Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	linux/mm/madvise.c
   4 *
   5 * Copyright (C) 1999  Linus Torvalds
   6 * Copyright (C) 2002  Christoph Hellwig
   7 */
   8
   9#include <linux/mman.h>
  10#include <linux/pagemap.h>
  11#include <linux/syscalls.h>
  12#include <linux/mempolicy.h>
  13#include <linux/page-isolation.h>
  14#include <linux/page_idle.h>
  15#include <linux/userfaultfd_k.h>
  16#include <linux/hugetlb.h>
  17#include <linux/falloc.h>
  18#include <linux/fadvise.h>
  19#include <linux/sched.h>
 
 
  20#include <linux/ksm.h>
  21#include <linux/fs.h>
  22#include <linux/file.h>
  23#include <linux/blkdev.h>
  24#include <linux/backing-dev.h>
  25#include <linux/pagewalk.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/mmu_notifier.h>
  30
  31#include <asm/tlb.h>
  32
  33#include "internal.h"
  34
  35struct madvise_walk_private {
  36	struct mmu_gather *tlb;
  37	bool pageout;
  38};
  39
  40/*
  41 * Any behaviour which results in changes to the vma->vm_flags needs to
  42 * take mmap_sem for writing. Others, which simply traverse vmas, need
  43 * to only take it for reading.
  44 */
  45static int madvise_need_mmap_write(int behavior)
  46{
  47	switch (behavior) {
  48	case MADV_REMOVE:
  49	case MADV_WILLNEED:
  50	case MADV_DONTNEED:
  51	case MADV_COLD:
  52	case MADV_PAGEOUT:
  53	case MADV_FREE:
 
 
  54		return 0;
  55	default:
  56		/* be safe, default to 1. list exceptions explicitly */
  57		return 1;
  58	}
  59}
  60
  61/*
  62 * We can potentially split a vm area into separate
  63 * areas, each area with its own behavior.
  64 */
  65static long madvise_behavior(struct vm_area_struct *vma,
  66		     struct vm_area_struct **prev,
  67		     unsigned long start, unsigned long end, int behavior)
  68{
  69	struct mm_struct *mm = vma->vm_mm;
  70	int error = 0;
  71	pgoff_t pgoff;
  72	unsigned long new_flags = vma->vm_flags;
  73
  74	switch (behavior) {
  75	case MADV_NORMAL:
  76		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
  77		break;
  78	case MADV_SEQUENTIAL:
  79		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
  80		break;
  81	case MADV_RANDOM:
  82		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
  83		break;
  84	case MADV_DONTFORK:
  85		new_flags |= VM_DONTCOPY;
  86		break;
  87	case MADV_DOFORK:
  88		if (vma->vm_flags & VM_IO) {
  89			error = -EINVAL;
  90			goto out;
  91		}
  92		new_flags &= ~VM_DONTCOPY;
  93		break;
  94	case MADV_WIPEONFORK:
  95		/* MADV_WIPEONFORK is only supported on anonymous memory. */
  96		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
  97			error = -EINVAL;
  98			goto out;
  99		}
 100		new_flags |= VM_WIPEONFORK;
 101		break;
 102	case MADV_KEEPONFORK:
 103		new_flags &= ~VM_WIPEONFORK;
 104		break;
 105	case MADV_DONTDUMP:
 106		new_flags |= VM_DONTDUMP;
 107		break;
 108	case MADV_DODUMP:
 109		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
 110			error = -EINVAL;
 111			goto out;
 112		}
 113		new_flags &= ~VM_DONTDUMP;
 114		break;
 115	case MADV_MERGEABLE:
 116	case MADV_UNMERGEABLE:
 117		error = ksm_madvise(vma, start, end, behavior, &new_flags);
 118		if (error)
 119			goto out_convert_errno;
 120		break;
 121	case MADV_HUGEPAGE:
 122	case MADV_NOHUGEPAGE:
 123		error = hugepage_madvise(vma, &new_flags, behavior);
 124		if (error)
 125			goto out_convert_errno;
 126		break;
 127	}
 128
 129	if (new_flags == vma->vm_flags) {
 130		*prev = vma;
 131		goto out;
 132	}
 133
 134	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 135	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
 136			  vma->vm_file, pgoff, vma_policy(vma),
 137			  vma->vm_userfaultfd_ctx);
 138	if (*prev) {
 139		vma = *prev;
 140		goto success;
 141	}
 142
 143	*prev = vma;
 144
 145	if (start != vma->vm_start) {
 146		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 147			error = -ENOMEM;
 148			goto out;
 149		}
 150		error = __split_vma(mm, vma, start, 1);
 151		if (error)
 152			goto out_convert_errno;
 153	}
 154
 155	if (end != vma->vm_end) {
 156		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 157			error = -ENOMEM;
 158			goto out;
 159		}
 160		error = __split_vma(mm, vma, end, 0);
 161		if (error)
 162			goto out_convert_errno;
 163	}
 164
 165success:
 166	/*
 167	 * vm_flags is protected by the mmap_sem held in write mode.
 168	 */
 169	vma->vm_flags = new_flags;
 170
 171out_convert_errno:
 172	/*
 173	 * madvise() returns EAGAIN if kernel resources, such as
 174	 * slab, are temporarily unavailable.
 175	 */
 176	if (error == -ENOMEM)
 177		error = -EAGAIN;
 178out:
 179	return error;
 180}
 181
 182#ifdef CONFIG_SWAP
 183static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
 184	unsigned long end, struct mm_walk *walk)
 185{
 186	pte_t *orig_pte;
 187	struct vm_area_struct *vma = walk->private;
 188	unsigned long index;
 189
 190	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 191		return 0;
 192
 193	for (index = start; index != end; index += PAGE_SIZE) {
 194		pte_t pte;
 195		swp_entry_t entry;
 196		struct page *page;
 197		spinlock_t *ptl;
 198
 199		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
 200		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
 201		pte_unmap_unlock(orig_pte, ptl);
 202
 203		if (pte_present(pte) || pte_none(pte))
 204			continue;
 205		entry = pte_to_swp_entry(pte);
 206		if (unlikely(non_swap_entry(entry)))
 207			continue;
 208
 209		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
 210							vma, index, false);
 211		if (page)
 212			put_page(page);
 213	}
 214
 215	return 0;
 216}
 217
 218static const struct mm_walk_ops swapin_walk_ops = {
 219	.pmd_entry		= swapin_walk_pmd_entry,
 220};
 221
 222static void force_shm_swapin_readahead(struct vm_area_struct *vma,
 223		unsigned long start, unsigned long end,
 224		struct address_space *mapping)
 225{
 226	pgoff_t index;
 
 227	struct page *page;
 228	swp_entry_t swap;
 229
 230	for (; start < end; start += PAGE_SIZE) {
 231		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 232
 233		page = find_get_entry(mapping, index);
 234		if (!xa_is_value(page)) {
 235			if (page)
 236				put_page(page);
 237			continue;
 238		}
 
 
 239		swap = radix_to_swp_entry(page);
 240		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
 241							NULL, 0, false);
 242		if (page)
 243			put_page(page);
 
 
 244	}
 
 245
 246	lru_add_drain();	/* Push any new pages onto the LRU now */
 247}
 248#endif		/* CONFIG_SWAP */
 249
 250/*
 251 * Schedule all required I/O operations.  Do not wait for completion.
 252 */
 253static long madvise_willneed(struct vm_area_struct *vma,
 254			     struct vm_area_struct **prev,
 255			     unsigned long start, unsigned long end)
 256{
 
 257	struct file *file = vma->vm_file;
 258	loff_t offset;
 259
 260	*prev = vma;
 261#ifdef CONFIG_SWAP
 262	if (!file) {
 263		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
 264		lru_add_drain(); /* Push any new pages onto the LRU now */
 265		return 0;
 266	}
 267
 268	if (shmem_mapping(file->f_mapping)) {
 269		force_shm_swapin_readahead(vma, start, end,
 270					file->f_mapping);
 271		return 0;
 272	}
 273#else
 274	if (!file)
 275		return -EBADF;
 276#endif
 277
 278	if (IS_DAX(file_inode(file))) {
 279		/* no bad return value, but ignore advice */
 280		return 0;
 281	}
 282
 283	/*
 284	 * Filesystem's fadvise may need to take various locks.  We need to
 285	 * explicitly grab a reference because the vma (and hence the
 286	 * vma's reference to the file) can go away as soon as we drop
 287	 * mmap_sem.
 288	 */
 289	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
 290	get_file(file);
 291	up_read(&current->mm->mmap_sem);
 292	offset = (loff_t)(start - vma->vm_start)
 293			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 
 294	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
 295	fput(file);
 296	down_read(&current->mm->mmap_sem);
 297	return 0;
 298}
 299
 300static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
 301				unsigned long addr, unsigned long end,
 302				struct mm_walk *walk)
 303{
 304	struct madvise_walk_private *private = walk->private;
 305	struct mmu_gather *tlb = private->tlb;
 306	bool pageout = private->pageout;
 307	struct mm_struct *mm = tlb->mm;
 308	struct vm_area_struct *vma = walk->vma;
 309	pte_t *orig_pte, *pte, ptent;
 310	spinlock_t *ptl;
 311	struct page *page = NULL;
 312	LIST_HEAD(page_list);
 313
 314	if (fatal_signal_pending(current))
 315		return -EINTR;
 316
 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 318	if (pmd_trans_huge(*pmd)) {
 319		pmd_t orig_pmd;
 320		unsigned long next = pmd_addr_end(addr, end);
 321
 322		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 323		ptl = pmd_trans_huge_lock(pmd, vma);
 324		if (!ptl)
 325			return 0;
 326
 327		orig_pmd = *pmd;
 328		if (is_huge_zero_pmd(orig_pmd))
 329			goto huge_unlock;
 330
 331		if (unlikely(!pmd_present(orig_pmd))) {
 332			VM_BUG_ON(thp_migration_supported() &&
 333					!is_pmd_migration_entry(orig_pmd));
 334			goto huge_unlock;
 335		}
 336
 337		page = pmd_page(orig_pmd);
 
 
 
 
 
 338		if (next - addr != HPAGE_PMD_SIZE) {
 339			int err;
 340
 341			if (page_mapcount(page) != 1)
 342				goto huge_unlock;
 343
 344			get_page(page);
 345			spin_unlock(ptl);
 346			lock_page(page);
 347			err = split_huge_page(page);
 348			unlock_page(page);
 349			put_page(page);
 350			if (!err)
 351				goto regular_page;
 352			return 0;
 353		}
 354
 355		if (pmd_young(orig_pmd)) {
 356			pmdp_invalidate(vma, addr, pmd);
 357			orig_pmd = pmd_mkold(orig_pmd);
 358
 359			set_pmd_at(mm, addr, pmd, orig_pmd);
 360			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 361		}
 362
 363		ClearPageReferenced(page);
 364		test_and_clear_page_young(page);
 365		if (pageout) {
 366			if (!isolate_lru_page(page)) {
 367				if (PageUnevictable(page))
 368					putback_lru_page(page);
 369				else
 370					list_add(&page->lru, &page_list);
 371			}
 372		} else
 373			deactivate_page(page);
 374huge_unlock:
 375		spin_unlock(ptl);
 376		if (pageout)
 377			reclaim_pages(&page_list);
 378		return 0;
 379	}
 380
 
 381	if (pmd_trans_unstable(pmd))
 382		return 0;
 383regular_page:
 384#endif
 385	tlb_change_page_size(tlb, PAGE_SIZE);
 386	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 387	flush_tlb_batched_pending(mm);
 388	arch_enter_lazy_mmu_mode();
 389	for (; addr < end; pte++, addr += PAGE_SIZE) {
 390		ptent = *pte;
 391
 392		if (pte_none(ptent))
 393			continue;
 394
 395		if (!pte_present(ptent))
 396			continue;
 397
 398		page = vm_normal_page(vma, addr, ptent);
 399		if (!page)
 400			continue;
 401
 402		/*
 403		 * Creating a THP page is expensive so split it only if we
 404		 * are sure it's worth. Split it if we are only owner.
 405		 */
 406		if (PageTransCompound(page)) {
 407			if (page_mapcount(page) != 1)
 408				break;
 409			get_page(page);
 410			if (!trylock_page(page)) {
 411				put_page(page);
 412				break;
 413			}
 414			pte_unmap_unlock(orig_pte, ptl);
 415			if (split_huge_page(page)) {
 416				unlock_page(page);
 417				put_page(page);
 418				pte_offset_map_lock(mm, pmd, addr, &ptl);
 419				break;
 420			}
 421			unlock_page(page);
 422			put_page(page);
 423			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 424			pte--;
 425			addr -= PAGE_SIZE;
 426			continue;
 427		}
 428
 
 
 
 
 429		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 430
 431		if (pte_young(ptent)) {
 432			ptent = ptep_get_and_clear_full(mm, addr, pte,
 433							tlb->fullmm);
 434			ptent = pte_mkold(ptent);
 435			set_pte_at(mm, addr, pte, ptent);
 436			tlb_remove_tlb_entry(tlb, pte, addr);
 437		}
 438
 439		/*
 440		 * We are deactivating a page for accelerating reclaiming.
 441		 * VM couldn't reclaim the page unless we clear PG_young.
 442		 * As a side effect, it makes confuse idle-page tracking
 443		 * because they will miss recent referenced history.
 444		 */
 445		ClearPageReferenced(page);
 446		test_and_clear_page_young(page);
 447		if (pageout) {
 448			if (!isolate_lru_page(page)) {
 449				if (PageUnevictable(page))
 450					putback_lru_page(page);
 451				else
 452					list_add(&page->lru, &page_list);
 453			}
 454		} else
 455			deactivate_page(page);
 456	}
 457
 458	arch_leave_lazy_mmu_mode();
 459	pte_unmap_unlock(orig_pte, ptl);
 460	if (pageout)
 461		reclaim_pages(&page_list);
 462	cond_resched();
 463
 464	return 0;
 465}
 466
 467static const struct mm_walk_ops cold_walk_ops = {
 468	.pmd_entry = madvise_cold_or_pageout_pte_range,
 469};
 470
 471static void madvise_cold_page_range(struct mmu_gather *tlb,
 472			     struct vm_area_struct *vma,
 473			     unsigned long addr, unsigned long end)
 474{
 475	struct madvise_walk_private walk_private = {
 476		.pageout = false,
 477		.tlb = tlb,
 478	};
 479
 480	tlb_start_vma(tlb, vma);
 481	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 482	tlb_end_vma(tlb, vma);
 483}
 484
 485static long madvise_cold(struct vm_area_struct *vma,
 486			struct vm_area_struct **prev,
 487			unsigned long start_addr, unsigned long end_addr)
 488{
 489	struct mm_struct *mm = vma->vm_mm;
 490	struct mmu_gather tlb;
 491
 492	*prev = vma;
 493	if (!can_madv_lru_vma(vma))
 494		return -EINVAL;
 495
 496	lru_add_drain();
 497	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
 498	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
 499	tlb_finish_mmu(&tlb, start_addr, end_addr);
 500
 501	return 0;
 502}
 503
 504static void madvise_pageout_page_range(struct mmu_gather *tlb,
 505			     struct vm_area_struct *vma,
 506			     unsigned long addr, unsigned long end)
 507{
 508	struct madvise_walk_private walk_private = {
 509		.pageout = true,
 510		.tlb = tlb,
 511	};
 512
 513	tlb_start_vma(tlb, vma);
 514	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 515	tlb_end_vma(tlb, vma);
 516}
 517
 518static inline bool can_do_pageout(struct vm_area_struct *vma)
 519{
 520	if (vma_is_anonymous(vma))
 521		return true;
 522	if (!vma->vm_file)
 523		return false;
 524	/*
 525	 * paging out pagecache only for non-anonymous mappings that correspond
 526	 * to the files the calling process could (if tried) open for writing;
 527	 * otherwise we'd be including shared non-exclusive mappings, which
 528	 * opens a side channel.
 529	 */
 530	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
 531		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
 
 532}
 533
 534static long madvise_pageout(struct vm_area_struct *vma,
 535			struct vm_area_struct **prev,
 536			unsigned long start_addr, unsigned long end_addr)
 537{
 538	struct mm_struct *mm = vma->vm_mm;
 539	struct mmu_gather tlb;
 540
 541	*prev = vma;
 542	if (!can_madv_lru_vma(vma))
 543		return -EINVAL;
 544
 545	if (!can_do_pageout(vma))
 546		return 0;
 547
 548	lru_add_drain();
 549	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
 550	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
 551	tlb_finish_mmu(&tlb, start_addr, end_addr);
 552
 553	return 0;
 554}
 555
 556static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
 557				unsigned long end, struct mm_walk *walk)
 558
 559{
 560	struct mmu_gather *tlb = walk->private;
 561	struct mm_struct *mm = tlb->mm;
 562	struct vm_area_struct *vma = walk->vma;
 563	spinlock_t *ptl;
 564	pte_t *orig_pte, *pte, ptent;
 565	struct page *page;
 566	int nr_swap = 0;
 567	unsigned long next;
 568
 569	next = pmd_addr_end(addr, end);
 570	if (pmd_trans_huge(*pmd))
 571		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
 572			goto next;
 573
 574	if (pmd_trans_unstable(pmd))
 575		return 0;
 576
 577	tlb_change_page_size(tlb, PAGE_SIZE);
 578	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 579	flush_tlb_batched_pending(mm);
 580	arch_enter_lazy_mmu_mode();
 581	for (; addr != end; pte++, addr += PAGE_SIZE) {
 582		ptent = *pte;
 583
 584		if (pte_none(ptent))
 585			continue;
 586		/*
 587		 * If the pte has swp_entry, just clear page table to
 588		 * prevent swap-in which is more expensive rather than
 589		 * (page allocation + zeroing).
 590		 */
 591		if (!pte_present(ptent)) {
 592			swp_entry_t entry;
 593
 594			entry = pte_to_swp_entry(ptent);
 595			if (non_swap_entry(entry))
 596				continue;
 597			nr_swap--;
 598			free_swap_and_cache(entry);
 599			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 600			continue;
 601		}
 602
 603		page = vm_normal_page(vma, addr, ptent);
 604		if (!page)
 605			continue;
 606
 607		/*
 608		 * If pmd isn't transhuge but the page is THP and
 609		 * is owned by only this process, split it and
 610		 * deactivate all pages.
 611		 */
 612		if (PageTransCompound(page)) {
 613			if (page_mapcount(page) != 1)
 614				goto out;
 615			get_page(page);
 616			if (!trylock_page(page)) {
 617				put_page(page);
 618				goto out;
 619			}
 620			pte_unmap_unlock(orig_pte, ptl);
 621			if (split_huge_page(page)) {
 622				unlock_page(page);
 623				put_page(page);
 624				pte_offset_map_lock(mm, pmd, addr, &ptl);
 625				goto out;
 626			}
 627			unlock_page(page);
 628			put_page(page);
 629			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 630			pte--;
 631			addr -= PAGE_SIZE;
 632			continue;
 633		}
 634
 635		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 636
 637		if (PageSwapCache(page) || PageDirty(page)) {
 638			if (!trylock_page(page))
 639				continue;
 640			/*
 641			 * If page is shared with others, we couldn't clear
 642			 * PG_dirty of the page.
 643			 */
 644			if (page_mapcount(page) != 1) {
 645				unlock_page(page);
 646				continue;
 647			}
 648
 649			if (PageSwapCache(page) && !try_to_free_swap(page)) {
 650				unlock_page(page);
 651				continue;
 652			}
 653
 654			ClearPageDirty(page);
 655			unlock_page(page);
 656		}
 657
 658		if (pte_young(ptent) || pte_dirty(ptent)) {
 659			/*
 660			 * Some of architecture(ex, PPC) don't update TLB
 661			 * with set_pte_at and tlb_remove_tlb_entry so for
 662			 * the portability, remap the pte with old|clean
 663			 * after pte clearing.
 664			 */
 665			ptent = ptep_get_and_clear_full(mm, addr, pte,
 666							tlb->fullmm);
 667
 668			ptent = pte_mkold(ptent);
 669			ptent = pte_mkclean(ptent);
 670			set_pte_at(mm, addr, pte, ptent);
 671			tlb_remove_tlb_entry(tlb, pte, addr);
 672		}
 673		mark_page_lazyfree(page);
 674	}
 675out:
 676	if (nr_swap) {
 677		if (current->mm == mm)
 678			sync_mm_rss(mm);
 679
 680		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
 681	}
 682	arch_leave_lazy_mmu_mode();
 683	pte_unmap_unlock(orig_pte, ptl);
 684	cond_resched();
 685next:
 686	return 0;
 687}
 688
 689static const struct mm_walk_ops madvise_free_walk_ops = {
 690	.pmd_entry		= madvise_free_pte_range,
 691};
 692
 693static int madvise_free_single_vma(struct vm_area_struct *vma,
 694			unsigned long start_addr, unsigned long end_addr)
 695{
 696	struct mm_struct *mm = vma->vm_mm;
 697	struct mmu_notifier_range range;
 698	struct mmu_gather tlb;
 699
 700	/* MADV_FREE works for only anon vma at the moment */
 701	if (!vma_is_anonymous(vma))
 702		return -EINVAL;
 703
 704	range.start = max(vma->vm_start, start_addr);
 705	if (range.start >= vma->vm_end)
 706		return -EINVAL;
 707	range.end = min(vma->vm_end, end_addr);
 708	if (range.end <= vma->vm_start)
 709		return -EINVAL;
 710	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
 711				range.start, range.end);
 712
 713	lru_add_drain();
 714	tlb_gather_mmu(&tlb, mm, range.start, range.end);
 715	update_hiwater_rss(mm);
 716
 717	mmu_notifier_invalidate_range_start(&range);
 718	tlb_start_vma(&tlb, vma);
 719	walk_page_range(vma->vm_mm, range.start, range.end,
 720			&madvise_free_walk_ops, &tlb);
 721	tlb_end_vma(&tlb, vma);
 722	mmu_notifier_invalidate_range_end(&range);
 723	tlb_finish_mmu(&tlb, range.start, range.end);
 724
 725	return 0;
 726}
 727
 728/*
 729 * Application no longer needs these pages.  If the pages are dirty,
 730 * it's OK to just throw them away.  The app will be more careful about
 731 * data it wants to keep.  Be sure to free swap resources too.  The
 732 * zap_page_range call sets things up for shrink_active_list to actually free
 733 * these pages later if no one else has touched them in the meantime,
 734 * although we could add these pages to a global reuse list for
 735 * shrink_active_list to pick up before reclaiming other pages.
 736 *
 737 * NB: This interface discards data rather than pushes it out to swap,
 738 * as some implementations do.  This has performance implications for
 739 * applications like large transactional databases which want to discard
 740 * pages in anonymous maps after committing to backing store the data
 741 * that was kept in them.  There is no reason to write this data out to
 742 * the swap area if the application is discarding it.
 743 *
 744 * An interface that causes the system to free clean pages and flush
 745 * dirty pages is already available as msync(MS_INVALIDATE).
 746 */
 747static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
 748					unsigned long start, unsigned long end)
 749{
 750	zap_page_range(vma, start, end - start);
 751	return 0;
 752}
 753
 754static long madvise_dontneed_free(struct vm_area_struct *vma,
 755				  struct vm_area_struct **prev,
 756				  unsigned long start, unsigned long end,
 757				  int behavior)
 758{
 
 
 759	*prev = vma;
 760	if (!can_madv_lru_vma(vma))
 761		return -EINVAL;
 762
 763	if (!userfaultfd_remove(vma, start, end)) {
 764		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
 765
 766		down_read(&current->mm->mmap_sem);
 767		vma = find_vma(current->mm, start);
 768		if (!vma)
 769			return -ENOMEM;
 770		if (start < vma->vm_start) {
 771			/*
 772			 * This "vma" under revalidation is the one
 773			 * with the lowest vma->vm_start where start
 774			 * is also < vma->vm_end. If start <
 775			 * vma->vm_start it means an hole materialized
 776			 * in the user address space within the
 777			 * virtual range passed to MADV_DONTNEED
 778			 * or MADV_FREE.
 779			 */
 780			return -ENOMEM;
 781		}
 782		if (!can_madv_lru_vma(vma))
 783			return -EINVAL;
 784		if (end > vma->vm_end) {
 785			/*
 786			 * Don't fail if end > vma->vm_end. If the old
 787			 * vma was splitted while the mmap_sem was
 788			 * released the effect of the concurrent
 789			 * operation may not cause madvise() to
 790			 * have an undefined result. There may be an
 791			 * adjacent next vma that we'll walk
 792			 * next. userfaultfd_remove() will generate an
 793			 * UFFD_EVENT_REMOVE repetition on the
 794			 * end-vma->vm_end range, but the manager can
 795			 * handle a repetition fine.
 796			 */
 797			end = vma->vm_end;
 798		}
 799		VM_WARN_ON(start >= end);
 800	}
 801
 802	if (behavior == MADV_DONTNEED)
 803		return madvise_dontneed_single_vma(vma, start, end);
 804	else if (behavior == MADV_FREE)
 805		return madvise_free_single_vma(vma, start, end);
 806	else
 807		return -EINVAL;
 808}
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810/*
 811 * Application wants to free up the pages and associated backing store.
 812 * This is effectively punching a hole into the middle of a file.
 813 */
 814static long madvise_remove(struct vm_area_struct *vma,
 815				struct vm_area_struct **prev,
 816				unsigned long start, unsigned long end)
 817{
 818	loff_t offset;
 819	int error;
 820	struct file *f;
 
 821
 822	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
 823
 824	if (vma->vm_flags & VM_LOCKED)
 825		return -EINVAL;
 826
 827	f = vma->vm_file;
 828
 829	if (!f || !f->f_mapping || !f->f_mapping->host) {
 830			return -EINVAL;
 831	}
 832
 833	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
 834		return -EACCES;
 835
 836	offset = (loff_t)(start - vma->vm_start)
 837			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 838
 839	/*
 840	 * Filesystem's fallocate may need to take i_mutex.  We need to
 841	 * explicitly grab a reference because the vma (and hence the
 842	 * vma's reference to the file) can go away as soon as we drop
 843	 * mmap_sem.
 844	 */
 845	get_file(f);
 846	if (userfaultfd_remove(vma, start, end)) {
 847		/* mmap_sem was not released by userfaultfd_remove() */
 848		up_read(&current->mm->mmap_sem);
 849	}
 850	error = vfs_fallocate(f,
 851				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 852				offset, end - start);
 853	fput(f);
 854	down_read(&current->mm->mmap_sem);
 855	return error;
 856}
 857
 858#ifdef CONFIG_MEMORY_FAILURE
 859/*
 860 * Error injection support for memory error handling.
 861 */
 862static int madvise_inject_error(int behavior,
 863		unsigned long start, unsigned long end)
 864{
 865	struct page *page;
 866	struct zone *zone;
 867	unsigned int order;
 868
 869	if (!capable(CAP_SYS_ADMIN))
 870		return -EPERM;
 871
 872
 873	for (; start < end; start += PAGE_SIZE << order) {
 874		unsigned long pfn;
 
 875		int ret;
 876
 877		ret = get_user_pages_fast(start, 1, 0, &page);
 878		if (ret != 1)
 879			return ret;
 880		pfn = page_to_pfn(page);
 881
 882		/*
 883		 * When soft offlining hugepages, after migrating the page
 884		 * we dissolve it, therefore in the second loop "page" will
 885		 * no longer be a compound page, and order will be 0.
 886		 */
 887		order = compound_order(compound_head(page));
 888
 889		if (PageHWPoison(page)) {
 890			put_page(page);
 891			continue;
 892		}
 893
 894		if (behavior == MADV_SOFT_OFFLINE) {
 895			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
 896					pfn, start);
 897
 898			ret = soft_offline_page(page, MF_COUNT_INCREASED);
 899			if (ret)
 900				return ret;
 901			continue;
 902		}
 903
 904		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
 905				pfn, start);
 906
 907		/*
 908		 * Drop the page reference taken by get_user_pages_fast(). In
 909		 * the absence of MF_COUNT_INCREASED the memory_failure()
 910		 * routine is responsible for pinning the page to prevent it
 911		 * from being released back to the page allocator.
 912		 */
 913		put_page(page);
 914		ret = memory_failure(pfn, 0);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	/* Ensure that all poisoned pages are removed from per-cpu lists */
 920	for_each_populated_zone(zone)
 921		drain_all_pages(zone);
 922
 923	return 0;
 924}
 925#endif
 926
 927static long
 928madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
 929		unsigned long start, unsigned long end, int behavior)
 930{
 931	switch (behavior) {
 932	case MADV_REMOVE:
 933		return madvise_remove(vma, prev, start, end);
 934	case MADV_WILLNEED:
 935		return madvise_willneed(vma, prev, start, end);
 936	case MADV_COLD:
 937		return madvise_cold(vma, prev, start, end);
 938	case MADV_PAGEOUT:
 939		return madvise_pageout(vma, prev, start, end);
 940	case MADV_FREE:
 941	case MADV_DONTNEED:
 942		return madvise_dontneed_free(vma, prev, start, end, behavior);
 
 
 
 943	default:
 944		return madvise_behavior(vma, prev, start, end, behavior);
 945	}
 946}
 947
 948static bool
 949madvise_behavior_valid(int behavior)
 950{
 951	switch (behavior) {
 952	case MADV_DOFORK:
 953	case MADV_DONTFORK:
 954	case MADV_NORMAL:
 955	case MADV_SEQUENTIAL:
 956	case MADV_RANDOM:
 957	case MADV_REMOVE:
 958	case MADV_WILLNEED:
 959	case MADV_DONTNEED:
 960	case MADV_FREE:
 961	case MADV_COLD:
 962	case MADV_PAGEOUT:
 
 
 963#ifdef CONFIG_KSM
 964	case MADV_MERGEABLE:
 965	case MADV_UNMERGEABLE:
 966#endif
 967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 968	case MADV_HUGEPAGE:
 969	case MADV_NOHUGEPAGE:
 970#endif
 971	case MADV_DONTDUMP:
 972	case MADV_DODUMP:
 973	case MADV_WIPEONFORK:
 974	case MADV_KEEPONFORK:
 975#ifdef CONFIG_MEMORY_FAILURE
 976	case MADV_SOFT_OFFLINE:
 977	case MADV_HWPOISON:
 978#endif
 979		return true;
 980
 981	default:
 982		return false;
 983	}
 984}
 985
 
 
 
 
 
 
 
 
 
 
 
 
 986/*
 987 * The madvise(2) system call.
 988 *
 989 * Applications can use madvise() to advise the kernel how it should
 990 * handle paging I/O in this VM area.  The idea is to help the kernel
 991 * use appropriate read-ahead and caching techniques.  The information
 992 * provided is advisory only, and can be safely disregarded by the
 993 * kernel without affecting the correct operation of the application.
 994 *
 995 * behavior values:
 996 *  MADV_NORMAL - the default behavior is to read clusters.  This
 997 *		results in some read-ahead and read-behind.
 998 *  MADV_RANDOM - the system should read the minimum amount of data
 999 *		on any access, since it is unlikely that the appli-
1000 *		cation will need more than what it asks for.
1001 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1002 *		once, so they can be aggressively read ahead, and
1003 *		can be freed soon after they are accessed.
1004 *  MADV_WILLNEED - the application is notifying the system to read
1005 *		some pages ahead.
1006 *  MADV_DONTNEED - the application is finished with the given range,
1007 *		so the kernel can free resources associated with it.
1008 *  MADV_FREE - the application marks pages in the given range as lazy free,
1009 *		where actual purges are postponed until memory pressure happens.
1010 *  MADV_REMOVE - the application wants to free up the given range of
1011 *		pages and associated backing store.
1012 *  MADV_DONTFORK - omit this area from child's address space when forking:
1013 *		typically, to avoid COWing pages pinned by get_user_pages().
1014 *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1015 *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1016 *              range after a fork.
1017 *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1018 *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1019 *		were corrupted by unrecoverable hardware memory failure.
1020 *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1021 *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1022 *		this area with pages of identical content from other such areas.
1023 *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1024 *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1025 *		huge pages in the future. Existing pages might be coalesced and
1026 *		new pages might be allocated as THP.
1027 *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1028 *		transparent huge pages so the existing pages will not be
1029 *		coalesced into THP and new pages will not be allocated as THP.
1030 *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1031 *		from being included in its core dump.
1032 *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
 
 
 
 
 
 
 
 
 
1033 *
1034 * return values:
1035 *  zero    - success
1036 *  -EINVAL - start + len < 0, start is not page-aligned,
1037 *		"behavior" is not a valid value, or application
1038 *		is attempting to release locked or shared pages,
1039 *		or the specified address range includes file, Huge TLB,
1040 *		MAP_SHARED or VMPFNMAP range.
1041 *  -ENOMEM - addresses in the specified range are not currently
1042 *		mapped, or are outside the AS of the process.
1043 *  -EIO    - an I/O error occurred while paging in data.
1044 *  -EBADF  - map exists, but area maps something that isn't a file.
1045 *  -EAGAIN - a kernel resource was temporarily unavailable.
1046 */
1047SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1048{
1049	unsigned long end, tmp;
1050	struct vm_area_struct *vma, *prev;
1051	int unmapped_error = 0;
1052	int error = -EINVAL;
1053	int write;
1054	size_t len;
1055	struct blk_plug plug;
1056
1057	start = untagged_addr(start);
1058
1059	if (!madvise_behavior_valid(behavior))
1060		return error;
1061
1062	if (start & ~PAGE_MASK)
1063		return error;
1064	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1065
1066	/* Check to see whether len was rounded up from small -ve to zero */
1067	if (len_in && !len)
1068		return error;
1069
1070	end = start + len;
1071	if (end < start)
1072		return error;
1073
1074	error = 0;
1075	if (end == start)
1076		return error;
1077
1078#ifdef CONFIG_MEMORY_FAILURE
1079	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1080		return madvise_inject_error(behavior, start, start + len_in);
1081#endif
1082
1083	write = madvise_need_mmap_write(behavior);
1084	if (write) {
1085		if (down_write_killable(&current->mm->mmap_sem))
1086			return -EINTR;
1087	} else {
1088		down_read(&current->mm->mmap_sem);
1089	}
1090
1091	/*
1092	 * If the interval [start,end) covers some unmapped address
1093	 * ranges, just ignore them, but return -ENOMEM at the end.
1094	 * - different from the way of handling in mlock etc.
1095	 */
1096	vma = find_vma_prev(current->mm, start, &prev);
1097	if (vma && start > vma->vm_start)
1098		prev = vma;
1099
1100	blk_start_plug(&plug);
1101	for (;;) {
1102		/* Still start < end. */
1103		error = -ENOMEM;
1104		if (!vma)
1105			goto out;
1106
1107		/* Here start < (end|vma->vm_end). */
1108		if (start < vma->vm_start) {
1109			unmapped_error = -ENOMEM;
1110			start = vma->vm_start;
1111			if (start >= end)
1112				goto out;
1113		}
1114
1115		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1116		tmp = vma->vm_end;
1117		if (end < tmp)
1118			tmp = end;
1119
1120		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1121		error = madvise_vma(vma, &prev, start, tmp, behavior);
1122		if (error)
1123			goto out;
1124		start = tmp;
1125		if (prev && start < prev->vm_end)
1126			start = prev->vm_end;
1127		error = unmapped_error;
1128		if (start >= end)
1129			goto out;
1130		if (prev)
1131			vma = prev->vm_next;
1132		else	/* madvise_remove dropped mmap_sem */
1133			vma = find_vma(current->mm, start);
1134	}
1135out:
1136	blk_finish_plug(&plug);
1137	if (write)
1138		up_write(&current->mm->mmap_sem);
1139	else
1140		up_read(&current->mm->mmap_sem);
1141
1142	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	linux/mm/madvise.c
   4 *
   5 * Copyright (C) 1999  Linus Torvalds
   6 * Copyright (C) 2002  Christoph Hellwig
   7 */
   8
   9#include <linux/mman.h>
  10#include <linux/pagemap.h>
  11#include <linux/syscalls.h>
  12#include <linux/mempolicy.h>
  13#include <linux/page-isolation.h>
  14#include <linux/page_idle.h>
  15#include <linux/userfaultfd_k.h>
  16#include <linux/hugetlb.h>
  17#include <linux/falloc.h>
  18#include <linux/fadvise.h>
  19#include <linux/sched.h>
  20#include <linux/sched/mm.h>
  21#include <linux/uio.h>
  22#include <linux/ksm.h>
  23#include <linux/fs.h>
  24#include <linux/file.h>
  25#include <linux/blkdev.h>
  26#include <linux/backing-dev.h>
  27#include <linux/pagewalk.h>
  28#include <linux/swap.h>
  29#include <linux/swapops.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/mmu_notifier.h>
  32
  33#include <asm/tlb.h>
  34
  35#include "internal.h"
  36
  37struct madvise_walk_private {
  38	struct mmu_gather *tlb;
  39	bool pageout;
  40};
  41
  42/*
  43 * Any behaviour which results in changes to the vma->vm_flags needs to
  44 * take mmap_lock for writing. Others, which simply traverse vmas, need
  45 * to only take it for reading.
  46 */
  47static int madvise_need_mmap_write(int behavior)
  48{
  49	switch (behavior) {
  50	case MADV_REMOVE:
  51	case MADV_WILLNEED:
  52	case MADV_DONTNEED:
  53	case MADV_COLD:
  54	case MADV_PAGEOUT:
  55	case MADV_FREE:
  56	case MADV_POPULATE_READ:
  57	case MADV_POPULATE_WRITE:
  58		return 0;
  59	default:
  60		/* be safe, default to 1. list exceptions explicitly */
  61		return 1;
  62	}
  63}
  64
  65/*
  66 * We can potentially split a vm area into separate
  67 * areas, each area with its own behavior.
  68 */
  69static long madvise_behavior(struct vm_area_struct *vma,
  70		     struct vm_area_struct **prev,
  71		     unsigned long start, unsigned long end, int behavior)
  72{
  73	struct mm_struct *mm = vma->vm_mm;
  74	int error = 0;
  75	pgoff_t pgoff;
  76	unsigned long new_flags = vma->vm_flags;
  77
  78	switch (behavior) {
  79	case MADV_NORMAL:
  80		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
  81		break;
  82	case MADV_SEQUENTIAL:
  83		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
  84		break;
  85	case MADV_RANDOM:
  86		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
  87		break;
  88	case MADV_DONTFORK:
  89		new_flags |= VM_DONTCOPY;
  90		break;
  91	case MADV_DOFORK:
  92		if (vma->vm_flags & VM_IO) {
  93			error = -EINVAL;
  94			goto out;
  95		}
  96		new_flags &= ~VM_DONTCOPY;
  97		break;
  98	case MADV_WIPEONFORK:
  99		/* MADV_WIPEONFORK is only supported on anonymous memory. */
 100		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
 101			error = -EINVAL;
 102			goto out;
 103		}
 104		new_flags |= VM_WIPEONFORK;
 105		break;
 106	case MADV_KEEPONFORK:
 107		new_flags &= ~VM_WIPEONFORK;
 108		break;
 109	case MADV_DONTDUMP:
 110		new_flags |= VM_DONTDUMP;
 111		break;
 112	case MADV_DODUMP:
 113		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
 114			error = -EINVAL;
 115			goto out;
 116		}
 117		new_flags &= ~VM_DONTDUMP;
 118		break;
 119	case MADV_MERGEABLE:
 120	case MADV_UNMERGEABLE:
 121		error = ksm_madvise(vma, start, end, behavior, &new_flags);
 122		if (error)
 123			goto out_convert_errno;
 124		break;
 125	case MADV_HUGEPAGE:
 126	case MADV_NOHUGEPAGE:
 127		error = hugepage_madvise(vma, &new_flags, behavior);
 128		if (error)
 129			goto out_convert_errno;
 130		break;
 131	}
 132
 133	if (new_flags == vma->vm_flags) {
 134		*prev = vma;
 135		goto out;
 136	}
 137
 138	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 139	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
 140			  vma->vm_file, pgoff, vma_policy(vma),
 141			  vma->vm_userfaultfd_ctx);
 142	if (*prev) {
 143		vma = *prev;
 144		goto success;
 145	}
 146
 147	*prev = vma;
 148
 149	if (start != vma->vm_start) {
 150		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 151			error = -ENOMEM;
 152			goto out;
 153		}
 154		error = __split_vma(mm, vma, start, 1);
 155		if (error)
 156			goto out_convert_errno;
 157	}
 158
 159	if (end != vma->vm_end) {
 160		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 161			error = -ENOMEM;
 162			goto out;
 163		}
 164		error = __split_vma(mm, vma, end, 0);
 165		if (error)
 166			goto out_convert_errno;
 167	}
 168
 169success:
 170	/*
 171	 * vm_flags is protected by the mmap_lock held in write mode.
 172	 */
 173	vma->vm_flags = new_flags;
 174
 175out_convert_errno:
 176	/*
 177	 * madvise() returns EAGAIN if kernel resources, such as
 178	 * slab, are temporarily unavailable.
 179	 */
 180	if (error == -ENOMEM)
 181		error = -EAGAIN;
 182out:
 183	return error;
 184}
 185
 186#ifdef CONFIG_SWAP
 187static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
 188	unsigned long end, struct mm_walk *walk)
 189{
 190	pte_t *orig_pte;
 191	struct vm_area_struct *vma = walk->private;
 192	unsigned long index;
 193
 194	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 195		return 0;
 196
 197	for (index = start; index != end; index += PAGE_SIZE) {
 198		pte_t pte;
 199		swp_entry_t entry;
 200		struct page *page;
 201		spinlock_t *ptl;
 202
 203		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
 204		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
 205		pte_unmap_unlock(orig_pte, ptl);
 206
 207		if (pte_present(pte) || pte_none(pte))
 208			continue;
 209		entry = pte_to_swp_entry(pte);
 210		if (unlikely(non_swap_entry(entry)))
 211			continue;
 212
 213		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
 214							vma, index, false);
 215		if (page)
 216			put_page(page);
 217	}
 218
 219	return 0;
 220}
 221
 222static const struct mm_walk_ops swapin_walk_ops = {
 223	.pmd_entry		= swapin_walk_pmd_entry,
 224};
 225
 226static void force_shm_swapin_readahead(struct vm_area_struct *vma,
 227		unsigned long start, unsigned long end,
 228		struct address_space *mapping)
 229{
 230	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
 231	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
 232	struct page *page;
 
 233
 234	rcu_read_lock();
 235	xas_for_each(&xas, page, end_index) {
 236		swp_entry_t swap;
 237
 238		if (!xa_is_value(page))
 
 
 
 239			continue;
 240		xas_pause(&xas);
 241		rcu_read_unlock();
 242
 243		swap = radix_to_swp_entry(page);
 244		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
 245							NULL, 0, false);
 246		if (page)
 247			put_page(page);
 248
 249		rcu_read_lock();
 250	}
 251	rcu_read_unlock();
 252
 253	lru_add_drain();	/* Push any new pages onto the LRU now */
 254}
 255#endif		/* CONFIG_SWAP */
 256
 257/*
 258 * Schedule all required I/O operations.  Do not wait for completion.
 259 */
 260static long madvise_willneed(struct vm_area_struct *vma,
 261			     struct vm_area_struct **prev,
 262			     unsigned long start, unsigned long end)
 263{
 264	struct mm_struct *mm = vma->vm_mm;
 265	struct file *file = vma->vm_file;
 266	loff_t offset;
 267
 268	*prev = vma;
 269#ifdef CONFIG_SWAP
 270	if (!file) {
 271		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
 272		lru_add_drain(); /* Push any new pages onto the LRU now */
 273		return 0;
 274	}
 275
 276	if (shmem_mapping(file->f_mapping)) {
 277		force_shm_swapin_readahead(vma, start, end,
 278					file->f_mapping);
 279		return 0;
 280	}
 281#else
 282	if (!file)
 283		return -EBADF;
 284#endif
 285
 286	if (IS_DAX(file_inode(file))) {
 287		/* no bad return value, but ignore advice */
 288		return 0;
 289	}
 290
 291	/*
 292	 * Filesystem's fadvise may need to take various locks.  We need to
 293	 * explicitly grab a reference because the vma (and hence the
 294	 * vma's reference to the file) can go away as soon as we drop
 295	 * mmap_lock.
 296	 */
 297	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
 298	get_file(file);
 
 299	offset = (loff_t)(start - vma->vm_start)
 300			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 301	mmap_read_unlock(mm);
 302	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
 303	fput(file);
 304	mmap_read_lock(mm);
 305	return 0;
 306}
 307
 308static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
 309				unsigned long addr, unsigned long end,
 310				struct mm_walk *walk)
 311{
 312	struct madvise_walk_private *private = walk->private;
 313	struct mmu_gather *tlb = private->tlb;
 314	bool pageout = private->pageout;
 315	struct mm_struct *mm = tlb->mm;
 316	struct vm_area_struct *vma = walk->vma;
 317	pte_t *orig_pte, *pte, ptent;
 318	spinlock_t *ptl;
 319	struct page *page = NULL;
 320	LIST_HEAD(page_list);
 321
 322	if (fatal_signal_pending(current))
 323		return -EINTR;
 324
 325#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 326	if (pmd_trans_huge(*pmd)) {
 327		pmd_t orig_pmd;
 328		unsigned long next = pmd_addr_end(addr, end);
 329
 330		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 331		ptl = pmd_trans_huge_lock(pmd, vma);
 332		if (!ptl)
 333			return 0;
 334
 335		orig_pmd = *pmd;
 336		if (is_huge_zero_pmd(orig_pmd))
 337			goto huge_unlock;
 338
 339		if (unlikely(!pmd_present(orig_pmd))) {
 340			VM_BUG_ON(thp_migration_supported() &&
 341					!is_pmd_migration_entry(orig_pmd));
 342			goto huge_unlock;
 343		}
 344
 345		page = pmd_page(orig_pmd);
 346
 347		/* Do not interfere with other mappings of this page */
 348		if (page_mapcount(page) != 1)
 349			goto huge_unlock;
 350
 351		if (next - addr != HPAGE_PMD_SIZE) {
 352			int err;
 353
 
 
 
 354			get_page(page);
 355			spin_unlock(ptl);
 356			lock_page(page);
 357			err = split_huge_page(page);
 358			unlock_page(page);
 359			put_page(page);
 360			if (!err)
 361				goto regular_page;
 362			return 0;
 363		}
 364
 365		if (pmd_young(orig_pmd)) {
 366			pmdp_invalidate(vma, addr, pmd);
 367			orig_pmd = pmd_mkold(orig_pmd);
 368
 369			set_pmd_at(mm, addr, pmd, orig_pmd);
 370			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 371		}
 372
 373		ClearPageReferenced(page);
 374		test_and_clear_page_young(page);
 375		if (pageout) {
 376			if (!isolate_lru_page(page)) {
 377				if (PageUnevictable(page))
 378					putback_lru_page(page);
 379				else
 380					list_add(&page->lru, &page_list);
 381			}
 382		} else
 383			deactivate_page(page);
 384huge_unlock:
 385		spin_unlock(ptl);
 386		if (pageout)
 387			reclaim_pages(&page_list);
 388		return 0;
 389	}
 390
 391regular_page:
 392	if (pmd_trans_unstable(pmd))
 393		return 0;
 
 394#endif
 395	tlb_change_page_size(tlb, PAGE_SIZE);
 396	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 397	flush_tlb_batched_pending(mm);
 398	arch_enter_lazy_mmu_mode();
 399	for (; addr < end; pte++, addr += PAGE_SIZE) {
 400		ptent = *pte;
 401
 402		if (pte_none(ptent))
 403			continue;
 404
 405		if (!pte_present(ptent))
 406			continue;
 407
 408		page = vm_normal_page(vma, addr, ptent);
 409		if (!page)
 410			continue;
 411
 412		/*
 413		 * Creating a THP page is expensive so split it only if we
 414		 * are sure it's worth. Split it if we are only owner.
 415		 */
 416		if (PageTransCompound(page)) {
 417			if (page_mapcount(page) != 1)
 418				break;
 419			get_page(page);
 420			if (!trylock_page(page)) {
 421				put_page(page);
 422				break;
 423			}
 424			pte_unmap_unlock(orig_pte, ptl);
 425			if (split_huge_page(page)) {
 426				unlock_page(page);
 427				put_page(page);
 428				pte_offset_map_lock(mm, pmd, addr, &ptl);
 429				break;
 430			}
 431			unlock_page(page);
 432			put_page(page);
 433			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 434			pte--;
 435			addr -= PAGE_SIZE;
 436			continue;
 437		}
 438
 439		/* Do not interfere with other mappings of this page */
 440		if (page_mapcount(page) != 1)
 441			continue;
 442
 443		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 444
 445		if (pte_young(ptent)) {
 446			ptent = ptep_get_and_clear_full(mm, addr, pte,
 447							tlb->fullmm);
 448			ptent = pte_mkold(ptent);
 449			set_pte_at(mm, addr, pte, ptent);
 450			tlb_remove_tlb_entry(tlb, pte, addr);
 451		}
 452
 453		/*
 454		 * We are deactivating a page for accelerating reclaiming.
 455		 * VM couldn't reclaim the page unless we clear PG_young.
 456		 * As a side effect, it makes confuse idle-page tracking
 457		 * because they will miss recent referenced history.
 458		 */
 459		ClearPageReferenced(page);
 460		test_and_clear_page_young(page);
 461		if (pageout) {
 462			if (!isolate_lru_page(page)) {
 463				if (PageUnevictable(page))
 464					putback_lru_page(page);
 465				else
 466					list_add(&page->lru, &page_list);
 467			}
 468		} else
 469			deactivate_page(page);
 470	}
 471
 472	arch_leave_lazy_mmu_mode();
 473	pte_unmap_unlock(orig_pte, ptl);
 474	if (pageout)
 475		reclaim_pages(&page_list);
 476	cond_resched();
 477
 478	return 0;
 479}
 480
 481static const struct mm_walk_ops cold_walk_ops = {
 482	.pmd_entry = madvise_cold_or_pageout_pte_range,
 483};
 484
 485static void madvise_cold_page_range(struct mmu_gather *tlb,
 486			     struct vm_area_struct *vma,
 487			     unsigned long addr, unsigned long end)
 488{
 489	struct madvise_walk_private walk_private = {
 490		.pageout = false,
 491		.tlb = tlb,
 492	};
 493
 494	tlb_start_vma(tlb, vma);
 495	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 496	tlb_end_vma(tlb, vma);
 497}
 498
 499static long madvise_cold(struct vm_area_struct *vma,
 500			struct vm_area_struct **prev,
 501			unsigned long start_addr, unsigned long end_addr)
 502{
 503	struct mm_struct *mm = vma->vm_mm;
 504	struct mmu_gather tlb;
 505
 506	*prev = vma;
 507	if (!can_madv_lru_vma(vma))
 508		return -EINVAL;
 509
 510	lru_add_drain();
 511	tlb_gather_mmu(&tlb, mm);
 512	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
 513	tlb_finish_mmu(&tlb);
 514
 515	return 0;
 516}
 517
 518static void madvise_pageout_page_range(struct mmu_gather *tlb,
 519			     struct vm_area_struct *vma,
 520			     unsigned long addr, unsigned long end)
 521{
 522	struct madvise_walk_private walk_private = {
 523		.pageout = true,
 524		.tlb = tlb,
 525	};
 526
 527	tlb_start_vma(tlb, vma);
 528	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 529	tlb_end_vma(tlb, vma);
 530}
 531
 532static inline bool can_do_pageout(struct vm_area_struct *vma)
 533{
 534	if (vma_is_anonymous(vma))
 535		return true;
 536	if (!vma->vm_file)
 537		return false;
 538	/*
 539	 * paging out pagecache only for non-anonymous mappings that correspond
 540	 * to the files the calling process could (if tried) open for writing;
 541	 * otherwise we'd be including shared non-exclusive mappings, which
 542	 * opens a side channel.
 543	 */
 544	return inode_owner_or_capable(&init_user_ns,
 545				      file_inode(vma->vm_file)) ||
 546	       file_permission(vma->vm_file, MAY_WRITE) == 0;
 547}
 548
 549static long madvise_pageout(struct vm_area_struct *vma,
 550			struct vm_area_struct **prev,
 551			unsigned long start_addr, unsigned long end_addr)
 552{
 553	struct mm_struct *mm = vma->vm_mm;
 554	struct mmu_gather tlb;
 555
 556	*prev = vma;
 557	if (!can_madv_lru_vma(vma))
 558		return -EINVAL;
 559
 560	if (!can_do_pageout(vma))
 561		return 0;
 562
 563	lru_add_drain();
 564	tlb_gather_mmu(&tlb, mm);
 565	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
 566	tlb_finish_mmu(&tlb);
 567
 568	return 0;
 569}
 570
 571static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
 572				unsigned long end, struct mm_walk *walk)
 573
 574{
 575	struct mmu_gather *tlb = walk->private;
 576	struct mm_struct *mm = tlb->mm;
 577	struct vm_area_struct *vma = walk->vma;
 578	spinlock_t *ptl;
 579	pte_t *orig_pte, *pte, ptent;
 580	struct page *page;
 581	int nr_swap = 0;
 582	unsigned long next;
 583
 584	next = pmd_addr_end(addr, end);
 585	if (pmd_trans_huge(*pmd))
 586		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
 587			goto next;
 588
 589	if (pmd_trans_unstable(pmd))
 590		return 0;
 591
 592	tlb_change_page_size(tlb, PAGE_SIZE);
 593	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 594	flush_tlb_batched_pending(mm);
 595	arch_enter_lazy_mmu_mode();
 596	for (; addr != end; pte++, addr += PAGE_SIZE) {
 597		ptent = *pte;
 598
 599		if (pte_none(ptent))
 600			continue;
 601		/*
 602		 * If the pte has swp_entry, just clear page table to
 603		 * prevent swap-in which is more expensive rather than
 604		 * (page allocation + zeroing).
 605		 */
 606		if (!pte_present(ptent)) {
 607			swp_entry_t entry;
 608
 609			entry = pte_to_swp_entry(ptent);
 610			if (non_swap_entry(entry))
 611				continue;
 612			nr_swap--;
 613			free_swap_and_cache(entry);
 614			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 615			continue;
 616		}
 617
 618		page = vm_normal_page(vma, addr, ptent);
 619		if (!page)
 620			continue;
 621
 622		/*
 623		 * If pmd isn't transhuge but the page is THP and
 624		 * is owned by only this process, split it and
 625		 * deactivate all pages.
 626		 */
 627		if (PageTransCompound(page)) {
 628			if (page_mapcount(page) != 1)
 629				goto out;
 630			get_page(page);
 631			if (!trylock_page(page)) {
 632				put_page(page);
 633				goto out;
 634			}
 635			pte_unmap_unlock(orig_pte, ptl);
 636			if (split_huge_page(page)) {
 637				unlock_page(page);
 638				put_page(page);
 639				pte_offset_map_lock(mm, pmd, addr, &ptl);
 640				goto out;
 641			}
 642			unlock_page(page);
 643			put_page(page);
 644			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 645			pte--;
 646			addr -= PAGE_SIZE;
 647			continue;
 648		}
 649
 650		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 651
 652		if (PageSwapCache(page) || PageDirty(page)) {
 653			if (!trylock_page(page))
 654				continue;
 655			/*
 656			 * If page is shared with others, we couldn't clear
 657			 * PG_dirty of the page.
 658			 */
 659			if (page_mapcount(page) != 1) {
 660				unlock_page(page);
 661				continue;
 662			}
 663
 664			if (PageSwapCache(page) && !try_to_free_swap(page)) {
 665				unlock_page(page);
 666				continue;
 667			}
 668
 669			ClearPageDirty(page);
 670			unlock_page(page);
 671		}
 672
 673		if (pte_young(ptent) || pte_dirty(ptent)) {
 674			/*
 675			 * Some of architecture(ex, PPC) don't update TLB
 676			 * with set_pte_at and tlb_remove_tlb_entry so for
 677			 * the portability, remap the pte with old|clean
 678			 * after pte clearing.
 679			 */
 680			ptent = ptep_get_and_clear_full(mm, addr, pte,
 681							tlb->fullmm);
 682
 683			ptent = pte_mkold(ptent);
 684			ptent = pte_mkclean(ptent);
 685			set_pte_at(mm, addr, pte, ptent);
 686			tlb_remove_tlb_entry(tlb, pte, addr);
 687		}
 688		mark_page_lazyfree(page);
 689	}
 690out:
 691	if (nr_swap) {
 692		if (current->mm == mm)
 693			sync_mm_rss(mm);
 694
 695		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
 696	}
 697	arch_leave_lazy_mmu_mode();
 698	pte_unmap_unlock(orig_pte, ptl);
 699	cond_resched();
 700next:
 701	return 0;
 702}
 703
 704static const struct mm_walk_ops madvise_free_walk_ops = {
 705	.pmd_entry		= madvise_free_pte_range,
 706};
 707
 708static int madvise_free_single_vma(struct vm_area_struct *vma,
 709			unsigned long start_addr, unsigned long end_addr)
 710{
 711	struct mm_struct *mm = vma->vm_mm;
 712	struct mmu_notifier_range range;
 713	struct mmu_gather tlb;
 714
 715	/* MADV_FREE works for only anon vma at the moment */
 716	if (!vma_is_anonymous(vma))
 717		return -EINVAL;
 718
 719	range.start = max(vma->vm_start, start_addr);
 720	if (range.start >= vma->vm_end)
 721		return -EINVAL;
 722	range.end = min(vma->vm_end, end_addr);
 723	if (range.end <= vma->vm_start)
 724		return -EINVAL;
 725	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
 726				range.start, range.end);
 727
 728	lru_add_drain();
 729	tlb_gather_mmu(&tlb, mm);
 730	update_hiwater_rss(mm);
 731
 732	mmu_notifier_invalidate_range_start(&range);
 733	tlb_start_vma(&tlb, vma);
 734	walk_page_range(vma->vm_mm, range.start, range.end,
 735			&madvise_free_walk_ops, &tlb);
 736	tlb_end_vma(&tlb, vma);
 737	mmu_notifier_invalidate_range_end(&range);
 738	tlb_finish_mmu(&tlb);
 739
 740	return 0;
 741}
 742
 743/*
 744 * Application no longer needs these pages.  If the pages are dirty,
 745 * it's OK to just throw them away.  The app will be more careful about
 746 * data it wants to keep.  Be sure to free swap resources too.  The
 747 * zap_page_range call sets things up for shrink_active_list to actually free
 748 * these pages later if no one else has touched them in the meantime,
 749 * although we could add these pages to a global reuse list for
 750 * shrink_active_list to pick up before reclaiming other pages.
 751 *
 752 * NB: This interface discards data rather than pushes it out to swap,
 753 * as some implementations do.  This has performance implications for
 754 * applications like large transactional databases which want to discard
 755 * pages in anonymous maps after committing to backing store the data
 756 * that was kept in them.  There is no reason to write this data out to
 757 * the swap area if the application is discarding it.
 758 *
 759 * An interface that causes the system to free clean pages and flush
 760 * dirty pages is already available as msync(MS_INVALIDATE).
 761 */
 762static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
 763					unsigned long start, unsigned long end)
 764{
 765	zap_page_range(vma, start, end - start);
 766	return 0;
 767}
 768
 769static long madvise_dontneed_free(struct vm_area_struct *vma,
 770				  struct vm_area_struct **prev,
 771				  unsigned long start, unsigned long end,
 772				  int behavior)
 773{
 774	struct mm_struct *mm = vma->vm_mm;
 775
 776	*prev = vma;
 777	if (!can_madv_lru_vma(vma))
 778		return -EINVAL;
 779
 780	if (!userfaultfd_remove(vma, start, end)) {
 781		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
 782
 783		mmap_read_lock(mm);
 784		vma = find_vma(mm, start);
 785		if (!vma)
 786			return -ENOMEM;
 787		if (start < vma->vm_start) {
 788			/*
 789			 * This "vma" under revalidation is the one
 790			 * with the lowest vma->vm_start where start
 791			 * is also < vma->vm_end. If start <
 792			 * vma->vm_start it means an hole materialized
 793			 * in the user address space within the
 794			 * virtual range passed to MADV_DONTNEED
 795			 * or MADV_FREE.
 796			 */
 797			return -ENOMEM;
 798		}
 799		if (!can_madv_lru_vma(vma))
 800			return -EINVAL;
 801		if (end > vma->vm_end) {
 802			/*
 803			 * Don't fail if end > vma->vm_end. If the old
 804			 * vma was split while the mmap_lock was
 805			 * released the effect of the concurrent
 806			 * operation may not cause madvise() to
 807			 * have an undefined result. There may be an
 808			 * adjacent next vma that we'll walk
 809			 * next. userfaultfd_remove() will generate an
 810			 * UFFD_EVENT_REMOVE repetition on the
 811			 * end-vma->vm_end range, but the manager can
 812			 * handle a repetition fine.
 813			 */
 814			end = vma->vm_end;
 815		}
 816		VM_WARN_ON(start >= end);
 817	}
 818
 819	if (behavior == MADV_DONTNEED)
 820		return madvise_dontneed_single_vma(vma, start, end);
 821	else if (behavior == MADV_FREE)
 822		return madvise_free_single_vma(vma, start, end);
 823	else
 824		return -EINVAL;
 825}
 826
 827static long madvise_populate(struct vm_area_struct *vma,
 828			     struct vm_area_struct **prev,
 829			     unsigned long start, unsigned long end,
 830			     int behavior)
 831{
 832	const bool write = behavior == MADV_POPULATE_WRITE;
 833	struct mm_struct *mm = vma->vm_mm;
 834	unsigned long tmp_end;
 835	int locked = 1;
 836	long pages;
 837
 838	*prev = vma;
 839
 840	while (start < end) {
 841		/*
 842		 * We might have temporarily dropped the lock. For example,
 843		 * our VMA might have been split.
 844		 */
 845		if (!vma || start >= vma->vm_end) {
 846			vma = find_vma(mm, start);
 847			if (!vma || start < vma->vm_start)
 848				return -ENOMEM;
 849		}
 850
 851		tmp_end = min_t(unsigned long, end, vma->vm_end);
 852		/* Populate (prefault) page tables readable/writable. */
 853		pages = faultin_vma_page_range(vma, start, tmp_end, write,
 854					       &locked);
 855		if (!locked) {
 856			mmap_read_lock(mm);
 857			locked = 1;
 858			*prev = NULL;
 859			vma = NULL;
 860		}
 861		if (pages < 0) {
 862			switch (pages) {
 863			case -EINTR:
 864				return -EINTR;
 865			case -EINVAL: /* Incompatible mappings / permissions. */
 866				return -EINVAL;
 867			case -EHWPOISON:
 868				return -EHWPOISON;
 869			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
 870				return -EFAULT;
 871			default:
 872				pr_warn_once("%s: unhandled return value: %ld\n",
 873					     __func__, pages);
 874				fallthrough;
 875			case -ENOMEM:
 876				return -ENOMEM;
 877			}
 878		}
 879		start += pages * PAGE_SIZE;
 880	}
 881	return 0;
 882}
 883
 884/*
 885 * Application wants to free up the pages and associated backing store.
 886 * This is effectively punching a hole into the middle of a file.
 887 */
 888static long madvise_remove(struct vm_area_struct *vma,
 889				struct vm_area_struct **prev,
 890				unsigned long start, unsigned long end)
 891{
 892	loff_t offset;
 893	int error;
 894	struct file *f;
 895	struct mm_struct *mm = vma->vm_mm;
 896
 897	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
 898
 899	if (vma->vm_flags & VM_LOCKED)
 900		return -EINVAL;
 901
 902	f = vma->vm_file;
 903
 904	if (!f || !f->f_mapping || !f->f_mapping->host) {
 905			return -EINVAL;
 906	}
 907
 908	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
 909		return -EACCES;
 910
 911	offset = (loff_t)(start - vma->vm_start)
 912			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 913
 914	/*
 915	 * Filesystem's fallocate may need to take i_mutex.  We need to
 916	 * explicitly grab a reference because the vma (and hence the
 917	 * vma's reference to the file) can go away as soon as we drop
 918	 * mmap_lock.
 919	 */
 920	get_file(f);
 921	if (userfaultfd_remove(vma, start, end)) {
 922		/* mmap_lock was not released by userfaultfd_remove() */
 923		mmap_read_unlock(mm);
 924	}
 925	error = vfs_fallocate(f,
 926				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 927				offset, end - start);
 928	fput(f);
 929	mmap_read_lock(mm);
 930	return error;
 931}
 932
 933#ifdef CONFIG_MEMORY_FAILURE
 934/*
 935 * Error injection support for memory error handling.
 936 */
 937static int madvise_inject_error(int behavior,
 938		unsigned long start, unsigned long end)
 939{
 940	unsigned long size;
 
 
 941
 942	if (!capable(CAP_SYS_ADMIN))
 943		return -EPERM;
 944
 945
 946	for (; start < end; start += size) {
 947		unsigned long pfn;
 948		struct page *page;
 949		int ret;
 950
 951		ret = get_user_pages_fast(start, 1, 0, &page);
 952		if (ret != 1)
 953			return ret;
 954		pfn = page_to_pfn(page);
 955
 956		/*
 957		 * When soft offlining hugepages, after migrating the page
 958		 * we dissolve it, therefore in the second loop "page" will
 959		 * no longer be a compound page.
 960		 */
 961		size = page_size(compound_head(page));
 
 
 
 
 
 962
 963		if (behavior == MADV_SOFT_OFFLINE) {
 964			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
 965				 pfn, start);
 966			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
 967		} else {
 968			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
 969				 pfn, start);
 970			ret = memory_failure(pfn, MF_COUNT_INCREASED);
 971		}
 972
 
 
 
 
 
 
 
 
 
 
 
 973		if (ret)
 974			return ret;
 975	}
 976
 
 
 
 
 977	return 0;
 978}
 979#endif
 980
 981static long
 982madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
 983		unsigned long start, unsigned long end, int behavior)
 984{
 985	switch (behavior) {
 986	case MADV_REMOVE:
 987		return madvise_remove(vma, prev, start, end);
 988	case MADV_WILLNEED:
 989		return madvise_willneed(vma, prev, start, end);
 990	case MADV_COLD:
 991		return madvise_cold(vma, prev, start, end);
 992	case MADV_PAGEOUT:
 993		return madvise_pageout(vma, prev, start, end);
 994	case MADV_FREE:
 995	case MADV_DONTNEED:
 996		return madvise_dontneed_free(vma, prev, start, end, behavior);
 997	case MADV_POPULATE_READ:
 998	case MADV_POPULATE_WRITE:
 999		return madvise_populate(vma, prev, start, end, behavior);
1000	default:
1001		return madvise_behavior(vma, prev, start, end, behavior);
1002	}
1003}
1004
1005static bool
1006madvise_behavior_valid(int behavior)
1007{
1008	switch (behavior) {
1009	case MADV_DOFORK:
1010	case MADV_DONTFORK:
1011	case MADV_NORMAL:
1012	case MADV_SEQUENTIAL:
1013	case MADV_RANDOM:
1014	case MADV_REMOVE:
1015	case MADV_WILLNEED:
1016	case MADV_DONTNEED:
1017	case MADV_FREE:
1018	case MADV_COLD:
1019	case MADV_PAGEOUT:
1020	case MADV_POPULATE_READ:
1021	case MADV_POPULATE_WRITE:
1022#ifdef CONFIG_KSM
1023	case MADV_MERGEABLE:
1024	case MADV_UNMERGEABLE:
1025#endif
1026#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1027	case MADV_HUGEPAGE:
1028	case MADV_NOHUGEPAGE:
1029#endif
1030	case MADV_DONTDUMP:
1031	case MADV_DODUMP:
1032	case MADV_WIPEONFORK:
1033	case MADV_KEEPONFORK:
1034#ifdef CONFIG_MEMORY_FAILURE
1035	case MADV_SOFT_OFFLINE:
1036	case MADV_HWPOISON:
1037#endif
1038		return true;
1039
1040	default:
1041		return false;
1042	}
1043}
1044
1045static bool
1046process_madvise_behavior_valid(int behavior)
1047{
1048	switch (behavior) {
1049	case MADV_COLD:
1050	case MADV_PAGEOUT:
1051		return true;
1052	default:
1053		return false;
1054	}
1055}
1056
1057/*
1058 * The madvise(2) system call.
1059 *
1060 * Applications can use madvise() to advise the kernel how it should
1061 * handle paging I/O in this VM area.  The idea is to help the kernel
1062 * use appropriate read-ahead and caching techniques.  The information
1063 * provided is advisory only, and can be safely disregarded by the
1064 * kernel without affecting the correct operation of the application.
1065 *
1066 * behavior values:
1067 *  MADV_NORMAL - the default behavior is to read clusters.  This
1068 *		results in some read-ahead and read-behind.
1069 *  MADV_RANDOM - the system should read the minimum amount of data
1070 *		on any access, since it is unlikely that the appli-
1071 *		cation will need more than what it asks for.
1072 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1073 *		once, so they can be aggressively read ahead, and
1074 *		can be freed soon after they are accessed.
1075 *  MADV_WILLNEED - the application is notifying the system to read
1076 *		some pages ahead.
1077 *  MADV_DONTNEED - the application is finished with the given range,
1078 *		so the kernel can free resources associated with it.
1079 *  MADV_FREE - the application marks pages in the given range as lazy free,
1080 *		where actual purges are postponed until memory pressure happens.
1081 *  MADV_REMOVE - the application wants to free up the given range of
1082 *		pages and associated backing store.
1083 *  MADV_DONTFORK - omit this area from child's address space when forking:
1084 *		typically, to avoid COWing pages pinned by get_user_pages().
1085 *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1086 *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1087 *              range after a fork.
1088 *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1089 *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1090 *		were corrupted by unrecoverable hardware memory failure.
1091 *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1092 *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1093 *		this area with pages of identical content from other such areas.
1094 *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1095 *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1096 *		huge pages in the future. Existing pages might be coalesced and
1097 *		new pages might be allocated as THP.
1098 *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1099 *		transparent huge pages so the existing pages will not be
1100 *		coalesced into THP and new pages will not be allocated as THP.
1101 *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1102 *		from being included in its core dump.
1103 *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1104 *  MADV_COLD - the application is not expected to use this memory soon,
1105 *		deactivate pages in this range so that they can be reclaimed
1106 *		easily if memory pressure happens.
1107 *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1108 *		page out the pages in this range immediately.
1109 *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1110 *		triggering read faults if required
1111 *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1112 *		triggering write faults if required
1113 *
1114 * return values:
1115 *  zero    - success
1116 *  -EINVAL - start + len < 0, start is not page-aligned,
1117 *		"behavior" is not a valid value, or application
1118 *		is attempting to release locked or shared pages,
1119 *		or the specified address range includes file, Huge TLB,
1120 *		MAP_SHARED or VMPFNMAP range.
1121 *  -ENOMEM - addresses in the specified range are not currently
1122 *		mapped, or are outside the AS of the process.
1123 *  -EIO    - an I/O error occurred while paging in data.
1124 *  -EBADF  - map exists, but area maps something that isn't a file.
1125 *  -EAGAIN - a kernel resource was temporarily unavailable.
1126 */
1127int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1128{
1129	unsigned long end, tmp;
1130	struct vm_area_struct *vma, *prev;
1131	int unmapped_error = 0;
1132	int error = -EINVAL;
1133	int write;
1134	size_t len;
1135	struct blk_plug plug;
1136
1137	start = untagged_addr(start);
1138
1139	if (!madvise_behavior_valid(behavior))
1140		return error;
1141
1142	if (!PAGE_ALIGNED(start))
1143		return error;
1144	len = PAGE_ALIGN(len_in);
1145
1146	/* Check to see whether len was rounded up from small -ve to zero */
1147	if (len_in && !len)
1148		return error;
1149
1150	end = start + len;
1151	if (end < start)
1152		return error;
1153
1154	error = 0;
1155	if (end == start)
1156		return error;
1157
1158#ifdef CONFIG_MEMORY_FAILURE
1159	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1160		return madvise_inject_error(behavior, start, start + len_in);
1161#endif
1162
1163	write = madvise_need_mmap_write(behavior);
1164	if (write) {
1165		if (mmap_write_lock_killable(mm))
1166			return -EINTR;
1167	} else {
1168		mmap_read_lock(mm);
1169	}
1170
1171	/*
1172	 * If the interval [start,end) covers some unmapped address
1173	 * ranges, just ignore them, but return -ENOMEM at the end.
1174	 * - different from the way of handling in mlock etc.
1175	 */
1176	vma = find_vma_prev(mm, start, &prev);
1177	if (vma && start > vma->vm_start)
1178		prev = vma;
1179
1180	blk_start_plug(&plug);
1181	for (;;) {
1182		/* Still start < end. */
1183		error = -ENOMEM;
1184		if (!vma)
1185			goto out;
1186
1187		/* Here start < (end|vma->vm_end). */
1188		if (start < vma->vm_start) {
1189			unmapped_error = -ENOMEM;
1190			start = vma->vm_start;
1191			if (start >= end)
1192				goto out;
1193		}
1194
1195		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1196		tmp = vma->vm_end;
1197		if (end < tmp)
1198			tmp = end;
1199
1200		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1201		error = madvise_vma(vma, &prev, start, tmp, behavior);
1202		if (error)
1203			goto out;
1204		start = tmp;
1205		if (prev && start < prev->vm_end)
1206			start = prev->vm_end;
1207		error = unmapped_error;
1208		if (start >= end)
1209			goto out;
1210		if (prev)
1211			vma = prev->vm_next;
1212		else	/* madvise_remove dropped mmap_lock */
1213			vma = find_vma(mm, start);
1214	}
1215out:
1216	blk_finish_plug(&plug);
1217	if (write)
1218		mmap_write_unlock(mm);
1219	else
1220		mmap_read_unlock(mm);
1221
1222	return error;
1223}
1224
1225SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1226{
1227	return do_madvise(current->mm, start, len_in, behavior);
1228}
1229
1230SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1231		size_t, vlen, int, behavior, unsigned int, flags)
1232{
1233	ssize_t ret;
1234	struct iovec iovstack[UIO_FASTIOV], iovec;
1235	struct iovec *iov = iovstack;
1236	struct iov_iter iter;
1237	struct pid *pid;
1238	struct task_struct *task;
1239	struct mm_struct *mm;
1240	size_t total_len;
1241	unsigned int f_flags;
1242
1243	if (flags != 0) {
1244		ret = -EINVAL;
1245		goto out;
1246	}
1247
1248	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1249	if (ret < 0)
1250		goto out;
1251
1252	pid = pidfd_get_pid(pidfd, &f_flags);
1253	if (IS_ERR(pid)) {
1254		ret = PTR_ERR(pid);
1255		goto free_iov;
1256	}
1257
1258	task = get_pid_task(pid, PIDTYPE_PID);
1259	if (!task) {
1260		ret = -ESRCH;
1261		goto put_pid;
1262	}
1263
1264	if (!process_madvise_behavior_valid(behavior)) {
1265		ret = -EINVAL;
1266		goto release_task;
1267	}
1268
1269	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1270	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1271	if (IS_ERR_OR_NULL(mm)) {
1272		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1273		goto release_task;
1274	}
1275
1276	/*
1277	 * Require CAP_SYS_NICE for influencing process performance. Note that
1278	 * only non-destructive hints are currently supported.
1279	 */
1280	if (!capable(CAP_SYS_NICE)) {
1281		ret = -EPERM;
1282		goto release_mm;
1283	}
1284
1285	total_len = iov_iter_count(&iter);
1286
1287	while (iov_iter_count(&iter)) {
1288		iovec = iov_iter_iovec(&iter);
1289		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1290					iovec.iov_len, behavior);
1291		if (ret < 0)
1292			break;
1293		iov_iter_advance(&iter, iovec.iov_len);
1294	}
1295
1296	if (ret == 0)
1297		ret = total_len - iov_iter_count(&iter);
1298
1299release_mm:
1300	mmput(mm);
1301release_task:
1302	put_task_struct(task);
1303put_pid:
1304	put_pid(pid);
1305free_iov:
1306	kfree(iov);
1307out:
1308	return ret;
1309}