Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
 
  27#include <linux/syscalls.h>
  28#include <linux/vmalloc.h>
  29#include "kexec_internal.h"
  30
 
 
 
 
 
 
 
 
 
  31static int kexec_calculate_store_digests(struct kimage *image);
  32
 
 
 
  33/*
  34 * Currently this is the only default function that is exported as some
  35 * architectures need it to do additional handlings.
  36 * In the future, other default functions may be exported too if required.
  37 */
  38int kexec_image_probe_default(struct kimage *image, void *buf,
  39			      unsigned long buf_len)
  40{
  41	const struct kexec_file_ops * const *fops;
  42	int ret = -ENOEXEC;
  43
  44	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  45		ret = (*fops)->probe(buf, buf_len);
  46		if (!ret) {
  47			image->fops = *fops;
  48			return ret;
  49		}
  50	}
  51
  52	return ret;
  53}
  54
  55/* Architectures can provide this probe function */
  56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  57					 unsigned long buf_len)
  58{
  59	return kexec_image_probe_default(image, buf, buf_len);
  60}
  61
  62static void *kexec_image_load_default(struct kimage *image)
  63{
  64	if (!image->fops || !image->fops->load)
  65		return ERR_PTR(-ENOEXEC);
  66
  67	return image->fops->load(image, image->kernel_buf,
  68				 image->kernel_buf_len, image->initrd_buf,
  69				 image->initrd_buf_len, image->cmdline_buf,
  70				 image->cmdline_buf_len);
  71}
  72
  73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  74{
  75	return kexec_image_load_default(image);
  76}
  77
  78int kexec_image_post_load_cleanup_default(struct kimage *image)
  79{
  80	if (!image->fops || !image->fops->cleanup)
  81		return 0;
  82
  83	return image->fops->cleanup(image->image_loader_data);
  84}
  85
  86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	return kexec_image_post_load_cleanup_default(image);
  89}
  90
  91#ifdef CONFIG_KEXEC_SIG
  92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  93					  unsigned long buf_len)
  94{
  95	if (!image->fops || !image->fops->verify_sig) {
  96		pr_debug("kernel loader does not support signature verification.\n");
  97		return -EKEYREJECTED;
  98	}
  99
 100	return image->fops->verify_sig(buf, buf_len);
 101}
 102
 103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 104					unsigned long buf_len)
 105{
 106	return kexec_image_verify_sig_default(image, buf, buf_len);
 107}
 108#endif
 109
 110/*
 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 112 * @pi:		Purgatory to be relocated.
 113 * @section:	Section relocations applying to.
 114 * @relsec:	Section containing RELAs.
 115 * @symtab:	Corresponding symtab.
 116 *
 117 * Return: 0 on success, negative errno on error.
 118 */
 119int __weak
 120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 121				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 122{
 123	pr_err("RELA relocation unsupported.\n");
 124	return -ENOEXEC;
 125}
 126
 127/*
 128 * arch_kexec_apply_relocations - apply relocations of type REL
 129 * @pi:		Purgatory to be relocated.
 130 * @section:	Section relocations applying to.
 131 * @relsec:	Section containing RELs.
 132 * @symtab:	Corresponding symtab.
 133 *
 134 * Return: 0 on success, negative errno on error.
 135 */
 136int __weak
 137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 138			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 139{
 140	pr_err("REL relocation unsupported.\n");
 141	return -ENOEXEC;
 142}
 143
 144/*
 145 * Free up memory used by kernel, initrd, and command line. This is temporary
 146 * memory allocation which is not needed any more after these buffers have
 147 * been loaded into separate segments and have been copied elsewhere.
 148 */
 149void kimage_file_post_load_cleanup(struct kimage *image)
 150{
 151	struct purgatory_info *pi = &image->purgatory_info;
 152
 153	vfree(image->kernel_buf);
 154	image->kernel_buf = NULL;
 155
 156	vfree(image->initrd_buf);
 157	image->initrd_buf = NULL;
 158
 159	kfree(image->cmdline_buf);
 160	image->cmdline_buf = NULL;
 161
 162	vfree(pi->purgatory_buf);
 163	pi->purgatory_buf = NULL;
 164
 165	vfree(pi->sechdrs);
 166	pi->sechdrs = NULL;
 167
 
 
 
 
 
 168	/* See if architecture has anything to cleanup post load */
 169	arch_kimage_file_post_load_cleanup(image);
 170
 171	/*
 172	 * Above call should have called into bootloader to free up
 173	 * any data stored in kimage->image_loader_data. It should
 174	 * be ok now to free it up.
 175	 */
 176	kfree(image->image_loader_data);
 177	image->image_loader_data = NULL;
 
 
 178}
 179
 180#ifdef CONFIG_KEXEC_SIG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181static int
 182kimage_validate_signature(struct kimage *image)
 183{
 184	const char *reason;
 185	int ret;
 186
 187	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 188					   image->kernel_buf_len);
 189	switch (ret) {
 190	case 0:
 191		break;
 192
 193		/* Certain verification errors are non-fatal if we're not
 194		 * checking errors, provided we aren't mandating that there
 195		 * must be a valid signature.
 196		 */
 197	case -ENODATA:
 198		reason = "kexec of unsigned image";
 199		goto decide;
 200	case -ENOPKG:
 201		reason = "kexec of image with unsupported crypto";
 202		goto decide;
 203	case -ENOKEY:
 204		reason = "kexec of image with unavailable key";
 205	decide:
 206		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 207			pr_notice("%s rejected\n", reason);
 208			return ret;
 209		}
 210
 211		/* If IMA is guaranteed to appraise a signature on the kexec
 
 212		 * image, permit it even if the kernel is otherwise locked
 213		 * down.
 214		 */
 215		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 216		    security_locked_down(LOCKDOWN_KEXEC))
 217			return -EPERM;
 218
 219		return 0;
 220
 221		/* All other errors are fatal, including nomem, unparseable
 222		 * signatures and signature check failures - even if signatures
 223		 * aren't required.
 224		 */
 225	default:
 226		pr_notice("kernel signature verification failed (%d).\n", ret);
 227	}
 228
 229	return ret;
 230}
 231#endif
 232
 233/*
 234 * In file mode list of segments is prepared by kernel. Copy relevant
 235 * data from user space, do error checking, prepare segment list
 236 */
 237static int
 238kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 239			     const char __user *cmdline_ptr,
 240			     unsigned long cmdline_len, unsigned flags)
 241{
 242	int ret;
 243	void *ldata;
 244	loff_t size;
 245
 246	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 247				       &size, INT_MAX, READING_KEXEC_IMAGE);
 248	if (ret)
 
 249		return ret;
 250	image->kernel_buf_len = size;
 
 
 251
 252	/* Call arch image probe handlers */
 253	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 254					    image->kernel_buf_len);
 255	if (ret)
 256		goto out;
 257
 258#ifdef CONFIG_KEXEC_SIG
 259	ret = kimage_validate_signature(image);
 260
 261	if (ret)
 262		goto out;
 263#endif
 264	/* It is possible that there no initramfs is being loaded */
 265	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 266		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 267					       &size, INT_MAX,
 268					       READING_KEXEC_INITRAMFS);
 269		if (ret)
 270			goto out;
 271		image->initrd_buf_len = size;
 
 272	}
 273
 274	if (cmdline_len) {
 275		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 276		if (IS_ERR(image->cmdline_buf)) {
 277			ret = PTR_ERR(image->cmdline_buf);
 278			image->cmdline_buf = NULL;
 279			goto out;
 280		}
 281
 282		image->cmdline_buf_len = cmdline_len;
 283
 284		/* command line should be a string with last byte null */
 285		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 286			ret = -EINVAL;
 287			goto out;
 288		}
 289
 290		ima_kexec_cmdline(image->cmdline_buf,
 291				  image->cmdline_buf_len - 1);
 292	}
 293
 294	/* IMA needs to pass the measurement list to the next kernel. */
 295	ima_add_kexec_buffer(image);
 296
 297	/* Call arch image load handlers */
 298	ldata = arch_kexec_kernel_image_load(image);
 299
 300	if (IS_ERR(ldata)) {
 301		ret = PTR_ERR(ldata);
 302		goto out;
 303	}
 304
 305	image->image_loader_data = ldata;
 306out:
 307	/* In case of error, free up all allocated memory in this function */
 308	if (ret)
 309		kimage_file_post_load_cleanup(image);
 310	return ret;
 311}
 312
 313static int
 314kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 315		       int initrd_fd, const char __user *cmdline_ptr,
 316		       unsigned long cmdline_len, unsigned long flags)
 317{
 318	int ret;
 319	struct kimage *image;
 320	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 321
 322	image = do_kimage_alloc_init();
 323	if (!image)
 324		return -ENOMEM;
 325
 
 326	image->file_mode = 1;
 327
 328	if (kexec_on_panic) {
 329		/* Enable special crash kernel control page alloc policy. */
 330		image->control_page = crashk_res.start;
 331		image->type = KEXEC_TYPE_CRASH;
 332	}
 333
 334	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 335					   cmdline_ptr, cmdline_len, flags);
 336	if (ret)
 337		goto out_free_image;
 338
 339	ret = sanity_check_segment_list(image);
 340	if (ret)
 341		goto out_free_post_load_bufs;
 342
 343	ret = -ENOMEM;
 344	image->control_code_page = kimage_alloc_control_pages(image,
 345					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 346	if (!image->control_code_page) {
 347		pr_err("Could not allocate control_code_buffer\n");
 348		goto out_free_post_load_bufs;
 349	}
 350
 351	if (!kexec_on_panic) {
 352		image->swap_page = kimage_alloc_control_pages(image, 0);
 353		if (!image->swap_page) {
 354			pr_err("Could not allocate swap buffer\n");
 355			goto out_free_control_pages;
 356		}
 357	}
 358
 359	*rimage = image;
 360	return 0;
 361out_free_control_pages:
 362	kimage_free_page_list(&image->control_pages);
 363out_free_post_load_bufs:
 364	kimage_file_post_load_cleanup(image);
 365out_free_image:
 366	kfree(image);
 367	return ret;
 368}
 369
 370SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 371		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 372		unsigned long, flags)
 373{
 374	int ret = 0, i;
 
 375	struct kimage **dest_image, *image;
 
 376
 377	/* We only trust the superuser with rebooting the system. */
 378	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 379		return -EPERM;
 380
 381	/* Make sure we have a legal set of flags */
 382	if (flags != (flags & KEXEC_FILE_FLAGS))
 383		return -EINVAL;
 384
 385	image = NULL;
 386
 387	if (!mutex_trylock(&kexec_mutex))
 388		return -EBUSY;
 389
 390	dest_image = &kexec_image;
 391	if (flags & KEXEC_FILE_ON_CRASH) {
 392		dest_image = &kexec_crash_image;
 393		if (kexec_crash_image)
 394			arch_kexec_unprotect_crashkres();
 
 
 395	}
 396
 397	if (flags & KEXEC_FILE_UNLOAD)
 398		goto exchange;
 399
 400	/*
 401	 * In case of crash, new kernel gets loaded in reserved region. It is
 402	 * same memory where old crash kernel might be loaded. Free any
 403	 * current crash dump kernel before we corrupt it.
 404	 */
 405	if (flags & KEXEC_FILE_ON_CRASH)
 406		kimage_free(xchg(&kexec_crash_image, NULL));
 407
 408	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 409				     cmdline_len, flags);
 410	if (ret)
 411		goto out;
 412
 413	ret = machine_kexec_prepare(image);
 414	if (ret)
 415		goto out;
 416
 417	/*
 418	 * Some architecture(like S390) may touch the crash memory before
 419	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 420	 */
 421	ret = kimage_crash_copy_vmcoreinfo(image);
 422	if (ret)
 423		goto out;
 424
 425	ret = kexec_calculate_store_digests(image);
 426	if (ret)
 427		goto out;
 428
 
 429	for (i = 0; i < image->nr_segments; i++) {
 430		struct kexec_segment *ksegment;
 431
 432		ksegment = &image->segment[i];
 433		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 434			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 435			 ksegment->memsz);
 436
 437		ret = kimage_load_segment(image, &image->segment[i]);
 438		if (ret)
 439			goto out;
 440	}
 441
 442	kimage_terminate(image);
 443
 
 
 
 
 
 
 444	/*
 445	 * Free up any temporary buffers allocated which are not needed
 446	 * after image has been loaded
 447	 */
 448	kimage_file_post_load_cleanup(image);
 449exchange:
 450	image = xchg(dest_image, image);
 451out:
 452	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 453		arch_kexec_protect_crashkres();
 454
 455	mutex_unlock(&kexec_mutex);
 456	kimage_free(image);
 457	return ret;
 458}
 459
 460static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 461				    struct kexec_buf *kbuf)
 462{
 463	struct kimage *image = kbuf->image;
 464	unsigned long temp_start, temp_end;
 465
 466	temp_end = min(end, kbuf->buf_max);
 467	temp_start = temp_end - kbuf->memsz;
 468
 469	do {
 470		/* align down start */
 471		temp_start = temp_start & (~(kbuf->buf_align - 1));
 472
 473		if (temp_start < start || temp_start < kbuf->buf_min)
 474			return 0;
 475
 476		temp_end = temp_start + kbuf->memsz - 1;
 477
 478		/*
 479		 * Make sure this does not conflict with any of existing
 480		 * segments
 481		 */
 482		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 483			temp_start = temp_start - PAGE_SIZE;
 484			continue;
 485		}
 486
 487		/* We found a suitable memory range */
 488		break;
 489	} while (1);
 490
 491	/* If we are here, we found a suitable memory range */
 492	kbuf->mem = temp_start;
 493
 494	/* Success, stop navigating through remaining System RAM ranges */
 495	return 1;
 496}
 497
 498static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 499				     struct kexec_buf *kbuf)
 500{
 501	struct kimage *image = kbuf->image;
 502	unsigned long temp_start, temp_end;
 503
 504	temp_start = max(start, kbuf->buf_min);
 505
 506	do {
 507		temp_start = ALIGN(temp_start, kbuf->buf_align);
 508		temp_end = temp_start + kbuf->memsz - 1;
 509
 510		if (temp_end > end || temp_end > kbuf->buf_max)
 511			return 0;
 512		/*
 513		 * Make sure this does not conflict with any of existing
 514		 * segments
 515		 */
 516		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 517			temp_start = temp_start + PAGE_SIZE;
 518			continue;
 519		}
 520
 521		/* We found a suitable memory range */
 522		break;
 523	} while (1);
 524
 525	/* If we are here, we found a suitable memory range */
 526	kbuf->mem = temp_start;
 527
 528	/* Success, stop navigating through remaining System RAM ranges */
 529	return 1;
 530}
 531
 532static int locate_mem_hole_callback(struct resource *res, void *arg)
 533{
 534	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 535	u64 start = res->start, end = res->end;
 536	unsigned long sz = end - start + 1;
 537
 538	/* Returning 0 will take to next memory range */
 
 
 
 
 
 539	if (sz < kbuf->memsz)
 540		return 0;
 541
 542	if (end < kbuf->buf_min || start > kbuf->buf_max)
 543		return 0;
 544
 545	/*
 546	 * Allocate memory top down with-in ram range. Otherwise bottom up
 547	 * allocation.
 548	 */
 549	if (kbuf->top_down)
 550		return locate_mem_hole_top_down(start, end, kbuf);
 551	return locate_mem_hole_bottom_up(start, end, kbuf);
 552}
 553
 554#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 555static int kexec_walk_memblock(struct kexec_buf *kbuf,
 556			       int (*func)(struct resource *, void *))
 557{
 558	int ret = 0;
 559	u64 i;
 560	phys_addr_t mstart, mend;
 561	struct resource res = { };
 562
 563	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 564		return func(&crashk_res, kbuf);
 565
 
 
 
 
 
 566	if (kbuf->top_down) {
 567		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 568						&mstart, &mend, NULL) {
 569			/*
 570			 * In memblock, end points to the first byte after the
 571			 * range while in kexec, end points to the last byte
 572			 * in the range.
 573			 */
 574			res.start = mstart;
 575			res.end = mend - 1;
 576			ret = func(&res, kbuf);
 577			if (ret)
 578				break;
 579		}
 580	} else {
 581		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 582					&mstart, &mend, NULL) {
 583			/*
 584			 * In memblock, end points to the first byte after the
 585			 * range while in kexec, end points to the last byte
 586			 * in the range.
 587			 */
 588			res.start = mstart;
 589			res.end = mend - 1;
 590			ret = func(&res, kbuf);
 591			if (ret)
 592				break;
 593		}
 594	}
 595
 596	return ret;
 597}
 598#else
 599static int kexec_walk_memblock(struct kexec_buf *kbuf,
 600			       int (*func)(struct resource *, void *))
 601{
 602	return 0;
 603}
 604#endif
 605
 606/**
 607 * kexec_walk_resources - call func(data) on free memory regions
 608 * @kbuf:	Context info for the search. Also passed to @func.
 609 * @func:	Function to call for each memory region.
 610 *
 611 * Return: The memory walk will stop when func returns a non-zero value
 612 * and that value will be returned. If all free regions are visited without
 613 * func returning non-zero, then zero will be returned.
 614 */
 615static int kexec_walk_resources(struct kexec_buf *kbuf,
 616				int (*func)(struct resource *, void *))
 617{
 618	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 619		return walk_iomem_res_desc(crashk_res.desc,
 620					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 621					   crashk_res.start, crashk_res.end,
 622					   kbuf, func);
 
 
 623	else
 624		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 625}
 626
 627/**
 628 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 629 * @kbuf:	Parameters for the memory search.
 630 *
 631 * On success, kbuf->mem will have the start address of the memory region found.
 632 *
 633 * Return: 0 on success, negative errno on error.
 634 */
 635int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 636{
 637	int ret;
 638
 639	/* Arch knows where to place */
 640	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 641		return 0;
 642
 643	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 644		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 645	else
 646		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 647
 648	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 649}
 650
 651/**
 652 * kexec_add_buffer - place a buffer in a kexec segment
 653 * @kbuf:	Buffer contents and memory parameters.
 654 *
 655 * This function assumes that kexec_mutex is held.
 656 * On successful return, @kbuf->mem will have the physical address of
 657 * the buffer in memory.
 658 *
 659 * Return: 0 on success, negative errno on error.
 660 */
 661int kexec_add_buffer(struct kexec_buf *kbuf)
 662{
 663
 664	struct kexec_segment *ksegment;
 665	int ret;
 666
 667	/* Currently adding segment this way is allowed only in file mode */
 668	if (!kbuf->image->file_mode)
 669		return -EINVAL;
 670
 671	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 672		return -EINVAL;
 673
 674	/*
 675	 * Make sure we are not trying to add buffer after allocating
 676	 * control pages. All segments need to be placed first before
 677	 * any control pages are allocated. As control page allocation
 678	 * logic goes through list of segments to make sure there are
 679	 * no destination overlaps.
 680	 */
 681	if (!list_empty(&kbuf->image->control_pages)) {
 682		WARN_ON(1);
 683		return -EINVAL;
 684	}
 685
 686	/* Ensure minimum alignment needed for segments. */
 687	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 688	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 689
 690	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 691	ret = kexec_locate_mem_hole(kbuf);
 692	if (ret)
 693		return ret;
 694
 695	/* Found a suitable memory range */
 696	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 697	ksegment->kbuf = kbuf->buffer;
 698	ksegment->bufsz = kbuf->bufsz;
 699	ksegment->mem = kbuf->mem;
 700	ksegment->memsz = kbuf->memsz;
 701	kbuf->image->nr_segments++;
 702	return 0;
 703}
 704
 705/* Calculate and store the digest of segments */
 706static int kexec_calculate_store_digests(struct kimage *image)
 707{
 708	struct crypto_shash *tfm;
 709	struct shash_desc *desc;
 710	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 711	size_t desc_size, nullsz;
 712	char *digest;
 713	void *zero_buf;
 714	struct kexec_sha_region *sha_regions;
 715	struct purgatory_info *pi = &image->purgatory_info;
 716
 717	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 718		return 0;
 719
 720	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 721	zero_buf_sz = PAGE_SIZE;
 722
 723	tfm = crypto_alloc_shash("sha256", 0, 0);
 724	if (IS_ERR(tfm)) {
 725		ret = PTR_ERR(tfm);
 726		goto out;
 727	}
 728
 729	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 730	desc = kzalloc(desc_size, GFP_KERNEL);
 731	if (!desc) {
 732		ret = -ENOMEM;
 733		goto out_free_tfm;
 734	}
 735
 736	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 737	sha_regions = vzalloc(sha_region_sz);
 738	if (!sha_regions)
 
 739		goto out_free_desc;
 
 740
 741	desc->tfm   = tfm;
 742
 743	ret = crypto_shash_init(desc);
 744	if (ret < 0)
 745		goto out_free_sha_regions;
 746
 747	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 748	if (!digest) {
 749		ret = -ENOMEM;
 750		goto out_free_sha_regions;
 751	}
 752
 753	for (j = i = 0; i < image->nr_segments; i++) {
 754		struct kexec_segment *ksegment;
 755
 
 
 
 
 
 
 756		ksegment = &image->segment[i];
 757		/*
 758		 * Skip purgatory as it will be modified once we put digest
 759		 * info in purgatory.
 760		 */
 761		if (ksegment->kbuf == pi->purgatory_buf)
 762			continue;
 763
 764		ret = crypto_shash_update(desc, ksegment->kbuf,
 765					  ksegment->bufsz);
 766		if (ret)
 767			break;
 768
 769		/*
 770		 * Assume rest of the buffer is filled with zero and
 771		 * update digest accordingly.
 772		 */
 773		nullsz = ksegment->memsz - ksegment->bufsz;
 774		while (nullsz) {
 775			unsigned long bytes = nullsz;
 776
 777			if (bytes > zero_buf_sz)
 778				bytes = zero_buf_sz;
 779			ret = crypto_shash_update(desc, zero_buf, bytes);
 780			if (ret)
 781				break;
 782			nullsz -= bytes;
 783		}
 784
 785		if (ret)
 786			break;
 787
 788		sha_regions[j].start = ksegment->mem;
 789		sha_regions[j].len = ksegment->memsz;
 790		j++;
 791	}
 792
 793	if (!ret) {
 794		ret = crypto_shash_final(desc, digest);
 795		if (ret)
 796			goto out_free_digest;
 797		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 798						     sha_regions, sha_region_sz, 0);
 799		if (ret)
 800			goto out_free_digest;
 801
 802		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 803						     digest, SHA256_DIGEST_SIZE, 0);
 804		if (ret)
 805			goto out_free_digest;
 806	}
 807
 808out_free_digest:
 809	kfree(digest);
 810out_free_sha_regions:
 811	vfree(sha_regions);
 812out_free_desc:
 813	kfree(desc);
 814out_free_tfm:
 815	kfree(tfm);
 816out:
 817	return ret;
 818}
 819
 820#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 821/*
 822 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 823 * @pi:		Purgatory to be loaded.
 824 * @kbuf:	Buffer to setup.
 825 *
 826 * Allocates the memory needed for the buffer. Caller is responsible to free
 827 * the memory after use.
 828 *
 829 * Return: 0 on success, negative errno on error.
 830 */
 831static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 832				      struct kexec_buf *kbuf)
 833{
 834	const Elf_Shdr *sechdrs;
 835	unsigned long bss_align;
 836	unsigned long bss_sz;
 837	unsigned long align;
 838	int i, ret;
 839
 840	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 841	kbuf->buf_align = bss_align = 1;
 842	kbuf->bufsz = bss_sz = 0;
 843
 844	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 845		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 846			continue;
 847
 848		align = sechdrs[i].sh_addralign;
 849		if (sechdrs[i].sh_type != SHT_NOBITS) {
 850			if (kbuf->buf_align < align)
 851				kbuf->buf_align = align;
 852			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 853			kbuf->bufsz += sechdrs[i].sh_size;
 854		} else {
 855			if (bss_align < align)
 856				bss_align = align;
 857			bss_sz = ALIGN(bss_sz, align);
 858			bss_sz += sechdrs[i].sh_size;
 859		}
 860	}
 861	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 862	kbuf->memsz = kbuf->bufsz + bss_sz;
 863	if (kbuf->buf_align < bss_align)
 864		kbuf->buf_align = bss_align;
 865
 866	kbuf->buffer = vzalloc(kbuf->bufsz);
 867	if (!kbuf->buffer)
 868		return -ENOMEM;
 869	pi->purgatory_buf = kbuf->buffer;
 870
 871	ret = kexec_add_buffer(kbuf);
 872	if (ret)
 873		goto out;
 874
 875	return 0;
 876out:
 877	vfree(pi->purgatory_buf);
 878	pi->purgatory_buf = NULL;
 879	return ret;
 880}
 881
 882/*
 883 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 884 * @pi:		Purgatory to be loaded.
 885 * @kbuf:	Buffer prepared to store purgatory.
 886 *
 887 * Allocates the memory needed for the buffer. Caller is responsible to free
 888 * the memory after use.
 889 *
 890 * Return: 0 on success, negative errno on error.
 891 */
 892static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 893					 struct kexec_buf *kbuf)
 894{
 895	unsigned long bss_addr;
 896	unsigned long offset;
 
 897	Elf_Shdr *sechdrs;
 898	int i;
 899
 900	/*
 901	 * The section headers in kexec_purgatory are read-only. In order to
 902	 * have them modifiable make a temporary copy.
 903	 */
 904	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 
 905	if (!sechdrs)
 906		return -ENOMEM;
 907	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 908	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 909	pi->sechdrs = sechdrs;
 910
 911	offset = 0;
 912	bss_addr = kbuf->mem + kbuf->bufsz;
 913	kbuf->image->start = pi->ehdr->e_entry;
 914
 915	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 916		unsigned long align;
 917		void *src, *dst;
 918
 919		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 920			continue;
 921
 922		align = sechdrs[i].sh_addralign;
 923		if (sechdrs[i].sh_type == SHT_NOBITS) {
 924			bss_addr = ALIGN(bss_addr, align);
 925			sechdrs[i].sh_addr = bss_addr;
 926			bss_addr += sechdrs[i].sh_size;
 927			continue;
 928		}
 929
 930		offset = ALIGN(offset, align);
 
 
 
 
 
 
 
 
 
 
 
 931		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 932		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 933		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 934					 + sechdrs[i].sh_size)) {
 
 935			kbuf->image->start -= sechdrs[i].sh_addr;
 936			kbuf->image->start += kbuf->mem + offset;
 937		}
 938
 939		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 940		dst = pi->purgatory_buf + offset;
 941		memcpy(dst, src, sechdrs[i].sh_size);
 942
 943		sechdrs[i].sh_addr = kbuf->mem + offset;
 944		sechdrs[i].sh_offset = offset;
 945		offset += sechdrs[i].sh_size;
 946	}
 947
 948	return 0;
 949}
 950
 951static int kexec_apply_relocations(struct kimage *image)
 952{
 953	int i, ret;
 954	struct purgatory_info *pi = &image->purgatory_info;
 955	const Elf_Shdr *sechdrs;
 956
 957	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 958
 959	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 960		const Elf_Shdr *relsec;
 961		const Elf_Shdr *symtab;
 962		Elf_Shdr *section;
 963
 964		relsec = sechdrs + i;
 965
 966		if (relsec->sh_type != SHT_RELA &&
 967		    relsec->sh_type != SHT_REL)
 968			continue;
 969
 970		/*
 971		 * For section of type SHT_RELA/SHT_REL,
 972		 * ->sh_link contains section header index of associated
 973		 * symbol table. And ->sh_info contains section header
 974		 * index of section to which relocations apply.
 975		 */
 976		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 977		    relsec->sh_link >= pi->ehdr->e_shnum)
 978			return -ENOEXEC;
 979
 980		section = pi->sechdrs + relsec->sh_info;
 981		symtab = sechdrs + relsec->sh_link;
 982
 983		if (!(section->sh_flags & SHF_ALLOC))
 984			continue;
 985
 986		/*
 987		 * symtab->sh_link contain section header index of associated
 988		 * string table.
 989		 */
 990		if (symtab->sh_link >= pi->ehdr->e_shnum)
 991			/* Invalid section number? */
 992			continue;
 993
 994		/*
 995		 * Respective architecture needs to provide support for applying
 996		 * relocations of type SHT_RELA/SHT_REL.
 997		 */
 998		if (relsec->sh_type == SHT_RELA)
 999			ret = arch_kexec_apply_relocations_add(pi, section,
1000							       relsec, symtab);
1001		else if (relsec->sh_type == SHT_REL)
1002			ret = arch_kexec_apply_relocations(pi, section,
1003							   relsec, symtab);
1004		if (ret)
1005			return ret;
1006	}
1007
1008	return 0;
1009}
1010
1011/*
1012 * kexec_load_purgatory - Load and relocate the purgatory object.
1013 * @image:	Image to add the purgatory to.
1014 * @kbuf:	Memory parameters to use.
1015 *
1016 * Allocates the memory needed for image->purgatory_info.sechdrs and
1017 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1018 * to free the memory after use.
1019 *
1020 * Return: 0 on success, negative errno on error.
1021 */
1022int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1023{
1024	struct purgatory_info *pi = &image->purgatory_info;
1025	int ret;
1026
1027	if (kexec_purgatory_size <= 0)
1028		return -EINVAL;
1029
1030	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1031
1032	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1033	if (ret)
1034		return ret;
1035
1036	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1037	if (ret)
1038		goto out_free_kbuf;
1039
1040	ret = kexec_apply_relocations(image);
1041	if (ret)
1042		goto out;
1043
1044	return 0;
1045out:
1046	vfree(pi->sechdrs);
1047	pi->sechdrs = NULL;
1048out_free_kbuf:
1049	vfree(pi->purgatory_buf);
1050	pi->purgatory_buf = NULL;
1051	return ret;
1052}
1053
1054/*
1055 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1056 * @pi:		Purgatory to search in.
1057 * @name:	Name of the symbol.
1058 *
1059 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1060 */
1061static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1062						  const char *name)
1063{
1064	const Elf_Shdr *sechdrs;
1065	const Elf_Ehdr *ehdr;
1066	const Elf_Sym *syms;
1067	const char *strtab;
1068	int i, k;
1069
1070	if (!pi->ehdr)
1071		return NULL;
1072
1073	ehdr = pi->ehdr;
1074	sechdrs = (void *)ehdr + ehdr->e_shoff;
1075
1076	for (i = 0; i < ehdr->e_shnum; i++) {
1077		if (sechdrs[i].sh_type != SHT_SYMTAB)
1078			continue;
1079
1080		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1081			/* Invalid strtab section number */
1082			continue;
1083		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1084		syms = (void *)ehdr + sechdrs[i].sh_offset;
1085
1086		/* Go through symbols for a match */
1087		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1088			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1089				continue;
1090
1091			if (strcmp(strtab + syms[k].st_name, name) != 0)
1092				continue;
1093
1094			if (syms[k].st_shndx == SHN_UNDEF ||
1095			    syms[k].st_shndx >= ehdr->e_shnum) {
1096				pr_debug("Symbol: %s has bad section index %d.\n",
1097						name, syms[k].st_shndx);
1098				return NULL;
1099			}
1100
1101			/* Found the symbol we are looking for */
1102			return &syms[k];
1103		}
1104	}
1105
1106	return NULL;
1107}
1108
1109void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1110{
1111	struct purgatory_info *pi = &image->purgatory_info;
1112	const Elf_Sym *sym;
1113	Elf_Shdr *sechdr;
1114
1115	sym = kexec_purgatory_find_symbol(pi, name);
1116	if (!sym)
1117		return ERR_PTR(-EINVAL);
1118
1119	sechdr = &pi->sechdrs[sym->st_shndx];
1120
1121	/*
1122	 * Returns the address where symbol will finally be loaded after
1123	 * kexec_load_segment()
1124	 */
1125	return (void *)(sechdr->sh_addr + sym->st_value);
1126}
1127
1128/*
1129 * Get or set value of a symbol. If "get_value" is true, symbol value is
1130 * returned in buf otherwise symbol value is set based on value in buf.
1131 */
1132int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1133				   void *buf, unsigned int size, bool get_value)
1134{
1135	struct purgatory_info *pi = &image->purgatory_info;
1136	const Elf_Sym *sym;
1137	Elf_Shdr *sec;
1138	char *sym_buf;
1139
1140	sym = kexec_purgatory_find_symbol(pi, name);
1141	if (!sym)
1142		return -EINVAL;
1143
1144	if (sym->st_size != size) {
1145		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1146		       name, (unsigned long)sym->st_size, size);
1147		return -EINVAL;
1148	}
1149
1150	sec = pi->sechdrs + sym->st_shndx;
1151
1152	if (sec->sh_type == SHT_NOBITS) {
1153		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1154		       get_value ? "get" : "set");
1155		return -EINVAL;
1156	}
1157
1158	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1159
1160	if (get_value)
1161		memcpy((void *)buf, sym_buf, size);
1162	else
1163		memcpy((void *)sym_buf, buf, size);
1164
1165	return 0;
1166}
1167#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1168
1169int crash_exclude_mem_range(struct crash_mem *mem,
1170			    unsigned long long mstart, unsigned long long mend)
1171{
1172	int i, j;
1173	unsigned long long start, end;
1174	struct crash_mem_range temp_range = {0, 0};
1175
1176	for (i = 0; i < mem->nr_ranges; i++) {
1177		start = mem->ranges[i].start;
1178		end = mem->ranges[i].end;
1179
1180		if (mstart > end || mend < start)
1181			continue;
1182
1183		/* Truncate any area outside of range */
1184		if (mstart < start)
1185			mstart = start;
1186		if (mend > end)
1187			mend = end;
1188
1189		/* Found completely overlapping range */
1190		if (mstart == start && mend == end) {
1191			mem->ranges[i].start = 0;
1192			mem->ranges[i].end = 0;
1193			if (i < mem->nr_ranges - 1) {
1194				/* Shift rest of the ranges to left */
1195				for (j = i; j < mem->nr_ranges - 1; j++) {
1196					mem->ranges[j].start =
1197						mem->ranges[j+1].start;
1198					mem->ranges[j].end =
1199							mem->ranges[j+1].end;
1200				}
1201			}
1202			mem->nr_ranges--;
1203			return 0;
1204		}
1205
1206		if (mstart > start && mend < end) {
1207			/* Split original range */
1208			mem->ranges[i].end = mstart - 1;
1209			temp_range.start = mend + 1;
1210			temp_range.end = end;
1211		} else if (mstart != start)
1212			mem->ranges[i].end = mstart - 1;
1213		else
1214			mem->ranges[i].start = mend + 1;
1215		break;
1216	}
1217
1218	/* If a split happened, add the split to array */
1219	if (!temp_range.end)
1220		return 0;
1221
1222	/* Split happened */
1223	if (i == mem->max_nr_ranges - 1)
1224		return -ENOMEM;
1225
1226	/* Location where new range should go */
1227	j = i + 1;
1228	if (j < mem->nr_ranges) {
1229		/* Move over all ranges one slot towards the end */
1230		for (i = mem->nr_ranges - 1; i >= j; i--)
1231			mem->ranges[i + 1] = mem->ranges[i];
1232	}
1233
1234	mem->ranges[j].start = temp_range.start;
1235	mem->ranges[j].end = temp_range.end;
1236	mem->nr_ranges++;
1237	return 0;
1238}
1239
1240int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1241			  void **addr, unsigned long *sz)
1242{
1243	Elf64_Ehdr *ehdr;
1244	Elf64_Phdr *phdr;
1245	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1246	unsigned char *buf;
1247	unsigned int cpu, i;
1248	unsigned long long notes_addr;
1249	unsigned long mstart, mend;
1250
1251	/* extra phdr for vmcoreinfo elf note */
1252	nr_phdr = nr_cpus + 1;
1253	nr_phdr += mem->nr_ranges;
1254
1255	/*
1256	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1257	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1258	 * I think this is required by tools like gdb. So same physical
1259	 * memory will be mapped in two elf headers. One will contain kernel
1260	 * text virtual addresses and other will have __va(physical) addresses.
1261	 */
1262
1263	nr_phdr++;
1264	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1265	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1266
1267	buf = vzalloc(elf_sz);
1268	if (!buf)
1269		return -ENOMEM;
1270
1271	ehdr = (Elf64_Ehdr *)buf;
1272	phdr = (Elf64_Phdr *)(ehdr + 1);
1273	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1274	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1275	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1276	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1277	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1278	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1279	ehdr->e_type = ET_CORE;
1280	ehdr->e_machine = ELF_ARCH;
1281	ehdr->e_version = EV_CURRENT;
1282	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1283	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1284	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1285
1286	/* Prepare one phdr of type PT_NOTE for each present cpu */
1287	for_each_present_cpu(cpu) {
1288		phdr->p_type = PT_NOTE;
1289		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1290		phdr->p_offset = phdr->p_paddr = notes_addr;
1291		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1292		(ehdr->e_phnum)++;
1293		phdr++;
1294	}
1295
1296	/* Prepare one PT_NOTE header for vmcoreinfo */
1297	phdr->p_type = PT_NOTE;
1298	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1299	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1300	(ehdr->e_phnum)++;
1301	phdr++;
1302
1303	/* Prepare PT_LOAD type program header for kernel text region */
1304	if (kernel_map) {
1305		phdr->p_type = PT_LOAD;
1306		phdr->p_flags = PF_R|PF_W|PF_X;
1307		phdr->p_vaddr = (Elf64_Addr)_text;
1308		phdr->p_filesz = phdr->p_memsz = _end - _text;
1309		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1310		ehdr->e_phnum++;
1311		phdr++;
1312	}
1313
1314	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1315	for (i = 0; i < mem->nr_ranges; i++) {
1316		mstart = mem->ranges[i].start;
1317		mend = mem->ranges[i].end;
1318
1319		phdr->p_type = PT_LOAD;
1320		phdr->p_flags = PF_R|PF_W|PF_X;
1321		phdr->p_offset  = mstart;
1322
1323		phdr->p_paddr = mstart;
1324		phdr->p_vaddr = (unsigned long long) __va(mstart);
1325		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1326		phdr->p_align = 0;
1327		ehdr->e_phnum++;
1328		phdr++;
1329		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1330			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1331			ehdr->e_phnum, phdr->p_offset);
1332	}
1333
1334	*addr = buf;
1335	*sz = elf_sz;
1336	return 0;
1337}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
  66}
  67
 
 
 
 
 
 
 
  68static void *kexec_image_load_default(struct kimage *image)
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
 
 
 
 
 
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 126
 127	kexec_file_dbg_print = false;
 128}
 129
 130#ifdef CONFIG_KEXEC_SIG
 131#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 132int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 133{
 134	int ret;
 135
 136	ret = verify_pefile_signature(kernel, kernel_len,
 137				      VERIFY_USE_SECONDARY_KEYRING,
 138				      VERIFYING_KEXEC_PE_SIGNATURE);
 139	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 140		ret = verify_pefile_signature(kernel, kernel_len,
 141					      VERIFY_USE_PLATFORM_KEYRING,
 142					      VERIFYING_KEXEC_PE_SIGNATURE);
 143	}
 144	return ret;
 145}
 146#endif
 147
 148static int kexec_image_verify_sig(struct kimage *image, void *buf,
 149				  unsigned long buf_len)
 150{
 151	if (!image->fops || !image->fops->verify_sig) {
 152		pr_debug("kernel loader does not support signature verification.\n");
 153		return -EKEYREJECTED;
 154	}
 155
 156	return image->fops->verify_sig(buf, buf_len);
 157}
 158
 159static int
 160kimage_validate_signature(struct kimage *image)
 161{
 
 162	int ret;
 163
 164	ret = kexec_image_verify_sig(image, image->kernel_buf,
 165				     image->kernel_buf_len);
 166	if (ret) {
 
 
 167
 168		if (sig_enforce) {
 169			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 170			return ret;
 171		}
 172
 173		/*
 174		 * If IMA is guaranteed to appraise a signature on the kexec
 175		 * image, permit it even if the kernel is otherwise locked
 176		 * down.
 177		 */
 178		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 179		    security_locked_down(LOCKDOWN_KEXEC))
 180			return -EPERM;
 181
 182		pr_debug("kernel signature verification failed (%d).\n", ret);
 
 
 
 
 
 
 
 183	}
 184
 185	return 0;
 186}
 187#endif
 188
 189/*
 190 * In file mode list of segments is prepared by kernel. Copy relevant
 191 * data from user space, do error checking, prepare segment list
 192 */
 193static int
 194kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 195			     const char __user *cmdline_ptr,
 196			     unsigned long cmdline_len, unsigned flags)
 197{
 198	ssize_t ret;
 199	void *ldata;
 
 200
 201	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 202				       KEXEC_FILE_SIZE_MAX, NULL,
 203				       READING_KEXEC_IMAGE);
 204	if (ret < 0)
 205		return ret;
 206	image->kernel_buf_len = ret;
 207	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
 208		      image->kernel_buf, image->kernel_buf_len);
 209
 210	/* Call arch image probe handlers */
 211	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 212					    image->kernel_buf_len);
 213	if (ret)
 214		goto out;
 215
 216#ifdef CONFIG_KEXEC_SIG
 217	ret = kimage_validate_signature(image);
 218
 219	if (ret)
 220		goto out;
 221#endif
 222	/* It is possible that there no initramfs is being loaded */
 223	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 224		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 225					       KEXEC_FILE_SIZE_MAX, NULL,
 226					       READING_KEXEC_INITRAMFS);
 227		if (ret < 0)
 228			goto out;
 229		image->initrd_buf_len = ret;
 230		ret = 0;
 231	}
 232
 233	if (cmdline_len) {
 234		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 235		if (IS_ERR(image->cmdline_buf)) {
 236			ret = PTR_ERR(image->cmdline_buf);
 237			image->cmdline_buf = NULL;
 238			goto out;
 239		}
 240
 241		image->cmdline_buf_len = cmdline_len;
 242
 243		/* command line should be a string with last byte null */
 244		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 245			ret = -EINVAL;
 246			goto out;
 247		}
 248
 249		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 250				  image->cmdline_buf_len - 1);
 251	}
 252
 253	/* IMA needs to pass the measurement list to the next kernel. */
 254	ima_add_kexec_buffer(image);
 255
 256	/* Call image load handler */
 257	ldata = kexec_image_load_default(image);
 258
 259	if (IS_ERR(ldata)) {
 260		ret = PTR_ERR(ldata);
 261		goto out;
 262	}
 263
 264	image->image_loader_data = ldata;
 265out:
 266	/* In case of error, free up all allocated memory in this function */
 267	if (ret)
 268		kimage_file_post_load_cleanup(image);
 269	return ret;
 270}
 271
 272static int
 273kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 274		       int initrd_fd, const char __user *cmdline_ptr,
 275		       unsigned long cmdline_len, unsigned long flags)
 276{
 277	int ret;
 278	struct kimage *image;
 279	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 280
 281	image = do_kimage_alloc_init();
 282	if (!image)
 283		return -ENOMEM;
 284
 285	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
 286	image->file_mode = 1;
 287
 288	if (kexec_on_panic) {
 289		/* Enable special crash kernel control page alloc policy. */
 290		image->control_page = crashk_res.start;
 291		image->type = KEXEC_TYPE_CRASH;
 292	}
 293
 294	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 295					   cmdline_ptr, cmdline_len, flags);
 296	if (ret)
 297		goto out_free_image;
 298
 299	ret = sanity_check_segment_list(image);
 300	if (ret)
 301		goto out_free_post_load_bufs;
 302
 303	ret = -ENOMEM;
 304	image->control_code_page = kimage_alloc_control_pages(image,
 305					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 306	if (!image->control_code_page) {
 307		pr_err("Could not allocate control_code_buffer\n");
 308		goto out_free_post_load_bufs;
 309	}
 310
 311	if (!kexec_on_panic) {
 312		image->swap_page = kimage_alloc_control_pages(image, 0);
 313		if (!image->swap_page) {
 314			pr_err("Could not allocate swap buffer\n");
 315			goto out_free_control_pages;
 316		}
 317	}
 318
 319	*rimage = image;
 320	return 0;
 321out_free_control_pages:
 322	kimage_free_page_list(&image->control_pages);
 323out_free_post_load_bufs:
 324	kimage_file_post_load_cleanup(image);
 325out_free_image:
 326	kfree(image);
 327	return ret;
 328}
 329
 330SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 331		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 332		unsigned long, flags)
 333{
 334	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
 335			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
 336	struct kimage **dest_image, *image;
 337	int ret = 0, i;
 338
 339	/* We only trust the superuser with rebooting the system. */
 340	if (!kexec_load_permitted(image_type))
 341		return -EPERM;
 342
 343	/* Make sure we have a legal set of flags */
 344	if (flags != (flags & KEXEC_FILE_FLAGS))
 345		return -EINVAL;
 346
 347	image = NULL;
 348
 349	if (!kexec_trylock())
 350		return -EBUSY;
 351
 352	if (image_type == KEXEC_TYPE_CRASH) {
 
 353		dest_image = &kexec_crash_image;
 354		if (kexec_crash_image)
 355			arch_kexec_unprotect_crashkres();
 356	} else {
 357		dest_image = &kexec_image;
 358	}
 359
 360	if (flags & KEXEC_FILE_UNLOAD)
 361		goto exchange;
 362
 363	/*
 364	 * In case of crash, new kernel gets loaded in reserved region. It is
 365	 * same memory where old crash kernel might be loaded. Free any
 366	 * current crash dump kernel before we corrupt it.
 367	 */
 368	if (flags & KEXEC_FILE_ON_CRASH)
 369		kimage_free(xchg(&kexec_crash_image, NULL));
 370
 371	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 372				     cmdline_len, flags);
 373	if (ret)
 374		goto out;
 375
 376	ret = machine_kexec_prepare(image);
 377	if (ret)
 378		goto out;
 379
 380	/*
 381	 * Some architecture(like S390) may touch the crash memory before
 382	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 383	 */
 384	ret = kimage_crash_copy_vmcoreinfo(image);
 385	if (ret)
 386		goto out;
 387
 388	ret = kexec_calculate_store_digests(image);
 389	if (ret)
 390		goto out;
 391
 392	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
 393	for (i = 0; i < image->nr_segments; i++) {
 394		struct kexec_segment *ksegment;
 395
 396		ksegment = &image->segment[i];
 397		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 398			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 399			      ksegment->memsz);
 400
 401		ret = kimage_load_segment(image, &image->segment[i]);
 402		if (ret)
 403			goto out;
 404	}
 405
 406	kimage_terminate(image);
 407
 408	ret = machine_kexec_post_load(image);
 409	if (ret)
 410		goto out;
 411
 412	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
 413		      image->type, image->start, image->head, flags);
 414	/*
 415	 * Free up any temporary buffers allocated which are not needed
 416	 * after image has been loaded
 417	 */
 418	kimage_file_post_load_cleanup(image);
 419exchange:
 420	image = xchg(dest_image, image);
 421out:
 422	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 423		arch_kexec_protect_crashkres();
 424
 425	kexec_unlock();
 426	kimage_free(image);
 427	return ret;
 428}
 429
 430static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 431				    struct kexec_buf *kbuf)
 432{
 433	struct kimage *image = kbuf->image;
 434	unsigned long temp_start, temp_end;
 435
 436	temp_end = min(end, kbuf->buf_max);
 437	temp_start = temp_end - kbuf->memsz + 1;
 438
 439	do {
 440		/* align down start */
 441		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
 442
 443		if (temp_start < start || temp_start < kbuf->buf_min)
 444			return 0;
 445
 446		temp_end = temp_start + kbuf->memsz - 1;
 447
 448		/*
 449		 * Make sure this does not conflict with any of existing
 450		 * segments
 451		 */
 452		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 453			temp_start = temp_start - PAGE_SIZE;
 454			continue;
 455		}
 456
 457		/* We found a suitable memory range */
 458		break;
 459	} while (1);
 460
 461	/* If we are here, we found a suitable memory range */
 462	kbuf->mem = temp_start;
 463
 464	/* Success, stop navigating through remaining System RAM ranges */
 465	return 1;
 466}
 467
 468static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 469				     struct kexec_buf *kbuf)
 470{
 471	struct kimage *image = kbuf->image;
 472	unsigned long temp_start, temp_end;
 473
 474	temp_start = max(start, kbuf->buf_min);
 475
 476	do {
 477		temp_start = ALIGN(temp_start, kbuf->buf_align);
 478		temp_end = temp_start + kbuf->memsz - 1;
 479
 480		if (temp_end > end || temp_end > kbuf->buf_max)
 481			return 0;
 482		/*
 483		 * Make sure this does not conflict with any of existing
 484		 * segments
 485		 */
 486		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 487			temp_start = temp_start + PAGE_SIZE;
 488			continue;
 489		}
 490
 491		/* We found a suitable memory range */
 492		break;
 493	} while (1);
 494
 495	/* If we are here, we found a suitable memory range */
 496	kbuf->mem = temp_start;
 497
 498	/* Success, stop navigating through remaining System RAM ranges */
 499	return 1;
 500}
 501
 502static int locate_mem_hole_callback(struct resource *res, void *arg)
 503{
 504	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 505	u64 start = res->start, end = res->end;
 506	unsigned long sz = end - start + 1;
 507
 508	/* Returning 0 will take to next memory range */
 509
 510	/* Don't use memory that will be detected and handled by a driver. */
 511	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 512		return 0;
 513
 514	if (sz < kbuf->memsz)
 515		return 0;
 516
 517	if (end < kbuf->buf_min || start > kbuf->buf_max)
 518		return 0;
 519
 520	/*
 521	 * Allocate memory top down with-in ram range. Otherwise bottom up
 522	 * allocation.
 523	 */
 524	if (kbuf->top_down)
 525		return locate_mem_hole_top_down(start, end, kbuf);
 526	return locate_mem_hole_bottom_up(start, end, kbuf);
 527}
 528
 529#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 530static int kexec_walk_memblock(struct kexec_buf *kbuf,
 531			       int (*func)(struct resource *, void *))
 532{
 533	int ret = 0;
 534	u64 i;
 535	phys_addr_t mstart, mend;
 536	struct resource res = { };
 537
 538	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 539		return func(&crashk_res, kbuf);
 540
 541	/*
 542	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 543	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 544	 * locate_mem_hole_callback().
 545	 */
 546	if (kbuf->top_down) {
 547		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 548						&mstart, &mend, NULL) {
 549			/*
 550			 * In memblock, end points to the first byte after the
 551			 * range while in kexec, end points to the last byte
 552			 * in the range.
 553			 */
 554			res.start = mstart;
 555			res.end = mend - 1;
 556			ret = func(&res, kbuf);
 557			if (ret)
 558				break;
 559		}
 560	} else {
 561		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 562					&mstart, &mend, NULL) {
 563			/*
 564			 * In memblock, end points to the first byte after the
 565			 * range while in kexec, end points to the last byte
 566			 * in the range.
 567			 */
 568			res.start = mstart;
 569			res.end = mend - 1;
 570			ret = func(&res, kbuf);
 571			if (ret)
 572				break;
 573		}
 574	}
 575
 576	return ret;
 577}
 578#else
 579static int kexec_walk_memblock(struct kexec_buf *kbuf,
 580			       int (*func)(struct resource *, void *))
 581{
 582	return 0;
 583}
 584#endif
 585
 586/**
 587 * kexec_walk_resources - call func(data) on free memory regions
 588 * @kbuf:	Context info for the search. Also passed to @func.
 589 * @func:	Function to call for each memory region.
 590 *
 591 * Return: The memory walk will stop when func returns a non-zero value
 592 * and that value will be returned. If all free regions are visited without
 593 * func returning non-zero, then zero will be returned.
 594 */
 595static int kexec_walk_resources(struct kexec_buf *kbuf,
 596				int (*func)(struct resource *, void *))
 597{
 598	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 599		return walk_iomem_res_desc(crashk_res.desc,
 600					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 601					   crashk_res.start, crashk_res.end,
 602					   kbuf, func);
 603	else if (kbuf->top_down)
 604		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
 605	else
 606		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 607}
 608
 609/**
 610 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 611 * @kbuf:	Parameters for the memory search.
 612 *
 613 * On success, kbuf->mem will have the start address of the memory region found.
 614 *
 615 * Return: 0 on success, negative errno on error.
 616 */
 617int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 618{
 619	int ret;
 620
 621	/* Arch knows where to place */
 622	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 623		return 0;
 624
 625	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 626		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 627	else
 628		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 629
 630	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 631}
 632
 633/**
 634 * kexec_add_buffer - place a buffer in a kexec segment
 635 * @kbuf:	Buffer contents and memory parameters.
 636 *
 637 * This function assumes that kexec_lock is held.
 638 * On successful return, @kbuf->mem will have the physical address of
 639 * the buffer in memory.
 640 *
 641 * Return: 0 on success, negative errno on error.
 642 */
 643int kexec_add_buffer(struct kexec_buf *kbuf)
 644{
 
 645	struct kexec_segment *ksegment;
 646	int ret;
 647
 648	/* Currently adding segment this way is allowed only in file mode */
 649	if (!kbuf->image->file_mode)
 650		return -EINVAL;
 651
 652	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 653		return -EINVAL;
 654
 655	/*
 656	 * Make sure we are not trying to add buffer after allocating
 657	 * control pages. All segments need to be placed first before
 658	 * any control pages are allocated. As control page allocation
 659	 * logic goes through list of segments to make sure there are
 660	 * no destination overlaps.
 661	 */
 662	if (!list_empty(&kbuf->image->control_pages)) {
 663		WARN_ON(1);
 664		return -EINVAL;
 665	}
 666
 667	/* Ensure minimum alignment needed for segments. */
 668	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 669	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 670
 671	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 672	ret = arch_kexec_locate_mem_hole(kbuf);
 673	if (ret)
 674		return ret;
 675
 676	/* Found a suitable memory range */
 677	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 678	ksegment->kbuf = kbuf->buffer;
 679	ksegment->bufsz = kbuf->bufsz;
 680	ksegment->mem = kbuf->mem;
 681	ksegment->memsz = kbuf->memsz;
 682	kbuf->image->nr_segments++;
 683	return 0;
 684}
 685
 686/* Calculate and store the digest of segments */
 687static int kexec_calculate_store_digests(struct kimage *image)
 688{
 689	struct crypto_shash *tfm;
 690	struct shash_desc *desc;
 691	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 692	size_t desc_size, nullsz;
 693	char *digest;
 694	void *zero_buf;
 695	struct kexec_sha_region *sha_regions;
 696	struct purgatory_info *pi = &image->purgatory_info;
 697
 698	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
 699		return 0;
 700
 701	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 702	zero_buf_sz = PAGE_SIZE;
 703
 704	tfm = crypto_alloc_shash("sha256", 0, 0);
 705	if (IS_ERR(tfm)) {
 706		ret = PTR_ERR(tfm);
 707		goto out;
 708	}
 709
 710	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 711	desc = kzalloc(desc_size, GFP_KERNEL);
 712	if (!desc) {
 713		ret = -ENOMEM;
 714		goto out_free_tfm;
 715	}
 716
 717	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 718	sha_regions = vzalloc(sha_region_sz);
 719	if (!sha_regions) {
 720		ret = -ENOMEM;
 721		goto out_free_desc;
 722	}
 723
 724	desc->tfm   = tfm;
 725
 726	ret = crypto_shash_init(desc);
 727	if (ret < 0)
 728		goto out_free_sha_regions;
 729
 730	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 731	if (!digest) {
 732		ret = -ENOMEM;
 733		goto out_free_sha_regions;
 734	}
 735
 736	for (j = i = 0; i < image->nr_segments; i++) {
 737		struct kexec_segment *ksegment;
 738
 739#ifdef CONFIG_CRASH_HOTPLUG
 740		/* Exclude elfcorehdr segment to allow future changes via hotplug */
 741		if (j == image->elfcorehdr_index)
 742			continue;
 743#endif
 744
 745		ksegment = &image->segment[i];
 746		/*
 747		 * Skip purgatory as it will be modified once we put digest
 748		 * info in purgatory.
 749		 */
 750		if (ksegment->kbuf == pi->purgatory_buf)
 751			continue;
 752
 753		ret = crypto_shash_update(desc, ksegment->kbuf,
 754					  ksegment->bufsz);
 755		if (ret)
 756			break;
 757
 758		/*
 759		 * Assume rest of the buffer is filled with zero and
 760		 * update digest accordingly.
 761		 */
 762		nullsz = ksegment->memsz - ksegment->bufsz;
 763		while (nullsz) {
 764			unsigned long bytes = nullsz;
 765
 766			if (bytes > zero_buf_sz)
 767				bytes = zero_buf_sz;
 768			ret = crypto_shash_update(desc, zero_buf, bytes);
 769			if (ret)
 770				break;
 771			nullsz -= bytes;
 772		}
 773
 774		if (ret)
 775			break;
 776
 777		sha_regions[j].start = ksegment->mem;
 778		sha_regions[j].len = ksegment->memsz;
 779		j++;
 780	}
 781
 782	if (!ret) {
 783		ret = crypto_shash_final(desc, digest);
 784		if (ret)
 785			goto out_free_digest;
 786		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 787						     sha_regions, sha_region_sz, 0);
 788		if (ret)
 789			goto out_free_digest;
 790
 791		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 792						     digest, SHA256_DIGEST_SIZE, 0);
 793		if (ret)
 794			goto out_free_digest;
 795	}
 796
 797out_free_digest:
 798	kfree(digest);
 799out_free_sha_regions:
 800	vfree(sha_regions);
 801out_free_desc:
 802	kfree(desc);
 803out_free_tfm:
 804	kfree(tfm);
 805out:
 806	return ret;
 807}
 808
 809#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
 810/*
 811 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 812 * @pi:		Purgatory to be loaded.
 813 * @kbuf:	Buffer to setup.
 814 *
 815 * Allocates the memory needed for the buffer. Caller is responsible to free
 816 * the memory after use.
 817 *
 818 * Return: 0 on success, negative errno on error.
 819 */
 820static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 821				      struct kexec_buf *kbuf)
 822{
 823	const Elf_Shdr *sechdrs;
 824	unsigned long bss_align;
 825	unsigned long bss_sz;
 826	unsigned long align;
 827	int i, ret;
 828
 829	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 830	kbuf->buf_align = bss_align = 1;
 831	kbuf->bufsz = bss_sz = 0;
 832
 833	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 834		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 835			continue;
 836
 837		align = sechdrs[i].sh_addralign;
 838		if (sechdrs[i].sh_type != SHT_NOBITS) {
 839			if (kbuf->buf_align < align)
 840				kbuf->buf_align = align;
 841			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 842			kbuf->bufsz += sechdrs[i].sh_size;
 843		} else {
 844			if (bss_align < align)
 845				bss_align = align;
 846			bss_sz = ALIGN(bss_sz, align);
 847			bss_sz += sechdrs[i].sh_size;
 848		}
 849	}
 850	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 851	kbuf->memsz = kbuf->bufsz + bss_sz;
 852	if (kbuf->buf_align < bss_align)
 853		kbuf->buf_align = bss_align;
 854
 855	kbuf->buffer = vzalloc(kbuf->bufsz);
 856	if (!kbuf->buffer)
 857		return -ENOMEM;
 858	pi->purgatory_buf = kbuf->buffer;
 859
 860	ret = kexec_add_buffer(kbuf);
 861	if (ret)
 862		goto out;
 863
 864	return 0;
 865out:
 866	vfree(pi->purgatory_buf);
 867	pi->purgatory_buf = NULL;
 868	return ret;
 869}
 870
 871/*
 872 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 873 * @pi:		Purgatory to be loaded.
 874 * @kbuf:	Buffer prepared to store purgatory.
 875 *
 876 * Allocates the memory needed for the buffer. Caller is responsible to free
 877 * the memory after use.
 878 *
 879 * Return: 0 on success, negative errno on error.
 880 */
 881static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 882					 struct kexec_buf *kbuf)
 883{
 884	unsigned long bss_addr;
 885	unsigned long offset;
 886	size_t sechdrs_size;
 887	Elf_Shdr *sechdrs;
 888	int i;
 889
 890	/*
 891	 * The section headers in kexec_purgatory are read-only. In order to
 892	 * have them modifiable make a temporary copy.
 893	 */
 894	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
 895	sechdrs = vzalloc(sechdrs_size);
 896	if (!sechdrs)
 897		return -ENOMEM;
 898	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
 
 899	pi->sechdrs = sechdrs;
 900
 901	offset = 0;
 902	bss_addr = kbuf->mem + kbuf->bufsz;
 903	kbuf->image->start = pi->ehdr->e_entry;
 904
 905	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 906		unsigned long align;
 907		void *src, *dst;
 908
 909		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 910			continue;
 911
 912		align = sechdrs[i].sh_addralign;
 913		if (sechdrs[i].sh_type == SHT_NOBITS) {
 914			bss_addr = ALIGN(bss_addr, align);
 915			sechdrs[i].sh_addr = bss_addr;
 916			bss_addr += sechdrs[i].sh_size;
 917			continue;
 918		}
 919
 920		offset = ALIGN(offset, align);
 921
 922		/*
 923		 * Check if the segment contains the entry point, if so,
 924		 * calculate the value of image->start based on it.
 925		 * If the compiler has produced more than one .text section
 926		 * (Eg: .text.hot), they are generally after the main .text
 927		 * section, and they shall not be used to calculate
 928		 * image->start. So do not re-calculate image->start if it
 929		 * is not set to the initial value, and warn the user so they
 930		 * have a chance to fix their purgatory's linker script.
 931		 */
 932		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 933		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 934		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 935					 + sechdrs[i].sh_size) &&
 936		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
 937			kbuf->image->start -= sechdrs[i].sh_addr;
 938			kbuf->image->start += kbuf->mem + offset;
 939		}
 940
 941		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 942		dst = pi->purgatory_buf + offset;
 943		memcpy(dst, src, sechdrs[i].sh_size);
 944
 945		sechdrs[i].sh_addr = kbuf->mem + offset;
 946		sechdrs[i].sh_offset = offset;
 947		offset += sechdrs[i].sh_size;
 948	}
 949
 950	return 0;
 951}
 952
 953static int kexec_apply_relocations(struct kimage *image)
 954{
 955	int i, ret;
 956	struct purgatory_info *pi = &image->purgatory_info;
 957	const Elf_Shdr *sechdrs;
 958
 959	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 960
 961	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 962		const Elf_Shdr *relsec;
 963		const Elf_Shdr *symtab;
 964		Elf_Shdr *section;
 965
 966		relsec = sechdrs + i;
 967
 968		if (relsec->sh_type != SHT_RELA &&
 969		    relsec->sh_type != SHT_REL)
 970			continue;
 971
 972		/*
 973		 * For section of type SHT_RELA/SHT_REL,
 974		 * ->sh_link contains section header index of associated
 975		 * symbol table. And ->sh_info contains section header
 976		 * index of section to which relocations apply.
 977		 */
 978		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 979		    relsec->sh_link >= pi->ehdr->e_shnum)
 980			return -ENOEXEC;
 981
 982		section = pi->sechdrs + relsec->sh_info;
 983		symtab = sechdrs + relsec->sh_link;
 984
 985		if (!(section->sh_flags & SHF_ALLOC))
 986			continue;
 987
 988		/*
 989		 * symtab->sh_link contain section header index of associated
 990		 * string table.
 991		 */
 992		if (symtab->sh_link >= pi->ehdr->e_shnum)
 993			/* Invalid section number? */
 994			continue;
 995
 996		/*
 997		 * Respective architecture needs to provide support for applying
 998		 * relocations of type SHT_RELA/SHT_REL.
 999		 */
1000		if (relsec->sh_type == SHT_RELA)
1001			ret = arch_kexec_apply_relocations_add(pi, section,
1002							       relsec, symtab);
1003		else if (relsec->sh_type == SHT_REL)
1004			ret = arch_kexec_apply_relocations(pi, section,
1005							   relsec, symtab);
1006		if (ret)
1007			return ret;
1008	}
1009
1010	return 0;
1011}
1012
1013/*
1014 * kexec_load_purgatory - Load and relocate the purgatory object.
1015 * @image:	Image to add the purgatory to.
1016 * @kbuf:	Memory parameters to use.
1017 *
1018 * Allocates the memory needed for image->purgatory_info.sechdrs and
1019 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1020 * to free the memory after use.
1021 *
1022 * Return: 0 on success, negative errno on error.
1023 */
1024int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1025{
1026	struct purgatory_info *pi = &image->purgatory_info;
1027	int ret;
1028
1029	if (kexec_purgatory_size <= 0)
1030		return -EINVAL;
1031
1032	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1033
1034	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1035	if (ret)
1036		return ret;
1037
1038	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1039	if (ret)
1040		goto out_free_kbuf;
1041
1042	ret = kexec_apply_relocations(image);
1043	if (ret)
1044		goto out;
1045
1046	return 0;
1047out:
1048	vfree(pi->sechdrs);
1049	pi->sechdrs = NULL;
1050out_free_kbuf:
1051	vfree(pi->purgatory_buf);
1052	pi->purgatory_buf = NULL;
1053	return ret;
1054}
1055
1056/*
1057 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1058 * @pi:		Purgatory to search in.
1059 * @name:	Name of the symbol.
1060 *
1061 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1062 */
1063static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1064						  const char *name)
1065{
1066	const Elf_Shdr *sechdrs;
1067	const Elf_Ehdr *ehdr;
1068	const Elf_Sym *syms;
1069	const char *strtab;
1070	int i, k;
1071
1072	if (!pi->ehdr)
1073		return NULL;
1074
1075	ehdr = pi->ehdr;
1076	sechdrs = (void *)ehdr + ehdr->e_shoff;
1077
1078	for (i = 0; i < ehdr->e_shnum; i++) {
1079		if (sechdrs[i].sh_type != SHT_SYMTAB)
1080			continue;
1081
1082		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1083			/* Invalid strtab section number */
1084			continue;
1085		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1086		syms = (void *)ehdr + sechdrs[i].sh_offset;
1087
1088		/* Go through symbols for a match */
1089		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1090			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1091				continue;
1092
1093			if (strcmp(strtab + syms[k].st_name, name) != 0)
1094				continue;
1095
1096			if (syms[k].st_shndx == SHN_UNDEF ||
1097			    syms[k].st_shndx >= ehdr->e_shnum) {
1098				pr_debug("Symbol: %s has bad section index %d.\n",
1099						name, syms[k].st_shndx);
1100				return NULL;
1101			}
1102
1103			/* Found the symbol we are looking for */
1104			return &syms[k];
1105		}
1106	}
1107
1108	return NULL;
1109}
1110
1111void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1112{
1113	struct purgatory_info *pi = &image->purgatory_info;
1114	const Elf_Sym *sym;
1115	Elf_Shdr *sechdr;
1116
1117	sym = kexec_purgatory_find_symbol(pi, name);
1118	if (!sym)
1119		return ERR_PTR(-EINVAL);
1120
1121	sechdr = &pi->sechdrs[sym->st_shndx];
1122
1123	/*
1124	 * Returns the address where symbol will finally be loaded after
1125	 * kexec_load_segment()
1126	 */
1127	return (void *)(sechdr->sh_addr + sym->st_value);
1128}
1129
1130/*
1131 * Get or set value of a symbol. If "get_value" is true, symbol value is
1132 * returned in buf otherwise symbol value is set based on value in buf.
1133 */
1134int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1135				   void *buf, unsigned int size, bool get_value)
1136{
1137	struct purgatory_info *pi = &image->purgatory_info;
1138	const Elf_Sym *sym;
1139	Elf_Shdr *sec;
1140	char *sym_buf;
1141
1142	sym = kexec_purgatory_find_symbol(pi, name);
1143	if (!sym)
1144		return -EINVAL;
1145
1146	if (sym->st_size != size) {
1147		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1148		       name, (unsigned long)sym->st_size, size);
1149		return -EINVAL;
1150	}
1151
1152	sec = pi->sechdrs + sym->st_shndx;
1153
1154	if (sec->sh_type == SHT_NOBITS) {
1155		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1156		       get_value ? "get" : "set");
1157		return -EINVAL;
1158	}
1159
1160	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1161
1162	if (get_value)
1163		memcpy((void *)buf, sym_buf, size);
1164	else
1165		memcpy((void *)sym_buf, buf, size);
1166
1167	return 0;
1168}
1169#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */