Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/syscalls.h>
  28#include <linux/vmalloc.h>
  29#include "kexec_internal.h"
  30
  31static int kexec_calculate_store_digests(struct kimage *image);
  32
  33/*
  34 * Currently this is the only default function that is exported as some
  35 * architectures need it to do additional handlings.
  36 * In the future, other default functions may be exported too if required.
  37 */
  38int kexec_image_probe_default(struct kimage *image, void *buf,
  39			      unsigned long buf_len)
  40{
  41	const struct kexec_file_ops * const *fops;
  42	int ret = -ENOEXEC;
  43
  44	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  45		ret = (*fops)->probe(buf, buf_len);
  46		if (!ret) {
  47			image->fops = *fops;
  48			return ret;
  49		}
  50	}
  51
  52	return ret;
  53}
  54
  55/* Architectures can provide this probe function */
  56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  57					 unsigned long buf_len)
  58{
  59	return kexec_image_probe_default(image, buf, buf_len);
  60}
  61
  62static void *kexec_image_load_default(struct kimage *image)
  63{
  64	if (!image->fops || !image->fops->load)
  65		return ERR_PTR(-ENOEXEC);
  66
  67	return image->fops->load(image, image->kernel_buf,
  68				 image->kernel_buf_len, image->initrd_buf,
  69				 image->initrd_buf_len, image->cmdline_buf,
  70				 image->cmdline_buf_len);
  71}
  72
  73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  74{
  75	return kexec_image_load_default(image);
  76}
  77
  78int kexec_image_post_load_cleanup_default(struct kimage *image)
  79{
  80	if (!image->fops || !image->fops->cleanup)
  81		return 0;
  82
  83	return image->fops->cleanup(image->image_loader_data);
  84}
  85
  86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	return kexec_image_post_load_cleanup_default(image);
  89}
  90
  91#ifdef CONFIG_KEXEC_SIG
  92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  93					  unsigned long buf_len)
  94{
  95	if (!image->fops || !image->fops->verify_sig) {
  96		pr_debug("kernel loader does not support signature verification.\n");
  97		return -EKEYREJECTED;
  98	}
  99
 100	return image->fops->verify_sig(buf, buf_len);
 101}
 102
 
 103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 104					unsigned long buf_len)
 105{
 106	return kexec_image_verify_sig_default(image, buf, buf_len);
 107}
 108#endif
 109
 110/*
 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 112 * @pi:		Purgatory to be relocated.
 113 * @section:	Section relocations applying to.
 114 * @relsec:	Section containing RELAs.
 115 * @symtab:	Corresponding symtab.
 116 *
 117 * Return: 0 on success, negative errno on error.
 118 */
 119int __weak
 120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 121				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 122{
 123	pr_err("RELA relocation unsupported.\n");
 124	return -ENOEXEC;
 125}
 126
 127/*
 128 * arch_kexec_apply_relocations - apply relocations of type REL
 129 * @pi:		Purgatory to be relocated.
 130 * @section:	Section relocations applying to.
 131 * @relsec:	Section containing RELs.
 132 * @symtab:	Corresponding symtab.
 133 *
 134 * Return: 0 on success, negative errno on error.
 135 */
 136int __weak
 137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 138			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 139{
 140	pr_err("REL relocation unsupported.\n");
 141	return -ENOEXEC;
 142}
 143
 144/*
 145 * Free up memory used by kernel, initrd, and command line. This is temporary
 146 * memory allocation which is not needed any more after these buffers have
 147 * been loaded into separate segments and have been copied elsewhere.
 148 */
 149void kimage_file_post_load_cleanup(struct kimage *image)
 150{
 151	struct purgatory_info *pi = &image->purgatory_info;
 152
 153	vfree(image->kernel_buf);
 154	image->kernel_buf = NULL;
 155
 156	vfree(image->initrd_buf);
 157	image->initrd_buf = NULL;
 158
 159	kfree(image->cmdline_buf);
 160	image->cmdline_buf = NULL;
 161
 162	vfree(pi->purgatory_buf);
 163	pi->purgatory_buf = NULL;
 164
 165	vfree(pi->sechdrs);
 166	pi->sechdrs = NULL;
 167
 168	/* See if architecture has anything to cleanup post load */
 169	arch_kimage_file_post_load_cleanup(image);
 170
 171	/*
 172	 * Above call should have called into bootloader to free up
 173	 * any data stored in kimage->image_loader_data. It should
 174	 * be ok now to free it up.
 175	 */
 176	kfree(image->image_loader_data);
 177	image->image_loader_data = NULL;
 178}
 179
 180#ifdef CONFIG_KEXEC_SIG
 181static int
 182kimage_validate_signature(struct kimage *image)
 183{
 184	const char *reason;
 185	int ret;
 186
 187	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 188					   image->kernel_buf_len);
 189	switch (ret) {
 190	case 0:
 191		break;
 192
 193		/* Certain verification errors are non-fatal if we're not
 194		 * checking errors, provided we aren't mandating that there
 195		 * must be a valid signature.
 196		 */
 197	case -ENODATA:
 198		reason = "kexec of unsigned image";
 199		goto decide;
 200	case -ENOPKG:
 201		reason = "kexec of image with unsupported crypto";
 202		goto decide;
 203	case -ENOKEY:
 204		reason = "kexec of image with unavailable key";
 205	decide:
 206		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 207			pr_notice("%s rejected\n", reason);
 208			return ret;
 209		}
 210
 211		/* If IMA is guaranteed to appraise a signature on the kexec
 212		 * image, permit it even if the kernel is otherwise locked
 213		 * down.
 214		 */
 215		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 216		    security_locked_down(LOCKDOWN_KEXEC))
 217			return -EPERM;
 218
 219		return 0;
 220
 221		/* All other errors are fatal, including nomem, unparseable
 222		 * signatures and signature check failures - even if signatures
 223		 * aren't required.
 224		 */
 225	default:
 226		pr_notice("kernel signature verification failed (%d).\n", ret);
 227	}
 228
 229	return ret;
 230}
 231#endif
 232
 233/*
 234 * In file mode list of segments is prepared by kernel. Copy relevant
 235 * data from user space, do error checking, prepare segment list
 236 */
 237static int
 238kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 239			     const char __user *cmdline_ptr,
 240			     unsigned long cmdline_len, unsigned flags)
 241{
 242	int ret;
 243	void *ldata;
 244	loff_t size;
 245
 246	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 247				       &size, INT_MAX, READING_KEXEC_IMAGE);
 248	if (ret)
 249		return ret;
 250	image->kernel_buf_len = size;
 251
 
 
 
 252	/* Call arch image probe handlers */
 253	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 254					    image->kernel_buf_len);
 255	if (ret)
 256		goto out;
 257
 258#ifdef CONFIG_KEXEC_SIG
 259	ret = kimage_validate_signature(image);
 260
 261	if (ret)
 
 262		goto out;
 
 
 263#endif
 264	/* It is possible that there no initramfs is being loaded */
 265	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 266		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 267					       &size, INT_MAX,
 268					       READING_KEXEC_INITRAMFS);
 269		if (ret)
 270			goto out;
 271		image->initrd_buf_len = size;
 272	}
 273
 274	if (cmdline_len) {
 275		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 276		if (IS_ERR(image->cmdline_buf)) {
 277			ret = PTR_ERR(image->cmdline_buf);
 278			image->cmdline_buf = NULL;
 
 
 
 
 
 
 279			goto out;
 280		}
 281
 282		image->cmdline_buf_len = cmdline_len;
 283
 284		/* command line should be a string with last byte null */
 285		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 286			ret = -EINVAL;
 287			goto out;
 288		}
 289
 290		ima_kexec_cmdline(image->cmdline_buf,
 291				  image->cmdline_buf_len - 1);
 292	}
 293
 294	/* IMA needs to pass the measurement list to the next kernel. */
 295	ima_add_kexec_buffer(image);
 296
 297	/* Call arch image load handlers */
 298	ldata = arch_kexec_kernel_image_load(image);
 299
 300	if (IS_ERR(ldata)) {
 301		ret = PTR_ERR(ldata);
 302		goto out;
 303	}
 304
 305	image->image_loader_data = ldata;
 306out:
 307	/* In case of error, free up all allocated memory in this function */
 308	if (ret)
 309		kimage_file_post_load_cleanup(image);
 310	return ret;
 311}
 312
 313static int
 314kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 315		       int initrd_fd, const char __user *cmdline_ptr,
 316		       unsigned long cmdline_len, unsigned long flags)
 317{
 318	int ret;
 319	struct kimage *image;
 320	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 321
 322	image = do_kimage_alloc_init();
 323	if (!image)
 324		return -ENOMEM;
 325
 326	image->file_mode = 1;
 327
 328	if (kexec_on_panic) {
 329		/* Enable special crash kernel control page alloc policy. */
 330		image->control_page = crashk_res.start;
 331		image->type = KEXEC_TYPE_CRASH;
 332	}
 333
 334	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 335					   cmdline_ptr, cmdline_len, flags);
 336	if (ret)
 337		goto out_free_image;
 338
 339	ret = sanity_check_segment_list(image);
 340	if (ret)
 341		goto out_free_post_load_bufs;
 342
 343	ret = -ENOMEM;
 344	image->control_code_page = kimage_alloc_control_pages(image,
 345					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 346	if (!image->control_code_page) {
 347		pr_err("Could not allocate control_code_buffer\n");
 348		goto out_free_post_load_bufs;
 349	}
 350
 351	if (!kexec_on_panic) {
 352		image->swap_page = kimage_alloc_control_pages(image, 0);
 353		if (!image->swap_page) {
 354			pr_err("Could not allocate swap buffer\n");
 355			goto out_free_control_pages;
 356		}
 357	}
 358
 359	*rimage = image;
 360	return 0;
 361out_free_control_pages:
 362	kimage_free_page_list(&image->control_pages);
 363out_free_post_load_bufs:
 364	kimage_file_post_load_cleanup(image);
 365out_free_image:
 366	kfree(image);
 367	return ret;
 368}
 369
 370SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 371		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 372		unsigned long, flags)
 373{
 374	int ret = 0, i;
 375	struct kimage **dest_image, *image;
 376
 377	/* We only trust the superuser with rebooting the system. */
 378	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 379		return -EPERM;
 380
 381	/* Make sure we have a legal set of flags */
 382	if (flags != (flags & KEXEC_FILE_FLAGS))
 383		return -EINVAL;
 384
 385	image = NULL;
 386
 387	if (!mutex_trylock(&kexec_mutex))
 388		return -EBUSY;
 389
 390	dest_image = &kexec_image;
 391	if (flags & KEXEC_FILE_ON_CRASH) {
 392		dest_image = &kexec_crash_image;
 393		if (kexec_crash_image)
 394			arch_kexec_unprotect_crashkres();
 395	}
 396
 397	if (flags & KEXEC_FILE_UNLOAD)
 398		goto exchange;
 399
 400	/*
 401	 * In case of crash, new kernel gets loaded in reserved region. It is
 402	 * same memory where old crash kernel might be loaded. Free any
 403	 * current crash dump kernel before we corrupt it.
 404	 */
 405	if (flags & KEXEC_FILE_ON_CRASH)
 406		kimage_free(xchg(&kexec_crash_image, NULL));
 407
 408	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 409				     cmdline_len, flags);
 410	if (ret)
 411		goto out;
 412
 413	ret = machine_kexec_prepare(image);
 414	if (ret)
 415		goto out;
 416
 417	/*
 418	 * Some architecture(like S390) may touch the crash memory before
 419	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 420	 */
 421	ret = kimage_crash_copy_vmcoreinfo(image);
 422	if (ret)
 423		goto out;
 424
 425	ret = kexec_calculate_store_digests(image);
 426	if (ret)
 427		goto out;
 428
 429	for (i = 0; i < image->nr_segments; i++) {
 430		struct kexec_segment *ksegment;
 431
 432		ksegment = &image->segment[i];
 433		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 434			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 435			 ksegment->memsz);
 436
 437		ret = kimage_load_segment(image, &image->segment[i]);
 438		if (ret)
 439			goto out;
 440	}
 441
 442	kimage_terminate(image);
 443
 444	/*
 445	 * Free up any temporary buffers allocated which are not needed
 446	 * after image has been loaded
 447	 */
 448	kimage_file_post_load_cleanup(image);
 449exchange:
 450	image = xchg(dest_image, image);
 451out:
 452	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 453		arch_kexec_protect_crashkres();
 454
 455	mutex_unlock(&kexec_mutex);
 456	kimage_free(image);
 457	return ret;
 458}
 459
 460static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 461				    struct kexec_buf *kbuf)
 462{
 463	struct kimage *image = kbuf->image;
 464	unsigned long temp_start, temp_end;
 465
 466	temp_end = min(end, kbuf->buf_max);
 467	temp_start = temp_end - kbuf->memsz;
 468
 469	do {
 470		/* align down start */
 471		temp_start = temp_start & (~(kbuf->buf_align - 1));
 472
 473		if (temp_start < start || temp_start < kbuf->buf_min)
 474			return 0;
 475
 476		temp_end = temp_start + kbuf->memsz - 1;
 477
 478		/*
 479		 * Make sure this does not conflict with any of existing
 480		 * segments
 481		 */
 482		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 483			temp_start = temp_start - PAGE_SIZE;
 484			continue;
 485		}
 486
 487		/* We found a suitable memory range */
 488		break;
 489	} while (1);
 490
 491	/* If we are here, we found a suitable memory range */
 492	kbuf->mem = temp_start;
 493
 494	/* Success, stop navigating through remaining System RAM ranges */
 495	return 1;
 496}
 497
 498static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 499				     struct kexec_buf *kbuf)
 500{
 501	struct kimage *image = kbuf->image;
 502	unsigned long temp_start, temp_end;
 503
 504	temp_start = max(start, kbuf->buf_min);
 505
 506	do {
 507		temp_start = ALIGN(temp_start, kbuf->buf_align);
 508		temp_end = temp_start + kbuf->memsz - 1;
 509
 510		if (temp_end > end || temp_end > kbuf->buf_max)
 511			return 0;
 512		/*
 513		 * Make sure this does not conflict with any of existing
 514		 * segments
 515		 */
 516		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 517			temp_start = temp_start + PAGE_SIZE;
 518			continue;
 519		}
 520
 521		/* We found a suitable memory range */
 522		break;
 523	} while (1);
 524
 525	/* If we are here, we found a suitable memory range */
 526	kbuf->mem = temp_start;
 527
 528	/* Success, stop navigating through remaining System RAM ranges */
 529	return 1;
 530}
 531
 532static int locate_mem_hole_callback(struct resource *res, void *arg)
 533{
 534	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 535	u64 start = res->start, end = res->end;
 536	unsigned long sz = end - start + 1;
 537
 538	/* Returning 0 will take to next memory range */
 539	if (sz < kbuf->memsz)
 540		return 0;
 541
 542	if (end < kbuf->buf_min || start > kbuf->buf_max)
 543		return 0;
 544
 545	/*
 546	 * Allocate memory top down with-in ram range. Otherwise bottom up
 547	 * allocation.
 548	 */
 549	if (kbuf->top_down)
 550		return locate_mem_hole_top_down(start, end, kbuf);
 551	return locate_mem_hole_bottom_up(start, end, kbuf);
 552}
 553
 554#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 555static int kexec_walk_memblock(struct kexec_buf *kbuf,
 556			       int (*func)(struct resource *, void *))
 557{
 558	int ret = 0;
 559	u64 i;
 560	phys_addr_t mstart, mend;
 561	struct resource res = { };
 562
 563	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 564		return func(&crashk_res, kbuf);
 565
 566	if (kbuf->top_down) {
 567		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 568						&mstart, &mend, NULL) {
 569			/*
 570			 * In memblock, end points to the first byte after the
 571			 * range while in kexec, end points to the last byte
 572			 * in the range.
 573			 */
 574			res.start = mstart;
 575			res.end = mend - 1;
 576			ret = func(&res, kbuf);
 577			if (ret)
 578				break;
 579		}
 580	} else {
 581		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 582					&mstart, &mend, NULL) {
 583			/*
 584			 * In memblock, end points to the first byte after the
 585			 * range while in kexec, end points to the last byte
 586			 * in the range.
 587			 */
 588			res.start = mstart;
 589			res.end = mend - 1;
 590			ret = func(&res, kbuf);
 591			if (ret)
 592				break;
 593		}
 594	}
 595
 596	return ret;
 597}
 598#else
 599static int kexec_walk_memblock(struct kexec_buf *kbuf,
 600			       int (*func)(struct resource *, void *))
 601{
 602	return 0;
 603}
 604#endif
 605
 606/**
 607 * kexec_walk_resources - call func(data) on free memory regions
 608 * @kbuf:	Context info for the search. Also passed to @func.
 609 * @func:	Function to call for each memory region.
 610 *
 611 * Return: The memory walk will stop when func returns a non-zero value
 612 * and that value will be returned. If all free regions are visited without
 613 * func returning non-zero, then zero will be returned.
 614 */
 615static int kexec_walk_resources(struct kexec_buf *kbuf,
 616				int (*func)(struct resource *, void *))
 617{
 618	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 619		return walk_iomem_res_desc(crashk_res.desc,
 620					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 621					   crashk_res.start, crashk_res.end,
 622					   kbuf, func);
 623	else
 624		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 625}
 626
 627/**
 628 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 629 * @kbuf:	Parameters for the memory search.
 630 *
 631 * On success, kbuf->mem will have the start address of the memory region found.
 632 *
 633 * Return: 0 on success, negative errno on error.
 634 */
 635int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 636{
 637	int ret;
 638
 639	/* Arch knows where to place */
 640	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 641		return 0;
 642
 643	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 644		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 645	else
 646		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 647
 648	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 649}
 650
 651/**
 652 * kexec_add_buffer - place a buffer in a kexec segment
 653 * @kbuf:	Buffer contents and memory parameters.
 654 *
 655 * This function assumes that kexec_mutex is held.
 656 * On successful return, @kbuf->mem will have the physical address of
 657 * the buffer in memory.
 658 *
 659 * Return: 0 on success, negative errno on error.
 660 */
 661int kexec_add_buffer(struct kexec_buf *kbuf)
 662{
 663
 664	struct kexec_segment *ksegment;
 665	int ret;
 666
 667	/* Currently adding segment this way is allowed only in file mode */
 668	if (!kbuf->image->file_mode)
 669		return -EINVAL;
 670
 671	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 672		return -EINVAL;
 673
 674	/*
 675	 * Make sure we are not trying to add buffer after allocating
 676	 * control pages. All segments need to be placed first before
 677	 * any control pages are allocated. As control page allocation
 678	 * logic goes through list of segments to make sure there are
 679	 * no destination overlaps.
 680	 */
 681	if (!list_empty(&kbuf->image->control_pages)) {
 682		WARN_ON(1);
 683		return -EINVAL;
 684	}
 685
 686	/* Ensure minimum alignment needed for segments. */
 687	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 688	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 689
 690	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 691	ret = kexec_locate_mem_hole(kbuf);
 692	if (ret)
 693		return ret;
 694
 695	/* Found a suitable memory range */
 696	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 697	ksegment->kbuf = kbuf->buffer;
 698	ksegment->bufsz = kbuf->bufsz;
 699	ksegment->mem = kbuf->mem;
 700	ksegment->memsz = kbuf->memsz;
 701	kbuf->image->nr_segments++;
 702	return 0;
 703}
 704
 705/* Calculate and store the digest of segments */
 706static int kexec_calculate_store_digests(struct kimage *image)
 707{
 708	struct crypto_shash *tfm;
 709	struct shash_desc *desc;
 710	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 711	size_t desc_size, nullsz;
 712	char *digest;
 713	void *zero_buf;
 714	struct kexec_sha_region *sha_regions;
 715	struct purgatory_info *pi = &image->purgatory_info;
 716
 717	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 718		return 0;
 719
 720	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 721	zero_buf_sz = PAGE_SIZE;
 722
 723	tfm = crypto_alloc_shash("sha256", 0, 0);
 724	if (IS_ERR(tfm)) {
 725		ret = PTR_ERR(tfm);
 726		goto out;
 727	}
 728
 729	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 730	desc = kzalloc(desc_size, GFP_KERNEL);
 731	if (!desc) {
 732		ret = -ENOMEM;
 733		goto out_free_tfm;
 734	}
 735
 736	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 737	sha_regions = vzalloc(sha_region_sz);
 738	if (!sha_regions)
 739		goto out_free_desc;
 740
 741	desc->tfm   = tfm;
 
 742
 743	ret = crypto_shash_init(desc);
 744	if (ret < 0)
 745		goto out_free_sha_regions;
 746
 747	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 748	if (!digest) {
 749		ret = -ENOMEM;
 750		goto out_free_sha_regions;
 751	}
 752
 753	for (j = i = 0; i < image->nr_segments; i++) {
 754		struct kexec_segment *ksegment;
 755
 756		ksegment = &image->segment[i];
 757		/*
 758		 * Skip purgatory as it will be modified once we put digest
 759		 * info in purgatory.
 760		 */
 761		if (ksegment->kbuf == pi->purgatory_buf)
 762			continue;
 763
 764		ret = crypto_shash_update(desc, ksegment->kbuf,
 765					  ksegment->bufsz);
 766		if (ret)
 767			break;
 768
 769		/*
 770		 * Assume rest of the buffer is filled with zero and
 771		 * update digest accordingly.
 772		 */
 773		nullsz = ksegment->memsz - ksegment->bufsz;
 774		while (nullsz) {
 775			unsigned long bytes = nullsz;
 776
 777			if (bytes > zero_buf_sz)
 778				bytes = zero_buf_sz;
 779			ret = crypto_shash_update(desc, zero_buf, bytes);
 780			if (ret)
 781				break;
 782			nullsz -= bytes;
 783		}
 784
 785		if (ret)
 786			break;
 787
 788		sha_regions[j].start = ksegment->mem;
 789		sha_regions[j].len = ksegment->memsz;
 790		j++;
 791	}
 792
 793	if (!ret) {
 794		ret = crypto_shash_final(desc, digest);
 795		if (ret)
 796			goto out_free_digest;
 797		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 798						     sha_regions, sha_region_sz, 0);
 799		if (ret)
 800			goto out_free_digest;
 801
 802		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 803						     digest, SHA256_DIGEST_SIZE, 0);
 804		if (ret)
 805			goto out_free_digest;
 806	}
 807
 808out_free_digest:
 809	kfree(digest);
 810out_free_sha_regions:
 811	vfree(sha_regions);
 812out_free_desc:
 813	kfree(desc);
 814out_free_tfm:
 815	kfree(tfm);
 816out:
 817	return ret;
 818}
 819
 820#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 821/*
 822 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 823 * @pi:		Purgatory to be loaded.
 824 * @kbuf:	Buffer to setup.
 825 *
 826 * Allocates the memory needed for the buffer. Caller is responsible to free
 827 * the memory after use.
 828 *
 829 * Return: 0 on success, negative errno on error.
 830 */
 831static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 832				      struct kexec_buf *kbuf)
 833{
 834	const Elf_Shdr *sechdrs;
 835	unsigned long bss_align;
 836	unsigned long bss_sz;
 837	unsigned long align;
 838	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 841	kbuf->buf_align = bss_align = 1;
 842	kbuf->bufsz = bss_sz = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843
 844	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 845		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 846			continue;
 847
 848		align = sechdrs[i].sh_addralign;
 849		if (sechdrs[i].sh_type != SHT_NOBITS) {
 850			if (kbuf->buf_align < align)
 851				kbuf->buf_align = align;
 852			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 853			kbuf->bufsz += sechdrs[i].sh_size;
 854		} else {
 
 855			if (bss_align < align)
 856				bss_align = align;
 857			bss_sz = ALIGN(bss_sz, align);
 858			bss_sz += sechdrs[i].sh_size;
 859		}
 860	}
 861	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 862	kbuf->memsz = kbuf->bufsz + bss_sz;
 863	if (kbuf->buf_align < bss_align)
 864		kbuf->buf_align = bss_align;
 865
 866	kbuf->buffer = vzalloc(kbuf->bufsz);
 867	if (!kbuf->buffer)
 868		return -ENOMEM;
 869	pi->purgatory_buf = kbuf->buffer;
 870
 871	ret = kexec_add_buffer(kbuf);
 872	if (ret)
 
 
 
 
 
 
 
 
 
 873		goto out;
 
 874
 875	return 0;
 876out:
 877	vfree(pi->purgatory_buf);
 878	pi->purgatory_buf = NULL;
 879	return ret;
 880}
 881
 882/*
 883 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 884 * @pi:		Purgatory to be loaded.
 885 * @kbuf:	Buffer prepared to store purgatory.
 886 *
 887 * Allocates the memory needed for the buffer. Caller is responsible to free
 888 * the memory after use.
 889 *
 890 * Return: 0 on success, negative errno on error.
 891 */
 892static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 893					 struct kexec_buf *kbuf)
 894{
 895	unsigned long bss_addr;
 896	unsigned long offset;
 897	Elf_Shdr *sechdrs;
 898	int i;
 899
 900	/*
 901	 * The section headers in kexec_purgatory are read-only. In order to
 902	 * have them modifiable make a temporary copy.
 903	 */
 904	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 905	if (!sechdrs)
 906		return -ENOMEM;
 907	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 908	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 909	pi->sechdrs = sechdrs;
 910
 911	offset = 0;
 912	bss_addr = kbuf->mem + kbuf->bufsz;
 913	kbuf->image->start = pi->ehdr->e_entry;
 
 914
 915	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 916		unsigned long align;
 917		void *src, *dst;
 918
 919		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 920			continue;
 921
 922		align = sechdrs[i].sh_addralign;
 923		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924			bss_addr = ALIGN(bss_addr, align);
 925			sechdrs[i].sh_addr = bss_addr;
 926			bss_addr += sechdrs[i].sh_size;
 927			continue;
 928		}
 
 929
 930		offset = ALIGN(offset, align);
 931		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 932		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 933		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 934					 + sechdrs[i].sh_size)) {
 935			kbuf->image->start -= sechdrs[i].sh_addr;
 936			kbuf->image->start += kbuf->mem + offset;
 937		}
 938
 939		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 940		dst = pi->purgatory_buf + offset;
 941		memcpy(dst, src, sechdrs[i].sh_size);
 942
 943		sechdrs[i].sh_addr = kbuf->mem + offset;
 944		sechdrs[i].sh_offset = offset;
 945		offset += sechdrs[i].sh_size;
 946	}
 947
 948	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 949}
 950
 951static int kexec_apply_relocations(struct kimage *image)
 952{
 953	int i, ret;
 954	struct purgatory_info *pi = &image->purgatory_info;
 955	const Elf_Shdr *sechdrs;
 956
 957	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 958
 
 959	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 960		const Elf_Shdr *relsec;
 961		const Elf_Shdr *symtab;
 962		Elf_Shdr *section;
 963
 964		relsec = sechdrs + i;
 965
 966		if (relsec->sh_type != SHT_RELA &&
 967		    relsec->sh_type != SHT_REL)
 968			continue;
 969
 970		/*
 971		 * For section of type SHT_RELA/SHT_REL,
 972		 * ->sh_link contains section header index of associated
 973		 * symbol table. And ->sh_info contains section header
 974		 * index of section to which relocations apply.
 975		 */
 976		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 977		    relsec->sh_link >= pi->ehdr->e_shnum)
 978			return -ENOEXEC;
 979
 980		section = pi->sechdrs + relsec->sh_info;
 981		symtab = sechdrs + relsec->sh_link;
 982
 983		if (!(section->sh_flags & SHF_ALLOC))
 984			continue;
 985
 986		/*
 987		 * symtab->sh_link contain section header index of associated
 988		 * string table.
 989		 */
 990		if (symtab->sh_link >= pi->ehdr->e_shnum)
 991			/* Invalid section number? */
 992			continue;
 993
 994		/*
 995		 * Respective architecture needs to provide support for applying
 996		 * relocations of type SHT_RELA/SHT_REL.
 997		 */
 998		if (relsec->sh_type == SHT_RELA)
 999			ret = arch_kexec_apply_relocations_add(pi, section,
1000							       relsec, symtab);
1001		else if (relsec->sh_type == SHT_REL)
1002			ret = arch_kexec_apply_relocations(pi, section,
1003							   relsec, symtab);
1004		if (ret)
1005			return ret;
1006	}
1007
1008	return 0;
1009}
1010
1011/*
1012 * kexec_load_purgatory - Load and relocate the purgatory object.
1013 * @image:	Image to add the purgatory to.
1014 * @kbuf:	Memory parameters to use.
1015 *
1016 * Allocates the memory needed for image->purgatory_info.sechdrs and
1017 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1018 * to free the memory after use.
1019 *
1020 * Return: 0 on success, negative errno on error.
1021 */
1022int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1023{
1024	struct purgatory_info *pi = &image->purgatory_info;
1025	int ret;
1026
1027	if (kexec_purgatory_size <= 0)
1028		return -EINVAL;
1029
1030	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
1031
1032	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1033	if (ret)
1034		return ret;
 
 
 
 
 
 
 
 
 
1035
1036	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1037	if (ret)
1038		goto out_free_kbuf;
1039
1040	ret = kexec_apply_relocations(image);
1041	if (ret)
1042		goto out;
1043
 
1044	return 0;
1045out:
1046	vfree(pi->sechdrs);
1047	pi->sechdrs = NULL;
1048out_free_kbuf:
1049	vfree(pi->purgatory_buf);
1050	pi->purgatory_buf = NULL;
1051	return ret;
1052}
1053
1054/*
1055 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1056 * @pi:		Purgatory to search in.
1057 * @name:	Name of the symbol.
1058 *
1059 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1060 */
1061static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1062						  const char *name)
1063{
1064	const Elf_Shdr *sechdrs;
1065	const Elf_Ehdr *ehdr;
1066	const Elf_Sym *syms;
1067	const char *strtab;
1068	int i, k;
 
1069
1070	if (!pi->ehdr)
1071		return NULL;
1072
 
1073	ehdr = pi->ehdr;
1074	sechdrs = (void *)ehdr + ehdr->e_shoff;
1075
1076	for (i = 0; i < ehdr->e_shnum; i++) {
1077		if (sechdrs[i].sh_type != SHT_SYMTAB)
1078			continue;
1079
1080		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1081			/* Invalid strtab section number */
1082			continue;
1083		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1084		syms = (void *)ehdr + sechdrs[i].sh_offset;
1085
1086		/* Go through symbols for a match */
1087		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1088			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1089				continue;
1090
1091			if (strcmp(strtab + syms[k].st_name, name) != 0)
1092				continue;
1093
1094			if (syms[k].st_shndx == SHN_UNDEF ||
1095			    syms[k].st_shndx >= ehdr->e_shnum) {
1096				pr_debug("Symbol: %s has bad section index %d.\n",
1097						name, syms[k].st_shndx);
1098				return NULL;
1099			}
1100
1101			/* Found the symbol we are looking for */
1102			return &syms[k];
1103		}
1104	}
1105
1106	return NULL;
1107}
1108
1109void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1110{
1111	struct purgatory_info *pi = &image->purgatory_info;
1112	const Elf_Sym *sym;
1113	Elf_Shdr *sechdr;
1114
1115	sym = kexec_purgatory_find_symbol(pi, name);
1116	if (!sym)
1117		return ERR_PTR(-EINVAL);
1118
1119	sechdr = &pi->sechdrs[sym->st_shndx];
1120
1121	/*
1122	 * Returns the address where symbol will finally be loaded after
1123	 * kexec_load_segment()
1124	 */
1125	return (void *)(sechdr->sh_addr + sym->st_value);
1126}
1127
1128/*
1129 * Get or set value of a symbol. If "get_value" is true, symbol value is
1130 * returned in buf otherwise symbol value is set based on value in buf.
1131 */
1132int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1133				   void *buf, unsigned int size, bool get_value)
1134{
 
 
1135	struct purgatory_info *pi = &image->purgatory_info;
1136	const Elf_Sym *sym;
1137	Elf_Shdr *sec;
1138	char *sym_buf;
1139
1140	sym = kexec_purgatory_find_symbol(pi, name);
1141	if (!sym)
1142		return -EINVAL;
1143
1144	if (sym->st_size != size) {
1145		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1146		       name, (unsigned long)sym->st_size, size);
1147		return -EINVAL;
1148	}
1149
1150	sec = pi->sechdrs + sym->st_shndx;
1151
1152	if (sec->sh_type == SHT_NOBITS) {
1153		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1154		       get_value ? "get" : "set");
1155		return -EINVAL;
1156	}
1157
1158	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1159
1160	if (get_value)
1161		memcpy((void *)buf, sym_buf, size);
1162	else
1163		memcpy((void *)sym_buf, buf, size);
1164
1165	return 0;
1166}
1167#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1168
1169int crash_exclude_mem_range(struct crash_mem *mem,
1170			    unsigned long long mstart, unsigned long long mend)
1171{
1172	int i, j;
1173	unsigned long long start, end;
1174	struct crash_mem_range temp_range = {0, 0};
1175
1176	for (i = 0; i < mem->nr_ranges; i++) {
1177		start = mem->ranges[i].start;
1178		end = mem->ranges[i].end;
1179
1180		if (mstart > end || mend < start)
1181			continue;
1182
1183		/* Truncate any area outside of range */
1184		if (mstart < start)
1185			mstart = start;
1186		if (mend > end)
1187			mend = end;
1188
1189		/* Found completely overlapping range */
1190		if (mstart == start && mend == end) {
1191			mem->ranges[i].start = 0;
1192			mem->ranges[i].end = 0;
1193			if (i < mem->nr_ranges - 1) {
1194				/* Shift rest of the ranges to left */
1195				for (j = i; j < mem->nr_ranges - 1; j++) {
1196					mem->ranges[j].start =
1197						mem->ranges[j+1].start;
1198					mem->ranges[j].end =
1199							mem->ranges[j+1].end;
1200				}
1201			}
1202			mem->nr_ranges--;
1203			return 0;
1204		}
1205
1206		if (mstart > start && mend < end) {
1207			/* Split original range */
1208			mem->ranges[i].end = mstart - 1;
1209			temp_range.start = mend + 1;
1210			temp_range.end = end;
1211		} else if (mstart != start)
1212			mem->ranges[i].end = mstart - 1;
1213		else
1214			mem->ranges[i].start = mend + 1;
1215		break;
1216	}
1217
1218	/* If a split happened, add the split to array */
1219	if (!temp_range.end)
1220		return 0;
1221
1222	/* Split happened */
1223	if (i == mem->max_nr_ranges - 1)
1224		return -ENOMEM;
1225
1226	/* Location where new range should go */
1227	j = i + 1;
1228	if (j < mem->nr_ranges) {
1229		/* Move over all ranges one slot towards the end */
1230		for (i = mem->nr_ranges - 1; i >= j; i--)
1231			mem->ranges[i + 1] = mem->ranges[i];
1232	}
1233
1234	mem->ranges[j].start = temp_range.start;
1235	mem->ranges[j].end = temp_range.end;
1236	mem->nr_ranges++;
1237	return 0;
1238}
1239
1240int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1241			  void **addr, unsigned long *sz)
1242{
1243	Elf64_Ehdr *ehdr;
1244	Elf64_Phdr *phdr;
1245	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1246	unsigned char *buf;
1247	unsigned int cpu, i;
1248	unsigned long long notes_addr;
1249	unsigned long mstart, mend;
1250
1251	/* extra phdr for vmcoreinfo elf note */
1252	nr_phdr = nr_cpus + 1;
1253	nr_phdr += mem->nr_ranges;
1254
1255	/*
1256	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1257	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1258	 * I think this is required by tools like gdb. So same physical
1259	 * memory will be mapped in two elf headers. One will contain kernel
1260	 * text virtual addresses and other will have __va(physical) addresses.
1261	 */
1262
1263	nr_phdr++;
1264	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1265	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1266
1267	buf = vzalloc(elf_sz);
1268	if (!buf)
1269		return -ENOMEM;
1270
1271	ehdr = (Elf64_Ehdr *)buf;
1272	phdr = (Elf64_Phdr *)(ehdr + 1);
1273	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1274	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1275	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1276	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1277	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1278	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1279	ehdr->e_type = ET_CORE;
1280	ehdr->e_machine = ELF_ARCH;
1281	ehdr->e_version = EV_CURRENT;
1282	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1283	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1284	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1285
1286	/* Prepare one phdr of type PT_NOTE for each present cpu */
1287	for_each_present_cpu(cpu) {
1288		phdr->p_type = PT_NOTE;
1289		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1290		phdr->p_offset = phdr->p_paddr = notes_addr;
1291		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1292		(ehdr->e_phnum)++;
1293		phdr++;
1294	}
1295
1296	/* Prepare one PT_NOTE header for vmcoreinfo */
1297	phdr->p_type = PT_NOTE;
1298	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1299	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1300	(ehdr->e_phnum)++;
1301	phdr++;
1302
1303	/* Prepare PT_LOAD type program header for kernel text region */
1304	if (kernel_map) {
1305		phdr->p_type = PT_LOAD;
1306		phdr->p_flags = PF_R|PF_W|PF_X;
1307		phdr->p_vaddr = (Elf64_Addr)_text;
1308		phdr->p_filesz = phdr->p_memsz = _end - _text;
1309		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1310		ehdr->e_phnum++;
1311		phdr++;
1312	}
1313
1314	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1315	for (i = 0; i < mem->nr_ranges; i++) {
1316		mstart = mem->ranges[i].start;
1317		mend = mem->ranges[i].end;
1318
1319		phdr->p_type = PT_LOAD;
1320		phdr->p_flags = PF_R|PF_W|PF_X;
1321		phdr->p_offset  = mstart;
1322
1323		phdr->p_paddr = mstart;
1324		phdr->p_vaddr = (unsigned long long) __va(mstart);
1325		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1326		phdr->p_align = 0;
1327		ehdr->e_phnum++;
1328		phdr++;
1329		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1330			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1331			ehdr->e_phnum, phdr->p_offset);
1332	}
1333
1334	*addr = buf;
1335	*sz = elf_sz;
1336	return 0;
1337}
v4.10.11
 
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
 
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
 
 
 
  25#include <linux/syscalls.h>
  26#include <linux/vmalloc.h>
  27#include "kexec_internal.h"
  28
 
 
  29/*
  30 * Declare these symbols weak so that if architecture provides a purgatory,
  31 * these will be overridden.
 
  32 */
  33char __weak kexec_purgatory[0];
  34size_t __weak kexec_purgatory_size = 0;
 
 
 
 
 
 
 
 
 
 
 
  35
  36static int kexec_calculate_store_digests(struct kimage *image);
 
  37
  38/* Architectures can provide this probe function */
  39int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  40					 unsigned long buf_len)
  41{
  42	return -ENOEXEC;
 
 
 
 
 
 
 
 
 
 
 
  43}
  44
  45void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  46{
  47	return ERR_PTR(-ENOEXEC);
 
 
 
 
 
 
 
 
  48}
  49
  50int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  51{
  52	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
  53}
  54
  55#ifdef CONFIG_KEXEC_VERIFY_SIG
  56int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
  57					unsigned long buf_len)
  58{
  59	return -EKEYREJECTED;
  60}
  61#endif
  62
  63/* Apply relocations of type RELA */
 
 
 
 
 
 
 
 
  64int __weak
  65arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  66				 unsigned int relsec)
  67{
  68	pr_err("RELA relocation unsupported.\n");
  69	return -ENOEXEC;
  70}
  71
  72/* Apply relocations of type REL */
 
 
 
 
 
 
 
 
  73int __weak
  74arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  75			     unsigned int relsec)
  76{
  77	pr_err("REL relocation unsupported.\n");
  78	return -ENOEXEC;
  79}
  80
  81/*
  82 * Free up memory used by kernel, initrd, and command line. This is temporary
  83 * memory allocation which is not needed any more after these buffers have
  84 * been loaded into separate segments and have been copied elsewhere.
  85 */
  86void kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	struct purgatory_info *pi = &image->purgatory_info;
  89
  90	vfree(image->kernel_buf);
  91	image->kernel_buf = NULL;
  92
  93	vfree(image->initrd_buf);
  94	image->initrd_buf = NULL;
  95
  96	kfree(image->cmdline_buf);
  97	image->cmdline_buf = NULL;
  98
  99	vfree(pi->purgatory_buf);
 100	pi->purgatory_buf = NULL;
 101
 102	vfree(pi->sechdrs);
 103	pi->sechdrs = NULL;
 104
 105	/* See if architecture has anything to cleanup post load */
 106	arch_kimage_file_post_load_cleanup(image);
 107
 108	/*
 109	 * Above call should have called into bootloader to free up
 110	 * any data stored in kimage->image_loader_data. It should
 111	 * be ok now to free it up.
 112	 */
 113	kfree(image->image_loader_data);
 114	image->image_loader_data = NULL;
 115}
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117/*
 118 * In file mode list of segments is prepared by kernel. Copy relevant
 119 * data from user space, do error checking, prepare segment list
 120 */
 121static int
 122kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 123			     const char __user *cmdline_ptr,
 124			     unsigned long cmdline_len, unsigned flags)
 125{
 126	int ret = 0;
 127	void *ldata;
 128	loff_t size;
 129
 130	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 131				       &size, INT_MAX, READING_KEXEC_IMAGE);
 132	if (ret)
 133		return ret;
 134	image->kernel_buf_len = size;
 135
 136	/* IMA needs to pass the measurement list to the next kernel. */
 137	ima_add_kexec_buffer(image);
 138
 139	/* Call arch image probe handlers */
 140	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 141					    image->kernel_buf_len);
 142	if (ret)
 143		goto out;
 144
 145#ifdef CONFIG_KEXEC_VERIFY_SIG
 146	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 147					   image->kernel_buf_len);
 148	if (ret) {
 149		pr_debug("kernel signature verification failed.\n");
 150		goto out;
 151	}
 152	pr_debug("kernel signature verification successful.\n");
 153#endif
 154	/* It is possible that there no initramfs is being loaded */
 155	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 156		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 157					       &size, INT_MAX,
 158					       READING_KEXEC_INITRAMFS);
 159		if (ret)
 160			goto out;
 161		image->initrd_buf_len = size;
 162	}
 163
 164	if (cmdline_len) {
 165		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 166		if (!image->cmdline_buf) {
 167			ret = -ENOMEM;
 168			goto out;
 169		}
 170
 171		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 172				     cmdline_len);
 173		if (ret) {
 174			ret = -EFAULT;
 175			goto out;
 176		}
 177
 178		image->cmdline_buf_len = cmdline_len;
 179
 180		/* command line should be a string with last byte null */
 181		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 182			ret = -EINVAL;
 183			goto out;
 184		}
 
 
 
 185	}
 186
 
 
 
 187	/* Call arch image load handlers */
 188	ldata = arch_kexec_kernel_image_load(image);
 189
 190	if (IS_ERR(ldata)) {
 191		ret = PTR_ERR(ldata);
 192		goto out;
 193	}
 194
 195	image->image_loader_data = ldata;
 196out:
 197	/* In case of error, free up all allocated memory in this function */
 198	if (ret)
 199		kimage_file_post_load_cleanup(image);
 200	return ret;
 201}
 202
 203static int
 204kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 205		       int initrd_fd, const char __user *cmdline_ptr,
 206		       unsigned long cmdline_len, unsigned long flags)
 207{
 208	int ret;
 209	struct kimage *image;
 210	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 211
 212	image = do_kimage_alloc_init();
 213	if (!image)
 214		return -ENOMEM;
 215
 216	image->file_mode = 1;
 217
 218	if (kexec_on_panic) {
 219		/* Enable special crash kernel control page alloc policy. */
 220		image->control_page = crashk_res.start;
 221		image->type = KEXEC_TYPE_CRASH;
 222	}
 223
 224	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 225					   cmdline_ptr, cmdline_len, flags);
 226	if (ret)
 227		goto out_free_image;
 228
 229	ret = sanity_check_segment_list(image);
 230	if (ret)
 231		goto out_free_post_load_bufs;
 232
 233	ret = -ENOMEM;
 234	image->control_code_page = kimage_alloc_control_pages(image,
 235					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 236	if (!image->control_code_page) {
 237		pr_err("Could not allocate control_code_buffer\n");
 238		goto out_free_post_load_bufs;
 239	}
 240
 241	if (!kexec_on_panic) {
 242		image->swap_page = kimage_alloc_control_pages(image, 0);
 243		if (!image->swap_page) {
 244			pr_err("Could not allocate swap buffer\n");
 245			goto out_free_control_pages;
 246		}
 247	}
 248
 249	*rimage = image;
 250	return 0;
 251out_free_control_pages:
 252	kimage_free_page_list(&image->control_pages);
 253out_free_post_load_bufs:
 254	kimage_file_post_load_cleanup(image);
 255out_free_image:
 256	kfree(image);
 257	return ret;
 258}
 259
 260SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 261		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 262		unsigned long, flags)
 263{
 264	int ret = 0, i;
 265	struct kimage **dest_image, *image;
 266
 267	/* We only trust the superuser with rebooting the system. */
 268	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 269		return -EPERM;
 270
 271	/* Make sure we have a legal set of flags */
 272	if (flags != (flags & KEXEC_FILE_FLAGS))
 273		return -EINVAL;
 274
 275	image = NULL;
 276
 277	if (!mutex_trylock(&kexec_mutex))
 278		return -EBUSY;
 279
 280	dest_image = &kexec_image;
 281	if (flags & KEXEC_FILE_ON_CRASH) {
 282		dest_image = &kexec_crash_image;
 283		if (kexec_crash_image)
 284			arch_kexec_unprotect_crashkres();
 285	}
 286
 287	if (flags & KEXEC_FILE_UNLOAD)
 288		goto exchange;
 289
 290	/*
 291	 * In case of crash, new kernel gets loaded in reserved region. It is
 292	 * same memory where old crash kernel might be loaded. Free any
 293	 * current crash dump kernel before we corrupt it.
 294	 */
 295	if (flags & KEXEC_FILE_ON_CRASH)
 296		kimage_free(xchg(&kexec_crash_image, NULL));
 297
 298	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 299				     cmdline_len, flags);
 300	if (ret)
 301		goto out;
 302
 303	ret = machine_kexec_prepare(image);
 304	if (ret)
 305		goto out;
 306
 
 
 
 
 
 
 
 
 307	ret = kexec_calculate_store_digests(image);
 308	if (ret)
 309		goto out;
 310
 311	for (i = 0; i < image->nr_segments; i++) {
 312		struct kexec_segment *ksegment;
 313
 314		ksegment = &image->segment[i];
 315		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 316			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 317			 ksegment->memsz);
 318
 319		ret = kimage_load_segment(image, &image->segment[i]);
 320		if (ret)
 321			goto out;
 322	}
 323
 324	kimage_terminate(image);
 325
 326	/*
 327	 * Free up any temporary buffers allocated which are not needed
 328	 * after image has been loaded
 329	 */
 330	kimage_file_post_load_cleanup(image);
 331exchange:
 332	image = xchg(dest_image, image);
 333out:
 334	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 335		arch_kexec_protect_crashkres();
 336
 337	mutex_unlock(&kexec_mutex);
 338	kimage_free(image);
 339	return ret;
 340}
 341
 342static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 343				    struct kexec_buf *kbuf)
 344{
 345	struct kimage *image = kbuf->image;
 346	unsigned long temp_start, temp_end;
 347
 348	temp_end = min(end, kbuf->buf_max);
 349	temp_start = temp_end - kbuf->memsz;
 350
 351	do {
 352		/* align down start */
 353		temp_start = temp_start & (~(kbuf->buf_align - 1));
 354
 355		if (temp_start < start || temp_start < kbuf->buf_min)
 356			return 0;
 357
 358		temp_end = temp_start + kbuf->memsz - 1;
 359
 360		/*
 361		 * Make sure this does not conflict with any of existing
 362		 * segments
 363		 */
 364		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 365			temp_start = temp_start - PAGE_SIZE;
 366			continue;
 367		}
 368
 369		/* We found a suitable memory range */
 370		break;
 371	} while (1);
 372
 373	/* If we are here, we found a suitable memory range */
 374	kbuf->mem = temp_start;
 375
 376	/* Success, stop navigating through remaining System RAM ranges */
 377	return 1;
 378}
 379
 380static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 381				     struct kexec_buf *kbuf)
 382{
 383	struct kimage *image = kbuf->image;
 384	unsigned long temp_start, temp_end;
 385
 386	temp_start = max(start, kbuf->buf_min);
 387
 388	do {
 389		temp_start = ALIGN(temp_start, kbuf->buf_align);
 390		temp_end = temp_start + kbuf->memsz - 1;
 391
 392		if (temp_end > end || temp_end > kbuf->buf_max)
 393			return 0;
 394		/*
 395		 * Make sure this does not conflict with any of existing
 396		 * segments
 397		 */
 398		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 399			temp_start = temp_start + PAGE_SIZE;
 400			continue;
 401		}
 402
 403		/* We found a suitable memory range */
 404		break;
 405	} while (1);
 406
 407	/* If we are here, we found a suitable memory range */
 408	kbuf->mem = temp_start;
 409
 410	/* Success, stop navigating through remaining System RAM ranges */
 411	return 1;
 412}
 413
 414static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 415{
 416	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
 417	unsigned long sz = end - start + 1;
 418
 419	/* Returning 0 will take to next memory range */
 420	if (sz < kbuf->memsz)
 421		return 0;
 422
 423	if (end < kbuf->buf_min || start > kbuf->buf_max)
 424		return 0;
 425
 426	/*
 427	 * Allocate memory top down with-in ram range. Otherwise bottom up
 428	 * allocation.
 429	 */
 430	if (kbuf->top_down)
 431		return locate_mem_hole_top_down(start, end, kbuf);
 432	return locate_mem_hole_bottom_up(start, end, kbuf);
 433}
 434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435/**
 436 * arch_kexec_walk_mem - call func(data) on free memory regions
 437 * @kbuf:	Context info for the search. Also passed to @func.
 438 * @func:	Function to call for each memory region.
 439 *
 440 * Return: The memory walk will stop when func returns a non-zero value
 441 * and that value will be returned. If all free regions are visited without
 442 * func returning non-zero, then zero will be returned.
 443 */
 444int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 445			       int (*func)(u64, u64, void *))
 446{
 447	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 448		return walk_iomem_res_desc(crashk_res.desc,
 449					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 450					   crashk_res.start, crashk_res.end,
 451					   kbuf, func);
 452	else
 453		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 454}
 455
 456/**
 457 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 458 * @kbuf:	Parameters for the memory search.
 459 *
 460 * On success, kbuf->mem will have the start address of the memory region found.
 461 *
 462 * Return: 0 on success, negative errno on error.
 463 */
 464int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 465{
 466	int ret;
 467
 468	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 
 
 
 
 
 
 
 469
 470	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 471}
 472
 473/**
 474 * kexec_add_buffer - place a buffer in a kexec segment
 475 * @kbuf:	Buffer contents and memory parameters.
 476 *
 477 * This function assumes that kexec_mutex is held.
 478 * On successful return, @kbuf->mem will have the physical address of
 479 * the buffer in memory.
 480 *
 481 * Return: 0 on success, negative errno on error.
 482 */
 483int kexec_add_buffer(struct kexec_buf *kbuf)
 484{
 485
 486	struct kexec_segment *ksegment;
 487	int ret;
 488
 489	/* Currently adding segment this way is allowed only in file mode */
 490	if (!kbuf->image->file_mode)
 491		return -EINVAL;
 492
 493	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 494		return -EINVAL;
 495
 496	/*
 497	 * Make sure we are not trying to add buffer after allocating
 498	 * control pages. All segments need to be placed first before
 499	 * any control pages are allocated. As control page allocation
 500	 * logic goes through list of segments to make sure there are
 501	 * no destination overlaps.
 502	 */
 503	if (!list_empty(&kbuf->image->control_pages)) {
 504		WARN_ON(1);
 505		return -EINVAL;
 506	}
 507
 508	/* Ensure minimum alignment needed for segments. */
 509	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 510	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 511
 512	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 513	ret = kexec_locate_mem_hole(kbuf);
 514	if (ret)
 515		return ret;
 516
 517	/* Found a suitable memory range */
 518	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 519	ksegment->kbuf = kbuf->buffer;
 520	ksegment->bufsz = kbuf->bufsz;
 521	ksegment->mem = kbuf->mem;
 522	ksegment->memsz = kbuf->memsz;
 523	kbuf->image->nr_segments++;
 524	return 0;
 525}
 526
 527/* Calculate and store the digest of segments */
 528static int kexec_calculate_store_digests(struct kimage *image)
 529{
 530	struct crypto_shash *tfm;
 531	struct shash_desc *desc;
 532	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 533	size_t desc_size, nullsz;
 534	char *digest;
 535	void *zero_buf;
 536	struct kexec_sha_region *sha_regions;
 537	struct purgatory_info *pi = &image->purgatory_info;
 538
 
 
 
 539	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 540	zero_buf_sz = PAGE_SIZE;
 541
 542	tfm = crypto_alloc_shash("sha256", 0, 0);
 543	if (IS_ERR(tfm)) {
 544		ret = PTR_ERR(tfm);
 545		goto out;
 546	}
 547
 548	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 549	desc = kzalloc(desc_size, GFP_KERNEL);
 550	if (!desc) {
 551		ret = -ENOMEM;
 552		goto out_free_tfm;
 553	}
 554
 555	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 556	sha_regions = vzalloc(sha_region_sz);
 557	if (!sha_regions)
 558		goto out_free_desc;
 559
 560	desc->tfm   = tfm;
 561	desc->flags = 0;
 562
 563	ret = crypto_shash_init(desc);
 564	if (ret < 0)
 565		goto out_free_sha_regions;
 566
 567	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 568	if (!digest) {
 569		ret = -ENOMEM;
 570		goto out_free_sha_regions;
 571	}
 572
 573	for (j = i = 0; i < image->nr_segments; i++) {
 574		struct kexec_segment *ksegment;
 575
 576		ksegment = &image->segment[i];
 577		/*
 578		 * Skip purgatory as it will be modified once we put digest
 579		 * info in purgatory.
 580		 */
 581		if (ksegment->kbuf == pi->purgatory_buf)
 582			continue;
 583
 584		ret = crypto_shash_update(desc, ksegment->kbuf,
 585					  ksegment->bufsz);
 586		if (ret)
 587			break;
 588
 589		/*
 590		 * Assume rest of the buffer is filled with zero and
 591		 * update digest accordingly.
 592		 */
 593		nullsz = ksegment->memsz - ksegment->bufsz;
 594		while (nullsz) {
 595			unsigned long bytes = nullsz;
 596
 597			if (bytes > zero_buf_sz)
 598				bytes = zero_buf_sz;
 599			ret = crypto_shash_update(desc, zero_buf, bytes);
 600			if (ret)
 601				break;
 602			nullsz -= bytes;
 603		}
 604
 605		if (ret)
 606			break;
 607
 608		sha_regions[j].start = ksegment->mem;
 609		sha_regions[j].len = ksegment->memsz;
 610		j++;
 611	}
 612
 613	if (!ret) {
 614		ret = crypto_shash_final(desc, digest);
 615		if (ret)
 616			goto out_free_digest;
 617		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 618						sha_regions, sha_region_sz, 0);
 619		if (ret)
 620			goto out_free_digest;
 621
 622		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 623						digest, SHA256_DIGEST_SIZE, 0);
 624		if (ret)
 625			goto out_free_digest;
 626	}
 627
 628out_free_digest:
 629	kfree(digest);
 630out_free_sha_regions:
 631	vfree(sha_regions);
 632out_free_desc:
 633	kfree(desc);
 634out_free_tfm:
 635	kfree(tfm);
 636out:
 637	return ret;
 638}
 639
 640/* Actually load purgatory. Lot of code taken from kexec-tools */
 641static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 642				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
 643{
 644	struct purgatory_info *pi = &image->purgatory_info;
 645	unsigned long align, bss_align, bss_sz, bss_pad;
 646	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
 647	unsigned char *buf_addr, *src;
 648	int i, ret = 0, entry_sidx = -1;
 649	const Elf_Shdr *sechdrs_c;
 650	Elf_Shdr *sechdrs = NULL;
 651	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
 652				  .buf_min = min, .buf_max = max,
 653				  .top_down = top_down };
 654
 655	/*
 656	 * sechdrs_c points to section headers in purgatory and are read
 657	 * only. No modifications allowed.
 658	 */
 659	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 660
 661	/*
 662	 * We can not modify sechdrs_c[] and its fields. It is read only.
 663	 * Copy it over to a local copy where one can store some temporary
 664	 * data and free it at the end. We need to modify ->sh_addr and
 665	 * ->sh_offset fields to keep track of permanent and temporary
 666	 * locations of sections.
 667	 */
 668	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 669	if (!sechdrs)
 670		return -ENOMEM;
 671
 672	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 673
 674	/*
 675	 * We seem to have multiple copies of sections. First copy is which
 676	 * is embedded in kernel in read only section. Some of these sections
 677	 * will be copied to a temporary buffer and relocated. And these
 678	 * sections will finally be copied to their final destination at
 679	 * segment load time.
 680	 *
 681	 * Use ->sh_offset to reflect section address in memory. It will
 682	 * point to original read only copy if section is not allocatable.
 683	 * Otherwise it will point to temporary copy which will be relocated.
 684	 *
 685	 * Use ->sh_addr to contain final address of the section where it
 686	 * will go during execution time.
 687	 */
 688	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 689		if (sechdrs[i].sh_type == SHT_NOBITS)
 690			continue;
 691
 692		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 693						sechdrs[i].sh_offset;
 694	}
 695
 696	/*
 697	 * Identify entry point section and make entry relative to section
 698	 * start.
 699	 */
 700	entry = pi->ehdr->e_entry;
 701	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 702		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 703			continue;
 704
 705		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 706			continue;
 707
 708		/* Make entry section relative */
 709		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 710		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 711		     pi->ehdr->e_entry)) {
 712			entry_sidx = i;
 713			entry -= sechdrs[i].sh_addr;
 714			break;
 715		}
 716	}
 717
 718	/* Determine how much memory is needed to load relocatable object. */
 719	bss_align = 1;
 720	bss_sz = 0;
 721
 722	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 723		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 724			continue;
 725
 726		align = sechdrs[i].sh_addralign;
 727		if (sechdrs[i].sh_type != SHT_NOBITS) {
 728			if (kbuf.buf_align < align)
 729				kbuf.buf_align = align;
 730			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
 731			kbuf.bufsz += sechdrs[i].sh_size;
 732		} else {
 733			/* bss section */
 734			if (bss_align < align)
 735				bss_align = align;
 736			bss_sz = ALIGN(bss_sz, align);
 737			bss_sz += sechdrs[i].sh_size;
 738		}
 739	}
 
 
 
 
 
 
 
 
 
 740
 741	/* Determine the bss padding required to align bss properly */
 742	bss_pad = 0;
 743	if (kbuf.bufsz & (bss_align - 1))
 744		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
 745
 746	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
 747
 748	/* Allocate buffer for purgatory */
 749	kbuf.buffer = vzalloc(kbuf.bufsz);
 750	if (!kbuf.buffer) {
 751		ret = -ENOMEM;
 752		goto out;
 753	}
 754
 755	if (kbuf.buf_align < bss_align)
 756		kbuf.buf_align = bss_align;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758	/* Add buffer to segment list */
 759	ret = kexec_add_buffer(&kbuf);
 760	if (ret)
 761		goto out;
 762	pi->purgatory_load_addr = kbuf.mem;
 
 
 
 
 
 763
 764	/* Load SHF_ALLOC sections */
 765	buf_addr = kbuf.buffer;
 766	load_addr = curr_load_addr = pi->purgatory_load_addr;
 767	bss_addr = load_addr + kbuf.bufsz + bss_pad;
 768
 769	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
 770		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 771			continue;
 772
 773		align = sechdrs[i].sh_addralign;
 774		if (sechdrs[i].sh_type != SHT_NOBITS) {
 775			curr_load_addr = ALIGN(curr_load_addr, align);
 776			offset = curr_load_addr - load_addr;
 777			/* We already modifed ->sh_offset to keep src addr */
 778			src = (char *) sechdrs[i].sh_offset;
 779			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 780
 781			/* Store load address and source address of section */
 782			sechdrs[i].sh_addr = curr_load_addr;
 783
 784			/*
 785			 * This section got copied to temporary buffer. Update
 786			 * ->sh_offset accordingly.
 787			 */
 788			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 789
 790			/* Advance to the next address */
 791			curr_load_addr += sechdrs[i].sh_size;
 792		} else {
 793			bss_addr = ALIGN(bss_addr, align);
 794			sechdrs[i].sh_addr = bss_addr;
 795			bss_addr += sechdrs[i].sh_size;
 
 796		}
 797	}
 798
 799	/* Update entry point based on load address of text section */
 800	if (entry_sidx >= 0)
 801		entry += sechdrs[entry_sidx].sh_addr;
 
 
 
 
 
 802
 803	/* Make kernel jump to purgatory after shutdown */
 804	image->start = entry;
 
 
 
 
 
 
 805
 806	/* Used later to get/set symbol values */
 807	pi->sechdrs = sechdrs;
 808
 809	/*
 810	 * Used later to identify which section is purgatory and skip it
 811	 * from checksumming.
 812	 */
 813	pi->purgatory_buf = kbuf.buffer;
 814	return ret;
 815out:
 816	vfree(sechdrs);
 817	vfree(kbuf.buffer);
 818	return ret;
 819}
 820
 821static int kexec_apply_relocations(struct kimage *image)
 822{
 823	int i, ret;
 824	struct purgatory_info *pi = &image->purgatory_info;
 825	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
 826
 827	/* Apply relocations */
 828	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 829		Elf_Shdr *section, *symtab;
 
 
 830
 831		if (sechdrs[i].sh_type != SHT_RELA &&
 832		    sechdrs[i].sh_type != SHT_REL)
 
 
 833			continue;
 834
 835		/*
 836		 * For section of type SHT_RELA/SHT_REL,
 837		 * ->sh_link contains section header index of associated
 838		 * symbol table. And ->sh_info contains section header
 839		 * index of section to which relocations apply.
 840		 */
 841		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 842		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 843			return -ENOEXEC;
 844
 845		section = &sechdrs[sechdrs[i].sh_info];
 846		symtab = &sechdrs[sechdrs[i].sh_link];
 847
 848		if (!(section->sh_flags & SHF_ALLOC))
 849			continue;
 850
 851		/*
 852		 * symtab->sh_link contain section header index of associated
 853		 * string table.
 854		 */
 855		if (symtab->sh_link >= pi->ehdr->e_shnum)
 856			/* Invalid section number? */
 857			continue;
 858
 859		/*
 860		 * Respective architecture needs to provide support for applying
 861		 * relocations of type SHT_RELA/SHT_REL.
 862		 */
 863		if (sechdrs[i].sh_type == SHT_RELA)
 864			ret = arch_kexec_apply_relocations_add(pi->ehdr,
 865							       sechdrs, i);
 866		else if (sechdrs[i].sh_type == SHT_REL)
 867			ret = arch_kexec_apply_relocations(pi->ehdr,
 868							   sechdrs, i);
 869		if (ret)
 870			return ret;
 871	}
 872
 873	return 0;
 874}
 875
 876/* Load relocatable purgatory object and relocate it appropriately */
 877int kexec_load_purgatory(struct kimage *image, unsigned long min,
 878			 unsigned long max, int top_down,
 879			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
 880{
 881	struct purgatory_info *pi = &image->purgatory_info;
 882	int ret;
 883
 884	if (kexec_purgatory_size <= 0)
 885		return -EINVAL;
 886
 887	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 888		return -ENOEXEC;
 889
 890	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 891
 892	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 893	    || pi->ehdr->e_type != ET_REL
 894	    || !elf_check_arch(pi->ehdr)
 895	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 896		return -ENOEXEC;
 897
 898	if (pi->ehdr->e_shoff >= kexec_purgatory_size
 899	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 900	    kexec_purgatory_size - pi->ehdr->e_shoff))
 901		return -ENOEXEC;
 902
 903	ret = __kexec_load_purgatory(image, min, max, top_down);
 904	if (ret)
 905		return ret;
 906
 907	ret = kexec_apply_relocations(image);
 908	if (ret)
 909		goto out;
 910
 911	*load_addr = pi->purgatory_load_addr;
 912	return 0;
 913out:
 914	vfree(pi->sechdrs);
 915	pi->sechdrs = NULL;
 916
 917	vfree(pi->purgatory_buf);
 918	pi->purgatory_buf = NULL;
 919	return ret;
 920}
 921
 922static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 923					    const char *name)
 
 
 
 
 
 
 
 924{
 925	Elf_Sym *syms;
 926	Elf_Shdr *sechdrs;
 927	Elf_Ehdr *ehdr;
 
 928	int i, k;
 929	const char *strtab;
 930
 931	if (!pi->sechdrs || !pi->ehdr)
 932		return NULL;
 933
 934	sechdrs = pi->sechdrs;
 935	ehdr = pi->ehdr;
 
 936
 937	for (i = 0; i < ehdr->e_shnum; i++) {
 938		if (sechdrs[i].sh_type != SHT_SYMTAB)
 939			continue;
 940
 941		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 942			/* Invalid strtab section number */
 943			continue;
 944		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 945		syms = (Elf_Sym *)sechdrs[i].sh_offset;
 946
 947		/* Go through symbols for a match */
 948		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 949			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 950				continue;
 951
 952			if (strcmp(strtab + syms[k].st_name, name) != 0)
 953				continue;
 954
 955			if (syms[k].st_shndx == SHN_UNDEF ||
 956			    syms[k].st_shndx >= ehdr->e_shnum) {
 957				pr_debug("Symbol: %s has bad section index %d.\n",
 958						name, syms[k].st_shndx);
 959				return NULL;
 960			}
 961
 962			/* Found the symbol we are looking for */
 963			return &syms[k];
 964		}
 965	}
 966
 967	return NULL;
 968}
 969
 970void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 971{
 972	struct purgatory_info *pi = &image->purgatory_info;
 973	Elf_Sym *sym;
 974	Elf_Shdr *sechdr;
 975
 976	sym = kexec_purgatory_find_symbol(pi, name);
 977	if (!sym)
 978		return ERR_PTR(-EINVAL);
 979
 980	sechdr = &pi->sechdrs[sym->st_shndx];
 981
 982	/*
 983	 * Returns the address where symbol will finally be loaded after
 984	 * kexec_load_segment()
 985	 */
 986	return (void *)(sechdr->sh_addr + sym->st_value);
 987}
 988
 989/*
 990 * Get or set value of a symbol. If "get_value" is true, symbol value is
 991 * returned in buf otherwise symbol value is set based on value in buf.
 992 */
 993int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 994				   void *buf, unsigned int size, bool get_value)
 995{
 996	Elf_Sym *sym;
 997	Elf_Shdr *sechdrs;
 998	struct purgatory_info *pi = &image->purgatory_info;
 
 
 999	char *sym_buf;
1000
1001	sym = kexec_purgatory_find_symbol(pi, name);
1002	if (!sym)
1003		return -EINVAL;
1004
1005	if (sym->st_size != size) {
1006		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1007		       name, (unsigned long)sym->st_size, size);
1008		return -EINVAL;
1009	}
1010
1011	sechdrs = pi->sechdrs;
1012
1013	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1014		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1015		       get_value ? "get" : "set");
1016		return -EINVAL;
1017	}
1018
1019	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1020					sym->st_value;
1021
1022	if (get_value)
1023		memcpy((void *)buf, sym_buf, size);
1024	else
1025		memcpy((void *)sym_buf, buf, size);
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027	return 0;
1028}