713
 714		if (end >= next->vm_end) {
 715			/*
 716			 * vma expands, overlapping all the next, and
 717			 * perhaps the one after too (mprotect case 6).
 
 
 718			 */
 719again:			remove_next = 1 + (end > next->vm_end);
 720			end = next->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721			exporter = next;
 722			importer = vma;
 
 
 
 
 
 
 
 
 723		} else if (end > next->vm_start) {
 724			/*
 725			 * vma expands, overlapping part of the next:
 726			 * mprotect case 5 shifting the boundary up.
 727			 */
 728			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 729			exporter = next;
 730			importer = vma;
 
 731		} else if (end < vma->vm_end) {
 732			/*
 733			 * vma shrinks, and !insert tells it's not
 734			 * split_vma inserting another: so it must be
 735			 * mprotect case 4 shifting the boundary down.
 736			 */
 737			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 738			exporter = vma;
 739			importer = next;
 
 740		}
 741
 742		/*
 743		 * Easily overlooked: when mprotect shifts the boundary,
 744		 * make sure the expanding vma has anon_vma set if the
 745		 * shrinking vma had, to cover any anon pages imported.
 746		 */
 747		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 748			if (anon_vma_clone(importer, exporter))
 749				return -ENOMEM;
 750			importer->anon_vma = exporter->anon_vma;
 
 
 
 751		}
 752	}
 
 
 753
 754	if (file) {
 755		mapping = file->f_mapping;
 756		if (!(vma->vm_flags & VM_NONLINEAR)) {
 757			root = &mapping->i_mmap;
 758			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 759
 760			if (adjust_next)
 761				uprobe_munmap(next, next->vm_start,
 762							next->vm_end);
 763		}
 764
 765		mutex_lock(&mapping->i_mmap_mutex);
 766		if (insert) {
 767			/*
 768			 * Put into interval tree now, so instantiated pages
 769			 * are visible to arm/parisc __flush_dcache_page
 770			 * throughout; but we cannot insert into address
 771			 * space until vma start or end is updated.
 772			 */
 773			__vma_link_file(insert);
 774		}
 775	}
 776
 777	vma_adjust_trans_huge(vma, start, end, adjust_next);
 778
 779	anon_vma = vma->anon_vma;
 780	if (!anon_vma && adjust_next)
 781		anon_vma = next->anon_vma;
 782	if (anon_vma) {
 783		VM_BUG_ON(adjust_next && next->anon_vma &&
 784			  anon_vma != next->anon_vma);
 785		anon_vma_lock_write(anon_vma);
 786		anon_vma_interval_tree_pre_update_vma(vma);
 787		if (adjust_next)
 788			anon_vma_interval_tree_pre_update_vma(next);
 789	}
 790
 791	if (root) {
 792		flush_dcache_mmap_lock(mapping);
 793		vma_interval_tree_remove(vma, root);
 794		if (adjust_next)
 795			vma_interval_tree_remove(next, root);
 796	}
 797
 798	if (start != vma->vm_start) {
 799		vma->vm_start = start;
 800		start_changed = true;
 801	}
 802	if (end != vma->vm_end) {
 803		vma->vm_end = end;
 804		end_changed = true;
 805	}
 806	vma->vm_pgoff = pgoff;
 807	if (adjust_next) {
 808		next->vm_start += adjust_next << PAGE_SHIFT;
 809		next->vm_pgoff += adjust_next;
 810	}
 811
 812	if (root) {
 813		if (adjust_next)
 814			vma_interval_tree_insert(next, root);
 815		vma_interval_tree_insert(vma, root);
 816		flush_dcache_mmap_unlock(mapping);
 817	}
 818
 819	if (remove_next) {
 820		/*
 821		 * vma_merge has merged next into vma, and needs
 822		 * us to remove next before dropping the locks.
 823		 */
 824		__vma_unlink(mm, next, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 825		if (file)
 826			__remove_shared_vm_struct(next, file, mapping);
 827	} else if (insert) {
 828		/*
 829		 * split_vma has split insert from vma, and needs
 830		 * us to insert it before dropping the locks
 831		 * (it may either follow vma or precede it).
 832		 */
 833		__insert_vm_struct(mm, insert);
 834	} else {
 835		if (start_changed)
 836			vma_gap_update(vma);
 837		if (end_changed) {
 838			if (!next)
 839				mm->highest_vm_end = end;
 840			else if (!adjust_next)
 841				vma_gap_update(next);
 842		}
 843	}
 844
 845	if (anon_vma) {
 846		anon_vma_interval_tree_post_update_vma(vma);
 847		if (adjust_next)
 848			anon_vma_interval_tree_post_update_vma(next);
 849		anon_vma_unlock_write(anon_vma);
 850	}
 851	if (mapping)
 852		mutex_unlock(&mapping->i_mmap_mutex);
 853
 854	if (root) {
 855		uprobe_mmap(vma);
 856
 857		if (adjust_next)
 858			uprobe_mmap(next);
 859	}
 860
 861	if (remove_next) {
 862		if (file) {
 863			uprobe_munmap(next, next->vm_start, next->vm_end);
 864			fput(file);
 865		}
 866		if (next->anon_vma)
 867			anon_vma_merge(vma, next);
 868		mm->map_count--;
 869		mpol_put(vma_policy(next));
 870		kmem_cache_free(vm_area_cachep, next);
 871		/*
 872		 * In mprotect's case 6 (see comments on vma_merge),
 873		 * we must remove another next too. It would clutter
 874		 * up the code too much to do both in one go.
 875		 */
 876		next = vma->vm_next;
 877		if (remove_next == 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878			goto again;
 
 879		else if (next)
 880			vma_gap_update(next);
 881		else
 882			mm->highest_vm_end = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883	}
 884	if (insert && file)
 885		uprobe_mmap(insert);
 886
 887	validate_mm(mm);
 888
 889	return 0;
 890}
 891
 892/*
 893 * If the vma has a ->close operation then the driver probably needs to release
 894 * per-vma resources, so we don't attempt to merge those.
 895 */
 896static inline int is_mergeable_vma(struct vm_area_struct *vma,
 897			struct file *file, unsigned long vm_flags)
 
 898{
 899	/*
 900	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 901	 * match the flags but dirty bit -- the caller should mark
 902	 * merged VMA as dirty. If dirty bit won't be excluded from
 903	 * comparison, we increase pressue on the memory system forcing
 904	 * the kernel to generate new VMAs when old one could be
 905	 * extended instead.
 906	 */
 907	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 908		return 0;
 909	if (vma->vm_file != file)
 910		return 0;
 911	if (vma->vm_ops && vma->vm_ops->close)
 912		return 0;
 
 
 913	return 1;
 914}
 915
 916static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 917					struct anon_vma *anon_vma2,
 918					struct vm_area_struct *vma)
 919{
 920	/*
 921	 * The list_is_singular() test is to avoid merging VMA cloned from
 922	 * parents. This can improve scalability caused by anon_vma lock.
 923	 */
 924	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 925		list_is_singular(&vma->anon_vma_chain)))
 926		return 1;
 927	return anon_vma1 == anon_vma2;
 928}
 929
 930/*
 931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 932 * in front of (at a lower virtual address and file offset than) the vma.
 933 *
 934 * We cannot merge two vmas if they have differently assigned (non-NULL)
 935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 936 *
 937 * We don't check here for the merged mmap wrapping around the end of pagecache
 938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 939 * wrap, nor mmaps which cover the final page at index -1UL.
 940 */
 941static int
 942can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 943	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 944{
 945	if (is_mergeable_vma(vma, file, vm_flags) &&
 946	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 947		if (vma->vm_pgoff == vm_pgoff)
 948			return 1;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 955 * beyond (at a higher virtual address and file offset than) the vma.
 956 *
 957 * We cannot merge two vmas if they have differently assigned (non-NULL)
 958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 959 */
 960static int
 961can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 962	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 963{
 964	if (is_mergeable_vma(vma, file, vm_flags) &&
 965	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 966		pgoff_t vm_pglen;
 967		vm_pglen = vma_pages(vma);
 968		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 969			return 1;
 970	}
 971	return 0;
 972}
 973
 974/*
 975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 976 * whether that can be merged with its predecessor or its successor.
 977 * Or both (it neatly fills a hole).
 978 *
 979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 980 * certain not to be mapped by the time vma_merge is called; but when
 981 * called for mprotect, it is certain to be already mapped (either at
 982 * an offset within prev, or at the start of next), and the flags of
 983 * this area are about to be changed to vm_flags - and the no-change
 984 * case has already been eliminated.
 985 *
 986 * The following mprotect cases have to be considered, where AAAA is
 987 * the area passed down from mprotect_fixup, never extending beyond one
 988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 989 *
 990 *     AAAA             AAAA                AAAA          AAAA
 991 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 992 *    cannot merge    might become    might become    might become
 993 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 994 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 995 *    mremap move:                                    PPPPNNNNNNNN 8
 996 *        AAAA
 997 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 998 *    might become    case 1 below    case 2 below    case 3 below
 999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 
 
 
 
 
 
 
 
 
 
 
1002 */
1003struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004			struct vm_area_struct *prev, unsigned long addr,
1005			unsigned long end, unsigned long vm_flags,
1006		     	struct anon_vma *anon_vma, struct file *file,
1007			pgoff_t pgoff, struct mempolicy *policy)
 
1008{
1009	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010	struct vm_area_struct *area, *next;
1011	int err;
1012
1013	/*
1014	 * We later require that vma->vm_flags == vm_flags,
1015	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016	 */
1017	if (vm_flags & VM_SPECIAL)
1018		return NULL;
1019
1020	if (prev)
1021		next = prev->vm_next;
1022	else
1023		next = mm->mmap;
1024	area = next;
1025	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1026		next = next->vm_next;
1027
 
 
 
 
 
1028	/*
1029	 * Can it merge with the predecessor?
1030	 */
1031	if (prev && prev->vm_end == addr &&
1032  			mpol_equal(vma_policy(prev), policy) &&
1033			can_vma_merge_after(prev, vm_flags,
1034						anon_vma, file, pgoff)) {
 
1035		/*
1036		 * OK, it can.  Can we now merge in the successor as well?
1037		 */
1038		if (next && end == next->vm_start &&
1039				mpol_equal(policy, vma_policy(next)) &&
1040				can_vma_merge_before(next, vm_flags,
1041					anon_vma, file, pgoff+pglen) &&
 
 
1042				is_mergeable_anon_vma(prev->anon_vma,
1043						      next->anon_vma, NULL)) {
1044							/* cases 1, 6 */
1045			err = vma_adjust(prev, prev->vm_start,
1046				next->vm_end, prev->vm_pgoff, NULL);
 
1047		} else					/* cases 2, 5, 7 */
1048			err = vma_adjust(prev, prev->vm_start,
1049				end, prev->vm_pgoff, NULL);
1050		if (err)
1051			return NULL;
1052		khugepaged_enter_vma_merge(prev);
1053		return prev;
1054	}
1055
1056	/*
1057	 * Can this new request be merged in front of next?
1058	 */
1059	if (next && end == next->vm_start &&
1060 			mpol_equal(policy, vma_policy(next)) &&
1061			can_vma_merge_before(next, vm_flags,
1062					anon_vma, file, pgoff+pglen)) {
 
1063		if (prev && addr < prev->vm_end)	/* case 4 */
1064			err = vma_adjust(prev, prev->vm_start,
1065				addr, prev->vm_pgoff, NULL);
1066		else					/* cases 3, 8 */
1067			err = vma_adjust(area, addr, next->vm_end,
1068				next->vm_pgoff - pglen, NULL);
 
 
 
 
 
 
 
1069		if (err)
1070			return NULL;
1071		khugepaged_enter_vma_merge(area);
1072		return area;
1073	}
1074
1075	return NULL;
1076}
1077
1078/*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092{
1093	return a->vm_end == b->vm_start &&
1094		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095		a->vm_file == b->vm_file &&
1096		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098}
1099
1100/*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123{
1124	if (anon_vma_compatible(a, b)) {
1125		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128			return anon_vma;
1129	}
1130	return NULL;
1131}
1132
1133/*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma.  It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142{
1143	struct anon_vma *anon_vma;
1144	struct vm_area_struct *near;
1145
1146	near = vma->vm_next;
1147	if (!near)
1148		goto try_prev;
1149
1150	anon_vma = reusable_anon_vma(near, vma, near);
1151	if (anon_vma)
1152		return anon_vma;
1153try_prev:
1154	near = vma->vm_prev;
1155	if (!near)
1156		goto none;
1157
1158	anon_vma = reusable_anon_vma(near, near, vma);
1159	if (anon_vma)
1160		return anon_vma;
1161none:
1162	/*
1163	 * There's no absolute need to look only at touching neighbours:
1164	 * we could search further afield for "compatible" anon_vmas.
1165	 * But it would probably just be a waste of time searching,
1166	 * or lead to too many vmas hanging off the same anon_vma.
1167	 * We're trying to allow mprotect remerging later on,
1168	 * not trying to minimize memory used for anon_vmas.
1169	 */
1170	return NULL;
1171}
1172
1173#ifdef CONFIG_PROC_FS
1174void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175						struct file *file, long pages)
1176{
1177	const unsigned long stack_flags
1178		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180	mm->total_vm += pages;
1181
1182	if (file) {
1183		mm->shared_vm += pages;
1184		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185			mm->exec_vm += pages;
1186	} else if (flags & stack_flags)
1187		mm->stack_vm += pages;
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1191/*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195static inline unsigned long round_hint_to_min(unsigned long hint)
1196{
1197	hint &= PAGE_MASK;
1198	if (((void *)hint != NULL) &&
1199	    (hint < mmap_min_addr))
1200		return PAGE_ALIGN(mmap_min_addr);
1201	return hint;
1202}
1203
1204static inline int mlock_future_check(struct mm_struct *mm,
1205				     unsigned long flags,
1206				     unsigned long len)
1207{
1208	unsigned long locked, lock_limit;
1209
1210	/*  mlock MCL_FUTURE? */
1211	if (flags & VM_LOCKED) {
1212		locked = len >> PAGE_SHIFT;
1213		locked += mm->locked_vm;
1214		lock_limit = rlimit(RLIMIT_MEMLOCK);
1215		lock_limit >>= PAGE_SHIFT;
1216		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217			return -EAGAIN;
1218	}
1219	return 0;
1220}
1221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222/*
1223 * The caller must hold down_write(&current->mm->mmap_sem).
1224 */
1225
1226unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227			unsigned long len, unsigned long prot,
1228			unsigned long flags, unsigned long pgoff,
1229			unsigned long *populate)
 
1230{
1231	struct mm_struct * mm = current->mm;
1232	vm_flags_t vm_flags;
1233
1234	*populate = 0;
1235
 
 
 
1236	/*
1237	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238	 *
1239	 * (the exception is when the underlying filesystem is noexec
1240	 *  mounted, in which case we dont add PROT_EXEC.)
1241	 */
1242	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244			prot |= PROT_EXEC;
1245
1246	if (!len)
1247		return -EINVAL;
 
1248
1249	if (!(flags & MAP_FIXED))
1250		addr = round_hint_to_min(addr);
1251
1252	/* Careful about overflows.. */
1253	len = PAGE_ALIGN(len);
1254	if (!len)
1255		return -ENOMEM;
1256
1257	/* offset overflow? */
1258	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259               return -EOVERFLOW;
1260
1261	/* Too many mappings? */
1262	if (mm->map_count > sysctl_max_map_count)
1263		return -ENOMEM;
1264
1265	/* Obtain the address to map to. we verify (or select) it and ensure
1266	 * that it represents a valid section of the address space.
1267	 */
1268	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269	if (addr & ~PAGE_MASK)
1270		return addr;
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
1272	/* Do simple checking here so the lower-level routines won't have
1273	 * to. we assume access permissions have been handled by the open
1274	 * of the memory object, so we don't do any here.
1275	 */
1276	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279	if (flags & MAP_LOCKED)
1280		if (!can_do_mlock())
1281			return -EPERM;
1282
1283	if (mlock_future_check(mm, vm_flags, len))
1284		return -EAGAIN;
1285
1286	if (file) {
1287		struct inode *inode = file_inode(file);
 
 
 
 
 
 
1288
1289		switch (flags & MAP_TYPE) {
1290		case MAP_SHARED:
1291			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294			/*
1295			 * Make sure we don't allow writing to an append-only
1296			 * file..
1297			 */
1298			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299				return -EACCES;
1300
1301			/*
1302			 * Make sure there are no mandatory locks on the file.
1303			 */
1304			if (locks_verify_locked(file))
1305				return -EAGAIN;
1306
1307			vm_flags |= VM_SHARED | VM_MAYSHARE;
1308			if (!(file->f_mode & FMODE_WRITE))
1309				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311			/* fall through */
1312		case MAP_PRIVATE:
1313			if (!(file->f_mode & FMODE_READ))
1314				return -EACCES;
1315			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316				if (vm_flags & VM_EXEC)
1317					return -EPERM;
1318				vm_flags &= ~VM_MAYEXEC;
1319			}
1320
1321			if (!file->f_op->mmap)
1322				return -ENODEV;
1323			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324				return -EINVAL;
1325			break;
1326
1327		default:
1328			return -EINVAL;
1329		}
1330	} else {
1331		switch (flags & MAP_TYPE) {
1332		case MAP_SHARED:
1333			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334				return -EINVAL;
1335			/*
1336			 * Ignore pgoff.
1337			 */
1338			pgoff = 0;
1339			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340			break;
1341		case MAP_PRIVATE:
1342			/*
1343			 * Set pgoff according to addr for anon_vma.
1344			 */
1345			pgoff = addr >> PAGE_SHIFT;
1346			break;
1347		default:
1348			return -EINVAL;
1349		}
1350	}
1351
1352	/*
1353	 * Set 'VM_NORESERVE' if we should not account for the
1354	 * memory use of this mapping.
1355	 */
1356	if (flags & MAP_NORESERVE) {
1357		/* We honor MAP_NORESERVE if allowed to overcommit */
1358		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359			vm_flags |= VM_NORESERVE;
1360
1361		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362		if (file && is_file_hugepages(file))
1363			vm_flags |= VM_NORESERVE;
1364	}
1365
1366	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367	if (!IS_ERR_VALUE(addr) &&
1368	    ((vm_flags & VM_LOCKED) ||
1369	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370		*populate = len;
1371	return addr;
1372}
1373
1374SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375		unsigned long, prot, unsigned long, flags,
1376		unsigned long, fd, unsigned long, pgoff)
1377{
1378	struct file *file = NULL;
1379	unsigned long retval = -EBADF;
 
 
1380
1381	if (!(flags & MAP_ANONYMOUS)) {
1382		audit_mmap_fd(fd, flags);
1383		file = fget(fd);
1384		if (!file)
1385			goto out;
1386		if (is_file_hugepages(file))
1387			len = ALIGN(len, huge_page_size(hstate_file(file)));
1388		retval = -EINVAL;
1389		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390			goto out_fput;
1391	} else if (flags & MAP_HUGETLB) {
1392		struct user_struct *user = NULL;
1393		struct hstate *hs;
1394
1395		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396		if (!hs)
1397			return -EINVAL;
1398
1399		len = ALIGN(len, huge_page_size(hs));
1400		/*
1401		 * VM_NORESERVE is used because the reservations will be
1402		 * taken when vm_ops->mmap() is called
1403		 * A dummy user value is used because we are not locking
1404		 * memory so no accounting is necessary
1405		 */
1406		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407				VM_NORESERVE,
1408				&user, HUGETLB_ANONHUGE_INODE,
1409				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410		if (IS_ERR(file))
1411			return PTR_ERR(file);
1412	}
1413
1414	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417out_fput:
1418	if (file)
1419		fput(file);
1420out:
1421	return retval;
1422}
1423
 
 
 
 
 
 
 
1424#ifdef __ARCH_WANT_SYS_OLD_MMAP
1425struct mmap_arg_struct {
1426	unsigned long addr;
1427	unsigned long len;
1428	unsigned long prot;
1429	unsigned long flags;
1430	unsigned long fd;
1431	unsigned long offset;
1432};
1433
1434SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435{
1436	struct mmap_arg_struct a;
1437
1438	if (copy_from_user(&a, arg, sizeof(a)))
1439		return -EFAULT;
1440	if (a.offset & ~PAGE_MASK)
1441		return -EINVAL;
1442
1443	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444			      a.offset >> PAGE_SHIFT);
1445}
1446#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448/*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454int vma_wants_writenotify(struct vm_area_struct *vma)
1455{
1456	vm_flags_t vm_flags = vma->vm_flags;
 
1457
1458	/* If it was private or non-writable, the write bit is already clear */
1459	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460		return 0;
1461
1462	/* The backer wishes to know when pages are first written to? */
1463	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464		return 1;
1465
1466	/* The open routine did something to the protections already? */
1467	if (pgprot_val(vma->vm_page_prot) !=
1468	    pgprot_val(vm_get_page_prot(vm_flags)))
 
1469		return 0;
1470
 
 
 
 
1471	/* Specialty mapping? */
1472	if (vm_flags & VM_PFNMAP)
1473		return 0;
1474
1475	/* Can the mapping track the dirty pages? */
1476	return vma->vm_file && vma->vm_file->f_mapping &&
1477		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478}
1479
1480/*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485{
1486	/*
1487	 * hugetlb has its own accounting separate from the core VM
1488	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489	 */
1490	if (file && is_file_hugepages(file))
1491		return 0;
1492
1493	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494}
1495
1496unsigned long mmap_region(struct file *file, unsigned long addr,
1497		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
 
1498{
1499	struct mm_struct *mm = current->mm;
1500	struct vm_area_struct *vma, *prev;
1501	int error;
1502	struct rb_node **rb_link, *rb_parent;
1503	unsigned long charged = 0;
1504
1505	/* Check against address space limit. */
1506	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507		unsigned long nr_pages;
1508
1509		/*
1510		 * MAP_FIXED may remove pages of mappings that intersects with
1511		 * requested mapping. Account for the pages it would unmap.
1512		 */
1513		if (!(vm_flags & MAP_FIXED))
1514			return -ENOMEM;
1515
1516		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
 
1519			return -ENOMEM;
1520	}
1521
1522	/* Clear old maps */
1523	error = -ENOMEM;
1524munmap_back:
1525	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526		if (do_munmap(mm, addr, len))
1527			return -ENOMEM;
1528		goto munmap_back;
1529	}
1530
1531	/*
1532	 * Private writable mapping: check memory availability
1533	 */
1534	if (accountable_mapping(file, vm_flags)) {
1535		charged = len >> PAGE_SHIFT;
1536		if (security_vm_enough_memory_mm(mm, charged))
1537			return -ENOMEM;
1538		vm_flags |= VM_ACCOUNT;
1539	}
1540
1541	/*
1542	 * Can we just expand an old mapping?
1543	 */
1544	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 
1545	if (vma)
1546		goto out;
1547
1548	/*
1549	 * Determine the object being mapped and call the appropriate
1550	 * specific mapper. the address has already been validated, but
1551	 * not unmapped, but the maps are removed from the list.
1552	 */
1553	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554	if (!vma) {
1555		error = -ENOMEM;
1556		goto unacct_error;
1557	}
1558
1559	vma->vm_mm = mm;
1560	vma->vm_start = addr;
1561	vma->vm_end = addr + len;
1562	vma->vm_flags = vm_flags;
1563	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564	vma->vm_pgoff = pgoff;
1565	INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567	if (file) {
1568		if (vm_flags & VM_DENYWRITE) {
1569			error = deny_write_access(file);
1570			if (error)
1571				goto free_vma;
1572		}
 
 
 
 
 
 
 
 
 
 
 
1573		vma->vm_file = get_file(file);
1574		error = file->f_op->mmap(file, vma);
1575		if (error)
1576			goto unmap_and_free_vma;
1577
1578		/* Can addr have changed??
1579		 *
1580		 * Answer: Yes, several device drivers can do it in their
1581		 *         f_op->mmap method. -DaveM
1582		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583		 *      be updated for vma_link()
1584		 */
1585		WARN_ON_ONCE(addr != vma->vm_start);
1586
1587		addr = vma->vm_start;
1588		vm_flags = vma->vm_flags;
1589	} else if (vm_flags & VM_SHARED) {
1590		error = shmem_zero_setup(vma);
1591		if (error)
1592			goto free_vma;
1593	}
1594
1595	if (vma_wants_writenotify(vma)) {
1596		pgprot_t pprot = vma->vm_page_prot;
1597
1598		/* Can vma->vm_page_prot have changed??
1599		 *
1600		 * Answer: Yes, drivers may have changed it in their
1601		 *         f_op->mmap method.
1602		 *
1603		 * Ensures that vmas marked as uncached stay that way.
1604		 */
1605		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608	}
1609
1610	vma_link(mm, vma, prev, rb_link, rb_parent);
1611	/* Once vma denies write, undo our temporary denial count */
1612	if (vm_flags & VM_DENYWRITE)
1613		allow_write_access(file);
 
 
 
 
1614	file = vma->vm_file;
1615out:
1616	perf_event_mmap(vma);
1617
1618	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619	if (vm_flags & VM_LOCKED) {
1620		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621					vma == get_gate_vma(current->mm)))
 
 
 
1622			mm->locked_vm += (len >> PAGE_SHIFT);
1623		else
1624			vma->vm_flags &= ~VM_LOCKED;
1625	}
1626
1627	if (file)
1628		uprobe_mmap(vma);
1629
1630	/*
1631	 * New (or expanded) vma always get soft dirty status.
1632	 * Otherwise user-space soft-dirty page tracker won't
1633	 * be able to distinguish situation when vma area unmapped,
1634	 * then new mapped in-place (which must be aimed as
1635	 * a completely new data area).
1636	 */
1637	vma->vm_flags |= VM_SOFTDIRTY;
1638
 
 
1639	return addr;
1640
1641unmap_and_free_vma:
1642	if (vm_flags & VM_DENYWRITE)
1643		allow_write_access(file);
1644	vma->vm_file = NULL;
1645	fput(file);
1646
1647	/* Undo any partial mapping done by a device driver. */
1648	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649	charged = 0;
 
 
 
 
 
1650free_vma:
1651	kmem_cache_free(vm_area_cachep, vma);
1652unacct_error:
1653	if (charged)
1654		vm_unacct_memory(charged);
1655	return error;
1656}
1657
1658unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659{
1660	/*
1661	 * We implement the search by looking for an rbtree node that
1662	 * immediately follows a suitable gap. That is,
1663	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665	 * - gap_end - gap_start >= length
1666	 */
1667
1668	struct mm_struct *mm = current->mm;
1669	struct vm_area_struct *vma;
1670	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672	/* Adjust search length to account for worst case alignment overhead */
1673	length = info->length + info->align_mask;
1674	if (length < info->length)
1675		return -ENOMEM;
1676
1677	/* Adjust search limits by the desired length */
1678	if (info->high_limit < length)
1679		return -ENOMEM;
1680	high_limit = info->high_limit - length;
1681
1682	if (info->low_limit > high_limit)
1683		return -ENOMEM;
1684	low_limit = info->low_limit + length;
1685
1686	/* Check if rbtree root looks promising */
1687	if (RB_EMPTY_ROOT(&mm->mm_rb))
1688		goto check_highest;
1689	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690	if (vma->rb_subtree_gap < length)
1691		goto check_highest;
1692
1693	while (true) {
1694		/* Visit left subtree if it looks promising */
1695		gap_end = vma->vm_start;
1696		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697			struct vm_area_struct *left =
1698				rb_entry(vma->vm_rb.rb_left,
1699					 struct vm_area_struct, vm_rb);
1700			if (left->rb_subtree_gap >= length) {
1701				vma = left;
1702				continue;
1703			}
1704		}
1705
1706		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707check_current:
1708		/* Check if current node has a suitable gap */
1709		if (gap_start > high_limit)
1710			return -ENOMEM;
1711		if (gap_end >= low_limit && gap_end - gap_start >= length)
 
1712			goto found;
1713
1714		/* Visit right subtree if it looks promising */
1715		if (vma->vm_rb.rb_right) {
1716			struct vm_area_struct *right =
1717				rb_entry(vma->vm_rb.rb_right,
1718					 struct vm_area_struct, vm_rb);
1719			if (right->rb_subtree_gap >= length) {
1720				vma = right;
1721				continue;
1722			}
1723		}
1724
1725		/* Go back up the rbtree to find next candidate node */
1726		while (true) {
1727			struct rb_node *prev = &vma->vm_rb;
1728			if (!rb_parent(prev))
1729				goto check_highest;
1730			vma = rb_entry(rb_parent(prev),
1731				       struct vm_area_struct, vm_rb);
1732			if (prev == vma->vm_rb.rb_left) {
1733				gap_start = vma->vm_prev->vm_end;
1734				gap_end = vma->vm_start;
1735				goto check_current;
1736			}
1737		}
1738	}
1739
1740check_highest:
1741	/* Check highest gap, which does not precede any rbtree node */
1742	gap_start = mm->highest_vm_end;
1743	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744	if (gap_start > high_limit)
1745		return -ENOMEM;
1746
1747found:
1748	/* We found a suitable gap. Clip it with the original low_limit. */
1749	if (gap_start < info->low_limit)
1750		gap_start = info->low_limit;
1751
1752	/* Adjust gap address to the desired alignment */
1753	gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755	VM_BUG_ON(gap_start + info->length > info->high_limit);
1756	VM_BUG_ON(gap_start + info->length > gap_end);
1757	return gap_start;
1758}
1759
1760unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761{
1762	struct mm_struct *mm = current->mm;
1763	struct vm_area_struct *vma;
1764	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766	/* Adjust search length to account for worst case alignment overhead */
1767	length = info->length + info->align_mask;
1768	if (length < info->length)
1769		return -ENOMEM;
1770
1771	/*
1772	 * Adjust search limits by the desired length.
1773	 * See implementation comment at top of unmapped_area().
1774	 */
1775	gap_end = info->high_limit;
1776	if (gap_end < length)
1777		return -ENOMEM;
1778	high_limit = gap_end - length;
1779
1780	if (info->low_limit > high_limit)
1781		return -ENOMEM;
1782	low_limit = info->low_limit + length;
1783
1784	/* Check highest gap, which does not precede any rbtree node */
1785	gap_start = mm->highest_vm_end;
1786	if (gap_start <= high_limit)
1787		goto found_highest;
1788
1789	/* Check if rbtree root looks promising */
1790	if (RB_EMPTY_ROOT(&mm->mm_rb))
1791		return -ENOMEM;
1792	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793	if (vma->rb_subtree_gap < length)
1794		return -ENOMEM;
1795
1796	while (true) {
1797		/* Visit right subtree if it looks promising */
1798		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800			struct vm_area_struct *right =
1801				rb_entry(vma->vm_rb.rb_right,
1802					 struct vm_area_struct, vm_rb);
1803			if (right->rb_subtree_gap >= length) {
1804				vma = right;
1805				continue;
1806			}
1807		}
1808
1809check_current:
1810		/* Check if current node has a suitable gap */
1811		gap_end = vma->vm_start;
1812		if (gap_end < low_limit)
1813			return -ENOMEM;
1814		if (gap_start <= high_limit && gap_end - gap_start >= length)
 
1815			goto found;
1816
1817		/* Visit left subtree if it looks promising */
1818		if (vma->vm_rb.rb_left) {
1819			struct vm_area_struct *left =
1820				rb_entry(vma->vm_rb.rb_left,
1821					 struct vm_area_struct, vm_rb);
1822			if (left->rb_subtree_gap >= length) {
1823				vma = left;
1824				continue;
1825			}
1826		}
1827
1828		/* Go back up the rbtree to find next candidate node */
1829		while (true) {
1830			struct rb_node *prev = &vma->vm_rb;
1831			if (!rb_parent(prev))
1832				return -ENOMEM;
1833			vma = rb_entry(rb_parent(prev),
1834				       struct vm_area_struct, vm_rb);
1835			if (prev == vma->vm_rb.rb_right) {
1836				gap_start = vma->vm_prev ?
1837					vma->vm_prev->vm_end : 0;
1838				goto check_current;
1839			}
1840		}
1841	}
1842
1843found:
1844	/* We found a suitable gap. Clip it with the original high_limit. */
1845	if (gap_end > info->high_limit)
1846		gap_end = info->high_limit;
1847
1848found_highest:
1849	/* Compute highest gap address at the desired alignment */
1850	gap_end -= info->length;
1851	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853	VM_BUG_ON(gap_end < info->low_limit);
1854	VM_BUG_ON(gap_end < gap_start);
1855	return gap_end;
1856}
1857
 
 
 
 
 
 
 
 
 
1858/* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 *	if (ret & ~PAGE_MASK)
1865 *		error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869#ifndef HAVE_ARCH_UNMAPPED_AREA
1870unsigned long
1871arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872		unsigned long len, unsigned long pgoff, unsigned long flags)
1873{
1874	struct mm_struct *mm = current->mm;
1875	struct vm_area_struct *vma;
1876	struct vm_unmapped_area_info info;
 
1877
1878	if (len > TASK_SIZE - mmap_min_addr)
1879		return -ENOMEM;
1880
1881	if (flags & MAP_FIXED)
1882		return addr;
1883
1884	if (addr) {
1885		addr = PAGE_ALIGN(addr);
1886		vma = find_vma(mm, addr);
1887		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888		    (!vma || addr + len <= vma->vm_start))
 
1889			return addr;
1890	}
1891
1892	info.flags = 0;
1893	info.length = len;
1894	info.low_limit = mm->mmap_base;
1895	info.high_limit = TASK_SIZE;
1896	info.align_mask = 0;
1897	return vm_unmapped_area(&info);
1898}
1899#endif	
1900
1901/*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906unsigned long
1907arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908			  const unsigned long len, const unsigned long pgoff,
1909			  const unsigned long flags)
1910{
1911	struct vm_area_struct *vma;
1912	struct mm_struct *mm = current->mm;
1913	unsigned long addr = addr0;
1914	struct vm_unmapped_area_info info;
 
1915
1916	/* requested length too big for entire address space */
1917	if (len > TASK_SIZE - mmap_min_addr)
1918		return -ENOMEM;
1919
1920	if (flags & MAP_FIXED)
1921		return addr;
1922
1923	/* requesting a specific address */
1924	if (addr) {
1925		addr = PAGE_ALIGN(addr);
1926		vma = find_vma(mm, addr);
1927		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928				(!vma || addr + len <= vma->vm_start))
 
1929			return addr;
1930	}
1931
1932	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933	info.length = len;
1934	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935	info.high_limit = mm->mmap_base;
1936	info.align_mask = 0;
1937	addr = vm_unmapped_area(&info);
1938
1939	/*
1940	 * A failed mmap() very likely causes application failure,
1941	 * so fall back to the bottom-up function here. This scenario
1942	 * can happen with large stack limits and large mmap()
1943	 * allocations.
1944	 */
1945	if (addr & ~PAGE_MASK) {
1946		VM_BUG_ON(addr != -ENOMEM);
1947		info.flags = 0;
1948		info.low_limit = TASK_UNMAPPED_BASE;
1949		info.high_limit = TASK_SIZE;
1950		addr = vm_unmapped_area(&info);
1951	}
1952
1953	return addr;
1954}
1955#endif
1956
1957unsigned long
1958get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959		unsigned long pgoff, unsigned long flags)
1960{
1961	unsigned long (*get_area)(struct file *, unsigned long,
1962				  unsigned long, unsigned long, unsigned long);
1963
1964	unsigned long error = arch_mmap_check(addr, len, flags);
1965	if (error)
1966		return error;
1967
1968	/* Careful about overflows.. */
1969	if (len > TASK_SIZE)
1970		return -ENOMEM;
1971
1972	get_area = current->mm->get_unmapped_area;
1973	if (file && file->f_op->get_unmapped_area)
1974		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
1975	addr = get_area(file, addr, len, pgoff, flags);
1976	if (IS_ERR_VALUE(addr))
1977		return addr;
1978
1979	if (addr > TASK_SIZE - len)
1980		return -ENOMEM;
1981	if (addr & ~PAGE_MASK)
1982		return -EINVAL;
1983
1984	addr = arch_rebalance_pgtables(addr, len);
1985	error = security_mmap_addr(addr);
1986	return error ? error : addr;
1987}
1988
1989EXPORT_SYMBOL(get_unmapped_area);
1990
1991/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993{
1994	struct rb_node *rb_node;
1995	struct vm_area_struct *vma;
1996
1997	/* Check the cache first. */
1998	vma = vmacache_find(mm, addr);
1999	if (likely(vma))
2000		return vma;
2001
2002	rb_node = mm->mm_rb.rb_node;
2003	vma = NULL;
2004
2005	while (rb_node) {
2006		struct vm_area_struct *tmp;
2007
2008		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010		if (tmp->vm_end > addr) {
2011			vma = tmp;
2012			if (tmp->vm_start <= addr)
2013				break;
2014			rb_node = rb_node->rb_left;
2015		} else
2016			rb_node = rb_node->rb_right;
2017	}
2018
2019	if (vma)
2020		vmacache_update(addr, vma);
2021	return vma;
2022}
2023
2024EXPORT_SYMBOL(find_vma);
2025
2026/*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 */
2029struct vm_area_struct *
2030find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031			struct vm_area_struct **pprev)
2032{
2033	struct vm_area_struct *vma;
2034
2035	vma = find_vma(mm, addr);
2036	if (vma) {
2037		*pprev = vma->vm_prev;
2038	} else {
2039		struct rb_node *rb_node = mm->mm_rb.rb_node;
2040		*pprev = NULL;
2041		while (rb_node) {
2042			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043			rb_node = rb_node->rb_right;
2044		}
2045	}
2046	return vma;
2047}
2048
2049/*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	struct rlimit *rlim = current->signal->rlim;
2058	unsigned long new_start;
2059
2060	/* address space limit tests */
2061	if (!may_expand_vm(mm, grow))
2062		return -ENOMEM;
2063
2064	/* Stack limit test */
2065	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066		return -ENOMEM;
2067
2068	/* mlock limit tests */
2069	if (vma->vm_flags & VM_LOCKED) {
2070		unsigned long locked;
2071		unsigned long limit;
2072		locked = mm->locked_vm + grow;
2073		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074		limit >>= PAGE_SHIFT;
2075		if (locked > limit && !capable(CAP_IPC_LOCK))
2076			return -ENOMEM;
2077	}
2078
2079	/* Check to ensure the stack will not grow into a hugetlb-only region */
2080	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081			vma->vm_end - size;
2082	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083		return -EFAULT;
2084
2085	/*
2086	 * Overcommit..  This must be the final test, as it will
2087	 * update security statistics.
2088	 */
2089	if (security_vm_enough_memory_mm(mm, grow))
2090		return -ENOMEM;
2091
2092	/* Ok, everything looks good - let it rip */
2093	if (vma->vm_flags & VM_LOCKED)
2094		mm->locked_vm += grow;
2095	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096	return 0;
2097}
2098
2099#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100/*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103 */
2104int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105{
2106	int error;
 
 
 
2107
2108	if (!(vma->vm_flags & VM_GROWSUP))
2109		return -EFAULT;
2110
2111	/*
2112	 * We must make sure the anon_vma is allocated
2113	 * so that the anon_vma locking is not a noop.
2114	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115	if (unlikely(anon_vma_prepare(vma)))
2116		return -ENOMEM;
2117	vma_lock_anon_vma(vma);
2118
2119	/*
2120	 * vma->vm_start/vm_end cannot change under us because the caller
2121	 * is required to hold the mmap_sem in read mode.  We need the
2122	 * anon_vma lock to serialize against concurrent expand_stacks.
2123	 * Also guard against wrapping around to address 0.
2124	 */
2125	if (address < PAGE_ALIGN(address+4))
2126		address = PAGE_ALIGN(address+4);
2127	else {
2128		vma_unlock_anon_vma(vma);
2129		return -ENOMEM;
2130	}
2131	error = 0;
2132
2133	/* Somebody else might have raced and expanded it already */
2134	if (address > vma->vm_end) {
2135		unsigned long size, grow;
2136
2137		size = address - vma->vm_start;
2138		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140		error = -ENOMEM;
2141		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142			error = acct_stack_growth(vma, size, grow);
2143			if (!error) {
2144				/*
2145				 * vma_gap_update() doesn't support concurrent
2146				 * updates, but we only hold a shared mmap_sem
2147				 * lock here, so we need to protect against
2148				 * concurrent vma expansions.
2149				 * vma_lock_anon_vma() doesn't help here, as
2150				 * we don't guarantee that all growable vmas
2151				 * in a mm share the same root anon vma.
2152				 * So, we reuse mm->page_table_lock to guard
2153				 * against concurrent vma expansions.
2154				 */
2155				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2156				anon_vma_interval_tree_pre_update_vma(vma);
2157				vma->vm_end = address;
2158				anon_vma_interval_tree_post_update_vma(vma);
2159				if (vma->vm_next)
2160					vma_gap_update(vma->vm_next);
2161				else
2162					vma->vm_mm->highest_vm_end = address;
2163				spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165				perf_event_mmap(vma);
2166			}
2167		}
2168	}
2169	vma_unlock_anon_vma(vma);
2170	khugepaged_enter_vma_merge(vma);
2171	validate_mm(vma->vm_mm);
2172	return error;
2173}
2174#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176/*
2177 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2178 */
2179int expand_downwards(struct vm_area_struct *vma,
2180				   unsigned long address)
2181{
2182	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183
2184	/*
2185	 * We must make sure the anon_vma is allocated
2186	 * so that the anon_vma locking is not a noop.
2187	 */
2188	if (unlikely(anon_vma_prepare(vma)))
2189		return -ENOMEM;
2190
2191	address &= PAGE_MASK;
2192	error = security_mmap_addr(address);
2193	if (error)
2194		return error;
2195
2196	vma_lock_anon_vma(vma);
2197
2198	/*
2199	 * vma->vm_start/vm_end cannot change under us because the caller
2200	 * is required to hold the mmap_sem in read mode.  We need the
2201	 * anon_vma lock to serialize against concurrent expand_stacks.
2202	 */
 
2203
2204	/* Somebody else might have raced and expanded it already */
2205	if (address < vma->vm_start) {
2206		unsigned long size, grow;
2207
2208		size = vma->vm_end - address;
2209		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211		error = -ENOMEM;
2212		if (grow <= vma->vm_pgoff) {
2213			error = acct_stack_growth(vma, size, grow);
2214			if (!error) {
2215				/*
2216				 * vma_gap_update() doesn't support concurrent
2217				 * updates, but we only hold a shared mmap_sem
2218				 * lock here, so we need to protect against
2219				 * concurrent vma expansions.
2220				 * vma_lock_anon_vma() doesn't help here, as
2221				 * we don't guarantee that all growable vmas
2222				 * in a mm share the same root anon vma.
2223				 * So, we reuse mm->page_table_lock to guard
2224				 * against concurrent vma expansions.
2225				 */
2226				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2227				anon_vma_interval_tree_pre_update_vma(vma);
2228				vma->vm_start = address;
2229				vma->vm_pgoff -= grow;
2230				anon_vma_interval_tree_post_update_vma(vma);
2231				vma_gap_update(vma);
2232				spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234				perf_event_mmap(vma);
2235			}
2236		}
2237	}
2238	vma_unlock_anon_vma(vma);
2239	khugepaged_enter_vma_merge(vma);
2240	validate_mm(vma->vm_mm);
2241	return error;
2242}
2243
2244/*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
 
 
 
 
 
2255#ifdef CONFIG_STACK_GROWSUP
2256int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257{
2258	struct vm_area_struct *next;
2259
2260	address &= PAGE_MASK;
2261	next = vma->vm_next;
2262	if (next && next->vm_start == address + PAGE_SIZE) {
2263		if (!(next->vm_flags & VM_GROWSUP))
2264			return -ENOMEM;
2265	}
2266	return expand_upwards(vma, address);
2267}
2268
2269struct vm_area_struct *
2270find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271{
2272	struct vm_area_struct *vma, *prev;
2273
2274	addr &= PAGE_MASK;
2275	vma = find_vma_prev(mm, addr, &prev);
2276	if (vma && (vma->vm_start <= addr))
2277		return vma;
2278	if (!prev || expand_stack(prev, addr))
 
2279		return NULL;
2280	if (prev->vm_flags & VM_LOCKED)
2281		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282	return prev;
2283}
2284#else
2285int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286{
2287	struct vm_area_struct *prev;
2288
2289	address &= PAGE_MASK;
2290	prev = vma->vm_prev;
2291	if (prev && prev->vm_end == address) {
2292		if (!(prev->vm_flags & VM_GROWSDOWN))
2293			return -ENOMEM;
2294	}
2295	return expand_downwards(vma, address);
2296}
2297
2298struct vm_area_struct *
2299find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300{
2301	struct vm_area_struct * vma;
2302	unsigned long start;
2303
2304	addr &= PAGE_MASK;
2305	vma = find_vma(mm,addr);
2306	if (!vma)
2307		return NULL;
2308	if (vma->vm_start <= addr)
2309		return vma;
2310	if (!(vma->vm_flags & VM_GROWSDOWN))
2311		return NULL;
 
 
 
2312	start = vma->vm_start;
2313	if (expand_stack(vma, addr))
2314		return NULL;
2315	if (vma->vm_flags & VM_LOCKED)
2316		__mlock_vma_pages_range(vma, addr, start, NULL);
2317	return vma;
2318}
2319#endif
2320
 
 
2321/*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
2324 *
2325 * Called with the mm semaphore held.
2326 */
2327static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328{
2329	unsigned long nr_accounted = 0;
2330
2331	/* Update high watermark before we lower total_vm */
2332	update_hiwater_vm(mm);
2333	do {
2334		long nrpages = vma_pages(vma);
2335
2336		if (vma->vm_flags & VM_ACCOUNT)
2337			nr_accounted += nrpages;
2338		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339		vma = remove_vma(vma);
2340	} while (vma);
2341	vm_unacct_memory(nr_accounted);
2342	validate_mm(mm);
2343}
2344
2345/*
2346 * Get rid of page table information in the indicated region.
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350static void unmap_region(struct mm_struct *mm,
2351		struct vm_area_struct *vma, struct vm_area_struct *prev,
2352		unsigned long start, unsigned long end)
2353{
2354	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355	struct mmu_gather tlb;
2356
2357	lru_add_drain();
2358	tlb_gather_mmu(&tlb, mm, start, end);
2359	update_hiwater_rss(mm);
2360	unmap_vmas(&tlb, vma, start, end);
2361	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362				 next ? next->vm_start : USER_PGTABLES_CEILING);
2363	tlb_finish_mmu(&tlb, start, end);
2364}
2365
2366/*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
2369 */
2370static void
2371detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372	struct vm_area_struct *prev, unsigned long end)
2373{
2374	struct vm_area_struct **insertion_point;
2375	struct vm_area_struct *tail_vma = NULL;
2376
2377	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378	vma->vm_prev = NULL;
2379	do {
2380		vma_rb_erase(vma, &mm->mm_rb);
2381		mm->map_count--;
2382		tail_vma = vma;
2383		vma = vma->vm_next;
2384	} while (vma && vma->vm_start < end);
2385	*insertion_point = vma;
2386	if (vma) {
2387		vma->vm_prev = prev;
2388		vma_gap_update(vma);
2389	} else
2390		mm->highest_vm_end = prev ? prev->vm_end : 0;
2391	tail_vma->vm_next = NULL;
2392
2393	/* Kill the cache */
2394	vmacache_invalidate(mm);
2395}
2396
2397/*
2398 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402	      unsigned long addr, int new_below)
2403{
2404	struct vm_area_struct *new;
2405	int err = -ENOMEM;
2406
2407	if (is_vm_hugetlb_page(vma) && (addr &
2408					~(huge_page_mask(hstate_vma(vma)))))
2409		return -EINVAL;
 
 
2410
2411	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412	if (!new)
2413		goto out_err;
2414
2415	/* most fields are the same, copy all, and then fixup */
2416	*new = *vma;
2417
2418	INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420	if (new_below)
2421		new->vm_end = addr;
2422	else {
2423		new->vm_start = addr;
2424		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425	}
2426
2427	err = vma_dup_policy(vma, new);
2428	if (err)
2429		goto out_free_vma;
2430
2431	if (anon_vma_clone(new, vma))
 
2432		goto out_free_mpol;
2433
2434	if (new->vm_file)
2435		get_file(new->vm_file);
2436
2437	if (new->vm_ops && new->vm_ops->open)
2438		new->vm_ops->open(new);
2439
2440	if (new_below)
2441		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442			((addr - new->vm_start) >> PAGE_SHIFT), new);
2443	else
2444		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446	/* Success. */
2447	if (!err)
2448		return 0;
2449
2450	/* Clean everything up if vma_adjust failed. */
2451	if (new->vm_ops && new->vm_ops->close)
2452		new->vm_ops->close(new);
2453	if (new->vm_file)
2454		fput(new->vm_file);
2455	unlink_anon_vmas(new);
2456 out_free_mpol:
2457	mpol_put(vma_policy(new));
2458 out_free_vma:
2459	kmem_cache_free(vm_area_cachep, new);
2460 out_err:
2461	return err;
2462}
2463
2464/*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469	      unsigned long addr, int new_below)
2470{
2471	if (mm->map_count >= sysctl_max_map_count)
2472		return -ENOMEM;
2473
2474	return __split_vma(mm, vma, addr, new_below);
2475}
2476
2477/* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work.  This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 */
2482int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
2483{
2484	unsigned long end;
2485	struct vm_area_struct *vma, *prev, *last;
2486
2487	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488		return -EINVAL;
2489
2490	if ((len = PAGE_ALIGN(len)) == 0)
 
 
2491		return -EINVAL;
2492
 
 
 
 
 
 
 
2493	/* Find the first overlapping VMA */
2494	vma = find_vma(mm, start);
2495	if (!vma)
2496		return 0;
2497	prev = vma->vm_prev;
2498	/* we have  start < vma->vm_end  */
2499
2500	/* if it doesn't overlap, we have nothing.. */
2501	end = start + len;
2502	if (vma->vm_start >= end)
2503		return 0;
2504
2505	/*
2506	 * If we need to split any vma, do it now to save pain later.
2507	 *
2508	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509	 * unmapped vm_area_struct will remain in use: so lower split_vma
2510	 * places tmp vma above, and higher split_vma places tmp vma below.
2511	 */
2512	if (start > vma->vm_start) {
2513		int error;
2514
2515		/*
2516		 * Make sure that map_count on return from munmap() will
2517		 * not exceed its limit; but let map_count go just above
2518		 * its limit temporarily, to help free resources as expected.
2519		 */
2520		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521			return -ENOMEM;
2522
2523		error = __split_vma(mm, vma, start, 0);
2524		if (error)
2525			return error;
2526		prev = vma;
2527	}
2528
2529	/* Does it split the last one? */
2530	last = find_vma(mm, end);
2531	if (last && end > last->vm_start) {
2532		int error = __split_vma(mm, last, end, 1);
2533		if (error)
2534			return error;
2535	}
2536	vma = prev? prev->vm_next: mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538	/*
2539	 * unlock any mlock()ed ranges before detaching vmas
2540	 */
2541	if (mm->locked_vm) {
2542		struct vm_area_struct *tmp = vma;
2543		while (tmp && tmp->vm_start < end) {
2544			if (tmp->vm_flags & VM_LOCKED) {
2545				mm->locked_vm -= vma_pages(tmp);
2546				munlock_vma_pages_all(tmp);
2547			}
 
2548			tmp = tmp->vm_next;
2549		}
2550	}
2551
2552	/*
2553	 * Remove the vma's, and unmap the actual pages
2554	 */
2555	detach_vmas_to_be_unmapped(mm, vma, prev, end);
 
 
 
 
2556	unmap_region(mm, vma, prev, start, end);
2557
2558	/* Fix up all other VM information */
2559	remove_vma_list(mm, vma);
2560
2561	return 0;
 
 
 
 
 
 
2562}
2563
2564int vm_munmap(unsigned long start, size_t len)
2565{
2566	int ret;
2567	struct mm_struct *mm = current->mm;
 
2568
2569	down_write(&mm->mmap_sem);
2570	ret = do_munmap(mm, start, len);
2571	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
2572	return ret;
2573}
 
 
 
 
 
2574EXPORT_SYMBOL(vm_munmap);
2575
2576SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577{
 
2578	profile_munmap(addr);
2579	return vm_munmap(addr, len);
2580}
2581
2582static inline void verify_mm_writelocked(struct mm_struct *mm)
 
 
 
 
 
2583{
2584#ifdef CONFIG_DEBUG_VM
2585	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586		WARN_ON(1);
2587		up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2588	}
2589#endif
 
 
 
 
 
 
 
 
 
 
 
2590}
2591
2592/*
2593 *  this is really a simplified "do_mmap".  it only handles
2594 *  anonymous maps.  eventually we may be able to do some
2595 *  brk-specific accounting here.
2596 */
2597static unsigned long do_brk(unsigned long addr, unsigned long len)
2598{
2599	struct mm_struct * mm = current->mm;
2600	struct vm_area_struct * vma, * prev;
2601	unsigned long flags;
2602	struct rb_node ** rb_link, * rb_parent;
2603	pgoff_t pgoff = addr >> PAGE_SHIFT;
2604	int error;
2605
2606	len = PAGE_ALIGN(len);
2607	if (!len)
2608		return addr;
2609
2610	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611
2612	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613	if (error & ~PAGE_MASK)
2614		return error;
2615
2616	error = mlock_future_check(mm, mm->def_flags, len);
2617	if (error)
2618		return error;
2619
2620	/*
2621	 * mm->mmap_sem is required to protect against another thread
2622	 * changing the mappings in case we sleep.
2623	 */
2624	verify_mm_writelocked(mm);
2625
2626	/*
2627	 * Clear old maps.  this also does some error checking for us
2628	 */
2629 munmap_back:
2630	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631		if (do_munmap(mm, addr, len))
2632			return -ENOMEM;
2633		goto munmap_back;
2634	}
2635
2636	/* Check against address space limits *after* clearing old maps... */
2637	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638		return -ENOMEM;
2639
2640	if (mm->map_count > sysctl_max_map_count)
2641		return -ENOMEM;
2642
2643	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644		return -ENOMEM;
2645
2646	/* Can we just expand an old private anonymous mapping? */
2647	vma = vma_merge(mm, prev, addr, addr + len, flags,
2648					NULL, NULL, pgoff, NULL);
2649	if (vma)
2650		goto out;
2651
2652	/*
2653	 * create a vma struct for an anonymous mapping
2654	 */
2655	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656	if (!vma) {
2657		vm_unacct_memory(len >> PAGE_SHIFT);
2658		return -ENOMEM;
2659	}
2660
2661	INIT_LIST_HEAD(&vma->anon_vma_chain);
2662	vma->vm_mm = mm;
2663	vma->vm_start = addr;
2664	vma->vm_end = addr + len;
2665	vma->vm_pgoff = pgoff;
2666	vma->vm_flags = flags;
2667	vma->vm_page_prot = vm_get_page_prot(flags);
2668	vma_link(mm, vma, prev, rb_link, rb_parent);
2669out:
2670	perf_event_mmap(vma);
2671	mm->total_vm += len >> PAGE_SHIFT;
 
2672	if (flags & VM_LOCKED)
2673		mm->locked_vm += (len >> PAGE_SHIFT);
2674	vma->vm_flags |= VM_SOFTDIRTY;
2675	return addr;
2676}
2677
2678unsigned long vm_brk(unsigned long addr, unsigned long len)
2679{
2680	struct mm_struct *mm = current->mm;
2681	unsigned long ret;
 
2682	bool populate;
 
 
 
 
 
 
 
2683
2684	down_write(&mm->mmap_sem);
2685	ret = do_brk(addr, len);
 
 
2686	populate = ((mm->def_flags & VM_LOCKED) != 0);
2687	up_write(&mm->mmap_sem);
2688	if (populate)
 
2689		mm_populate(addr, len);
2690	return ret;
2691}
 
 
 
 
 
 
2692EXPORT_SYMBOL(vm_brk);
2693
2694/* Release all mmaps. */
2695void exit_mmap(struct mm_struct *mm)
2696{
2697	struct mmu_gather tlb;
2698	struct vm_area_struct *vma;
2699	unsigned long nr_accounted = 0;
2700
2701	/* mm's last user has gone, and its about to be pulled down */
2702	mmu_notifier_release(mm);
2703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	if (mm->locked_vm) {
2705		vma = mm->mmap;
2706		while (vma) {
2707			if (vma->vm_flags & VM_LOCKED)
2708				munlock_vma_pages_all(vma);
2709			vma = vma->vm_next;
2710		}
2711	}
2712
2713	arch_exit_mmap(mm);
2714
2715	vma = mm->mmap;
2716	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2717		return;
2718
2719	lru_add_drain();
2720	flush_cache_mm(mm);
2721	tlb_gather_mmu(&tlb, mm, 0, -1);
2722	/* update_hiwater_rss(mm) here? but nobody should be looking */
2723	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2724	unmap_vmas(&tlb, vma, 0, -1);
2725
2726	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727	tlb_finish_mmu(&tlb, 0, -1);
2728
2729	/*
2730	 * Walk the list again, actually closing and freeing it,
2731	 * with preemption enabled, without holding any MM locks.
2732	 */
2733	while (vma) {
2734		if (vma->vm_flags & VM_ACCOUNT)
2735			nr_accounted += vma_pages(vma);
2736		vma = remove_vma(vma);
2737	}
2738	vm_unacct_memory(nr_accounted);
2739
2740	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742}
2743
2744/* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749{
2750	struct vm_area_struct *prev;
2751	struct rb_node **rb_link, *rb_parent;
2752
 
 
 
 
 
 
 
2753	/*
2754	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755	 * until its first write fault, when page's anon_vma and index
2756	 * are set.  But now set the vm_pgoff it will almost certainly
2757	 * end up with (unless mremap moves it elsewhere before that
2758	 * first wfault), so /proc/pid/maps tells a consistent story.
2759	 *
2760	 * By setting it to reflect the virtual start address of the
2761	 * vma, merges and splits can happen in a seamless way, just
2762	 * using the existing file pgoff checks and manipulations.
2763	 * Similarly in do_mmap_pgoff and in do_brk.
2764	 */
2765	if (!vma->vm_file) {
2766		BUG_ON(vma->anon_vma);
2767		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768	}
2769	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770			   &prev, &rb_link, &rb_parent))
2771		return -ENOMEM;
2772	if ((vma->vm_flags & VM_ACCOUNT) &&
2773	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774		return -ENOMEM;
2775
2776	vma_link(mm, vma, prev, rb_link, rb_parent);
2777	return 0;
2778}
2779
2780/*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785	unsigned long addr, unsigned long len, pgoff_t pgoff,
2786	bool *need_rmap_locks)
2787{
2788	struct vm_area_struct *vma = *vmap;
2789	unsigned long vma_start = vma->vm_start;
2790	struct mm_struct *mm = vma->vm_mm;
2791	struct vm_area_struct *new_vma, *prev;
2792	struct rb_node **rb_link, *rb_parent;
2793	bool faulted_in_anon_vma = true;
2794
2795	/*
2796	 * If anonymous vma has not yet been faulted, update new pgoff
2797	 * to match new location, to increase its chance of merging.
2798	 */
2799	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800		pgoff = addr >> PAGE_SHIFT;
2801		faulted_in_anon_vma = false;
2802	}
2803
2804	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805		return NULL;	/* should never get here */
2806	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
2808	if (new_vma) {
2809		/*
2810		 * Source vma may have been merged into new_vma
2811		 */
2812		if (unlikely(vma_start >= new_vma->vm_start &&
2813			     vma_start < new_vma->vm_end)) {
2814			/*
2815			 * The only way we can get a vma_merge with
2816			 * self during an mremap is if the vma hasn't
2817			 * been faulted in yet and we were allowed to
2818			 * reset the dst vma->vm_pgoff to the
2819			 * destination address of the mremap to allow
2820			 * the merge to happen. mremap must change the
2821			 * vm_pgoff linearity between src and dst vmas
2822			 * (in turn preventing a vma_merge) to be
2823			 * safe. It is only safe to keep the vm_pgoff
2824			 * linear if there are no pages mapped yet.
2825			 */
2826			VM_BUG_ON(faulted_in_anon_vma);
2827			*vmap = vma = new_vma;
2828		}
2829		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830	} else {
2831		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832		if (new_vma) {
2833			*new_vma = *vma;
2834			new_vma->vm_start = addr;
2835			new_vma->vm_end = addr + len;
2836			new_vma->vm_pgoff = pgoff;
2837			if (vma_dup_policy(vma, new_vma))
2838				goto out_free_vma;
2839			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840			if (anon_vma_clone(new_vma, vma))
2841				goto out_free_mempol;
2842			if (new_vma->vm_file)
2843				get_file(new_vma->vm_file);
2844			if (new_vma->vm_ops && new_vma->vm_ops->open)
2845				new_vma->vm_ops->open(new_vma);
2846			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847			*need_rmap_locks = false;
2848		}
2849	}
2850	return new_vma;
2851
2852 out_free_mempol:
2853	mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855	kmem_cache_free(vm_area_cachep, new_vma);
 
2856	return NULL;
2857}
2858
2859/*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
2862 */
2863int may_expand_vm(struct mm_struct *mm, unsigned long npages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864{
2865	unsigned long cur = mm->total_vm;	/* pages */
2866	unsigned long lim;
2867
2868	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
2869
2870	if (cur + npages > lim)
2871		return 0;
2872	return 1;
 
 
 
 
2873}
2874
 
 
 
 
 
 
 
 
 
 
 
2875
2876static int special_mapping_fault(struct vm_area_struct *vma,
2877				struct vm_fault *vmf)
2878{
 
2879	pgoff_t pgoff;
2880	struct page **pages;
2881
2882	/*
2883	 * special mappings have no vm_file, and in that case, the mm
2884	 * uses vm_pgoff internally. So we have to subtract it from here.
2885	 * We are allowed to do this because we are the mm; do not copy
2886	 * this code into drivers!
2887	 */
2888	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
2889
2890	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891		pgoff--;
2892
2893	if (*pages) {
2894		struct page *page = *pages;
2895		get_page(page);
2896		vmf->page = page;
2897		return 0;
2898	}
2899
2900	return VM_FAULT_SIGBUS;
2901}
2902
2903/*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906static void special_mapping_close(struct vm_area_struct *vma)
2907{
2908}
2909
2910static const struct vm_operations_struct special_mapping_vmops = {
2911	.close = special_mapping_close,
2912	.fault = special_mapping_fault,
2913};
2914
2915/*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925			    unsigned long addr, unsigned long len,
2926			    unsigned long vm_flags, struct page **pages)
2927{
2928	int ret;
2929	struct vm_area_struct *vma;
2930
2931	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932	if (unlikely(vma == NULL))
2933		return ERR_PTR(-ENOMEM);
2934
2935	INIT_LIST_HEAD(&vma->anon_vma_chain);
2936	vma->vm_mm = mm;
2937	vma->vm_start = addr;
2938	vma->vm_end = addr + len;
2939
2940	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943	vma->vm_ops = &special_mapping_vmops;
2944	vma->vm_private_data = pages;
2945
2946	ret = insert_vm_struct(mm, vma);
2947	if (ret)
2948		goto out;
2949
2950	mm->total_vm += len >> PAGE_SHIFT;
2951
2952	perf_event_mmap(vma);
2953
2954	return vma;
2955
2956out:
2957	kmem_cache_free(vm_area_cachep, vma);
2958	return ERR_PTR(ret);
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int install_special_mapping(struct mm_struct *mm,
2962			    unsigned long addr, unsigned long len,
2963			    unsigned long vm_flags, struct page **pages)
2964{
2965	struct vm_area_struct *vma = _install_special_mapping(mm,
2966			    addr, len, vm_flags, pages);
 
2967
2968	if (IS_ERR(vma))
2969		return PTR_ERR(vma);
2970	return 0;
2971}
2972
2973static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976{
2977	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978		/*
2979		 * The LSB of head.next can't change from under us
2980		 * because we hold the mm_all_locks_mutex.
2981		 */
2982		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983		/*
2984		 * We can safely modify head.next after taking the
2985		 * anon_vma->root->rwsem. If some other vma in this mm shares
2986		 * the same anon_vma we won't take it again.
2987		 *
2988		 * No need of atomic instructions here, head.next
2989		 * can't change from under us thanks to the
2990		 * anon_vma->root->rwsem.
2991		 */
2992		if (__test_and_set_bit(0, (unsigned long *)
2993				       &anon_vma->root->rb_root.rb_node))
2994			BUG();
2995	}
2996}
2997
2998static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999{
3000	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001		/*
3002		 * AS_MM_ALL_LOCKS can't change from under us because
3003		 * we hold the mm_all_locks_mutex.
3004		 *
3005		 * Operations on ->flags have to be atomic because
3006		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007		 * mm_all_locks_mutex, there may be other cpus
3008		 * changing other bitflags in parallel to us.
3009		 */
3010		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011			BUG();
3012		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013	}
3014}
3015
3016/*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048int mm_take_all_locks(struct mm_struct *mm)
3049{
3050	struct vm_area_struct *vma;
3051	struct anon_vma_chain *avc;
3052
3053	BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055	mutex_lock(&mm_all_locks_mutex);
3056
3057	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058		if (signal_pending(current))
3059			goto out_unlock;
3060		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
3061			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062	}
3063
3064	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065		if (signal_pending(current))
3066			goto out_unlock;
3067		if (vma->anon_vma)
3068			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069				vm_lock_anon_vma(mm, avc->anon_vma);
3070	}
3071
3072	return 0;
3073
3074out_unlock:
3075	mm_drop_all_locks(mm);
3076	return -EINTR;
3077}
3078
3079static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080{
3081	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082		/*
3083		 * The LSB of head.next can't change to 0 from under
3084		 * us because we hold the mm_all_locks_mutex.
3085		 *
3086		 * We must however clear the bitflag before unlocking
3087		 * the vma so the users using the anon_vma->rb_root will
3088		 * never see our bitflag.
3089		 *
3090		 * No need of atomic instructions here, head.next
3091		 * can't change from under us until we release the
3092		 * anon_vma->root->rwsem.
3093		 */
3094		if (!__test_and_clear_bit(0, (unsigned long *)
3095					  &anon_vma->root->rb_root.rb_node))
3096			BUG();
3097		anon_vma_unlock_write(anon_vma);
3098	}
3099}
3100
3101static void vm_unlock_mapping(struct address_space *mapping)
3102{
3103	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104		/*
3105		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106		 * because we hold the mm_all_locks_mutex.
3107		 */
3108		mutex_unlock(&mapping->i_mmap_mutex);
3109		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110					&mapping->flags))
3111			BUG();
3112	}
3113}
3114
3115/*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119void mm_drop_all_locks(struct mm_struct *mm)
3120{
3121	struct vm_area_struct *vma;
3122	struct anon_vma_chain *avc;
3123
3124	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128		if (vma->anon_vma)
3129			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130				vm_unlock_anon_vma(avc->anon_vma);
3131		if (vma->vm_file && vma->vm_file->f_mapping)
3132			vm_unlock_mapping(vma->vm_file->f_mapping);
3133	}
3134
3135	mutex_unlock(&mm_all_locks_mutex);
3136}
3137
3138/*
3139 * initialise the VMA slab
3140 */
3141void __init mmap_init(void)
3142{
3143	int ret;
3144
3145	ret = percpu_counter_init(&vm_committed_as, 0);
3146	VM_BUG_ON(ret);
3147}
3148
3149/*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159static int init_user_reserve(void)
3160{
3161	unsigned long free_kbytes;
3162
3163	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166	return 0;
3167}
3168subsys_initcall(init_user_reserve);
3169
3170/*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180static int init_admin_reserve(void)
3181{
3182	unsigned long free_kbytes;
3183
3184	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187	return 0;
3188}
3189subsys_initcall(init_admin_reserve);
3190
3191/*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209static int reserve_mem_notifier(struct notifier_block *nb,
3210			     unsigned long action, void *data)
3211{
3212	unsigned long tmp, free_kbytes;
3213
3214	switch (action) {
3215	case MEM_ONLINE:
3216		/* Default max is 128MB. Leave alone if modified by operator. */
3217		tmp = sysctl_user_reserve_kbytes;
3218		if (0 < tmp && tmp < (1UL << 17))
3219			init_user_reserve();
3220
3221		/* Default max is 8MB.  Leave alone if modified by operator. */
3222		tmp = sysctl_admin_reserve_kbytes;
3223		if (0 < tmp && tmp < (1UL << 13))
3224			init_admin_reserve();
3225
3226		break;
3227	case MEM_OFFLINE:
3228		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230		if (sysctl_user_reserve_kbytes > free_kbytes) {
3231			init_user_reserve();
3232			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233				sysctl_user_reserve_kbytes);
3234		}
3235
3236		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237			init_admin_reserve();
3238			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239				sysctl_admin_reserve_kbytes);
3240		}
3241		break;
3242	default:
3243		break;
3244	}
3245	return NOTIFY_OK;
3246}
3247
3248static struct notifier_block reserve_mem_nb = {
3249	.notifier_call = reserve_mem_notifier,
3250};
3251
3252static int __meminit init_reserve_notifier(void)
3253{
3254	if (register_hotmemory_notifier(&reserve_mem_nb))
3255		printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257	return 0;
3258}
3259subsys_initcall(init_reserve_notifier);