Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	linux/mm/madvise.c
   4 *
   5 * Copyright (C) 1999  Linus Torvalds
   6 * Copyright (C) 2002  Christoph Hellwig
   7 */
   8
   9#include <linux/mman.h>
  10#include <linux/pagemap.h>
  11#include <linux/syscalls.h>
  12#include <linux/mempolicy.h>
  13#include <linux/page-isolation.h>
  14#include <linux/page_idle.h>
  15#include <linux/userfaultfd_k.h>
  16#include <linux/hugetlb.h>
  17#include <linux/falloc.h>
  18#include <linux/fadvise.h>
  19#include <linux/sched.h>
  20#include <linux/ksm.h>
  21#include <linux/fs.h>
  22#include <linux/file.h>
  23#include <linux/blkdev.h>
  24#include <linux/backing-dev.h>
  25#include <linux/pagewalk.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/mmu_notifier.h>
  30
  31#include <asm/tlb.h>
  32
  33#include "internal.h"
  34
  35struct madvise_walk_private {
  36	struct mmu_gather *tlb;
  37	bool pageout;
  38};
  39
  40/*
  41 * Any behaviour which results in changes to the vma->vm_flags needs to
  42 * take mmap_sem for writing. Others, which simply traverse vmas, need
  43 * to only take it for reading.
  44 */
  45static int madvise_need_mmap_write(int behavior)
  46{
  47	switch (behavior) {
  48	case MADV_REMOVE:
  49	case MADV_WILLNEED:
  50	case MADV_DONTNEED:
  51	case MADV_COLD:
  52	case MADV_PAGEOUT:
  53	case MADV_FREE:
  54		return 0;
  55	default:
  56		/* be safe, default to 1. list exceptions explicitly */
  57		return 1;
  58	}
  59}
  60
  61/*
  62 * We can potentially split a vm area into separate
  63 * areas, each area with its own behavior.
  64 */
  65static long madvise_behavior(struct vm_area_struct *vma,
  66		     struct vm_area_struct **prev,
  67		     unsigned long start, unsigned long end, int behavior)
  68{
  69	struct mm_struct *mm = vma->vm_mm;
  70	int error = 0;
  71	pgoff_t pgoff;
  72	unsigned long new_flags = vma->vm_flags;
  73
  74	switch (behavior) {
  75	case MADV_NORMAL:
  76		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
  77		break;
  78	case MADV_SEQUENTIAL:
  79		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
  80		break;
  81	case MADV_RANDOM:
  82		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
  83		break;
  84	case MADV_DONTFORK:
  85		new_flags |= VM_DONTCOPY;
  86		break;
  87	case MADV_DOFORK:
  88		if (vma->vm_flags & VM_IO) {
  89			error = -EINVAL;
  90			goto out;
  91		}
  92		new_flags &= ~VM_DONTCOPY;
  93		break;
  94	case MADV_WIPEONFORK:
  95		/* MADV_WIPEONFORK is only supported on anonymous memory. */
  96		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
  97			error = -EINVAL;
  98			goto out;
  99		}
 100		new_flags |= VM_WIPEONFORK;
 101		break;
 102	case MADV_KEEPONFORK:
 103		new_flags &= ~VM_WIPEONFORK;
 104		break;
 105	case MADV_DONTDUMP:
 106		new_flags |= VM_DONTDUMP;
 107		break;
 108	case MADV_DODUMP:
 109		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
 110			error = -EINVAL;
 111			goto out;
 112		}
 113		new_flags &= ~VM_DONTDUMP;
 114		break;
 115	case MADV_MERGEABLE:
 116	case MADV_UNMERGEABLE:
 117		error = ksm_madvise(vma, start, end, behavior, &new_flags);
 118		if (error)
 119			goto out_convert_errno;
 
 
 
 
 
 
 
 120		break;
 121	case MADV_HUGEPAGE:
 122	case MADV_NOHUGEPAGE:
 123		error = hugepage_madvise(vma, &new_flags, behavior);
 124		if (error)
 125			goto out_convert_errno;
 
 
 
 
 
 
 
 126		break;
 127	}
 128
 129	if (new_flags == vma->vm_flags) {
 130		*prev = vma;
 131		goto out;
 132	}
 133
 134	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 135	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
 136			  vma->vm_file, pgoff, vma_policy(vma),
 137			  vma->vm_userfaultfd_ctx);
 138	if (*prev) {
 139		vma = *prev;
 140		goto success;
 141	}
 142
 143	*prev = vma;
 144
 145	if (start != vma->vm_start) {
 146		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 147			error = -ENOMEM;
 148			goto out;
 149		}
 150		error = __split_vma(mm, vma, start, 1);
 151		if (error)
 152			goto out_convert_errno;
 
 
 
 
 
 
 
 153	}
 154
 155	if (end != vma->vm_end) {
 156		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 157			error = -ENOMEM;
 158			goto out;
 159		}
 160		error = __split_vma(mm, vma, end, 0);
 161		if (error)
 162			goto out_convert_errno;
 
 
 
 
 
 
 
 163	}
 164
 165success:
 166	/*
 167	 * vm_flags is protected by the mmap_sem held in write mode.
 168	 */
 169	vma->vm_flags = new_flags;
 170
 171out_convert_errno:
 172	/*
 173	 * madvise() returns EAGAIN if kernel resources, such as
 174	 * slab, are temporarily unavailable.
 175	 */
 176	if (error == -ENOMEM)
 177		error = -EAGAIN;
 178out:
 179	return error;
 180}
 181
 182#ifdef CONFIG_SWAP
 183static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
 184	unsigned long end, struct mm_walk *walk)
 185{
 186	pte_t *orig_pte;
 187	struct vm_area_struct *vma = walk->private;
 188	unsigned long index;
 189
 190	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 191		return 0;
 192
 193	for (index = start; index != end; index += PAGE_SIZE) {
 194		pte_t pte;
 195		swp_entry_t entry;
 196		struct page *page;
 197		spinlock_t *ptl;
 198
 199		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
 200		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
 201		pte_unmap_unlock(orig_pte, ptl);
 202
 203		if (pte_present(pte) || pte_none(pte))
 204			continue;
 205		entry = pte_to_swp_entry(pte);
 206		if (unlikely(non_swap_entry(entry)))
 207			continue;
 208
 209		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
 210							vma, index, false);
 211		if (page)
 212			put_page(page);
 213	}
 214
 215	return 0;
 216}
 217
 218static const struct mm_walk_ops swapin_walk_ops = {
 219	.pmd_entry		= swapin_walk_pmd_entry,
 220};
 
 
 
 
 
 
 
 
 
 
 221
 222static void force_shm_swapin_readahead(struct vm_area_struct *vma,
 223		unsigned long start, unsigned long end,
 224		struct address_space *mapping)
 225{
 226	pgoff_t index;
 227	struct page *page;
 228	swp_entry_t swap;
 229
 230	for (; start < end; start += PAGE_SIZE) {
 231		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 232
 233		page = find_get_entry(mapping, index);
 234		if (!xa_is_value(page)) {
 235			if (page)
 236				put_page(page);
 237			continue;
 238		}
 239		swap = radix_to_swp_entry(page);
 240		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
 241							NULL, 0, false);
 242		if (page)
 243			put_page(page);
 244	}
 245
 246	lru_add_drain();	/* Push any new pages onto the LRU now */
 247}
 248#endif		/* CONFIG_SWAP */
 249
 250/*
 251 * Schedule all required I/O operations.  Do not wait for completion.
 252 */
 253static long madvise_willneed(struct vm_area_struct *vma,
 254			     struct vm_area_struct **prev,
 255			     unsigned long start, unsigned long end)
 256{
 257	struct file *file = vma->vm_file;
 258	loff_t offset;
 259
 260	*prev = vma;
 261#ifdef CONFIG_SWAP
 262	if (!file) {
 263		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
 264		lru_add_drain(); /* Push any new pages onto the LRU now */
 265		return 0;
 266	}
 267
 268	if (shmem_mapping(file->f_mapping)) {
 269		force_shm_swapin_readahead(vma, start, end,
 270					file->f_mapping);
 271		return 0;
 272	}
 273#else
 274	if (!file)
 275		return -EBADF;
 276#endif
 277
 278	if (IS_DAX(file_inode(file))) {
 279		/* no bad return value, but ignore advice */
 280		return 0;
 281	}
 282
 283	/*
 284	 * Filesystem's fadvise may need to take various locks.  We need to
 285	 * explicitly grab a reference because the vma (and hence the
 286	 * vma's reference to the file) can go away as soon as we drop
 287	 * mmap_sem.
 288	 */
 289	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
 290	get_file(file);
 291	up_read(&current->mm->mmap_sem);
 292	offset = (loff_t)(start - vma->vm_start)
 293			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 294	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
 295	fput(file);
 296	down_read(&current->mm->mmap_sem);
 297	return 0;
 298}
 299
 300static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
 301				unsigned long addr, unsigned long end,
 302				struct mm_walk *walk)
 303{
 304	struct madvise_walk_private *private = walk->private;
 305	struct mmu_gather *tlb = private->tlb;
 306	bool pageout = private->pageout;
 307	struct mm_struct *mm = tlb->mm;
 308	struct vm_area_struct *vma = walk->vma;
 309	pte_t *orig_pte, *pte, ptent;
 310	spinlock_t *ptl;
 311	struct page *page = NULL;
 312	LIST_HEAD(page_list);
 313
 314	if (fatal_signal_pending(current))
 315		return -EINTR;
 316
 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 318	if (pmd_trans_huge(*pmd)) {
 319		pmd_t orig_pmd;
 320		unsigned long next = pmd_addr_end(addr, end);
 321
 322		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 323		ptl = pmd_trans_huge_lock(pmd, vma);
 324		if (!ptl)
 325			return 0;
 326
 327		orig_pmd = *pmd;
 328		if (is_huge_zero_pmd(orig_pmd))
 329			goto huge_unlock;
 330
 331		if (unlikely(!pmd_present(orig_pmd))) {
 332			VM_BUG_ON(thp_migration_supported() &&
 333					!is_pmd_migration_entry(orig_pmd));
 334			goto huge_unlock;
 335		}
 336
 337		page = pmd_page(orig_pmd);
 338		if (next - addr != HPAGE_PMD_SIZE) {
 339			int err;
 340
 341			if (page_mapcount(page) != 1)
 342				goto huge_unlock;
 343
 344			get_page(page);
 345			spin_unlock(ptl);
 346			lock_page(page);
 347			err = split_huge_page(page);
 348			unlock_page(page);
 349			put_page(page);
 350			if (!err)
 351				goto regular_page;
 352			return 0;
 353		}
 354
 355		if (pmd_young(orig_pmd)) {
 356			pmdp_invalidate(vma, addr, pmd);
 357			orig_pmd = pmd_mkold(orig_pmd);
 358
 359			set_pmd_at(mm, addr, pmd, orig_pmd);
 360			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 361		}
 362
 363		ClearPageReferenced(page);
 364		test_and_clear_page_young(page);
 365		if (pageout) {
 366			if (!isolate_lru_page(page)) {
 367				if (PageUnevictable(page))
 368					putback_lru_page(page);
 369				else
 370					list_add(&page->lru, &page_list);
 371			}
 372		} else
 373			deactivate_page(page);
 374huge_unlock:
 375		spin_unlock(ptl);
 376		if (pageout)
 377			reclaim_pages(&page_list);
 378		return 0;
 379	}
 380
 381	if (pmd_trans_unstable(pmd))
 382		return 0;
 383regular_page:
 384#endif
 385	tlb_change_page_size(tlb, PAGE_SIZE);
 386	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 387	flush_tlb_batched_pending(mm);
 388	arch_enter_lazy_mmu_mode();
 389	for (; addr < end; pte++, addr += PAGE_SIZE) {
 390		ptent = *pte;
 391
 392		if (pte_none(ptent))
 393			continue;
 394
 395		if (!pte_present(ptent))
 396			continue;
 397
 398		page = vm_normal_page(vma, addr, ptent);
 399		if (!page)
 400			continue;
 401
 402		/*
 403		 * Creating a THP page is expensive so split it only if we
 404		 * are sure it's worth. Split it if we are only owner.
 405		 */
 406		if (PageTransCompound(page)) {
 407			if (page_mapcount(page) != 1)
 408				break;
 409			get_page(page);
 410			if (!trylock_page(page)) {
 411				put_page(page);
 412				break;
 413			}
 414			pte_unmap_unlock(orig_pte, ptl);
 415			if (split_huge_page(page)) {
 416				unlock_page(page);
 417				put_page(page);
 418				pte_offset_map_lock(mm, pmd, addr, &ptl);
 419				break;
 420			}
 421			unlock_page(page);
 422			put_page(page);
 423			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 424			pte--;
 425			addr -= PAGE_SIZE;
 426			continue;
 427		}
 428
 429		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 430
 431		if (pte_young(ptent)) {
 432			ptent = ptep_get_and_clear_full(mm, addr, pte,
 433							tlb->fullmm);
 434			ptent = pte_mkold(ptent);
 435			set_pte_at(mm, addr, pte, ptent);
 436			tlb_remove_tlb_entry(tlb, pte, addr);
 437		}
 438
 439		/*
 440		 * We are deactivating a page for accelerating reclaiming.
 441		 * VM couldn't reclaim the page unless we clear PG_young.
 442		 * As a side effect, it makes confuse idle-page tracking
 443		 * because they will miss recent referenced history.
 444		 */
 445		ClearPageReferenced(page);
 446		test_and_clear_page_young(page);
 447		if (pageout) {
 448			if (!isolate_lru_page(page)) {
 449				if (PageUnevictable(page))
 450					putback_lru_page(page);
 451				else
 452					list_add(&page->lru, &page_list);
 453			}
 454		} else
 455			deactivate_page(page);
 456	}
 457
 458	arch_leave_lazy_mmu_mode();
 459	pte_unmap_unlock(orig_pte, ptl);
 460	if (pageout)
 461		reclaim_pages(&page_list);
 462	cond_resched();
 463
 464	return 0;
 465}
 466
 467static const struct mm_walk_ops cold_walk_ops = {
 468	.pmd_entry = madvise_cold_or_pageout_pte_range,
 469};
 470
 471static void madvise_cold_page_range(struct mmu_gather *tlb,
 472			     struct vm_area_struct *vma,
 473			     unsigned long addr, unsigned long end)
 474{
 475	struct madvise_walk_private walk_private = {
 476		.pageout = false,
 477		.tlb = tlb,
 478	};
 479
 480	tlb_start_vma(tlb, vma);
 481	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 482	tlb_end_vma(tlb, vma);
 483}
 484
 485static long madvise_cold(struct vm_area_struct *vma,
 486			struct vm_area_struct **prev,
 487			unsigned long start_addr, unsigned long end_addr)
 488{
 489	struct mm_struct *mm = vma->vm_mm;
 490	struct mmu_gather tlb;
 491
 492	*prev = vma;
 493	if (!can_madv_lru_vma(vma))
 494		return -EINVAL;
 495
 496	lru_add_drain();
 497	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
 498	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
 499	tlb_finish_mmu(&tlb, start_addr, end_addr);
 500
 501	return 0;
 502}
 503
 504static void madvise_pageout_page_range(struct mmu_gather *tlb,
 505			     struct vm_area_struct *vma,
 506			     unsigned long addr, unsigned long end)
 507{
 508	struct madvise_walk_private walk_private = {
 509		.pageout = true,
 510		.tlb = tlb,
 511	};
 512
 513	tlb_start_vma(tlb, vma);
 514	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 515	tlb_end_vma(tlb, vma);
 516}
 517
 518static inline bool can_do_pageout(struct vm_area_struct *vma)
 519{
 520	if (vma_is_anonymous(vma))
 521		return true;
 522	if (!vma->vm_file)
 523		return false;
 524	/*
 525	 * paging out pagecache only for non-anonymous mappings that correspond
 526	 * to the files the calling process could (if tried) open for writing;
 527	 * otherwise we'd be including shared non-exclusive mappings, which
 528	 * opens a side channel.
 529	 */
 530	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
 531		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
 532}
 533
 534static long madvise_pageout(struct vm_area_struct *vma,
 535			struct vm_area_struct **prev,
 536			unsigned long start_addr, unsigned long end_addr)
 537{
 538	struct mm_struct *mm = vma->vm_mm;
 539	struct mmu_gather tlb;
 540
 541	*prev = vma;
 542	if (!can_madv_lru_vma(vma))
 543		return -EINVAL;
 544
 545	if (!can_do_pageout(vma))
 546		return 0;
 547
 548	lru_add_drain();
 549	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
 550	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
 551	tlb_finish_mmu(&tlb, start_addr, end_addr);
 552
 
 553	return 0;
 554}
 555
 556static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
 557				unsigned long end, struct mm_walk *walk)
 558
 559{
 560	struct mmu_gather *tlb = walk->private;
 561	struct mm_struct *mm = tlb->mm;
 562	struct vm_area_struct *vma = walk->vma;
 563	spinlock_t *ptl;
 564	pte_t *orig_pte, *pte, ptent;
 565	struct page *page;
 566	int nr_swap = 0;
 567	unsigned long next;
 568
 569	next = pmd_addr_end(addr, end);
 570	if (pmd_trans_huge(*pmd))
 571		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
 572			goto next;
 573
 574	if (pmd_trans_unstable(pmd))
 575		return 0;
 576
 577	tlb_change_page_size(tlb, PAGE_SIZE);
 578	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 579	flush_tlb_batched_pending(mm);
 580	arch_enter_lazy_mmu_mode();
 581	for (; addr != end; pte++, addr += PAGE_SIZE) {
 582		ptent = *pte;
 583
 584		if (pte_none(ptent))
 585			continue;
 586		/*
 587		 * If the pte has swp_entry, just clear page table to
 588		 * prevent swap-in which is more expensive rather than
 589		 * (page allocation + zeroing).
 590		 */
 591		if (!pte_present(ptent)) {
 592			swp_entry_t entry;
 593
 594			entry = pte_to_swp_entry(ptent);
 595			if (non_swap_entry(entry))
 596				continue;
 597			nr_swap--;
 598			free_swap_and_cache(entry);
 599			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 600			continue;
 601		}
 602
 603		page = vm_normal_page(vma, addr, ptent);
 604		if (!page)
 605			continue;
 606
 607		/*
 608		 * If pmd isn't transhuge but the page is THP and
 609		 * is owned by only this process, split it and
 610		 * deactivate all pages.
 611		 */
 612		if (PageTransCompound(page)) {
 613			if (page_mapcount(page) != 1)
 614				goto out;
 615			get_page(page);
 616			if (!trylock_page(page)) {
 617				put_page(page);
 618				goto out;
 619			}
 620			pte_unmap_unlock(orig_pte, ptl);
 621			if (split_huge_page(page)) {
 622				unlock_page(page);
 623				put_page(page);
 624				pte_offset_map_lock(mm, pmd, addr, &ptl);
 625				goto out;
 626			}
 627			unlock_page(page);
 628			put_page(page);
 629			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 630			pte--;
 631			addr -= PAGE_SIZE;
 632			continue;
 633		}
 634
 635		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 636
 637		if (PageSwapCache(page) || PageDirty(page)) {
 638			if (!trylock_page(page))
 639				continue;
 640			/*
 641			 * If page is shared with others, we couldn't clear
 642			 * PG_dirty of the page.
 643			 */
 644			if (page_mapcount(page) != 1) {
 645				unlock_page(page);
 646				continue;
 647			}
 648
 649			if (PageSwapCache(page) && !try_to_free_swap(page)) {
 650				unlock_page(page);
 651				continue;
 652			}
 653
 654			ClearPageDirty(page);
 655			unlock_page(page);
 656		}
 657
 658		if (pte_young(ptent) || pte_dirty(ptent)) {
 659			/*
 660			 * Some of architecture(ex, PPC) don't update TLB
 661			 * with set_pte_at and tlb_remove_tlb_entry so for
 662			 * the portability, remap the pte with old|clean
 663			 * after pte clearing.
 664			 */
 665			ptent = ptep_get_and_clear_full(mm, addr, pte,
 666							tlb->fullmm);
 667
 668			ptent = pte_mkold(ptent);
 669			ptent = pte_mkclean(ptent);
 670			set_pte_at(mm, addr, pte, ptent);
 671			tlb_remove_tlb_entry(tlb, pte, addr);
 672		}
 673		mark_page_lazyfree(page);
 674	}
 675out:
 676	if (nr_swap) {
 677		if (current->mm == mm)
 678			sync_mm_rss(mm);
 679
 680		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
 681	}
 682	arch_leave_lazy_mmu_mode();
 683	pte_unmap_unlock(orig_pte, ptl);
 684	cond_resched();
 685next:
 686	return 0;
 687}
 688
 689static const struct mm_walk_ops madvise_free_walk_ops = {
 690	.pmd_entry		= madvise_free_pte_range,
 691};
 
 
 
 
 
 
 
 
 
 
 
 692
 693static int madvise_free_single_vma(struct vm_area_struct *vma,
 694			unsigned long start_addr, unsigned long end_addr)
 695{
 
 696	struct mm_struct *mm = vma->vm_mm;
 697	struct mmu_notifier_range range;
 698	struct mmu_gather tlb;
 699
 700	/* MADV_FREE works for only anon vma at the moment */
 701	if (!vma_is_anonymous(vma))
 702		return -EINVAL;
 703
 704	range.start = max(vma->vm_start, start_addr);
 705	if (range.start >= vma->vm_end)
 706		return -EINVAL;
 707	range.end = min(vma->vm_end, end_addr);
 708	if (range.end <= vma->vm_start)
 709		return -EINVAL;
 710	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
 711				range.start, range.end);
 712
 713	lru_add_drain();
 714	tlb_gather_mmu(&tlb, mm, range.start, range.end);
 715	update_hiwater_rss(mm);
 716
 717	mmu_notifier_invalidate_range_start(&range);
 718	tlb_start_vma(&tlb, vma);
 719	walk_page_range(vma->vm_mm, range.start, range.end,
 720			&madvise_free_walk_ops, &tlb);
 721	tlb_end_vma(&tlb, vma);
 722	mmu_notifier_invalidate_range_end(&range);
 723	tlb_finish_mmu(&tlb, range.start, range.end);
 724
 725	return 0;
 726}
 727
 728/*
 729 * Application no longer needs these pages.  If the pages are dirty,
 730 * it's OK to just throw them away.  The app will be more careful about
 731 * data it wants to keep.  Be sure to free swap resources too.  The
 732 * zap_page_range call sets things up for shrink_active_list to actually free
 733 * these pages later if no one else has touched them in the meantime,
 734 * although we could add these pages to a global reuse list for
 735 * shrink_active_list to pick up before reclaiming other pages.
 736 *
 737 * NB: This interface discards data rather than pushes it out to swap,
 738 * as some implementations do.  This has performance implications for
 739 * applications like large transactional databases which want to discard
 740 * pages in anonymous maps after committing to backing store the data
 741 * that was kept in them.  There is no reason to write this data out to
 742 * the swap area if the application is discarding it.
 743 *
 744 * An interface that causes the system to free clean pages and flush
 745 * dirty pages is already available as msync(MS_INVALIDATE).
 746 */
 747static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
 748					unsigned long start, unsigned long end)
 749{
 750	zap_page_range(vma, start, end - start);
 751	return 0;
 752}
 753
 754static long madvise_dontneed_free(struct vm_area_struct *vma,
 755				  struct vm_area_struct **prev,
 756				  unsigned long start, unsigned long end,
 757				  int behavior)
 758{
 759	*prev = vma;
 760	if (!can_madv_lru_vma(vma))
 761		return -EINVAL;
 762
 763	if (!userfaultfd_remove(vma, start, end)) {
 764		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
 765
 766		down_read(&current->mm->mmap_sem);
 767		vma = find_vma(current->mm, start);
 768		if (!vma)
 769			return -ENOMEM;
 770		if (start < vma->vm_start) {
 771			/*
 772			 * This "vma" under revalidation is the one
 773			 * with the lowest vma->vm_start where start
 774			 * is also < vma->vm_end. If start <
 775			 * vma->vm_start it means an hole materialized
 776			 * in the user address space within the
 777			 * virtual range passed to MADV_DONTNEED
 778			 * or MADV_FREE.
 779			 */
 780			return -ENOMEM;
 781		}
 782		if (!can_madv_lru_vma(vma))
 783			return -EINVAL;
 784		if (end > vma->vm_end) {
 785			/*
 786			 * Don't fail if end > vma->vm_end. If the old
 787			 * vma was splitted while the mmap_sem was
 788			 * released the effect of the concurrent
 789			 * operation may not cause madvise() to
 790			 * have an undefined result. There may be an
 791			 * adjacent next vma that we'll walk
 792			 * next. userfaultfd_remove() will generate an
 793			 * UFFD_EVENT_REMOVE repetition on the
 794			 * end-vma->vm_end range, but the manager can
 795			 * handle a repetition fine.
 796			 */
 797			end = vma->vm_end;
 798		}
 799		VM_WARN_ON(start >= end);
 800	}
 801
 802	if (behavior == MADV_DONTNEED)
 803		return madvise_dontneed_single_vma(vma, start, end);
 804	else if (behavior == MADV_FREE)
 805		return madvise_free_single_vma(vma, start, end);
 806	else
 807		return -EINVAL;
 808}
 809
 810/*
 811 * Application wants to free up the pages and associated backing store.
 812 * This is effectively punching a hole into the middle of a file.
 813 */
 814static long madvise_remove(struct vm_area_struct *vma,
 815				struct vm_area_struct **prev,
 816				unsigned long start, unsigned long end)
 817{
 818	loff_t offset;
 819	int error;
 820	struct file *f;
 821
 822	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
 823
 824	if (vma->vm_flags & VM_LOCKED)
 825		return -EINVAL;
 826
 827	f = vma->vm_file;
 828
 829	if (!f || !f->f_mapping || !f->f_mapping->host) {
 830			return -EINVAL;
 831	}
 832
 833	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
 834		return -EACCES;
 835
 836	offset = (loff_t)(start - vma->vm_start)
 837			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 838
 839	/*
 840	 * Filesystem's fallocate may need to take i_mutex.  We need to
 841	 * explicitly grab a reference because the vma (and hence the
 842	 * vma's reference to the file) can go away as soon as we drop
 843	 * mmap_sem.
 844	 */
 845	get_file(f);
 846	if (userfaultfd_remove(vma, start, end)) {
 847		/* mmap_sem was not released by userfaultfd_remove() */
 848		up_read(&current->mm->mmap_sem);
 849	}
 850	error = vfs_fallocate(f,
 851				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 852				offset, end - start);
 853	fput(f);
 854	down_read(&current->mm->mmap_sem);
 855	return error;
 856}
 857
 858#ifdef CONFIG_MEMORY_FAILURE
 859/*
 860 * Error injection support for memory error handling.
 861 */
 862static int madvise_inject_error(int behavior,
 863		unsigned long start, unsigned long end)
 864{
 865	struct page *page;
 866	struct zone *zone;
 867	unsigned int order;
 868
 869	if (!capable(CAP_SYS_ADMIN))
 870		return -EPERM;
 871
 872
 873	for (; start < end; start += PAGE_SIZE << order) {
 874		unsigned long pfn;
 875		int ret;
 876
 877		ret = get_user_pages_fast(start, 1, 0, &page);
 878		if (ret != 1)
 879			return ret;
 880		pfn = page_to_pfn(page);
 881
 882		/*
 883		 * When soft offlining hugepages, after migrating the page
 884		 * we dissolve it, therefore in the second loop "page" will
 885		 * no longer be a compound page, and order will be 0.
 886		 */
 887		order = compound_order(compound_head(page));
 888
 889		if (PageHWPoison(page)) {
 890			put_page(page);
 891			continue;
 892		}
 893
 894		if (behavior == MADV_SOFT_OFFLINE) {
 895			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
 896					pfn, start);
 897
 898			ret = soft_offline_page(page, MF_COUNT_INCREASED);
 899			if (ret)
 900				return ret;
 901			continue;
 902		}
 903
 904		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
 905				pfn, start);
 906
 907		/*
 908		 * Drop the page reference taken by get_user_pages_fast(). In
 909		 * the absence of MF_COUNT_INCREASED the memory_failure()
 910		 * routine is responsible for pinning the page to prevent it
 911		 * from being released back to the page allocator.
 912		 */
 913		put_page(page);
 914		ret = memory_failure(pfn, 0);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	/* Ensure that all poisoned pages are removed from per-cpu lists */
 920	for_each_populated_zone(zone)
 921		drain_all_pages(zone);
 922
 923	return 0;
 924}
 925#endif
 926
 927static long
 928madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
 929		unsigned long start, unsigned long end, int behavior)
 930{
 931	switch (behavior) {
 932	case MADV_REMOVE:
 933		return madvise_remove(vma, prev, start, end);
 934	case MADV_WILLNEED:
 935		return madvise_willneed(vma, prev, start, end);
 936	case MADV_COLD:
 937		return madvise_cold(vma, prev, start, end);
 938	case MADV_PAGEOUT:
 939		return madvise_pageout(vma, prev, start, end);
 940	case MADV_FREE:
 941	case MADV_DONTNEED:
 942		return madvise_dontneed_free(vma, prev, start, end, behavior);
 943	default:
 944		return madvise_behavior(vma, prev, start, end, behavior);
 945	}
 946}
 947
 948static bool
 949madvise_behavior_valid(int behavior)
 950{
 951	switch (behavior) {
 952	case MADV_DOFORK:
 953	case MADV_DONTFORK:
 954	case MADV_NORMAL:
 955	case MADV_SEQUENTIAL:
 956	case MADV_RANDOM:
 957	case MADV_REMOVE:
 958	case MADV_WILLNEED:
 959	case MADV_DONTNEED:
 960	case MADV_FREE:
 961	case MADV_COLD:
 962	case MADV_PAGEOUT:
 963#ifdef CONFIG_KSM
 964	case MADV_MERGEABLE:
 965	case MADV_UNMERGEABLE:
 966#endif
 967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 968	case MADV_HUGEPAGE:
 969	case MADV_NOHUGEPAGE:
 970#endif
 971	case MADV_DONTDUMP:
 972	case MADV_DODUMP:
 973	case MADV_WIPEONFORK:
 974	case MADV_KEEPONFORK:
 975#ifdef CONFIG_MEMORY_FAILURE
 976	case MADV_SOFT_OFFLINE:
 977	case MADV_HWPOISON:
 978#endif
 979		return true;
 980
 981	default:
 982		return false;
 983	}
 984}
 985
 986/*
 987 * The madvise(2) system call.
 988 *
 989 * Applications can use madvise() to advise the kernel how it should
 990 * handle paging I/O in this VM area.  The idea is to help the kernel
 991 * use appropriate read-ahead and caching techniques.  The information
 992 * provided is advisory only, and can be safely disregarded by the
 993 * kernel without affecting the correct operation of the application.
 994 *
 995 * behavior values:
 996 *  MADV_NORMAL - the default behavior is to read clusters.  This
 997 *		results in some read-ahead and read-behind.
 998 *  MADV_RANDOM - the system should read the minimum amount of data
 999 *		on any access, since it is unlikely that the appli-
1000 *		cation will need more than what it asks for.
1001 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1002 *		once, so they can be aggressively read ahead, and
1003 *		can be freed soon after they are accessed.
1004 *  MADV_WILLNEED - the application is notifying the system to read
1005 *		some pages ahead.
1006 *  MADV_DONTNEED - the application is finished with the given range,
1007 *		so the kernel can free resources associated with it.
1008 *  MADV_FREE - the application marks pages in the given range as lazy free,
1009 *		where actual purges are postponed until memory pressure happens.
1010 *  MADV_REMOVE - the application wants to free up the given range of
1011 *		pages and associated backing store.
1012 *  MADV_DONTFORK - omit this area from child's address space when forking:
1013 *		typically, to avoid COWing pages pinned by get_user_pages().
1014 *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1015 *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1016 *              range after a fork.
1017 *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1018 *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1019 *		were corrupted by unrecoverable hardware memory failure.
1020 *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1021 *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1022 *		this area with pages of identical content from other such areas.
1023 *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1024 *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1025 *		huge pages in the future. Existing pages might be coalesced and
1026 *		new pages might be allocated as THP.
1027 *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1028 *		transparent huge pages so the existing pages will not be
1029 *		coalesced into THP and new pages will not be allocated as THP.
1030 *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1031 *		from being included in its core dump.
1032 *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1033 *
1034 * return values:
1035 *  zero    - success
1036 *  -EINVAL - start + len < 0, start is not page-aligned,
1037 *		"behavior" is not a valid value, or application
1038 *		is attempting to release locked or shared pages,
1039 *		or the specified address range includes file, Huge TLB,
1040 *		MAP_SHARED or VMPFNMAP range.
1041 *  -ENOMEM - addresses in the specified range are not currently
1042 *		mapped, or are outside the AS of the process.
1043 *  -EIO    - an I/O error occurred while paging in data.
1044 *  -EBADF  - map exists, but area maps something that isn't a file.
1045 *  -EAGAIN - a kernel resource was temporarily unavailable.
1046 */
1047SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1048{
1049	unsigned long end, tmp;
1050	struct vm_area_struct *vma, *prev;
1051	int unmapped_error = 0;
1052	int error = -EINVAL;
1053	int write;
1054	size_t len;
1055	struct blk_plug plug;
1056
1057	start = untagged_addr(start);
1058
1059	if (!madvise_behavior_valid(behavior))
1060		return error;
1061
1062	if (start & ~PAGE_MASK)
1063		return error;
1064	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1065
1066	/* Check to see whether len was rounded up from small -ve to zero */
1067	if (len_in && !len)
1068		return error;
1069
1070	end = start + len;
1071	if (end < start)
1072		return error;
1073
1074	error = 0;
1075	if (end == start)
1076		return error;
1077
1078#ifdef CONFIG_MEMORY_FAILURE
1079	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1080		return madvise_inject_error(behavior, start, start + len_in);
1081#endif
1082
1083	write = madvise_need_mmap_write(behavior);
1084	if (write) {
1085		if (down_write_killable(&current->mm->mmap_sem))
1086			return -EINTR;
1087	} else {
1088		down_read(&current->mm->mmap_sem);
1089	}
1090
1091	/*
1092	 * If the interval [start,end) covers some unmapped address
1093	 * ranges, just ignore them, but return -ENOMEM at the end.
1094	 * - different from the way of handling in mlock etc.
1095	 */
1096	vma = find_vma_prev(current->mm, start, &prev);
1097	if (vma && start > vma->vm_start)
1098		prev = vma;
1099
1100	blk_start_plug(&plug);
1101	for (;;) {
1102		/* Still start < end. */
1103		error = -ENOMEM;
1104		if (!vma)
1105			goto out;
1106
1107		/* Here start < (end|vma->vm_end). */
1108		if (start < vma->vm_start) {
1109			unmapped_error = -ENOMEM;
1110			start = vma->vm_start;
1111			if (start >= end)
1112				goto out;
1113		}
1114
1115		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1116		tmp = vma->vm_end;
1117		if (end < tmp)
1118			tmp = end;
1119
1120		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1121		error = madvise_vma(vma, &prev, start, tmp, behavior);
1122		if (error)
1123			goto out;
1124		start = tmp;
1125		if (prev && start < prev->vm_end)
1126			start = prev->vm_end;
1127		error = unmapped_error;
1128		if (start >= end)
1129			goto out;
1130		if (prev)
1131			vma = prev->vm_next;
1132		else	/* madvise_remove dropped mmap_sem */
1133			vma = find_vma(current->mm, start);
1134	}
1135out:
1136	blk_finish_plug(&plug);
1137	if (write)
1138		up_write(&current->mm->mmap_sem);
1139	else
1140		up_read(&current->mm->mmap_sem);
1141
1142	return error;
1143}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/madvise.c
  4 *
  5 * Copyright (C) 1999  Linus Torvalds
  6 * Copyright (C) 2002  Christoph Hellwig
  7 */
  8
  9#include <linux/mman.h>
 10#include <linux/pagemap.h>
 11#include <linux/syscalls.h>
 12#include <linux/mempolicy.h>
 13#include <linux/page-isolation.h>
 
 14#include <linux/userfaultfd_k.h>
 15#include <linux/hugetlb.h>
 16#include <linux/falloc.h>
 
 17#include <linux/sched.h>
 18#include <linux/ksm.h>
 19#include <linux/fs.h>
 20#include <linux/file.h>
 21#include <linux/blkdev.h>
 22#include <linux/backing-dev.h>
 
 23#include <linux/swap.h>
 24#include <linux/swapops.h>
 25#include <linux/shmem_fs.h>
 26#include <linux/mmu_notifier.h>
 27
 28#include <asm/tlb.h>
 29
 30#include "internal.h"
 31
 
 
 
 
 
 32/*
 33 * Any behaviour which results in changes to the vma->vm_flags needs to
 34 * take mmap_sem for writing. Others, which simply traverse vmas, need
 35 * to only take it for reading.
 36 */
 37static int madvise_need_mmap_write(int behavior)
 38{
 39	switch (behavior) {
 40	case MADV_REMOVE:
 41	case MADV_WILLNEED:
 42	case MADV_DONTNEED:
 
 
 43	case MADV_FREE:
 44		return 0;
 45	default:
 46		/* be safe, default to 1. list exceptions explicitly */
 47		return 1;
 48	}
 49}
 50
 51/*
 52 * We can potentially split a vm area into separate
 53 * areas, each area with its own behavior.
 54 */
 55static long madvise_behavior(struct vm_area_struct *vma,
 56		     struct vm_area_struct **prev,
 57		     unsigned long start, unsigned long end, int behavior)
 58{
 59	struct mm_struct *mm = vma->vm_mm;
 60	int error = 0;
 61	pgoff_t pgoff;
 62	unsigned long new_flags = vma->vm_flags;
 63
 64	switch (behavior) {
 65	case MADV_NORMAL:
 66		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
 67		break;
 68	case MADV_SEQUENTIAL:
 69		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
 70		break;
 71	case MADV_RANDOM:
 72		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
 73		break;
 74	case MADV_DONTFORK:
 75		new_flags |= VM_DONTCOPY;
 76		break;
 77	case MADV_DOFORK:
 78		if (vma->vm_flags & VM_IO) {
 79			error = -EINVAL;
 80			goto out;
 81		}
 82		new_flags &= ~VM_DONTCOPY;
 83		break;
 84	case MADV_WIPEONFORK:
 85		/* MADV_WIPEONFORK is only supported on anonymous memory. */
 86		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
 87			error = -EINVAL;
 88			goto out;
 89		}
 90		new_flags |= VM_WIPEONFORK;
 91		break;
 92	case MADV_KEEPONFORK:
 93		new_flags &= ~VM_WIPEONFORK;
 94		break;
 95	case MADV_DONTDUMP:
 96		new_flags |= VM_DONTDUMP;
 97		break;
 98	case MADV_DODUMP:
 99		if (new_flags & VM_SPECIAL) {
100			error = -EINVAL;
101			goto out;
102		}
103		new_flags &= ~VM_DONTDUMP;
104		break;
105	case MADV_MERGEABLE:
106	case MADV_UNMERGEABLE:
107		error = ksm_madvise(vma, start, end, behavior, &new_flags);
108		if (error) {
109			/*
110			 * madvise() returns EAGAIN if kernel resources, such as
111			 * slab, are temporarily unavailable.
112			 */
113			if (error == -ENOMEM)
114				error = -EAGAIN;
115			goto out;
116		}
117		break;
118	case MADV_HUGEPAGE:
119	case MADV_NOHUGEPAGE:
120		error = hugepage_madvise(vma, &new_flags, behavior);
121		if (error) {
122			/*
123			 * madvise() returns EAGAIN if kernel resources, such as
124			 * slab, are temporarily unavailable.
125			 */
126			if (error == -ENOMEM)
127				error = -EAGAIN;
128			goto out;
129		}
130		break;
131	}
132
133	if (new_flags == vma->vm_flags) {
134		*prev = vma;
135		goto out;
136	}
137
138	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
139	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
140			  vma->vm_file, pgoff, vma_policy(vma),
141			  vma->vm_userfaultfd_ctx);
142	if (*prev) {
143		vma = *prev;
144		goto success;
145	}
146
147	*prev = vma;
148
149	if (start != vma->vm_start) {
150		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
151			error = -ENOMEM;
152			goto out;
153		}
154		error = __split_vma(mm, vma, start, 1);
155		if (error) {
156			/*
157			 * madvise() returns EAGAIN if kernel resources, such as
158			 * slab, are temporarily unavailable.
159			 */
160			if (error == -ENOMEM)
161				error = -EAGAIN;
162			goto out;
163		}
164	}
165
166	if (end != vma->vm_end) {
167		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
168			error = -ENOMEM;
169			goto out;
170		}
171		error = __split_vma(mm, vma, end, 0);
172		if (error) {
173			/*
174			 * madvise() returns EAGAIN if kernel resources, such as
175			 * slab, are temporarily unavailable.
176			 */
177			if (error == -ENOMEM)
178				error = -EAGAIN;
179			goto out;
180		}
181	}
182
183success:
184	/*
185	 * vm_flags is protected by the mmap_sem held in write mode.
186	 */
187	vma->vm_flags = new_flags;
 
 
 
 
 
 
 
 
188out:
189	return error;
190}
191
192#ifdef CONFIG_SWAP
193static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
194	unsigned long end, struct mm_walk *walk)
195{
196	pte_t *orig_pte;
197	struct vm_area_struct *vma = walk->private;
198	unsigned long index;
199
200	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
201		return 0;
202
203	for (index = start; index != end; index += PAGE_SIZE) {
204		pte_t pte;
205		swp_entry_t entry;
206		struct page *page;
207		spinlock_t *ptl;
208
209		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
210		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
211		pte_unmap_unlock(orig_pte, ptl);
212
213		if (pte_present(pte) || pte_none(pte))
214			continue;
215		entry = pte_to_swp_entry(pte);
216		if (unlikely(non_swap_entry(entry)))
217			continue;
218
219		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
220							vma, index, false);
221		if (page)
222			put_page(page);
223	}
224
225	return 0;
226}
227
228static void force_swapin_readahead(struct vm_area_struct *vma,
229		unsigned long start, unsigned long end)
230{
231	struct mm_walk walk = {
232		.mm = vma->vm_mm,
233		.pmd_entry = swapin_walk_pmd_entry,
234		.private = vma,
235	};
236
237	walk_page_range(start, end, &walk);
238
239	lru_add_drain();	/* Push any new pages onto the LRU now */
240}
241
242static void force_shm_swapin_readahead(struct vm_area_struct *vma,
243		unsigned long start, unsigned long end,
244		struct address_space *mapping)
245{
246	pgoff_t index;
247	struct page *page;
248	swp_entry_t swap;
249
250	for (; start < end; start += PAGE_SIZE) {
251		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
252
253		page = find_get_entry(mapping, index);
254		if (!radix_tree_exceptional_entry(page)) {
255			if (page)
256				put_page(page);
257			continue;
258		}
259		swap = radix_to_swp_entry(page);
260		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
261							NULL, 0, false);
262		if (page)
263			put_page(page);
264	}
265
266	lru_add_drain();	/* Push any new pages onto the LRU now */
267}
268#endif		/* CONFIG_SWAP */
269
270/*
271 * Schedule all required I/O operations.  Do not wait for completion.
272 */
273static long madvise_willneed(struct vm_area_struct *vma,
274			     struct vm_area_struct **prev,
275			     unsigned long start, unsigned long end)
276{
277	struct file *file = vma->vm_file;
 
278
279	*prev = vma;
280#ifdef CONFIG_SWAP
281	if (!file) {
282		force_swapin_readahead(vma, start, end);
 
283		return 0;
284	}
285
286	if (shmem_mapping(file->f_mapping)) {
287		force_shm_swapin_readahead(vma, start, end,
288					file->f_mapping);
289		return 0;
290	}
291#else
292	if (!file)
293		return -EBADF;
294#endif
295
296	if (IS_DAX(file_inode(file))) {
297		/* no bad return value, but ignore advice */
298		return 0;
299	}
300
301	start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
302	if (end > vma->vm_end)
303		end = vma->vm_end;
304	end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
306	force_page_cache_readahead(file->f_mapping, file, start, end - start);
307	return 0;
308}
309
310static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
311				unsigned long end, struct mm_walk *walk)
312
313{
314	struct mmu_gather *tlb = walk->private;
315	struct mm_struct *mm = tlb->mm;
316	struct vm_area_struct *vma = walk->vma;
317	spinlock_t *ptl;
318	pte_t *orig_pte, *pte, ptent;
319	struct page *page;
320	int nr_swap = 0;
321	unsigned long next;
322
323	next = pmd_addr_end(addr, end);
324	if (pmd_trans_huge(*pmd))
325		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
326			goto next;
327
328	if (pmd_trans_unstable(pmd))
329		return 0;
330
331	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
332	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
333	flush_tlb_batched_pending(mm);
334	arch_enter_lazy_mmu_mode();
335	for (; addr != end; pte++, addr += PAGE_SIZE) {
336		ptent = *pte;
337
338		if (pte_none(ptent))
339			continue;
340		/*
341		 * If the pte has swp_entry, just clear page table to
342		 * prevent swap-in which is more expensive rather than
343		 * (page allocation + zeroing).
344		 */
345		if (!pte_present(ptent)) {
346			swp_entry_t entry;
347
348			entry = pte_to_swp_entry(ptent);
349			if (non_swap_entry(entry))
350				continue;
351			nr_swap--;
352			free_swap_and_cache(entry);
353			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
354			continue;
355		}
356
357		page = _vm_normal_page(vma, addr, ptent, true);
358		if (!page)
359			continue;
360
361		/*
362		 * If pmd isn't transhuge but the page is THP and
363		 * is owned by only this process, split it and
364		 * deactivate all pages.
365		 */
366		if (PageTransCompound(page)) {
367			if (page_mapcount(page) != 1)
368				goto out;
369			get_page(page);
370			if (!trylock_page(page)) {
371				put_page(page);
372				goto out;
373			}
374			pte_unmap_unlock(orig_pte, ptl);
375			if (split_huge_page(page)) {
376				unlock_page(page);
377				put_page(page);
378				pte_offset_map_lock(mm, pmd, addr, &ptl);
379				goto out;
380			}
381			unlock_page(page);
382			put_page(page);
383			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
384			pte--;
385			addr -= PAGE_SIZE;
386			continue;
387		}
388
389		VM_BUG_ON_PAGE(PageTransCompound(page), page);
390
391		if (PageSwapCache(page) || PageDirty(page)) {
392			if (!trylock_page(page))
393				continue;
394			/*
395			 * If page is shared with others, we couldn't clear
396			 * PG_dirty of the page.
397			 */
398			if (page_mapcount(page) != 1) {
399				unlock_page(page);
400				continue;
401			}
402
403			if (PageSwapCache(page) && !try_to_free_swap(page)) {
404				unlock_page(page);
405				continue;
406			}
407
408			ClearPageDirty(page);
409			unlock_page(page);
410		}
411
412		if (pte_young(ptent) || pte_dirty(ptent)) {
413			/*
414			 * Some of architecture(ex, PPC) don't update TLB
415			 * with set_pte_at and tlb_remove_tlb_entry so for
416			 * the portability, remap the pte with old|clean
417			 * after pte clearing.
418			 */
419			ptent = ptep_get_and_clear_full(mm, addr, pte,
420							tlb->fullmm);
421
422			ptent = pte_mkold(ptent);
423			ptent = pte_mkclean(ptent);
424			set_pte_at(mm, addr, pte, ptent);
425			tlb_remove_tlb_entry(tlb, pte, addr);
426		}
427		mark_page_lazyfree(page);
428	}
429out:
430	if (nr_swap) {
431		if (current->mm == mm)
432			sync_mm_rss(mm);
433
434		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
435	}
436	arch_leave_lazy_mmu_mode();
437	pte_unmap_unlock(orig_pte, ptl);
438	cond_resched();
439next:
440	return 0;
441}
442
443static void madvise_free_page_range(struct mmu_gather *tlb,
444			     struct vm_area_struct *vma,
445			     unsigned long addr, unsigned long end)
446{
447	struct mm_walk free_walk = {
448		.pmd_entry = madvise_free_pte_range,
449		.mm = vma->vm_mm,
450		.private = tlb,
451	};
452
453	tlb_start_vma(tlb, vma);
454	walk_page_range(addr, end, &free_walk);
455	tlb_end_vma(tlb, vma);
456}
457
458static int madvise_free_single_vma(struct vm_area_struct *vma,
459			unsigned long start_addr, unsigned long end_addr)
460{
461	unsigned long start, end;
462	struct mm_struct *mm = vma->vm_mm;
 
463	struct mmu_gather tlb;
464
465	/* MADV_FREE works for only anon vma at the moment */
466	if (!vma_is_anonymous(vma))
467		return -EINVAL;
468
469	start = max(vma->vm_start, start_addr);
470	if (start >= vma->vm_end)
471		return -EINVAL;
472	end = min(vma->vm_end, end_addr);
473	if (end <= vma->vm_start)
474		return -EINVAL;
 
 
475
476	lru_add_drain();
477	tlb_gather_mmu(&tlb, mm, start, end);
478	update_hiwater_rss(mm);
479
480	mmu_notifier_invalidate_range_start(mm, start, end);
481	madvise_free_page_range(&tlb, vma, start, end);
482	mmu_notifier_invalidate_range_end(mm, start, end);
483	tlb_finish_mmu(&tlb, start, end);
 
 
 
484
485	return 0;
486}
487
488/*
489 * Application no longer needs these pages.  If the pages are dirty,
490 * it's OK to just throw them away.  The app will be more careful about
491 * data it wants to keep.  Be sure to free swap resources too.  The
492 * zap_page_range call sets things up for shrink_active_list to actually free
493 * these pages later if no one else has touched them in the meantime,
494 * although we could add these pages to a global reuse list for
495 * shrink_active_list to pick up before reclaiming other pages.
496 *
497 * NB: This interface discards data rather than pushes it out to swap,
498 * as some implementations do.  This has performance implications for
499 * applications like large transactional databases which want to discard
500 * pages in anonymous maps after committing to backing store the data
501 * that was kept in them.  There is no reason to write this data out to
502 * the swap area if the application is discarding it.
503 *
504 * An interface that causes the system to free clean pages and flush
505 * dirty pages is already available as msync(MS_INVALIDATE).
506 */
507static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
508					unsigned long start, unsigned long end)
509{
510	zap_page_range(vma, start, end - start);
511	return 0;
512}
513
514static long madvise_dontneed_free(struct vm_area_struct *vma,
515				  struct vm_area_struct **prev,
516				  unsigned long start, unsigned long end,
517				  int behavior)
518{
519	*prev = vma;
520	if (!can_madv_dontneed_vma(vma))
521		return -EINVAL;
522
523	if (!userfaultfd_remove(vma, start, end)) {
524		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
525
526		down_read(&current->mm->mmap_sem);
527		vma = find_vma(current->mm, start);
528		if (!vma)
529			return -ENOMEM;
530		if (start < vma->vm_start) {
531			/*
532			 * This "vma" under revalidation is the one
533			 * with the lowest vma->vm_start where start
534			 * is also < vma->vm_end. If start <
535			 * vma->vm_start it means an hole materialized
536			 * in the user address space within the
537			 * virtual range passed to MADV_DONTNEED
538			 * or MADV_FREE.
539			 */
540			return -ENOMEM;
541		}
542		if (!can_madv_dontneed_vma(vma))
543			return -EINVAL;
544		if (end > vma->vm_end) {
545			/*
546			 * Don't fail if end > vma->vm_end. If the old
547			 * vma was splitted while the mmap_sem was
548			 * released the effect of the concurrent
549			 * operation may not cause madvise() to
550			 * have an undefined result. There may be an
551			 * adjacent next vma that we'll walk
552			 * next. userfaultfd_remove() will generate an
553			 * UFFD_EVENT_REMOVE repetition on the
554			 * end-vma->vm_end range, but the manager can
555			 * handle a repetition fine.
556			 */
557			end = vma->vm_end;
558		}
559		VM_WARN_ON(start >= end);
560	}
561
562	if (behavior == MADV_DONTNEED)
563		return madvise_dontneed_single_vma(vma, start, end);
564	else if (behavior == MADV_FREE)
565		return madvise_free_single_vma(vma, start, end);
566	else
567		return -EINVAL;
568}
569
570/*
571 * Application wants to free up the pages and associated backing store.
572 * This is effectively punching a hole into the middle of a file.
573 */
574static long madvise_remove(struct vm_area_struct *vma,
575				struct vm_area_struct **prev,
576				unsigned long start, unsigned long end)
577{
578	loff_t offset;
579	int error;
580	struct file *f;
581
582	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
583
584	if (vma->vm_flags & VM_LOCKED)
585		return -EINVAL;
586
587	f = vma->vm_file;
588
589	if (!f || !f->f_mapping || !f->f_mapping->host) {
590			return -EINVAL;
591	}
592
593	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
594		return -EACCES;
595
596	offset = (loff_t)(start - vma->vm_start)
597			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
598
599	/*
600	 * Filesystem's fallocate may need to take i_mutex.  We need to
601	 * explicitly grab a reference because the vma (and hence the
602	 * vma's reference to the file) can go away as soon as we drop
603	 * mmap_sem.
604	 */
605	get_file(f);
606	if (userfaultfd_remove(vma, start, end)) {
607		/* mmap_sem was not released by userfaultfd_remove() */
608		up_read(&current->mm->mmap_sem);
609	}
610	error = vfs_fallocate(f,
611				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
612				offset, end - start);
613	fput(f);
614	down_read(&current->mm->mmap_sem);
615	return error;
616}
617
618#ifdef CONFIG_MEMORY_FAILURE
619/*
620 * Error injection support for memory error handling.
621 */
622static int madvise_inject_error(int behavior,
623		unsigned long start, unsigned long end)
624{
625	struct page *page;
626	struct zone *zone;
627	unsigned int order;
628
629	if (!capable(CAP_SYS_ADMIN))
630		return -EPERM;
631
632
633	for (; start < end; start += PAGE_SIZE << order) {
 
634		int ret;
635
636		ret = get_user_pages_fast(start, 1, 0, &page);
637		if (ret != 1)
638			return ret;
 
639
640		/*
641		 * When soft offlining hugepages, after migrating the page
642		 * we dissolve it, therefore in the second loop "page" will
643		 * no longer be a compound page, and order will be 0.
644		 */
645		order = compound_order(compound_head(page));
646
647		if (PageHWPoison(page)) {
648			put_page(page);
649			continue;
650		}
651
652		if (behavior == MADV_SOFT_OFFLINE) {
653			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
654						page_to_pfn(page), start);
655
656			ret = soft_offline_page(page, MF_COUNT_INCREASED);
657			if (ret)
658				return ret;
659			continue;
660		}
 
661		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
662						page_to_pfn(page), start);
663
664		ret = memory_failure(page_to_pfn(page), MF_COUNT_INCREASED);
 
 
 
 
 
 
 
665		if (ret)
666			return ret;
667	}
668
669	/* Ensure that all poisoned pages are removed from per-cpu lists */
670	for_each_populated_zone(zone)
671		drain_all_pages(zone);
672
673	return 0;
674}
675#endif
676
677static long
678madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
679		unsigned long start, unsigned long end, int behavior)
680{
681	switch (behavior) {
682	case MADV_REMOVE:
683		return madvise_remove(vma, prev, start, end);
684	case MADV_WILLNEED:
685		return madvise_willneed(vma, prev, start, end);
 
 
 
 
686	case MADV_FREE:
687	case MADV_DONTNEED:
688		return madvise_dontneed_free(vma, prev, start, end, behavior);
689	default:
690		return madvise_behavior(vma, prev, start, end, behavior);
691	}
692}
693
694static bool
695madvise_behavior_valid(int behavior)
696{
697	switch (behavior) {
698	case MADV_DOFORK:
699	case MADV_DONTFORK:
700	case MADV_NORMAL:
701	case MADV_SEQUENTIAL:
702	case MADV_RANDOM:
703	case MADV_REMOVE:
704	case MADV_WILLNEED:
705	case MADV_DONTNEED:
706	case MADV_FREE:
 
 
707#ifdef CONFIG_KSM
708	case MADV_MERGEABLE:
709	case MADV_UNMERGEABLE:
710#endif
711#ifdef CONFIG_TRANSPARENT_HUGEPAGE
712	case MADV_HUGEPAGE:
713	case MADV_NOHUGEPAGE:
714#endif
715	case MADV_DONTDUMP:
716	case MADV_DODUMP:
717	case MADV_WIPEONFORK:
718	case MADV_KEEPONFORK:
719#ifdef CONFIG_MEMORY_FAILURE
720	case MADV_SOFT_OFFLINE:
721	case MADV_HWPOISON:
722#endif
723		return true;
724
725	default:
726		return false;
727	}
728}
729
730/*
731 * The madvise(2) system call.
732 *
733 * Applications can use madvise() to advise the kernel how it should
734 * handle paging I/O in this VM area.  The idea is to help the kernel
735 * use appropriate read-ahead and caching techniques.  The information
736 * provided is advisory only, and can be safely disregarded by the
737 * kernel without affecting the correct operation of the application.
738 *
739 * behavior values:
740 *  MADV_NORMAL - the default behavior is to read clusters.  This
741 *		results in some read-ahead and read-behind.
742 *  MADV_RANDOM - the system should read the minimum amount of data
743 *		on any access, since it is unlikely that the appli-
744 *		cation will need more than what it asks for.
745 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
746 *		once, so they can be aggressively read ahead, and
747 *		can be freed soon after they are accessed.
748 *  MADV_WILLNEED - the application is notifying the system to read
749 *		some pages ahead.
750 *  MADV_DONTNEED - the application is finished with the given range,
751 *		so the kernel can free resources associated with it.
752 *  MADV_FREE - the application marks pages in the given range as lazy free,
753 *		where actual purges are postponed until memory pressure happens.
754 *  MADV_REMOVE - the application wants to free up the given range of
755 *		pages and associated backing store.
756 *  MADV_DONTFORK - omit this area from child's address space when forking:
757 *		typically, to avoid COWing pages pinned by get_user_pages().
758 *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
759 *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
760 *              range after a fork.
761 *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
762 *  MADV_HWPOISON - trigger memory error handler as if the given memory range
763 *		were corrupted by unrecoverable hardware memory failure.
764 *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
765 *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
766 *		this area with pages of identical content from other such areas.
767 *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
768 *  MADV_HUGEPAGE - the application wants to back the given range by transparent
769 *		huge pages in the future. Existing pages might be coalesced and
770 *		new pages might be allocated as THP.
771 *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
772 *		transparent huge pages so the existing pages will not be
773 *		coalesced into THP and new pages will not be allocated as THP.
774 *  MADV_DONTDUMP - the application wants to prevent pages in the given range
775 *		from being included in its core dump.
776 *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
777 *
778 * return values:
779 *  zero    - success
780 *  -EINVAL - start + len < 0, start is not page-aligned,
781 *		"behavior" is not a valid value, or application
782 *		is attempting to release locked or shared pages,
783 *		or the specified address range includes file, Huge TLB,
784 *		MAP_SHARED or VMPFNMAP range.
785 *  -ENOMEM - addresses in the specified range are not currently
786 *		mapped, or are outside the AS of the process.
787 *  -EIO    - an I/O error occurred while paging in data.
788 *  -EBADF  - map exists, but area maps something that isn't a file.
789 *  -EAGAIN - a kernel resource was temporarily unavailable.
790 */
791SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
792{
793	unsigned long end, tmp;
794	struct vm_area_struct *vma, *prev;
795	int unmapped_error = 0;
796	int error = -EINVAL;
797	int write;
798	size_t len;
799	struct blk_plug plug;
 
 
800
801	if (!madvise_behavior_valid(behavior))
802		return error;
803
804	if (start & ~PAGE_MASK)
805		return error;
806	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
807
808	/* Check to see whether len was rounded up from small -ve to zero */
809	if (len_in && !len)
810		return error;
811
812	end = start + len;
813	if (end < start)
814		return error;
815
816	error = 0;
817	if (end == start)
818		return error;
819
820#ifdef CONFIG_MEMORY_FAILURE
821	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
822		return madvise_inject_error(behavior, start, start + len_in);
823#endif
824
825	write = madvise_need_mmap_write(behavior);
826	if (write) {
827		if (down_write_killable(&current->mm->mmap_sem))
828			return -EINTR;
829	} else {
830		down_read(&current->mm->mmap_sem);
831	}
832
833	/*
834	 * If the interval [start,end) covers some unmapped address
835	 * ranges, just ignore them, but return -ENOMEM at the end.
836	 * - different from the way of handling in mlock etc.
837	 */
838	vma = find_vma_prev(current->mm, start, &prev);
839	if (vma && start > vma->vm_start)
840		prev = vma;
841
842	blk_start_plug(&plug);
843	for (;;) {
844		/* Still start < end. */
845		error = -ENOMEM;
846		if (!vma)
847			goto out;
848
849		/* Here start < (end|vma->vm_end). */
850		if (start < vma->vm_start) {
851			unmapped_error = -ENOMEM;
852			start = vma->vm_start;
853			if (start >= end)
854				goto out;
855		}
856
857		/* Here vma->vm_start <= start < (end|vma->vm_end) */
858		tmp = vma->vm_end;
859		if (end < tmp)
860			tmp = end;
861
862		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
863		error = madvise_vma(vma, &prev, start, tmp, behavior);
864		if (error)
865			goto out;
866		start = tmp;
867		if (prev && start < prev->vm_end)
868			start = prev->vm_end;
869		error = unmapped_error;
870		if (start >= end)
871			goto out;
872		if (prev)
873			vma = prev->vm_next;
874		else	/* madvise_remove dropped mmap_sem */
875			vma = find_vma(current->mm, start);
876	}
877out:
878	blk_finish_plug(&plug);
879	if (write)
880		up_write(&current->mm->mmap_sem);
881	else
882		up_read(&current->mm->mmap_sem);
883
884	return error;
885}