Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
17#include <linux/memblock.h>
18#include <linux/mutex.h>
19#include <linux/list.h>
20#include <linux/fs.h>
21#include <linux/ima.h>
22#include <crypto/hash.h>
23#include <crypto/sha.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/kernel.h>
27#include <linux/syscalls.h>
28#include <linux/vmalloc.h>
29#include "kexec_internal.h"
30
31static int kexec_calculate_store_digests(struct kimage *image);
32
33/*
34 * Currently this is the only default function that is exported as some
35 * architectures need it to do additional handlings.
36 * In the future, other default functions may be exported too if required.
37 */
38int kexec_image_probe_default(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 const struct kexec_file_ops * const *fops;
42 int ret = -ENOEXEC;
43
44 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 ret = (*fops)->probe(buf, buf_len);
46 if (!ret) {
47 image->fops = *fops;
48 return ret;
49 }
50 }
51
52 return ret;
53}
54
55/* Architectures can provide this probe function */
56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 unsigned long buf_len)
58{
59 return kexec_image_probe_default(image, buf, buf_len);
60}
61
62static void *kexec_image_load_default(struct kimage *image)
63{
64 if (!image->fops || !image->fops->load)
65 return ERR_PTR(-ENOEXEC);
66
67 return image->fops->load(image, image->kernel_buf,
68 image->kernel_buf_len, image->initrd_buf,
69 image->initrd_buf_len, image->cmdline_buf,
70 image->cmdline_buf_len);
71}
72
73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74{
75 return kexec_image_load_default(image);
76}
77
78int kexec_image_post_load_cleanup_default(struct kimage *image)
79{
80 if (!image->fops || !image->fops->cleanup)
81 return 0;
82
83 return image->fops->cleanup(image->image_loader_data);
84}
85
86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87{
88 return kexec_image_post_load_cleanup_default(image);
89}
90
91#ifdef CONFIG_KEXEC_SIG
92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 unsigned long buf_len)
94{
95 if (!image->fops || !image->fops->verify_sig) {
96 pr_debug("kernel loader does not support signature verification.\n");
97 return -EKEYREJECTED;
98 }
99
100 return image->fops->verify_sig(buf, buf_len);
101}
102
103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 unsigned long buf_len)
105{
106 return kexec_image_verify_sig_default(image, buf, buf_len);
107}
108#endif
109
110/*
111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
112 * @pi: Purgatory to be relocated.
113 * @section: Section relocations applying to.
114 * @relsec: Section containing RELAs.
115 * @symtab: Corresponding symtab.
116 *
117 * Return: 0 on success, negative errno on error.
118 */
119int __weak
120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122{
123 pr_err("RELA relocation unsupported.\n");
124 return -ENOEXEC;
125}
126
127/*
128 * arch_kexec_apply_relocations - apply relocations of type REL
129 * @pi: Purgatory to be relocated.
130 * @section: Section relocations applying to.
131 * @relsec: Section containing RELs.
132 * @symtab: Corresponding symtab.
133 *
134 * Return: 0 on success, negative errno on error.
135 */
136int __weak
137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139{
140 pr_err("REL relocation unsupported.\n");
141 return -ENOEXEC;
142}
143
144/*
145 * Free up memory used by kernel, initrd, and command line. This is temporary
146 * memory allocation which is not needed any more after these buffers have
147 * been loaded into separate segments and have been copied elsewhere.
148 */
149void kimage_file_post_load_cleanup(struct kimage *image)
150{
151 struct purgatory_info *pi = &image->purgatory_info;
152
153 vfree(image->kernel_buf);
154 image->kernel_buf = NULL;
155
156 vfree(image->initrd_buf);
157 image->initrd_buf = NULL;
158
159 kfree(image->cmdline_buf);
160 image->cmdline_buf = NULL;
161
162 vfree(pi->purgatory_buf);
163 pi->purgatory_buf = NULL;
164
165 vfree(pi->sechdrs);
166 pi->sechdrs = NULL;
167
168 /* See if architecture has anything to cleanup post load */
169 arch_kimage_file_post_load_cleanup(image);
170
171 /*
172 * Above call should have called into bootloader to free up
173 * any data stored in kimage->image_loader_data. It should
174 * be ok now to free it up.
175 */
176 kfree(image->image_loader_data);
177 image->image_loader_data = NULL;
178}
179
180#ifdef CONFIG_KEXEC_SIG
181static int
182kimage_validate_signature(struct kimage *image)
183{
184 const char *reason;
185 int ret;
186
187 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188 image->kernel_buf_len);
189 switch (ret) {
190 case 0:
191 break;
192
193 /* Certain verification errors are non-fatal if we're not
194 * checking errors, provided we aren't mandating that there
195 * must be a valid signature.
196 */
197 case -ENODATA:
198 reason = "kexec of unsigned image";
199 goto decide;
200 case -ENOPKG:
201 reason = "kexec of image with unsupported crypto";
202 goto decide;
203 case -ENOKEY:
204 reason = "kexec of image with unavailable key";
205 decide:
206 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
207 pr_notice("%s rejected\n", reason);
208 return ret;
209 }
210
211 /* If IMA is guaranteed to appraise a signature on the kexec
212 * image, permit it even if the kernel is otherwise locked
213 * down.
214 */
215 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
216 security_locked_down(LOCKDOWN_KEXEC))
217 return -EPERM;
218
219 return 0;
220
221 /* All other errors are fatal, including nomem, unparseable
222 * signatures and signature check failures - even if signatures
223 * aren't required.
224 */
225 default:
226 pr_notice("kernel signature verification failed (%d).\n", ret);
227 }
228
229 return ret;
230}
231#endif
232
233/*
234 * In file mode list of segments is prepared by kernel. Copy relevant
235 * data from user space, do error checking, prepare segment list
236 */
237static int
238kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
239 const char __user *cmdline_ptr,
240 unsigned long cmdline_len, unsigned flags)
241{
242 int ret;
243 void *ldata;
244 loff_t size;
245
246 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
247 &size, INT_MAX, READING_KEXEC_IMAGE);
248 if (ret)
249 return ret;
250 image->kernel_buf_len = size;
251
252 /* Call arch image probe handlers */
253 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
254 image->kernel_buf_len);
255 if (ret)
256 goto out;
257
258#ifdef CONFIG_KEXEC_SIG
259 ret = kimage_validate_signature(image);
260
261 if (ret)
262 goto out;
263#endif
264 /* It is possible that there no initramfs is being loaded */
265 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
266 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
267 &size, INT_MAX,
268 READING_KEXEC_INITRAMFS);
269 if (ret)
270 goto out;
271 image->initrd_buf_len = size;
272 }
273
274 if (cmdline_len) {
275 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
276 if (IS_ERR(image->cmdline_buf)) {
277 ret = PTR_ERR(image->cmdline_buf);
278 image->cmdline_buf = NULL;
279 goto out;
280 }
281
282 image->cmdline_buf_len = cmdline_len;
283
284 /* command line should be a string with last byte null */
285 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
286 ret = -EINVAL;
287 goto out;
288 }
289
290 ima_kexec_cmdline(image->cmdline_buf,
291 image->cmdline_buf_len - 1);
292 }
293
294 /* IMA needs to pass the measurement list to the next kernel. */
295 ima_add_kexec_buffer(image);
296
297 /* Call arch image load handlers */
298 ldata = arch_kexec_kernel_image_load(image);
299
300 if (IS_ERR(ldata)) {
301 ret = PTR_ERR(ldata);
302 goto out;
303 }
304
305 image->image_loader_data = ldata;
306out:
307 /* In case of error, free up all allocated memory in this function */
308 if (ret)
309 kimage_file_post_load_cleanup(image);
310 return ret;
311}
312
313static int
314kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
315 int initrd_fd, const char __user *cmdline_ptr,
316 unsigned long cmdline_len, unsigned long flags)
317{
318 int ret;
319 struct kimage *image;
320 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
321
322 image = do_kimage_alloc_init();
323 if (!image)
324 return -ENOMEM;
325
326 image->file_mode = 1;
327
328 if (kexec_on_panic) {
329 /* Enable special crash kernel control page alloc policy. */
330 image->control_page = crashk_res.start;
331 image->type = KEXEC_TYPE_CRASH;
332 }
333
334 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
335 cmdline_ptr, cmdline_len, flags);
336 if (ret)
337 goto out_free_image;
338
339 ret = sanity_check_segment_list(image);
340 if (ret)
341 goto out_free_post_load_bufs;
342
343 ret = -ENOMEM;
344 image->control_code_page = kimage_alloc_control_pages(image,
345 get_order(KEXEC_CONTROL_PAGE_SIZE));
346 if (!image->control_code_page) {
347 pr_err("Could not allocate control_code_buffer\n");
348 goto out_free_post_load_bufs;
349 }
350
351 if (!kexec_on_panic) {
352 image->swap_page = kimage_alloc_control_pages(image, 0);
353 if (!image->swap_page) {
354 pr_err("Could not allocate swap buffer\n");
355 goto out_free_control_pages;
356 }
357 }
358
359 *rimage = image;
360 return 0;
361out_free_control_pages:
362 kimage_free_page_list(&image->control_pages);
363out_free_post_load_bufs:
364 kimage_file_post_load_cleanup(image);
365out_free_image:
366 kfree(image);
367 return ret;
368}
369
370SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
371 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
372 unsigned long, flags)
373{
374 int ret = 0, i;
375 struct kimage **dest_image, *image;
376
377 /* We only trust the superuser with rebooting the system. */
378 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
379 return -EPERM;
380
381 /* Make sure we have a legal set of flags */
382 if (flags != (flags & KEXEC_FILE_FLAGS))
383 return -EINVAL;
384
385 image = NULL;
386
387 if (!mutex_trylock(&kexec_mutex))
388 return -EBUSY;
389
390 dest_image = &kexec_image;
391 if (flags & KEXEC_FILE_ON_CRASH) {
392 dest_image = &kexec_crash_image;
393 if (kexec_crash_image)
394 arch_kexec_unprotect_crashkres();
395 }
396
397 if (flags & KEXEC_FILE_UNLOAD)
398 goto exchange;
399
400 /*
401 * In case of crash, new kernel gets loaded in reserved region. It is
402 * same memory where old crash kernel might be loaded. Free any
403 * current crash dump kernel before we corrupt it.
404 */
405 if (flags & KEXEC_FILE_ON_CRASH)
406 kimage_free(xchg(&kexec_crash_image, NULL));
407
408 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
409 cmdline_len, flags);
410 if (ret)
411 goto out;
412
413 ret = machine_kexec_prepare(image);
414 if (ret)
415 goto out;
416
417 /*
418 * Some architecture(like S390) may touch the crash memory before
419 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
420 */
421 ret = kimage_crash_copy_vmcoreinfo(image);
422 if (ret)
423 goto out;
424
425 ret = kexec_calculate_store_digests(image);
426 if (ret)
427 goto out;
428
429 for (i = 0; i < image->nr_segments; i++) {
430 struct kexec_segment *ksegment;
431
432 ksegment = &image->segment[i];
433 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
435 ksegment->memsz);
436
437 ret = kimage_load_segment(image, &image->segment[i]);
438 if (ret)
439 goto out;
440 }
441
442 kimage_terminate(image);
443
444 /*
445 * Free up any temporary buffers allocated which are not needed
446 * after image has been loaded
447 */
448 kimage_file_post_load_cleanup(image);
449exchange:
450 image = xchg(dest_image, image);
451out:
452 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
453 arch_kexec_protect_crashkres();
454
455 mutex_unlock(&kexec_mutex);
456 kimage_free(image);
457 return ret;
458}
459
460static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
461 struct kexec_buf *kbuf)
462{
463 struct kimage *image = kbuf->image;
464 unsigned long temp_start, temp_end;
465
466 temp_end = min(end, kbuf->buf_max);
467 temp_start = temp_end - kbuf->memsz;
468
469 do {
470 /* align down start */
471 temp_start = temp_start & (~(kbuf->buf_align - 1));
472
473 if (temp_start < start || temp_start < kbuf->buf_min)
474 return 0;
475
476 temp_end = temp_start + kbuf->memsz - 1;
477
478 /*
479 * Make sure this does not conflict with any of existing
480 * segments
481 */
482 if (kimage_is_destination_range(image, temp_start, temp_end)) {
483 temp_start = temp_start - PAGE_SIZE;
484 continue;
485 }
486
487 /* We found a suitable memory range */
488 break;
489 } while (1);
490
491 /* If we are here, we found a suitable memory range */
492 kbuf->mem = temp_start;
493
494 /* Success, stop navigating through remaining System RAM ranges */
495 return 1;
496}
497
498static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
499 struct kexec_buf *kbuf)
500{
501 struct kimage *image = kbuf->image;
502 unsigned long temp_start, temp_end;
503
504 temp_start = max(start, kbuf->buf_min);
505
506 do {
507 temp_start = ALIGN(temp_start, kbuf->buf_align);
508 temp_end = temp_start + kbuf->memsz - 1;
509
510 if (temp_end > end || temp_end > kbuf->buf_max)
511 return 0;
512 /*
513 * Make sure this does not conflict with any of existing
514 * segments
515 */
516 if (kimage_is_destination_range(image, temp_start, temp_end)) {
517 temp_start = temp_start + PAGE_SIZE;
518 continue;
519 }
520
521 /* We found a suitable memory range */
522 break;
523 } while (1);
524
525 /* If we are here, we found a suitable memory range */
526 kbuf->mem = temp_start;
527
528 /* Success, stop navigating through remaining System RAM ranges */
529 return 1;
530}
531
532static int locate_mem_hole_callback(struct resource *res, void *arg)
533{
534 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
535 u64 start = res->start, end = res->end;
536 unsigned long sz = end - start + 1;
537
538 /* Returning 0 will take to next memory range */
539 if (sz < kbuf->memsz)
540 return 0;
541
542 if (end < kbuf->buf_min || start > kbuf->buf_max)
543 return 0;
544
545 /*
546 * Allocate memory top down with-in ram range. Otherwise bottom up
547 * allocation.
548 */
549 if (kbuf->top_down)
550 return locate_mem_hole_top_down(start, end, kbuf);
551 return locate_mem_hole_bottom_up(start, end, kbuf);
552}
553
554#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
555static int kexec_walk_memblock(struct kexec_buf *kbuf,
556 int (*func)(struct resource *, void *))
557{
558 int ret = 0;
559 u64 i;
560 phys_addr_t mstart, mend;
561 struct resource res = { };
562
563 if (kbuf->image->type == KEXEC_TYPE_CRASH)
564 return func(&crashk_res, kbuf);
565
566 if (kbuf->top_down) {
567 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
568 &mstart, &mend, NULL) {
569 /*
570 * In memblock, end points to the first byte after the
571 * range while in kexec, end points to the last byte
572 * in the range.
573 */
574 res.start = mstart;
575 res.end = mend - 1;
576 ret = func(&res, kbuf);
577 if (ret)
578 break;
579 }
580 } else {
581 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
582 &mstart, &mend, NULL) {
583 /*
584 * In memblock, end points to the first byte after the
585 * range while in kexec, end points to the last byte
586 * in the range.
587 */
588 res.start = mstart;
589 res.end = mend - 1;
590 ret = func(&res, kbuf);
591 if (ret)
592 break;
593 }
594 }
595
596 return ret;
597}
598#else
599static int kexec_walk_memblock(struct kexec_buf *kbuf,
600 int (*func)(struct resource *, void *))
601{
602 return 0;
603}
604#endif
605
606/**
607 * kexec_walk_resources - call func(data) on free memory regions
608 * @kbuf: Context info for the search. Also passed to @func.
609 * @func: Function to call for each memory region.
610 *
611 * Return: The memory walk will stop when func returns a non-zero value
612 * and that value will be returned. If all free regions are visited without
613 * func returning non-zero, then zero will be returned.
614 */
615static int kexec_walk_resources(struct kexec_buf *kbuf,
616 int (*func)(struct resource *, void *))
617{
618 if (kbuf->image->type == KEXEC_TYPE_CRASH)
619 return walk_iomem_res_desc(crashk_res.desc,
620 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
621 crashk_res.start, crashk_res.end,
622 kbuf, func);
623 else
624 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
625}
626
627/**
628 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
629 * @kbuf: Parameters for the memory search.
630 *
631 * On success, kbuf->mem will have the start address of the memory region found.
632 *
633 * Return: 0 on success, negative errno on error.
634 */
635int kexec_locate_mem_hole(struct kexec_buf *kbuf)
636{
637 int ret;
638
639 /* Arch knows where to place */
640 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
641 return 0;
642
643 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
644 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
645 else
646 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
647
648 return ret == 1 ? 0 : -EADDRNOTAVAIL;
649}
650
651/**
652 * kexec_add_buffer - place a buffer in a kexec segment
653 * @kbuf: Buffer contents and memory parameters.
654 *
655 * This function assumes that kexec_mutex is held.
656 * On successful return, @kbuf->mem will have the physical address of
657 * the buffer in memory.
658 *
659 * Return: 0 on success, negative errno on error.
660 */
661int kexec_add_buffer(struct kexec_buf *kbuf)
662{
663
664 struct kexec_segment *ksegment;
665 int ret;
666
667 /* Currently adding segment this way is allowed only in file mode */
668 if (!kbuf->image->file_mode)
669 return -EINVAL;
670
671 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
672 return -EINVAL;
673
674 /*
675 * Make sure we are not trying to add buffer after allocating
676 * control pages. All segments need to be placed first before
677 * any control pages are allocated. As control page allocation
678 * logic goes through list of segments to make sure there are
679 * no destination overlaps.
680 */
681 if (!list_empty(&kbuf->image->control_pages)) {
682 WARN_ON(1);
683 return -EINVAL;
684 }
685
686 /* Ensure minimum alignment needed for segments. */
687 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
688 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
689
690 /* Walk the RAM ranges and allocate a suitable range for the buffer */
691 ret = kexec_locate_mem_hole(kbuf);
692 if (ret)
693 return ret;
694
695 /* Found a suitable memory range */
696 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
697 ksegment->kbuf = kbuf->buffer;
698 ksegment->bufsz = kbuf->bufsz;
699 ksegment->mem = kbuf->mem;
700 ksegment->memsz = kbuf->memsz;
701 kbuf->image->nr_segments++;
702 return 0;
703}
704
705/* Calculate and store the digest of segments */
706static int kexec_calculate_store_digests(struct kimage *image)
707{
708 struct crypto_shash *tfm;
709 struct shash_desc *desc;
710 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
711 size_t desc_size, nullsz;
712 char *digest;
713 void *zero_buf;
714 struct kexec_sha_region *sha_regions;
715 struct purgatory_info *pi = &image->purgatory_info;
716
717 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
718 return 0;
719
720 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
721 zero_buf_sz = PAGE_SIZE;
722
723 tfm = crypto_alloc_shash("sha256", 0, 0);
724 if (IS_ERR(tfm)) {
725 ret = PTR_ERR(tfm);
726 goto out;
727 }
728
729 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
730 desc = kzalloc(desc_size, GFP_KERNEL);
731 if (!desc) {
732 ret = -ENOMEM;
733 goto out_free_tfm;
734 }
735
736 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
737 sha_regions = vzalloc(sha_region_sz);
738 if (!sha_regions)
739 goto out_free_desc;
740
741 desc->tfm = tfm;
742
743 ret = crypto_shash_init(desc);
744 if (ret < 0)
745 goto out_free_sha_regions;
746
747 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
748 if (!digest) {
749 ret = -ENOMEM;
750 goto out_free_sha_regions;
751 }
752
753 for (j = i = 0; i < image->nr_segments; i++) {
754 struct kexec_segment *ksegment;
755
756 ksegment = &image->segment[i];
757 /*
758 * Skip purgatory as it will be modified once we put digest
759 * info in purgatory.
760 */
761 if (ksegment->kbuf == pi->purgatory_buf)
762 continue;
763
764 ret = crypto_shash_update(desc, ksegment->kbuf,
765 ksegment->bufsz);
766 if (ret)
767 break;
768
769 /*
770 * Assume rest of the buffer is filled with zero and
771 * update digest accordingly.
772 */
773 nullsz = ksegment->memsz - ksegment->bufsz;
774 while (nullsz) {
775 unsigned long bytes = nullsz;
776
777 if (bytes > zero_buf_sz)
778 bytes = zero_buf_sz;
779 ret = crypto_shash_update(desc, zero_buf, bytes);
780 if (ret)
781 break;
782 nullsz -= bytes;
783 }
784
785 if (ret)
786 break;
787
788 sha_regions[j].start = ksegment->mem;
789 sha_regions[j].len = ksegment->memsz;
790 j++;
791 }
792
793 if (!ret) {
794 ret = crypto_shash_final(desc, digest);
795 if (ret)
796 goto out_free_digest;
797 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
798 sha_regions, sha_region_sz, 0);
799 if (ret)
800 goto out_free_digest;
801
802 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
803 digest, SHA256_DIGEST_SIZE, 0);
804 if (ret)
805 goto out_free_digest;
806 }
807
808out_free_digest:
809 kfree(digest);
810out_free_sha_regions:
811 vfree(sha_regions);
812out_free_desc:
813 kfree(desc);
814out_free_tfm:
815 kfree(tfm);
816out:
817 return ret;
818}
819
820#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
821/*
822 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
823 * @pi: Purgatory to be loaded.
824 * @kbuf: Buffer to setup.
825 *
826 * Allocates the memory needed for the buffer. Caller is responsible to free
827 * the memory after use.
828 *
829 * Return: 0 on success, negative errno on error.
830 */
831static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
832 struct kexec_buf *kbuf)
833{
834 const Elf_Shdr *sechdrs;
835 unsigned long bss_align;
836 unsigned long bss_sz;
837 unsigned long align;
838 int i, ret;
839
840 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
841 kbuf->buf_align = bss_align = 1;
842 kbuf->bufsz = bss_sz = 0;
843
844 for (i = 0; i < pi->ehdr->e_shnum; i++) {
845 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
846 continue;
847
848 align = sechdrs[i].sh_addralign;
849 if (sechdrs[i].sh_type != SHT_NOBITS) {
850 if (kbuf->buf_align < align)
851 kbuf->buf_align = align;
852 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
853 kbuf->bufsz += sechdrs[i].sh_size;
854 } else {
855 if (bss_align < align)
856 bss_align = align;
857 bss_sz = ALIGN(bss_sz, align);
858 bss_sz += sechdrs[i].sh_size;
859 }
860 }
861 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
862 kbuf->memsz = kbuf->bufsz + bss_sz;
863 if (kbuf->buf_align < bss_align)
864 kbuf->buf_align = bss_align;
865
866 kbuf->buffer = vzalloc(kbuf->bufsz);
867 if (!kbuf->buffer)
868 return -ENOMEM;
869 pi->purgatory_buf = kbuf->buffer;
870
871 ret = kexec_add_buffer(kbuf);
872 if (ret)
873 goto out;
874
875 return 0;
876out:
877 vfree(pi->purgatory_buf);
878 pi->purgatory_buf = NULL;
879 return ret;
880}
881
882/*
883 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
884 * @pi: Purgatory to be loaded.
885 * @kbuf: Buffer prepared to store purgatory.
886 *
887 * Allocates the memory needed for the buffer. Caller is responsible to free
888 * the memory after use.
889 *
890 * Return: 0 on success, negative errno on error.
891 */
892static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
893 struct kexec_buf *kbuf)
894{
895 unsigned long bss_addr;
896 unsigned long offset;
897 Elf_Shdr *sechdrs;
898 int i;
899
900 /*
901 * The section headers in kexec_purgatory are read-only. In order to
902 * have them modifiable make a temporary copy.
903 */
904 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
905 if (!sechdrs)
906 return -ENOMEM;
907 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
908 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
909 pi->sechdrs = sechdrs;
910
911 offset = 0;
912 bss_addr = kbuf->mem + kbuf->bufsz;
913 kbuf->image->start = pi->ehdr->e_entry;
914
915 for (i = 0; i < pi->ehdr->e_shnum; i++) {
916 unsigned long align;
917 void *src, *dst;
918
919 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
920 continue;
921
922 align = sechdrs[i].sh_addralign;
923 if (sechdrs[i].sh_type == SHT_NOBITS) {
924 bss_addr = ALIGN(bss_addr, align);
925 sechdrs[i].sh_addr = bss_addr;
926 bss_addr += sechdrs[i].sh_size;
927 continue;
928 }
929
930 offset = ALIGN(offset, align);
931 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
932 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
933 pi->ehdr->e_entry < (sechdrs[i].sh_addr
934 + sechdrs[i].sh_size)) {
935 kbuf->image->start -= sechdrs[i].sh_addr;
936 kbuf->image->start += kbuf->mem + offset;
937 }
938
939 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
940 dst = pi->purgatory_buf + offset;
941 memcpy(dst, src, sechdrs[i].sh_size);
942
943 sechdrs[i].sh_addr = kbuf->mem + offset;
944 sechdrs[i].sh_offset = offset;
945 offset += sechdrs[i].sh_size;
946 }
947
948 return 0;
949}
950
951static int kexec_apply_relocations(struct kimage *image)
952{
953 int i, ret;
954 struct purgatory_info *pi = &image->purgatory_info;
955 const Elf_Shdr *sechdrs;
956
957 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
958
959 for (i = 0; i < pi->ehdr->e_shnum; i++) {
960 const Elf_Shdr *relsec;
961 const Elf_Shdr *symtab;
962 Elf_Shdr *section;
963
964 relsec = sechdrs + i;
965
966 if (relsec->sh_type != SHT_RELA &&
967 relsec->sh_type != SHT_REL)
968 continue;
969
970 /*
971 * For section of type SHT_RELA/SHT_REL,
972 * ->sh_link contains section header index of associated
973 * symbol table. And ->sh_info contains section header
974 * index of section to which relocations apply.
975 */
976 if (relsec->sh_info >= pi->ehdr->e_shnum ||
977 relsec->sh_link >= pi->ehdr->e_shnum)
978 return -ENOEXEC;
979
980 section = pi->sechdrs + relsec->sh_info;
981 symtab = sechdrs + relsec->sh_link;
982
983 if (!(section->sh_flags & SHF_ALLOC))
984 continue;
985
986 /*
987 * symtab->sh_link contain section header index of associated
988 * string table.
989 */
990 if (symtab->sh_link >= pi->ehdr->e_shnum)
991 /* Invalid section number? */
992 continue;
993
994 /*
995 * Respective architecture needs to provide support for applying
996 * relocations of type SHT_RELA/SHT_REL.
997 */
998 if (relsec->sh_type == SHT_RELA)
999 ret = arch_kexec_apply_relocations_add(pi, section,
1000 relsec, symtab);
1001 else if (relsec->sh_type == SHT_REL)
1002 ret = arch_kexec_apply_relocations(pi, section,
1003 relsec, symtab);
1004 if (ret)
1005 return ret;
1006 }
1007
1008 return 0;
1009}
1010
1011/*
1012 * kexec_load_purgatory - Load and relocate the purgatory object.
1013 * @image: Image to add the purgatory to.
1014 * @kbuf: Memory parameters to use.
1015 *
1016 * Allocates the memory needed for image->purgatory_info.sechdrs and
1017 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1018 * to free the memory after use.
1019 *
1020 * Return: 0 on success, negative errno on error.
1021 */
1022int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1023{
1024 struct purgatory_info *pi = &image->purgatory_info;
1025 int ret;
1026
1027 if (kexec_purgatory_size <= 0)
1028 return -EINVAL;
1029
1030 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1031
1032 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1033 if (ret)
1034 return ret;
1035
1036 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1037 if (ret)
1038 goto out_free_kbuf;
1039
1040 ret = kexec_apply_relocations(image);
1041 if (ret)
1042 goto out;
1043
1044 return 0;
1045out:
1046 vfree(pi->sechdrs);
1047 pi->sechdrs = NULL;
1048out_free_kbuf:
1049 vfree(pi->purgatory_buf);
1050 pi->purgatory_buf = NULL;
1051 return ret;
1052}
1053
1054/*
1055 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1056 * @pi: Purgatory to search in.
1057 * @name: Name of the symbol.
1058 *
1059 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1060 */
1061static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1062 const char *name)
1063{
1064 const Elf_Shdr *sechdrs;
1065 const Elf_Ehdr *ehdr;
1066 const Elf_Sym *syms;
1067 const char *strtab;
1068 int i, k;
1069
1070 if (!pi->ehdr)
1071 return NULL;
1072
1073 ehdr = pi->ehdr;
1074 sechdrs = (void *)ehdr + ehdr->e_shoff;
1075
1076 for (i = 0; i < ehdr->e_shnum; i++) {
1077 if (sechdrs[i].sh_type != SHT_SYMTAB)
1078 continue;
1079
1080 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1081 /* Invalid strtab section number */
1082 continue;
1083 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1084 syms = (void *)ehdr + sechdrs[i].sh_offset;
1085
1086 /* Go through symbols for a match */
1087 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1088 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1089 continue;
1090
1091 if (strcmp(strtab + syms[k].st_name, name) != 0)
1092 continue;
1093
1094 if (syms[k].st_shndx == SHN_UNDEF ||
1095 syms[k].st_shndx >= ehdr->e_shnum) {
1096 pr_debug("Symbol: %s has bad section index %d.\n",
1097 name, syms[k].st_shndx);
1098 return NULL;
1099 }
1100
1101 /* Found the symbol we are looking for */
1102 return &syms[k];
1103 }
1104 }
1105
1106 return NULL;
1107}
1108
1109void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1110{
1111 struct purgatory_info *pi = &image->purgatory_info;
1112 const Elf_Sym *sym;
1113 Elf_Shdr *sechdr;
1114
1115 sym = kexec_purgatory_find_symbol(pi, name);
1116 if (!sym)
1117 return ERR_PTR(-EINVAL);
1118
1119 sechdr = &pi->sechdrs[sym->st_shndx];
1120
1121 /*
1122 * Returns the address where symbol will finally be loaded after
1123 * kexec_load_segment()
1124 */
1125 return (void *)(sechdr->sh_addr + sym->st_value);
1126}
1127
1128/*
1129 * Get or set value of a symbol. If "get_value" is true, symbol value is
1130 * returned in buf otherwise symbol value is set based on value in buf.
1131 */
1132int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1133 void *buf, unsigned int size, bool get_value)
1134{
1135 struct purgatory_info *pi = &image->purgatory_info;
1136 const Elf_Sym *sym;
1137 Elf_Shdr *sec;
1138 char *sym_buf;
1139
1140 sym = kexec_purgatory_find_symbol(pi, name);
1141 if (!sym)
1142 return -EINVAL;
1143
1144 if (sym->st_size != size) {
1145 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1146 name, (unsigned long)sym->st_size, size);
1147 return -EINVAL;
1148 }
1149
1150 sec = pi->sechdrs + sym->st_shndx;
1151
1152 if (sec->sh_type == SHT_NOBITS) {
1153 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1154 get_value ? "get" : "set");
1155 return -EINVAL;
1156 }
1157
1158 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1159
1160 if (get_value)
1161 memcpy((void *)buf, sym_buf, size);
1162 else
1163 memcpy((void *)sym_buf, buf, size);
1164
1165 return 0;
1166}
1167#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1168
1169int crash_exclude_mem_range(struct crash_mem *mem,
1170 unsigned long long mstart, unsigned long long mend)
1171{
1172 int i, j;
1173 unsigned long long start, end;
1174 struct crash_mem_range temp_range = {0, 0};
1175
1176 for (i = 0; i < mem->nr_ranges; i++) {
1177 start = mem->ranges[i].start;
1178 end = mem->ranges[i].end;
1179
1180 if (mstart > end || mend < start)
1181 continue;
1182
1183 /* Truncate any area outside of range */
1184 if (mstart < start)
1185 mstart = start;
1186 if (mend > end)
1187 mend = end;
1188
1189 /* Found completely overlapping range */
1190 if (mstart == start && mend == end) {
1191 mem->ranges[i].start = 0;
1192 mem->ranges[i].end = 0;
1193 if (i < mem->nr_ranges - 1) {
1194 /* Shift rest of the ranges to left */
1195 for (j = i; j < mem->nr_ranges - 1; j++) {
1196 mem->ranges[j].start =
1197 mem->ranges[j+1].start;
1198 mem->ranges[j].end =
1199 mem->ranges[j+1].end;
1200 }
1201 }
1202 mem->nr_ranges--;
1203 return 0;
1204 }
1205
1206 if (mstart > start && mend < end) {
1207 /* Split original range */
1208 mem->ranges[i].end = mstart - 1;
1209 temp_range.start = mend + 1;
1210 temp_range.end = end;
1211 } else if (mstart != start)
1212 mem->ranges[i].end = mstart - 1;
1213 else
1214 mem->ranges[i].start = mend + 1;
1215 break;
1216 }
1217
1218 /* If a split happened, add the split to array */
1219 if (!temp_range.end)
1220 return 0;
1221
1222 /* Split happened */
1223 if (i == mem->max_nr_ranges - 1)
1224 return -ENOMEM;
1225
1226 /* Location where new range should go */
1227 j = i + 1;
1228 if (j < mem->nr_ranges) {
1229 /* Move over all ranges one slot towards the end */
1230 for (i = mem->nr_ranges - 1; i >= j; i--)
1231 mem->ranges[i + 1] = mem->ranges[i];
1232 }
1233
1234 mem->ranges[j].start = temp_range.start;
1235 mem->ranges[j].end = temp_range.end;
1236 mem->nr_ranges++;
1237 return 0;
1238}
1239
1240int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1241 void **addr, unsigned long *sz)
1242{
1243 Elf64_Ehdr *ehdr;
1244 Elf64_Phdr *phdr;
1245 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1246 unsigned char *buf;
1247 unsigned int cpu, i;
1248 unsigned long long notes_addr;
1249 unsigned long mstart, mend;
1250
1251 /* extra phdr for vmcoreinfo elf note */
1252 nr_phdr = nr_cpus + 1;
1253 nr_phdr += mem->nr_ranges;
1254
1255 /*
1256 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1257 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1258 * I think this is required by tools like gdb. So same physical
1259 * memory will be mapped in two elf headers. One will contain kernel
1260 * text virtual addresses and other will have __va(physical) addresses.
1261 */
1262
1263 nr_phdr++;
1264 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1265 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1266
1267 buf = vzalloc(elf_sz);
1268 if (!buf)
1269 return -ENOMEM;
1270
1271 ehdr = (Elf64_Ehdr *)buf;
1272 phdr = (Elf64_Phdr *)(ehdr + 1);
1273 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1274 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1275 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1276 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1277 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1278 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1279 ehdr->e_type = ET_CORE;
1280 ehdr->e_machine = ELF_ARCH;
1281 ehdr->e_version = EV_CURRENT;
1282 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1283 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1284 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1285
1286 /* Prepare one phdr of type PT_NOTE for each present cpu */
1287 for_each_present_cpu(cpu) {
1288 phdr->p_type = PT_NOTE;
1289 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1290 phdr->p_offset = phdr->p_paddr = notes_addr;
1291 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1292 (ehdr->e_phnum)++;
1293 phdr++;
1294 }
1295
1296 /* Prepare one PT_NOTE header for vmcoreinfo */
1297 phdr->p_type = PT_NOTE;
1298 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1299 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1300 (ehdr->e_phnum)++;
1301 phdr++;
1302
1303 /* Prepare PT_LOAD type program header for kernel text region */
1304 if (kernel_map) {
1305 phdr->p_type = PT_LOAD;
1306 phdr->p_flags = PF_R|PF_W|PF_X;
1307 phdr->p_vaddr = (Elf64_Addr)_text;
1308 phdr->p_filesz = phdr->p_memsz = _end - _text;
1309 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1310 ehdr->e_phnum++;
1311 phdr++;
1312 }
1313
1314 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1315 for (i = 0; i < mem->nr_ranges; i++) {
1316 mstart = mem->ranges[i].start;
1317 mend = mem->ranges[i].end;
1318
1319 phdr->p_type = PT_LOAD;
1320 phdr->p_flags = PF_R|PF_W|PF_X;
1321 phdr->p_offset = mstart;
1322
1323 phdr->p_paddr = mstart;
1324 phdr->p_vaddr = (unsigned long long) __va(mstart);
1325 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1326 phdr->p_align = 0;
1327 ehdr->e_phnum++;
1328 phdr++;
1329 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1330 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1331 ehdr->e_phnum, phdr->p_offset);
1332 }
1333
1334 *addr = buf;
1335 *sz = elf_sz;
1336 return 0;
1337}
1/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/capability.h>
15#include <linux/mm.h>
16#include <linux/file.h>
17#include <linux/slab.h>
18#include <linux/kexec.h>
19#include <linux/mutex.h>
20#include <linux/list.h>
21#include <linux/fs.h>
22#include <crypto/hash.h>
23#include <crypto/sha.h>
24#include <linux/syscalls.h>
25#include <linux/vmalloc.h>
26#include "kexec_internal.h"
27
28/*
29 * Declare these symbols weak so that if architecture provides a purgatory,
30 * these will be overridden.
31 */
32char __weak kexec_purgatory[0];
33size_t __weak kexec_purgatory_size = 0;
34
35static int kexec_calculate_store_digests(struct kimage *image);
36
37/* Architectures can provide this probe function */
38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 return -ENOEXEC;
42}
43
44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
45{
46 return ERR_PTR(-ENOEXEC);
47}
48
49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
50{
51 return -EINVAL;
52}
53
54#ifdef CONFIG_KEXEC_VERIFY_SIG
55int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
56 unsigned long buf_len)
57{
58 return -EKEYREJECTED;
59}
60#endif
61
62/* Apply relocations of type RELA */
63int __weak
64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
65 unsigned int relsec)
66{
67 pr_err("RELA relocation unsupported.\n");
68 return -ENOEXEC;
69}
70
71/* Apply relocations of type REL */
72int __weak
73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
74 unsigned int relsec)
75{
76 pr_err("REL relocation unsupported.\n");
77 return -ENOEXEC;
78}
79
80/*
81 * Free up memory used by kernel, initrd, and command line. This is temporary
82 * memory allocation which is not needed any more after these buffers have
83 * been loaded into separate segments and have been copied elsewhere.
84 */
85void kimage_file_post_load_cleanup(struct kimage *image)
86{
87 struct purgatory_info *pi = &image->purgatory_info;
88
89 vfree(image->kernel_buf);
90 image->kernel_buf = NULL;
91
92 vfree(image->initrd_buf);
93 image->initrd_buf = NULL;
94
95 kfree(image->cmdline_buf);
96 image->cmdline_buf = NULL;
97
98 vfree(pi->purgatory_buf);
99 pi->purgatory_buf = NULL;
100
101 vfree(pi->sechdrs);
102 pi->sechdrs = NULL;
103
104 /* See if architecture has anything to cleanup post load */
105 arch_kimage_file_post_load_cleanup(image);
106
107 /*
108 * Above call should have called into bootloader to free up
109 * any data stored in kimage->image_loader_data. It should
110 * be ok now to free it up.
111 */
112 kfree(image->image_loader_data);
113 image->image_loader_data = NULL;
114}
115
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122 const char __user *cmdline_ptr,
123 unsigned long cmdline_len, unsigned flags)
124{
125 int ret = 0;
126 void *ldata;
127 loff_t size;
128
129 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130 &size, INT_MAX, READING_KEXEC_IMAGE);
131 if (ret)
132 return ret;
133 image->kernel_buf_len = size;
134
135 /* Call arch image probe handlers */
136 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137 image->kernel_buf_len);
138 if (ret)
139 goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143 image->kernel_buf_len);
144 if (ret) {
145 pr_debug("kernel signature verification failed.\n");
146 goto out;
147 }
148 pr_debug("kernel signature verification successful.\n");
149#endif
150 /* It is possible that there no initramfs is being loaded */
151 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153 &size, INT_MAX,
154 READING_KEXEC_INITRAMFS);
155 if (ret)
156 goto out;
157 image->initrd_buf_len = size;
158 }
159
160 if (cmdline_len) {
161 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162 if (!image->cmdline_buf) {
163 ret = -ENOMEM;
164 goto out;
165 }
166
167 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168 cmdline_len);
169 if (ret) {
170 ret = -EFAULT;
171 goto out;
172 }
173
174 image->cmdline_buf_len = cmdline_len;
175
176 /* command line should be a string with last byte null */
177 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178 ret = -EINVAL;
179 goto out;
180 }
181 }
182
183 /* Call arch image load handlers */
184 ldata = arch_kexec_kernel_image_load(image);
185
186 if (IS_ERR(ldata)) {
187 ret = PTR_ERR(ldata);
188 goto out;
189 }
190
191 image->image_loader_data = ldata;
192out:
193 /* In case of error, free up all allocated memory in this function */
194 if (ret)
195 kimage_file_post_load_cleanup(image);
196 return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201 int initrd_fd, const char __user *cmdline_ptr,
202 unsigned long cmdline_len, unsigned long flags)
203{
204 int ret;
205 struct kimage *image;
206 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208 image = do_kimage_alloc_init();
209 if (!image)
210 return -ENOMEM;
211
212 image->file_mode = 1;
213
214 if (kexec_on_panic) {
215 /* Enable special crash kernel control page alloc policy. */
216 image->control_page = crashk_res.start;
217 image->type = KEXEC_TYPE_CRASH;
218 }
219
220 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221 cmdline_ptr, cmdline_len, flags);
222 if (ret)
223 goto out_free_image;
224
225 ret = sanity_check_segment_list(image);
226 if (ret)
227 goto out_free_post_load_bufs;
228
229 ret = -ENOMEM;
230 image->control_code_page = kimage_alloc_control_pages(image,
231 get_order(KEXEC_CONTROL_PAGE_SIZE));
232 if (!image->control_code_page) {
233 pr_err("Could not allocate control_code_buffer\n");
234 goto out_free_post_load_bufs;
235 }
236
237 if (!kexec_on_panic) {
238 image->swap_page = kimage_alloc_control_pages(image, 0);
239 if (!image->swap_page) {
240 pr_err("Could not allocate swap buffer\n");
241 goto out_free_control_pages;
242 }
243 }
244
245 *rimage = image;
246 return 0;
247out_free_control_pages:
248 kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250 kimage_file_post_load_cleanup(image);
251out_free_image:
252 kfree(image);
253 return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258 unsigned long, flags)
259{
260 int ret = 0, i;
261 struct kimage **dest_image, *image;
262
263 /* We only trust the superuser with rebooting the system. */
264 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265 return -EPERM;
266
267 /* Make sure we have a legal set of flags */
268 if (flags != (flags & KEXEC_FILE_FLAGS))
269 return -EINVAL;
270
271 image = NULL;
272
273 if (!mutex_trylock(&kexec_mutex))
274 return -EBUSY;
275
276 dest_image = &kexec_image;
277 if (flags & KEXEC_FILE_ON_CRASH)
278 dest_image = &kexec_crash_image;
279
280 if (flags & KEXEC_FILE_UNLOAD)
281 goto exchange;
282
283 /*
284 * In case of crash, new kernel gets loaded in reserved region. It is
285 * same memory where old crash kernel might be loaded. Free any
286 * current crash dump kernel before we corrupt it.
287 */
288 if (flags & KEXEC_FILE_ON_CRASH)
289 kimage_free(xchg(&kexec_crash_image, NULL));
290
291 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292 cmdline_len, flags);
293 if (ret)
294 goto out;
295
296 ret = machine_kexec_prepare(image);
297 if (ret)
298 goto out;
299
300 ret = kexec_calculate_store_digests(image);
301 if (ret)
302 goto out;
303
304 for (i = 0; i < image->nr_segments; i++) {
305 struct kexec_segment *ksegment;
306
307 ksegment = &image->segment[i];
308 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
309 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
310 ksegment->memsz);
311
312 ret = kimage_load_segment(image, &image->segment[i]);
313 if (ret)
314 goto out;
315 }
316
317 kimage_terminate(image);
318
319 /*
320 * Free up any temporary buffers allocated which are not needed
321 * after image has been loaded
322 */
323 kimage_file_post_load_cleanup(image);
324exchange:
325 image = xchg(dest_image, image);
326out:
327 mutex_unlock(&kexec_mutex);
328 kimage_free(image);
329 return ret;
330}
331
332static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
333 struct kexec_buf *kbuf)
334{
335 struct kimage *image = kbuf->image;
336 unsigned long temp_start, temp_end;
337
338 temp_end = min(end, kbuf->buf_max);
339 temp_start = temp_end - kbuf->memsz;
340
341 do {
342 /* align down start */
343 temp_start = temp_start & (~(kbuf->buf_align - 1));
344
345 if (temp_start < start || temp_start < kbuf->buf_min)
346 return 0;
347
348 temp_end = temp_start + kbuf->memsz - 1;
349
350 /*
351 * Make sure this does not conflict with any of existing
352 * segments
353 */
354 if (kimage_is_destination_range(image, temp_start, temp_end)) {
355 temp_start = temp_start - PAGE_SIZE;
356 continue;
357 }
358
359 /* We found a suitable memory range */
360 break;
361 } while (1);
362
363 /* If we are here, we found a suitable memory range */
364 kbuf->mem = temp_start;
365
366 /* Success, stop navigating through remaining System RAM ranges */
367 return 1;
368}
369
370static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
371 struct kexec_buf *kbuf)
372{
373 struct kimage *image = kbuf->image;
374 unsigned long temp_start, temp_end;
375
376 temp_start = max(start, kbuf->buf_min);
377
378 do {
379 temp_start = ALIGN(temp_start, kbuf->buf_align);
380 temp_end = temp_start + kbuf->memsz - 1;
381
382 if (temp_end > end || temp_end > kbuf->buf_max)
383 return 0;
384 /*
385 * Make sure this does not conflict with any of existing
386 * segments
387 */
388 if (kimage_is_destination_range(image, temp_start, temp_end)) {
389 temp_start = temp_start + PAGE_SIZE;
390 continue;
391 }
392
393 /* We found a suitable memory range */
394 break;
395 } while (1);
396
397 /* If we are here, we found a suitable memory range */
398 kbuf->mem = temp_start;
399
400 /* Success, stop navigating through remaining System RAM ranges */
401 return 1;
402}
403
404static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
405{
406 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
407 unsigned long sz = end - start + 1;
408
409 /* Returning 0 will take to next memory range */
410 if (sz < kbuf->memsz)
411 return 0;
412
413 if (end < kbuf->buf_min || start > kbuf->buf_max)
414 return 0;
415
416 /*
417 * Allocate memory top down with-in ram range. Otherwise bottom up
418 * allocation.
419 */
420 if (kbuf->top_down)
421 return locate_mem_hole_top_down(start, end, kbuf);
422 return locate_mem_hole_bottom_up(start, end, kbuf);
423}
424
425/*
426 * Helper function for placing a buffer in a kexec segment. This assumes
427 * that kexec_mutex is held.
428 */
429int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
430 unsigned long memsz, unsigned long buf_align,
431 unsigned long buf_min, unsigned long buf_max,
432 bool top_down, unsigned long *load_addr)
433{
434
435 struct kexec_segment *ksegment;
436 struct kexec_buf buf, *kbuf;
437 int ret;
438
439 /* Currently adding segment this way is allowed only in file mode */
440 if (!image->file_mode)
441 return -EINVAL;
442
443 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
444 return -EINVAL;
445
446 /*
447 * Make sure we are not trying to add buffer after allocating
448 * control pages. All segments need to be placed first before
449 * any control pages are allocated. As control page allocation
450 * logic goes through list of segments to make sure there are
451 * no destination overlaps.
452 */
453 if (!list_empty(&image->control_pages)) {
454 WARN_ON(1);
455 return -EINVAL;
456 }
457
458 memset(&buf, 0, sizeof(struct kexec_buf));
459 kbuf = &buf;
460 kbuf->image = image;
461 kbuf->buffer = buffer;
462 kbuf->bufsz = bufsz;
463
464 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
465 kbuf->buf_align = max(buf_align, PAGE_SIZE);
466 kbuf->buf_min = buf_min;
467 kbuf->buf_max = buf_max;
468 kbuf->top_down = top_down;
469
470 /* Walk the RAM ranges and allocate a suitable range for the buffer */
471 if (image->type == KEXEC_TYPE_CRASH)
472 ret = walk_iomem_res_desc(crashk_res.desc,
473 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
474 crashk_res.start, crashk_res.end, kbuf,
475 locate_mem_hole_callback);
476 else
477 ret = walk_system_ram_res(0, -1, kbuf,
478 locate_mem_hole_callback);
479 if (ret != 1) {
480 /* A suitable memory range could not be found for buffer */
481 return -EADDRNOTAVAIL;
482 }
483
484 /* Found a suitable memory range */
485 ksegment = &image->segment[image->nr_segments];
486 ksegment->kbuf = kbuf->buffer;
487 ksegment->bufsz = kbuf->bufsz;
488 ksegment->mem = kbuf->mem;
489 ksegment->memsz = kbuf->memsz;
490 image->nr_segments++;
491 *load_addr = ksegment->mem;
492 return 0;
493}
494
495/* Calculate and store the digest of segments */
496static int kexec_calculate_store_digests(struct kimage *image)
497{
498 struct crypto_shash *tfm;
499 struct shash_desc *desc;
500 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
501 size_t desc_size, nullsz;
502 char *digest;
503 void *zero_buf;
504 struct kexec_sha_region *sha_regions;
505 struct purgatory_info *pi = &image->purgatory_info;
506
507 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
508 zero_buf_sz = PAGE_SIZE;
509
510 tfm = crypto_alloc_shash("sha256", 0, 0);
511 if (IS_ERR(tfm)) {
512 ret = PTR_ERR(tfm);
513 goto out;
514 }
515
516 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
517 desc = kzalloc(desc_size, GFP_KERNEL);
518 if (!desc) {
519 ret = -ENOMEM;
520 goto out_free_tfm;
521 }
522
523 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
524 sha_regions = vzalloc(sha_region_sz);
525 if (!sha_regions)
526 goto out_free_desc;
527
528 desc->tfm = tfm;
529 desc->flags = 0;
530
531 ret = crypto_shash_init(desc);
532 if (ret < 0)
533 goto out_free_sha_regions;
534
535 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
536 if (!digest) {
537 ret = -ENOMEM;
538 goto out_free_sha_regions;
539 }
540
541 for (j = i = 0; i < image->nr_segments; i++) {
542 struct kexec_segment *ksegment;
543
544 ksegment = &image->segment[i];
545 /*
546 * Skip purgatory as it will be modified once we put digest
547 * info in purgatory.
548 */
549 if (ksegment->kbuf == pi->purgatory_buf)
550 continue;
551
552 ret = crypto_shash_update(desc, ksegment->kbuf,
553 ksegment->bufsz);
554 if (ret)
555 break;
556
557 /*
558 * Assume rest of the buffer is filled with zero and
559 * update digest accordingly.
560 */
561 nullsz = ksegment->memsz - ksegment->bufsz;
562 while (nullsz) {
563 unsigned long bytes = nullsz;
564
565 if (bytes > zero_buf_sz)
566 bytes = zero_buf_sz;
567 ret = crypto_shash_update(desc, zero_buf, bytes);
568 if (ret)
569 break;
570 nullsz -= bytes;
571 }
572
573 if (ret)
574 break;
575
576 sha_regions[j].start = ksegment->mem;
577 sha_regions[j].len = ksegment->memsz;
578 j++;
579 }
580
581 if (!ret) {
582 ret = crypto_shash_final(desc, digest);
583 if (ret)
584 goto out_free_digest;
585 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
586 sha_regions, sha_region_sz, 0);
587 if (ret)
588 goto out_free_digest;
589
590 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
591 digest, SHA256_DIGEST_SIZE, 0);
592 if (ret)
593 goto out_free_digest;
594 }
595
596out_free_digest:
597 kfree(digest);
598out_free_sha_regions:
599 vfree(sha_regions);
600out_free_desc:
601 kfree(desc);
602out_free_tfm:
603 kfree(tfm);
604out:
605 return ret;
606}
607
608/* Actually load purgatory. Lot of code taken from kexec-tools */
609static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
610 unsigned long max, int top_down)
611{
612 struct purgatory_info *pi = &image->purgatory_info;
613 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
614 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
615 unsigned char *buf_addr, *src;
616 int i, ret = 0, entry_sidx = -1;
617 const Elf_Shdr *sechdrs_c;
618 Elf_Shdr *sechdrs = NULL;
619 void *purgatory_buf = NULL;
620
621 /*
622 * sechdrs_c points to section headers in purgatory and are read
623 * only. No modifications allowed.
624 */
625 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
626
627 /*
628 * We can not modify sechdrs_c[] and its fields. It is read only.
629 * Copy it over to a local copy where one can store some temporary
630 * data and free it at the end. We need to modify ->sh_addr and
631 * ->sh_offset fields to keep track of permanent and temporary
632 * locations of sections.
633 */
634 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
635 if (!sechdrs)
636 return -ENOMEM;
637
638 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
639
640 /*
641 * We seem to have multiple copies of sections. First copy is which
642 * is embedded in kernel in read only section. Some of these sections
643 * will be copied to a temporary buffer and relocated. And these
644 * sections will finally be copied to their final destination at
645 * segment load time.
646 *
647 * Use ->sh_offset to reflect section address in memory. It will
648 * point to original read only copy if section is not allocatable.
649 * Otherwise it will point to temporary copy which will be relocated.
650 *
651 * Use ->sh_addr to contain final address of the section where it
652 * will go during execution time.
653 */
654 for (i = 0; i < pi->ehdr->e_shnum; i++) {
655 if (sechdrs[i].sh_type == SHT_NOBITS)
656 continue;
657
658 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
659 sechdrs[i].sh_offset;
660 }
661
662 /*
663 * Identify entry point section and make entry relative to section
664 * start.
665 */
666 entry = pi->ehdr->e_entry;
667 for (i = 0; i < pi->ehdr->e_shnum; i++) {
668 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
669 continue;
670
671 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
672 continue;
673
674 /* Make entry section relative */
675 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
676 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
677 pi->ehdr->e_entry)) {
678 entry_sidx = i;
679 entry -= sechdrs[i].sh_addr;
680 break;
681 }
682 }
683
684 /* Determine how much memory is needed to load relocatable object. */
685 buf_align = 1;
686 bss_align = 1;
687 buf_sz = 0;
688 bss_sz = 0;
689
690 for (i = 0; i < pi->ehdr->e_shnum; i++) {
691 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
692 continue;
693
694 align = sechdrs[i].sh_addralign;
695 if (sechdrs[i].sh_type != SHT_NOBITS) {
696 if (buf_align < align)
697 buf_align = align;
698 buf_sz = ALIGN(buf_sz, align);
699 buf_sz += sechdrs[i].sh_size;
700 } else {
701 /* bss section */
702 if (bss_align < align)
703 bss_align = align;
704 bss_sz = ALIGN(bss_sz, align);
705 bss_sz += sechdrs[i].sh_size;
706 }
707 }
708
709 /* Determine the bss padding required to align bss properly */
710 bss_pad = 0;
711 if (buf_sz & (bss_align - 1))
712 bss_pad = bss_align - (buf_sz & (bss_align - 1));
713
714 memsz = buf_sz + bss_pad + bss_sz;
715
716 /* Allocate buffer for purgatory */
717 purgatory_buf = vzalloc(buf_sz);
718 if (!purgatory_buf) {
719 ret = -ENOMEM;
720 goto out;
721 }
722
723 if (buf_align < bss_align)
724 buf_align = bss_align;
725
726 /* Add buffer to segment list */
727 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
728 buf_align, min, max, top_down,
729 &pi->purgatory_load_addr);
730 if (ret)
731 goto out;
732
733 /* Load SHF_ALLOC sections */
734 buf_addr = purgatory_buf;
735 load_addr = curr_load_addr = pi->purgatory_load_addr;
736 bss_addr = load_addr + buf_sz + bss_pad;
737
738 for (i = 0; i < pi->ehdr->e_shnum; i++) {
739 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
740 continue;
741
742 align = sechdrs[i].sh_addralign;
743 if (sechdrs[i].sh_type != SHT_NOBITS) {
744 curr_load_addr = ALIGN(curr_load_addr, align);
745 offset = curr_load_addr - load_addr;
746 /* We already modifed ->sh_offset to keep src addr */
747 src = (char *) sechdrs[i].sh_offset;
748 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
749
750 /* Store load address and source address of section */
751 sechdrs[i].sh_addr = curr_load_addr;
752
753 /*
754 * This section got copied to temporary buffer. Update
755 * ->sh_offset accordingly.
756 */
757 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
758
759 /* Advance to the next address */
760 curr_load_addr += sechdrs[i].sh_size;
761 } else {
762 bss_addr = ALIGN(bss_addr, align);
763 sechdrs[i].sh_addr = bss_addr;
764 bss_addr += sechdrs[i].sh_size;
765 }
766 }
767
768 /* Update entry point based on load address of text section */
769 if (entry_sidx >= 0)
770 entry += sechdrs[entry_sidx].sh_addr;
771
772 /* Make kernel jump to purgatory after shutdown */
773 image->start = entry;
774
775 /* Used later to get/set symbol values */
776 pi->sechdrs = sechdrs;
777
778 /*
779 * Used later to identify which section is purgatory and skip it
780 * from checksumming.
781 */
782 pi->purgatory_buf = purgatory_buf;
783 return ret;
784out:
785 vfree(sechdrs);
786 vfree(purgatory_buf);
787 return ret;
788}
789
790static int kexec_apply_relocations(struct kimage *image)
791{
792 int i, ret;
793 struct purgatory_info *pi = &image->purgatory_info;
794 Elf_Shdr *sechdrs = pi->sechdrs;
795
796 /* Apply relocations */
797 for (i = 0; i < pi->ehdr->e_shnum; i++) {
798 Elf_Shdr *section, *symtab;
799
800 if (sechdrs[i].sh_type != SHT_RELA &&
801 sechdrs[i].sh_type != SHT_REL)
802 continue;
803
804 /*
805 * For section of type SHT_RELA/SHT_REL,
806 * ->sh_link contains section header index of associated
807 * symbol table. And ->sh_info contains section header
808 * index of section to which relocations apply.
809 */
810 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
811 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
812 return -ENOEXEC;
813
814 section = &sechdrs[sechdrs[i].sh_info];
815 symtab = &sechdrs[sechdrs[i].sh_link];
816
817 if (!(section->sh_flags & SHF_ALLOC))
818 continue;
819
820 /*
821 * symtab->sh_link contain section header index of associated
822 * string table.
823 */
824 if (symtab->sh_link >= pi->ehdr->e_shnum)
825 /* Invalid section number? */
826 continue;
827
828 /*
829 * Respective architecture needs to provide support for applying
830 * relocations of type SHT_RELA/SHT_REL.
831 */
832 if (sechdrs[i].sh_type == SHT_RELA)
833 ret = arch_kexec_apply_relocations_add(pi->ehdr,
834 sechdrs, i);
835 else if (sechdrs[i].sh_type == SHT_REL)
836 ret = arch_kexec_apply_relocations(pi->ehdr,
837 sechdrs, i);
838 if (ret)
839 return ret;
840 }
841
842 return 0;
843}
844
845/* Load relocatable purgatory object and relocate it appropriately */
846int kexec_load_purgatory(struct kimage *image, unsigned long min,
847 unsigned long max, int top_down,
848 unsigned long *load_addr)
849{
850 struct purgatory_info *pi = &image->purgatory_info;
851 int ret;
852
853 if (kexec_purgatory_size <= 0)
854 return -EINVAL;
855
856 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
857 return -ENOEXEC;
858
859 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
860
861 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
862 || pi->ehdr->e_type != ET_REL
863 || !elf_check_arch(pi->ehdr)
864 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
865 return -ENOEXEC;
866
867 if (pi->ehdr->e_shoff >= kexec_purgatory_size
868 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
869 kexec_purgatory_size - pi->ehdr->e_shoff))
870 return -ENOEXEC;
871
872 ret = __kexec_load_purgatory(image, min, max, top_down);
873 if (ret)
874 return ret;
875
876 ret = kexec_apply_relocations(image);
877 if (ret)
878 goto out;
879
880 *load_addr = pi->purgatory_load_addr;
881 return 0;
882out:
883 vfree(pi->sechdrs);
884 vfree(pi->purgatory_buf);
885 return ret;
886}
887
888static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
889 const char *name)
890{
891 Elf_Sym *syms;
892 Elf_Shdr *sechdrs;
893 Elf_Ehdr *ehdr;
894 int i, k;
895 const char *strtab;
896
897 if (!pi->sechdrs || !pi->ehdr)
898 return NULL;
899
900 sechdrs = pi->sechdrs;
901 ehdr = pi->ehdr;
902
903 for (i = 0; i < ehdr->e_shnum; i++) {
904 if (sechdrs[i].sh_type != SHT_SYMTAB)
905 continue;
906
907 if (sechdrs[i].sh_link >= ehdr->e_shnum)
908 /* Invalid strtab section number */
909 continue;
910 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
911 syms = (Elf_Sym *)sechdrs[i].sh_offset;
912
913 /* Go through symbols for a match */
914 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
915 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
916 continue;
917
918 if (strcmp(strtab + syms[k].st_name, name) != 0)
919 continue;
920
921 if (syms[k].st_shndx == SHN_UNDEF ||
922 syms[k].st_shndx >= ehdr->e_shnum) {
923 pr_debug("Symbol: %s has bad section index %d.\n",
924 name, syms[k].st_shndx);
925 return NULL;
926 }
927
928 /* Found the symbol we are looking for */
929 return &syms[k];
930 }
931 }
932
933 return NULL;
934}
935
936void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
937{
938 struct purgatory_info *pi = &image->purgatory_info;
939 Elf_Sym *sym;
940 Elf_Shdr *sechdr;
941
942 sym = kexec_purgatory_find_symbol(pi, name);
943 if (!sym)
944 return ERR_PTR(-EINVAL);
945
946 sechdr = &pi->sechdrs[sym->st_shndx];
947
948 /*
949 * Returns the address where symbol will finally be loaded after
950 * kexec_load_segment()
951 */
952 return (void *)(sechdr->sh_addr + sym->st_value);
953}
954
955/*
956 * Get or set value of a symbol. If "get_value" is true, symbol value is
957 * returned in buf otherwise symbol value is set based on value in buf.
958 */
959int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
960 void *buf, unsigned int size, bool get_value)
961{
962 Elf_Sym *sym;
963 Elf_Shdr *sechdrs;
964 struct purgatory_info *pi = &image->purgatory_info;
965 char *sym_buf;
966
967 sym = kexec_purgatory_find_symbol(pi, name);
968 if (!sym)
969 return -EINVAL;
970
971 if (sym->st_size != size) {
972 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
973 name, (unsigned long)sym->st_size, size);
974 return -EINVAL;
975 }
976
977 sechdrs = pi->sechdrs;
978
979 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
980 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
981 get_value ? "get" : "set");
982 return -EINVAL;
983 }
984
985 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
986 sym->st_value;
987
988 if (get_value)
989 memcpy((void *)buf, sym_buf, size);
990 else
991 memcpy((void *)sym_buf, buf, size);
992
993 return 0;
994}